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ABSTRACT

The ultrasonic study is an area of piercing scientific and technological research. The study has
earned penetrating significance in understanding the nature of molecular interactions and
investigating the physicochemical behavior of ion-solvent interactions. This behavior of
intermolecular interactions changes with the change in temperature, therefore, the thermodynamic
study of liquid mixtures is of intense importance. For examining certain physical properties of the
liquids in mixed solvent systems, the study of behavior of ultrasonic wave propagation is very
effective. The thermodynamic study has been carried out to perceive the information regarding the
interacting property of glycols in agueous and mixed aqueous solutions. Effect of glycols on sugar
alcohols have been studied by measuring ultrasonic, volumetric and viscometric properties at
different temperatures using Anton Paar DSA 5000 M, Mittal enterprises ultrasonic interferometer,
specific gravity bottle and Ostwald’s viscometer. The ultrasonic speed, density and viscosity have
been measured for the binary mixtures of ethylene glycol, diethylene glycol and triethylene glycol
with glycerol at temperatures T= (298.15, 303.15, 308.15 and 313.15) K. With the help of these
properties, various derived parameters such as acoustic impedance, adiabatic compressibility,
intermolecular free length, relaxation time, ultrasonic attenuation, free volume, available volume,
molar volume, Wada’s constant, Rao’s constant, Vander Waal’s constant, internal pressure,
enthalpy and Gibb’s free energy are computed. The variation in these parameters have been
discussed in terms of interactions prevailing in the binary systems. For the same binary systems,
the deviation of experimental ultrasonic speeds from theoretical ultrasonic speeds is evaluated
through several theoretical models namely the theoretical ultrasonic speed model given by
Nomoto, Van Dael and Vangeel, Junjie and the impedance-based relation are incorporated. The
deviation of experimentally obtained ultrasonic speed from the values obtained from different
theoretical models is attributed to the fact that the theoretical models do not consider the effect of
molecular interactions upon mixing of two or more components. Further, the densities and
ultrasonic speeds of ethylene glycol, diethylene glycol and triethylene glycol in (0.00, 0.01, 0.03,
0.05) mol-kg* aqueous solutions of glycerol have been measured at T = (293.15, 298.15, 303.15,
308.15) K and experimental pressure p = 0.1 MPa. From the density data, the apparent molar

volume V;, the partial molar volume V¢ and the partial molar volumes of transfer AV have been

calculated for glycols from water to aqueous glycerol solutions. Using ultrasonic speed values



apparent molar isentropic compression K , partial molar isentropic compression Kg’s and partial
molar isentropic compression of transfer AKg, have been evaluated. The pair and triplet
coefficients have been computed from partial molar volumes of transfer and partial molar
isentropic compression of transfer. The apparent molar isobaric expansion at infinite dilution
(6V£/6T)p, second order derivative (02V£/6T2)p have also been calculated. The parameters thus

obtained have been discussed in terms of (solute-solute)/(solute-solvent) interactions prevailing in
the ternary system along with structure making/structure breaking tendency of glycols in aqueous
glycerol solutions. The intermolecular interactions of glycerol with two polyethylene glycols i.e.
polyethylene glycol-400 and polyethylene glycol-4000 in aqueous medium have also been
examined from the measurements of density and ultrasonic speed at temperatures T = (293.15,
298.15, 303.15, 308.15) K and experimental pressure p = 0.1 MPa. The apparent molar volume
(V). partial molar volume (V) and partial molar volume of transfer (AV;) have been evaluated
from density data for polyethylene glycols from water to aqueous glycerol solutions. The limiting
apparent molar expansibilities have also been evaluated. The ultrasonic speed measurements are
used to determine apparent molar isentropic compression (Kg ), partial molar isentropic
compression (K(g,s) and partial molar isentropic compression of transfer (AKq@_S) for polyethylene

glycols from water to aqueous glycerol solutions. From (partial molar volume and partial molar
isentropic compression) of transfer, the pair and triplet coefficients are calculated. By the perusal
of these determined parameters, the results have been explicated based upon the competing
patterns of physicochemical interactions of co-solutes and the solvents. In addition to it, the
combination of volumetric and acoustical studies is used to investigate the interactions of ethylene
glycol, diethylene glycol and triethylene glycol with Sorbitol as a temperature’s function. Densities
and ultrasonic speeds of ethylene, diethylene and triethylene glycol in (0.00, 0.01, 0.03, 0.05)
mol-kg™ aqueous solutions of sorbitol are measured at temperatures T = (288.15, 298.15, 308.15,
318.15) K and experimental pressure p = 0.1 MPa. With the help of density data, (apparent molar

and partial molar) volume, V,, and V' are computed. The values for partial molar expansibility
(6V£/6T)p and second order derivative (02V£/6T2)p have also been determined. From
ultrasonic velocity values, (apparent molar and partial molar) isentropic compression, Ky  and
K3 s are evaluated. Further the partial molar volumes of transfer AVg and partial molar isentropic

compression of transfer AK ¢, are also calculated. The computed values of partial molar volumes



and partial molar isentropic compression of transfer are used to determine the pair and triplet
coefficients. The parameters thus obtained have been discussed in terms of solute-solute/solute-
solvent interactions prevailing in the ternary system along with structure making/structure
breaking tendency of glycols in aqueous sorbitol solutions. Furthermore, from the measurements
of density and speed of sound, the apparent molar properties and the partial molar properties have
been determined to study the interactions of two polyethylene glycols i.e. polyethylene glycol 400
and polyethylene glycol 4000 in aqueous solutions of sorbitol at experimental pressure p = 0.1

MPa and temperatures T = (288.15-318.15) K. Evaluation of partial molar volume (V), apparent
molar volume (V) and partial molar volumes of transfer (AVd‘,’) has been done using density
measurements. For the determination of partial molar isentropic compression (Kg ), apparent
molar isentropic compression (K ), and partial molar isentropic compression of transfer (AK(;S),
the ultrasonic speed measurements have been utilized. The limiting apparent molar expansibilities
(Eg) and its first order derivatives (0E(§’, /0T),, are also calculated. Further, with the aid of partial

molar isentropic compression of transfer and partial molar volumes of transfer, pair and triplet
coefficients are determined. Through the scrutiny of these evaluated parameters, the results are
elucidated based upon contending patterns of physicochemical interactions of co-solutes and

solvents prevailing in the liquid mixtures.
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ABSTRACT

The ultrasonic study is an area of piercing scientific and technological research. The
study has earned penetrating significance in understanding the nature of molecular
interactions and investigating the physicochemical behavior of ion-solvent interactions.
This behavior of intermolecular interactions changes with the change in temperature,
therefore, the thermodynamic study of liquid mixtures is of intense importance. For
examining certain physical properties of the liquids in mixed solvent systems, the study
of behavior of ultrasonic wave propagation is very effective. The thermodynamic study
has been carried out to perceive the information regarding the interacting property of
glycols in aqueous and mixed aqueous solutions. Effect of glycols on sugar alcohols
have been studied by measuring ultrasonic, volumetric and viscometric properties at
different temperatures using Anton Paar DSA 5000 M, Mittal enterprises ultrasonic
interferometer, specific gravity bottle and Ostwald’s viscometer. The ultrasonic speed,
density and viscosity have been measured for the binary mixtures of ethylene glycol,
diethylene glycol and triethylene glycol with glycerol at temperatures 7= (298.15,
303.15, 308.15 and 313.15) K. With the help of these properties, various derived
parameters such as acoustic impedance, adiabatic compressibility, intermolecular free
length, relaxation time, ultrasonic attenuation, free volume, available volume, molar
volume, Wada’s constant, Rao’s constant, Vander Waal’s constant, internal pressure,
enthalpy and Gibb’s free energy are computed. The variation in these parameters have
been discussed in terms of interactions prevailing in the binary systems. For the same
binary systems, the deviation of experimental ultrasonic speeds from theoretical
ultrasonic speeds is evaluated through several theoretical models namely the theoretical
ultrasonic speed model given by Nomoto, Van Dael and Vangeel, Junjie and the
impedance-based relation are incorporated. The deviation of experimentally obtained
ultrasonic speed from the values obtained from different theoretical models is attributed
to the fact that the theoretical models do not consider the effect of molecular
interactions upon mixing of two or more components. Further, the densities and
ultrasonic speeds of ethylene glycol, diethylene glycol and triethylene glycol in (0.00,
0.01, 0.03, 0.05) mol-kg! aqueous solutions of glycerol have been measured at T =

(293.15, 298.15, 303.15, 308.15) K and experimental pressure p = 0.1 MPa. From the
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density data, the apparent molar volume V, the partial molar volume Vd(; and the partial
molar volumes of transfer AV£ have been calculated for glycols from water to aqueous

glycerol solutions. Using ultrasonic speed values apparent molar isentropic

compression Ky ¢, partial molar isentropic compression K£,s and partial molar
isentropic compression of transfer AK(‘;,S, have been evaluated. The pair and triplet

coefficients have been computed from partial molar volumes of transfer and partial
molar isentropic compression of transfer. The apparent molar isobaric expansion at

infinite dilution (6V£ /0T),, second order derivative (BZV(;,) /aTZ)p have also been

calculated. The parameters thus obtained have been discussed in terms of (solute-
solute)/(solute-solvent) interactions prevailing in the ternary system along with
structure making/structure breaking tendency of glycols in aqueous glycerol solutions.
The intermolecular interactions of glycerol with two polyethylene glycols i.e.
polyethylene glycol-400 and polyethylene glycol-4000 in aqueous medium have also
been examined from the measurements of density and ultrasonic speed at temperatures
T =(293.15, 298.15, 303.15, 308.15) K and experimental pressure p = 0.1 MPa. The

apparent molar volume (V), partial molar volume (V£ ) and partial molar volume of
transfer (AV£ ) have been evaluated from density data for polyethylene glycols from

water to aqueous glycerol solutions. The limiting apparent molar expansibilities have
also been evaluated. The ultrasonic speed measurements are used to determine apparent

molar isentropic compression (K ), partial molar isentropic compression (K(g’s) and
partial molar isentropic compression of transfer (AK(;S) for polyethylene glycols from

water to aqueous glycerol solutions. From (partial molar volume and partial molar
isentropic compression) of transfer, the pair and triplet coefficients are calculated. By
the perusal of these determined parameters, the results have been explicated based upon
the competing patterns of physicochemical interactions of co-solutes and the solvents.
In addition to it, the combination of volumetric and acoustical studies is used to
investigate the interactions of ethylene glycol, diethylene glycol and triethylene glycol
with Sorbitol as a temperature’s function. Densities and ultrasonic speeds of ethylene,
diethylene and triethylene glycol in (0.00, 0.01, 0.03, 0.05) mol-kg™! aqueous solutions
of sorbitol are measured at temperatures 7 = (288.15, 298.15, 308.15, 318.15) K and
experimental pressure p = 0.1 MPa. With the help of density data, (apparent molar and
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partial molar) volume, Vg and V(l(,’ are computed. The values for partial molar
expansibility (av(g /0T),, and second order derivative (62V¢? /aTZ),, have also been

determined. From ultrasonic velocity values, (apparent molar and partial molar)
isentropic compression, Ky ; and ch,s are evaluated. Further the partial molar volumes
of transfer AVq‘; and partial molar isentropic compression of transfer AK(;S, are also
calculated. The computed values of partial molar volumes and partial molar isentropic
compression of transfer are used to determine the pair and triplet coefficients. The
parameters thus obtained have been discussed in terms of solute-solute/solute-solvent
interactions prevailing in the ternary system along with structure making/structure
breaking tendency of glycols in aqueous sorbitol solutions. Furthermore, from the
measurements of density and speed of sound, the apparent molar properties and the
partial molar properties have been determined to study the interactions of two
polyethylene glycols i.e. polyethylene glycol 400 and polyethylene glycol 4000 in
aqueous solutions of sorbitol at experimental pressure p = 0.1 MPa and temperatures 7'

= (288.15-318.15) K. Evaluation of partial molar volume (Vd‘; ), apparent molar volume
(Vg) and partial molar volumes of transfer (AV(g ) has been done using density
measurements. For the determination of partial molar isentropic compression (K(g's),
apparent molar isentropic compression (K ), and partial molar isentropic compression
of transfer (AK, g’s), the ultrasonic speed measurements have been utilized. The limiting
apparent molar expansibilities (E(g) and its first order derivatives (GE(% /0T),, are also

calculated. Further, with the aid of partial molar isentropic compression of transfer and
partial molar volumes of transfer, pair and triplet coefficients are determined. Through
the scrutiny of these evaluated parameters, the results are elucidated based upon
contending patterns of physicochemical interactions of co-solutes and solvents

prevailing in the liquid mixtures.
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1.1 ULTRASONICS

Ultrasonic is a branch of acoustics which deals with the generation, propagation and
use of inaudible acoustic waves. It generally deals with the sound waves with the
frequency higher than 20,000 Hz which is upper audible limit for human hearing. It
also deals with the generation, propagation as well as the use of inaudible acoustic
waves. These are the mechanical waves which require a physical medium to
propagate through it [1]. Ultrasonic speed is one of the manners to obtain data about
physical behavior of liquid mixtures and there exists number of models for
determining it theoretically from observed factors. The Ultrasonic Testing employs
high frequency sound energy to guide experiments and conduct measurements.
Ultrasonic examination can be used for, dimensional —measurements, flaw detection,
material characterizations and more. Ultrasonic inspection is a very versatile and
useful NDT (Non-Destructive Technique). The ultrasonic testing is responsive to
both subsurface and surface irregularity. It is highly accurate for determining and
estimating shape and size of molecules. The NDT is used to test as it cannot cause
disorder to the structure. This approach has a wide range of scientific and business
analyses to investigate properties without causing any damage. The NDT has a
number of non-destructive tests such as ultrasonic, magnetic particle, radiography

and eddy current testing and low coherence of interferometry.

1.2 FREQUENCY RANGES OF SOUND

The Ultrasonic or Supersonics are the sound waves with frequency above 20 KHz
whereas Infrasonic are the waves below 20Hz frequency. The mediums like Air,
water and solids are the compressible in nature through which sound waves travel.
For humans, audible sound frequency is 20 Hz to 20 KHz.

The bats use ultrasonic frequency for locating their prey and flying all around. The
bats use variety of ultrasonic techniques to detect their prey. They have ability to
produce and detect ultrasonic frequencies ranging from 100 KHz to 200 KHz. Many
nocturnal insects like moths, beetles etc. produce ultrasonic frequencies to confuse
bats and protect themselves. Dog is also a one of the animal which can hear
ultrasound and moreover dog whistle is specially designed for dogs which produces

ultrasound of 18-22 KHz. In case of marine life toothed whales and dolphins use



ultrasound for navigation and hunting the prey in deep ocean waters. The ultrasonic
speakers are sold as electronic devices which are claimed to make away insects, also

there is no scientific proof that this device working.

1.3 ULTRASONIC TECHNIQUES

In Ultrasonic techniques, ultrasonic waves are employed. Ultrasonic waves are the
sound waves having frequency more than 20 KHz. Ultrasonic testing (UT) is a family
of testing techniques which are non-destructive in nature which are further based on
the propagation of ultrasonic waves. Ultrasonic waves are inaudible to human ear
which can hear in between 20 Hz to 20 KHz. This range is known as sonic range.
The frequencies lower than this range are known as Infrasonic and the frequencies
above this range, called Ultrasonic. There are different methods to generate ultrasonic
waves such as Mechanical Methods, Piezoelectric Generator and Magnetostriction
Generator. The Mechanical method (Galton whistle) is of least application in research
field as it produces frequency of 100 KHz so it is less used. The other two methods
are preferred more as compared to this method. Piezoelectric Generator was
developed by Langevin in 1917. This Piezoelectric Generator is most widely used in

Ultrasonic Interferometers.

1.3.1 Magnetostriction Method: When a ferromagnetic rod is placed in magnetic
field parallel to the length and rod then small change in length experiences. This
technique is for producing low frequency ultrasonic waves. Magnetic field is applied
parallel to the rod of ferromagnetic material. Due to magnetic field small contraction
of material occur and change of length produces vibrations. Strength of magnetic
field, temperature and nature of material effects the contraction. It is very simple and

cheap but there will be hysteresis and eddy current losses.

1.3.2 Piezo-Electric Method: In this method electric field is applied to one face of
crystal and there is change in dimension of crystal at the other faces. These
contraction and relaxation of the faces the of crystal produces ultrasonic waves. The

advantage of this method is that it is not affected by climate conditions as humidity



or temperature but the shaping of crystal needs precision. The converse of this effect

1s also true.

1.4 ULTRASONIC INVESTIGATIONS

The ultrasonic investigation of liquid mixtures and pure liquids consisting non-polar
and polar components are significantly important in analyzing intermolecular
interactions between component molecules. These investigations are helpful in
giving out acute observations into structure and various bonding of associated
molecular complexes and other related molecular processes. It helps in depicting the
molecular association and dissociation. These are of considerable importance for
determining the thermo-acoustical or physico-chemical behavior of liquid mixtures
and the respective measurements are used to evaluate the molecular interaction
among the liquids [2]. It plays a significant role in understanding the strength and
nature of molecular interactions in binary or ternary mixtures. Different kind of liquid
mixtures show various usual or unusual characteristics which gains substantial
attention [3, 4]. In medical science, the waves are being used for medical diagnosis,
for detection of cancer tumors, bone fractures and physiotherapy, gynecology,
bloodless surgery, cardiology, etcetera [5]. The thermodynamic and ultrasonic
studies of molecular interactions are of huge importance in developing theoretical
models as well as its application in industry and engineering [6]. There are many
types of interactions occur between the solutes and solvents in the solutions and the
study of these interactions is of great interest in various branches of physics and
chemistry, these interactions provide the better understanding of nature of solute and
solvent, i.e. does the solute distorts or modifies the solvent? The structural
arrangement is influenced by the mutual interactions as well as the shape of the
molecules [7, 8]. The departure from linearity in the acoustical parameter versus
concentration in the liquid mixture is considered as the proof of existence of

molecular interactions between various species [9-11].

When two or more liquids are mixed together, then they result in change of their
physical and thermo dynamical properties which can be considered as a sum of

several contributions due to change in free volume, steric hindrance, energy and



molecular orientation [12]. Weak molecular interactions can also be detected by
ultrasonic technique. The chemical and physical properties of liquid mixtures have
been studied by various workers and they co-related the linear or non-linear variation
of ultrasonic speed, compressibility, free volume and other related thermo-acoustic
parameters with structural changes happening in the liquid with the variation in
concentration of liquid mixture [13]. The liquid mixture studies are indispensable for
many chemical processes, including phase equilibrium, solubility effects, calculation
of speciation, absorption and distribution of drug and drug products [14]. The
compressibility nature of solutes is a very sensitive indicator of molecular
interactions and provides useful information [15]. Further, the polymer dissolution is
of great importance in understanding the concept for dissolution process allows the
optimization of design and in many industrial applications [ 16]. The linear increasing
trend of interaction parameter is associative which strongly supports the interaction
between solute-solvent molecules [17, 18]. The ultrasonic studies can provide
interesting information on the specificities of ion-solvent interaction related to the
structure of the solute and the reciprocal effects which arise in the solvents [19, 20].
When binary or more complex mixtures are to be used as a solvent, specific solvent
and co-solvent interactions can intrude to modify the structural properties and
molecular arrangement of the pure liquids [21]. Ultrasonic measurement in
cooperation with density and viscosity data provide huge information about the
interaction between ions, hydrogen bonding, dipoles, dispersive and multi-polar
forces [22]. It has been observed from the previous studies that the mixed solvents
have more practical importance rather than pure liquids in most of the chemical and
industrial processes as they provide varied range of composition so as to permit

continuous adjustment of desired properties of the medium.

The ultrasonic along with volumetric and viscometric studies have gained huge
consequence in investigating the physico-chemical aspects and finding the nature of
molecular interactions of binary or ternary liquid systems [23]. The ability of
ultrasonic technique to characterize the physico-chemical behavior of the liquid
mixture, have made it a powerful tool for studying the molecular interactions [24].

Although the molecular interactions can be best carried out through spectroscopic or



non-spectroscopic methods such as dielectric or magnetic but the ultrasonic
technique is considered to be the best of all to determine the type of interactions or

any kind of structural change in the liquid system [25, 26].

The properties of liquid mixtures can be altered continuously within a reasonable
range by varying composition of the mixture till an optimum value of some desired
parameter is attained [27, 28]. Generally, acoustic parameters depend on the ratio of
molar volume of the liquid to the real volume of the molecules in a mole of the liquid
(molecules are treated as rigid balls with the uniform radius r) [29]. Self-association
between alcohol molecules decreases with increasing concentration of the non-polar
solvent while the displacement of solvate equilibrium is determined by physical
properties of hydrocarbon solvent [30-32]. Ultrasonic speed, like any other physico-
chemical property in binary liquid mixtures could be related either to size and shape
of the molecules or entropy effect connected because of volume and space filling
effects with mixing processes [33, 34]. The intermolecular forces responsible for the
molecular interactions can be classified as long-range forces and short-range forces.
The long-range forces are the electrostatic induction and dispersion forces and they
arise when the molecules come close enough causing a significant overlap of electron

clouds and are often highly directional [35-38].

Studies on acoustic parameters have become so prominent in the recent years. To
understand solution, it is necessary to understand the solvation behavior of binary
mixture system. Acoustic parameters are responsive to changes and are important in
illuminating the solvent-solvent interaction. The ultrasonic speed measurements have
been successfully used to examine and determine strong and weak molecular
interactions present in the ternary and binary mixtures. Ultrasonic techniques are
huge source of information about the structural and molecular changes in liquid
mixtures. Within the framework of the theory of physical acoustics, such kind of
techniques could also provide useful information about the mixing solution and its
temperature dependence. The ultrasonic technique is an interesting and effective
technique to analyze the physicochemical properties of liquid - liquid mixtures,

electrolytic mixtures and polymeric solutions. These solutions find wide applications



in the medical, pharmaceutical, leather, textile, chemical and solvent solutions
industries and the study, understanding and analyzation of the thermodynamic
properties of mixtures and different solutions were most significant for their
applications in these industries. The spread of ultrasound waves into a substance has
become a major test to study its properties. Such studies, such as changes in
temperature and concentration, are useful to obtain the insight into the structure and
the various linkages of the bound molecular complexes and other related molecular
processes. The velocity and the associated acoustic parameters help us to characterize
the thermodynamic, physical and chemical aspects of liquid mixtures like association

and dissociation of the molecules.

With a small size and quadrupole moment, liquid water is an exclusive solvent having
capability to support wide hydrogen-bonding networks [39, 40]. Numerous studies
are done on characteristics of molecular interactions of polar organic liquids and
water [41-47]. As compared to pure liquids, mixed solvents have more practical
significance in various chemical, pharmaceutical and industrialized processes as they
offer large variety of mixture compositions of two or more components in different
proportions such that incessant modification of the estimated properties can be

permitted [48].

The use of chemicals in the medical field requires the attention of public in every
area including the ultrasonic behaviour of liquids. Usually, ultrasonic research can be
widely used to learn molecular interactions when combined with other water
resources. Much of the study has been done in molecular interactions on products
and mixtures in various forms of the body. In recent years, ultrasonic technology has
been an effective way to find out about more efficient method for gaining information
about behavior of solids and liquids having its capability of featuring the

physiochemical behavior of medium.

1.5 ULTRASONIC TESTING
The Ultrasonic testing is based on capture and quantification of either the reflected

waves (pulse-echo) or the transmitted waves (through-transmission). Each of the two



uses in various applications but pulse-echo systems are more useful since they require
one sided access to the object inspected and tell a lot about concrete than a simple
transmission. Back walls, significant voids can be detected by pulse-echo. Ultrasonic
is a non-destructive technique to characterize the internal structure of test material
through high frequency ultrasonic waves with commonly used frequencies range
from 500 KHz to 20 MHz. The High frequency sound waves are very directional until
they face a boundary with another medium, at which point they reflect back to source.
There is a formation of standing waves and much can be inferred from the reflected
wave for example, ultrasonic thickness measurement of metallic pipes and aircraft
body. This method is employed to detect flaws in large metal pieces or materials. This
method is used in many fields including industries, research, metallurgy, aerospace,

automotive, medical and various other sectors.

1.5.1 DETECTION AND RANGING

NON-CONTACT SENSOR:

There is no need of contact with the target for an ultrasonic sensing system. That is
why this process is very suitable for medical, military, pharmaceuticals and industries
as these sensors don’t contaminate liquids or clog the product. Here both the
continuous wave and pulse systems are used. The main principle behind these sensors
is that ultrasound is transmitted in a pulsed fashion and once transmitted, it waits for

the return of the signal and received signals are processed again.

MOTION SENSORS AND FLOW MEASUREMENT: The common application
of ultrasound is seen in automatic door openers where the ultrasonic detects the
person and automatically opens the door. These sensors are also used to detect
intruders. Moreover, these sensors are used in pipes to monitor the flow of gas or
liquid within the pipes. In fluid mechanics the flow of fluid is measured with the help

of ultrasonic flow meter.

ULTRASONIC RANGE FINDER: The main application of ultrasound is in Sonar.,

underground application. An Ultrasonic pulse is transmitted from the transmitter and



if there is an object between the path of ultrasound it will be reflected back to
transmitter as an echo. By measuring the time difference between transmitting and
receiving of signal can be employed to calculate the distance. Measured travel time
also depends on the factors like temperature and salinity of water. Ranging in water

varies from 100 to 1000 meters.

ULTRASOUND IDENTIFICATION: Ultrasonic Identification or also known as
USID is a real time locating system. It is used to automatically track and identify
location of the objects. Badges or tags are attached to objects which transmit
ultrasonic signals to communicate their current locations. These are extensively used

in military.

1.6 DSA (DENSITY AND SOUND VELOCITY ANALYZER)

The ultrasonic testing instrument that is prominently being used in the world is Anton
Paar DSA 5000M (Density and Speed Analyzer) meter and is widely regarded as the
most precise instrument for calculating the density and sound velocity. It determines
the sound velocity and density in one cycle of the sample inspection. Its unique
measuring system reduces the error margin for determining concentration for the
binary mixtures. Quality analysis in production process, preparing solution and
concentration measurements of ternary solutions are the other applications of this

instrument.

Features of DSA:

e [t automatically measures density and velocity of sound of binary and ternary
samples.

e Automatic and simultaneous filling and cleaning of measuring cells.

e Fast and accurate measurement with the small sample volume.

e Permanent display of density and velocity of sound as well as calculated
properties.

e Automatic viscosity correction across the sample’s entire viscosity range.

e Detects the filling errors and gas bubbles within the sample and generates a

sample warning.



e Displays and stores the live images of the oscillating U-tube sensor and the entire
filled-in sample.

e Later review of these stored images guarantees completely transparent
measurement processes.

e Removes the measurement drifts caused by temperature stress due to change in
temperature or sample temperatures significantly different from measuring
temperature.

e Neither the sample preparation nor the addition of reagents is required.

1.7 GLYCOLS

Like all other low-molar mass alcohols, glycols are solvable in whole amounts of
water. By coupling action of glycols, various insoluble-water materials can be made
clear solutions. Tremendous solubility is observed for aromatic compounds in
glycols. Aromatic hydroxy compounds and alcohols like phenols are mixable in

entire proportions.

Glycols absorb moisture from the air. If positioned in atmosphere comprising vapors
of water, then moisture will be picked up and hold by the molecules. Because of this
characteristic of glycols, these are cast off for various applications such as
humectants and dehydrating agents. Most of such applications utilize glycol-water
solutions. The characteristic of a glycol alters with addition of water into it. With the
change in temperature and humidity, its humectant value got affected.

With temperature, glycols’ viscosities change inversely. Glycol molecules at high
temperature move freely and as the molecules of glycol cool, their viscosity keeps on
increasing until their final settlement and failure of movement of molecules. These
are much fluid than most of the plasticizers and solvents having high boiling points.
Because of this purpose, to decrease the viscosities of liquid compositions, glycols

are frequently casted off either alone or in association with other fluids.

Among the glycols, Ethylene Glycol (EG), Diethylene Glycol (DEG), Triethylene
Glycol (TEG), Polyethylene Glycol-400 (PEG-400) and Polyethylene Glycol-4000

(PEG-4000) are few members of generally used homologous series of diols. The
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hygroscopicity of these liquids is superlative for utilizing in printing inks, cellophane,

fiber treatment, adhesive, paper, and leather.

Ethylene Glycols (EGs) are the liquids which are miscible in water in the whole
composition range and due to their hygroscopic nature, are highly soluble in polar
solvent owning H-bonding [49-51]. These glycols are broadly used in plastic industry
where they are used in the preparation of polyethylene terephthalate which is used
further to make plastic bottles for pharmaceutical and food industry [52-56].
Ethylene glycols (EGs) are the solvents possessing hydroxyl and oxy groups in same
molecule because of which development of inter- and intramolecular hydrogen bonds

between -O- and -OH groups has been observed [57].

1.7.1 ETHYLENE GLYCOL

Ethylene glycol is utilized in the coolant and anti-freeze industry. It acts as a coolant
for the car engines. Ethylene glycol also finds its application in the fiber industry
such as for manufacturing of the fiber glass which is used for the manufacturing of
the bowling balls and bathtubs, also in the manufacturing of the polyester fiber
clothing and the manufacturing of the packaging bottles and films. Most of the

ethylene glycol products are recyclable, cost efficient and energy saving.

1.7.2 DIETHYLENE GLYCOL

Diethylene glycol finds its applications in different types of industry such as fuel
industry, agriculture industry, paints and emulsion industry, fabric industry,
automotive industry and de-icing and anti-freeze industry. It is utilized as a chemical
intermediate for unsaturated polyester resin, polyester polyols for polyurethanes,
thermo-plastic polyurethanes, etc. It is also utilized in natural gas processing as

dehydration agents.

1.7.3 TRIETHYLENE GLYCOL
Triethylene glycol, it finds its application in different types of the industry such as
cleaning solvent industry, functional fluids industry, absorbent and adsorbent

industry, construction material industry, rubber and plastic industry, also in the fabric

10



industry and automotive industry. It is widely used as a plasticizer for safety glass,

separation membranes and molded ceramics.

1.7.4 POLYETHYLENE GLYCOL 400 and 4000

Polyethylene glycols (PEGs), belong to the family of polymers, are the polyether
compounds having considerable applications from manufacturing industry to
pharmaceutical industry. Because of their low toxicity, they have salient clinical uses.
They are exercised as the basis for many laxatives and skin creams [58]. As an
electrolyte solvent and separator, PEG is castoff in polymer cells. It is also utilized
as a dispersant in toothpastes, as a polar stationery phase in gas chromatography, by
integrating with hydrophobic molecules it is practiced in the fabrication of non-ionic
surfactants. Another stimulating usage of PEGs is in the preparation of edible films
where they act as plasticizers [59]. Erol Ayranci ef al. used PEGs with varying
molecular weights for edible film preparations and their further utilization to foods

[60, 61].

1.8 GLYCEROL

Glycerol is a polyhydroxy compound which is widely used in pharmaceutical and
food industry as a sweetener and humectant [62-65]. During the process of chemical
breakdown of lipids when it reacts with water, in the intestine it falls out as a primary
biomolecule as well as in the liver where it takes part in metabolism of glucose [66-
68]. Same as water and diols, glycerol also belongs to the family of solvents which
contains 3-dimensional grid of hydrogen bonds. Various particular possessions, for
instance isobaric thermal expansivity, small isothermal compressibility, high
viscosity and relatively large free volume are contributed to the liquid systems by this
network [69-73]. In various formulations, glycerol is used as an evaporation regulator

and also as a cosolvent in cosmetic and pharmaceutical sciences [74, 75].

1.9 SORBITOL
Sorbitol is one of the sugar alcohol which can be often used in place of sugar in
various diet foods (including ice cream and soft drinks), mints, cough syrups, and

sugar-free chewing gum [76-78]. Sorbitol contains six OH groups, the reason due to
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which hydrogen bond is formed when dissolved with water. In structure of sorbitol,
the aldehyde group transforms to a hydroxyl group by the reduction of glucose.
Mostly sorbitol is made out of corn syrup, but it can be found in the nature as well,
for instance in pears, prunes, apples and peaches. Taking the case of sugar alcohols,
the foods comprising sorbitol can generate gastrointestinal distress. It can be utilized
as a laxative if consumed as an enema or orally. The drawing of water into large
intestine stimulates bowel movements and hence it works as a laxative. Apart from
using it as sugar-substitute in reduced sugar foods, sorbitol is also utilized as a
soaking agent in cookies and less-moisture foods alike fruit preservatives and peanut
butter.

Sorbitol is frequently utilized in advanced cosmetics as a thickener and humectant. It
is casted off in toothpaste and mouthwash as well. Due to its high refractive index,

some transparent gels can also be formed only with sorbitol.

1.10 STRUCTURE OF WATER

In water (H2O) molecule, each electron of hydrogen atom is joined with one among
six outer shell oxygen’s electrons forming covalent hydrogen bonds. In two non-
bonding pairs, the four electrons of oxygen are organized. Hence, oxygen atom in
H>O is enclosed by four electron-pairs that usually tend to organize themselves as
much as possible, so that repulsions (electrostatic) between pairs of electrons are
minimal. This results in a tetrahedral geometry such that the angle amongst electron
pairs is 109°. But nonbonding pairs of electrons of oxygen stay closer to the oxygen
atom; as such wield tougher revulsion in contradiction to two covalent-bonding
pairs. As a result, two atoms of hydrogen are pushed close together. As such
tetrahedral geometry is distorted and H-O-H bond angle decreases to 104.5°.
Oxygen is highly electronegative. This implies that the charge distribution due to
electron pairs participating in covalent bond between hydrogen and oxygen atoms is
not symmetrical. Negative charge density is more near oxygen atom and less near
hydrogen atom. This charge displacement constitutes an electrical dipole with
positive end on hydrogen atom and negative end at oxygen atom. Thus, we say that
due to difference in electro-negativity between hydrogen and oxygen atoms, partial

electric charges are developed in water molecule.
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1.10.1 Hydrogen bonding

According to Pimental ef al. [79] a "hydrogen bond exists when a hydrogen atom
is bonded to two or more other atoms". Generally, the hydrogen bond refers to the
entire group of three or more atoms, which are involved in a configuration X-H-Y,
where X and Y may be like or unlike atoms (F, O, N, Cl etc.,). One of the two bonds
X-H or H-Y may be stronger (covalent bond) than the other bond (hydrogen bond).
The hydrogen bond is often described as a strong electrostatic dipole-dipole
interaction. Hydrogen bonding is found with strong electronegative atoms like F,
O, N, Cl, etc. Increasing the electro negativity of an atom increases its power of
forming hydrogen bonds. In almost all hydrogen bonds the hydrogen atom nearer
to one of the two adjacent electronegative atoms than to the other. The change of
ultrasonic speeds in solid liquid solutions or liquid mixtures gives an evidence to

intermolecular connotation via hydrogen bonding wherever such likelihood occurs.

Partial positive charge on hydrogen atom of one of the molecules of water is electro-
statically engrossed by the partial negative charge of the oxygen atom of an adjoining
molecule of water. This procedure is known as hydrogen bonding. Hydrogen bond
is somewhat longer than O-H covalent bond. Hydrogen bond length is 117pm and
O-H covalent bond length is 99pm. This means that hydrogen bond is considerably
weak compared to covalent bond. Hydrogen bond is too feeble such that the given

hydrogen bond stays not greater than a time fraction of 10~ seconds.

1.10.2. Hydration of ions

Water molecules interact strongly with ions, formed by dissolving electrolytes in
water. Owing to high dipole moment of water, the molecules of H>O nearest to
dissolved ions are sturdily linked to it, creating inner or primary hydration sheath.
Cations attract negative ends of HoO molecules. A critical view about the nature of
the state of ions and water dipoles in a solution has been envisaged by Bockris [80].
He suggested the term primary hydration should be used during Brownian motion
for recognizing the molecules of solvent closer to the ion that have lost translational
degrees of freedom and transfer as single entity with ion. Secondary hydration is

termed to refer to the solvent molecules not included in the primary hydration shell,
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but that undergo significant electrostatic interaction with primary hydration shell.
Through hydrogen bonding, organized structure in principal shell generates and a

region with the surrounding water get fairly ordered as well.

1.11 THERMODYNAMIC MOLECULAR INTERACTIONS

When a substance is dissolved in another then the properties of the substance change.
The interaction study investigates the solubility affected by the chemical nature of
both the substances (the solvent and the solute). Generally, a non-ideal behavior of
solution is seen when various solute/solvent mixes with another solute/solvent.
Many thermodynamic parameters are useful in expressing this deviation from their
ideal behavior. Therefore, the information about molecular interactions between
different components of liquid mixtures can be significantly obtained through the

study of their thermodynamic properties.

The ultrasonic speed along with viscosity and density provides wealth of
information regarding nature and strength of molecular interactions. Utilizing
density, ultrasonic speed and viscosity data numerous acoustical parameters such
as acoustic impedance, intermolecular free length, adiabatic compressibility,
internal pressure, Gibb’s free energy, relaxation time, ultrasonic attenuation,
available volume, molar volume, free volume and enthalpy are computed which

delivers evidence about kind of interactions prevailing in the liquid mixtures.

One of the most important factors useful in understanding the structural changes of
solutes in solutions is, ion-solvation which includes various ion-solvent
interactions. These interactions depend on the nature of solvent, size and structure
of ion. Numerous thermodynamic properties like apparent molar volume, partial
molar volume, apparent molar isentropic compressibility and partial molar
isentropic compressibility depend upon the temperature, pressure and composition
and therefore are of great importance in understanding the extent and nature of ion-
solvation. The variation in composition and temperature change these properties
which can propose several qualitative ideas about solution’s behavior in the studied

composition range.
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The partial molar volume at infinite dilution provides information about solute-
solvent interactions. The interactions at infinite dilution, among solute molecules
are insignificant and these properties reveal info about interactions among solute
molecules and the mixed solvent. Temperature dependence of Vd(,’ can be more
helpful in describing the structural hydration effects as the intrinsic volume of any
solute is practically independent of temperature. Likewise, molality dependence of

this parameter will be useful in understanding the solute-solute interactions.
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Segur and Oberstar (1951) [74] had done the viscometric study in glycerol and its
aqueous solutions by using Ostwald’s viscometers at different temperatures. The
viscosity data was used to calculate viscometric constant and its variation with respect
to temperature had been discussed. The viscosity data thus obtained found to be

beneficial in design and use of glycerol-handling equipment.

Hammes et al. (1966) [81] had examined and determined the acoustical parameters of
binary mixtures containing Water-Urea and Water-Urea-Polyethylene Glycol.
Ultrasonic velocity measurements were done using ultrasonic interferometer. Density
measurements were carried out by the use of Fisher pycnometer. Cannon-Fenske
viscometer was used to carry out viscosity measurements. They concluded that when
the ultrasonic waves disturb the structure of the liquid the energy losses take place.
They also concluded that when the population of unbonded water molecules increase,
a little numerical difference occurs between isothermal and adiabatic compressibilities
in the aqueous solution. They concluded that with the increase in the urea

concentrations there is a variation in the temperature dependence of the viscosity.

Morenas and Douheret (1978) [45] studied the thermodynamic behavior of few glycol
and water mixtures by analyzing the excess and partial molar properties of the mixtures.
The density of pure glycols and binary mixtures was calculated by Y-shaped
pycnometer in a thermostat water bath at temperatures 288.15 K, 298.15 K and 308.15
K. Using densities of pure liquids and liquid mixtures, partial molar volumes and excess
molar volumes were evaluated. The deviations from ideal mixing volumes were found
to be negative and trend was increasing with respect to ether functions present in the
molecule. The dependence of excess values on temperature had also been observed for
monoethylene glycol-water mixtures. An extremum in water-rich region revealed by

the values of partial molar volumes for all the liquid mixtures.

Bohne et al. (1984) [82] reported the thermo-physical properties such as thermal
conductivity, density and viscosity for the binary mixtures of ethylene glycol and water.
A concentric cylinder device, a digital density meter and Ubbelohde viscometer were

used to measure thermal conductivity, density and viscosity. Prandtl-numbers were

16



calculated using measured experimental data. By using various theoretical models, the

experimental results are verified.

Bagchi er al. (1986) [83] had examined and determined the investigation on the
viscometric and ultrasonic properties in the binary mixture of the ISRO polyol with
polypropylene glycol. Ultrasonic interferometer at 2MHz was used for the ultrasonic
velocity measurements. Density determination was carried out by using pycnometer.
For the viscosity measurements Ubbelhode viscometer was used. The studies
conducted concluded that with solvents the ISRO polyol happens to be solvated. They
also concluded that ISRO polyol shows interactions with polypropylene glycol.

Hout et al. (1988) [84] had carried out the thermodynamic study for the mixtures of
water and ethylene glycol at temperature 5, 25 and 45° C. The density of the solutions
was measured using flow densimeter and isobaric heat capacities per unit volume by
micro calorimeter. The experimental values were further used to calculate excess molar
properties, apparent molar and partial molar properties. The negative excess values
were found in the systems due to negative effect of hydroxyl group and positive
contribution of methylene group. The magnitude of excess enthalpies showed that
exothermic mixing of water-ethylene glycol was significantly conquered by
interactions including the hydroxyl group of ethylene glycol. The continuous change in
various higher order thermodynamic properties was observed in leu of increasing

connectivity among ethylene glycol molecules.

Mehrotra et al. (1989) [85] had determined the acoustical and thermodynamic
parameters of calcium soap solutions at various temperatures, the conductance of the
solutions was determined by using digital conductivity meter. Ultrasonic interferometer
working at 4MHz frequency was used to carry out the ultrasonic velocity
measurements. Their results suggest that the soaps act as weak electrolytes in dilute
solutions. They also concluded that when the temperature increases the CMC values
also increase. Their results concluded that when the soap concentration increases there

is areduction in the Ly, solvation number, compressibility, and adiabatic compressibility
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(#) and simultaneously there is an increase in the molar sound velocity, ultrasonic

velocity, apparent molal compressibility and specific acoustic impedance.

Rao et al. (1989) [86] had examined the acoustical parameters of mixtures of polyvinyl
pyrrolidone with N, N-dimethyl formamide solutions. Pycnometer was used for the
density measurements. For viscosity measurements Ostwald’s viscometer was used.
Studies of refractive index, viscosity and ultrasonic velocity on PVP-DMF solutions

showed the existence of solvent-solute interaction.

Lee and Hong (1990) [87] reported excess molar volumes for the binary and ternary
mixtures of ethylene glycol, methanol and water. The densities of four systems
(ethylene glycol + methanol, ethylene glycol + water, methanol + water and ethylene
glycol + methanol + water) were measured using Anton Paar DMA at temperatures
283.15, 293.15 and 303.15 K. From the density data, excess molar volumes were
calculated and the values were found to be negative for all three binary systems and one
ternary system. To check the composition dependency, the Redlich-Kister equation was

used and A, B coefficients were computed by least square method.

Douheret et al. (1991) [88] measured densities, isobaric heat capacities and ultrasonic
speeds for the binary mixtures of ethylene glycol and water at different temperatures.
Density and ultrasonic speed measurements were then used to compute excess molar
volume and isentropic compressibility. Isobaric and isentropic expansivities were also
derived from the results. A segmented-composition model was used to analyze the
obtained excess molar quantities. The obtained results suggested highly labile clusters

with a very diffident degree of hydrophobic aggregation.

Kamugai ez al. (1993) [89] had reported the density and viscosity of different binary
mixtures of HFC-134a with glycols mixtures in temperature ranging from 273K to
333K. Rolling-ball viscometer was used to calculate the viscosity which was plotted
with standard liquids of viscosities and densities. Also, by using glass-pycnometer
density was calculated. For viscosity less than 3.4% of uncertainties of measurement

were observed while it was 0.4% for density. Due to the reason that HFC-134a has a
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limited miscibility for glycols so it decreases with the decrease in the molecular weight
of glycols. As the weight fraction of HFC-134a increases the viscosity of all the

mixtures decreases considerably.

Reddy ez al. (1994) [90] had investigated viscosity, ultrasonic speed and excess volume
data for aqueous binary solutions of ethylene glycol, 2-ethoxyethanol, 2-
methoxyethanol and 2-butoxyethanol at temperature 308.15 K. The values of k; and
density were evaluated from the obtained results of computed data. The values are
coming positive for the viscosity deviations whereas coming negative for excess
volume deviations. The incoming results are explained in terms of interactions

occurring between like and unlike components.

Pal et al. (1994) [91] calculated excess and apparent molar properties of water + PEG
mixtures at different temperatures. The whole composition range containing the values
of excess molar volumes were found to be all negative and through this data apparent
molar volumes have been calculated. It can be concluded from the results that in the
water-rich region weak-hydrophobic effects might develop although its extent rises
with the size of the hydrocarbon chain. The entire composition range of water-glycol
systems provided the densities obtained from the excess volume measurements and

from the densities the apparent molar volumes were calculated.

Aminabhavi and Gopalakrishna (1995) [39] reported the viscosity, ultrasonic
velocity, density, and refractive index in the aqueous solution of various liquids at
temperature 298.15K. The excess molar volume, deviations in viscosity, speed of
sound, molar refractivity and isentropic compressibility have been calculated from

these results.

Rajulu and Sab (1995) [92] had examined and determined the various parameters of
binary mixtures of polyethylene glycol at 30°C with water. At 65°C the chemicals were
dehydrated under vacuum. Variable path interferometer at 2MHz was used to determine

the ultrasonic velocity. Density bottle was used to determine the density. Their results
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showed a non-linear relation showing the existence of a relationship between PEG and

water.

Magazu et al. (1996) [93] had examined the acoustic properties of a, a-trehalose with
water solutions. Ultrasonic interferometer was used at a frequency of 3MHz to carry
out the ultrasonic velocity measurements. Pycnometer was used for the density
measurements. Their data concluded that there are structural changes that occur in these
solutions and even the mixing process is not idealistic. They also determined the

temperature dependence and hydration number of trehalose.

Pal and Singh (1997) [94] calculated the velocity and viscosities of water + glycol
mixtures at temperatures 303.15K and 308.15K. In order to obtain isentropic (adiabatic)
compressibility the results of for additional molar volumes are combined with the

previous results.

Tsierkezos and Molinou (1998) [46] calculated the properties of water + EG at the
different range of temperatures and the results obtained from this are fitted into the R-
K equation to derive the corresponding parameters. The values of the properties are all
negative and they show a minimum at the same water-rich region of the solution. The
excess volumes are found to be negative for all the mixtures between water and ethylene
glycol. Also, it is observed that the viscosity deviation values for all the range of
temperatures are negative and they increase with rise in temperature. The refractive

index deviations are reported to be negative for all the range of mixtures.

Kirincic and Klofutar (1998) [95] determined the densities of some aqueous of some
PEG at temperature 298.15K. The partial specific volume of the solvent and solute and
the apparent specific volume of the solute were calculated from these data. It was found
that with the decrease in the partial specific volume of the solute, the concentration
increases. In contrast to this, the partial specific volume of the water increases with rise

in the concentration of the solute very marginally.

20



Ali et al. (1998) [96] had examined and determined the molecular interaction studies
on acetonitrile, ethanol, 1-hexanol, 1-octanol, N,N-dimethylformamide, on ethanol
with 1-hexanol and 1-octanol and on acetonitrile with N,N-dimethylformamide at
303.15K. dry box was used to prepare all the solutions. Cannon-Ubbelhode viscometer
was used for viscosity measurements. Ultrasonic velocity measurements were carried
out by ultrasonic interferometer working at frequency 3MHz. they concluded that with
the increase in the strength of molecular interaction, the excess B and the excess free

length happen to be increasingly negative.

Henni et al. (1999) [97] reported the experimental data for the viscosity and density of
triethylene glycol monomethyl ether. Studies of Helper (1969) suggested that on
addition of water to TEGMME does not affect its structure and Grunberg-Nissan were

also calculated and were found to be positive.

Geyer et al. (2000) [98] measured the densities and VZ of the binary mixtures of
(glycol + H,0) at constant atmospheric pressure and various temperatures. The V£
values of all the solutions are negative for all the different range of temperatures.
Results obtained were compared to the polynomial equation of Redlich and Kister.
For results related to the temperature dependence density was measured for pure

glycols and (glycol + water) in this study.

Huang and Nishinari (2001) [99] used the differential scanning calormitry (DSC) to
study the interaction between PEG and H,O. With increase in the molecular weight the
eutectic point composition shifted to lower concentration of PEG and the eutectic point

temperature shifted to higher temperatures.

Banipal et al. (2001) [66] calculated the V(g of transfer at 25 °C of some amino acids
from H>O to aqueous glycerol solutions from the solution densities by using vibrating-
tube digital densitimeter and the transfer volumes from water to different glycerol-water
mixtures are obtained from the calculated partial molar volumes at infinite solution.

Using McMillan-Mayer method the interaction coefficients are obtained. To conclude,
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the transfer volumes of amino acids in aqueous solutions of t-butanol and glycerol

behave in the similar way.

Branca et al. (2002) [100] studied the change of solution viscosity w.r.t solute
concentration and from ultrasonic velocity measurements and reported the hydration
numbers. As the degree of polymerization increases the hydration numbers which are
calculated from both viscosity and acoustic data also increase quickly. Also it was
found from the acoustic data that if there is increase in temperature then the polymer-
water interaction strength decreases which results in the loss of water molecules which

are not tightly bonded.

Vergara et al. (2002) [101] investigated polymeric solutions with the inverted K-B
theory which emphasized basically on the significance of the molecular size on the
preferential solvation analysis by carefully analyzing the aqueous solution of the solutes
belonging to the PEG homologous series and the most important result which was found

is that the only positive preferential solvation is between PEG and H-O.

Sastry and Patel (2003) [102] calculated the relative permittivities, densities,
viscosities and ultrasonic velocity of alkyl acetates + glycols at different temperature.
All these deviation functions are fitted to a Redlich-Kister type equation. By collision

factor theory the values of speeds of sounds in these mixtures are calculated.

Sun and Teja (2003) [103] measured the densities, viscosities and thermal
conductivities of aqueuous EG, DEG and TEG mixtures at temperatures range from
290K to 450K with the concentration of glycol from 25 to 100 mol %. The excess

properties were studied for the temperature behavior.

Lourdin ez al. (2003) [104] studied the density of starch-water systems which has
concluded that the volume changes are comparable to physical ageing when the
components are mixed. Maltose and starch have strong attraction for low-molecular

weight polar molecular like water and glycerol which brings the negative volume
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change. Antiparticipation phenomenon which was previously observed in the starch

systems was found to be in one-to-one correspondence with this volume change.

Yang et al. (2003) [105] calculated the viscosities and densities for aqueous EG
mixtures at various temperature. At lower temperatures for the entire composition, the
excess volumes are negative. Although they exhibit S-shaped concentration

dependence at higher temperatures.

Fujisawa et al. (2004) [106] calculated the heat capacities of 1,2 Alkanediols in dilute
aqueous solutions at various temperature by using DSC. Another thing which was
determined was heat capacity changes by dissolution of alkanediols so for 1,2-
ethanediol or 1,2-propanediol it increased with increase in temperature whereas for 1,2-
butanediol the heat capacity changes decreased with temperature increase. To conclude,
the dissolution of 1,2-butanediol were found out to be different from the other two

alkanediols.

Valtz et al. (2004) [107] reported the liquid densities and VE for the binary H,O +
diethylene glycolamine, and H>O, methanol, ethanol, 1-propanol + TEG systems at
different temperature. For all the systems that were investigated the VE were found to
be negative. Molar excess volume increase with temperature water containing systems
whereas for alcoholic systems the decrease was observed i.e molar excess volumes
became more negative with temperature increase. At constant temperature the absolute
value of VE for triethylene glycol systems decrease in the order: H»O
>methanol>ethanol>1-propanol. Three parameter Redlich-Krister equation was used to

compare the experimental results.

Tasic and Klofutar (2004) [108] had investigated apparent specific refraction and
apparent specific volume of poly (oxyethylene) glycols in the solution of benzene and
1,4 Dioxane at 298.15 K temperature. The void V(g and intrinsic volume of molecules
of solute were utilized to analyze volumetric data. It was found that both partial molar

refraction and V(g depends linearly on oxyethylene group and are additive in nature.
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Sommer et al. (2004) [109] had measured apparent specific volume of aqueous
solutions of poly (ethylene oxide), poly (butylene oxide), poly (propylene oxide) and
octadecyl chains in the miceller state from apparent specific densities values with
respect to temperature ranging from 10 to 90°C with the help of vibrating tube
densimeter. The NMR spectroscopy was employed to check the composition of block

copolymers. The obtained results were compared with the already published data.

Syal et al. (2005) [110] studies the sound velocity, density and viscosity on solutions
of PEG with molecular weights (8,000 — 11,000) and (20,000) in water and its binary
mixtures with Acetonitrile (AN) at 25°C. Various parameters such as acoustic
impedance (Z), adiabatic compressibility (f), intermolecular length, relative
association, molar sound velocity, solvation number (S,), apparent molar adiabatic
compressibility (@), viscous relaxation time, internal pressure (/7) and free volume (V)

were calculated from the velocity, density and viscosity data values.

Rao et al. (2005) [111] had examined and determined the ultrasonic velocities for
liquids mixtures of o-chlorophenol with ethylbenzoate, anisicaldehyde and acetonitrile
at four temperatures 303.15, 308.15, 313.15 and 318.15K. They redistilled and purified
o-chlorophenol, anisicaldehyde and acetonitrile. Liquid mixtures of different
composition were made by mixing pure liquids in cleaned and dried flasks. With
interferometer at a frequency of 1MHz ultrasonic velocity of three binary liquids were

measured.

Zwirbla et al. (2005) [112] had done ultrasonic studies of water mixtures with EG,
PEG-200 and PEG-400 at different temperatures. The obtained experimental data had
been employed to compute adiabatic Compressibilities by using Laplace equation.The
variation of values of adiabatic Compressibilities with respect to concentration and
temperature had also been investigated. The formation of Pseudo-stable molecular
structure and structural interactions had been observed at low ethylene glycol and

polyethylene glycols concentrations.
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Hu et al. (2006) [113] measured the densities and viscosities for the quaternary system
mannitol + sorbitol + sucrose + water and its binary and ternary subsytems at
temperature 298.15K. The results that were obtained were used to test the applicability
of simple equations for the density. The anticipated results were found out to be good
when compared with measure values which concluded that that density, kinematic
viscosity and viscosity of multicomponent nonelectrolyte solution which obey the

linear isopiestic relation.

Raman ef al. (2007) [114] studied the variations of D -mannitol in water at different
temperatures and concentrations using ultrasonic velocity measurement. The basic
acoustical parameters give important evidence to know the solvent-solvent interactions
in the aqueous solutions. With the increase in temperature there is a constant reduction
in the internal pressure, shear relaxation time and classical sound absorption. The

hydration number is found out to be 8 through this study.

Ali et al. (2007) [115] measured the density, viscosity and refractive index behaviour
of amino acids in aqueous glycerol at different range of temperatures. Through these
experimental data the apparent volumes of transfer, the infinite dilution apparent molar

volumes, the partial molar volumes of transfer were calculated

Blodgett et al. (2007) [116] reported the Vzand apparent molar heat capacities for
adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol and xylitol at
different temperature and the pressure 0.35 MPa. Values of V3 and apparent molar heat

capacities for the sugar alcohols are compared to one another.

Kumar and Rao (2007) [117] had studied the molecular interaction and ultrasonic
velocity of mixtures containing alkanols with aqueous propylene glycol. With a
variable path interferometer working at 2MHz the ultrasonic velocity was measured.
They determined the wavelength of ultrasonic wave at the working frequency. They
concluded that the difference of ultrasound velocity with molefraction of methanol and

ethanol is monotonic.
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Kushare ez al. (2007) [118] had reported the density and ultrasonic velocity data for
polyethylene glycols (PEG-400, PEG-1000 and PEG-4000) in solutions of methanol,
H,0 and benzene from (0.05 to 0.5) mol-kg'molality at T = 298.15 K. The obtained

data was used to calculated V, apparent molar isentropic compressibility and adiabatic

compressibility for molecules of solute in all solvent medium. The partial molar
properties were employed to investigate transfer volume and transfer compressibility
for polyethylene glycols from methanol to water and benzene to water medium. Shio’s
method was applied to compute the hydration number of solute molecules and it was

found that polyethylene glycol-4000 show maximum hydration.

Zhang et al. (2008) [119] studied the density and VE of EG and H,O to demonstrate
hydrogen bonding interactions. It was observed that the density analysis of ethylene
glycol and water mixture was displayed at above 0.4 (molar fraction). Strong hydrogen
bonding interactions of water hydrogen atoms with hydroxyl oxygen atoms in ethylene

glycol were observed.

Raman et al. (2008) [120] detailed study of glycerol in H,O has been observed at
different concentrations and various temperatures using speed of ultrasonic waves.
Constant decrease was observed in the classical sound absorption and shear relaxation
time with the rise in temperature which indicates the inter-molecular forces due to
thermal agitation of the molecules at high temperatures. This study indicates that the

hydration number is 4.

Sastry et al. (2008) [121] measured the thermophysical properties for DEG +
nitrobenzene and TEG + (chloro, bromo, nitro) benzene systems at atmospheric
pressure and temperature range from 298.15 to 313.15 K. The V® obtained are fitted
into the Redlich-Kister equation. It was found out from the qualitative analysis of
excess molar volumes that the structure-making effects are predominant in these

mixtures.

Garcia et al. (2008) [122] recorded the liquid densities and viscosities for aqueous

solutions of DEG at the temperature range from 283.15 K to 353.15 K. Vibrating tube
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densimeter is used to calculate the density whereas viscosity is measured using the
Cannon-Fenske viscosimeters. Negative deviations are observed for excess molar
volumes at all the range of temperatures and it is found that it becomes more negative
with decrease in temperature. Between the temperature range investigated the viscosity

deviation changes its sign from negative to positive in the water-rich region.

Ayranci and Sahin (2008) [123] had investigated the molecular interactions of
ethylene glycol, polyethylene glycols at three temperature T = (288.15, 298.15 and
308.15) K. The experimentally obtained data of densities and sound velocities was used

to evaluate Vi and K, ;. The investigation was done on the variation of V(g and K (‘5 ¢ with

temperature and number of repeating unit in polyethylene glycols. Group additivity
approach was utilized to compare the experimental data with the literature data. The
outcomes were described in terms of conformational effects and hydration of

polyethylene glycols in water

Tsierkezos and Palaiologou (2008) [124] measured the densities, ultrasonic velocity
and k of either H0O or DMSO with EG, DEG, TrEG, TetrEG, PG and BG at
temperature 298.15 K. The values thus calculated were compared to the Redlich-Kister
equation. Glycol molecules are likely to create specific interactions through formation

of hydrogen bond with either H2O or DMSO molecules.

Kinart et al. (2009) [57] calculated the densities and relative permittivities of binary
mixtures of 2-ethoxyethanol with EG, TEG and tetraecthylene glycol at different
temperatures. The 7 and deviations in relative permittivity have been calculated. It
was found that the values of V¥ become more negative with the rise in the chain length

of glycol molecules.

Palani et al. (2009) [125] had examined and determined the thermodynamic and
acoustical studies in aqueous solutions at temperatures- 303K, 3038K and 313K. All
the chemicals were used without purification. Specific gravity bottle was used to carry
out the density measurements. Viscosity measurements were carried out by the

Ostwald’s viscometer. Velocity measurements were carried out by the ultrasonic
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interferometer at 3MHz. They concluded that the existence of the strong molecular
interaction is revealed through the results of excess properties which is touted due to
the supremacy of the charge transfer and hydrogen bonding between the mixture
components. They also concluded that due to the existence of the thermal dispersion
forces and weak intermolecular forces when the temperature increases the interaction

strength is likely to become weak.

Patil ef al. (2010) [126] had investigated the interaction of molecules in the binary
liquid mixtures of 1- heptanol and 1- hexanol with nitrobenzene. Density determination
was done at temperatures 303.15 and 313.15K. Stopper measuring flasks were used to
prepare the binary liquid mixtures of different compositions. Bi-capillary pyknometer
was used to measure the density. Viscosity was measured by an Ubbelohde viscometer.
By ultrasonic interferometer the ultrasonic velocity was measured at frequency 2MHz.
With the increase in the chain length the self-association of the alkanols decrease. The
decrease in the electron densities is due to the presence of an electron withdrawing

group on benzene.

Dandwate (2010) [127] had examined and determined the ultrasonic velocities of
dimethyl sulphoxide with methanol, ethanol and propanol. Different techniques such as
pulse method, acousto-optical method and ultrasonic interferometer were used to
measure the ultrasonic velocities. The measurements were carried out at 25°C. Specific
gravity bottle was used for the density measurements. It was concluded that when the
density of the binary mixture decreases there is a decrease in the velocity of the
ultrasonic waves. It had been observed that the bulk modulus is highest in case of the

dimethyl sulphoxide and lowest in case of methanol.

Anbarasu et al. (2010) [128] had determined the densities and ultrasonic velocities of
the mixtures containing ethyl acetate and 2-butanone at different mole fractions.
Molecular interactions were studied with ultrasonic measurements using interferometer
method. Bicapillary pyknometer was used to measure the densities. Single pan digital
balance was used to measure the weights. Airtight glass bottles were used for preparing

mixtures. Variable path ultrasonic interferometer was used to determine the sound
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velocity. They confirmed the observations of the excess molar volume (V%) by FTIR

spectrum.

Dubey et al. (2010) [129] reported the densities, speed of sounds and viscosities for the
whole range for the binary mixtures of DEG monomethyl ether (DEGMME) with 1-
alkanols at different temperature. Through these experimental values, VE, deviances in

viscosity, k;, deviations in kg and deviations in sound velocity are measured.

Egorov et al. (2010) [130] calculated the density of water-ethylene glycol mixtures
using vibration densimeter at the temperature range 278.15 K to 333.15 K and at
atmospheric pressure. It was observed that the density of the mixture increased with
increase in EG concentration at all temperatures. Also, the values of VZ for all

temperature were found to be negative.

Egorov et al. (2010) [131] reported the densities and compressibility coefficients of
EG + dimethylsulfoxide mixttures at the temperature range from (278.15 to 321.15) K.
It was observed that the values of excess molar volumes reduce with reducing pressure
and temperature. Pressure and temperature is strongly related to the association
processes in the ethylene glycol + dimethylsulfoxide mixture as on low pressures, with
increase in temperature contributes to association processes but at high pressure it does

not.

Guignon et al. (2010) [132] studied the volumetric properties of different pressure-
transmitting fluids (PTF) and compared them with those of water. Castor oil, silicon
oil, PG, EG and ethanol specific volumes were calculated at different temperature both
individually and in a mixture with water or ethanol. The observed behavior of the
pressure and temperature for all the volumetric properties of PTFs were different from

that of water.

Zhu et al. (2010) [133] calculated the densities and viscosities of sugar alcohol aqueous
solutions at temperature range of (293.15, 303.15, 313.15, and 323.15) K. The data

values for viscosities are correlated using exponential model with the maximum
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average deviation of 3.7%. Also, it was found out the temperature or concentration
show a linear relation with the values calculated for densities and the data values for

densities were correlated using linear equation.

Begum et al. (2011) [134] measured the densities, viscosities and surface tension of the
system water + DEG at temperature range from 283.15 K to 303.15 K. From the
measure values of densities, the V* were calculated. Polynomial equation was used to
fit in the densities, viscosities and surface tensions add Redlich-Kister equation was

used to fit in the V7.

Koohyar et al. (2011) [135] calculated the viscosities, densities at temperatures
(303.15, 308.15, 313.15, 318.15 and 323.15) K and the refractive indices at same
temperatures for (L-cysteine hydrochloride monohydrate [LCHCMH] + D-sorbitol +
water) and (glycerol + D-sorbitol + water). Change of refractive indices were calculated
from refractive indices. It was observed that the calculated quantities are positive when

there is change of refractive index in mixing.

Thirumaran et al. (2011) [136] had acoustical investigation of liquid mixtures of
DMSO with aromatic hydrocarbons at 303.15K. The studies were carried out in a
broader way as DMSO has its utilisations in the medicine world. DMSO can easily
penetrate biological membranes, facilitates chemical transport into biological tissue. To
make solutions they used the water which was deionised, distilled and degassed. For

velocity measurements, ultrasonic interferometer with frequency 2MHz was used.

Ubagaramary et al. (2012) [137] had examined and determined the molecular
interaction of binary mixture of IBMK with carbonyl molecules. Viscosity
measurements were done by the Ostwald’s Viscometer. Ultrasonic interferometer at
2MHz was used to carry out velocity measurements. They concluded that the calculated
acoustical parameters showed the presence of the molecular interaction in IBMK
+Cyclohexanone, IBMK + Methylsalicylate to acetophenone+ Chlorobenzene. This
concluded the strong H bonding and strong Dipole-Dipole interactions in between the

molecules.
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Ramteke (2012) [138] had measured the ultrasonic velocity of liquid mixture
containing alpha-picolin in ethanol at different temperature. The densities of the pure
components and binary mixtures were measured by hydrostatic sinker method. They
gave special attention to avoid the vaporisation of solution. They prepared the mixtures
of different concentrations in mole fraction. The temperature was maintained constant
using thermostat for pure liquids and their mixture. Over the whole concentration the
acoustic data of viscosity, speed of sound, and density other thermodynamic
parameters, they suggested the existence of a strong molecular interaction in the binary

liquid mixture.

Bhandakkar (2012) [139] had studied the interaction of liquid mixture containing
methyl methacrylate (MM) using ultrasonic technique. viscosity, speed of sound, and
density for the binary systems of methyl methacrylate + methanol, methyl methacrylate
+ p-dioxane, and methyl methacrylate + cyclohexane at the temperature 303K have
been examined. Hydrostatic sinker method in the temperature range of 10-40°C was
used. By employing the ultrasonic time inter-velometer, the ultrasonic velocity of
frequency 10MHz and density for the binary mixtures were measured. The viscosity,
density and ultrasonic velocity were used to study the molecular interaction present in
the methyl methacrylate with methanol, dioxane and cyclohexane. Gibb’s free energy
calculations were used to estimate polymer solvent interactions parameters. They
concluded that there is a presence of higher degree of molecular interaction between
methyl methacrylate and methanol and this is due to the hydrogen bonding in the binary

liquid mixtures.

Pathak ef al. (2012) [140] had examined and determined the thermodynamic
parameters and ultrasonic velocity of the mixture of Epoxy resin solutions based on
cardo symmetric double schiff bases at temperature 308.15K. Gel permeation
chromatography was used to determine the molecular weights. Density measurements
were carried out by using specific gravity bottles. Ubbelhode viscometer was used for
viscosity measurements. Ultrasonic interferometer at 2MHz was used to carry out the

velocity measurements. They concluded the presence of strong molecular interaction in
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the solutions is indicated due to the non-linear or linear decrease or increase of

thermodynamic parameters.

Parveen et al. (2012) [141] had examined and determined the molecular interaction of
aniline with carboxylic acid at temperatures of 293.15K, 303.15K and 313.15K. Glass
stoppered weighing bottles were used to prepare the mixtures. Density measurements
were carried out by using pycnometer. Brookfield LVDV-II+Pro Programmable
viscometer was used for viscosity measurements. They concluded the presence of
complexes by intermolecular H-bonding between carboxylic acid and aniline though
the studies of refractive index, ultrasonic velocity, viscosity and density measurements.
They also concluded that different non-linear and thermo acoustical parameters provide
a suitable means for explicating liquid state properties associating to sound propagation

data.

Egorov and Markarov (2012) [142] used vibrating tube densimeter to calculate the
densities of ethylene glycol and tetra-butanol liquid mixture at temperature range
between 278.15 K and 348.15 K. It was found out that with the growth of tetra-butanol
concentration there is an increase in the specific volume of the mixture. V* were
calculated and were found to be negative at all temperatures but deviates from ideality
with rise in temperature. V(g of EG was also calculated and was found to be decreasing
with increase in tetra-butanol concentration whereas partial molar volumes increased at

all temperatures for tetra-butanol.

Egorov and Markarov (2012) [143] measure the densities of glycerol + tetrabutanol
from the temperature range of 293.15 K to 348.15 K using the vibrating tube
densimeter. The V* were calculated and found to be negative at all the temperatures

over the entire temperature range. V(g were also measured and was found to be

decreasing with increase tetra-butanol concentration.

Katrinak ef al. (2012) [144] had measured the density and speed of sound data for
three polyhydric alcohols that derived from propane (propane-1,2-diol, propane-1,3-
diol, propane-1,2,3-triol) in water at infinite dilution with the help of DSA 5000
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vibrating tube densimeter and sound analyzer at 7= (278 to 318) K temperatures and
atmospheric pressure. The measured data of density and ultrasonic speed had been
utilized to investigate standard molar volume and standard molar isentropic
compression of aqueous solution of three polyhydric alcohols which derived from

propane.

Egorov ef al. (2013) [145] calculated the coefficient of compressibility for the (water
+ ethylene glycol) binary mixture at the temperature range from 278.15 K to 323.15 K
and at pressures from 0.1 to 100 MPa. Molar volumes were also calculated and was
found out to be negative at all temperatures and it decreased with decrease in
temperature. Increase in the pressure growth leads to the decrease in the limiting partial
volumes of water and EG. New hydrogen bonds formation leads to the ordering of the

mixture compression.

Begum et al. (2013) [146] measured the densities and viscosities for water + triethylene
glycol, water + tetraethylene glycol and water + tetracthylene glycol dimethyl ether at
different temperatures. Surface tensions were also measure for these systems at 303.15
K for different mole fractions. Density and viscosity decrease gradually with increase
in the concentration of glycols. Also, the surface tensions for aqueous solutions of

methyl-substitued glycols were observed to be lower than the other aqueous glycols.

Pal et al. (2013) [147] calculated the densities and speed of sounds for binary mixtures
of 1,4-dioxane with propanol and butanol isomers using an DSA 5000 at different
temperatures. V was also observed from the experimental. Excess isentropic
compressibility was also measured and it was observed that the values are negative over

whole mole fraction range at all temperatures.

Jiang et al. (2013) [148] measured the density and viscosity of sorbitol/maltitol in L-
ascorbic acid aqueous solutions at temperature range from 293.15 K to 323.15 K. It was
observed that the densities and viscosities of sorbitol/maltitol in in L-ascorbic acid
aqueous solutions increase monotonously with the molality of solute (sorbitol or

maltitol) and the molality of L-ascorbic acid however it decreases with the increase in
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temperature. The limiting partial molar volume and limiting partial molar volume of

transfer were calculated through experimental values of densities.

Pal et al. (2013) [149] calculated the densities and ultrasonic velocity for binary
mixtures of dipropylene glycol dimethyl ether with n-alkyl esters and from which V*
and k are also measured. At negative values of all the mixtures V* was observed to
contract. Using Jouyben-Acree model the observed densities and ultrasonic velocity

were compared and results thus produced were found to be accurate.

Sastry et al. (2013) [150] reported the density and ultrasonic velocity for the binary
mixtures of methyl benzoate at temperature range (303, 308, 313, 318 and 323) K. From
the experimental data V' and k; is calculated. The V* is found to be negative mostly for
1-propanol but it becomes positive as the alcohol chain increases where excess values
of k are found to be negative over the whole range and at all the temperatures. With
the rise in chain length of alcohol in the binary mixtures the strength of interaction

decreases.

Zemankova et al. (2013) [151] calculated the excess volumes and excess heat
capacities for alkanediol + water systems in the temperature range from 283.15 K to
313.15 K. Excess volumes are observed to be negative over the whole range and they
become less negative as temperature increases whereas excess isobaric molar heat
capacity stays positive mostly, although it becomes negative for few mixtures at several
compositions and temperatures. As far as temperature is concerned excess isobaric

molar heat capacity rise with rise in temperature.

Pal et al. (2013) [152] ultrasonic velocities and densities of molecular interactions in
n-Alkoxyropanols with n-alkyl ester mixtures at temperature range from 288.15 K and
308.15 K. VE and deviations in isentropic compressibility have been computed from
the experimental values. The deviations in k; is observed to be positive over the whole
range and the magnitude decrease with increase in the size of polar group of
alkoxypropanols. Moreover, with decrease in the chain length of ester the values in

k, increases.
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Kumar et al. (2013) [153] calculated the densities and sound velocity for binary liquid
mixtures of alkoxypropanol with branched alkanols at temperature range of (288.15,
298.15 and 308.15) K using an Anton-Paar DSA 5000M densimeter. From the
experimental data excess molar volumes and deviations in isentropic compressibilites
have also been calculated. The results thus obtained are compared with the results

observed earlier.

Sannaningannavar et al. (2013) [154] had examine and determined the thermo-
acoustical parameters of the mixtures of polyethylene glycol-400 at 299K and 363K.
Ultrasonic interferometer at 3MHz was used to carry out the velocity measurements.
By using pycnometer, the density measurements were carried out. Electronically
regulated thermostatic water bath was to maintain the temperature. They concluded that
when the temperature is increased PEG-400 goes under volume expansion. They also
concluded that the structure becomes distorted when the temperature is raised. They
also concluded that when the intermolecular forces are decreased the chain and
unfolding expansions take place with the rise in the temperature. They also showed the

temperature dependence of the elastic and inertial properties of the sample.

Pal et al. (2013) [155] had examined the volumetric and acoustical study of liquid
mixtures containing dipropylene glycol dimethyl ether with methyl acetate, ether
acetate and n-butyle acetate in the different temperature range. They calibrated the
apparatus with heptanes, hexane, octane, cylcohexane and benzene before conducting
measurements. Thermodynamic parameters were calculated with the experimentally
calculated values. They found the mixtures to be contracting due to negative values of
the molar volume and also found the mixtures to be of greater compressibility than the

pure components.

Kaur et al. (2013) [156] had investigated the acoustic parameter of the mixture
containing polyvinyl acetate with acetic acid with ultrasonic technique. The samples
were investigated without purification (purity= 99%). They prepared the solution by

dissolving the polyvinyl acetate in a fixed volume of the acetic acid. Electronic balance
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was use to weigh the samples. With a variable path interferometer working at 2MHz
the ultrasonic velocity was measured. The standard liquid used was distilled water. All
the measurements were made at the room temperature. They concluded that the
ultrasonic velocity rise and the density rise with the rise in the concentration. They
concluded with these results that a large number of molecules are responsible for

transmitting energy which results in the increase in the ultrasonic velocity.

Pal et al. (2013) [157] has investigated the ultrasonic velocity and density for binary
mixtures of 1,4-dioxane with propanol and butanol isomers at different temperature.
Built-in solid-state thermostat was used to control the density and sound as they are
extremely responsive to temperature. Airtight stoppered glass bottle to avoid
evaporation was used to keep the mixtures prepared. Molar volume and k; were
obtained using the density and speed of sound. They concluded that with the rise in the
temperature and alkyl chain length for both 1-alkanol and 2-alkanol there is a rise in
the magnitude of the VZ. They discussed all the properties in terms of molecular

interaction.

Bhavani et al. (2013) [158] evaluated theoretically the speed of the sound in binary
liquid mixtures at different temperatures. The chemicals were used without purification
(purity=99%). By using the thermostatically controlled water bath, the temperature was
maintained constant. Specific-gravity bottles were used to measure the density.

Electronic balance was used to measure the weights of the mixtures.

Hnedkovsky et al. (2013) [159] determined ultrasonic speed and density of dilute
aqueous solutions of alkane-a, ®-diols at different temperatures. Standard molar
volumes and standard molar isentropic compressions were calculated. They discussed
the relations of the given standard parameters to the ratio of hydrophilic and

hydrophobic parts of solute.

Moattar and Tohidifar (2013) [160] had studied the temperature effect on transport
and volumetric properties of aqueous solutions of poly ethylene glycol di-methyl ether

2000 + polyethylene glycol 400 at 7= (293.15 to 313.15) K temperatures. The modified
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Wilson model for polymer solution was employed to find V%, excess molar isentropic
compression, deviation of viscous flow and excess Gibb’s free energy of activation of
viscous flow that obtained from experimental density, speed of sound and viscosity
data. At dilute range data for density was utilized to compute apparent specific volume
at infinite dilution which further provides the information about segment-segment and

segment-solvent interactions.

Adam et al. (2014) [161] measured the densities of aqueous solutions of ethylene
glycols at temperature range from 293.15 K to 318.15 K. Volumes of all mixtures
observed at a constant temperature was found out to be linearly dependent on solute

molality, from these results the V(g were also calculated for all the solutes. The partial

molar volumes thus obtained was found to be increasing slightly with increase in
temperature. Further, the thermal expansion coefficients were also calculated for all the

solutes and was observed to be increasing with increase in temperature and molality.

Kumar et al. (2014) [162] had investigated the interaction of amino acid in aqueous
triammonium citrate solutions at different temperatures. By using Sartorious balance
all the weightings were made. Viscosities were measured by Anton Paar Automated
Micro Viscometer (AMV). Peltier thermostat was used to control the temperature.
From their earlier reported results, the densities were taken. They concluded that with
the increase in the amino acid concentration there is an increase in the viscosity. B-
coefficients and analysis of the viscosity were obtained through experimental data.
Their results obtained from the viscosity measurement are supported by the volumetric

data.

Dash et al. (2014) [9] had determined the ultrasonic studies on molecular interaction in
ternary liquid mixture of dimethyl acetamide at different frequencies at different mole
fractions at 308K. Various acoustical parameters were calculated. The chemicals were
used without purification. Specific gravity bottle was used for measuring the density.
Multi frequency interferometer (Model M-82S) was used for the ultrasonic velocity
measurements. They concluded that between components in the ternary liquid mixture,

diethyl ether and isobutyl methyl ketone, molecular interaction and molecular
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association form a relationship. They further concluded that frequency for a fixed

concentration is inversely proportional to the molecular interaction.

Kumar et al. (2014) [163] had investigated on solute-solvent interactions of amino-
acids in aqueous solutions of sodium dihydrogen phosphate at different temperatures.
The chemicals used were vacuum dried and stored in desiccators over P>Os before use.
For the preparations of the solutions triply distilled and degassed water was used.
Viscosities were measured by Anton Paar Automated Micro Viscometer (AMV).
Densimeter was used to measure the density. Variations were seen in the density and
speed of the sound due to the sensitivity of the instrument. They measured the solution

densities at temperatures 288.15, 293.15, 298.15, 303.15 and 308.15K.

Saxena (2013) [164] had investigated the acoustics of aqueous polyethylene glycol.
Liquid polyethylene glycol was used for investigation. By adding the known volume of
polyethylene glycol to fixed volume of water, clear solutions were prepared. Acoustic
impedance and ultrasonic absorption were calculated at temperature 35°C at IMHz
frequency using ultrasonic interferometer. By using the thermostatically controlled
water bath, the temperature was maintained constant. Pre-calibrated density bottles
were used to measure the density. By using standard relations other parameters were
calculated. Viscosity and ultrasonic velocity were measured at different temperature
and concentrations. It was concluded that the density, acoustic impedance, speed of
sound and viscosity rise with the rise in concentration, volume decreases with increase

1n electrostriction.

Bhidhani er al. (2014) [165] had investigated the effect of temperature and
concentration on density, viscosity and speed of sound of pentan-1-ol + nitrobenzene
mixtures. The chemicals used were purified. Oswald’s-Sprengel pycnometer were used
to measure the density. Ultrasonic interferometer was used to measure the ultrasonic
velocity. The chemicals were experimented out in a thermostatically controlled
constant temperature water bath. They concluded that the breaking up of the hydrogen
bonds of alcohol and then the formation of hydrogen bond between the unlike

component are the reasons for volumetric behavior and viscosity deviation.
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Kondaiah et al. (2014) [166] calculated the density and viscosity of binary mixtures of
EG with amides at the temperature range of 308.15 K. V%, deviation in viscosity and
excess Gibbs free energy of activation of viscous flow is determined from the
experimental data. Due to the addition of amide molecules the observed values of

deviation/excess properties are found to be negative.

Deosarkar and Ghatbande (2014) [167] studied molecular interactions and structural
fittings in binary EG + ethanol and EG + H>O mixtures by determining the densities,
viscosities and molar interactions of both the binary systems. From these properties V*
and excess viscosities were calculated. The strong dipole-dipole interactions between
the unlike solvents in both the mixtures rise with rise in mole interactions of EG for

both binary systems.

Raman et al. (2014) [168] studied the density, viscosity and speed of sound
measurements in aqueous DEG solutions at different temperatures. The solute-solvent
interactions in aqueous DEG can be understood using the data values obtained from
speed of sound and other acoustical parameters. Through this study it was found that
the hydration number is 5 which gives us the better understanding for further studies

on the structure and intermolecular interaction.

Moattar and Dehghanian (2014) [169] measured the values of density and viscosity
for (methoxybenzene + PEG-400) and (ethoxybenzene + PEG-400) at temperature
range of (298.15, 308.15 and 318.15) K. From these observed values, the values of
excess molar volume and excess Gibbs free energy activation have been determined
which are then used in Redlich-Kister type polynomial equation to derive coefficients

and standard deviation.

Klimaszewski et al. (2015) [170] calculated the sound velocity and density in binary
liquid mixture of water and tri-ethylene glycol (TEG) over wide range of temperatures.
The values of density were measured at temperature range of (278.15 to 333.15) K

whereas for ultrasonic velocity the temperature range was (288.15 to 318.15) K. From
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the experimental values, the values of molar volume were calculated which were then

used to determine the Vd(,’ of the mixture components.

Kaur et al. (2016) [171] had attempted to investigate and study theoretically the
ultrasonic velocity in binary mixture of chloroform and methanol. The ultrasonic
velocity measurement was carried out at 295K by using ultrasonic interferometer
working at 2MHz. Using Nomoto’s relation, Rao’s specific velocity relation, Van Dael-
Vangeel Ideal mixture relation and Junjie’s relation the ultrasonic velocities were
computed and compared for the binary mixture of chloroform and methanol. They
concluded that the best equation for calculating the ultrasonic velocity is the Junjie’s
relation. They concluded that the deviation in the obtained parameters shows the

presence of the molecular interaction between the molecules of the mixture.

Vigneswaril et al. (2016) [172] had examined the molecular interactions of solutions
of polyvinyl alcohol. Ultrasonic velocity measurements were carried out by ultrasonic
interferometer working at 1MHz. Specific gravity bottle was used to carry out the
density measurements. They showed the presence of the molecular interaction from all
the calculated acoustical and thermodynamic parameters. They also concluded that the
molecular interactions were stronger in case of the binary liquid mixtures than in ternary
liquid mixtures. They also identified the mechanism in forming the in ternary mixtures.

The competitive mechanism in establishing hydrogen bonding between solute-solvent.

Saini et al. (2016) [173] determined the densities, viscosities and speed of sound for
the binary mixtures of p-anisaldehyde and various alkanols at the temperature of 303.15
K. From these experimental values various excess parameters are calculated which are
then correlated by Redlich-Kister polynomial equation. It was observed that the
magnitude and sign of excess parameters play an important role in determining the

types of interactions in the binary liquid mixtures.

Sharma et al. (2016) [174] studied the viscosities of glycine, L-alanine and L-valine in
aqueous tetraecthylammonium iodide (TEAI) solutions. With the increase in alkyl chain

length of amino acids the viscosities also increase which was discussed in terms of
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hydrophobic-hydrophobic interactions. The values of free energy of activation per mole
was found to be increasing from glycine to L-valine which indicated that the number

of carbon atoms of the side chain increases from glycine to L-valine.

Kumar et al. (2016) [175] reported the densities and speeds of sound of mixtures of
sodium dodecyl sulphate with alkoxy alkanols. In this study the values observed for
apparent volumes were positive which shows dominance of intermolecular hydrophilic
interaction between alkoxy alkanols and surfactant molecules whereas for K there was
no major change in the values with increase in temperature but the values changed with

increase in concentration of sodium dodecyl sulphate.

Alisha et al. (2017) [176] had determined the ultrasonic studies of benzene with
carbitols at different mole fractions at 308.15 K. Different acoustical parameters k and
Z. Ultrasonic interferometer at a frequency of 2MHz was used to measure the ultrasonic
velocity. Pyknometer was used to measure the densities. Due to the molecular
interaction among the components of the binary mixtures, different trends in the

variation of the parameters are derived.

Godhani et al. (2017) [177] had studied the thermodynamic properties of 1,3,4-
oxadiazole in chloroform and N, N-dimethyl formamide at three different temperatures
303 K, 308 K and 313 K. Aluminium coated TLC plates were used to check the purity
of the chemicals. Ultrasonic interferometer was used for the velocity measurements.
Pycnometer was used for the density determination. For determining viscosity
Ubbelohde viscometer was used. Their experimental research deduced that density,
viscosity and velocity decreases with temperature and increased with concentration.
They also concluded that the structure forming was due to the strong molecular
interaction due to the positive values of the salvation number. Their study on various
thermodynamic parameters on binary mixtures also concluded the presence of the

strong and weak dispersive forces.
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3.10BJECTIVES

Brief objectives of the research are:

» To find ultrasonic velocity, density and viscosity in liquid mixtures of glycols at
various compositions and different temperatures.

» To study molecular interactions by calculating various acoustical parameters in
liquid mixtures containing glycols at different temperatures.

» To study excess thermodynamic and acoustic properties of liquid mixtures
containing glycols.

» To study the comparison between calculated and experimental acoustical data using

various theoretical models.

3.2 EXPERIMENTAL PROCEDURES

The experimental work carried out during the present investigations consists of
measurements of density p, ultrasonic speed ¢, and viscosity # for binary mixtures of
ethylene glycols with glycerol, ternary mixtures of ethylene glycols, polyethylene

glycols in aqueous glycerol and aqueous sorbitol solutions at different temperatures and

concentrations.

Section I
Ethylene Glycol
Diethylene Glycol +  Glycerol + Water
Triethylene Glycol

Section IT
Polyethylene Glycol 400

+ Glycerol + Water

Polyethylene Glycol 4000
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Section 111

Ethylene Glycol

Diethylene Glycol + Sorbitol  + Water
Triethylene Glycol

Section IV
Polyethylene Glycol 400

+ Sorbitol + Water

Polyethylene Glycol 4000

Section V
Ethylene Glycol
Diethylene Glycol + Glycerol
Triethylene Glycol

3.3 CHEMICAL STRUCTURES OF COMPOUNDS USED FOR
STUDY

Ethylene Glycol

HO

OH

IT=—0O=— I
IT=—0O=— I

Diethylene Glycol
HO OH
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Triethylene Glycol

HO\/\O/\/O\/\OH

Ao
Ao

Polyethylene Glycol 400

Polyethylene Glycol 4000

Glycerol

Sorbitol
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3.4 SPECIFICATIONS OF THE CHEMICALS USED

The specifications of the chemicals used throughout the work are enlisted in following

table.

Table 3.1 List of chemicals used and their specifications.

Sr. Chemical Source Purification Mass fraction
No. method purity(supplier)
1. Ethylene Glycol Loba Chemie  Vacuum drying >0.99
Pvt. Ltd, India
2. Diethylene Glycol  SD Fine Vacuum drying >0.985
Chem. Ltd.
3. Triethylene Glycol Loba Chemie  Vacuum drying >0.99
Pvt. Ltd, India
4. Polyethylene Loba Chemie  Vacuum drying >0.99
Glycol 400 Pvt. Ltd, India
5. Polyethylene Loba Chemie = Vacuum drying >0.99
Glycol 4000 Pvt. Ltd, India
6. Glycerol Loba Chemie  Vacuum drying >0.99
Pvt. Ltd, India
7. Sorbitol Loba Chemie  Vacuum drying >0.99

Pvt. Ltd, India

3.5 METHODS AND PREPARATIONS

All chemicals described in Table 3.1 are attained in their highest purity. The freshly

prepared triple distilled and degassed water having specific conductance <107 S-cm™

has been employed to prepare all the solutions utilized in the measurements. All the

liquid samples were equipped by balancing on a Sartorius CPA 225D balance with an

accuracy of +£0.00001g. To avoid any aging effects the measurements of freshly

prepared samples were made on the same day.
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3.6 EXPERIMENTAL TECHNIQUES

The methods availed in the present work are as follows:

3.6.1 Ultrasonic speed measurements: The ultrasonic speeds have been measured
by two instruments. For the binary systems, ultrasonic interferometer (Mittal
enterprises M-80) was employed and for ternary systems Anton Paar DSA
5000M was utilized.

3.6.2 Density measurements: For measuring densities also two methods have been
practiced. For binary systems, specific gravity bottle was utilized and for ternary
systems Anton Paar DSA 5000M was used.

3.6.3 Viscosity measurements: To obtain the viscosities of liquid mixtures, an

Oswald’s viscometer was employed.

The brief working description of these instruments
(i) Ultrasonic Interferometer
Ultrasonic interferometer, a direct and simple device to find ultrasonic speed in liquids
and liquid mixtures, shown in Figure 3.1. An accurate determination of wavelength (1)
in the medium is the base for principle utilized in measurement of speed (¢). Using a
quartz crystal, the ultrasonic waves with known frequency (f) are generated. The
formation of standing waves occurs in medium if separation among two plates is a
whole multiple of sound wavelength. Thus, acoustic resonance is achieved, which
results in generation of electrical signal on generator driving quartz crystal and anode
current of generator becomes a maximum.
If distance between the plates is decreased or increased and variation exactly become
one half of the wavelength or multiple of it, then anode current becomes maximum.
Then, from the understanding of wavelength, the ultrasonic speed (c) can be attained
by the succeeding relation:

c=AXf
Where, ¢ = velocity of wave, A = wavelength of wave, f = frequency of particle’s
vibration.
The Ultrasonic Interferometer comprises of following parts:
a) A High Frequency Generator
b) A Measuring Cell
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Figure 3.1 Ultrasonic interferometer

a) A High Frequency Generator has been intended to produce ultrasonic wave in an
experimental liquid filled within the measuring cell by exciting quartz crystal, to its
resonant frequency placed at bottom of measuring cell. To observe the change in
current, a micrometer is provided and for persistence of sensitivity regulation and an
initial adjustment of micrometer, two controls are provided high frequency generator
panel.

b) A Measuring Cell, especially double walled fabricated cell for the constant
maintenance of temperature of experimental liquid at the time of experiment. Raising
or lowering of reflector plate in liquid sample in cell can be done through the
micrometer which has been placed at the top. It also contains a quartz which is fixed at

the bottom.

(ii) Specific gravity bottle

A specific gravity bottle with 10 ml capacity shown in Figure 3.2, has been used in the
present study. Before using it, the gravity bottle must be dried and cleaned with distilled
water. Firstly, weighing (Wy) of the cleaned and dried specific gravity bottle is done and
then the distilled water is filled into it. By the means of a stand, the specific gravity
bottle has been suspended in thermostat water bath to achieve temperature of the bath.

Then, from the water bath the gravity bottle has been removed and with a cotton it is
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dried outside and its weight is determined with the help of digital balance (W). It is
again then washed, dried and now filled with an experimental liquid. By following the

same procedure for various temperatures, the weight (/2) of the sample is evaluated.

|

"
‘> -3

()

Figure 3.2 Specific Gravity bottle

Thus, density of liquids has been calculated using the formula,
p2=(W2W1) pi
Where, W; = weight of the distilled water, 7> = weight of experimental solution, p; =

density of water, p> = density of experimental solution.

(iii) Anton paar DSA 5000M

Anton Paar DSA 5000M densitimeter has been utilized for measurement of densities, p
and ultrasonic speeds, ¢ of aqueous solutions of sugar alcohols and their mixtures with
EGs as additives within the temperature range from 7' = (288.15 to 318.15) K and 0.1

MPa pressure.

Figure 3.3 Anton Paar DSA 5000 M
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This equipment has density and pulse-echo speed of sound cells fitted inside which
determine two physically independent properties, density and speed of sound
simultaneously with one sample (Figure 3.3 and 3.4). Both the measuring cells are made
up of stainless steel and temperature is controlled using a built-in thermostat. Two
integrated Pt 100 platinum thermometers together with Peltier elements provide an
extremely precise temperature control of £ 0.001 K. this instrument follows the
oscillating U-tube principle. When about 3.5 mL of the bubble free sample is introduced
into a U-shaped glass tube that is being excited to vibrate at its characteristic frequency
electronically, the characteristic frequency changes depending on the density of sample.
Through a precise determination of the characteristic and a mathematical conversion,
the density of the sample can be measured. Similarly, when the sample enters into the
sound velocity measuring cell that is bordered by an ultrasonic transmitter on the one
side and by a receiver on the other side, the transmitter sends sound waves of a known
period through the sample. Then the speed of sound can be calculated by determining
the period of received sound waves and by considering the distance between the

transmitter and the receiver.

Density cell

T Pt-100 thermometer

-

Sound speed 'S,
cell \. > \a,,,p/e o
i N ' !

Figure 3.4 Density and sound speed cell of DSA 5000 M

The measuring cells were washed with water and alcohol after every use. The apparatus
was first calibrated with double distilled and degassed water and air at different
temperatures before each series of measurements. The densities and speed of sound
were found to be in good agreements with literature. It can measure densities range

from (0 to 3) g-cm™ and speed of sound range from (1000 to 2000) m-s™.

49



(iv)  Ostwald’s viscometer

The Ostwald’s viscometer shown in Figure 3.5 is employed for measuring viscosity.
Firstly, it is thoroughly cleaned with distilled water and dried. Water about 10 to 25 ml
relying on capacity of the bulb is pipetted into it. Then the water is slurped into bulb
using a rubber tube linked at end until it rises the mark A. Using stop watch, the time
(t1) taken by water to flow is noted. Viscometer is then dried and by repeating the same
process, the same amount of experimental liquid is pipetted into the bulb and the time

(t2) of flow has been noted.

Figure 3.5 Ostwald’s viscometer

Then, coefficient of viscosity of liquid mixture is computed from the relation:

n2 =1 (12/11) (p2/p1)
Where, ; = viscosity of water, 72 = viscosity of experimental solution, p; = density of
water, p2> = density of experimental solution, #; = time of flow of water, 7> = time of flow

of experimental solution.

3.7 VARIOUS ACOUSTIC PARAMETERS

Various acoustic parameters dependent on velocity, density and viscosity are calculated

as follows:
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3.7.1 Acoustic impedance (2)
Acoustic impedance is the resistance offered to the propagation of ultrasonic wave in
the medium and can be defined as the product of density (p) of the medium and
ultrasonic velocity (U) of the same medium. It can be written as
Z=pxU

3.7.2 Adiabatic compressibility (f)
Adiabatic compressibility is fractional reduction in volume per unit increase of
pressure, when no heat flows in or out. This variation is related to the compressibility
in a medium by thermodynamic relation:

L= (1/V) (dV/dP)
Adiabatic compressibility can also be calculated from the ultrasonic velocity (c¢) and
density (p) of the medium using equation:

B=1/(c**p)
3.7.3 Intermolecular free length (Ly)
In 1952, Jacobson suggested an empirical relation for calculating the intermolecular
free length of liquids. ¥ According to the studies, Lt is given by:

L= Krx 2
Where, K7 = Jacobson constant whose value is 2.0965 x 107

[ = compressibility of the liquid.

Intermolecular free length can also be expressed in terms of ultrasonic velocity and
density as:

Lr=K/ (c x p'?)
Where, ¢ = ultrasonic velocity of experimental liquid

p = density of liquid of experimental liquid.

3.7.4 Ultrasonic Attenuation (o)
Ultrasonic attenuation is a rate of decay of energy when an ultrasonic wave propagates
through a medium. The main causes for attenuation in ultrasonic wave are absorption,
scattering, reflection, refraction etc. Decrease in the intensity of ultrasonic wave is
represented by the ultrasonic wave attenuation coefficient a as:

o/f = 8n*y I3pc?
Where, f= frequency of the wave.
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An ultrasonic attenuation increases with increase in frequency as it is directly
proportional to the square of frequency (f) of wave.
3.7.5 Relaxation Time (7)
The measure of time taken by the particles of a medium to come back to their mean
positions within the medium is called relaxation time. Therefore, as long is the
relaxation time, more is the absorption of ultrasound energy. Relaxation time for binary
mixtures can be given as:
7=4pn/3
Relaxation time can also be calculated from:
T=4n/3pc?
3.7.6 Free Volume (V)
In the liquids, molecules are not closely packed and there is a free space between the
molecules to move within the liquid by obeying laws and is defined as free volume.
It can be calculated by using the formula-
Vi=[Mege / K>
Where, K = temperature dependent constant whose value is 4.28 x 10°.
¢ = ultrasonic velocity in the medium
M= effective molecular weight
n = viscosity of the mixture.
3.7.7 Wada’s Constant (W)
Wada put forward a relation given by
W=(B)" Megl p
Where, W is Wada’s constant, independent of temperature
[ is called adiabatic compressibility
p is density of mixture
3.7.8 Rao’s Constant (R)
The relation between speed of sound (c), effective molecular weight (M.z) of the
mixture and density (p) of the mixture is given by
R=c"My/p

Where, R is called Rao’s Constant, independent of temperature.
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3.7.9 Molar Volume (V)
Molar volume is the relation between the effective molecular weight and density of the
mixture and is given by-
Vi= Meg/ p
Where, M. = eftective molecular weight
p = density of the mixture.
3.7.10 Vander Waal’s Constant (b)
Vander Waal gave a relation which is dependent on time and is given by-
b=V [1-(RT/Mc*) {(1 + (Mc*3RT)) "> —1}]
Where, R = gas constant having value 8.31451
T = temperature
Vm = molar volume
M = effective molecular weight.
3.7.11 Internal Pressure (m;)
Internal pressure deals with the forces of attraction and repulsion between the molecules
in a liquid. It is a measure of cohesive forces which are the basis for any model of a
liquid. It is sensitive to change of temperature, concentration and external pressure. !
Internal pressure is determined by using ultrasonic velocity in relation with other
thermodynamic parameters and is given by-
11, = bRT [(knlc) ' (0] M7/6)]
Where, b = cubic packing whose value is 2 for liquids.
R = gas constant having value 8.31451
T = temperature at which experiment has been done
k = dimensionless constant independent of temperature whose value is 4.281 x
10°
n = viscosity of experimental liquid mixture
U = ultrasonic velocity in the liquid mixture
p = density of experimental liquid
M = effective molecular mass.
3.7.12 Available Volume (V)
Available volume can be calculated from the following relation-

Va=M/p (1 -Ul Us)
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Where, M = effective molecular weight
p = density of experimental liquid
U = ultrasonic velocity in experimental liquid mixture
U = velocity of sound or ultrasonic velocity at infinity, which is equal to 1600
m/sec.
3.7.13 Gibb’s Free Energy (AG)
It is the energy associated with chemical reaction that can be used to do work. The
change in this energy can be calculated as
AG=KpTIn (Kp Tt h)
Where, K3 = Boltzmann’s constant whose value is 1.38 x 1072
T = absolute temperature (295 K)
7 = relaxation time
h = Planck’s constant having value 6.634 x 10734,
3.7.14 Enthalpy (H)
Enthalpy is the thermodynamic function which includes internal energy of the system
and the product of pressure and volume of the system. Basically, it is a measure of total
energy of the thermodynamic system and is denoted by ‘H’.
Enthalpy of a system can be calculated as-
H=Vyxm
Where, V,, = molar volume of experimental liquid

7; = internal pressure of the same experimental liquid.

3.8 THEORETICAL MODELS FOR ULTRASONIC SPEED

Various theories use to calculate theoretical values of ultrasonic speed:
3.8.1 Nomoto’s relation:
Nomoto established an empirical relation for ultrasonic speed in binary liquid mixtures
as:
Unowm = [(X1 Ri+X2R2) / (X1 Vi+X2 V)] 2
Where molar sound velocity, Ri = (M / p1) c1'® and Ry = (M2 / p2) 2!
Xj and X are the mole fractions of 1st and 2nd components of the liquid mixture

Molar volume, Vi = (M1 / p1) and V2 = (M2 / p2)
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3.8.2 Impedance dependent relation:
Ummp = (X1 Z1 + X2 2)/ X1 p1 + Xo p2
Where X; is the mole fraction,
p1 and p the density of 1% and 2™ component
Z; and Z; is the acoustic impedance of 1% and 2" component.
3.8.3 Van Dael and Vangeel Ideal mixing relation:
Uvpy = [(X1/Mici? + X2/Macr?) (XiMi1+XaMa)] 2
Where M), M> are molecular weights of constituent components.
c1 and ¢ are ultrasonic speeds of individual compounds.
3.8.4 Jungie equation:
Uson = [IMi/pr + XaMa/pa) / (XiMi+XaM2) 2] [{XiMi/pier?+XaMa/paca?} ] 172
Where p; and p> are the densities of constituent components.
Percentage deviation in ultrasonic speed:
The percentage deviations in ultrasonic velocity between the experimental and
theoretical values are calculated as

(Ac/c) % = ((cexp-CcTHEORY) / (CEXP)) X 100

3.9 EXCESS VALUES AND DEVIATIONS OF ACOUSTICAL
PARAMETERS

Formulas to calculate some excess values and deviations of acoustical parameters: -
3.9.1 Excess molar volume:
The experimental values of density are used to calculate excess molar volume using
following equation: -

VE=(Xa M+ Xo M)/ pm—[(Xa M) | p1+ (X2 M>) / p2]
Where, X1 = mole fraction of first component

X2 =mole fraction of second component

3.9.2 Deviation in isentropic compressibility
The deviations in compressibility can be calculated from the following two equations:
AB=B-XiPB1+X2B2)

| = isentropic compressibility of 1% component
p p y p
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B2 = isentropic compressibility of 1% component

3.9.3 Viscosity deviations

These can be calculated from mole fractions and experimental values of viscosities of

binary mixtures and pure components by using the following equation:
An=n-Xini1+X2n2)

Where, n = viscosity of binary mixture

M1 = viscosity of first component M2 = viscosity of second component

X1 =mole fraction of first component X>=mole fraction of second component

3.9.4 Excess Gibb’s free energy of activation:
It can be calculated from experimental values of molar volumes and viscosities of
mixtures and pure components by using the following equation:

AG* =RT [In (n V)= X1 In (i1 V1) =Xz In (72 V2)]

Where, R is universal gas constant and 7" is absolute temperature.

n = viscosity of binary mixture V= molar volume of binary mixture
n1 = viscosity of first component V1 = molar volume of first component
12 = viscosity of second component V> = molar volume of second component

3.10 APPARENT MOLAR AND PARTIAL MOLAR PROPERTIES
3.10.1 Apparent molar volume

The difference in the volume of the solution and of the pure solvent per mole of solute
is defined as the apparent molar volume.

It is the property of the solution which shows the variation in corresponding solution
property when that entire component is added to this solution, per mole of component

added.
Vo =M/p—(p—po)/mappo

3.10.2 Partial molar volume

The difference of volume of solution when the mole of solute is added to a huge amount

of the solution, where no appreciable change in the total concentration of the solution

56



at constant temperature, pressure and number of molecules is observed, it is defined as
the partial molar volume of a component.
It is the difference in the volume per mole of the substance added to the mixture.

Ve = Vg + Symy

3.10.3 Partial molar volume of transfer
The transfer volume of solute from water to the pure solvent system at infinite dilutions was
computed with the following formula

AV(E = V(g (in pure solvent) — V(g (in water)

3.10.4 Temperature dependent partial molar volume

The change in the apparent molar volume, V(g along with temperature at finite dilution is given
by the following equation

V9 =a+b(T = Tyep) + (T = Trey)

in which T represents the temperature, T,.;= 298.15 K, a, b and ¢ represent the
empirical constants. These parameters were used to calculate V(g and deviations attained

from calculated and experimental values. The deviations are calculated from the

following equation:

o = (1/n) E[abs((Yexper. = Yeatc) /Yexptr)]

Where Y = V£ (apparent molar volume at infinite dilution).

At infinite dilution, the temperature dependence of partial molar volume (V(g ) can be

uttered in terms of absolute temperature (7) by the following equation. The same
equation is used to calculate partial molar expansibilities as follows:

Eg = (0Vy/0T), = b + 2¢(T — Typ)

The following thermodynamic expression determined the structure making and
breaking ability of solute in solvent using the following equation:

(0E4/0T), = (0°Vy/dT?), = 2¢c

3.10.5 Apparent molar isentropic compression
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By using the following equation, apparent molar isentropic compression of solute in the
aqueous solution of a chemical sample is calculated

Kgs = (Mks/p) = {(ks,0p = kspo)/mMappo}

Where my, M, p, p,, kso and kg are the molality of solute, the molar mass of the solute,
density of the solvent and the solution, isentropic compressibility of the pure solvent and the
solution accordingly. The isentropic compressibility is determined by the following
expression-

ke =1/c?p

Where p and c are the density and ultrasonic velocity of the solution respectively.

3.10.6 Partial molar isentropic compression

By the following equation, the change in apparent molar isentropic compression Ky ¢ with the
molar concentration is given as

Kys = Kg,s + Spmy

Where, Sg is an experimental slope suggestive of solute-solute interactions.

3.10.7 Partial molar isentropic compression of transfer
At infinite dilution, the partial molar isentropic compressions AK(g'S of glycols in
aqueous solution of chemical sample is calculated with the following equation

AKg s = Kg s (in aqueous chemical sample) — Kg ¢ (in water)

3.10.8 Pair and triplet interaction coefficients
From the following relation, the partial molar volume of transfer and the partial molar
isentropic compression of transfer can be obtained:

AV(g (water to aqueous chemical sample solution) = 2V,pmg + 3V gpm2
AK(g,S(water to aqueous chemical sample solution) = 2K,zmp + 3K,gpm3

Where A4 represent glycols and B represent chemical sample and mp denotes the
molality of the aqueous chemical sample solutions. The pair and triplet interaction
coefficient are represented by the parameters V45 and Vg5 for volume, and K 5, K455

for isentropic compression.
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Section I

In this section, we have reported the densities, p and speed of sound c of ethylene glycol
(EG), diethylene glycol (DEG) and triethylene glycol (TEG) in (0.00, 0.01, 0.03, 0.05)
mol-kg! aqueous solutions of glycerol at temperatures 7 = (293.15, 298.15, 303.15,
308.15) K.

Density

The experimental densities, p obtained for EG, DEG and TEG in (0.00, 0.01, 0.03, 0.05)
mol-kg! aqueous solutions of glycerol are enlisted in Table 4.1. It is observed from
analysis of Table 4.1, that the values of densities are increasing with increase in
concentration of glycols and decreasing with increase in temperature. The measured
densities for the mixtures of (EG + water, DEG + water and TEG + water) are compared
with literature [39, 45, 46, 88, 98, 122, 130, 145, 161, 168, 170, 178] densities and are
represented in Figures 4.1 to 4.3. From Figures 4.1 and 4.3, it is noticed that experimental
values of density for (EG + water and TEG + water) follow the same trend as of literature
values, but in Figure 4.2 the experimental densities for (DEG + water) are in coherence
with all the literature [39, 45, 122, 161 and 178] values except for the values reported in
reference [168]. The values of densities for (DEG + water) reported in reference [168]
shows deviations from experimental values and also from literature values reported in
reference [161 and 178] at temperature 303.15 K and 308.15 K. The comparison for the
densities of liquid mixtures (glycerol + water) with the literature [120, 144 and 179] has
also been done and is represented in Figure 4.4. The experimental densities are found to be
in trend with the literature values given in reference [ 144 and 179] but a little deviation has
been observed from the values reported in reference [120] at temperature 303.15 K and
308.15 K. Further, the observed experimental densities for ethylene glycol in aqueous
glycerol solutions have been compared with literature [180] values and are exhibited in

Figure 4.5.
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Apparent molar volume
The experimental values of densities are used to calculate the values of apparent molar

volume (V) from the following equation:

Vo = (M/p) — {(p = po)/(Mappo)} (4.1)

where M is the molar mass (kg-mol™!) of the solute, my,is the molality (mol-kg™) of the
glycols i.e. amount of solute (glycols) per one kilogram of the solvent (mixture of water +
glycerol) and p, and p are the densities (kg-m™) of the solvent and solution, respectively.
The calculated values of apparent molar volume, are given in Table 4.1. All the computed
values of apparent molar volume, are positive due to large intrinsic volume of solute which
indicate strong solute-solvent interactions in the present ternary system. The values
described in Table 4.1 reveals that the values of apparent molar volume surge with upsurge
in concentration of glycerol which may be due to the fact that with the increase in
concentration of glycerol, water molecules in the first hydration shell become more likely
to be associated with the glycerol OH groups than the alkyl backbone [65] which indicate
that glycerol molecules interact constructively with water to strengthen H-bond network in
the solvent [181]. Further, the apparent molar volumes increase with increase in molar
mass of glycols i.e. from EG to TEG at all concentrations of glycerol and all temperatures.
This increase in Vy, values can be attributed to the factors hydrophilic effect, hydrophobic
hydration in water-rich region, physical forces such as dipole-dipole and dipole-induced

dipole interactions [146].

Partial molar volume

By the means of least squares fitting of apparent molar volume Vg, partial molar volume
Vd(>) is calculated from the following equation:

Vp = Vg + Spmy (4.2)
where Sy an experimental slope, is the semi-empirical solute-solute interaction coefficient
and my is the molality of glycols in aqueous glycerol solutions. In Table 4.2 the values of

V(g and Sy, along with standard errors are listed. The standard errors are computed from
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Vg values by least squares fitting of it to equation 4.2. All the values of V£ are positive and

increase with increase in temperature and concentration of glycerol in all the three glycols
as represented in Figure 4.6. This increase in V(g values suggests that contribution of
oxyethylene group increases with increase in temperature [161]. The increasing
concentration of glycerol strengthens the H-bond network in the solvent due to constructive
interaction among the molecules of water and glycerol [181]. The IR spectral studies by
Zhang et al. [119] shows that hydrogen bonding interactions are possible in H-atoms of
water and OH-atoms of glycols by cross-linking in the form of --H-O-H-- bonding. Further,
the Vd? values increase with increase in molar mass of glycols at each temperature. Since
TEG has one additional -CH>-CH>-O- group compared to DEG and two additional -CH»-
CHb»-O- groups compared to EG, therefore results in highest V£ values in case of TEG. The

reasons for change in partial molar volume can be attributed to the weakening of H-bond,
thermal expansion, release of molecules from solvation layer etc. The difference in V£
values from EG to TEG is very large which suggests that interaction between unlike
molecules is very much influenced by the size of hydrocarbon chain [91]. It can also be
seen from Table 3 that for all the concentrations of glycerol at all temperatures, the
magnitude of Sy is positive except for TEG in aqueous solution of 0.05 mol-kg™! glycerol
at temperature 293.15 K and 303.15 K. These positive values of Sj; indicate that the solute-
solute interactions are present in the solutions of glycols in glycerol. Since the values of S
are not showing regular trend, which shows that the solute-solute interactions are
influenced by some other factors also [182]. The solute-solvent interaction is predominant

over solute-solute interaction because of smaller values of S;; as compared to larger Vd(,’

values.

Partial molar volume of transfer
The transfer volume of glycols from water to aqueous glycerol solutions at infinite dilution
was calculated from following equation

AVd(,) = Vd()) (in aqueous glycerol) — Vd()) (in water) (4.3)
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The computed values of AV£ are indexed in Table 4.3. All the values of AV(g are positive

and are increasing with increasing concentration of glycerol for each glycol, which infers
huge desiccation effect on glycols. No regular trend is found in AVd? values with respect to
increase in temperature. The obtained positive values of AV£ propose strong molecular
interactions of glycerol with glycols. Pauling [183, 184] described the models regarding
pure water structure and assumed that lot of space is available in the water structure in form
of empty areas known as clathrates which the other molecules can easily penetrate.
Probably very small amounts of EGs can be placed in the cages of the water structures so
as not to abolish the cage structure. Rather higher content of glycol destroys a cage structure
and there is possibility that organic molecules and water undergoes hydrogen bond
formation, new structures are created [170]. The structure making ability of the solute in
the solution is promoted due to interactions between solute and solvent molecules as the

structural moiety of glycerol and glycol contains polar group.

Temperature dependent partial molar volume
By using general polynomial equation, variation of apparent molar volumes with the

temperature at infinite dilution can be expressed as follows
Vg =a+b(T —Trep) + c(T — Tyep)? (4.4)

where a, b, ¢ are empirical constants, 7r.r = 298.15K and 7 is the temperature in Kelvin. In
aqueous glycerol, the value of these constants for EG, DEG and TEG are indexed in Table

4.4. These parameters were used to calculate V¢(>) and deviations attained from calculated

and experimental values are also indexed in Table 4.4. The deviations are calculated from

the following equation:
o= (1/n) Z[abs((yexptl. - Ycalc.)/Yexptl.)] 4.5)

where Y = Vd(,’ (apparent molar volume at infinite dilution). The values listed in Table 4.4

for deviations are very small which fits into the polynomial equation very finely which is

evident from R? values in the present study.
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At infinite dilution, the temperature dependence of partial molar volume (V£) can be

uttered in terms of absolute temperature (7) by the following equation (4.6). The same

equation (4.6) is used to calculate partial molar expansibilities as follows:
Eg = (0Vg/0T), = b + 2¢(T — Trep) (4.6)

The limiting apparent molar expansibility at infinite dilution, Eg, = (6V£ /0T)pis
considered to be a beneficial measure [185] of solute-solvent interaction existing in the
solution. The general thermodynamic expression, developed by Hepler [186] determined

the structure making and breaking ability of solute in solvent using the following equation:
(0E4/0T), = (0*V4/dT?), = 2¢ 4.7)

The structure making and breaking ability of solute in solvent can be determined [66, 67]
by the sign of (BE(?, /0T), . The positive and very small negative values of
(0E (?5 /0T),observed for structure making solutes whereas negative values of (O, g /0T),
observed for solutes having structure breaking capacity. The value of partial molar
expansibilities E(g and (BE(g /0T), are attributed in Table 4.5. The values of limiting
apparent molar expansibility, are positive at all temperatures and concentrations of
glycerol. The positive E f;, values indicate that the solute-solvent interactions are present in
these systems, as already suggested by apparent molar volume data. The values of E (g show
an irregular trend with an increase in the temperature as well as in the concentration of
glycerol solutions. The positive and small negative (BE(?, /0T), values for the mixtures of

glycols suggests the structure making capability of glycols in all aqueous glycerol

solutions.

Ultrasonic speed
The experimental values of ultrasonic speed, ¢ of EG, DEG and TEG in (0.00, 0.01, 0.03,
0.05) mol-kg!' aqueous solutions of glycerol are measured at temperatures 7 = (293.15,

298.15, 303.15, 308.15) K. The values of ultrasonic speed of all the mixed solutions at
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different temperatures are given in Table 4.6. The experimental ultrasonic speeds for (EG
+ water, DEG + water and TEG + water) have been compared with the literature values
[39, 88, 159, 168, 170, 178] and are represented graphically in Figures 4.7 to 4.9. The
experimental ultrasonic speeds for (glycerol + water) have also been compared with
literature values [120 and 144] and are represented in Figure 4.10. From the Figures 4.7 to
4.9, it has been scrutinized that experimental and literature values exhibit same trend except
for values reported in reference [168]. The ultrasonic speeds reported in reference [168]
shows deviation from experimental values as well as from literature values reported in
reference [178] at temperature 303.15 K and 308.15 K. As seen from Figure 4.10,
experimental ultrasonic speeds for (glycerol + water) are in sequence with the literature
values referred in [144] but shows deviations from the literature values described in
reference [120]. It is observed from the Table 4.6 that the values of ultrasonic speed vary
in sequence with respect to temperature. This increase in ultrasonic speed values relating
to temperature is characteristic for water and is concerned with the 3-dimensional network
of hydrogen bonds in the structure of water [170]. The increase in ultrasonic speed in any
solution indicates the larger association amongst the molecules of the solution. The larger
association is because of intramolecular hydrogen bonding between solute molecules itself
and intermolecular hydrogen bonds among solute and solvent molecule [168]. It has also
been noticed that the ultrasonic speed increases with increase in concentration of glycerol
as the glycerol molecules interact constructively with water to support H-bond network in
the solvent [145]. The DFT and ultrasonic studies on intermolecular association in
hydrogen bonding in aqueous solutions of glycerol have also confirmed the formation of
hydrogen bonds between water and hydrophilic hydroxyl groups in a particular hydrated
pattern of solutes [120]. Further, the values of ultrasonic speed increase with increase in
molality of glycols for a particular concentration of glycerol. Probably, during the addition
of glycol to the solvent, hydrogen bonds between glycerol and water molecules get
weakened and are destroyed. At the same time, new hydrogen bonds between molecules

of solvent and molecules of glycols are formed [170].
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Apparent molar isentropic compression
The following equation was used to determine the apparent molar isentropic compression

for glycols in aqueous and mixed aqueous solutions of glycerol at different temperatures

qu,s = (Mks/p) — {(ks,op —kspo)/mappo} (4.8)

where M is the molar mass of the solute (kg'mol™), p and p,are the densities (kg'm™) of
the solution and solvent, respectively; m, is the molality (mol-kg™) of glycols i.e. amount
of solute (glycol) per one kilogram of solvent (mixture of water + glycerol), kg and kg , are
the isentropic compressibility’s of solution and pure solvent, respectively. The following

relation is used to calculate isentropic compressibility
ke =1/c?p (4.9)

where ¢ is ultrasonic speed and p is density of solution. The computed values of Ky ¢ for
various molar concentrations, m, of EG, DEG and TEG in (0.00, 0.01, 0.03 and 0.05)
mol-kg! glycerol at different temperatures are listed in Table 4.6. From the calculated
values, it is analyzed that the K ¢ values are negative at all concentrations of glycerol and
at all temperatures. These values of Ky ¢ become less negative with increase in temperature
because of expansion of the system at higher temperatures. In the liquid mixtures, the most
favored and polar EG molecules form more compact structure with solvent molecules
through inter-molecular hydrogen bonding resulting in compressibility of the solution
which further suggests the strong solute-solvent interactions between the molecules of
glycols and the molecules of glycerol [168]. The negative Ky s values indicate that the
water molecules around solute are less compressible than the water molecules in the
solution [188, 189] resulting in the tightening of the water molecules around it because of
hydrophobic interactions of a non-polar group. Therefore, the pressure on water molecules
in the solution results in compressibility of the solution, which further suggests the strong

solute-solvent interactions between the molecules of glycols and the molecules of glycerol.

Partial molar isentropic compression
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The partial molar isentropic compression (Kg ) can be calculated by observing the
variation of apparent molar isentropic compression (Ky ) with molal concentration and is

represented the following equation:
Kgs = Kgs+ Sgmy (4.10)

Where Sg is an experimental slope suggestive of solute-solute interactions and my, is the
molality of glycols in aqueous glycerol solutions. The Kq‘;'s values and S; values together
with standard errors derived by the method of least squares fitting are indexed in Table 4.7
and are represented in Figure 4.11. As observed from Table 4.7, the solute-solute
interactions are negligible at infinite dilution since the Sk values are small in size which
further suggests that solute-solvent interactions [190] are dominant in the mixtures. The
values of K(g,S are found to be negative such that with the increase in temperature and
concentration of glycerol, these values become less negative. The larger negative values of
K:;,s for glycols at low temperature suggest strong attractive interactions among the
molecules of glycols and water [191]. Further the attractive interaction between glycerol
and water molecules induces dehydration of glycol, due to which at higher concentrations
of glycerol, the water molecules around the glycols are more compressible than those at

lower glycerol concentrations.

Partial molar isentropic compression of transfer
For each glycol from water to aqueous glycerol solutions, the partial molar isentropic

compressions of transfer (AK(;S) at infinite dilution were calculated using following

equation:
AKg s = K ¢ (in aqueous glycerol) — Kg ¢ (in water) 4.11)

The values of AKg ¢ are reported in Table 4.8. All the values of AKg ¢ are found to be

positive at all temperatures and all concentrations of glycerol except for DEG in 0.05
mol-kg! aqueous solution of glycerol at 293.15 K. From the table, it is deduced that with

an increase in concentration of glycerol, AK, ;IS values also increase except for DEG in 0.05
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mol-kg! aqueous solutions of glycerol at 293.15 K. The positive values of AKg ¢ infer the
structure making tendency of solute and dominance of interactions between glycols and
glycerol. With increasing concentration of glycerol, the interaction between glycols and
glycerol intensifies. With the rise in concentration of glycerol, the structure making
capability of the solute increases. As a result, in comparison to the pure solvent, the solution
is more compressible which further leads to much fall in compressibility with rising
glycerol concentration [192-194]. Therefore, AK(g’S values are positive and K(g’s values are

negative for all three glycols with different concentrations of glycerol.

Pair and triplet interaction coefficients

McMillan and Mayer [195] formulated the theory to study the separation of effects due to
the pair and triplet interactions. The interaction coefficients are calculated based upon
McMillan-Mayer [195]. This theory was further discussed by Friedman and Krishnan [196]
and Franks et al. [197] so that solute-cosolute interactions can be included in the solvation
spheres. So, limiting apparent molar volume of transfer and limiting apparent molar
isentropic compression of transfer can be expressed as:

AV£ (water to aqueous glycerol solution) = 2V gmp + 3V ppma (4.12)
AK(‘;,S(Water to aqueous glycerol solution) = 2K,zmg + 3K,55m% (4.13)
where 4 denotes the glycol, B denotes glycerol and mp is the molality of aqueous glycerol
solutions. The pair and triplet coefficients are denoted by the corresponding parameters
V4g,Vapgfor volume and K,p,K,ggfor isentropic compression. The AV£ and AK(g‘Svalues
are fitted to the above equations to calculate the values of constants (Vy5, Vapg, K45 and
K,pg) and are stated in Table 4.9. For all glycols, the pair interaction coefficients V,p is
positive and triplet interaction coefficient V,gpis also positive at all temperatures except
for DEG at 293.15 and 303.15 K. The pair interaction coefficient K,p is positive for all
glycols at all temperatures. The triplet interaction coefficient K,zpis negative for all glycols
except for EG and TEG at temperature 303.15 K. The positive values of pair interaction
coefficients for volumetric and compressibility measurements (V,gand Kyg) predict [198,

199] that pair wise interactions are dominating in glycol-glycerol-water mixtures.
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Table 4.3

Partial molar volume of transfer, AVy of glycols in aqueous solutions of glycerol at
different temperatures.

‘Mg AVg x 10° (m’-mol ™)

(mol'kg™)  "7=293 15K T=298.15K T=303.15K T=308.15K
EG

0.01 0.07 0.05 0.05 0.03
0.03 0.31 0.36 0.39 0.45
0.05 0.70 0.70 0.70 0.70
DEG

0.01 0.16 0.12 0.14 0.39
0.03 0.63 0.46 0.78 0.84
0.05 0.79 0.87 1.22 1.24
TEG

0.01 0.09 0.08 0.17 0.12
0.03 0.58 0.43 0.62 0.50
0.05 1.02 0.79 1.01 0.83

?mpis the molality of aqueous solutions of glycerol.
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Table 4.5

Limiting apparent molar expansibilities, Eg for glycols in aqueous glycerol solutions at
different temperatures.

“mp(mol-kg™") Eg » 10°(m*mol"-K™") (0Ey/0T),
T=293.15K T=298.15K 7T=303.15K 7=308.15K (m’-mol'-K?)

EG

0.00 0.0494 0.0458 0.0423 0.0388 -0.0007

0.01 0.0476 0.0440 0.0405 0.0370 -0.0007

0.03 0.0561 0.0539 0.0518 0.0497 -0.0004

0.05 0.0470 0.0450 0.0430 0.0410 -0.0004

DEG

0.00 0.0401 0.0348 0.0296 0.0244 -0.0010

0.01 0.0099 0.0340 0.0582 0.0824 0.0048

0.03 0.0261 0.0427 0.0593 0.0759 0.0033

0.05 0.0840 0.0720 0.0600 0.0481 -0.0024

TEG

0.00 0.0510 0.0540 0.0570 0.0600 0.0006

0.01 0.0604 0.0595 0.0586 0.0577 -0.0002

0.03 0.0458 0.0519 0.0580 0.0641 0.0012

0.05 0.0370 0.0446 0.0521 0.0597 0.0015

¥mgis the molality of aqueous solutions of glycerol.
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Table 4.8

Partial molar isentropic compression of transfer,AK ¢ of glycols in aqueous solution of
glycerol at different temperatures.

“mg(mol-kg™) AKg ¢ * 10°(m* mol'-GPa™)

7=293.15K 7=298.15K 7=303.15K 7=308.15K

EG

0.01 0.10 0.04 0.00 0.02
0.03 0.17 0.11 0.07 0.08
0.05 0.22 0.15 0.10 0.11
DEG

0.01 0.13 0.07 0.03 0.05
0.03 0.17 0.11 0.06 0.08
0.05 -0.05 0.16 0.11 0.12
TEG

0.01 0.12 0.06 0.02 0.04
0.03 0.16 0.10 0.06 0.07
0.05 0.21 0.15 0.10 0.11

*mgis the molality of aqueous solutions of glycerol.
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Table 4.9

Pair and triplet interaction coefficient of glycols in aqueous solutions of glycerol at
different temperatures.

T(K) Vs % 10° Vs % 10° Kz < 10° Kaps  10°
(m*-mol?-kg) (m* mol?-kg?)  (m*mol?kg'GPa') (m*mol?kg*>GPa')
EG
293.15 2.41 61.81 4.60 -32.66
298.15 3.33 49.30 2.21 -9.07
303.15 4.40 35.21 0.88 2.37
308.15 5.59 20.96 1.28 -2.47
DEG
293.15 12.38 -58.28 7.74 -109.93
298.15 5.82 39.22 2.65 -14.32
303.15 11.54 10.92 1.16 -0.98
308.15 17.87 -74.87 1.82 -8.48
TEG
293.15 6.90 45.18 4.62 -34.12
298.15 5.15 37.19 2.44 -12.83
303.15 9.95 2.95 0.99 0.04
308.15 7.67 8.77 1.60 -6.85
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Figure 4.1: Plots of experimental and literature values [45, 46, 88, 98, 130, 145, 161] of densities

for (ethylene glycol + water) mixtures at different temperatures.
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Figure 4.2: Plots of experimental and literature values [39, 45, 122, 161, 168, 178] of densities for
(diethylene glycol + water) mixtures at different temperatures.
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Figure 4.3: Plots of experimental and literature values [45, 161, 170, 178] of densities for

(triethylene glycol + water) mixtures at different temperatures.
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Figure 4.4: Plots of experimental and literature values [120, 144, 179] of densities for
(glycerol + water) mixtures at 298.15 K.
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Figure 4.7: Plots of experimental and literature values [39, 65, 88, 178] of ultrasonic

speeds for (ethylene glycol + water) mixtures at different temperatures.
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Figure 4.8: Plots of experimental and literature values [168, 178] of ultrasonic speeds for

(diethylene glycol + water) mixtures at different temperatures.
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Figure 4.9: Plots of experimental and literature values [170, 178] of ultrasonic speeds for

(triethylene glycol + water) mixtures at different temperatures.
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Figure 4.10: Plots of experimental and literature values [120, 144] of ultrasonic speeds for

(glycerol + water) mixtures at 298.15 K.
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Section II

In previous section, we have reported the densities, p and speed of sound, ¢ of ethylene
glycol (EG), diethylene glycol (DEG) and triethylene glycol (TEG) in (0.00, 0.01, 0.03,
0.05) mol-kg! aqueous solutions of glycerol at temperatures 7 = (293.15, 298.15, 303.15,
308.15) K. In continuation of our work on glycols, in this section we have reported the
densities and speed of sound for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05, 0.07)
mol-kg' aqueous solutions of glycerol at temperatures 7 = (293.15, 298.15, 303.15,
308.15) K.

Density

The experimental densities, p for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05, 0.07)
mol-kg! aqueous solutions of glycerol were measured at temperatures 7= (293.15, 298.15,
303.15, 308.15) K and are indexed in Table 4.10. It has been professed from data that the
density values are rising with respect to concentration of PEGs and as well as glycerol. But
at a specific concentration of glycerol, the density values are falling relating to temperature.
The experimental density values for aqueous PEGs solutions at different temperatures have
been compared with literature values [95, 118, 200 and 201] and the comparison is shown
by graph in Figure 4.12 and 4.13. From the Figures 4.12 and 4.13, it is clear that the
experimental values are in coherence with literature values. The comparison for the
densities of liquid mixtures (glycerol + water) has also been done with the literature values
[120, 144 and 179] and is represented in Figure 4.14. The experimental densities are found
to be in trend with the literature values given in reference [144 and 179] but a little
deviation has been observed from the values reported in reference [120] at temperature

303.15 K and 308.15 K.

Apparent molar volume

The experimental densities are used to compute the apparent molar volumes (V) utilizing

equation 4.1. The computed apparent molar volumes are attributed in Table 4.10 and all

the values are found to be positive. With rising concentration of glycerol, the V,, values
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tend to increase. Also, at a specific concentration of glycerol, the upsurge in values of Vi,
is noticed with regard to upsurge in molality of PEGs and temperature which infers
pronounced solute-solvent interactions. The surge in Vi, values is also perceived in relation
with molar mass of PEGs that is with escalating molar mass of PEGs the apparent molar
volumes also escalate at entire temperature range and for entire glycerol’s concentrations
ensuing extremum solute-solvent interaction in PEG-4000 as shown in Scheme 1. This
enhancement in Vi values can be accredited to various factors namely hydrophilic effect,
hydrophobic hydration in water-rich region, forces such as dipole-dipole and dipole-

induced dipole interactions [146].

Partial molar volume

By the means of least squares fitting of apparent molar volume Vy, partial molar volume
V(g is calculated from equation 4.2. The values of V£ and Sy along with standard errors
computed by least squares fitting of V, values to equation 4.2, are collected in Table 4.11.
The entire values of Vd(,) are positive and rise with rise in temperature and concentration of
glycerol in both PEGs as represented in Figure 4.15. Further at individual temperature, the
values of V£ upsurge with respect to molar mass of PEGs resulting in highest values for
PEG-4000 which further intimates intensified solute-solvent interactions for PEG-4000 as
compared to PEG-400. This surge in V(g values can be accredited to strong hydrogen bond
interactions among the oxygen atoms of PEGs and hydrogen atoms of water. The
packaging effects (upon mixing, the comparatively trivial water molecules fit into the free
volume available for PEGs) also contributes to rising Vd(,’ values [200]. From the definition,
the partial molar volumes are independent of solute-solute interaction, hence delivers
information regarding solute-solvent interactions [202]. The variation in V(g values of PEG-
400 and PEG-4000 is very high which acclaims that interaction among unlike molecules is
dreadfully susceptible by the size of hydrocarbon chain [91]. Furthermore, from Table
4.11, the magnitude of Sy, for whole concentrations of glycerol and at whole temperature

range has been perceived positive. The solute-solute interactions in the solutions of PEGs
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in glycerol are manifested from the positive S; values. But no regular trend has been
obtained for S}, values which recommends the predominance of solute-solvent interactions
over solute-solute interactions. The irregular trend in values of S;; indicates that solute-

solute interactions are affected by some other factors also [182].

Partial molar volume of transfer
At infinite dilution, the transfer volumes of PEGs from water to aqueous glycerol solutions

have been calculated from equation 4.3. The evaluated values of AV£ are indexed in Table
4.12. The positive AV(g values are observed for all PEGs and are rising with rise in

concentration of glycerol which deduces enormous desiccation results on PEGs. Relating
to increasing temperature, no steady trend has been observed in AV(g values. Regarding the

pure water’s structure, the occurrence of a structural network of water along with relatively
large empty areas — clathrates which can be infiltrated by diverse molecules, is presumed
through the models defined by Pauling [183, 184]. Perhaps very insignificant amount of
PEG molecules can be located in the crates of the water structures consequently not to
eradicate the cage structure. Relatively higher content of PEGs abolishes a cage structure
and as a result of hydrogen bond formation among organic molecules and water, new
structures are formed [170]. Moreover, the positive transfer volumes infer structure
making/promoting ability of solutes as the structural moiety of glycerol and PEG contains

polar group.

Temperature dependent partial molar volume

By the means of general polynomial equation, the change in apparent molar volumes with
the temperature at infinite dilution can be uttered as equation 4.4. In aqueous glycerol, the
values of these constants for PEG-400 and PEG-4000 are reported in Table 4. These
parameters are used to analyze V(g and deviations achieved from computed and
experimental values are also listed in Table 4.13. The deviations are evaluated from the

equation 4.5. The values incorporated in Table 4.13 for deviations are very small that fits
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into the polynomial equation very magnificently which is manifested from R? values in the
existing study.

The temperature dependence at infinite dilution of partial molar volume (V(g) can be
articulated in terms of absolute temperature (7) by equation 4.6. The similar equation 4.6
is used to estimate partial molar expansibilities. The limiting apparent molar expansibility
at infinite dilution, E g, = (()V(g /0T), is well-thought-out to be a beneficial measure [185]
of solute-solvent interaction prevailing in the solution. The general thermodynamic
expression, given by Hepler [186] determined the structure making and breaking capability
of the solute in solvent using the equation 4.7. The structure making and breaking ability

of solute in solvent can be decided [186, 187] via sign of (aEg /0T), . The positive and
minute negative values of (BE(?, /0T), has been observed for structure making solutes
whereas negative values of (0E g, /0T),, are observed for solutes having structure breaking
capacity. The partial molar expansibilities E g and (0E, g /0T), are ascribed in Table 4.14.

The values of limiting apparent molar expansibility are found to be positive at entire
temperature range and concentrations of glycerol. The solute-solvent interactions are
specified by the positive Eg, values in the present ternary systems, as previously proposed
by apparent molar volume statistics. The values of E| 3, show an asymmetrical trend with an
upsurge in the temperature as well as in the concentration of glycerol solutions. The small
negative and positive (9F g /0T), values for the mixtures of PEGs recommend the

structure making capability of PEGs in whole aqueous glycerol solutions.

Ultrasonic speed

The values of ultrasonic speed, ¢ for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05,
0.07) mol-kg! aqueous solutions of glycerol are determined at temperatures 7 = (293.15,
298.15, 303.15, 308.15) K and are attributed in Table 4.15. The experimental ultrasonic
speeds for (PEG-400 + water and PEG-4000 + water) have been compared with the
literature values [118, 200] and are represented graphically in Figures 4.16 and 4.17
respectively. The obtained ultrasonic speeds for (glycerol + water) have also been

compared with literature values [120, 144] and are represented in Figure 4.18. It is noticed
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from Table 4.15 that the values of ultrasonic speed increase in order with respect to
temperature as well as concentration of glycerol. This increase in ultrasonic speed values
relating to temperature is characteristic for water and is concerned with the 3-dimensional
network of hydrogen bonds in the structure of water [ 170]. The increase in ultrasonic speed
in any solution suggests the greater connotation midst the molecules of the solution. The
greater connotation is due to intramolecular hydrogen bonding amongst solute molecules
itself and intermolecular hydrogen bonds amid solute and solvent molecule [168]. Also,
the ultrasonic speed escalates with upsurge in molality of PEGs for a specific concentration
of glycerol, as the glycerol molecules interrelate positively with water to support H-bond
network in solvent [ 145]. Further, while the addition of PEG to the solvent, hydrogen bonds
among glycerol and water molecules get hampered and are demolished. Simultaneously,
new hydrogen bonds among molecules of solvent (glycerol + water) and molecules of

PEGs are designed [170].

Apparent molar isentropic compression

By the means of equation 4.8, the apparent molar isentropic compression for PEGs in
aqueous and mixed aqueous solutions of glycerol at different temperatures, is evaluated.
An isentropic compressibility has been evaluated from equation 4.9. The calculated values
of Ky s for several molal concentrations (my,) of PEG-400 and PEG-4000 in (0.00, 0.01,
0.03, 0.05, 0.07) mol-kg! glycerol at different temperatures are described in Table 4.15.
From the evaluated Ky values, it is analyzed that the values are negative at entire
concentrations of glycerol and at whole temperature range. These values of Ky ¢ become
less negative with rise in temperature and concentration of glycerol due to progress of
system at larger temperatures but increasing molality of PEGs results in the more negative
Ky s values. The negative Ky ¢ values specify that the water molecules around solute are
not as much compressible as the water molecules in the bulk solution [ 188, 189] resulting
in the contraction of the water molecules around it as of hydrophobic interactions of a non-

polar group. Consequently, the pressure on bulk water molecules fallouts in compressibility
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of the solution, which additionally advocates the robust solute-solvent interactions among

the molecules of PEGs and glycerol’s molecules.

Partial molar isentropic compression

The partial molar isentropic compression (Kqﬁ's) can be premeditated through detecting the
change in apparent molar isentropic compression (Ky ) along with molal concentration

and is epitomized by equation 4.10. The Si values altogether with standard errors derived

by the method of least squares fitting and ch,s values are reported in Table 4.16. The lesser
Kdo,‘s values for PEGs in aqueous glycerol solutions at greater temperatures indicate the
release of some water molecules to the bulk. The values of Kg ; tend to be more negative

at lower temperatures as revealed in Figure 4.19, which points towards the strong attractive
interactions amongst PEGs and water molecules [191]. No systematic trend is observed for

variation of Kg ¢ with glycerol concentration.

Partial molar isentropic compressions of transfer

For each PEG at infinite dilution, from water to aqueous glycerol solutions, the partial
molar isentropic compressions of transfer (AK¢?,S) are evaluated from equation 4.11. The
computed AK(;S values are reported in Table 4.17. The positive and small negative values
are observed for partial molar isentropic compression of transfer which intimates the
predominance of interactions among PEGs and glycerol which further infers structure
making tendency of ions. Thus, more negative values for K(g,s and small negative and
positive values for AK,;,S suggest the determined solute-solvent interactions and structure

making capability of solute in the present ternary system.

Pair and triplet interaction coefficients
The pair and triplet interaction coefficients are computed based upon McMillan—Mayer
theory [195] of liquid mixtures which allows the parting of effects because of interactions

among the pairs of solute molecules and those owing to its interaction among above two
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solute molecules. This theory was then further being discussed by Friedman and Krishnan
[196] and Franks et al. [197] to facilitate solute-cosolute interactions in the solvation
spheres. Therefore, partial molar volume of transfer and partial molar isentropic
compression of transfer can be articulated as equations 4.12 and 4.13. The pair and triplet
coefficients are symbolized by the corresponding parameters, for volume Vg, V455 and for

isentropic compression Ky, K4pg. Through fitting of Ang) and AK(glsvalues to above

equations, the values of constants (V,5, V4gg, K45 and K,pp) are computed and are detailed
in Table 4.18. The pair interaction coefficients ;5 and K, are positive at all temperatures
for both PEGs except for K45 values for PEG-4000 at higher temperatures. The triplet
interaction coefficient for volume V,pp is negative for both PEGs at entire temperature
range. Whereas, the triple interaction coefficient for isentropic compression Kygp is
negative for PEG-400 and positive for PEG-4000 at whole temperatures. The overall
positive values for pair interaction coefficients V,z and K,p infers [199] the dominance of

pair-wise interactions in the present ternary systems of PEGs-glycerol-water.
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Table 4.12

Partial molar volume of transfer, AVq‘; of glycols in aqueous solutions of glycerol at

different temperatures.

‘mg AV < 10° (m*-mol™)

(mol'kg™)  "7=293 15K T=298.15K T=303.15K T=308.15K
PEG-400

0.01 2.25 2.17 2.15 2.16
0.03 4.65 4.16 3.80 3.54
0.05 7.35 6.67 6.37 6.05
0.07 10.03 9.54 9.13 8.78
PEG-4000

0.01 2.57 2.40 2.36 2.68
0.03 3.29 431 4.85 5.75
0.05 5.60 6.03 6.51 7.41
0.07 6.38 7.30 7.66 8.54

¥mg is the molality of aqueous solutions of glycerol.
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Table 4.14

Limiting apparent molar expansibilities, E(‘]; for glycols in aqueous glycerol solutions at

different temperatures.

*mg (mol-kg™) Eg x 10° (m*-mol-K) (0Eg4/0T),
7T=293.15K T=298.15K 7T=303.15K 7=308.15K (m’mol!-K?)

PEG-400

0.00 0.3736 0.3315 0.2894 0.2473 -0.0084

0.01 0.3545 0.3214 0.2882 0.2551 -0.0066

0.03 0.2636 0.2456 0.2275 0.2095 -0.0036

0.05 0.2356 0.2291 0.2227 0.2163 -0.0013

0.07 0.2702 0.2417 0.2132 0.1848 -0.0057

PEG-4000

0.00 0.2222 0.2168 0.2115 0.2062 -0.0011

0.01 0.1554 0.1986 0.2418 0.2850 0.0086

0.03 0.3981 0.3812 0.3643 0.3474 -0.0034

0.05 0.2707 0.3120 0.3533 0.3945 0.0083

0.07 0.3649 0.3557 0.3464 0.3371 -0.0019

*mg is the molality of aqueous solutions of glycerol.
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Table 4.17
Partial molar isentropic compression of transfer, AK(;S of glycols in aqueous solutions of

glycerol at different temperatures.

*mg (mol-kg™) AKg s x 10° (m*-mol”'-GPa™)

7=293.15K 7=298.15K 7=303.15K 7=308.15K

PEG-400

0.01 0.01 -0.05 -0.09 -0.07
0.03 0.38 0.32 0.27 0.28
0.05 -0.04 -0.09 -0.14 -0.12
0.07 0.03 -0.03 -0.08 -0.07
PEG-4000

0.01 0.27 0.20 0.17 0.18
0.03 0.05 -0.01 -0.05 -0.04
0.05 0.10 0.04 -0.01 0.01
0.07 0.30 0.24 0.19 0.19

¥mg is the molality of aqueous solutions of glycerol.
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OH OH OH
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Polyethylene
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Polyethylene
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Wolvent interaction inW

Scheme 1: PEGs and glycerol interactions
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Figure 4.12: Plots of experimental and literature values [95, 118, 123, 200, 201] of densities for
(PEG-400 + water) mixtures at different temperatures.
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Figure 4.13: Plots of experimental and literature values [118, 201] of densities for (PEG-
4000 + water) mixtures at temperature 298.15 K.
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Figure 4.14: Plots of experimental and literature values [120, 144, 179] of densities for

(glycerol + water) mixtures at 298.15 K.
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Figure 4.15: Plots of partial molar volume V¢‘,’ for PEG-400 (@) and PEG-4000 ( m ) in
different concentrations of aqueous glycerol solutions at different temperatures.
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Figure 4.16: Plots of experimental and literature values [200] of ultrasonic speeds for

(PEG-400 + water) mixtures at temperatures 298.15 K and 308.15 K.
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Figure 4.17: Plots of experimental and literature values [118] of ultrasonic speeds for

(PEG-4000 + water) mixtures at temperature 298.15 K.
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Figure 4.18: Plots of experimental and literature values [120, 144] of ultrasonic speeds for

(glycerol + water) mixtures at 298.15 K.
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Section 11T
In previous sections we have reported the densities and ultrasonic speeds of three ethylene
glycols (EG, DEG and TEG) and two polyethylene glycols (PEG-400 and PEG-4000) with
glycerol. In continuation to our work on sugar alcohols with glycols, in the present section

we have studied EG, DEG and TEG in aqueous sorbitol solutions.

Density

The experimental values of densities, p of solutions for EG, DEG and TEG in (0.00, 0.01,
0.03, 0.05) mol-kg! aqueous solutions of sorbitol were measured at temperatures 7=
(288.15, 298.15, 308.15, 318.15) K. The density values for all the liquid mixtures at
different temperatures are attributed in Table 4.19. It is observed from Table 4.19 that at a
particular concentration of sorbitol, the density values of the liquid mixtures are increasing
with rise in concentration of glycol and decreasing with rise in temperature. The plots of
experimental data and literature data [182-188, 202, 204-206] of densities of (EG, DEG,
TEG) + water are shown in Figure 4.20-4.22 and the plots of experimental and literature
values [189, 193, 194] for density and ultrasonic velocity of sorbitol + water are shown in
Figure 4.23 and 4.24 respectively. It is noted from the figures that the experimental values

follow the same trend as of literature values.

Apparent molar volume

The experimental density values are used to calculate apparent molar volumes (V) from
equation 4.1. In Table 4.19, the computed values of apparent molar volume are
incorporated. The data given in Table 4.19 discloses that at a particular concentration of
sorbitol, the values of apparent molar volume are found to be increasing with increase in
molality of glycols and temperature. Surge in the values of Vj with upsurge in
concentration of sorbitol is also observed from Table 4.19, which infers that the solute-
solvent interactions are significantly enhanced. The rise in V, values is also detected with
respect to molar mass of glycols, i.e. with the increase in molar mass of glycols the values
of apparent molar volume also increase at all temperatures and for all concentrations of
sorbitol resulting in maximum solute-solvent interactions in case of TEG mixtures as

compared to EG and DEG as shown in Scheme 2.
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Partial molar volume

The partial molar volume V¢(,) is calculated from equation 4.2, by the means of least squares
fitting of apparent molar volume V. The values of Vq? and Sy, along with standard errors
computed from V, values by least squares fitting of it to equation 4.2 are collected in Table
4.20. The whole V(g values are positive and are rising with rise in temperature and
concentration of sorbitol in all three glycols as represented in Figure 4.25. From the statistic
that OH bending vibrational band shifts towards a higher frequency in EGs-water mixtures
suggests that there are possible hydrogen bonding interactions of hydrogen atoms in water
with hydroxyl oxygen atoms in glycols by cross-linking in the form of ...HOH... [119].
Further, with increasing molar mass of glycols, the V£ values also increase at each
temperature resultant of which is greatest Vq? values in case of TEG which indicates
predominance of the solute-solvent interactions in TEG as compared to DEG and EG. By
the definition, the V(g values are independent of solute-solute interaction, hence provides
information concerning solute-solvent interactions [202]. As per co-sphere overlap model
[204, 205], there is increase in volume due to an overlap of hydration co-spheres of two
ionic species while an overlap of ion-hydrophobic groups and hydrophobic-hydrophobic
groups results in decreased volume. It is inferred that ion-hydrophilic interactions are more
dominating over hydrophobic-hydrophobic and ion-hydrophobic interactions, as specified
by positive V(g values. The escalation in V(g values for glycols with increasing concentration
of sorbitol and temperature can be elucidated as the release of few solvation molecules
from loose solvation layers of solutes into the solution. At higher temperature, the
expansion of solution occurs, due to the fact that the solvent from secondary solvation
layers of the solute is released into the bulk of solvent, as deduced from greater V£ values
at higher temperatures. The reasons for change in partial molar volume can be attributed to
the weakening of H-bond, thermal expansion, release of molecules from solvation layer
etc. The values of Vd(,) increase with increase in glycol concentration because of strong
attractive interactions between hydroxyl groups of EGs and sorbitol. Further the magnitude
of Sy values is found to be positive for all the sample mixtures. Small values of S, in

comparison to V£ indicates that solute-solvent interactions are predominant over solute-
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solute interactions. It is indicative from irregular trend of Sy, that solute-solute interactions

are influenced by other factors also [182].

Partial molar volume of transfer

At infinite dilution, the transfer volume of glycols from water to aqueous sorbitol solutions
is calculated from equation 4.3. The computed values of AVd(,’ are listed in Table 4.21. For
all EGs, AV(g values are positive and are escalating with rise in concentration of sorbitol
which infers huge desiccation effect on glycols. With respect to increasing temperature, no
regular trend is observed in AVd(,’ values. Concerning the structure of pure water, the
existence of a structural network of water with relatively large empty areas — clathrates that
can be penetrated by different molecules, is assumed by the models described by Pauling
[183, 184]. Probably very small amounts of EGs can be placed in the cages of the water
structures so as not to abolish the cage structure. Rather higher content of glycol destroys
a cage structure and because of possibility of hydrogen bond formation between organic
molecules and water, new structures are created [170]. According to co-sphere overlap
model [204, 205] regarding AV(g values, there is insignificant contribution from solute-
solute interactions and hence provide considerable information about solute-solvent
interactions. Hydrophobic—hydrophobic interactions, ion—hydrophobic interactions,
hydrophilic—hydrophilic interactions, ion—hydrophilic interactions are the various
possible interactions which may occur between EG / DEG / TEG and sorbitol molecules.
In accordance with co-sphere overlap model, hydrophobic—hydrophobic interactions and
ion—hydrophobic interactions make negative contribution to the AVd? values while a
positive  contribution is made by ion—hydrophilic  interactions  and
hydrophilic—hydrophilic  interactions. = Hence, it can be inferred that
hydrophilic—hydrophilic interactions and ion—hydrophilic interactions are dominant over

other interactions in EGs + water + sorbitol solutions.

Temperature dependent partial molar volume
With the use of general polynomial equation, equation 4.4, the variation of apparent molar

volumes (V(g) with the temperature at infinite dilution can be expressed. In aqueous
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sorbitol, the value of these constants for EG, DEG and TEG are given in Table 4.22. A
barely statistically significant coefficient, C has negative values for DEG and both positive
and negative values for EG and TEG in aqueous sorbitol solutions. These parameters were
used to calculate Vd? and deviations attained from calculated and experimental values are
also indexed in Table 4.22. The deviations are calculated from equation 4.5. The values
listed in Table 4.22 for deviations are very small which fits into the polynomial equation
very finely which is evident from R? values in the present study.

To calculate partial molar expansibilities, equation 4.6 is used. At infinite dilution, the
temperature dependence of partial molar volume (V(g) can be represented in terms of
absolute temperature (7) by the same equation 4.6. The limiting apparent molar
expansibility at infinite dilution, E g = (8V£ /0T), is considered to be a beneficial measure
[185] of solute-solvent interaction existing in the solution. To determine the capacity of
solute as a structure breaker or structure maker in the mixed solvent system, the general
thermodynamic expression provided as equation 4.7 in supporting information, developed
by Hepler [186] is used. The tendency of a dissolved solute as a structure breaker or
structure maker in a solvent is determined [187, 206] by the sign of (aEg /0T),, which
recommends that positive and very small negative values of (OF (g/ dT),, are noticed for
structure making solutes while negative values of (aEg /0T),, are observed for solutes
having structure breaking capacity. The data of partial molar expansibilities E(g and
(aEg /0T), are attributed in Table 4.23. The limiting apparent molar expansibilities are
positive at all temperatures and concentrations of sorbitol. The positive E| g values indicate
that the solute-solvent interactions are present in these systems, as already suggested by
apparent molar volume data. No regular trend is observed for the values of E(?, with an
increase in the temperature as well as in the concentration of sorbitol solutions. The positive
and small negative (aEg /0T), values for the mixtures of glycols suggests the structure

making capability of glycols in all aqueous sorbitol solutions.

Ultrasonic speeds
The measured values of ultrasonic speed, c of EG, DEG and TEG in (0.00, 0.01, 0.03, 0.05)

mol-kg"! aqueous solutions of sorbitol are obtained at temperatures 7 = (288.15, 298.15,
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308.15, 318.15) K. The values of ultrasonic speed of all the liquid mixtures at different
temperatures are provided in Table 4.24. It is observed from Table 4.24 that the values of
speed of sound vary in sequence with respect to temperature as well as concentration of
sorbitol. Moreover, the ultrasonic speeds rise with rise in molality of glycols for a particular

concentration of sorbitol.

Apparent molar isentropic compression

With the use of equation 4.8, the apparent molar isentropic compression for glycols in
aqueous and mixed aqueous solutions of sorbitol at different temperatures, is determined.
Isentropic compressibility is computed from the relation given by equation 4.9. The
computed values of Ky ¢ for various molal concentrations (m,) of EG, DEG and TEG in
(0.00, 0.01, 0.03 and 0.05) mol-kg™! sorbitol at different temperatures are collected in Table
4.24. From the calculated Ky ¢ values, it is scrutinized that the values are negative at all
concentrations of sorbitol and at all temperatures. These values of Ky s become less
negative with increase in temperature and concentration of sorbitol but with the increase in
molality of glycols the Ky, values become more negative. The negative Ky ¢ values
indicate that the water molecules around solute are less compressible than the water
molecules in the bulk solution [206] resulting in the tightening of the water molecules
around it because of hydrophobic interactions of a non-polar group. Therefore, the pressure
on bulk water molecules results in compressibility of the solution, which further suggests
the strong solute-solvent interactions between the molecules of EGs and the molecules of

sorbitol.

Partial molar isentropic compression

The partial molar isentropic compression (K£,s) can be calculated from the variation of
apparent molar isentropic compression (K¢ ;) with molal concentration of EGs by equation
4.10. The qu‘s values and Sg values altogether with standard errors derived by the method

of least squares fitting are indexed in Table 4.25. The solute-solute interactions are found
to be negligible at infinite dilution since the S values are small in size which further

suggests that solute-solvent interactions [ 188] are dominant in the present liquid mixtures.
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The values of K ¢ are found to be negative and become less negative with the increase in

temperature which means that some water molecules are released to bulk. These negative

K¢°,JS values are increased also with increasing concentration of sorbitol. The larger negative
values of Kdo,‘s for glycols at low temperature are attributed to the strong attractive

interactions between glycols and water [189]. Further, the attractive interactions between
sorbitol and water molecules induces dehydration of glycol, due to which at higher
concentrations of sorbitol, the water molecules around the glycols are more compressible

than those at lower sorbitol concentrations.

Partial molar isentropic compressions of transfer
For each glycol from water to aqueous sorbitol solutions at infinite dilution, the partial

molar isentropic compressions of transfer (AK ;g,s) were calculated using equation 4.11. The
computed values of AKj ¢ are indexed in Table 4.26. All the values of AKj ¢ are found to

be positive at all temperatures and all concentrations of sorbitol. From the table, it is

deduced that with increasing concentration of sorbitol, AKg ¢ values also increase. The
positive AK&S values infer the structure making tendency of ions and dominance of

interactions between glycols and sorbitol. With increasing concentration of sorbitol, the

interaction between glycols and sorbitol intensifies.

Pair and triplet interaction coefficients

The interaction coefficients are calculated based upon McMillan-Mayer [193] theory of
solutions which permits the separation of effects due to interactions between the pairs of
solute molecules as well as those due to its interactions between more than two molecules.
This theory was further discussed by Friedman and Krishnan [194] and Franks [195] so
that solute-cosolute interactions can be included in the solvation spheres. So, limiting
apparent molar volume of transfer and limiting apparent molar isentropic compression of
transfer can be expressed as equations 4.12 and 4.13. The pair and triplet coefficients are
denoted by the corresponding parameters V,g, Vypg for volume and K,p, K,upp for
isentropic compression. The values of constants (V,5, Vagg, K4p and K4gp) and are stated

in Table 4.27. For all glycols, the pair interaction coefficients V,p are positive except for
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EG at 318.15 K while triplet interaction coefficient V,pp is negative at all temperatures
except for EG. The pair interaction coefficient K, is positive for all glycols at all
temperatures but the triplet interaction coefficient K g5 is found to be negative at all
temperatures except for positive K gp at 288.15 K. The overall positive values of pair
interaction coefficients for volumetric and compressibility measurements (V45 and K,5)

predict [196] that pair wise interactions are dominating in glycol-sorbitol-water mixtures.
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Table 4.21

Partial molar volume of transfer, AV£ of glycols in aqueous solutions of sorbitol at different

temperatures.
‘mg AV < 10° (m*-mol™)
(mol'kg™) “7=7288 15K T=298.15K T=308.15K T=318.15K
EG
0.01 0.04 0.05 0.04 0.02
0.03 0.20 0.15 0.11 0.08
0.05 0.39 0.33 0.29 0.34
DEG
0.01 0.31 0.33 0.48 0.66
0.03 0.73 0.80 1.05 1.23
0.05 1.14 1.19 1.49 1.69
TEG
0.01 0.35 0.42 0.35 0.33
0.03 0.69 0.76 0.71 0.74
0.05 0.99 1.02 0.96 1.15

¥mg is the molality of aqueous solutions of sorbitol.
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Table 4.23

Limiting apparent molar expansibilities, Eg for glycols in aqueous glycerol solutions at

different temperatures.

*mg (mol-kg™)

Eg>x 10° (m* mol"-K™")

T'=288.15K T=298.15K T=308.15K 7T=318.15K

(0E4/0T),

(m3 -mol! .K—Z)

EG
0.00
0.01
0.03
0.05
DEG
0.00
0.01
0.03
0.05
TEG
0.00
0.01
0.03
0.05

0.0430
0.0445
0.0376
0.0331

0.0464
0.0464
0.0529
0.0552

0.0625
0.0675
0.0631
0.0551

0.0430
0.0432
0.0383
0.0385

0.0357
0.0437
0.0504
0.0518

0.0576
0.0585
0.0597
0.0580

0.0431
0.0418
0.0391
0.0440

0.0250
0.0411
0.0480
0.0483

0.0526
0.0494
0.0562
0.0609

0.0431
0.0404
0.0399
0.0494

0.0144
0.0384
0.0455
0.0448

0.0477
0.0403
0.0528
0.0638

0.000005
-0.0001
0.0002
0.0005

-0.0011
-0.0003
-0.0005
-0.0003

-0.0005
-0.0009
-0.0007
0.0003

mp is the molality of aqueous solutions of sorbitol.
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Table 4.26

Partial molar isentropic compression of transfer, AK(;S of glycols in aqueous solutions of

sorbitol at different temperatures.

*mg (mol-kg™) AKg s x 10° (m*-mol”'-GPa™)

T'=288.15K T'=298.15K T'=308.15K I'=318.15K

EG

0.01 0.07 0.10 0.08 0.06
0.03 0.21 0.19 0.16 0.15
0.05 0.37 0.32 0.23 0.24
DEG

0.01 0.07 0.10 0.08 0.06
0.03 0.20 0.19 0.16 0.15
0.05 0.37 0.32 0.23 0.24
TEG

0.01 0.07 0.09 0.07 0.06
0.03 0.20 0.18 0.15 0.14
0.05 0.36 0.31 0.22 0.23

¥mg is the molality of aqueous solutions of sorbitol.
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Sorbitol

H H

0
Ho—t::— <::—0H Ho\/\o/\/o H HO\/\O/\/ \/\OH

H H
Ethylene Glycol Diethylene Glycol Triethylene Glycol

Solute-Solvent interaction increases

Scheme 2: EG / DEG/ TEG and Sorbitol interactions.
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Figure 4.21: Plots of experimental and literature values [185-187, 204, 205] of densities

for (diethylene glycol+ water) mixtures at different temperatures.
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Figure 4.23: Plots of experimental and literature values [189, 193, 194] of densities for

(sorbitol+ water) mixtures at different temperatures.
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Figure 4.24: Plots of experimental and literature values [189] of ultrasonic velocities for

(sorbitol+ water) mixtures at different temperatures.
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Figure 4.25: Plots of partial molar volume V£ for ethylene glycol (A), diethylene

glycol (®) and triethylene glycol (®) in different concentrations of aqueous sorbitol

solutions at different temperatures.
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Section IV
In continuation to our earlier sections with sugar alcohols, in the present section we have
studied two PEGs, polyethylene glycol-400 and polyethylene glycol-4000 in aqueous

solutions of sorbitol at different concentrations and temperatures.

Density

The densities, p for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05) mol-kg™!' aqueous
sorbitol solutions are attained at different temperatures (7 = 288.15-318.15) K and are
indexed in Table 4.28. It has been professed from the data that the density values are rising
with respect to concentration of PEGs as well as sorbitol. But at a specific sorbitol’s
concentration, the values of density are falling relating to temperature. The experimental
density values for aqueous PEGs mixtures at different temperatures have been compared
with literature values [95, 118, 123, 200, 201] and the comparison is shown by graphs in
Figures 4.26 and 4.27. From 4.26 and 4.27, it is clear that the experimental values are in

coherence with literature values.

Apparent molar volume

The obtained density values are utilized to compute the apparent molar volumes Vg, using
equation 4.1. The computed apparent molar volumes are attributed in Table 4.28 and all
the values are found to be positive. With rising concentration of sorbitol, the Vg values tend
to increase. Also, at a specific sorbitol’s concentration, the upsurge in Vi, values are noticed
with respect to upsurge in molality of PEGs and temperature which infers pronounced
solute-solvent interactions. Similarly, the surge in values of Vi is seen in reference to
molecular mass of PEGs that is along with escalating molecular mass of PEGs, apparent
molar volumes escalate as well as for entire temperature range and at entire sorbitol’s
concentrations ensuing extremum solute-solvent interaction in PEG-4000. This
enhancement in Vg values can be accredited to various forces such as dipole-induced
dipole, dipole-dipole interactions and various factors namely hydrophobic hydration in

water-rich region, hydrophilic effect [146].
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Partial molar volume

By the means of least squares fitting of apparent molar volume, partial molar volume V(g
is calculated from equation 4.2. In Table 4.29 the values of V£ and Sy, along with standard
deviations are provided. The standard deviations are evaluated from Vyvalues by least
squares fitting of it to equation 4.2. The entire values of V(g are positive and rise with
escalation in concentration of sorbitol and temperature in both PEGs as epitomized in
Figure 4.28. Further at individual temperature, the values of ng’ upsurge with respect to
molecular mass of PEGs resulting in highest values for PEG-4000 which further intimates
intensified solute-solvent interactions for PEG-4000 as compared to PEG-400. This surge
in Vd(,’ values can be accredited to strong hydrogen bond interactions among the oxygen
atoms of PEGs and hydrogen atoms of water. The packaging effects (upon mixing, the
comparatively trivial water molecules fit into the free volume available for PEGs) also
contributes to rising V£ values [200]. From the definition, the partial molar volumes are
sovereign of solute-solute interaction, therefore delivers knowledge regarding solute-
solvent interactions [202]. The variation in V(g values of PEG-400 and PEG-4000 is very
high which acclaims that interaction among unlike molecules is dreadfully susceptible by
the size of hydrocarbon chain [91]. Furthermore, from Table 4.29, the magnitude of Sy, for
whole concentrations of sorbitol and at whole temperature range has been perceived
positive. The solute-solute interactions in the solutions of PEGs in sorbitol are manifested
from the positive S, values. But no regular trend has been obtained for S; values which
recommends the prevalence of solute-solvent interactions over solute-solute interactions.
An irregular trend in Sj; values indicates- solute-solute interactions being affected by some

additional factors also [182].

Partial molar volume of transfer
At infinite dilution, the transfer volumes of PEGs from water to aqueous sorbitol solutions

have been calculated from equation 4.3. The evaluated values of AV£ are indexed in Table
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4.30. The positive AV£ values are observed for all PEGs and are rising with increase in

concentration of sorbitol that deduces enormous desiccation results on PEGs. Relating to

growing temperature, no steady trend has been detected in AV£ values. Regarding pure

water’s structure, the occurrence of an organizational grid of water along with
comparatively big vacant areas — clathrates which can be infiltrated by diverse molecules,
is presumed through the models defined by Pauling [183, 184]. Perhaps very insignificant
amount of PEG molecules can be located in the crates of the water erections consequently
not to eradicate the coop formation. Relatively larger content of PEGs abolishes a coop
formation and as a result of formation of hydrogen bonds among water and organic
molecules, newfangled structures are formed [170]. Moreover, the positive transfer
volumes infer structure making/promoting ability of solutes as the structural moiety of

sorbitol and PEG contains polar group.

Temperature dependent partial molar volume
By the means of general polynomial equation, the change in apparent molar volumes with
temperature at infinite dilution can be uttered as equation 4.4. In aqueous sorbitol, the

values of these constants for PEG-400 and PEG-4000 are reported in Table 4.31. These are

utilized to analyze V(g and the deviations achieved from experimental and computed values

are listed in Table 4.31. These deviations are evaluated be the means of equation 4.5. The
values incorporated in Table 4.31 for deviations are very small that fits into the polynomial
equation very magnificently which is manifested from R? values in the existing study.

The temperature dependence at infinite dilution of partial molar volume (V(g) can be

articulated in terms of absolute temperature (T) by the succeeding equation 4.6. The similar
equation 4.6 is used to estimate partial molar expansibilities. At infinite dilution, the
limiting apparent molar expansibility is well-thought-out to be a valuable measure [185] of
solute-solvent interaction prevailing in liquid mixture. The general thermodynamic
expression, given by Hepler [186] determined the structure breaking and making capability
of solute in the solvent using equation 4.7. The structure breaking and making ability of

solute in solvent can be decided [186, 187] via sign of (aEg/aT)p . The positive and
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minute negative values of (0F g /0T),, has been observed for the structure making solutes

whereas negative values are detected for the solutes comprising structure breaking

capacity. The values of partial molar expansibilities Eg, and (BE(?, /0T), are ascribed in
Table 4.32. The E, g = (av(g /0T),, values are found to be positive at entire concentrations

of sorbitol and entire temperature range. The solute-solvent interactions are specified by

the positive E fl’, values in the present ternary systems, as previously proposed by apparent
molar volume statistics. Values of Eg, show an asymmetrical trend with an upsurge in

temperature as well as in concentration of sorbitol solutions. The small negative and

positive (0E 3, /0T),, values for mixtures of PEGs recommend the structure making ability

of PEGs in whole aqueous sorbitol solutions.

Ultrasonic speed

The values of speed of sound, ¢ for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05)
mol-kg! aqueous sorbitol solutions are determined at different temperatures (7 = 288.15-
318.15) K and are attributed in Table 4.33. The experimental ultrasonic speeds for (PEG-
400 + water and PEG-4000 + water) have been compared with the literature values [118,
200] and are represented graphically in Figures 4.29 and 4.30. It is noticed from Table 4.33
that the values of speed of sound differ in order with respect to the temperature as well as
the concentration of sorbitol. This increase in ultrasonic speed values relating to
temperature is characteristic for water and is concerned with the 3-dimensional network of
hydrogen bonds in the structure of water [170]. The increase in ultrasonic speed in any
solution suggests the greater connotation midst the molecules of the solution. The greater
connotation is due to intramolecular hydrogen bonding amongst solute molecules itself and
intermolecular hydrogen bonds amid solute and solvent molecule [168]. Also, the speed of
sound escalates with upsurge in the molality of PEGs for a specific concentration of the
sorbitol, as the sorbitol molecules interrelate positively with water to support H-bond
network in solvent [145]. Further, while the addition of PEG to the solvent, hydrogen bonds

among sorbitol and water molecules get hampered and are demolished. Simultaneously,
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new hydrogen bonds among molecules of solvent (sorbitol + water) and molecules of PEGs

are designed [170].

Apparent molar isentropic compression

By the means of equation 4.8, apparent molar isentropic compression for PEGs in mixed
aqueous and aqueous solutions of the sorbitol at different temperatures has been evaluated.
An isentropic compressibility has been evaluated from equation 4.9. The calculated values
of Ky for several molal concentrations (my4) of PEG-400 and PEG-4000 in aqueous
sorbitol solutions at different temperatures are described in Table 4.33. From the evaluated
values of Ky ¢, it has been analyzed that values are negative for entire concentrations of the
sorbitol and for whole temperature range. These K ¢ values tend to be less negative with
rise in the temperature and the concentration of the sorbitol due to progress of system at
larger temperatures but increasing molality of PEGs results in the more negative Ky g
values. The negative Ky ¢ values specify that water molecules around the solute are not as
much compressible as water molecules in bulk solution [188, 189] ensuing in the
contraction of water molecules around it as of hydrophobic interactions of a non-polar
group. Consequently, pressure on the bulk water molecules fallouts in the compressibility
of solution, that additionally advocates the robust solute-solvent interactions among the

molecules of PEGs and sorbitol’s molecules.

Partial molar isentropic compression

The partial molar isentropic compression (K(gls) can be premeditated through detecting
change in apparent molar isentropic compression (Ky ) along with molal concentration

and is epitomized by equation 4.10. The S values along with the standard errors obtained

by method of least squares fitting and ch,s values are reported in Table 4.34 and are
represented in Figure 4.31. The lesser K(g,S values for PEGs in aqueous sorbitol solutions

at greater temperatures indicate the release of some water molecules to the bulk. The values

of K£,s tend to be more negative at lower temperatures which points towards the strong
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attractive interactions amongst PEGs and water molecules [191]. No systematic trend is

observed for variation of K ; with sorbitol concentration.

Partial molar isentropic compressions of transfer

For each PEG at infinite dilution, from water to aqueous sorbitol solutions, partial molar
isentropic compressions of transfer (AK(;S) are evaluated from equation 4.11. The
computed AK(‘;’S values are reported in Table 4.35. At all the sorbitol’s concentrations,
AK&S values are observed to be positive except for PEG-400 in (0.03 and 0.05) mol-kg™!
aqueous sorbitol solutions and for PEG-4000 in 0.03 mol-kg™! aqueous sorbitol solutions
at high temperature, 7' = 318.15 K. Thus, intimating the predominance of interactions

among PEGs and sorbitol which further infers structure making tendency of ions.

Pair and triplet interaction coefficients

The pair and triplet interaction coefficients are computed based upon McMillan—Mayer
theory [195] of liquid mixtures which allows the parting of effects because of interactions
among the pairs of molecules of solute and those owing to its interaction among above two
molecules of solute. This theory was then further being discussed by Friedman and
Krishnan [196] and Franks et al. [197] to facilitate cosolute-solute interactions in solvation

spheres. Therefore, partial molar volume of transfer (AV£ ) and the partial molar isentropic
compression of transfer (AK(g'S) can be articulated as equations 4.12 and 4.13. Pair and

triplet coefficients are symbolized by corresponding parameters, for volume V5, V455 and

for isentropic compression K 5, K pp. Through fitting of AV£ and AK q‘;’svalues to equations

4.12 and 4.13, the values of Vyp, V4pg, Kup and Kygp are computed and are detailed in
Table 4.36. Pair interaction coefficients V5 and K, are positive at all temperatures for
both PEGs except for V5 values of PEG-400. The triplet interaction coefficient for volume
V,4pg 1s negative for PEG-400 at all temperatures except at lower temperature 288.15 K and
positive for PEG-4000 at entire temperature range. Also, the triplet interaction coefficient

for isentropic compression K,gp is negative for both PEGs at whole temperatures except
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for PEG-400 at 308.15 K. Overall positive values for pair interaction coefficients V5 and
K, g infers [ 198, 199] the dominance of pair-wise interactions in the present ternary systems

of PEGs-sorbitol-water.
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Table 4.30

Partial molar volume of transfer, AV(g of PEGs in aqueous solutions of sorbitol at different

temperatures.
‘Mg AVg x 10° (m*-mol™)
(mol'kg™) “7=288 15K T=298.15K T=308.15K T=318.15K
PEG-400
0.01 1.78 1.62 1.38 2.02
0.03 4.23 3.66 2.64 3.39
0.05 4.54 5.82 5.10 6.15
PEG-4000
0.01 1.95 1.15 1.46 1.93
0.03 3.20 3.12 4.19 5.02
0.05 4.41 4.95 6.71 7.17

?mp is the molality of aqueous solutions of sorbitol.

178



6L1

"[011qJ0S Jo suonnjos snoanbe jo Ajejow ayp st dwt ,

L0000°0 66660 1000°0 87€°0 €L°9¥EE 00
£0000°0 66660 $200°0 897°0 TLYbES €00
200000 66660 €000 961°0 69°THES 10°0
000000 66660 20000 §TTO 0¥ THee 000
000¥-DAd

€2000°0 66660 £000°0 1970 60°0€€ LO0
86010°0 66660 2000 970 95 1€€ S0°0
£4000°0 66660 LE000 €61°0 wees €00
011100 66660 2000°0- 80€°0 sesee 10°0
€2000°0 66660 £000°0 1970 60°0€€ 000
00v-Ddd

ayv A om0 x 9 (O Jow ) o0 x g (- JOW. W) o0 x F (;-83-Jow) dwu,

"SUOIIN|OS [031qI0S snoanbe ur SHHJ 10} '+ uonenba jo sivjowered [eorndw Jo sanje A

€y dlqe L



Table 4.32

Limiting apparent molar expansibilities, Eg for PEGs in aqueous sorbitol solutions at
different temperatures.

“mg (mol-kg™) Eg x 10° (m*-mol-K™") (0Ey/dT),
7T=288.15K T=298.15K T7=308.15K T=318.15K (m’mol'-K?

PEG-400

0.00 0.2527 0.2610 0.2692 0.2774 0.0008

0.01 0.3115 0.3080 0.3045 0.3009 -0.0004

0.03 0.1555 0.1926 0.2298 0.2669 0.0074

0.05 0.1969 0.2456 0.2943 0.3430 0.0049

PEG-4000

0.00 0.2202 0.2252 0.2301 0.2350 0.0005

0.01 0.1280 0.1961 0.2641 0.3322 0.0068

0.03 0.2424 0.2677 0.2930 0.3183 0.0051

0.05 0.3266 0.3275 0.3284 0.3293 0.0001

*mg is the molality of aqueous solutions of sorbitol.
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Table 4.35

Partial molar isentropic compression of transfer, AKg ; of PEGs in aqueous solutions of
sorbitol at different temperatures.

“mg(mol-kg™) AKg ¢ * 10° (m*-mol”-GPa™)

7=288.15K 7=298.15K 7=308.15K 7=318.15K

PEG-400

0.01 0.03 0.05 0.03 0.02
0.03 -0.07 -0.08 -0.10 -0.10
0.05 -0.06 -0.10 -0.16 -0.15
PEG-4000

0.01 0.16 0.17 0.15 0.14
0.03 0.03 0.02 0.00 -0.01
0.05 0.29 0.24 0.17 0.18

¥mg is the molality of aqueous solutions of sorbitol.
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Figure 4.27: Plots of experimental and literature values [95, 118] of densities for (PEG-
4000 + water) mixtures at temperature 298.15 K.
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Figure 4.28: Plots of partial molar volume Vé,’ for PEG-400 (¢) and PEG-4000 (®) in

different concentrations of aqueous sorbitol solutions at different temperatures.
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Figure 4.29: Plots of experimental and literature values [200] of ultrasonic speeds for

(PEG-400 + water) mixtures at different temperatures.
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Figure 4.30: Plots of experimental and literature values [118] of ultrasonic speeds for

(PEG-4000 + water) mixtures at temperature 298.15 K.
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Figure 4.31: Plots of partial molar isentropic compression K(Z'S for (a) PEG-400 (b)

PEG-4000 at temperatures (¢, 288.15 K; A, 298.15 K;® | 308.15 K; ®,318.15 K) in
different concentrations of aqueous sorbitol solutions.
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Section V

In this section, we have reported the thermodynamic and acoustical properties for binary
systems (EG + Glycerol, DEG + Glycerol, TEG + Glycerol). The values for acoustic
impedance and adiabatic compressibility for all three binary systems is enlisted in Table
4.37. Intermolecular free lengths and attenuation coefficients are attributed in Table 4.38,
Relaxation times and free volumes in Table 4.39, Molar volumes and available volumes in
Table 4.40, Wada’s Constants and Rao’s Constants Table 4.41, Vander Waal’s constants
and Gibb’s Free Energy in Table 4.42, values for internal pressure and Enthalpies are
incorporated in Table 4.43. The plots for all thermodynamic parameters are shown in
Figures 4.32 to 4.43. We have also computed excess molar volume and excess Gibb’s free
energy of activation and the values obtained are enlisted in Table 4.44 and are plotted in
Figures 4.44 to 4.46. By using theoretical models given by Nomoto, Jungie, Van Dael and
Vangeel, and impedance relation, we have calculated theoretical ultrasonic speeds and are
attributed in Table 4.45 and Table 4.46. The percentage deviations of experimental values
from theoretical models have also been evaluated and is given in Table 4.47 and Table

4.48.

ACOUSTIC IMPEDANCE (Z), ADIABATIC COMPRESSIBILITY (p),
INTERMOLECULAR FREE LENGTH (Ly)

From figures, it can be noticed that acoustic impedance for the binary systems (EG +
Glycerol, DEG + Glycerol, TEG + Glycerol) is decreasing with increase in mole fraction
of EGs. The reduction in values of Z has also been observed with respect to temperature.
Further, the adiabatic compressibility and intermolecular free length exhibits same trend
with respect to each other but follows opposite trend as compared to acoustic impedance.
That is, the adiabatic compressibilities and intermolecular free lengths are surging with
surge in mole fraction of EGs as well as with surge in temperature. The opposite behavior
among Z and (f, Ly) and same behavior among (f and Ly) is also confirmed from their
mathematical expressions. Such surge in § and Lyvalues and decrement in Z values supports

the existence of certain type of interactions in the present systems.
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ULTRASONIC ATTENUATION COEFFICIENT (a), RELAXATION TIME (7)

The ultrasonic attenuation coefficient and relaxation time deals with loss in intensity of
ultrasonic wave while propagating through a medium. It is analyzed from the computed
values that a values lessen with rise in mole fraction of EGs as well as with rise in
temperature. It suggests that the absorption of ultrasonic wave goes on diminishing with
surge in EGs’ mole fraction and temperature. The described data demonstrate that the
values of relaxation time fall with rise in temperature and EGs’ mole fraction. More the
relaxation time, more is the time taken by the particles to come back to their mean position,
hence more is the absorption of ultrasonic waves. Therefore, decrease in t values indicate

that there is less absorption of ultrasonic wave and hence less loss of energy.

FREE VOLUME (Vp), MOLAR VOLUME (Vu), AVAILABLE VOLUME (V,)

All the values of free volume, molar volume and available volume are found to be inclining
with respect to rise in mole fraction of EGs and temperature. In liquids, molecules are free
to move within the liquids by following various laws. The free and available volume gives
the idea of space available for movement of the molecules of liquid mixtures and the molar
volume gives ratio of effective molecular weight and density. It is observed that V', V;, and
V. values are surging with surge in temperature but with surge in mole fraction of EGs, Vr

and V, tend to rise whereas ¥, tend to fall.

WADA’S CONSTANT (W), RAO’S CONSTANT (R), VANDER WAAL’S
CONSTANT (b)

The Wada’s constant, Rao’s constant and Vander Waal’s constant gives the relation
between ultrasonic speed, density and viscosity. These constants are independent of
temperature. As seen from calculated data the values of 7, R and b found to be decreasing
with increasing mole fractions of EGs and very slight change is observed in context to

temperature. This diminution in constants can be attributed to the diminution in density
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and ultrasonic speed. All the constants are linearly varying which shows the presence of

specific interactions in the studied systems.

GIBB’S FREE ENERGY (AG), INTERNAL PRESSURE (7)), ENTHALPY (H)

The Gibb’s free energy, internal pressure and enthalpy can be related to the transport
properties of liquid mixtures. The values for all these three properties as perceived from
given plots are decreasing with surge in mole fraction of EGs. The m; values and H values
are decreasing with rise in temperature as well but no particular trend is perceived for
Gibb’s free energy in context to temperature. This decrease in values of internal pressure
is because of reducing viscosities. If the internal pressure increases then, it would be
difficult for the molecules of liquid mixtures to move within the liquid and hence more
difficult for them to flow. Therefore, lesser the viscosity lesser is pressure and higher the

viscosity higher is pressure.

EXCESS MOLAR VOLUME (V%) AND DEVIATIONS IN ISENTROPIC
COMPRESSIBILITY (Ap)

The computed values of excess molar volume and deviations in isentropic compressibility
are attributed in Table 4.44 and plotted in Figures 4.45 to 4.47. The sign and magnitude of
excess functions depends upon the change in properties of liquid mixtures when two or
more components mixed together. These contributions can be divided into three types-
physical, chemical and structural. The physical contribution comprising of dispersion
forces and weak (non-specific) interactions, lead to positive values of V2. The chemical
contribution involves breaking up of the associates present in the pure liquids, lead to
increase in volume thus positive V% values. But some specific interactions such as
formation of H-bonding, charge transfer (donor-acceptor) complexes and strong dipole-
dipole interactions among the molecules of the mixture, resulting in negative values. Figure
4 45 indicates that the V£ values are negative for all three binary systems over entire mole

fraction range and at each investigated temperature. The V% values are becoming less
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negative as the temperature increases, which means at higher temperature the structure of
mixtures is less packed. The deep minimum values suggest the formation of strong
interactions among the molecules of the mixture components.

Further, the deviations in isentropic compressibility have also been calculated. The values
obtained are negative which suggest that there are significant interactions among EGs and
glycerol molecules. The glycerol molecules interact strongly with molecules of EGs
leading to decrease in compressibility of the binary liquid mixtures which is further
reflected by negative Af values. For all the studied systems, the values of Af become less
negative with increase in temperature for entire mole fraction range and at each
investigated temperature. The results obtained are following the same trend as of excess

molar volumes.

VISCOSITY DEVIATIONS (Ay) AND EXCESS GIBB’S FREE ENERGY OF
ACTIVATION (AG*F)

The values for viscosity deviations and excess Gibb’s free energy of activation are given
in Table 4.45. The magnitude and sign of Ay and AG*£ plays a significant role in describing
the molecular rearrangements because of interactions in the liquid mixtures. This
rearrangement of molecules can be attributed to specific interactions namely H-bonding,
dipole-dipole interactions, and charge transfer among molecules resulting in
positive/negative values. For all three binary systems Az are negative whereas AG* values
are found to be positive over entire mole fraction and at whole temperature range. These
negative Az values and positive AG* values can be attributed to the presence of significant
interactions due to hydrogen bonding among the molecules of EGs and glycerol. Further,
the magnitude of AG*£ follows the order EG>DEG>TEG which suggests that the order of
interactions among EG and glycerol molecules will be: EGKDEG<TEG.
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THEORETICAL STUDY OF ULTRASONIC SPEEDS

The ultrasonic speeds for the binary liquid mixtures have been computed by some
theoretical models given by Nomoto (Unowm), Junjie (Ujun), Van Dael and Vangeel (Uvpv)
and impedance relation (Ump). Values obtained from these theoretical models have been
compared with the experimental obtained results and percentage deviations have been
calculated. The average percentage error (APE) for each set of computed speeds for an
entire range of mole fractions has been evaluated. Further, the chi-square test has also been
applied to check the goodness of fit of a particular theoretical model. It has been observed
that values for APE and chi-square test come out to be least for the theoretical model based
on impedance for all three binary systems and at all temperatures. Since the effect of
molecular interactions are not considered in theoretical models therefore, the deviations in

experimental ultrasonic speeds are observed.
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Summary and Conclusion

The thesis entitled “ULTRASONIC, VOLUMETRIC AND VISCOMETRIC STUDY
OF LIQUID MIXTURES CONTAINING GLYCOLS AT DIFFERENT
TEMPERATURES” aims at describing the acoustical and thermodynamic behavior of
the liquid mixtures comprising glycols. Glycols are the liquids which are miscible in
water in the whole composition range. They are broadly used in plastic industry where
they are used in the preparation of polyethylene terephthalate which is used further to
make plastic bottles for pharmaceutical and food industry. In the present study we have
made an attempt to study the intermolecular interactions among glycols and sugar
alcohols by studying their thermodynamic properties. Sugar alcohols are a kind of ‘low
digestible carbohydrate’, a group that comprises of fiber and resistant starch. These are
used as a substitute to sugar in various diet foods (including soft drinks and ice cream),
cough syrups, mints and sugar-free chewing gum and to store these diet foods various
containers are used from plastic industry. Hence, thermodynamic study of glycols and
sugar alcohols is of considerable importance. To study the thermodynamic properties
of liquid mixtures the density, ultrasonic speed and viscosity of the mixtures have been
measured at different temperatures with the help of different instruments namely Anton
Paar DSA 5000 M, Specific gravity bottle, Mittal enterprises ultrasonic interferometer
and Ostwald’s viscometer. Utilizing these measured parameters, apparent molar
properties (apparent molar volume and apparent molar isentropic compression), partial
molar properties (partial molar volume, partial molar isentropic compression and partial
molar expansibilities), partial molar properties of transfer (partial molar volume of
transfer and partial molar isentropic compression of transfer), the pair and triplet
interaction coefficients are evaluated.

Various derived parameters such as acoustic impedance, adiabatic compressibility,
intermolecular free length, relaxation time, ultrasonic attenuation, free volume,
available volume, molar volume, Wada’s constant, Rao’s constant, Vander Waal’s
constant, internal pressure, enthalpy and Gibb’s free energy are computed for binary
mixtures of ethylene glycol + glycerol, diethylene glycol + glycerol and triethylene
glycol + glycerol. To see the deviation of experimental ultrasonic speed from theoretical
ultrasonic speed several theoretical models namely the theoretical ultrasonic speed

model given by Nomoto, Van Dael and Vangeel, Junjie and the impedance-based

254



relation are incorporated. The excess thermodynamic properties have also been
calculated for these binary systems which suggested the presence of strong molecular
interactions in the binary mixtures.

Densities and speeds of sound of ethylene glycol, diethylene glycol, triethylene glycol
in aqueous and aqueous solutions of glycerol have been reported at different
temperatures, 7= (293.15, 298.15, 303.15 and 308.15) K. Values of apparent molar
volume, partial molar volume and partial molar volume of transfer are calculated and
found positive at all concentrations and temperatures. Similarly, apparent molar
isentropic compression and partial molar isentropic compression are computed and the
values are found to be negative. All the calculated values of apparent molar and partial
molar properties are increasing with rise in concentration of glycols as well as glycerol
suggesting strong interactions among molecules of glycol and glycerol. The pair and
triplet interaction coefficients suggest the pair-wise interactions among the glycerol and
glycol molecules as the values of pair interaction coefficients are greater than triplet
interaction coefficients. All the calculated values of ethylene glycols in glycerol follow
the order: Ethylene glycol > Diethylene Glycol > Triethylene Glycol. Apparent molar
volume and partial molar volume for Polyethylene Glycol-400 (PEG-400) and
Polyethylene Glycol-4000 (PEG-4000) in (0.00, 0.01, 0.03, 0.05, 0.07) mol-kg™
aqueous solutions of glycerol at temperatures 7 = (293.15, 298.15, 303.15, 308.15) K
have been found positive and rising with regard to upsurge in molality of PEGs and
temperature which infers pronounced solute-solvent interactions. This surge is also
perceived in relation with molar mass of PEGs that is with escalating molar mass of
PEGs the apparent molar volumes also escalate at entire temperature range and for
entire glycerol’s concentrations ensuing extremum solute-solvent interaction in PEG-
4000. The apparent molar isentropic compression and partial molar isentropic
compression are found to be negative and these values become less negative with rise
in temperature and concentration of glycerol which suggests robust solute-solvent
interactions among molecules of PEGs and glycerol. The positive values of transfer
properties indicate the structure making ability of solute in the solvent molecules. The
interaction parameters for PEGs-glycerol solutions are calculated and values thus

obtained showed that predominating interactions existed were mainly pairwise.
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The apparent molar and partial molar properties for ethylene glycol, diethylene glycol
and triethylene glycol in (0.00, 0.01, 0.03, 0.05) mol-kg™! aqueous solutions of sorbitol
have been determined at temperatures 7= (288.15, 298.15, 308.15, 318.15) K. Values
of apparent molar volume, partial molar volume, (partial molar volume and partial
molar isentropic compression) of transfer are attained to be positive whereas apparent
molar isentropic compression and partial molar isentropic compression for all three
glycols are negative. All these obtained values are increasing with increase in
temperature and concentration of glycols as well as sorbitol which infer strong
interactions among EGs and sorbitol molecules. The partial molar expansibility values
suggest the structure making ability of glycols in sorbitol solutions. The densities and
speeds of sounds for PEG-400 and PEG-4000 in (0.00, 0.01, 0.03, 0.05) mol-kg™!
aqueous solutions of sorbitol are measured at temperatures 7= (288.15, 298.15, 308.15,
318.15) K. Apparent molar volume, apparent molar isentropic compression, partial
molar volume and partial molar isentropic compression, partial molar volume of
transfer, partial molar isentropic compression of transfer and other parameters such as
pair and triplet interaction coefficients, partial molar expansibilities and their second
order derivatives have been determined. The positive and surging values of apparent
molar volume and partial molar volume with rising concentration of sorbitol specify
the existence of sturdy solute-solvent interactions amongst sorbitol and PEGs
molecules. The apparent molar isentropic compressions and partial molar isentropic

compressions are found to be negative which support the volumetric results.
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