
DENSITY TRANSITION BASED SELF-FOCUSING OF A SHORT PULSE 

LASER IN PLASMA 

 

THESIS SUBMITTED TO  

LOVELY PROFESSIONAL UNIVERSITY 

FOR THE AWARD OF 

DOCTOR OF PHILOSOPHY 

IN 

PHYSICS 

BY 

MANZOOR AHMAD WANI  

(Reg. No. 11312810) 

SUPERVISED BY 

DR. NITI KANT 

 

FACULTY OF TECHNOLOGY AND SCIENCES  

 

LOVELY PROFESSIONAL UNIVERSITY 

PUNJAB 

NOVEMBER, 2016 

 



II 
 

DECLARATION 

  

I hereby declare that the thesis entitled, DENSITY TRANSITION BASED SELF-FOCUSING 

OF A SHORT PULSE LASER IN PLASMA has been prepared by me under the guidance of 

Dr. Niti Kant, Associate Professor of Physics, Lovely Professional University. This work is 

entirely my original work and all ideas and references have been duly acknowledged. It does not 

contain any work for the award of any other degree or fellowship previously at any University. 

 

 

 

Manzoor Ahmad Wani 

Regd. No. 11312810 

Department of Physics, 

Lovely Professional University, 

Phagwara, Punjab 

Date:  

 

 

 

 

 

 



III 
 

CERTIFICATE 

 

This is to certify that Manzoor Ahmad Wani has completed his Ph. D. thesis entitled, DENSITY 

TRANSITION BASED SELF-FOCUSING OF A SHORT PULSE LASER IN PLASMA for 

the award of Ph. D. of the Lovely Professional University under my guidance and supervision. To 

the best of my knowledge, the present work is the result of his original investigation and study. 

No part of the dissertation has ever been submitted for any other degree or fellowship previously 

at any university. 

The thesis is fit for the submission and the partial fulfilment of the conditions for the award of 

Ph. D Physics. 

 

 

 

Dr. Niti Kant 
Associate Professor, 

Department of Physics, 

Lovely Professional university, 

Phagwara-144402 

 

Date: 

                                 

 

  

                                                                            

 

 

               



IV 
 

ABSTRACT 

 

In this thesis we have studied the DENSITY TRANSITION BASED SELF-FOCUSING OF A 

SHORT PULSE LASER IN PLASMA using Wentzel-Kramers-Brillouin (WKB) and paraxial 

approximations through parabolic wave equation approach. In chapter-3, self-focusing of 

Hermite-cosh-Gaussian (HchG) laser beam in plasma under density transition has been 

investigated theoretically by a ponderomotive mechanism. The results obtained indicate that 

HchG beams give freedom to additional source parameters mode index ( m ) and decentered 

parameter (b ), changing the nature of self-focusing significantly. In this chapter it is observed 

that strong self-focusing occurs as the HchG beam propagates deeper inside the plasma as spot 

size shrinks due to highly dense plasmas. Further, increase in plasma density and decentered 

parameter (b ≤1) results in enhancement of self-focusing of laser beam in plasma. 

In chapter-4, density transition based self-focusing of cosh-Gaussian laser beam in plasma with 

linear absorption has been studied. The effect of density ramp on the self-focusing of laser has 

been studied at various values of absorption levels and decentered parameter. By choosing 

optimized laser and plasma parameters, the combined effect of density ramp, decentered 

parameter (characteristic of cosh-Gaussian beam) and linear absorption on beam width parameter 

has been investigated. The results show that the plasma density ramp, decentered parameter and 

linear absorption coefficient are in such a way that they change the nature of self-focusing / 

defocusing of the laser beams significantly. The absorption weakens the self-focusing effect and 

density transition sets an early and stronger self-focusing of cosh-Gaussian laser beam in plasma. 

                                In chapter-5, investigation of relativistic self-focusing of Hermite-cosine-

Gaussian laser beam in collisionless plasma has been studied and enhancement in self-focusing is 

observed. Depending up on the values of optimized laser and plasma parameters, the variation of 

dimensionless beam width parameter as a function of normalized propagation distance has been 

observed. The results obtained indicate that the laser beam focuses faster and earlier with smaller 

spot size. The spot size can be controlled by optimizing laser plasma parameters. The decentered 

parameter and laser intensity has a significant role in improving self-focusing of HcosG laser 

beam in plasma. 
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In chapter-6, nonlinear propagation of Gaussian laser beam in an inhomogeneous plasma under 

plasma density ramp has been studied. The results reveal that the amplitude of oscillation 

decreases considerably with the distance. The oscillatory behavior of beam width parameter 

becomes slow with increase in relative plasma density and intensity of laser beam. The saturation 

behavior of the beam width parameter shows that the laser beam evolves differently when 

propagates through underdense plasma. Further, after initial focusing of the laser beam, the 

relativistic mass effect is more pronounced in the region of high plasma density. Therefore, the 

plasma density ramp enhances the self-focusing effect to a greater extent. 

In chapter-7, self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with 

linear absorption has been investigated. The results indicate that the laser beam is defocused due 

to strong diffraction and absorption effects at higher oscillation frequencies. It is further, revealed 

that initially the amplitude of beam width parameter is too large and continuously diverges in the 

collisional plasma. The chirp parameter minimizes the divergence and consequently, an earlier 

self-focusing of laser beam is observed. Apart from electron acceleration, the chirp can also be 

used to study the self-focusing / defocusing of laser beam in plasma. Thus, the chirp parameter is 

important for the self-focusing / defocusing of laser beam in plasma and plays a vital role in laser 

plasma interaction. 

In chapter-8, self-focusing of a laser beam in the rippled density magnetoplasma has been 

studied. Effect of magnetic field and normalized ripple wave number on self-focusing of a laser 

beam has been analyzed at various optimized laser and plasma parameters. The results revealed 

that the magnetic field of a few MG increases the self-focusing capacity of laser beam strongly in 

rippled density plasma. Further, there is a strong coupling between the magnetic field and laser 

field. Due to the presence of suitable wavelength of density ripple in plasma, stronger and earlier 

self-focusing is achieved. 

In chapter-9, self-focusing of Hermite-cosine-Gaussian (HcosG) laser beam in plasma under 

density transition has been investigated. The results obtained reveal that the density transition and 

decentered parameter )(b  enhance the self-focusing of HcosG laser beams to a greater extent. It 

is noticed that the introduction of plasma density ramp makes a remarkable contribution in the 

process of self-focusing and it could produce ultrahigh laser irradiance over distances much 

greater than the Rayleigh length. Moreover, due to increase in the value of intensity of laser 
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beam, self-focusing enhances and shifts towards lower values of normalized distance of 

propagation.  

PREFACE 

The density transition based self-focusing of a short pulse laser in plasma is studied. In this work, 

we apply plasma density ramp and investigate its effects on the self-focusing of laser beam in 

plasma. As the phenomenon of self-focusing of laser beam in a nonlinear medium like plasma is 

widely studied by researchers and scientists as the converged beam has a lot of energy at a 

focused point. In the present study a high powerful laser beam gets focused as it propagates 

deeper and deeper in to the plasma so that an amount of energy generated in such a process can 

be visualized. In many useful applications like laser driven accelerators, laser driven fusion, x-ray 

lasers etc., high energy is required and hence, self-focusing is very useful in these cases. We have 

focused our attention on enhancing the self-focusing effect by using density transition and proper 

selection of various laser and plasma parameters. The enhancement in self-focusing of laser beam 

has been observed and reported in the present study. 
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CHAPTER-1 

INTRODUCTION AND OVERVIEW 

 

1.1 INTRODUCTION 

 After the discovery of self-focusing of light by Askaryan in 1962 [1], the process of self-

focusing of laser beam in plasma is of great importance for various applications like plasma 

based charged accelerators [2, 3], laser-driven fusion [4], x-ray lasers [5-7], laser electron 

acceleration [8-12], fast igniter concept of inertial confinement fusion [13-15], ionospheric 

modification [16-19] etc. So laser beams have always been an interesting area of research for 

many years which has inspired theoretical and experimental interest [2-12]. To preserve such an 

efficient interaction of laser beams with the plasmas, it is necessary for these beams to propagate 

in plasma over extended distances without loss of energy. Further, for the above mentioned 

applications and to guide the laser beam, preformed plasma channels are necessary so that due to 

natural diffraction the beam in vacuum expands infinitely. Due to recent advances in such laser 

pulse technology, we are able to focus the laser beam to extremely higher intensities ordering 

10
20

 W/cm
2
. The investigators choose the propagation of different kind of laser beams profile like 

Gaussian beams [20], cosh-Gaussian beams [21], Hermite-Gaussian beams [22], Hermite-cosh-

Gaussian beams [23-25], Hypergeometric Gaussian subfamily beams [26], cos-Gaussian beam 

[27] etc. in the plasma. The study of such pulses makes feasibility to analyze an important 

nonlinear phenomenon like self-focusing. Further, the relativistic nonlinear optical effects are 

arisen that are most important phenomena to study relativistic self-focusing, thermal self-

focusing and ponder motive self-focusing. When the laser power is greater than its critical value, 

the relativistic effect becomes dominant. However, when it is smaller then the beam diffraction 

dominates over relativistic self-focusing [105, 144]. 

There is an increasing interest in these days in investigating the interaction of laser radiations 

with plasmas. Therefore the study of various phenomena’s like self-focusing, self-phase 

modulation and various instabilities are of prime importance as these phenomena’s significantly 

govern the experiments on various advanced physical events like plasma based charged 

accelerators, laser driven fusion etc. When a highly powerful laser beam passes through partially 
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ionized plasma it changes its refractive index, which has a linear as well as a nonlinear 

component. It is the ponderomotive force which makes the electrons to move away out of an axis 

region and changes the electron density distribution. This further changes the refractive index of 

plasma medium and hence leads to process of self-focusing [138]. The ponderomotive and 

relativistic nonlinear effects arise due to the interaction of free electrons of the ionized plasma 

with the propagating laser radiation. While as the interaction of unionized atoms leads to atomic 

nonlinearities. The relativistic nonlinearity leads to self-focusing and the ponderomotive 

nonlinearity leads to plasma density perturbation which in turn is believed to affect the focusing 

properties of the laser pulse. Further, when the plasma electrons are set to relativistic quiver 

motion due to intense laser beam, the ponderomotive nonlinearity sets in and leads to electron 

density perturbation inside the plasma. This perturbation is caused due to V×B force which is 

exerted by the radiation field on the free plasma electrons. Such nonlinear relativistic effects of 

the laser beam as it enters through partially stripped plasma have been studied in great detail. 

However, the effects produced by ponderomotive nonlinearity along with these effects have not 

been included in many studies. Since both the nonlinearities are in such a way that they change 

the beam propagation through plasmas, so it is important to study their combined effect [55]. 

Most of the investigations about the process of self-focusing have been done in unmagnetized 

plasmas and have neglected the effect of magnetic field. Their self-generation in laser produced 

plasmas influences the self-focusing and propagation of laser beams by modifying the dielectric 

permittivity of plasma [139, 140]. However taking in to account the relativistic electron mass 

variation, field aligned magnetic perturbations and static density in magnetized plasma, the 

electromagnetic filamentation instability is investigated [141]. The laser beam evolution in cold, 

magnetized and underdense plasma is studied by using dependent expansion source method. The 

transverse magnetic field reduces the critical power which is a basic need for the beam to self-

focus [142]. Further, in the Gaussian laser beam evolution in collisional warm magnetoplasma, 

self-focusing strength is increased. The oscillation period of beam width parameter decreases due 

to increase in collision frequency. With this the self-focusing occurs faster in comparison to the 

stationary oscillation regime without the collision frequency [143]. With the availability of high 

power laser systems and an increasing interest in laser induced fusion generation, most of the 

investigators have used the fundamental Gaussian beam and simplest class of relativistic case of 
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reference. This makes it possible to inquire the fascinating nonlinear process such as self-

focusing. Furthermore, the interaction of lasers with semiconductors has been considered an 

important and captivating field for many decades. The nonlinear phenomena’s are also due to the 

semiconductors [20] which act like a medium. The fact that self-focusing is being observed in 

semiconductors is of great pertinence to possibilities of optical limiting devices and various 

practical applications. In the equilibrium condition, the temperature of the free carriers and that of 

the crystal is almost same so that the net exchange of energy between them is zero. In the steady 

state, with the application of electric field, the free carriers gain energies and results in higher 

temperature than that of the crystal [63]. This change in carrier temperature leads to 

corresponding change in the effective mass of carriers which plays a captivating and an important 

role for self-focusing in semiconductors [24]. Thus, the interaction of lasers with semiconductors 

continues to be a front line area of research.    

Most of the electromagnetic beams have a non-uniform distribution of irradiance along the wave-

front. This non-uniform distribution of irradiance has been taken in to account in harmonic 

generation. It is well known that these beams show the phenomenon of self-focusing/defocusing. 

Also, for non-uniform irradiance distribution and for a given power of the beam, it is found that 

the average of the power of the electric vector in the wave-front is much higher than that for 

uniform irradiance distribution. Hence, in the case of non-uniform irradiance, the magnitude of 

the generated harmonic is higher. This provides a strong motivation for the study of the growth of 

the harmonics in plasma when self-focusing is taken in to account [145]. Therefore, the 

propagation of electromagnetic waves having non-uniform intensity distribution through plasmas 

is a problem of considerable importance. Since, at low power densities diffraction causes 

divergence of the wave while as this picture is changed drastically at high power densities. 

Furthermore, in laser plasma interactions which involve high intensities, a laser beam can 

overcome natural diffractive defocusing and can remain focused via its own nonlinear interaction 

with the plasma [144]. The self-focusing effect can be produced due to the relativistic mass 

increase of electrons, change in the refractive index and also due to density perturbation caused 

by radiation or thermal pressure [20, 106]. 
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1.2 SELF FOCUSING OF LASER BEAM 

The process of self-focusing of laser beams in plasmas has been considered a subject of extensive 

study over the last few decades [146]. It has wide applications in energy fusion driven by lasers, 

laser wake-field acceleration, beat wave accelerator, x-ray lasers etc. When a Gaussian laser 

beam propagates in non-linear medium like plasma, the intensity is greatest on the axis of the 

medium and the index of refraction would be greater on the axis than off the axis of medium. Due 

to such induced refractive index variations the wave front of the laser acquires a curvature and 

hence tends to focus. The process is known as self-focusing. In other words it is a nonlinear 

process that has been produced by change in the refractive index of materials when made visible 

to electromagnetic radiations. It is frequently observed when generated radiation (by femto 

second laser) propagates through many solids, liquids and gases. It is also caused by the intensity 

dependent refractive index, ∂η/∂│E│
2
 ˃ 0 which arises due to relativistic mass effect, 

ponderomotive force, non-uniform ohmic heating [147] and subsequent plasma diffusion. At an 

instant when relativistic nonlinearity arises, it requires very high laser intensity so that the 

electron quiver velocity becomes comparable to the velocity of light in vacuum (v~c) [146]. 

Because of the various mechanisms that produce refractive index variations, in turn result in self-

focusing. There are two main cases in self-focusing which are as follows. 

1.2.1 Kerr–induced self-focusing: This type of self-focusing is brought about by the 

modification in refractive index of the materials when electromagnetic radiations are made 

incident up on them. Optical Kerr-effect is non-linear process which occurs when an intense 

electromagnetic radiation interacts with the nonlinear medium, and produces a variation in the 

refractive index ( ) as 0 2I    , where 0  
is the linear part and 2 is the non-linear part of 

the refractive index [148]. I  is called radiation intensity. If the radiation power is greater than the 

critical power then self-focusing arises and critical power is given by 2

0 1/ 4crP n n  , where λ 

is the wavelength of the radiation and α is a constant that depends on the spatial initial 

distribution of the beam.  

1.2.2 Plasma self-focusing: The first quantitative field of study for self-focusing of laser 

radiation was developed for dielectric materials i.e. non-ionized solids, liquids and gases. In 

advance laser technology, the most interesting area is the observation of self-focusing of laser 
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beams in plasmas. The process of self-focusing is caused by the change in refractive index of the 

medium, when laser beam propagates through it. There are two dominating contributions [149]. 

One is the relativistic mass increase of electrons that comes from the quiver motion of electron in 

the electrical field of the refractive index. It decreases the beam spot size with beam energy 

focused inward.  Another resulting from excitation of electron plasma wave is the force of the 

beam. The interplay and evaluation of such processes is not a simple task, but the outset 

relationship for critical power [105, 144] 
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Where, ω is the radiation angular frequency of incident laser, me is the mass of electron, c the 

speed of light and e the electronic charge. The self-focusing can be thermal, relativistic and 

ponderomotive. 

1.2.3 Thermal self-focusing: It arises when the density of perturbation is caused by radiation or 

thermal pressure, respectively. It is because of collision heating of plasma, due to induced 

hydrodynamic expansion that leads to an increase in refractive index and hence further heating. It 

could initiate the process of self- focusing which decreases the filament size and increases the 

intensity in the filament. 

1.2.4 Relativistic self-focusing: This is the nonlinear mechanism for the modification of the 

refractive index for plasma. Relativistic self-focusing arises due to the mass increase of electrons, 

which change the refractive index reln  as  
1/2

2 21 /rel p    , where, 
p

 
the relativistic plasma 

frequency. 

1.2.5 Ponderomotive self-focusing: The ponderomotive nonlinearity is important to self-

focusing. It is due to expulsion of the electrons from the focal spot. Ponderomotive self-focusing 

is generated in plasma due to ponderomotive force which makes the electrons to move away out 

of the region having higher intensity, leaving behind a region of lowered electron density and 

increased refraction index and hence induces a focusing effect. Since the refraction index of 

plasma depends on the electron density en
 
and critical density cn . It is given as  

1/2
1 /e cn n n 
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the depletion of electrons at the place where intensity is large raises the refraction index, slows 

down the phase velocity of the light wave and causes the wave-fronts to acquire curvature so that 

the light is focused towards the original region of enhanced intensity. So, the light wave energy 

propagates normal to the curved wave front. So an initial section of the beam with a slightly 

higher intensity than its surroundings will become more intense as the beam propagates. 

1.3 IMPORTANCE OF SELF FOCUSING 

The self-focusing effect plays a captivating and crucial role in a number of applications like those 

of laser-driven fusion, plasma based charged accelerators, x-ray lasers, harmonic generation, 

electron acceleration in wake-field, inertial confinement fusion etc. It is very undesirable in those 

applications where compression of fuel pellets can be prevented and provides a method of 

obtaining high flux densities which are necessary to study laser plasma interactions [35]. It 

further imposes a restriction on the power which can be transmitted through an optical medium 

and often leads to damage in optical materials [28]. So, it can be considered as a limiting factor in 

designing the high-power laser systems. Further, the ponderomotive force which expels radially 

the electrons of an intense laser beam, lead to cavitation in plasma [48]. In case of collisional 

plasmas with nonlinear absorption, the nonlinearity in absorption cancels the effect of divergence. 

The relativistic mechanism manifests itself for intense pico-second laser pulses and makes the 

study very important. The laser propagates in a periodically focused manner if the laser power is 

above the critical power and undergoes divergence, if it is below the critical power [105]. The 

relativistic self-focusing effect is produced due to relativistic mass change. If in plasma, the 

frequency becomes greater than the natural frequency of electron oscillations, then the electrons 

will be forced to move away out of the beam field. The focused beam then exerts a radial 

ponderomotive force on electrons and makes them to move away out of the beam, producing a 

lower density region which results in focusing of the radiation [28]. Remarkable self-focusing 

effects have been observed recently with femto second laser beams propagating in the 

atmosphere and light filaments in the air. From such air filaments (permitting spectroscopy), a 

broad spectrum of radiation from ultraviolet to mid-infrared is generated in the atmosphere. The 

entire absorption spectrum can be determined by a single pulse from a portable femto second 

laser. Another exciting possibility of the use of these filaments containing plasmas is to guide 

lightning away from sensitive sites. 
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1.4 IMPORTANCE OF PLASMA DENSITY RAMP 

The plasma density ramp or density transition in plasma occupies a crucial and captivating role in 

laser-plasma interactions as it is used to overcome the defocusing of laser beam [64]. A highly 

powerful laser beam that undergoes through underdense plasma acquires a very lower spot size 

due to relativistic effect and hence regular and repeated self-focusing or defocusing of the beam 

takes place. In order to make the self-focusing effect a bit stronger, density ramp is considered 

[77, 92, 97, 99]. It is because in the density ramp region, the laser beam detects a narrowing 

channel and hence in this environment, the oscillation amplitude contracts while as frequency of 

laser beam increases. Again, electron density being an increasing function of the propagation 

distance, the dielectric constant of plasma decreases rapidly as the laser beam deepens in to the 

plasma. With the result, the laser beam gets more focused and hence self-focusing effect is 

enhanced [22, 85]. Further, to abstain the laser from defocusing and to observe better and 

maximum focusing nature, the length of the density ramp is to be increased in an underdense 

plasma [64]. So, plasma density ramp has a captivating role in making the self-focusing effect 

stronger. The gas jet plasma based experiments observe such a kind of plasma density ramp. The 

magnetic fields along with the density ramp have also been found to increase the focusing 

capacity of beam [65, 91, 93, 102]. In other words, the magnetic field is found to act like a 

catalyst for self-focusing phenomenon [65]. This scheme forms a basis for various laser-driven 

applications as the laser beam not only is focused but propagates up to a long distance without 

divergence. 
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CHAPTER-2 

REVIEW OF LITERATURE  

2.1 LITERATURE REVIEW: 

The study of self-focusing of laser light in plasma is a captivating field and has become a subject 

of considerable interest. As these phenomena’s occupy an important place in a large number of 

applications like x-ray lasers, harmonic generation, laser driven plasma based accelerators and 

inertial confinement fusion. So laser beams have always been an interesting area of research for 

many years. 

         Askaryan (1962) [1] was the first who discussed the self-focusing of laser beam in plasma 

by considering the energy momentum flux density of the beam. The whole plasma has been 

expelled and the pressure thereof was balanced by the plasma pressure profile acting against the 

centre of the laser beam. Askaryan was able to compare the required optical intensities for 

compensating the gas dynamic pressure. 

 Hora (1969) [28] studied the self-focusing process by a ponderomotive mechanism and 

treated it in terms ponderomotive acceleration. It occurs due to light intensity gradient. The 

radiation focusing takes place within the first minimum of diffraction. It then adjusts a lower 

limit for the usual lasers having laser power of the order of 1MW. But this is possible only if a 

temperature of about 10eV is authenticated. 

Litvak (1970) [29] studied the self-focusing in magnetoactive plasma for the case of 

longitudinal propagation. The nonlinearity mechanisms for the magnetoactive plasma have been 

studied and expressions are obtained for the nonlinear corrections to the refractive index due to 

heating, and nonlinear motion of a single electron. They have obtained the necessary condition 

for self-focusing and determined the characteristic parameters for self-focusing of the beam. 

 Sodha et al. (1971) [30] investigated theoretically the propagation and focusing of an 

electromagnetic wave in inhomogeneous dielectrics. They concluded that the focusing length is 

enhanced in a medium where the dielectric constant is a decreasing function of axial distance of 

propagation and vice-versa. 
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Sodha et al. (1973) [31] studied the nonlinearity in the dielectric constant of strongly 

ionized plasma and concluded that the non-linearity comes because of the heating and 

redistribution of the electrons. The energy loss gained from the field is due to thermal 

conduction. This self-induced non-linearity causes self-focusing and oscillatory waveguide 

propagation of the beam even though the non-linear dielectric constant does not fall in the 

saturating range. In a typical case of 10
10 

W laser, the axial intensity is enhanced by a factor of 25 

and has been predicted in a length scale of 0.6cm. 

Sodha et al. (1974) [32] investigated the process of self-focusing/defocusing of laser 

beam operating in the TEM01 mode. They concluded that the cylindrical symmetry and the power 

of irradiance increases inside the medium and gets concentrated around the points of maximum 

irradiance in different directions. Further they observed that a figure of eight is being made by the 

polar representation of maximum irradiance in the transverse plane. 

Sodha et al. (1974) [33] investigated the process of self-focusing of a cylindrically 

symmetric electromagnetic pulse in collision-less and collisional plasmas. They considered the 

ponderomotive force and the non-uniform heating as a source of non-linearity. They further 

considered that the pulse duration is larger than the characteristic time of non-linearity. They 

found that the beam is focused in a moving filament. But in collisional plasmas and due to 

relaxation effects, the peak of the pulse is shifted to higher values. However, in case of collision-

less plasmas, the pulse is severely distorted because of self-focusing and the peak shift is not 

significant. 

Sodha and Nayyar (1975) [34] observed that the electromagnetic energy gets converged 

in the x-direction and vice-versa as the refractive index decreases with increasing temperature in 

the TEM01 mode. They also found that in the case of geometric-optics, the thermal self-focusing / 

defocusing of beam occurs in TEM00 and TEM10 cylindrical modes. 

Siegrist (1976) [35] used the constant shape paraxial-ray approximation to discuss the 

propagation of intense laser beams in plasmas. It is further found that the stationary self-focusing 

behavior of each mechanism is treated separately and similar with several orders of magnitude 

difference in critical power. Further, in stationary self-focusing due to the combined mechanisms, 
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the occurrence of relativistic effects is prevented by the complete saturation of ponderomotive 

self-focusing. 

Nayyar (1978) [36] studied the self focusing in strongly ionized plasma by consideration 

of a non-Gaussian beam that operates in TEM01 mode. It is found that the focusing effects are 

observed in Y-direction when the incident power of beam becomes larger than the critical power. 

Whereas, beam divergence takes place in X-direction. However, in the reverse case the 

normalized beam width parameter f2 first increases in Y-direction and after penetrating a certain 

depth inside the medium, it attains a broadened maximum and then starts decreasing with the 

propagation distance. The beam continues to diverge in the X-direction and the extent of self 

focusing is reduced by the absorption. 

Nayyar and Soni (1979) [37] reported that in collisional plasma, the non-linear 

dependence of the dielectric constant is due to inhomogeneous heating of energy carriers and in 

collision-less plasma, it is due to ponderomotive force. Further they found that the beam gets 

focused at different points in different planes and hence exhibits the effect of astigmatism. In 

certain power regions they have considered, the beam either converges or diverges in both 

directions. While in some other regions of the power spectrum, one dimension of the beam 

focuses while the other defocuses. The beam then propagates in an oscillatory waveguide mode. 

Askar’yan et al. (1981) [38] studied the nonlinear defocusing of a focused beam and 

observed a fine beam from the focus zone. They have used a single-mode, unmodulated 

neodymium laser with energy of 1J and with a millisecond pulse and a YAG-Nd laser in 

operating single and high frequency millisecond-pulse repetition modes and experimentally 

explained the defocusing nature of the beam in the weakly absorbing nonlinear medium. 

             Mori et al. (1988) [39] found that initially relativistic self focusing occurs initially due to 

filamentation and then by an extreme and unexpected ponderomotive mechanism at the boundary 

of channel walls. It is less intense for single frequency illumination and more for resonant double 

frequency. 
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Kurki et al. (1989) [40] have obtained the steady-state asymptotic solution of beam 

propagation in a localized solitary waveform in slab geometry and also presented the solutions 

for the beam profile where it is oscillatory in nature, which correspond to the fact or condition of 

being present the steady-state solution of a multiple-beamlet profile. 

Cicchitelli et al. (1990) [41] have shown that the electromagnetic beams in vacuum do 

have a longitudinal component that can be proved experimentally from the polarization 

independence of the energy of electrons from the focus of a laser (Lax, Louisell, and Knight 

(LLK)). They have developed the LLK paraxial approximation to a Maxwellian exact solution 

for a Gaussian beam and included the exact longitudinal field components of the laser beam. 

            Cohen et al. (1991) [42] investigated the dynamics of ponderomotive self-focusing in 

plasmas. They calculated the space-time evolution of non-linear coherent beam and the 

parameters under consideration have dominant non-linearity in terms of the ponderomotive force 

and the plasma response is quite hydrostatic. It can be important both for high-power laser 

applications including inertial-confinement fusion and for heating of magnetically confined 

plasmas with intense, pulsed free electron lasers. 

Brandi et al. (1993) [43] investigated the high-irradiance propagation of a laser beam in 

plasma whose optical index has a non-linear relationship with light intensity through both 

theoretical and numerical analysis. The nonlinear effects examined include expulsion of electrons 

and decrease of the plasma frequency. The defocusing and focusing effects are assumed to 

remain cylindrical and for plasma supposed homogeneous medium are along the propagation 

direction. 

Chen et al. (1993) [44] derived a set of three dimensional equations for the propagation of 

an intense laser pulse of arbitrary strength 
2mceAa  in cold underdense plasma. In different 

limits, these equations can be reduced to certain previous one dimensional model. Chen et al. 

found that for 1a , an approximate set of equations from the averaged Lagrangian is obtained. 

They solved the axisymmetric two dimensional model equations numerically to show the effect 

of dispersion in the self focusing process. 
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Bulanov et al. (1995) [45] studied that an ultra-short, relativistically strong pulse can be 

self-focused in plasma with strong magnification of its amplitude and channelling in a narrow 

channel shaped like a “bullet”. Plasma turbulence occurs in the region occupied by the pulse and 

behind it and leads to electron heating. It is found that a regular longitudinal electric field is 

produced in the wake of a wide pulse shorter than the plasma wave period and behind the shape 

edge of a long pulse. The transverse nonuniformity of the pulse causes the formation of 

horseshoe structures that is used to focus and accelerate electrons and protons. Hence fast and 

strong modulation of the pulse occurs by the induced focusing of the EM radiation. 

Gibbon et al. (1996) [46] experimentally studied the self-channeling and relativistic self-

focusing of a terawatt laser pulse in the range of  TWPTW 157.0   by using paraxial envelope 

model. The model described the laser propagation and the plasma response is being described by 

the ponderomotive force. They have shown that a laser intensity of 155  times may be obtained 

in vacuum when P  lies in the   cP 425.1 range. 

Asthana et al. (2000) [47] studied relativistic self-focusing when Gaussian beam is 

incident normally on a plane interface of a linear medium and a non-linear, non-absorbing plasma 

with an intensity dependent dielectric constant. They considered non-linearity to arise from the 

relativistic variation of mass and the Lorentz force on electrons and followed WKB and paraxial 

approximation to analyze the relativistic self-focusing of transmitted laser radiation for the 

arbitrary magnitude of non-linearity. They found that as the upper critical power increases, 

minimum beam radius and focal length decreases so that the refraction at the interface has an 

effect on self-focusing. 

Belafhal and Ibnchaikh (2000) [23] have studied the relative intensity distribution of the 

Hermite-cosh-Gaussian beams for the propagation in the free space. They also reported the 

normalized intensity plots of the Hermite-cosh-Gaussian beam profiles for the propagation 

through an aperture lens for various values of the truncation parameter for different mode indices. 

Hafizi et al. (2000) [48] found that the ponderomotive force associated with an intense 

laser beam expels electrons radially and can lead to cavitations in plasma. Relativistic effects as 
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well as ponderomotive force which acts in such a way that it expels electrons and hence modifies 

the refractive index. They derived an equation for the laser spot size, using the source-dependent 

expansion method with Laguerre-Guassian Eigen functions, and reduced to quadrature. The 

envelop equation is valid for arbitrary laser intensity within the long pulse, quasi-static 

approximation and neglects instabilities. The significant contraction of the spot size and an 

increase in intensity is possible when the laser power surpasses the critical power. 

Osman et al. (2000) [49] proposed an investigation of the behavior of a laser beam having 

finite diameter in plasma. They studied it with respect to the forces and optical properties leading 

to the self-focusing in non-relativistic regime. The fugacious setting of ponderomotive 

nonlinearity in a collision less plasma results in the focusing of plasma wave at high laser 

intensities. Further, they considered the relativistic effects to compute an expression for the 

relativistic self-focusing for Nd glass radiation, at different plasma densities. Furthermore, a 

numerical program in c
++

 has been developed to examine or to investigate the deepness of self-

focusing. 

Liu and Tripathi (2000) [50] investigated the laser frequency up-shift, ring formation in 

tunnel ionizing gases and self-defocusing in plasmas. In their work a high-intensity laser 

produces rapid tunnel ionization of gas  and the refractive index decreases by increasing plasma 

density which in turn causes frequency up-shift and super-continuum generation. However, 

refractive index decreases due to tunnel ionization when the laser intensity profile peak is on the 

axis and thus causes defocusing of the laser. This defocusing reduces the rate of ionization and 

frequency up-shift. 

Feit et al. (2001) [51] studied the description of powerful beam self focusing in plasma. 

They emphasized on the total electron evacuation under the effect of ponderomotive forces. They 

displayed a method which showed that a laser beam can be self channeled in underdense plasma 

if the laser intensity is high enough to yield cavitations. It is studied that cavitation results in 

suppression of filamentation and the possibility to channel power well above the nominal critical 

power of self focusing for a distance of many Rayleigh lengths. 
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             Faure et al. (2002) [52] discussed experimentally pulse duration effects on self-focusing 

of lasers in underdense plasmas. It was shown by them that the nominal critical power Pc for 

relativistic self-focusing in particular is not the only parameter that describes the pulse duration in 

comparison to plasma particle motion. However, using time resolved shadowgraphs, it has been 

displayed by them that a pulse does not self-focus relativistically if its duration is excessively 

short. This is due to divergence by the longitudinal wake that has been generated by the laser 

pulse itself. However, the phenomenon of self-focusing can occur for powers much less than the 

critical power. This is because of the radial expansion of ions that creates a channel which 

combines with relativistic effect and makes the laser pulse to focus. 

Nitikant and Sharma (2004) [53] have seen the pulse slippage effect on resonant second 

harmonic generation. In their work they found that process of second harmonic generation is 

enhanced resonantly by the application of a magnetic wiggler. The laser gives an oscillatory 

velocity to electrons at (2ω1, 2k1) and exerts a longitudinal ponderomotive force. The electrons at 

the second harmonic acquire an oscillatory velocity and the wiggler magnetic field beats to 

produce a transverse second harmonic current at (2ω1, 2k1 + k0). It then drives the second 

harmonic electromagnetic radiation whose amplitude saturates. The so created beam then 

stumbles out of the main beam.  

Sharma et al. (2004) [54] extended the formalism of self-focusing of electromagnetic 

waves to include nonlinear absorption by the medium. Further they employed a complex eikonal 

which does not need any approximation about the relative magnitudes of the real and imaginary 

parts of the dielectric constant or their dependence on the irradiance of the beam. They found that 

the nonlinearity in absorption tends to cancel the effect of divergence on account of diffraction. 

The beam-width and attenuation depends on distance of propagation 

Jha et al. (2004) [55] studied the propagation characteristics and modulation instability of 

a laser beam propagating through partially stripped plasma. They found that the ponderomotive 

non linearity tends to defocus the laser beam as against the nonlinear relativistic self-focusing 

phenomenon. Also the current density perturbation arising due to ponderomotive nonlinearity, 

when combined with relativistic nonlinearity tends to increase the modulation instability of the 
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laser beam. However the peak growth rate is enhanced and also increases the range of unstable 

wave numbers in comparison to the case where ponderomotive nonlinearity is neglected. 

Kant and Sharma (2004) [56] studied that second harmonic in plasma is generated by a 

Gaussian beam when magnetic wiggler of suitable period is present. For a particular value of the 

Wiggler period, the phase matching conditions are satisfied. The intensity of the second harmonic 

pulse is enhanced by self-focusing of the primary pulse. It then experiences a repeated and 

regular focusing in plasma channel which is formed by the primary wave. 

Kant and Sharma (2005) [57] reported that a laser pulse focuses near the axis when 

incident on a cylindrical dielectric fibre perpendicular to the axis of the fibre. The focusing effect 

is enhanced for a given radius of the fibre and for a laser of specific intensity. However, in the 

axial region the tunnel ionization is produced due to high intensity of the laser. Further, the 

optical breakdown of the dielectric results in electron-hole pair production and plasma formation 

in the form of capillary and the plasma tends to self-defocus the laser. 

Prakash et al. (2005) [58] investigated the focusing and defocusing of a beam in a 

medium which is depicted by built in radial inhomogeniety. They used the paraxial 

approximation and nonlinearity having saturating nature. Using an eikonal and parabolic equation 

for wave propagation, they found that the beam width and an axis irradiance depends on the 

distance of propagation. Further they concluded that the media in which an electromagnetic beam 

is guided by inhomogeneity in refractive index with a small cross section over long path lengths 

are ideal for achieving highly efficient nonlinear interactions. 

Varsheney et al. (2005) [59] presented an investigation of relativistic self-focusing of 

laser radiation in inhomogeneous plasma by using paraxial approximation. The nonlinearity in 

the dielectric constant appears on account of the relativistic mass variation for an arbitrary 

magnitude of intensity. For a circularly polarized wave, the nonlinear dielectric constant has been 

used in analyzing the laser-beam propagation. The dependence of the beam width parameter 

variation, the self-trapping condition and the critical power have been examined. Depending on 

the plasma inhomogeneity and the initial intensity, the laser beam behaves in such a way that it 



16 

 

likely acquires a constant value whose numerical estimation is done for typical values of the 

laser–plasma interaction. 

Saini and Gill (2006) [60] presented the dynamics of combined effects of nonlinearity 

and spatial diffraction. They used the variation approach and observed the phenomenon of cross-

focusing where focusing of one beam width parameter results in defocusing of another beam 

width parameter and vice-versa. However no stationary self-trapping is observed but oscillatory 

self-trapping occurs far below the threshold and the regularized phase is always negative in 

collision-less magneto-plasma. 

Kumar et al. (2006) [61] discussed the nonlinear effects due to relativistic decrease of the 

plasma frequency and the ponderomotive expulsion of electrons. From the fluid equations they 

obtained have been used to study the amplitude variation of the excited electron plasma wave. It 

is observed that the inclusion of ponderomotive nonlinearity is significant on the excitation of 

plasma wave. This affects the number of energetic electrons and their energy ranges on account 

of wave particle interaction. 

Sodha and Sharma (2006) [62] investigated the mutual focusing/defocusing of Gaussian 

electromagnetic beamsin collisional plasma. In their work, they have considered the mutual 

focusing/defocusing in singly ionized collisional plasma which is initially in thermal equilibrium 

and the ionosphere with singly charged ions. They started from the expression of the electron 

temperature in terms of the irradiance of the waves and derived expressions for the electron 

density and the dielectric function. The power loss by electrons to heavy particles is supposed to 

be more larger than that due to thermal conduction. The dominant nonlinearity considered here is 

the radial redistribution of the electron density on account of the radial dependence of the electric 

field of the waves and consequently of the electron temperature. Using this expression for the 

dielectric function, the coupled wave equations corresponding to different beams have been 

solved in the paraxial approximation, yielding a system of coupled second-order differential 

equations for the beam-widths. They also solved coupled equations for the widths of two beams 

numerically for some typical cases and correspondingly the critical curves for the two beams 

have also been obtained. They have also considered specifically effect of one beam on the critical 
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curve of the other beam. They presented their results in the form of graphs for plasmas in thermal 

equilibrium and also for day-time mid-latitude ionosphere at a height of 150 km. 

Gupta and Suk (2007) [63] studied the self-focusing and spot size behavior in 

semiconductor plasma. They have shown that enhancement in focusing is possible by beating of 

two co-propagating laser beams that can promote a large amplitude plasma wave in a resonant 

manner inside a narrow gap semiconductor. The medium is made highly nonlinear by the 

ponderomotive force of the electrons due to the plasma beat wave. As a result, the incident laser 

beam becomes self-focused. 

Gupta et al. (2007) [64] found that a high- power laser beam propagating through 

underdense plasma under plasma density ramp acquires a very lower spot size due to relativistic 

self-focusing. Further away from the focus, it is the nonlinear refraction that weakens and the 

waist size of the laser increases. The density transition is introduced in order to abstain the laser 

from defocusing. This causes the reduction in the laser spot size close to the axis of propagation.  

In the absence density ramp, the laser is de-focused beyond the Rayleigh length due to the 

supremacy of the diffraction effect and in the presence of an upward plasma density ramp, as the 

plasma density increases, it occurs sooner and becomes stronger. 

Gupta et al. (2007) [65] observed the focusing by taking in to account both density 

transition and magnetic field. They found that the magnetic field acts in such a way so as to 

increase the rate of self-focusing. This scheme forms a basis for various laser-driven applications 

as the laser beam not only is focused but propagates over a long distance without divergence. 

Agarwal and Sodha (2007) [66] analyzed the linear absorption effect and initial curvature 

on focusing/defocusing in an inhomogeneous nonlinear medium by following paraxial 

approximation. It has been found that the lower and higher values of the beam width go on 

decreasing with increase in absorption along with propagation distance. This continues till the 

beam becomes very weak and diverges in a steep manner. Its penetrating power also decreases 

with increasing absorption in an overdense medium. Depending up on the initial values of beam 

width and axial irradiance, the beam initially converges and then goes in the oscillatory 

divergence, self-focusing or smooth divergence mode. The greatest value of the penetrating 
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power occurs in the range -0.7 ˂ (∂f/∂z) at z=0 ˂ 0.4 and outside these limits, it falls in a sharp 

manner. 

Faisal et al. (2008) [67] developed the energy balance equation for electrons and 

equations which express the pressure gradient balance of electrons and ions to the force produced 

by space charge field. They also solved equation for initial time profile at z=0 of the pulse to 

obtain f  as a function of normalized distance and time profile. It is seen by them that in the 

initial period the beam suffers steady divergence because of the nonlinearity that does not build 

up to sufficient extent. Later, the behavior changes to oscillatory divergence, then oscillatory 

convergence, and again oscillating divergence and finally smooth divergence. This is explained 

by the fact that focusing is dependent on the rate of change of nonlinearity with the irradiance, 

rather than on the magnitude of the nonlinearity. They used both Gaussian as well as sine time 

profile of the pulse for investigation. 

Patil et al. (2008) [25] studied the HchG laser beam propagation by considering a non-

degenerate germanium containing neutrality of space charge. They applied the parabolic wave 

equation approach and used the paraxial approximation to obtain the analytical solutions by 

following the inequality ,dn RR 
 
where,

 dn RR and  are the self-focusing length and diffraction 

length respectively. The so examined behavior of beam width parameter showed that the process 

of self-focusing occurs for various decentered parameter values. 

Kaur and Sharma (2009) [68] observed that a laser beam propagates in a regularly and 

repeatedly focused manner above the critical power of the laser. However, the beam follows 

divergence below this power. At significantly greater powers, the laser beam converges till the 

saturation effect of nonlinearity puts an end to self-focusing and diffraction succeeds. The density 

ripple causes self-focusing length to rise and the spot size variation depends on the wave number 

of the ripple. 

Verma and Sharma (2009) [69] developed a theoretical model to study the self-focusing 

effect. They found that after the passage of laser beam, the plasma expands and creates a channel 

with minimum electron density on the axis. The second pulse of lower duration and much lower 
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intensity is capable of heating the electrons, hence raising the ionization rate and suppressing the 

recombination ratio. This leads to significant enhancement of the plasma channel lifetime. The 

formation of the channel by the first pulse requires a time delay of ~ 5-10 ns between the two 

pulses to allow radial ambipolar diffusion of the plasma. The second laser pulse undergoes 

periodic focusing in such a channel leading to a strong heating rate of the electrons. The second 

pulse then self-focuses, enhances the heating rate and lengths the lifetime of the plasma channel. 

Parashar (2009) [70] investigated the self- focusing effect on third harmonic generation 

in a gas embedded with atomic clusters. The results obtained reveal that the effectiveness of third 

harmonic is sensitive to the ratio of electron density inside the clusters to critical density. As the 

clusters expand under hydrodynamic pressure caused by the laser, efficiency is maximum at an 

instant when this ratio is three for clusters on the laser axis as these clusters contribute maximum 

to harmonic generation. The efficiency is also greatly enhanced by self-focusing. Since laser spot 

size varies in a periodic manner with the propagation distance. Due to competition between self-

focusing and diffraction effects, it was found that the efficiency of harmonic generation also 

shows a similar behavior. 

Takale et al. (2009) [71] used the parabolic wave equation approach for entire theoretical 

formulation and completed the numerical computation of TEMop Hermite-Gaussian laser beam 

by following Runge-Kutta method. They obtained the differential equations for beam width 

parameters under paraxial approximation and observed perfectly synchronized periodic 

oscillations of beam width parameters in transverse directions in small scale spatial 

manipulations in optical trap. 

Bonabi et al. (2009) [72] analyzed the Gaussian beam propagation in underdense plasma 

by considering density transition. The outcomes they have obtained indicate that the laser beam 

becomes highly focused and penetrates deep into the plasma medium by reduction of diffraction 

effect. In their work, they introduced a unique ramped density profile which increased self-

focusing effect for intense laser systems and puts an end to the transverse variation of the wave 

packet. They established an equation for laser spot size and presented the computational curves 

for self-focusing. The outcomes they have obtained showed that the intense laser beams can be 
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focused down to diameters comparable to the Nd-glass laser wavelength. The effects of laser 

intensity on the self-focusing parameters were also investigated. Based on their reliable derived 

equations and introduction of more effective ramped density profile, a much sooner and stronger 

focusing is observed. 

Patil et al. (2009) [73] established the differential equation under WKB and paraxial 

approximations and analytical solution is obtained for the same. By considering various 

absorption levels in the medium, the behavior of beam width parameter is studied at various 

decentered parameter b values. Their results show that the sharp self-focusing occurs on the 

grounds of absorption. Further they suggested that depending up on the state of being desirable 

self-focusing in a particular application, the decentered parameter of beams can have an 

extraordinary deed with particular absorption level in the medium. 

Xiong et al. (2010) [74] developed a method to study the self-focusing effect in cold 

plasma using the power of arbitrary magnetic field. They set the magnetic field in the plane 

which includes y and z-axis. Their results show that there is a different effect on self-focusing 

corresponding to different angle and intensity. The larger angle between the y axis and outside 

magnetic field weakens the self-focusing effect and is strengthened by increasing outside 

magnetic field.  

Singh and Walia (2010) [75] established the differential equation under moment theory 

approach and analytical solution is obtained for the same. They used the Runge-Kutta method to 

solve it numerically. The results they have obtained are in agreement with the findings of the 

simulation (3D PIC) and observed a new stable form of self-channelling propagation. Further 

they reported that the self-focusing length decreases with increase in intensity of the beam. They 

also found that due to dynamic balance between two competing nonlinear effects i.e. diffraction 

and non-linear refraction, periodic self-focusing occurs. 

Patil et al. (2010) [76] investigated the focusing of Hermit-cosh-Gaussian (HchG) laser 

beams in collision-less magneto-plasma by using WKB and paraxial approximations. They 

presented the dynamics of the combined effects of nonlinearity and spatial diffraction and 
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highlighted the nature of focusing. They found that the self-focusing/defocusing of HChG beams 

is dependent on the mode index and decentered parameter. 

Kant et al. (2011) [77] analyzed the self-focusing and found that ponderomotive self-

focusing becomes stronger when density transition is taken into account. To reduce the 

oscillation amplitude, plasma density is increased slowly. Further, in the ramped density region, 

the laser can perceive a narrowing channel at a slow pace due to which the oscillation amplitude 

of the spot size contracts. Therefore, the laser beam undergoing plasma density ramp is expected 

to become more focused. 

Gill et al. (2011) [78] investigated the characteristics of cosh-Gaussian laser beam 

propagation in magnetoplasma using variational approach. They derived nonlinear Schrodinger 

equation in an appropriate way and discussed the necessary phase modulation. They found that 

the decentered parameter b along with magnetic field play a key role in self-focusing/ defocusing 

enhancement of the beam. 

Kim et al. (2011) [79] investigated the effect of the density ramp structure on the electron 

energy in laser wake field acceleration. They have reported that with a downward density ramp, 

the electron energy decreased due to a lag in the acceleration region and to the acceleration field 

strength being lower than that with a uniform density, but with an upward ramp, the energy 

increased because of the higher acceleration field and the position of the acceleration region. 

These effects were studied by using simulations having a 2-dimensional particle-in-cell code and 

by experiments using a 20TW laser.  

Gill et al. (2011) [21] have taken in to account the combined effect of relativistic and 

ponderomotive nonlinearities to analyze the self-focusing with linear absorption. At various b 

values with various absorption levels, the self-phase modulation, self-focusing and self-trapping 

of beam have been studied. They observed that in the absence of decentered parameter, the self-

focusing effect becomes weaker for a large value of absorption coefficient. However, an 

oscillatory self-focusing takes place for a higher value of decentered parameter b = 1 and for b = 

2, self-focusing effect is observed in a sharp manner.  
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Kant et al. (2012) [22] reported the self-focusing of Hermite-Gaussian beam propagation 

in plasma under the application of plasma density ramp. They derived the differential equation by 

using WKB approximation and paraxial approximation. The density ramp causes reduction in the 

spot size of laser beam close to the axis of propagation. They found that by choosing appropriate 

and optimized parameters, self-focusing effect is enhanced. 

Navare et al. (2012) [80] investigated theoretically the self-focusing of laser in collisional 

plasma and considered the impact of linear absorption. They used the parabolic equation 

approach in order to obtain the differential equation through WKB and paraxial approximations. 

While, considering the collisional nonlinearity and linear absorption, it has been found that the 

absorption plays a crucial role in self-focusing effect. It destroys the oscillatory character of laser 

beam during propagation. Further, with increase in initial irradiance, the laser beam bends 

towards the focusing mode.   

 Gill et al. (2012) [81] established the differential equation for super-Gaussian beam 

propagation and analytical solution is obtained for the same. They considered the magnetic field 

and the condition for the formation of a dark and bright ring. Their work involves the higher 

order terms of the dielectric function and reported that the inclusion of such terms affects the 

beam width parameter. Consequently a substantial increase in self-focusing is observed only in 

case of a dark ring. However, the results contradict for a bright ring. 

Habibi and Ghamari (2012) [82] used the density ramp profile to investigate the process 

of self-focusing in cold quantum plasma (CQP). They established the differential equation and 

analytical solution is obtained for the same. Their results reveal that the quantum effect 

significantly adds to self-focusing effect in comparison to classical relativistic effect. However, 

apart from quantum effects, the ramped density profile gives rise to higher oscillations and 

enhanced focusing of laser beam in cold quantum plasma. 

Abari and Shokri (2012) [83] investigated the process of self-focusing and defocusing in 

underdense plasma by considering the nonlinear ohmic heating and ponderomotive force effects. 

They reported that it is the ion temperature which strongly influences the laser spot size. Further, 
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in the self-focusing regime, the perturbed electrons oscillate continuously in between the initial 

and a minimum value due to high ion temperature. However, reverse is true for defocusing. 

Patil et al. (2013) [84] found that with increase in intensity, there is a faster decrease in 

initial beam width for cold quantum plasma than classical relativistic case. Further, the beam is 

weaker at high intensity for classical relativistic plasma than cold quantum case. Moreover, the 

quantum effect plays an important and a captivating role in making the self-focusing effect 

stronger. 

Patil and Takale (2013) [85] reported that the upward plasma density ramp in weakly 

relativistic and ponderomotive regime can accelerate the electron to higher energy over a long 

propagation distance as compared with uniform density relativistic plasma. Further, apart from 

density profile and intensity parameter, the electronic temperature plays a captivating role in self-

focusing of laser and hence gives reasonably interesting results. 

Patil et al. (2013) [86] explored the impact of electron plasma temperature, relative 

density plasma and intensity parameter on the laser beam evolution in plasma. They established 

the differential equation for beam propagation and analytical solution is obtained for the same. 

Their results reveal that as relative plasma density grows, the self-focusing of laser beam takes 

place for earlier values of propagation distance and then becomes stronger. Hence, the optimum 

self-focusing is achieved. 

Gupta et al. (2013) [87] found that the ion temperature causes thermal self-focusing and 

has a serious influence on the evolution of laser beam in plasma. Further, by modifying the 

plasma density resulting in the generation of the nonlinearity, their obtained outcomes show a 

noticeable nonlinearity in laser self-focusing. 

Mahajan et al. (2013) [88] reported that the oscillatory self-focusing takes place for 

different intensity parameter values. They established the differential equation for beam 

propagation and analytical solution is obtained for the same. As soon as intensity parameter is 

increased, the distance between the points having a logical sequence at intersecting point of two 
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beams increases. Again, with increase in intensity parameter, a substantial increase in self-

focusing is observed. 

Kaur et al. (2013) [89] investigated the interaction between parallel Gaussian 

electromagnetic beams in relativistic magnetoplasma. They found that in relativistic 

magnetoplasma, self-focusing occurs at lower values of distance of propagation. It is further 

observed that for higher values of magnetic field, an earlier self-focusing is observed and the 

beam shows oscillatory behavior with increasing intensity. 

Nanda et al. (2013) [90] laid an emphasis on the decentered parameter sensitivity for 

relativistic self-focusing. They used the WKB and paraxial approximation to derive the nonlinear 

differential equation for three mode indicies 0, 1 and 2. In their work, the emphasis was laid on 

the selection of decentered parameter. The results, they have obtained indicate that the proper and 

appropriate decentered parameter selection is enough important for self-focusing of HchG beam. 

Nanda et al. (2013) [91] found that it is the decentered parameter and ramped density 

profile that results in self-focusing of laser beam. They used the WKB and paraxial 

approximation to derive the nonlinear differential equation. By considering the ramped density 

profile and magnetic field for HchG laser beam, it has been found that the presence of density 

transition and magnetic field enhances the required effect to a larger extent.  

Nanda and Kant (2014) [92] investigated the relativistic self-focusing in an enhanced 

manner under density transition. They used the WKB and paraxial approximation to derive the 

nonlinear differential equation for three mode indicies 0, 1 and 2. For decentered parameter b = 

1.8 and for m = 0 and 1 modes, early and enhanced self-focusing is seen. However, for b = 1.8 

and for m = 2 mode, diffraction is seen. They also observed that decentered parameter and ramp 

density transition enhances the required self-focusing effect. 

Nanda and Kant (2014) [93] studied strongly the process of self-focusing in collisionless 

magnetoplasma under ramped density profile. They used the WKB and paraxial approximation to 

derive the nonlinear differential equation by considering ponderomotive nonlinearity. They 

analyzed the density transition effect and magnetic field on the propagation of cosh-Gaussian 
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beam. The focusing and defocusing nature of beam has been studied at various optimized 

parameters. They observed that for decentered parameter b =2.12, sooner and better self-

focusing. Further, their results reveal that the optimized laser and plasma parameters are 

important in making the effect.    

Aggarwal et al. (2014) [94] derived the nonlinear partial differential equation which 

governs the laser spot size by using paraxial approximation and slowly varying approximation. 

They found that due to the prime importance of self-focusing effect over diffraction effect, the 

laser beam converges in high plasma density region and diverges in low plasma density region. 

Further, the required effect is obtained by optimizing wavelength and intensity parameters of 

beams in rippled density plasma. 

Milani et al. (2014) [95] derived the coupled differential equations by using WKB and 

paraxial approximations. Effects of collision frequency, axis laser intensity distribution and initial 

laser intensity are analyzed in warm collisional plasma. Their results reveal that firstly, the 

collision frequency causes self-focusing and secondly, it defocuses the laser. However, as soon as 

it is increased, the self-focusing length becomes shorter with the result the larger collision 

frequency prevents the longer beam propagation through the plasma. 

Malekshahi et al. (2014) [96] investigated the self-focusing of the high intensity ultra 

short laser pulse propagating through relativistic magnetized plasma. They have taken in to 

account the nonlinearity up to third order and external magnetic field and studied the relativistic 

effect under paraxial approach. Their results reveal that imposing the external magnetic field 

enhances the capacity of self-focusing. However, the self-focusing property decreases by 

increasing the angle between the laser field and external magnetic field. 

Zare et al. (2015) [97] have considered the density ramped profile to study the 

propagation of Gaussian x – ray laser beam by using WKB and paraxial approximation in 

thermal collisionless quantum plasma. A mathematical formulation is obtained by following 

parabolic approach. They found that increase in plasma density leads to stronger self-focusing 

effect i. e the beam having less oscillation amplitude and smaller spot size, focuses faster. 
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Further, it has been found that the laser and plasma parameters are crucial for self-focusing as it 

is enhanced with optimized laser and plasma parameters. 

Habibi and Ghamari (2015) [98] used the higher order paraxial theory (up to 4r ) to 

investigate the focusing of a laser beam in quantum plasma. The eikonal have been taken in to 

account and extended paraxial theory to investigate the preliminary study of ChG beams. The 

paraxial theory allows the adjustment in the shape of radial intensity distribution and affects the 

beam spot size. Further, the inclusion of higher order terms of dielectric function affects the 

behavior of beam width parameter significantly. By using more effective decentered parameter, 

better self-focusing is observed for chG beams in comparison to Gaussian laser beams in cold 

quantum plasma (CQP). 

Habibi and Ghamari (2015) [99] studied the propagation of high power laser beam 

entering in to the high density plasmas by considering ramped density profile and quantum 

correction in relativistic regime. They followed the higher order paraxial theory and derived the 

governing equations in cylindrical coordinate system. By utilizing higher order paraxial theory 

and the sensitivity of decentered parameter b, a significant enhancement in self-focusing is 

reported. Further, their results reveal that a stronger self-focusing effect is observed in 

inhomogeneous cold quantum plasma (ICQP) under plasma density ramp. 

Aggarwal et al. (2015) [100] investigated the effect of self-focusing in an inhomogeneous 

magnetized plasma with ponderomotive nonlinearity. They have taken in to account the paraxial 

approximation and developed desired relation for dielectric constant. They have derived an 

appropriate expression for the nonlinear differential equation in presence of external magnetic 

field and linear absorption. They predicted that initially converging beams show oscillatory 

convergence while as initially diverging beams show oscillatory divergence. Further, the laser 

beam is more focused at lower intensity in extraordinary as well as in ordinary mode. 

Aggarwal et al. (2015) [101] studied the circularly polarized quadruple Gaussian beam 

propagation in magnetoplasma. They considered the nonlinearity due to relativistic mass increase 

of electrons which changes the refractive index. They used the WKB approximation for the 

derivation of nonlinear differential equation and self-trapped condition. On the application of 
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external magnetic field, the quadruple Gaussian beam can be studied in three different regions 

especially self-focusing, oscillatory and smooth divergence. They reported that the magnetic field 

improves the self-focusing effect in extraordinary mode and worsen it in ordinary mode.   

Aggarwal et al. (2015) [102] paid an attention to the investigation of beam propagation in 

cold magnetized plasma in presence of density transition. They used the Maxwell’s equations and 

derived the differential equation by using WKB and paraxial approximation. They found that the 

laser and plasma parameters are crucial for self-focusing as it is enhanced with such optimized 

parameters. The strong self-focusing is obtained at optimized intensity 6.02

000 E for extra 

ordinary mode and a comparison have been made in presence and absence of transition based 

density at 3.0/ 0 c . The plasma density ramp and the magnetic field are found to increase 

ability of self-focusing in cold plasma. 

Varshney et al. (2016) [103] analyzed the relativistic nonlinear propagation of rippled 

Gaussian beam by following WKB and paraxial-ray approximations for arbitrary magnitude of 

nonlinearity. At relativistic intensities, the nonlinearity allows the refractive index to have slower 

radial dependence in the paraxial regime. They found that a small ripple grows rapidly on the axis 

of the main beam. Further, the nonlinear refractive index has a slower radial dependence in the 

paraxial regime. It therefore results in extraction of less energy from its vicinity.  

Eslami and Nami (2016) [104] investigated the self-focusing characteristics of a laser 

pulse by considering lateral and axial plasma density variations. They have taken ponderomotive 

and relativistic effects to derive nonlinear dielectric permittivity of plasma and to develop a 

complete analytical model to study the phenomenon of self-focusing. With increase in channel 

width, the elf-focusing length increases. Further, they reported that the self-focusing effect is 

enhanced and shifts towards lower values of distance of propagation due to increase in intensity 

of the laser beam.  
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CHAPTER-3 

SELF-FOCUSING OF HERMITE-COSH-GAUSSIAN LASER BEAM IN 

PLASMA UNDER DENSITY TRANSITION 

3.1 INTRODUCTION 

The process of self-focusing of laser beams in a nonlinear medium is a captivating field which 

has an excellence both in theoretical and experimental interests [2, 8, 12]. In magnetoplasma 

using variational approach, it is found that the decentered parameter b along with absorption 

coefficient play a key role on the self-focusing/ defocusing nature of the beam [78]. However, for 

a cos-Gaussian beam propagating in a kerr medium, the RMS beam width broadens, the central 

parts of the beam give rise to an initial radial compression and have a noticeable redistribution 

during propagation. The partial collapse of central part of the beam appears while the RMS beam 

width still increases or remains constant. It is further observed that the cos-Gaussian beam 

eventually converts in to a cosh-Gaussian type beam with a low and moderate power [27]. In 

relativistic and ponderomotive regime, it is observed that a large value of absorption level 

weakens the self-focusing effect in the absence of decentered parameter. However, oscillatory 

self-focusing takes place for a higher value of decentered parameter, b = 1, and all curves are 

seen as displaying the sharp self-focusing effect for b = 2 [21]. Under plasma density transition, 

the pulse acquires a minimum spot size very close to the axis of propagation. As the laser beam 

passes through the ramped density region, it detects a low pace narrowing channel. In this case 

the oscillation amplitude of the spot size contracts and the beam propagating under density 

transition tends to become more focused. In the absence of density ramp, due to the supremacy of 

the diffraction effect, the laser pulse is defocused. As the plasma density increases, self-focusing 

occurs sooner and becomes stronger. Similarly, in the absence of density transition, the beam 

width parameter does not increase much and after various Rayleigh lengths, it acquires a very 

lower value and maintains it for a large distance. Consequently, the enhancement in laser beam 

self-focusing is observed [77]. 

Nanda et al. [92] while studying the relativistic self-focusing of HchG beam in plasma under 

density transition observed that an appropriate and proper decentered parameter selection and 
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presence of density transition results to stronger self-focusing. Further, for such beams when 

propagating in a magnetoplasma with a ramped density profile, the authors concluded that the 

presence of density transition and magnetic field enhances the self-focusing effect to a larger 

extent [91]. Consideration of proper and an appropriate decentered parameter selection is very 

much sensitive to self-focusing [90]. However in studying the self-focusing under density 

transition by Kant et al. [22], the authors found that the effects of density transition and initial 

intensity of the laser beam are important and have a key role in maintaining the laser plasma 

interaction as a captivating field of research and hence in strong self-focusing. 

Recently, the HchG beam has been studied extensively and it has been found that such beams can 

be produced by the superposition of two decentered Hermite-Gaussian beams as cosh-Gaussian 

ones [23]. In this paper, we mainly study the self-focusing of HchG laser beams propagating in 

underdense plasma under plasma density ramp of the form )/tan()( 0 dnn    by a 

ponderomotive mechanism. Analytical formulas for HchG beams are derived and results are 

discussed. 

3.2 FIELD DISTRIBUTION OF HCHG LASER BEAMS 

The field distribution of HchG beams propagating in the plasma medium along z-axis is of the 

form: 
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Where, m represents the mode index for the Hermite polynomial of 
thm order, 0r  is the spot size 

of the beam and b  is the decentered parameter of the beam, r is the radial coordinate,  zrE ,  is 

the amplitude of HchG beam at .0 zr  zf  is the dimensionless beam width parameter, 

which is a measure of both intensity along the axis and waist width of the beam. 
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3.3 NON-LINEAR DIELECTRIC CONSTANT 

We consider propagation of HchG laser beam in a nonlinear medium characterized by dielectric 

constant given by Sodha et al. [20]: 

)(0
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represents the linear part and 
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02)2/1( A 
 represents the non-linear parts of the dielectric 

constant respectively. Here,  )/(2 22

2 p , '' 0P  is the plasma frequency, ''e  is the 

electronic charge, ''m  is the rest mass of the electron, ''  is the frequency of the incidents laser 

beam and '' 0n  is the equilibrium electron density. With, 0

222 6/ TkmMe B  , here ''M  is the 

scatterer mass in the plasma, '' bk  is the Boltzmann constant and '' 0T  is the equilibrium plasma 

temperature, ξ is the propagation distance and d  is a constant adjustable parameter. 

3.4 SELF-FOCUSING 

For isotropic, non-conducting and non-absorbing medium with ,1  Maxwell’s equation are: 
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Substituting the value of )( H


 from equation (3.4a) and applying vector identity, CBA


 , we 

get 
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From equation (3.4a), 
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For a plane polarized wave with electric field vector along y-axis, propagating in the z-direction, 

the solution of equation (3.6) is given by, 
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where ĵ is the unit vector along y-direction. 

Differentiating equation (3.7) twice, w. r. t. ''t , we get 
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Thus equation (3.6) becomes, 
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In cylindrical co-ordinate system, we can write this equation as 
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For slowly converging or diverging cylindrically symmetric beam, the solution of equation (3.10) 

is of the following form, 
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Differentiating equation (3.11) twice w. r. t. z''and''r , we get 

  
 
r

zrA
kztiExp

r

E








 ,




 

  
 
2

2

2

2 ,

r

zrA
kztiExp

r

E













 



34 

 

And 

  












































z

A

dRz

dRzzASec

cdR

i
dRz

c

Ai
kztiExp

z

E

d

p

dp

d

d

p

)/tan(1

)/(

2
)/tan(1

2

2

0

2

2

2

0

2

2

0














 

  
   

  

  

  


































































































































































































)/tan(1

)/tan(14

)/(

)/tan(14

)/(
)/tan(

)/tan(1

)/(

)/(

)/tan(1

)/(

)/tan(12

)/tan(1

)/(

,,

2

2

0

2

2

0224

424

0

2

2

2

2

02

22

0

2

2

0222

22

0

2

22

0

2

2

02

22

0

2

2

0

2

2

02

22

0

2

2

2

2

d

p

d

p

d

dp

d

p

dp

d

d

p

d

dp

d

dp

d

p

d

dp

d

p

d

p

d

dp

dRz

dRzRd

dRzSecz
kztiExp

c

A

dRz

dRzSec
dRz

dRzRd

dRzzSeciA
kztiExp

c

dRc

dRzzSecz

dRzdR

dRzzSeci
kztiExp

c

A

dRz

dRzdR

dRzzSec

z

zrA

c

i

z

zrA
kztiExp

z

E






























































 

Substituting these values in equation (3.10), and neglecting 
22 / zA  we get 
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(3.12) 

To solve equation (3.12), we express 

      zrikSExpzrAzrA ,,, 0        (3.13) 

Where, k has been defined above and 
0A and S are the real functions of z'.'and''r  

Differentiating equation (3.13) twice, w. r. t. ,''r we get 
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Now differentiating equation (3.13) w. r. t. '' z , 
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Thus equation (3.12) becomes, 
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Comparing real and imaginary parts of equation (3.14), we get  

Real part equation is 
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Imaginary part equation is 
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                                      (3.16) 

For initially Hermite-cosh-Gaussian beam, the solution of equation (3.15) and (3.16) are of the 

form 
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Differentiating equation (3.19) twice w. r. t. ''r , we get 
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Now, equating coefficients of 2r  on both sides of Eq. (3.20), one obtains 
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Equations (3.22) is the required expression for beam width parameter f . 
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3.5 RESULTS AND DISCUSSION 

For an initially plane wave front of the beam, we follow the boundary condition 1f   and

/ 0f     at 0.   For the analysis done above (Eq. 3.22), the following parameters are chosen 

for the purpose of numerical calculations: sec/103 14 rad , cmr 4

0 103   and 

317

0 10983.9  cmn  [90]. Figures 3.1 (a) and 3.1 (b) show the dependence of f on   with 

upward density transition for different values of  /0p . The decentered parameter is fixed at 

0b  and 1 respectively. From these figures, it is clear that with increase in the values of relative 

plasma density, the beam width parameter decreases sharply. The plots reveal that due to 

supremacy of nonlinear term, the laser beam gets more focused. This is due to the fact that in the 

low plasma density region, the electrons are forced to move away from the region having high 

intensity by a ponderomotive mechanism. The nonlinearity in the plasma comes because of mass 

variation of electron, which is also due to high intensity of the laser beam. Figures 3.2 (a) and 3.2 

(b) represent the dependence of f on  for various decentered parameter values. Keeping 

 /0p  fixed at 0.02 in figure 3.2 (a) and at 0.03 in figure 3.2 (b) respectively. From these 

figures it is clear that on increasing decentered parameter b, the beam width parameter f decreases 

on a large scale. Hence self-focusing occurs sooner and becomes further strong. Thus, it is 

obvious from the figures that the decentered parameter affects the behavior of beam width 

parameter to greater extent. Moreover, the appropriate selection and sensitivity of decentered 

parameter is very important in deciding the focusing of laser beam.   

Figure 3.3 represents the dependence of f on   for various decentered parameter values. 

Keeping  /0p  fixed at 0.04 and the other parameters are d =5 and decentered parameter b = 0 

(Red curve), b = 1 (Black curve). The figure 3.3 reveals that as we increase the decentered 

parameter, the beam width parameter decreases greatly. It is because of the fact that the 

decentered parameter is sensitive to self-focusing. Hence, one can say that the laser beam gives a 

self-focusing effect for b ≤1. It is further observed that as the plasma density increases self-

focusing becomes much stronger. Combining the results of this chapter with the previous studies 

on Gaussian beams [20, 25], we see that HchG beams give freedom to mode index ( m ) and 
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decentered parameter ( b ) in changing the self-focusing nature more accurately. However, in the 

absence of plasma density ramp, the beam-width parameter decreases on a large scale because of 

nonlinear effects. As the diffraction effects become prevalent, the beam-width parameter 

increases and after acquiring a very lower value, the laser beam starts to diverge due to 

nonlinearity saturation. To surmount the defocusing, introduction of plasma density transition is 

necessary and it is obvious that by applying such a transition, the self-focusing effect is enhanced 

and the laser is more focused i. e. self-focusing becomes much stronger. Hence, the upward 

plasma density ramp or density transition has a key role in laser focusing enhancement.  

3.6 CONCLUSION 

In the present investigation, we have studied the self-focusing of Hermite-cosh-Gaussian (HchG) 

laser beam in plasma by considering plasma density ramp in a parabolic medium under paraxial 

approximation. The field distribution of the laser beam is expressed in terms of beam width 

parameter and decentered parameter. The differential equation for the beam width parameter is 

derived by using parabolic wave equation and paraxial approximation. To keep away the laser 

from defocusing, upward density ramp or transition based density is considered and hence, the 

beam is focused to a small spot size. Such a density transition reduces the defocusing effect and 

maintains the focal spot size up to several Rayleigh lengths. To discuss the self-focusing nature, 

the behavior of beam width parameter with the dimensionless distance of propagation for various 

decentered parameter values has been examined by numerical calculations. Our simulation results 

show that as the plasma density and decentered parameter increases, the self-focusing effect 

occurs sooner and becomes stronger. However, sharp self-focusing of such beams occurs for b

≤1. Hence, by introducing such a density profile, a much stronger self-focusing is observed which 

can be used for various interesting applications.   
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Figure 3.1 (a): Dependence of f  on   for various values of  /0p . The other parameters are b

= 0 and d = 5. 
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Figure 3.1 (b): Dependence of f  on   for various values of  /0p . The other parameters are b

= 1 and d = 5. 
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Figure 3.2 (a): Dependence of f  on   for various values of b . The other parameters are  /0p

= 0.02 and d = 5. 
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Figure 3.2 (b): Dependence of f  on   for various values of b . The other parameters are  /0p

= 0.03 and d = 5. 
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Figure 3.3: Dependence of f  on   for various values of b . The other parameters are  /0p = 

0.04 and d = 5. 
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CHAPTER-4 

DENSITY TRANSITION BASED SELF-FOCUSING OF COSH GAUSSIAN 

LASER BEAM IN PLASMA WITH LINEAR ABSORPTION 

4.1 INTRODUCTION 

The interaction of intense laser beams with plasmas has been an important field of research due 

to various applications like laser electron acceleration [9-11], inertial confinement fusion [13-15] 

and ionospheric modification [16-19] etc. These applications require large interaction region up 

to several Rayleigh lengths without loss of energy. When a high power laser beam interacts with 

the plasma, it provides an oscillatory velocity to the electron so that the dielectric constant gets 

modified and leads to relativistic self-focusing [105]. The real part of dielectric constant having 

saturating nonlinearity characterizes the steady- state focusing or defocusing in a medium and the 

imaginary part being determined by multi photon absorption under paraxial approximation [58]. 

Takale et al. [71] analyzed the self-focusing and defocusing of first six TEMop Hermite-Gaussian 

laser beams in collision-less plasma and found that modes having odd p-values defocus and those 

having even p-values are capable of sustaining oscillations as well as are able to have a  

defocusing character during propagation in collision-less plasma. However, it has been observed 

that a plasma density ramp of suitable length can reduce these oscillations [64]. 

The propagation of HchG beams in n-InSb has been studied for various mode indicies viz 0, 1 

and 2 and incorporates the desirability of process of self-focusing in a particular application by 

taking an advantage of beams having decentered parameter [24]. The relativistic self-focusing of 

cosh beams illustrates that oscillatory self-focusing takes place for b = 0, 1 and sharp self-

focusing effect for b = 2 [106]. Nanda et al. [92] have observed that decentered parameter and 

ramp density profile results in self-focusing of laser beam. However, by considering the magnetic 

field and plasma density ramp for Hermite-cosh Gaussian laser beam, it has been found that the 

presence of density transition and magnetic field enhance the self-focusing effect to a greater 

extent [91].The proper and an appropriate decentered parameter selection is very much sensitive 

[90]. However, Kant et al. [22] have observed the effect of density transition and initial intensity 

of the laser beam on self-focusing of laser beam. Again, the parameters like density profile, 

intensity parameter, and decentered parameter play a crucial role in the enhancement of laser 
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beam focusing significantly. Further, the upward plasma density ramp in weakly relativistic and 

ponderomotive regime can accelerate the electron to higher energy over a long propagation 

distance as compared with uniform density relativistic plasma [85]. The oscillatory self-focusing 

takes place for different values of intensity parameter and with increase in intensity parameter, 

the distance between two consecutive points of intersection of two beams increases [88]. The 

laser beam is compressed and amplified in an enhanced manner by the combined effect of 

magnetic field, relativistic nonlinearity and negative initial chirp [107]. It is to be noted that 

strong self-focusing is obtained by optimizing wavelength and intensity parameters of beams 

[94]. In the investigation of self-focusing and frequency broadening of laser pulse in water 

medium, the laser beam initially undergoes self-focusing due to Kerr nonlinearity and then 

nonlinear refraction takes place which causes the laser beam to defocus [108]. Also, it has been 

found that with increase of power density and control parameters lead to trapping of particle in 

the potential and hence strong focusing [109]. For a short laser pulse undergoing self-focusing in 

plasma with density ramp, the pulse acquires a very low spot size and the focused pulse then 

diffracts and focuses in a regular and repeated manner. In this case the oscillation amplitude of 

the spot size contracts and results in increasing frequency. Hence, the laser propagating in plasma 

under plasma density ramp may likely become more focused. Further, due to the supremacy of 

diffraction effect and in absence of density transition, it gets defocused. As the plasma density 

increases, self-focusing effect becomes stronger [77]. Furthermore, the quantum effect plays a 

key role in laser-plasma interaction and significantly adds to self-focusing in comparison to 

classical relativistic case [84]. However, in addition to quantum effects, ramped density profile 

causes larger and higher oscillations and consequently better focusing in cold quantum plasma 

(CQP) [82]. 

In the present communication, we have studied the self-focusing of cosh-Gaussian beam in 

plasma by taking in to account the plasma density transition effect and linear absorption through 

parabolic equation approach. The second order differential equation that describes the nature of 

self-focusing in plasma is obtained by following paraxial approximation. The results are 

presented graphically and are discussed. Finally, a conclusion is drawn in the last section of this 

chapter. 
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4.2 FIELD DISTRIBUTIO OF COSH – GAUSSIAN BEAMS 

The field distribution of cosh-Gaussian laser beam at z = 0 is characterized by [110-112] 

2

0 02

0

( ,0) exp cosh( )
r

E r E r
r

 
   

 

                                                                                     (4.1) 

Where, r0 is the waist width, r is the radial coordinate, E0 is the amplitude of the electric field at 

centre position and Ω0 is called the cosh factor. On the other hand Eq. (4.1) can be expressed as 

follows: 
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             

                                          (4.2) 

Where, b = r0 Ω0 is called the decentered parameter. 

Now, corresponding to absorption alone, the concentration of energy of the laser beam decreases 

by a factor of exp(-2∫ kidz) which weakens the nonlinearity effect. Therefore, in accordance with 

Eq. (4.2), we can construct the following ansatz for the field distribution along the z-axis. 
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               (4.3) 

Where ki is the absorption coefficient and f = f (r, z) is the dimensionless beam-width parameter. 

4.3 NONLINEAR DIELECTRIC CONSTANT 

The cosh-Gaussian beam propagation in plasma is being characterized by a dielectric constant in 

the following form 

  )(0

 EE                         (4.4) 

With, ,1 22
0  P ,)(4 22 menP   )/tan(2

0

2 dpP  
 
and menP

2

0

2

0 4  , here '' 0  

represents the linear part and   represents the non-linear parts of the dielectric constant 

respectively. Here, '' 0P  the plasma frequency, ''e  the electronic charge, ''m  the rest mass of 

the electron, ''  the frequency of the incidents laser beam and '' 0n  the equilibrium electron 

density, ξ the normalized propagation distance and d is a dimensionless adjustable parameter. 
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4.4 SELF-FOCUSING EQUATIONS 

The wave equation that describes the laser beam propagation in plasma may be written as 
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The last term of Eq. (4.5) on left hand side is neglected under the condition  2 2  ln 1k     , 

where „ k ‟represents the wave number the laser beam. Thus,  
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This equation is solved by employing WKB approximation. In cylindrical co-ordinate system, we 

can write this equation as 
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For slowly converging or diverging cylindrically symmetric beam, the solution of equation (4.6) 

is of the following form, 
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Substituting these values in equation (4.6), and neglecting 22 / zA  we get 
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To solve equation (4.8), we express 
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Now differentiating equation (4.9) w. r. t. '' z , 
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Thus equation (4.8) becomes, 
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Comparing real and imaginary parts of equation (4.10), we get  
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Imaginary part equation is 
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For cosh-Gaussian beam, the solution of equation (4.11) and (4.12) are of the form 
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And 
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The eikonal ),( zrS  determines the convergence or divergence of the beam. 

  zfzfz  /)(/1)(,with 
 is regarded as the wavefront curvature, )'(' z  is an arbitrary 

function of '' z  and is called phase factor. Also, 
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Where ε2 is the nonlinear coefficient. 

Differentiating equation (4.14) w. r. t. ''and'' rz respectively, 
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Now, using paraxial approximation and differentiating equation (4.13) twice w. r. t. ''r , we get 
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Now, equating coefficients of 2r  on both sides of Eq. (4.16) and adopting the procedure of 

Akhmanov et al. [113] and Sodha et al. [20], the differential equation for the cosh-Gaussian 

propagation with linear absorption is written as: 
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   is the normalized absorption coefficient. 

Equation (4.17) is the required equation for the beam width parameter and can be solved with f 

depending on   for various 
/

ik  levels. 

4.5 RESULTS AND DISCUSSION 

Eq. (4.17) is the second order nonlinear differential equation governing beam width parameter of 

beam in plasma with density ramp and linear absorption. The self-focusing (convergence) or 

defocusing (divergence) of the laser beam is estimated by the relative magnitude of nonlinear and 

diffraction terms of Eq. (4.17). The numerical solution of this equation is possible by using 

Runge–Kutta method with the set of following parameters for the purpose of numerical 

calculation [73]: 

sec/10778.1 14 rad , mr 2530  ,
317

0 10  cmn  and the value of intensity is 

219

0 /10 cmWI  . Fig. 4.1 shows the dependence of beam-width parameter f  with propagation 

distance ξ for decentered parameter b = 0 with ωp0/ω = 0.2, 0.3, 0.4, 0.5 for different absorption 

levels k
/
i = 0.5, 0.6, 0.7, 0.8. These curves illustrate that beam-width parameter first decreases, 

attains a minimum value and then increases, with the result sharp self-focusing occurs up to 

5.0/0  p , k
/
i = 0.8 and then defocusing takes place as absorption weakens self-focusing 

effect. In fig. 4.2, the dependence of f on ξ for b = 1 is shown. It is clear from the figure that 

sharp self-focusing is observed for 5.0/0  p , k
/
i =1.3. So, with further increase in absorption 

level, the laser beam is further enhanced. This is because, the parameters like decentered 
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parameter, plasma density ramp and absorption coefficient are such that they change the self-

focusing / defocusing nature of the beam in a significant manner. Figure 4.3 shows the 

dependence of f on ξ for various combinations of  /0p and k
/
i. Beam width parameter attains a 

minimum value at 2.0/0  p with k
/
i = 2 and 3.0/0  p  with k

/
i = 3 for decentered 

parameter b = 2 which leads to strong self-focusing in plasma. Thereafter as soon as values of

 /0p and k
/
i are increased, defocusing of laser beam takes place. But, the self-focusing length 

increases with absorption level. However, in fig. 4.4, the dependence of f on ξ is shown for 

decentered parameter b = 0, 1, 2 and keeping  /0p and absorption coefficient k
/
i constant at 0.2 

and 2 respectively. It is clear from Fig. 4.4 that sharp self-focusing occurs for b = 2 and for b = 0 

and 1, f first decreases and then increases very slowly for lower values of “b”. Our results 

support the results obtained with different approach by Gill et al. [21] Figure 4.5 shows the 

dependence of f on ξ for 5.0/0  p and b = 1 with different values of absorption level k
/
i. It 

is important to notice here that early and strong self-focusing occurs for k
/
i ˂ 2. After k

/
i ≥ 2, the 

beam width parameter decreases slowly and defocusing takes place.  

However, Patil et al. [73] have reported the self-focusing of cosh beams in a parabolic medium at 

various values of linear absorption (k
/
i) and decentered parameter (b) and concluded that for b=0, 

the self-focusing occurs only up to k
/
i ˂ 2. But, firstly f  decreases and secondly it increases 

slowly for k
/
i ≥ 2 corresponding to ξ = 0.3. However, for decentered parameter b =1, the self-

focusing occurs only up to k
/
i ˂ 3 corresponding to ξ = 0.2. Finally for decentered parameter b =2, 

the beam width parameter attains a minimum value at ξ = 0.06 showing that the self-focusing 

length increases with absorption level. Further, in the work of Navare et al. [80], while 

considering the collisional nonlinearity, they found that the absorption plays a vital role in the 

self-focusing effect and destroys the oscillatory self-focusing character of laser beam during 

propagation. Hence, in comparison to ref. [73] and ref. [80], by applying the density ramp and 

taking in to account the effect of linear absorption, we observe that self-focusing occurs even at ξ 

= 0.02. Further, we found that study of cosh beams can be analyzed in a medium like plasma, but 

the important thing is that the decentered parameter, absorption coefficient and plasma density 
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ramp are found to behave in such a way that they change the self-focusing / defocusing nature of 

the laser beam in a significant manner. 

4.6 CONCLUSION 

This communication provides us an analysis of the evolution of cosh beams in plasma with 

density ramp and linear absorption using paraxial approximation. The effect of density transition 

on self-focusing has been studied at various values of absorption levels and decentered 

parameter. By choosing appropriate and optimized parameters, the combined effect of density 

ramp, decentered parameter and linear absorption on beam width parameter variation has been 

investigated and hence plotted. The results show that self-focusing occurs earlier and then 

defocusing takes place. However, it would be quite interesting to compare the investigated results 

for non-paraxial region of the beam, which so far has not been studied as per the literature 

available at present.  

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

 

 

 

                   

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.5

1.0

1.5

2.0

f



 k/
i=0.5, 

p0
 / = 0.2

 k/
i=0.6, 

p0
 / = 0.3

 k/
i=0.7, 

p0
 / = 0.4

 k/
i=0.8, 

p0
 / = 0.5

 

Figure 4.1: Dependence of f on ξ for various values of k
/
i and  /0p at b = 0. 
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Figure 4.2: Dependence of f on ξ for various values of k
/
i and  /0p  at b = 1 
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Figure 4.3: Dependence of f on ξ for various values of k
/
i and  /0p at b = 2. 
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Figure 4.4: Dependence of f on ξ for 2.0/0  p , k
/
i = 2 and for various decentered parameter 

(b) values.  
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Figure 4.5: Dependence of f on ξ for 5.0/0  p , b = 1 and for various values of k
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CHAPTER-5 

INVESTIGATION OF RELATIVISTIC SELF-FOCUSING OF HERMITE-

COSINE- GAUSSIAN LASER BEAM IN COLLISIONLESS PLASMA 

5.1 INTRODUCTION 

The interaction of high power laser beams with plasmas occupies a unique place in the field of 

research due to wide-ranging applications in laser-driven fusion, laser-driven charged particle 

accelerators, x-ray lasers etc. [8, 115, 4]. For such applications, it is necessary that the laser beam 

is highly powerful, intense and propagates for extended distances without divergence, resulting in 

various nonlinear phenomena like self-focusing etc. Therefore, it is important to study such 

phenomena numerically and analytically. Since the first investigation on self-trapping of optical 

beams was reported by Askaryan [1] and later the self-focusing was examined by a number of 

authors [116, 43, 117]. The self-focusing, self-trapping and filamentation of laser has been 

theoretically investigated by Akhmanov et al. [113] and then developed by Sodha et al. [114]. 

The study of quadruple Gaussian beam in inhomogeneous magnetized plasma with 

ponderomotive nonlinearity and linear absorption confirms that converging beam shows 

oscillatory convergence whereas diverging beam shows oscillatory divergence. Further, the beam 

is more focused at lower intensity under the influence of linear absorption and magnetic field 

[100]. Kant and Wani [118] reported that the density transition, decentered parameter and linear 

absorption coefficient act in such a way that they change the self-focusing / defocusing nature of 

the beam in a significant manner. The absorption weakens the self-focusing effect and density 

transition sets sooner, early and stronger self-focusing of cosh-Gaussian beam in plasma. The 

propagation of circularly polarized quadruple Gaussian laser beam can be studied in three 

different regimes viz steady divergence, oscillatory divergence and self-focusing regime by 

taking in to account the effect of magnetic field. The magnetic field improves self-focusing for 

extraordinary mode but, weakens the effect for ordinary mode [101]. An intense laser beam 

undergoes self-focusing due to the relativistic mass and  ponderomotive effects. It then diffracts 

and focuses more and more during propagation. In order to have sooner and better focusing, the 

relative plasma density is to be increased. This is because the parameters like density profile and 

intensity parameter play a vital role for self-focusing [22].  
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In thermal collisionless quantum plasma, the diffraction effect becomes predominant giving rise 

to increase in beam width and thus, showing an oscillatory behaviour of beam width parameter. 

Further, with the increase in plasma density as a ramp slope, the laser beam focuses quickly with 

lower oscillation amplitude, leads to smaller spot size of laser beam with more oscillations. The 

laser self-focusing is enhanced more in thermal quantum plasma than in classical regime [97]. 

However, the magnetic field and plasma density ramp play an important role in the enhancement 

of self-focusing. This is due to the combined role of magnetic field and density ramp that can 

reduce the spot size of the beam efficiently close to the axis of propagation [91]. The self-

focusing decreases by increasing laser wavelength, ripple wave number and intensity. It is 

because of the direct dependence of self-focusing on decentered parameter b [94]. Therefore, the 

phenomenon of self-focusing is obtained by optimizing wavelength and intensity parameters. 

Moreover, the decentered parameter and ramp density profile are sensitive to the self-focusing of 

laser beam. It is the density ramp that shrinks the spot size of laser beam as it gets penetrated 

deeper in to the plasma. Due to which the laser becomes more focussed and can propagate over a 

long distance without divergence [92]. Further, the proper selection of decentered parameter is 

important for stronger self-focusing [90]. Gill et al. [81] used the condition for the formation of a 

dark and bright ring to study the focusing / defocusing of super-Gaussian laser beam in plasma 

with transverse magnetic field. They included higher order terms of the dielectric function and 

reported that the inclusion of such terms affects the beam width parameter variation and 

consequently substantial increase in self-focusing is observed. This is possible only in case of the 

dark ring. However, the results contradict in case of a bright ring. Under the ponderomotive self-

focusing, the pulse acquires a minimum spot size due to the role of plasma density ramp. It then 

diffracts and gets focused in a periodic manner because of the fact that channel size and spot size 

do not match together. In such a case the oscillation amplitude of the spot size decreases, while 

its frequency increases. Further, as the plasma density increases under plasma density ramp, the 

beam gets more focused. However, in the absence density ramp and due to supremacy of the 

diffraction effect, it gets defocused [77]. The quantum effect gives more self-focusing in 

comparison to that of classical relativistic case. This is due to the fact that the beam is weaker at 

high intensity for classical relativistic case than cold quantum case [84].  
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The initial beam profile of HcosG beam remains invariant during propagation. However, in 

uniaxial crystals, the initial symmetry and linear polarization of HcosG beam cannot be kept 

intact. In addition the distribution of field of HcosG beam is closely related to the decentered 

parameter. In this paper, the relativistic self-focusing of HcosG beam in collisionless plasma is 

investigated. Using WKB and paraxial approximations through the parabolic equation, a 

mathematical formulation for the beam width parameter in collisionless plasma is obtained from 

the wave equation. The evolution of beam width parameter with the propagation distance is 

presented. It is hereby noticed that the laser self-focusing increases more than predicted by 

Aggarwal et al. [101]. Moreover, the effect of parameters like decentered parameter, laser 

intensity and initial plasma density is investigated. We previously studied the self-focusing of 

HchG beam in plasma under density transition [119] and found that self-focusing occurs under 

the influence of density ramp and decentered parameter. However, in the present communication, 

the authors lay emphasis on relativistic self-focusing of HcosG laser beam propagating in 

underdense plasma which was not done earlier for such a beam as per the literature available at 

present. The importance of the present work lies in the fact that an increase in self-focusing 

length leads to decrease in the minimum spot size of the beam and hence modulates the 

phenomenon of self-focusing. The computational results in context of plasma density, decentered 

parameter and laser intensity are discussed and finally a brief conclusion is given in the last 

section of this chapter. Above all in the present analysis the decentered parameter and laser 

intensity has good impact on the propagation of HcosG beam in plasma. 

 

5.2 FIELD DISTRIBUTION OF HERMITE – COSINE – GAUSSIAN (HCOSG) BEAM 

Consider the HcosG laser beam propagating in collisionless plasma along z-axis having field 

distribution of the form 


























































)()(
exp

)(

2

)(

2

)()(
),,(

2

2

2

0

2

2

1

2

0

2

201021

0

zfr

y

zfr

x

zfr

y
H

zfr

x
H

zfzf

E
zyxE nm

                                                                                                                                             








 







 

)(
cos

)(
cos

2

0

1

0

zf

y

zf

x
                                                                                                 (5.1)                                                                                                                                             

where mH and nH are the thm and thn  order Hermite polynomial respectively, 0E  is the constant 
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amplitude of the electric field, 0r is the waist width, 0 is the parameter associated with the 

cosine function, )(1 zf and )(2 zf are the beam width parameters in x and y directions respectively. 

5.3 NONLINEAR DIELECTRIC CONSTANT 

Consider the propagation of HcosG laser beam in plasma characterized by dielectric constant of 

the fo 

)(0

 EE                                                                                                        (5.2) 
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nonlinear part of the dielectric constant,  is the angular frequency of laser beam, p is plasma 

frequency, 0n  is the equilibrium electron density, dR is the diffraction length and  is the 

normalized propagation distance.  

The nonlinear dielectric constant for collisionless plasma can be expressed as [114] 
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Where TkmMe B
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0

2 6/   and M is the mass of scaterrer, T  is the plasma temperature and 

Bk is the Boltzmann constant. 

5.4 SELF-FOCUSING EQUATIONS 

The wave equation describing the laser beam propagation may be written as 
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The last term of equation (5.4) on left hand side is neglected under the condition that  

 2 2  ln 1k     , where ‘ k ’represents the wave number the laser beam. Thus, 
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In Cartesian co-ordinate system, we can write this equation as 
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The solution of equation (5.6) is of the following form, 
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Therefore, using the above values, Eq. (5.6), under Wentzel-Kramers-Brillouin (WKB) 

approximation becomes as: 
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To solve equation (5.8) we express A as 

)],,(exp[),,(),,( zyxikSzyxAzyxA mn                                                                 (5.9) 
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Where,
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Substituting the above values in Eq. (5.8), we get 
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Now, equating real and imaginary parts on both sides of Eq. (5.10), we get 
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Imaginary part equation is  
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The solutions of equations (5.11) and (5.12) can be written as:
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Where, )/))((/1()( 111 zfzfz   and )/))((/1()( 222 zfzfz  represent the curvature of the 

wavefront in x and y directions respectively. Now, considering the mode for which, m = 0 and n 

= 0, we have,
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After simplifying the equations (5.16) and (5.17), we obtain the expressions for beam width 

parameters f1 and f2 as: 
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where 00 rb is called decentered parameter and is the dimensionless distance of propagation. 

Equations (5.18) and (5.19) are the required expressions for beam width parameters 1f and 2f  

respectively. 

5.5 SELF-TRAPPED CONDITION 

For initially plane wavefront,   0/
01 


f ,   1

01 


f   and   0/
02 


f ,   1

02 


f , the 

conditions 0/ 2

1

2  f and 0/ 2

2

2  f  lead to the propagation of laser beam in self-
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trapped mode. Substituting for 0/ 2

1

2  f and 0/ 2

2

2  f  in Eq. (5.18) and Eq. (5.19) 

respectively, we obtain a relation for dimensionless initial beam width )/( 00 cr   and is given 

as follows: 
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To explain the results for HcosG beam propagation in relativistic plasma, we numerically analyze 

the dependence of initial beam width 0 as a function of αE0
2
 for the plasma under self-trapped 

condition. The results are depicted in Fig. 5.1. It is found that decrease in 0 is observed with 

increase in αE0
2
 for relativistic plasma at different values of decentered parameter.    

5.6 RESULTS AND DISCUSSION 

We conduct the numerical analysis and computational simulations for solving the beam width 

parameter equations. The various parameters chosen for the purpose of numerical calculations 

are: sec,/1014rad sec/1087.1 14

0 radp  , cmr 3

0 105  and  

317

0 1098.9  cmn [71]. 

The relativistic nonlinear effect emerging from the relativistic mass correction that depends on 

factor 
2

0E  and relative plasma density  /0p . The diffractional divergence of the beam is due 

to the diffraction term while as self-focusing is due to nonlinear term. Fig. 5.2 shows the 

dependence f  on   for various values of 1&5.0,0b with 4.0/0  p  and 5.12

0 E . It is 

clear from fig. 5.2 that strong self-focusing occurs at 65.2 for 1b and at 1.3 for 5.0b . 

Decentered parameter is an important parameter that is to be optimized for stronger self-focusing 

at smaller distance. This is because of the fact that the decentered parameter changes the nature of 

self-focusing of the beam significantly. Fig.5.3, illustrates the behaviour of f with   for 

50.1&25.1,12

0 E . It is obvious from the figure that sharp self-focusing is observed at 1.3 . 

It is seen from fig. 5.3 that as we increase the values of 
2

0E , self-focusing occurs earlier and 
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becomes stronger. This is because of the supremacy of self-focusing term over the diffraction 

term because of the relativistic nonlinearity. 

Fig. 5.4 shows the dependence f  on   for various values 2&1,0b  with 6.0/0  p and 

22

0 E . It has been predicted that by increasing the values b  , f  decreases greatly up to 

35.2 , there by showing that the self-focusing of laser beam is enhanced further. Further, it 

can be seen that for a high intensity laser, the self-focusing occurs at lower values of b. Therefore, 

the decentered parameter is sensitive for the self-focusing of HcosG laser beam and thus, 

supports the results predicted by Nanda et al. [90]. Moreover, the beam converges more rapidly 

and focuses up to smaller spot size. The beam width parameter decreases monotonically with 

intensity, decentered parameter and plasma density. Finally, to through light up on the nature of 

self-focusing of HcosG laser beam in collisionless plasma, in Fig. 5.5, we observe the stronger 

and earlier self-focusing (corresponding to )25.0  of laser beam as a result of increase in 

plasma density. This is due to the fact that when the plasma density is increased at relativistic 

intensities, the beam having more relativistic electrons travels with the laser pulse. With the 

result, a higher current and consequently a high magnetic field is generated, which leads to 

further enhancement of self-focusing.  

5.7 CONCLUSION 

We have investigated the self-focusing of HcosG laser beam in collisionless plasma by taking in 

to account the relativistic nonlinearity, using WKB and paraxial approximation. The equation of 

beam width parameter and self-trapped mode has been derived under the weak relativistic 

ponderomotive nonlinearity. Depending on the values of decentered parameter, laser intensity 

and plasma density, the variation of dimensionless beam width parameter as a function of 

normalized propagation distance is seen and discussed. We have found that the laser beam 

focuses faster and earlier with smaller spot size. The spot size can be controlled by optimizing 

laser plasma parameters. Thus, one may conclude that the decentered parameter and laser 

intensity has a significant role in improving self-focusing of HcosG laser beam in plasma. It is 

expected that the results of present analysis may be useful in laser driven fusion. 
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Figure 5.1: Dependence of )/( 000 cr p on 
2

0E  for Mm /0 = 0.02 and = 1.25  
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Figure 5.2: Dependence of 1f and 2f  on   for various values of b. The other parameters are 

 /0p = 0.6, 
2

0E = 1.5, Mm /0 = 0.02, cr /0 = 50,   = 1.25 
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Figure 5.3: Dependence of 1f and 2f  on   for various values of 
2

0E . The other parameters are 

 /0p = 0.4, b = 0.5, Mm /0 = 0.02, cr /0 = 50,   = 1.25  
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Figure 5.4: Dependence of 1f and 2f  on   for various values of b. The other parameters are 

 /0p = 0.6, 
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0E = 2, Mm /0 = 0.02, cr /0 = 50,   = 1.40  
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CHAPTER-6 

NONLINEAR PROPAGATION OF GAUSSIAN LASER BEAM IN AN 

INHOMOGENEOUS PLASMA UNDER PLASMA DENSITY RAMP 

6.1 INTRODUCTION 

The theoretical and experimental study of interaction of high intensity laser beams with plasmas 

is a fascinating field of research which gives rise to various important applications such as plasma 

based accelerators [5], inertial confinement fusion [6, 7], ionospheric modification [17, 18] etc. 

For the success of these applications, the laser beam propagates over distances greater than 

several Rayleigh lengths [64, 120, 65]. Self-focusing is a nonlinear phenomenon which is 

induced due to change in the refractive of the medium. It can be relativistic [121] as well as 

ponderomotive [42]. The former is due to relativistic mass variation of electrons and the later is 

due to plasma density variations produced by ponderomotive forces. The phenomenon of self-

focusing has been studied by many authors [122, 35, 92, 71, 91, 22] and found that optimized 

parameters are important for self-focusing. Gupta et al. [87] found that the ion temperature 

causes thermal self-focusing and has a serious influence on the evolution of laser beam in plasma. 

However, optimum self-focusing is achieved by taking in to account the combined effect of 

relativistic and ponderomotive self-focusing [86].  

Jafari Milani et al. [95] investigated the ponderomotive self-focusing of Gaussian laser beam and 

reported that the collision frequency at first causes self-focusing and then defocusing of laser 

beam takes place in warm collisional plasma. But, as collision frequency is increased, the self-

focusing length becomes shorter with the result larger collision frequency prevents the longer 

propagation of laser beam through plasma. The higher order axial electron temperature decreases 

the influence of collisional nonlinearity. It changes the electron density distribution and increases 

the dielectric constant therefore, leads to fast divergence of the laser beam [123]. However, 

following higher order paraxial theory with ramped density profile enhances the focusing [99]. 

Again, Patil et al. [85] have found that the upward plasma density ramp tends to enhance the self-

focusing significantly and the beam gets more focused while traversing several Rayleigh lengths 

as compared with uniform density relativistic plasma. Kant and Wani [181] reported that the 

decentered parameter and linear absorption change the self-focusing / defocusing nature of the 
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beam. The absorption weakens the self-focusing effect and the density transition sets sooner and 

an earlier self-focusing. 

In this paper, our purpose is to analyze the impact of upward plasma density ramp on nonlinear 

Gaussian propagation in an inhomogeneous plasma. The plasma density ramp profile chosen is of 

the form )/tan()( 0 dnn   . The non-linear dielectric constant of plasma is presented in 

ponderomotive regime. The equations governing the laser beam evolution are derived. The 

computational results in the context of plasma density, laser intensity and initial beam width are 

discussed and finally a brief conclusion is added. The importance of the present work lies in the 

fact that the upward plasma density ramp enhances the self-focusing to a greater extent in 

inhomogeneous plasma. 

6.2 NONLINEAR DIELECTRIC CONSTANT 

The nonlinear dielectric function   for an isotropic inhomogeneous medium can be expressed as 

),(),( ** EEziEEz ir   ,                                                                                  (6.1)  

where, 
r  and i  are the functions of z  and the irradiance *EE . Further, 

r  can be expressed as:  

*
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r s
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                                                                     (6.2)

 

where, 0  and   are functions of z . The function )(z  is identified with the plasma frequency. 

In this case   )(/1)( 22

00 zz p   , 
22

0 / ps  , )0()()( ii zz    with, 

)/tan(/)( 2

0

2 dz pp   , )/tan(2

0

2 dpp    and menp /4 2

0

2

0   . Where, 0p  is the 

plasma frequency,   is the angular frequency of incident laser beam, i  is the characteristic of 

absorption in the medium, )(z  is characteristic of the density of dipoles, m , e  and 0n  are the 

electron’s rest mass, charge on the electron and equilibrium electron density respectively,   is the 

propagation distance and d  is a dimensionless parameter. In case of Gaussian beam )(zr  can 

be expanded as: 

2

2

0( ) ( ) ( ).r r rz z r z   
                                                                                                (6.3) 
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6.3 SELF-FOCUSING EQUATIONS 

Consider the Gaussian laser beam propagating along the z - direction with electric vector E


 

satisfies the scalar wave equation of the form  

2 2 2

2 2 2

1
( , ) 0

E
E r z E

z r r r c
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                                                                     (6.4)

 

where, c  is the speed of light in vacuum. Eq. (6.4) can be solved in the paraxial approximation by 

adopting the analysis of Akhmanov et al. [113] and Sodha et al. [20, 114]. The solution of 

equation (6.4) is of the form  
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where, ),( zrA  is the slowly varying envelope of the beam and k  is the wave propagation 

constant which is given by )()/()( 0

222 zczk r . 
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Substituting the above values in Eq. (6.4), under WKB approximation, one obtains 

2 2
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To solve Eq. (6.6) in the paraxial approximation, the complex amplitude 

)],()(exp[),(),( 0 zrSzikzrAzrA   is considered. Here, 0A  and S  depend on r  and z . 

Therefore, from Eq. (6.6), we get 
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Now, equating real and imaginary parts of Eq. (6.7), we get 

Real part equation is
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Imaginary part equation is 
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The solution of Eq. (6.9) can be written as 
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where,   is any arbitrary parameter and )(2

0 zE  is the axial irradiance. For an initially Gaussian 

beam at 0z , )/exp( 2
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where, )/))((/1()( zfzfz   represents the curvature of the wavefront. Substituting for 
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and using the above values in Eq. (6.8), we get 
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Now, equating the coefficients of 2r on both sides of Eq. (6.11), we get 

the resulting equation. One obtains
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where, )/( 22
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2 fEfr rr   , cr /00   is the equilibrium beam radius, dRz / is the 

propagation distance, 
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0krRd   represents the diffraction length. Thus, with the dependence of 
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on f  and  , Eq. (6.12) can be solved for f  as a function of  . Further, expanding ),(2
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Using Eq. (6.13) in Eq. (6.2) one obtains 
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Using Eq. (6.14) and (6.15) in Eq. (6.12), we get 
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Equation (6.16) is the required equation for the beam width parameter f , which could be solved 

by applying the initial condition at 0 , 1f ,   0/  f  and   0/ 22  f
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6.4 RESULTS AND DISCUSSION 

In the present communication, we have seen the effect of ramped density profile on the 

propagation of Gaussian laser beam in inhomogeneous plasma. We have solved Eq. (6.16) 

numerically and the various parameters taken for numerical calculation are: 

sec/10778.1 14rad , mr 200   and m 06.1  [101]. The value of intensity of laser beam 

is 
218

0 /1021.1 cmWI  . Fig. 6.1 represents the dependence f  on   for various values of 

 /0p . The other parameters are 10d , 102

02 E , 04.02  . It is observed that by 

increasing the values of  /0p , f  decreases strongly with   and reaches its minimum at 

8.0/0  p . The laser beam then undergoes oscillatory behavior and the frequency of 

oscillation increases, while amplitude decreases gradually close to the propagation axis. 

Therefore, the plasma dielectric constant decreases rapidly as initial electron density depends on 

  with the result, self-focusing is observed at large   values. The results of present analysis can 

be compared with those of Kaur et al. [109]. Wherein, the introduction of two scale length leads 

the laser beam to oscillate periodically for a long propagation distance with constant amplitude. 

Fig. 6.2 illustrates the behavior of f  with   for various values of 
2

02 E . The other parameters 

are 4.0/0  p , 15d , 08.02  . From figure 6.2 it is clear that while propagating the 

laser beam through the plasma, the diffraction of beam starts earlier with increase in 
2

02 E  and 

hence controls the behavior of beam width parameter. Due to increase in the value of intensity, 

highly energetic electrons will continue to move forward without loss of energy. Further, the 

beam width parameter is a function of laser spot size and depends on intensity of laser beam. 

Therefore, the intensity rise results in the reduction of spot size of laser beam with the result, self-

focusing of laser beam slows down and becomes stronger. Figure 6.3 shows the dependence of 

f  on   for different 
2
 values. The plasma density is fixed at 8.0/0  p  

and the other 

parameters are same as taken in figure 6.1.  From figure 6.3, it is clear that the oscillatory 

character of the beam width parameter is observed for a chosen set of parameters. Remarkably, 

the amplitude of oscillations decreases gradually with the distance of propagation on account of 



86 
 

effect of nonlinearity. Further, with increase in the values of 
2/1  , the beam width parameter 

first increases, attains a maximum and then decreases thereby, exhibits oscillatory character. 

Therefore, the behavior of beam width parameter is highly affected by the beam radius under 

density transition. Again, Navare et al. [80] concluded that by taking in to account the collisional 

nonlinearity and linear absorption, the oscillatory behavior of beam width parameter weakens 

with the distance of propagation. The self-focusing of laser beam takes place only for a short 

propagation distance and the beam then defocuses. However, in the present work, introduction of 

density ramp leads the beam width parameter to decrease with a higher rate. Consequently, the 

self-focusing of laser beam is enhanced to a greater extent by exploiting the density transition in 

an inhomogeneous plasma. Above all, the density transition plays a vital role in laser plasma 

interaction and is important for the injection of plasma electrons to acceleration stage. 

6.5 CONCLUSION 

In the present investigation, we have investigated the Gaussian beam propagation in 

inhomogeneous plasma under plasma density ramp. The differential equation for beam width 

parameter is established under paraxial approximation. The effect of plasma density, laser 

intensity and initial beam width on self-focusing has been discussed. By optimizing laser and 

plasma parameters, the effect of density transition on the behavior of beam width parameter with 

the propagation distance has been analyzed and plotted. The results reveal that the amplitude of 

oscillation decreases considerably with the distance. The oscillatory behavior of beam width 

parameter becomes slow with increase in relative plasma density and intensity of laser beam. The 

saturation behavior of the beam width parameter shows that the laser beam evolves differently 

when propagates through underdense plasma. Further, after initial laser focusing, the relativistic 

mass effect is more declared in high plasma density region. Therefore, the plasma density ramp 

enhances the self-focusing effect to a greater extent. The outcomes obtained in the present 

analysis may be useful in understanding the physics of plasma based accelerators. 
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CHAPTER-7 

SELF-FOCUSING / DEFOCUSING OF CHIRPED GAUSSIAN LASER 

BEAM IN COLLISIONAL PLASMA WITH LINEAR ABSORPTION 

7.1 INTRODUCTION 

The interaction of high power laser beams with plasmas has known to be an important and 

captivating field of research because of its applications in charged particle accelerators, x-ray 

lasers etc. [8, 115, 4]. In all these applications, it is necessary to know the characteristics of a high 

power beam that propagates over extended distances with no loss of energy. When such a beam 

interacts with the plasma, various nonlinear phenomena’s (self-focusing, harmonic generation, 

electron acceleration in vacuum etc.) are likely to occur. Among, these phenomena’s self-

focusing is very important nonlinear phenomenon in which the wave front of laser acquires a 

curvature and laser tends to focus. In general, there are two types of self-focusing viz., relativistic 

self-focusing [121] and ponderomotive self-focusing [42] and many papers have been published 

in achieving the self-focusing of laser beams in plasmas [28, 113, 77, 64, 85]. The self-focusing 

decreases with rising intensity of the beam due to supremacy of diffraction effect at higher 

intensity [84]. Gill et al. [81] used the higher order paraxial theory to study the relativistic self-

focusing of super Gaussian laser beam in plasma and reported that the inclusion of higher order 

terms of dielectric function affects the behavior of beam width parameter significantly and the 

magnetic field improves the self-focusing of laser beam in plasma [101, 124]. Recently, Habibi 

and Ghamari [98] have extended the same theory for cosh-Gaussian beam in quantum plasma. By 

using more effective decentered parameter, better self-focusing is observed for cosh-Gaussian 

beams in comparison to Gaussian beams in quantum plasma. 

The density transition is considered to be important in laser and plasma interactions, particularly 

for the self-focusing in plasma medium. Increase in initial density and ramp slope lowers the 

minimum spot size of the laser beam. These parameters play a key role and are crucial for self-

focusing as it is enhanced with optimized laser and plasma parameters [22, 92, 97, 102, 91]. Kant 

and Wani [118] studied the self-focusing under density transition with linear absorption. Due to 

absorption, the self-focusing effect weakens and density transition sets sooner and an earlier self-
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focusing. Gupta et al. [87] considered the relativistic ponderomotive nonlinearity and their results 

have shown that the ion temperature causes thermal self-focusing and has a serious influence on 

laser beam evolution in collisional plasma. Taking in to account the higher order axial electron 

temperature, it has been reported that it decreases the influence of collisional nonlinearity. It 

further changes the electron density distribution and increases the dielectric constant, with the 

result, it leads to fast divergence of the beam [123]. The chirp was used to study the electron 

acceleration in vacuum. It increases the electron energy and hence momentum so that the electron 

escapes from the laser beam. The value of chirp parameter decreases with laser intensity and 

initial electron energy. It further, increases the amplitude of wake wave that has been generated in 

the plasma by an electromagnetic beam [125, 126]. Ghotra and Kant [127] used the chirped laser 

pulse to study the electron acceleration in vacuum in presence of azimuthal magnetic field. The 

chirp increases the duration of interaction of laser beam with electron and strengths the resonance 

for longer duration. Further, the magnetic field improves the electron acceleration to high energy 

of the order of GeV.  

In the present communication, we analyzed the effect of chirp on the self-focusing / defocusing 

of Gaussian beam propagating in collisional plasma with linear absorption. Effects of chirp 

parameter, collision frequency and other laser plasma parameters are seen on the self-focusing / 

defocusing in plasma. Although, without chirp, the laser beam shows self-focusing but, as the 

propagation distance increases, it starts to experience defocusing. To reduce this defocusing, the 

effect of chirp is considered. The chirp parameter minimizes the defocusing and increases the 

ability of self-focusing. Further, the amplitude of oscillations decreases with the propagation 

distance so that sooner and stronger self-focusing is achieved. This paper is constituted as 

follows: in section 7.2 the nonlinear dielectric constant and the equation that governs the behavior 

of beam width parameter with the propagation distance is presented. Section 7.3 is devoted to 

results and discussions. Finally, the conclusion is considered in last section 7.4.  

7.2 SELF FOCUSING OF CHIRPED GAUSSIAN LASER BEAM 

Consider the propagation of a Gaussian beam in plasma along the z - axis. Its initial intensity 

distribution is given by         
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where, E


 is the electric vector and 0r  is the waist width of the beam. The wave equation that 

governs the laser beam propagation may be written as 
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The last term on the left hand side of above equation (7.2) is neglected under the condition 

)(ln22 k ˂˂ 1, where, k  represents the wave number of the laser beam. Thus,  
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The effective dielectric constant of the plasma can be expressed as 

                       iiEE   *)(0  ,                                                                           (7.4)  

where, 22

0 /1  p  is a linear part and   is a nonlinear part of dielectric constant, 

)/)(/( 22  pi   takes care of linear absorption ( i ˂˂ 0 ),   is the collision frequency,  

 )/(1 000 cztb    is the angular frequency of  chirped Gaussian laser beam, 0  is the 

angular frequency of incident laser beam, b  is the chirp parameter, c  is the velocity of light, p  

is the plasma frequency given by menp /4 2

0

2   , where, m  is the rest mass of electron, e  is 

the charge of electron and 0n  is the equilibrium electron density. Following [114], *)(EE  can 

be expressed as: 
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where, 0s  is a parameter characterizing the nature of collisions, TkmMe B

222 6/   , M  is the 

mass of scaterrer in the plasma, T  is the equilibrium plasma temperature and Bk  is the 

Boltzmann constant. Now, the solution of equation (7.3) is of the following form, 

    kztiExptzrAE  ,,
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Now, substituting the above values in Eq. (7.3) and employing the WKB approximation, we get 
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To solve Eq. (7.7), we express A  as 

               )exp(),(0 ikSzrAA  ,                                                                                   (7.8) 

where, 0A  and S  depend on r  and z . Now, differentiating Eq. (7.8) twice w. r. t r  and z , we 
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Substituting Eq. (7.8) and all the above values in Eq. (7.7) and after separating real and imaginary 

parts, one can obtain 
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Imaginary part equation is 
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Where,   is the dimensionless retarded time. Following Akhmanov et al. [113] and Sodha et al. 

[20, 114], we can write as follows 
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where, 02/  ii kk   is the absorption coefficient with ck /2/1

0  and )/)(/1()( zffz  , 

1  is interrupted as curvature radius and )(zf  represents the beam width parameter. Now, 

using paraxial approximation and substituting Eq. (7.11) and Eq. (7.12) in Eq. (7.9) and then 

equate the coefficients of 2r
 
on both sides of the emerging equation, the differential equation for 

)(zf  is obtained as: 
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where, dRz /  is propagation distance, 2

0krRd   represents diffraction length, cr /000    

represents equilibrium beam radius, /

ik  is the normalized absorption coefficient. Eq. (7.13) 

represents the spot size variation of laser beam with the propagation distance. 

7.3 RESULTS AND DISCUSSION 

Eq. (7.13) is the second order differential equation that governs the behavior of )(zf  of chirped 

Gaussian beam in collisional plasma with linear absorption. We have solved Eq. (7.13) 

numerically by applying the initial condition at 0 , 1f ,   0/  f  and   0/ 22  f  

with the following set of typical parameters[125];  sec/10778.1 14

0 rad , laser beam radius 

20 m  and equilibrium plasma density 319

0 104  cmn . By optimizing suitable laser and 

plasma parameters, we have investigated the self-focusing / defocusing of chirped Gaussian beam 

in collisional plasma.  

 Figure 7.1 shows the dependence of f  on   for various values of 0/ . The other parameters 

are: 0/ p 0.4, 4.02

0 E  and 0b . It is observed that while, neglecting the effect of chirp, 

the laser beam shows defocusing character. The defocusing of laser beam increases with increase 

in the values of 0/ . It is due to the fact that the absorption (corresponding to collision 

frequency term 0/ ) becomes significant and the laser beam shows fast divergence. The 
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amplitude of oscillations of beam width parameter becomes too large, there by the beam width 

parameter diverges continuously. In other words, the beam width parameter increases on account 

of collision frequency and steady divergence occurs due to strong energy attenuation. So, one can 

say that the laser beam becomes more defocused due to diffraction and absorption effects at 

higher oscillation frequencies. The outcomes so obtained in this analysis can be compared with 

those of Navare et al. [80], wherein increase in collision frequency is subjected to increase in 

oscillation amplitude of beam width parameter. Moreover, for higher values of 0/ , the 

absorption is more significant and overcomes the self-focusing effect. Again, Jafari Milani et al. 

[95] investigated the ponderomotive self-focusing in warm collisional plasma and reported that 

firstly self-focusing is caused by collision frequency and secondly it defocuses the laser beam for 

longer propagation. 

Now, in order to account for the defocusing, the effect of chirp is considered. For investigating 

the effect of chirp parameter ( b ) on the laser beam propagation in collisional plasma, various 

values of b  are considered. Figure 7.2 (a) illustrates the behavior of f  with   for various values 

of chirp parameter b  and the other parameters are same as taken in figure 7.1. It is observed from 

figure 7.2 (a) that in the absence of collision frequency, the beam width parameter initially 

decreases and then increases showing that the laser beam gets defocused. However, this 

defocusing can be minimized by increasing the chirp parameter. As soon as the chirp parameter is 

increased, the amplitude of oscillations of the beam decreases with the distance of propagation. 

Further, with its passage in the plasma, the angular frequency increases with the result, the 

dielectric constant of the plasma decreases. The decrease in dielectric constant reduces the spot 

size amplitude of laser beam close to the axis of propagation. Consequently, )(zf  attains a 

minimum value for further distance of propagation. The effect of negative chirp on the self-

focusing or defocusing is shown in the figure 7.2 (b) which represents the variation of f  with   

for various values of negative chirp. From the figure 7.2 (b), it is clear that on increasing the 

values of negative chirp, the self-focusing at first is strengthened and after attaining a critical 

value, it gets defocused. This is because the frequency of a linear and negative chirped laser beam 

changes during the propagation in the plasma. Therefore, the spot size of laser beam depends on 

  and at propagation distances much greater than the Rayleigh length the temporal shape of the 
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chirped laser beam will be changed. Therefore, the defocusing of laser beam is weakened and 

there by the self-focusing effect is strengthened by using chirp. Hence, the chirp parameter is 

important for minimizing the defocusing and increasing the ability of self-focusing in collisional 

plasma 

Figure 7.3 presents the dependence of beam f on   for various values of 
0/ p
. The other 

parameters are: 002.0/ 0  , 4.02

0 E  and 002.0b . It is evident from figure 7.3 that with 

increase in 
0/ p
, the nonlinearity of plasma medium increases, with the result, the amplitude 

of oscillations decreases further close to the propagation axis. Consequently, 
minf  shifts towards 

lower value of 4.0 . Therefore, the beam self-focusing occurs earlier and thus supports the 

results [80, 86]. Figure 7.4 illustrates the behavior f  with distance   for various values of 2

0E . 

The relative plasma density is fixed at 4.0/ 0  p
  and the other parameters are same as taken 

in figure 7.3. The curves demonstrate that with increase in 2

0E  of the beam, the spot size and 

hence the self-focusing length decreases. Again, increase in laser intensity results in increasing 

the nonlinearity which is responsible for the self-focusing of laser beam in plasma. Consequently, 

the laser beam bends more towards the focusing mode for higher values of intensity of laser 

beam. Furthermore, at higher intensity and for higher plasma density, a beam having more 

electrons travels with the laser beam and generates a higher current. Consequently, a higher 

quasi-stationary magnetic field is generated, which reduces the focusing length and hence adds to 

self-focusing. 

Again, taking in to account the laser intensities (10
20

W/cm
2
) closer the realistic values, the 

changing behavior of f  with   is shown in figure 7. 5. The other parameters are: 002.0b , 

002.0/ 0  and 6.0/ 0  p . From the figure 7.5, it is observed that at higher intensities, the 

oscillating behavior of beam width parameter is destroyed during propagation in plasma and the 

laser beam undergoes defocusing. In other words, the self-focusing of laser beam disappears with 

very high intensity and ponderomotive defocusing occurs. This is because of the supremacy of 

the diffraction effect at high intensity. Further, the frequency of a chirped laser beam changes 

during the propagation in plasma. As the beam waist depends on   and at larger propagation 

distances, the temporal shape of the chirped laser beam will be changed. However, for shorter 
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propagation distance less than the Rayleigh length, the change in laser pulse shape is not 

considerable. 

7.4 CONCLUSION 

In the present communication, we have investigated the self-focusing / defocusing of chirped 

Gaussian beam in collisional plasma with linear absorption. We derived the required differential 

equation for )(zf  by using the WKB and paraxial ray approximations and investigated the 

impression of optimized parameters on the self-focusing / defocusing in collisional plasma. From 

the results, one can conclude that the chirp parameter is important for the self-focusing / 

defocusing and maintains the necessary importance of laser-plasma interaction. The laser beam is 

defocused due to strong diffraction and absorption effects at higher oscillation frequencies. It is 

further, revealed that initially the amplitude of beam width parameter is too large and 

continuously diverges in the collisional plasma. The chirp parameter minimizes the divergence 

and consequently, sooner and an earlier self-focusing is observed. Thus, apart from electron 

acceleration, the chirp can also be used to analyze the self-focusing / defocusing of laser beam in 

plasma. The results of present research may be useful in laser – driven fusion and laser plasma 

based accelerators. 
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Figure 7.1: Dependence of f  on   for various values of 0/ . The other parameters are: 

0/ p
0.4, 4.02

0 E  and 0b  
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Figure 7.2 (a): Dependence of f  on   for various values of b . The other parameters are: 

0/ p 0.4, 4.02

0 E  and 0/ 0   
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Figure 7.2 (b): Dependence of f  on   for various values of negative chirp. The other parameters 

are same as taken in the figure 7.2 (a). 
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Figure 7.3: Dependence of f  on   for various values of 
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. The other parameters are: 

002.0/ 0  , 4.02
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Figure 7.4: Dependence of f  on   for various values of 2

0E . The other parameters are: 

002.0/ 0  , 4.0/ 0  p , and 002.0b  
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CHAPTER-8 

SELF-FOCUSING OF A LASER BEAM IN THE RIPPLED DENSITY 

MAGNETOPLASMA 

8.1 INTRODUCTION 

The interaction of high intense laser beams with plasmas gives rise to various wide ranging 

potential applications including laser-driven acceleration, harmonic generation, x-ray lasers etc. 

[8,9, 128, 129]. For the success of these applications, it is to be desired that the high intensity 

laser beam should propagate various Rayleigh lengths without divergence. When such a laser 

beam interacts with a medium like plasma, it provides oscillatory velocity to the electron, which 

changes the dielectric constant of the medium [105]. The process of self-focusing has been 

examined by various authors [116, 43, 117] and is important for the above mentioned 

applications. The self-focusing is more at relativistic intensity as it generates a quasi-stationary 

magnetic field [75] and is crucial for propagation of the laser beam over extended distances. For 

thermal self-focusing to occur, the ion temperature is considered to be important as it seriously 

influences the laser pulse evolution [87]. The effect of density ramp is such as to shrink the spot 

size of laser beam so that it becomes more focused while propagating through the plasma. The 

optimized parameters are found to be crucial for self-focusing as it is enhanced with such 

parameters. Its ability is further increased by density transition and magnetic field. [22, 85, 97, 

102, 80, 100]. Further, the linear absorption destroys the oscillatory character of beam width 

parameter and thereby makes the self-focusing effect weaker while as the density transition 

causes sooner and earlier self-focusing [118]. Wani and Kant [130] investigated the relativistic 

self-focusing of HcosG laser beam in collisionless plasma. They reported that the beam width 

parameter shows a strong oscillatory behavior and hence the laser beam becomes more focused at 

lower values of intensity and decentered parameters. Further, the decentered parameter is 

considered to be essential for self-focusing [90]. Gill et al. [81] investigated the relativistic self-

focusing by including higher order terms of the dielectric function. They have shown that the 

magnetic field and hence the higher order terms of dielectric function increase the self-focusing 

strength. 
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The density ripple was used to study stimulated Raman scattering of light waves in plasma. The 

excitation of plasma waves took place under rippled density profile as these waves have nearly 

the same wavelength as those of density ripple [131]. Further, the rippled density can be used to 

investigate the phase-matched harmonic generation from plasmas. The efficiency of generation 

increases rapidly in weak and moderate relativistic regime. However, the phase-matched 

harmonic generation saturates in strong relativistic regime [132]. Again, Kaur et al. [133] found 

that when ripple period is large, less self-focusing is observed and vice-versa. However, the 

rippling effect is more pronounced at lower laser intensity. Further, the density ripple increases 

the length of self-focusing and thus results in decreasing the laser spot size [68]. Keeping in view 

the ongoing development of high intense lasers, the present paper is aimed to investigate the 

impact of magnetic field on the self-focusing of laser beam propagating in rippled density 

plasma. Effect of various optimized parameters is seen on self-focusing in rippled density 

magnetoplasma. There is an enhancement in self-focusing strength by increasing laser strength 

and magnetic field to few mega-Gausses. The paper is constituted as follows: in section 8.2, 

nonlinear dielectric constant is presented. In section 8.3, the basic formulation and the differential 

equation governing the spot size variation is presented. Section 8.4 is devoted to results and 

discussions. Finally, the conclusion is added in section 8.5. 

8.2 NONLINEAR DIELECTRIC CONSTANT 

Consider the Gaussian beam propagation along z  direction in magnetoplasma with rippled 

density profile, iqz

qennn 0

0

00  , where, 
qn0

is the rippled density. The electric field vector E


 of 

the laser beam in magnetoplasma can be written as 

                           )](exp[ kztiAE  


,                                                                        (8.1) 

where, A


 is the electric field amplitude,   is the angular frequency and 
0)/(  ck 

 
is the 

wave number and c  is the velocity of light in vacuum. The effective dielectric constant   is of 

the form [113] 

                       
*)(0 EE  ,

                                                                                   (8.2)                                                                                                                                                                               
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where, 222

00 )/1/()/1(1  cp   represents the linear part and **)( 2 AAEE   , 

42

0

2

2 )/1/()/()/)(2/1(  cpmce  , menp /4 2

0

2

0    and mceBc /0  represents the 

electron cyclotron frequency. Here, 
0p   is the plasma frequency, e , m  and 

0n  being the 

magnitude of the electronic charge, rest mass and electron density respectively. 
0B  is the 

magnitude of external magnetic field. 

8.3 SELF-FOCUSING EQUATIONS 

The wave equation for the propagation of laser beam in magnetized plasma is of the form 

                            0..
2

2
2  EEE

c
E





,                                                           (8.3) 

Eq. (8.3) can be written as 
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In order to solve Eq. (8.3) we suppose the field variations in the z -direction are much larger than 

in the yx   plane. Therefore, in the zeroth order approximation, the waves are treated as 

transverse and hence space charge generation is negligible. Therefore one obtains 
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on multiplying Eq. (8.5) by i , adding it to Eq. (8.4) and using Eq. (8.7), we obtain 
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where, we have neglected the product of nonlinear part with 
22 / xA  or 22 / yA  . Further,

 
22

00 /1  pzz  , 0 zyzxyzxz  , )/1(/1 2222

0  cpyyxx   and                                                                    

)/1/()/)(/( 2222

0  ccpyxxy i  .  
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where, menp /4 20

0

2

1   , men qp /4 2

0

2

2   , 
0A  is the amplitude and q is the ripple wave 

number. Now, suggesting a two dimensional Gaussian beam for which 0/  y  and using an 

eikonal  ikSAA exp0

00  , where, k  is defined above, 0

0A  and S  depend on x  and z . Therefore, 

using these values in the above equation and separating real and imaginary parts of the emerging 

equation, one obtains 

Real part equation is 

z

A

qz

qzqz
qz

qz
c

p

pc

ccp















































































































 0

0

2

2

2

1

2

222

2

)2cos(

)cos(1)cos(2

1
2

)sin(1

























    

 



































































































































































































































































































)2sin(11
4

1

)sin()cos()2sin(1
4

1

)2sin(1
2

1

)sin(1
4

1
)sin(

)cos(

21
2

1
1

2

1
12

1

22

2

22

1

44

2

22

2

44

1

2

2

2

2

24

2

24

1

2

2

2

0

0

2

qz

qzqzqz

qz

qzqz

qzqz
z

S

c

A

cpcp

cp

cp

cp

p

pcpcpc

c










































































 



112 

 





























































































































































222

2

22

1

2

0

0

2

22

2

2

20

0

0

0

2

0

0

2

0

0

)cos(111

)sin(1
2

1
2

1

x

S
qz

c

A

qz
x

SA

x

S

x

A

cx

A

cpcp

cp

zz




























 

 

 

 

































































































































































































































































































































































































































1)(sin)(cos21
4

)cos(1
2

1

1
4

1

11

)2cos(1

)cos(1
2

1

1
2

1
1

)cos()2cos(1

1)2cos(21
2

1

1
2

1
122

)sin(

12

32

66

2

22

2

44

1

22

1

22

2

22

2

22

1

44

2

44

2

44

1

22

1

2

2

2

2

0

0

2

qzqz
qz

qz

qzqz

qz

qzqzq

qz

qz

c

qSA

cp

cp

cp

cp

cp

cp

cp

cp

cp

cpcp

p

c



































































































 












































































































































































































































































































































)3cos(1

)(cos1)2cos(

1
2

1
2

1
1)sin()3sin(1

4

3

)sin(
2

)2sin(11
4

3
1

)2cos(1)cos(12

12

22

2

2

22

1

22

2
2

22

1

44

2

22

2

22

1

22

2

22

1

2

2

2

0

0

qz

qzqz

c

qz

qzqzqz
qz

qz
c

z
qzqz

qzqz

c

qA

cp

cp

cp

cpcp

cpcp

cpcp

p

c





















































































 



113 

 

             0* 0

0

0

0

0

022

2

 AAA
c




                                                                            (8.11)              

 

And imaginary part equation is 

z

A

qz

qzqzqz

c
cpcp

pppc

c








































































































































 0

0

22

2

22

1

2

2

2

2

2

1

2

2

)cos(1
2

1
1

2

1
1

)sin()cos(12

1




































 








































































































































































































2

1
)2cos(

2

1

)cos(
2

1

4

1
1

)cos(1)sin(

1
2

2

2

2

2

2

1

4

1

4

22

2

2

1

42

2

2

0

0

2

qz

qz

qzqzqzqz

z

S

c

A

p

pppc

cpp

cp








































 

 

 


































































































































































































































































































































































22

1

24

2

2

46

2

22

1

22

2

2

1

22

1

24

2

2

2

24

2

24

1

2

1

2

2

2

4

2

0

0

2

12)2sin(1
4

)(sin3)sin(1
4

1
4

1
11)sin(

1
2

1
11

2

)sin()2cos(1
2

1

1
2

1
212

12

)cos()sin(



































































































cpcp

cp

cpcpp

cpcp

pcp

cppc

pc

qz
qz

qzqz
qz

qzqz

qz

qzqzqz

c

qzqzqSA

 



114 

 















































































































































22

2
0

0

2

2
0

0

0

0

2

2

2

1

2

0

0

2

)sin(

2)cos(
2

1

2

1
1

11
2

x

S
qz

c

A

x

S
A

x

S

x

A
qz

c
p

ppc

zz

c
























 

0

)3cos(1
4

3

)3sin(1

)2sin(1
2

1
)2sin(

2

1
4

3
1)2cos(

2

1
1)cos()cos(1

)cos(
2

1
1)sin(

1

24

2

22

2

22

1

2

2
2

22

1

2

2

2

1

22

2

2

2

1

2

2

2

4

0

0 





































































































































































































































































































































qz
qz

qz

qzqz

c

qz

qzqz

qzqzqz
c

z

qzqz

c

qA

cp

cp

cp

p

cpp

pcc

ppc

p

c











































































                         

                                                                                                                                      (8.12)                                                                                 

Further,   )/exp()/( 22

0

222

00

20

0 frxfEA  , 0r  
is the spot size of laser beam and 

  )()(2/2 zzxS   , where,     zfzfz zz 


/)(/1/12)(
1

00   and 1  may be 

regarded as curvature radius of laser beam,   is a constant, independent of x  and )(zf  

represents the beam width parameter. On substituting these values in Eq. (8.11) and after 

equating the coefficients of 
2x
 
on both sides of the resulting equation, the expression for beam 

width parameter is obtained as follows:  
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                                                                                                                                   (8.13) 

where, cr /00    is the equilibrium beam radius, 2222

00

22

0 /  cmEe  represents the initial 

laser beam intensity (laser strength) parameter, 
dRz /  is propagation distance, 2

0krRd   

represents the diffraction length and dqRd   represents the normalized ripple wave number. Eq. 

(8.13) represents the spot size variation of laser beam with the propagation distance. 
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8.4 RESULTS AND DISCUSSION 

Eq. (8.13) represents a nonlinear differential equation which governs the behavior of f  with 

distance   in rippled density magnetoplasma. We solved Eq. (8.13) numerically by applying the 

initial condition at 0 , 1f ,   0/  f  and   0/ 22  f  with the typical parameters 

given as [94]; angular frequency of laser sec/10778.1 14rad , laser beam spot size 

mr 400   and equilibrium plasma density 180

0 1055.2 n cm
-3

. By optimizing laser and plasma 

parameters, we have investigated laser beam dynamics in rippled density magnetoplasma. 

Aggarwal et al. [94] claimed that the self-focusing of laser beam in rippled density plasma occurs 

at large   values ( 25.2  and 75.1 ). Further, their results reveal that there is a direct 

dependence of decentered parameter on self-focusing. But, in the present communication, the 

magnetic field of a few MG  gives rise to strong self-focusing in rippled density plasma. Further, 

the self-focusing occurs earlier at 12.0  as depicted in figure 8.1 which shows the behavior of 

f  with ξ for different values of laser strength parameter. The other parameters are:  /1p
0.4, 

 /2p
0.15,  /c

0.12 ( MGB 19.120  ) and d 59 as taken by Lin et al. [134]. It is 

observed that as the laser strength parameter is increased, the nonlinear term dominates the 

diffraction term and self-focusing occurs earlier at 12.0 . The laser spot size gets reduced 

which in turn decreases the beam width parameter and hence laser beam is self-focused. Figure 

8.2 illustrates the variation of f  with   for different values of  ; m 5.0 , m06.1  and 

m5.1 . The laser strength parameter is kept fixed at 0 0.3 and the other parameters are same 

as taken in Figure 8.1. It can be seen from figure 8.2 that the beam width parameter acquires 

minimum at a very short propagation distance (  = 0.24) corresponding to m 5.0 . 

Therefore, stronger and earlier self-focusing is achieved for m 5.0  than m06.1
 and m5.1 . 

Hence, the selection of laser wavelength is also important in achieving earlier focusing of the 

laser beam. Figure 8.3 depicts the behavior of f  with ξ for different values of  /1p
. The laser 

strength parameter is fixed at 0 0.3 and the other parameters are same as taken in figure 8.1. 

It is found that as the electron density increases, the plasma dielectric constant decreases with the 
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result, the amplitude of laser spot size gets reduced close to the axis of propagation. 

Consequently, the minimum value of f  shifts towards lower value of   and the beam focuses in 

high plasma density region.  

Figure 8.4 depicts the behavior of f  with   for various values of  /2p
 = 0.15, 0.25 & 0.3 

with 0 0.2. The other parameters are same as has been taken in Figure 8.1. It is clear from 

figure 8.4 that as  /2p
 increases, self-focusing becomes stronger. It is due to the fact that as 

 /2p
 increases, the medium acquires a saturating nonlinearity which limits the energy 

associated with the electrons of the laser beam. Therefore, the beam width parameter reaches to 

its minimum value for  /2p
 = 0.3 at   = 0.18. Hence, one would expect the efficient self-

focusing because of suitable wavelength of electron density ripple is present in the plasma. 

Therefore, the outcomes of present analysis are in a good agreement with those of Kaur and 

Sharma [68]. Where in the effect of density ripple is to decrease the minimum spot size of the 

laser beam. Figure 8.5 depicts the behavior of f  with   for various values of magnetic field; 

01.0/ c
, 0.04, 0.08 & 0.12 (corresponding values of magnetic field are MGB 01.10  ,

 

MGB 06.40  , MGB 12.80   and MGB 19.120   
respectively). The other remaining parameters 

have been taken same as in Figure 8.1. The figure shows that it is the magnetic field which has a 

serious influence on the behavior of beam width parameter. As the magnetic field increases, the 

nonlinear term begins to control over the diffractional divergence term. It further, changes the 

propagation characteristics of the medium. Due, to strong interaction between the laser field and 

magnetic field, the laser beam is more focused. Thus, magnetic field has a significant role in 

enhancing the self-focusing of laser beam in rippled density plasma. Figure 8.6 illustrates the 

behavior of f  with   for various values of normalized ripple wave number; d = 50, 65 & 75 

with 0 0.3. The other parameters are: d 59,  /1p
0.4,  /2p

0.15 and  /c 0.12. 

It is interesting to note that the beam width parameter shows a different kind of behavior. As we 

increase the normalized ripple wave number, the beam width parameter decreases gradually at   

= 0.12. Further, due to large ripple wave number, the wavefront curvature continues to focus the 

laser beam inside the magnetoplasma. Thus, one can say that the self-focusing strength of laser 
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beam increases in rippled density magnetoplasma. The present analysis results may be useful in 

laser driven fusion and plasma based accelerators. 

8.5 CONCLUSION                                                                                            

In the present communication, we investigated the self-focusing of laser beam in rippled density 

magnetoplasma. Effect of magnetic field and normalized ripple wave number on self-focusing of 

a laser beam has been analyzed at various optimized parameters. The differential equation for the 

beam width parameter has been obtained and the results have been plotted and have been 

discussed. The results revealed that the magnetic field of a few MG increases the self-focusing 

capacity of laser beam strongly in rippled density plasma. Further, there is a strong coupling 

between the magnetic field and laser field. Due to the presence of suitable wavelength of density 

ripple in plasma, stronger and earlier self-focusing is achieved. The outcomes obtained are 

expected to be useful in laser driven fusion and plasma based accelerators. 
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Figure 8.1: Dependence of f  on   for various values of 
0 . The other parameters are: d 59, 

 /1p
0.4,  /2p

0.15 and  /c
0.12. 
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Figure 8.2: Dependence of f  on   for various values of  . The other parameters are:  d 59, 

 /1p
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0.12 and 0 0.3. 

 

 

 

 

 



122 

 

 

 

                                                  

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f 
(

)



 
p1

/

 
p1

/

 
p1

/

 
p1

/

 

Figure 8.3: Dependence of f  on   for various values of  /1p
. The other parameters are: d
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Figure 8.4: Dependence of f  on   for various values of  /2p
. The other parameters are: d
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CHAPTER-9 

SELF-FOCUSING OF HERMITE-COSINE- GAUSSIAN LASER BEAM IN 

PLASMA UNDER DENSITY TRANSITION 

9.1 INTRODUCTION 

The self-focusing of laser beams in a nonlinear medium like plasma is a captivating field of 

research which has an excellence in both theoretical and experimental fields [8, 12]. The intensity 

of the laser beam, sensitivity of decentered of decentered parameter b and density transition are 

considered to have a crucial role and having interesting qualities in self-focusing [22, 90]. During 

the propagation of a laser beam in a Kerr medium, the central parts of the beam give rise to radial 

compression and the cos-Gaussian beam eventually converts in to a cosh-Gaussian type beam 

with moderate power [27]. In weakly relativistic and ponderomotive regime, a large value of 

absorption level weakens the self-focusing effect in the absence of decentered parameter. 

However, oscillatory self-focusing occurs for a higher value of decentered parameter and all 

curves are seen to demonstrate self-focusing in a sharp manner [21]. In ponderomotive self-

focusing, it is the density ramp that results in sooner and better self-focusing [77]. Furthermore, 

the quantum effect plays a crucial role in making it earlier and stronger as compared to classical 

one [84]. Again, apart from quantum effects, the upward ramped density profile results in higher 

oscillations of beam width parameter and consequently in sooner and better focusing [82]. Nanda 

et al. [91] found that the optimized laser and plasma parameters are equally important to obtain 

better focusing [93]. Patil et al.
 
[135] predicted that the thermal quantum effects are equally 

important for more oscillations of beam-width parameter. However, it was found that in presence 

of the multiply charged ions, the nonlinear effects get reduced and hence self-focusing becomes 

less pronounced [136]. Gupta et al.
 
[87] found that it is important to consider the ion temperature 

for the thermal self-focusing. Furthermore, the upward density transition can accelerate the 

electron to higher energy over a long propagation distance in comparison to uniform density 

relativistic plasma [85]. Again, Kant and Wani [118] found that the phenomenon of self-focusing 

is enhanced by decentered parameter and density transition. Moreover, the oscillatory self-
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focusing takes place for decentered parameter b ≤ 2 [106]. It is to be noted that the optimization 

of intensity parameter and wavelength can help in obtaining sooner and strong self-focusing [94]. 

We previously studied the self-focusing of Hermite-cosh-Gaussian beam in plasma and observed 

that these beams give freedom to mode index )(m  and decentered parameter )(b . But, it was 

possible only up to the decentered parameter 1b  [119]. Thereafter, Wani and Kant [130] 

investigated the relativistic self-focusing of HcosG beam in collisionless plasma. They reported 

that the beam width parameter shows a strong oscillatory behavior and hence the laser beam 

becomes more focused at lower values of decentered and intensity parameters. However, in the 

present communication, our purpose is to analyze the impact of upward plasma density ramp 

profile )/tan()( 0 dnn  
 
on self-focusing of HcosG beam propagating in underdense plasma 

which was not done earlier for such a beam. The importance of the present work lies in the fact 

that the density transition causes more reduction in the amplitude of spot size of laser beam close 

to the propagation axis. Therefore, the minimum spot size of the beam decreases and hence 

modulates the phenomenon of self-focusing. Above all in the present analysis the decentered 

parameter has a noticeable impact on the propagation of HcosG beam. The present analysis 

employs WKB and paraxial approximations and is based on the parabolic wave equation 

approach [114]. The non-linear dielectric constant of plasma is presented in ponderomotive 

regime. The equations that govern the laser spot size are derived. The computational results in 

context of plasma density ramp and decentered parameter are discussed and finally a brief 

conclusion is added. 

9.2 FIELD DISTRIBUTION OF HERMITE – COSINE – GAUSSIAN (HcosG) BEAM 

Considering the Hermite-cosine-Gaussian (HcosG) laser beam that propagates in the z direction 

has the field distribution of the form 
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where, 
mH and 

nH are the thm and thn  order Hermite polynomial respectively, 
0E  is the constant 
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amplitude of the electric field, 
0r is the waist width, 

0 is the parameter associated with the 

cosine function, )(1 zf and )(2 zf are the beam width parameters in respective x and y directions. 

9.3 NONLINEAR DIELECTRIC CONSTANT 

Consider the propagation of HcosG laser beam in plasma whose dielectric constant is 

characterized of the form [20] 

                                  )(0

 EE                                                                          (9.2) 

where, 
22

0 /1  p  represents the linear part of dielectric constant, menp /)(4 22   ,
 

)/tan()( 0 dnn  
 
and   2/12

00 /4 menp   is the plasma frequency, e , m  and 
0n  being the 

magnitude of the electronic charge, rest mass and electron density respectively, ξ is the 

normalized propagation distance and d is a dimensionless adjustable parameter.  The other part 

  )/tan()4/3exp(1)/(*)( *22

0 dMEEmEE p    represents the nonlinear part of 

dielectric constant [28],
 
where, 

0

22

0

2 6/ TkmMe B   and M  is the scaterrer mass in the plasma, 

ω is the frequency of laser used, 
Bk  is the Boltzmann constant and 

0T  is the equilibrium 

temperature. 

9.4 SELF-FOCUSING EQUATIONS 

The wave equation that governs the propagation of laser beam can be of the following form 
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The last term of equation (9.3) on left hand side is neglected as  2 2  ln 1k     , where ‘ k

’represents the wave number the laser beam. Thus, 
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In Cartesian co-ordinate system, we can write this equation as 
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The solution of equation (9.5) is of the following form, 



129 

 

    kztiExpzyxAE  ,,


                       (9.6) 

With 













 )/tan(1

2

2

0

2

2

2

2

0

2 d
cc

k
p







,                                                               (9.6a)
 

where, dz/R . Now, differentiating equation (9.6) twice w. r. t. lyrespective zand,' yx , we get 
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Now, employing the WKB approximation and substituting the above values in Eq. (9.5) and 

neglecting )/( 22 zA  , we get 
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To solve equation (9.7) we express A as 

)],,(exp[),,(),,( zyxikSzyxAzyxA mn                                                                   (9.8) 

Where,
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mnA  and S  depend on x , y and z . Differentiating equation (9.8) w. r. 
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Substituting the above values in Eq. (9.7), we get 
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Now, equating real and imaginary parts of Eq. (9.9), we get 
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Imaginary part equation is  
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The solutions of equations (9.10) and (9.11) can be written as:
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And  
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Where, )/))((/1()( 111 zfzfz  and )/))((/1()( 222 zfzfz  represent the curvature of the 

wavefront in x and y directions respectively. Now, using Eq. (9.12) and Eq. (9.13) in Eq. (9.10) 

and employing the paraxial approximation, we obtain the expressions for the beam width 

parameters 
1f  and 

2f  as follows:  
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Where, 
0 0b r   

is called decentered parameter, cr /00    is the equilibrium beam radius, 

dRz /  is the normalized propagation distance and 2

0krRd   represents the diffraction 

length. Equations (9.14) and (9.15) represent the expressions for the parameters
1f and

2f  

respectively. 

9.5 NUMERICAL RESULTS AND DISCUSSION 

To compute the above analysis, we solve Eq. (9.14) and Eq. (9.15) by using the initial conditions 
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     respectively. The various parameters 

chosen for the purpose of numerical calculations are as follows: 
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0 105  and 
317

0 1098.9  cmn [71]. The diffractional divergence of 

the laser beam is due to the diffraction term while as self-focusing is due to nonlinear term. 

Figures 9.1 (a) and 9.1 (b) represent the dependence of 
1f  and

2f  
with propagation distance for 

various values of  /0p  with 0b  and 1 respectively. The other parameters are 
2

0E = 2, Mm /

= 0.02, cr /0 = 50 and d  = 10. It is observed from these figures that the beam width 

parameters attain minimum values at ξ = 4.3 (corresponding to  /0p = 0.8) and ξ = 2.3 

(corresponding to  /0p = 0.7) respectively. The amplitude of successive oscillations of 
1f  

and 

2f  decreases and shifts towards lower values of ξ. It means that by considering the ramped 

density profile and taking in to account the effect of relative plasma density, the self-focusing 

occurs earlier and becomes stronger. This is due to increase in slope of plasma density curve 

along the propagation axis. Further, as the laser beam deepens in to the plasma, the plasma 

dielectric constant decreases rapidly. It is because the electron density depends on the 

propagation distance. Furthermore, the density ramp causes more reduction in the amplitude of 
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spot size of laser beam close to the propagation axis. Consequently, the effect gets enhanced and 

the beam is more focused. However, in uniaxial crystals the HcosG beam spreads in the yx   

plane with increasing propagation distance. However, for a short propagation distance its initial 

beam profile remains invariant [137]. But, in the present communication, it is interesting to note 

that the oscillatory behavior of 
1f and

2f is deepened gradually and self-focusing of the laser 

beam starts acting comparatively at lower values of ξ. Therefore, a desirable self-focusing effect 

of HcosG beam is observed by exploiting the decentered parameter and hence agrees with the 

results of Patil et al.
 
[73]. 

Figure 9.2 indicates the variation 
1f and

2f  with ξ for different values of b at  /0p  = 0.5. The 

other parameters are same as taken in figure 9.1(a). It is evident from figure 9.2 that the beam 

width parameters attain a minimum value at comparatively lower value of ξ = 3.15 corresponding 

to decentered parameter 5.1b . It is due to the fact that as the decentered parameter is increased, 

the laser spot size of HcosG beam gets reduced under plasma density ramp. Therefore, the beam 

converges rapidly and focuses to a smaller spot size. This is because of decentered parameter that 

changes the self-focusing / defocusing nature of beam in a significant manner. Further, it is the 

important parameter that has to be optimized to get stronger self-focusing and thus supports the 

results [90]. Figure 9.3 represents the beam width parameters variation with   for various values 

of 
2

0E . The decentered parameter is fixed at 5.1b  and the other parameters are same as taken 

in Figure 9.2. It is obvious from the figure 9.3 that sharp self-focusing is observed at 15.3  

(corresponding to 
2

0E = 2). This is because self-focusing term becomes dominant over 

diffraction term because of the relativistic nonlinearity. It is seen from figure 9.3 that the laser 

beam becomes self-focused as we increase the initial power of the beam. Hence, in addition to 

density ramp and decentered parameter, the intensity of laser can be considered to be important in 

obtaining better focusing of HcosG laser beam. 

9.6 CONCLUSION 

In the investigation under consideration, we have studied the propagation of Hermite-cosine-

Gaussian (HcosG) beam by considering plasma density ramp in a parabolic medium under 
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paraxial approximation. Our simulation results reveal that the density transition and decentered 

parameter )(b  enhance the self-focusing of HcosG laser beams to a greater extent. It is noticed 

that the introduction of plasma density ramp makes a remarkable contribution to the process of 

self-focusing. Moreover, due to increase in the value of intensity of laser beam, self-focusing 

enhances and shifts towards lower values of normalized distance of propagation. Thus, one may 

conclude that the optimized laser and plasma parameters have a significant role in improving the 

focusing of HcosG beam in plasma. The results of present communication could be useful for 

various applications like plasma-based accelerators and inertial fusion.  
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Figure 9.1 (a): Dependence of 
1f and

2f  on   for various values of  /0p . The decentered 

parameter is fixed at 0b  and the other parameters are 
2

0E = 2, Mm / = 0.02, cr /0 = 50 and 

d  = 10 
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Figure 9.1(b): Dependence of 
1f and

2f  on   for various values of  /0p . The decentered 

parameter is fixed at 1b  and the other parameters are same as taken in Figure 9.1 (a) 
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CHAPTER-10 

SUMMARY AND CONCLUSION 

The self-focusing of laser beam in plasma is considered to be an important and captivating 

process that occurs during laser-plasma interaction as it is caused by the change in refractive 

index which arises due to relativistic mass effect, ponderomotive force, induced plasma diffusion 

and non-uniform ohmic heating. The up-to-date advances in such laser technology have made the 

experimentalists to use the pulses focused to extremely high intensities of the order of (

20 210 /I W cm ). This makes it possible to explore the parameters both in atomic and plasma 

physics. With the advent of maser, laser and other radiation sources, coherent electromagnetic 

waves having well defined frequency and phase, have been shown to have wide ranging 

applications and their interaction with the plasma has been a captivating field of research in 

recent years. Because of intense electromagnetic radiations, the electron velocity in the plasma 

becomes quite large as compared to the velocity of light. Therefore, one must take in to account 

the relativistic mass variation. It therefore leads to self-focusing as the dielectric constant of 

plasma is an increasing function of the intensity. It is the ponderomotive force of the focused 

laser which then urges the electrons to move away out of the region having high intensity, 

reducing the local electron density, and consequently increasing the plasma dielectric function 

which leads to sooner and even stronger self-focusing. Further, the studies of laser beams with 

plasmas have attracted the researchers as the waist size is connected to beam width parameter. 

Therefore, studies of beam width parameters variation becomes an important subject of high 

power laser beams. Furthermore, a laser beam exhibits oscillatory behavior while propagating in 

plasma. In order to improve the self-focusing effect, the plasma density transition is introduced. 

In the present thesis, we considered the density transition type based self-focusing of a short 

pulse laser in plasma for HchG, ChG, HcosG, simple Gaussian and chirped Gaussian beams. Due 

to density transition the spot size of the beam decreases up to a Rayleigh length and does not 

increase much. By choosing optimized parameters, the combined effect of density ramp, 

decentered parameter which is a characteristic of cosh-Gaussian beams and linear absorption on 

the beam width parameter behavior shows that self-focusing occurs sooner, becomes enhanced 

with shorter propagation distance and then its defocusing takes place. The absorption weakens 
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the self-focusing effect and density transition sets an earlier and stronger focusing. Therefore, the 

study of such beams can be analyzed in plasma, but the essential thing is that the plasma density 

ramp, decentered parameter and absorption coefficient act in such a way that they change the 

self-focusing or defocusing nature of the beam in a significant manner. Further, due to dominance 

of self-focusing term over the diffraction term, the self-focusing of HcosG beams occurs in an 

enhanced manner. However, in uniaxial crystals the HcosG beam spreads in the yx   plane with 

increasing propagation distance, and its beam profile remains unchanged for a short propagation 

distance. But, as the decentered parameter is increased, the laser spot size of HcosG beam gets 

reduced during propagation in plasma under density transition and the beam then converges 

rapidly and focuses to a smaller spot size. Further, since the laser beam used is highly powerful, 

the relativistic nonlinear effect emerges from the relativistic mass correction and depends on 

intensity factor 
2

0E  and relative plasma density  /0p . The nonlinear term is responsible for 

self-focusing and the divergence of the beam is due to the diffraction term. Further, when the 

plasma density is increased at relativistic intensities, most of the electrons of the beam having 

relativistic nature travel with the laser pulse. With the result, a higher current and consequently a 

higher magnetic field get generated, which further leads to enhancement of self-focusing. 

Now, as the initial electron density depends on the distance of propagation. Therefore, as soon as 

the laser beam passes deeper in to the plasma, the dielectric constant of plasma decreases rapidly. 

The laser beam then shows an oscillatory behavior and the frequency of oscillation increases, 

which in turn decreases the amplitude gradually close to the axis of propagation. Therefore, by 

considering the density transition (ramped density profile) and taking in to account the effect of 

relative density, the self-focusing process of laser occurs earlier and becomes stronger. Again, 

with increase in ramp slope of plasma density curve along the propagation axis, the process 

occurs sooner and hence laser beam is more focused. Further, by increasing the intensity, the 

diffraction of the propagating beam in a nonlinear medium starts earlier. Thus, one can say that it 

is the intensity of the beam that controls the behavior of beam width parameter. Again, due to 

increase in the value of intensity, highly energetic electrons will continue to move forward 

without loss of energy. Furthermore, the beam width parameter is a function of laser spot size and 

depends on the intensity of beam. Therefore, the intensity rise results in the reduction of spot size 

very close to the axis of propagation and the density transition leads the beam width parameter to 
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decrease with a higher rate. Consequently, the self-focusing of laser beam is enhanced to a 

greater extent by exploiting the density transition in plasma. Thus the density transition has a 

crucial role in laser-plasma interaction. 

The chirp parameter increases the electron energy and hence momentum so that the electron 

escapes from the laser beam. The value of chirp parameter decreases with laser intensity and 

initial electron energy. Although, without chirp, the laser beam shows self-focusing up to a 

certain critical value but, as the propagation distance increases, it starts to experience defocusing. 

The chirp parameter minimizes the defocusing and increases the ability of process of self-

focusing of laser in plasma. Further, the amplitude of oscillations decreases with the distance of 

propagation so that sooner, earlier and stronger self-focusing effect is achieved. Also, on 

increasing the values of negative chirp, the self-focusing at first is strengthened and after 

attaining a critical value the laser beam defocuses. This is because the frequency of a linear and 

negative chirped laser beam changes during the propagation in the plasma. The spot size of laser 

beam depends on   and at extended propagation distances the temporal shape of the chirped 

laser beam will be changed. Therefore, the defocusing of laser beam is weakened and there by the 

self-focusing effect is strengthened by using chirp. Hence, the chirp parameter plays a significant 

role in minimizing the defocusing and increasing the ability of process of self-focusing in 

collisional plasma. Now, for the case of rippled density magnetoplasma, it is the magnetic field 

that has a serious influence on the beam width parameter variation. As the magnetic field is 

increased, the nonlinear term begins to control over the diffractional divergence term and the 

propagation characteristics of the medium are changed. Due, to strong interaction between the 

magnetic and laser fields, the laser beam is more focused. Thus, one can say that the magnetic 

field has a significant role in enhancing the self-focusing effect in rippled density plasma. 

Further, due to large ripple wave number, the wavefront curvature continues to focus the laser 

beam inside the magnetoplasma. Thus, one can say that the self-focusing strength of laser beam 

increases in rippled density magnetoplasma. 

The present work has direct applications to accelerators based on plasma including laser-driven 

fusion, inertial confinement fusion, x-ray lasers etc. In such applications, it is important for a 

highly powerful laser beam to propagate over extended distances without loss of energy so that 
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an efficient interaction with the plasma is preserved. But during such laser-plasma interactions, 

the resultant intensity of the laser beam is being affected by instabilities such as scattering 

processes like stimulated Brillion scattering and stimulated Raman scattering. These processes 

can greatly affect the absorption of light in laser produced plasmas because they can prevent light 

from reaching the critical density region. The laser pulses are very useful in studying the 

mechanism of powerful terahertz radiation generation from gas targets. The quasi-static 

transverse currents created by laser field ionization in plasmas are responsible for the THz 

emission. The chirped laser pulses are used to generate strong THz pulses with amplitudes 

scaling linearly with the laser amplitude. Thus, density transition is considered to be important in 

laser plasma interactions, particularly for the self-focusing of short pulse laser in an under dense 

plasma. Increase in initial density and ramp slope decreases the minimum spot size of the laser 

beam. The laser and plasma parameters are crucial for self-focusing process in plasmas as it is 

enhanced with such optimized laser and plasma parameters. 
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INTRODUCTION 

The self-focusing of laser beams in nonlinear optical media is a fascinating topic which has inspired 

theoretical and experimental interest. The self-focusing of laser beam plays an important role in a large no. of 

ultra-intense laser applications such as laser-driven fusion, laser–driven accelerators, x-ray lasers, electron 

acceleration in Wakefield, fast igniter concept of inertial confinement fusion etc. These applications require 

the pulse to propagate over several Rayleigh lengths in order to preserve an efficient interaction with the 

plasma. Also it is important to note that for above applications preformed plasma channels are required to 

guide the laser beam beyond the Rayleigh length, after which the beam expands infinitely in vacuum due to 

natural diffraction. Self-focusing of a laser beam in plasma has been examined by a number of authors. Two 

different mechanisms have been proposed. Self-focusing due to plasma density variations produced by 

ponderomotive forces and relativistic self-focusing due to Lorentz factor of the optical constants in the plasma. 

Self-focusing is very undesirable in laser fusion applications where it could prevent compression of fuel 

pellets. On the other hand the self-focusing of a laser beam in to a filament would provide an effective method 

of achieving the high flux densities required to study laser plasma interactions such as generation of electron- 

positron pairs. The self-focusing of a laser beam in plasma is being treated in terms of the ponderomotive 

acceleration due to the gradient of light intensity. The focusing of radiation within the first minima of 

diffraction sets a lower limit to the laser power which is of the order of 1MW for the usual lasers if cut-off 

density and a plasma temperature of about 10eV are assumed. Also it has been studied that in the presence of a 

magnetic wiggler of suitable period, a Gaussian laser beam resonantly generates a second harmonic in a 

plasma .The phase matching conditions for the process are satisfied for a specific value of wiggler period . The 

self-focusing of the fundamental pulse enhances the intensity of the second harmonic pulse. The harmonic 

undergoes periodic focusing in the plasma channel created by the fundamental wave. 

When an intense laser radiation propagates through plasma the relativistic nonlinearities lead to self-

focusing of the laser pulse when the laser power exceeds the critical power. Besides this, ponderomotive 

nonlinearity leading to plasma density perturbation is also expected to affect the focusing properties of the 

laser pulse. The intense laser beam sets the plasma electrons in relativistic quiver motion. Consequently, 

ponderomotive nonlinearity sets in, leading to electron density perturbation inside the plasma. This 

perturbation is caused due to V×B force that the radiation field exerts on the free plasma electrons. The effects 

of relativistic nonlinearity on the laser pulse as it traverses through partially stripped plasma have been studied 

in great detail. However, the effects of ponderomotive nonlinearity along with these effects have not been 

included. Since both the nonlinearities after the propagation of a laser beam through plasma, so it is important 

to study their combined effect. 

The interaction of lasers with semiconductors has been a fascinating field of research for several decades. 

Semiconductors provide a compact and less expensive medium to model nonlinear phenomena encountered in 

laser-produced plasmas. The observation of self-focusing in semiconductors is of great relevance to the 
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practical applications and possibilities of optical limiting devices. In equilibrium, the temperature of the free 

carriers is the same as that of the crystal so that the net energy exchange between the carriers and the lattice of 

the crystal is zero. When an electric field is applied, the free carriers gain energies, which causes the 

temperature to be higher than that of the crystal in the steady state. For moderate values of the electric field, 

the increase in the temperature of the carriers is proportional to the square of the electric field. The change in 

temperature of the carriers leads to corresponding change in the effective mass of carriers. This effect is 

important for laser self-focusing in semiconductors. The high power laser plasma interaction continues to be a 

front line area of research. The significant interest is currently focused on laser interaction with atomic 

clusters. An intense short pulse laser quickly converts them in to plasma balls which expand rapidly under 

hydrodynamic expansion or coulomb explosion. As the electron density inside an expanding cluster decreases 

and approaches thrice the critical density, the electron response to the laser is resonantly enhanced and one 

observes a host of exciting phenomena e.g. strong absorption of laser energy, efficient generation of 

harmonics, self-focusing and energetic neutron production.  

IMPORTANCE OF SELF FOCUSING: 

The self- focusing of laser beam plays an important role in a large number of applications such as laser -driven 

fusion, laser-driven acceleration, x-ray lasers, optical harmonic generation, the production of quasi mono- 

energetic electron bunches, electron acceleration in wake-field, fast igniter concept of inertial confinement 

fusion etc. Self-focusing effect imposes a limit on the power that can be transmitted through an optical 

medium. It means self-focusing reduces the threshold for the occurrence of other nonlinear optical processes. 

Self-focusing often leads to damage in optical materials so it is a limiting factor in the design of high-power 

laser systems but it can be harnessed for the design of optical power limiters and switches. The ponderomotive 

force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. 

Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. For laser 

powers exceeding the critical power, the analysis of relativistic self-focusing indicates that a significant 

contraction of the spot size and a corresponding increase in intensity is possible. The self-focusing of a laser 

pulse in plasma with periodic density ripple has also been investigated. The effect of density ripple is to cause 

overall increase in the self-focusing length. The minimum spot size decreases with the wave number of the 

ripple. The relativistic self-focusing occurs almost instantaneously in the time of the order of a period of the 

optical oscillation, while the ponderomotive self-focusing arises later in time because of the motion of plasma 

from the axis of the beam. It is further observed that the self-focusing length decreases with increase in 

intensity of the beam. This is due to the fact that at relativistic intensity, a quasi-stationary magnetic field is 

generated, the pinching effect of which adds to self-focusing. 
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IMPORTANCE OF PLASMA DENSITY RAMP: 

The plasma density ramp plays an important role during laser-plasma interaction. To achieve strong self-

focusing, it is important to apply a specific plasma density profile that will have a good impact on the 

applications of laser-plasma interaction. Self-focusing of laser beam has been investigated under different 

plasma density ramp profiles. Under plasma density ramp, self-focusing becomes stronger and laser beam can 

propagates the distance much greater than the Rayleigh length. Under the plasma density ramp the 

ponderomotive self-focusing of a short laser pulse may acquire a minimium spot size due to the 

ponderomotive self-focusing. The self-focused laser pulse diffracts and focuses periodically because of the 

mismatch between the channel size and spot size.By slowly increasing the density, the oscillation amplitude of 

the laser spot size can be significantly reduced. As the laser propagates through the density ramp region, it 

sees a slowly narrowing channel. In such a case the oscillation amplitude of the spot size shrinks, while its 

frequency increases. Therefore, the laser pulse propagating in a plasma density ramp tends to become more 

focused. If there is no density ramp, the laser pulse is defocused due to the dominance of the diffraction effect. 

As the plasma density increases, self-focusing effect becomes stronger. It is because as the laser propagates 

through the density ramp region, it sees a slowly narrowing channel. In such an environment, the oscillation 

amplitude of the spot size shrinks, while its frequency increases. Also as the equilibrium electron density is an 

increasing function of the distance of propagation of the laser, the plasma dielectric constant decreases rapidly 

as the beam penetrates deeper and deeper in to the plasma. Consequently, the self-focusing effect is enhanced 

and the laser is more focused. However, the minimum plasma density is chosen in the assumption of 

underdense plasma. The length of plasma density ramp is considered to avoid the maximum defocusing of the 

laser and better focusing is observed by increasing the length of the density ramp. But the plasma density 

should not be much larger; otherwise, the laser can be reflected because of the over dense plasma effect. So, 

plasma density ramp plays an important role to make the self-focusing stronger. This kind of plasma density 

ramp may be observed in a gas jet plasma experiment. 

REVIEW OF LITERATURE: 

Interaction of a short pulse laser with plasma has been a fascinating field of research for last few 

decades. Self-focusing of intense laser light in plasma plays an important role in a large amount of high power 

laser applications, such as x-ray lasers, x-ray generation, laser-driven acceleration, high harmonic generation 

etc. Therefore, laser beams have always been an interesting area of research.  

The first discussion of self-focusing of laser beams in plasma was published by Askaryan (1962). He 

considered the energy momentum flux density of the laser beam at self-focusing, where the whole plasma has 

been expelled and where the pressure is balanced by the plasma pressure profile acting against the centre of 

the laser beam. Askaryan was able to compare the necessary optical intensities for compensating the gas 

dynamic pressure.  
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Hora (1969) studied the self-focusing of laser beams in plasma by ponderomotive forces and treated 

self-focusing of laser beams in plasma in terms ponderomotive acceleration due to the gradient of light 

intensity. The focusing of radiation within the first minima of diffraction sets a lower limit to the laser power 

which is of the order of 1MW for the usual lasers if cut-off density and a plasma temperature of about 10eV 

are assumed. 

Sodha et al. (1974) investigated the self-focusing of a cylindrically symmetric Gaussian 

electromagnetic pulse in collision-less and collisional plasmas by considering the ponderomotive force and the 

non-uniform heating (and the consequent redistribution of electrons) as the sources of non-linearity. They 

considered that the duration of pulse is larger than the characteristic time of non-linearity. They found that the 

beam is focused in a moving filament. Because of relaxation effects the peak of the pulse is shifted to higher 

values in case of collisional plasmas and the pulse is severely distorted because of self-focusing; the shift of 

peak in the case of collision-less plasmas is not significant. 

Siegrist (1976) studied self-focusing in plasma due to ponderomotive forces and relativistic effects. 

The propagation of intense laser pulses in a plasma discussed in terms of a constant shape paraxial-ray 

approximation. Self-focusing due to ponderomotive forces and relativistic effects investigated. It is found that 

the stationary self-focusing behaviour of each mechanism treated separately similar with several orders of 

magnitude difference in critical power. In stationary self-focusing due to the combined mechanisms, complete 

saturation of ponderomotive self-focusing prevents the occurrence of relativistic effects. 

Cohen et al. (1991) investigated the dynamics of ponderomotive self-focusing in plasmas. They 

calculated the space-time evolution of non-linear self-focusing of a coherent electromagnetic beam in plasma. 

The parameters are considered for which the dominant non-linearity is the ponderomotive force and the 

plasma response is hydrostatic. The self-focusing can be important both for high-power lasers in inertial-

confinement fusion applications and for heating of magnetically confined plasmas with intense, pulsed free 

electron lasers. 

Hafizi et al. (2000) investigated the relativistic self-focusing and ponderomotive channelling of intense 

laser beams. The ponderomotive force associated with an intense laser beam expels electrons radially and can 

lead to cavitations in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the 

refractive index. They derived an envelope equation for the laser spot size, using the source-dependent 

expansion method with Laguerre-Guassian Eigen functions, and reduced to quadrature.The envelop equation 

is valid for arbitrary laser intensity within the long pulse, quasi-static approximation and neglects instabilities. 

They analyzed that a significant contraction of the spot size and a corresponding increase in intensity is 

possible for laser powers exceeding the critical power for relativistic self-focusing. 

Nitikant and Sharma (2004) have seen the effect of pulse slippage on resonant second harmonic 

generation of a short pulse laser in plasma. In their work they found that process of second harmonic 
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generation of an intense short pulse laser in plasma is resonantly enhanced by the application of a magnetic 

wiggler. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force 

on them at (2ω1, 2k1), where ω1and k1 are the frequency and the wave number of the laser, respectively. As the 

electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to 

produce a transverse second harmonic current at (2ω1, 2k1 + k0), driving the second harmonic electromagnetic 

radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental 

wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates 

Varsheney et al. (2005) studied the relativistic self-focusing of a laser beam in inhomogeneous plasma. 

They have presents an analysis of relativistic self-focusing of intense laser radiation in an axially 

inhomogeneous plasma. The nonlinearity in the dielectric constant arises on account of the relativistic 

variation of mass for an arbitrary magnitude of intensity. An appropriate expression for the nonlinear dielectric 

constant has been used in the analysis of laser-beam propagation in the paraxial approximation for a circularly 

polarized wave. The variations of the beam width parameter with the propagation distance, the self-trapping 

condition and the critical power have been evaluated.  It was seen that the laser beam width tends to attain a 

constant value depending upon the plasma inhomogeneity and the initial laser intensity. Numerical estimates 

are made for typical values of the laser–plasma interaction applicable for underdense and overdense plasmas. 

Gupta and Suk (2007) studied enhanced focusing of laser beams in semiconductor plasmas, in which 

the beating of two co-propagating laser beams can resonantly excite a large amplitude plasma wave in a 

narrow gap semiconductor. The higher ponderomotive force on the electrons due to the plasma beat wave 

makes the medium highly nonlinear. As a result, the incident laser beam becomes self-focused due to the 

nonlinearity by the ponderomotive force. Further they showed the self-focusing and spot size evolution of the 

laser beam in semiconductor plasmas. 

Agarwal and Sodha (2007) studied steady-state self-focusing of Gaussian electromagnetic beams in an 

inhomogeneous nonlinear medium: Effect of absorption and initial curvature of the beam and investigated the 

effect of linear absorption and initial curvature of an electromagnetic Gaussian beam on focusing/defocusing 

in an inhomogeneous nonlinear medium. It has been found that the maximum and minimum of the beam width 

keep decreasing with increase in distance of propagation (or absorption) till the beam becomes very weak and 

diverges steeply and penetration in an overdense medium also decreases with increasing absorption. 

Converging beams initially converge and then go in (1) the oscillatory divergence (2) self-focusing or (3) 

steady divergence mode depending up on the initial values of beam width and axial irradiance. The maximium 

penetration in an overdence medium has the highest values for -0.7 ˂ (∂f/∂z) at z=0 ˂ 0.4 and falls sharply, 

outside these limits. 

Takale et al. (2009) studied the self-focusing and defocusing of TEMopHermite-Gaussian laser beams 

in collision-less plasma and found that the nonlinearity in the dielectric constant is mainly due to the 
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ponderomotive force. They found that the modes with odd p-values defocus and that with even p-values 

exhibit oscillatory as well as defocusing character of beam width parameters variation during their propagation 

in collision-less plasma. Further they have used the parabolic wave equation approach for entire theoretical 

formulation and completed the numerical computation by using fourth order Runge-Kutta method. They 

obtained the differential equations for beam width parameters under paraxial approximation and observed 

perfectly synchronized periodic oscillations of beam width parameters in transverse directions in small scale 

spatial manipulations in optical trap. 

Bonabi et al. (2009) studied improving the relativistic self-focusing of intense laser beam in plasma by 

using density transition. They analyzed the propagation of a Gaussian beam in underdense plasma with 

upward increasing density ramp and this causes the laser beam to become more focused and penetrations deep 

into the plasma by reduction of diffraction effect. In their work, they introduced a unique upward density ramp 

profile which increased self-focusing effect for intense laser system and the transverse variation of the wave 

packet decreased substantially. They derived an equation of spot size and computational curves were presented 

for self-focusing in underdense plasma. In the obtained optimized condition they showed that the intense laser 

beams can be focused down to diameters comparable to the laser wavelength. The closest value reported on 

focusing down to the Nd-glass laser wavelength which is an important step forward toward the aims proposed 

with the ambitious project of extreme light infrastructure. The effects of laser intensity on the self-focusing 

parameters were also investigated. Based on our more reliable derived equations and introducing more 

effective density profile, a much stronger focusing is observed and it could produce ultrahigh laser irradiance 

over distances much greater than the Rayleigh length which can be used for various applications. 

Patil et al. (2009) studied the self-focusing of Cosh-Gaussian laser beams in a parabolic medium with 

linear absorption, the field distribution in the medium is expressed in terms of beam width parameter, 

decentered parameter and absorption coefficient. They established the differential equation for beam width 

parameter by following WKB and paraxial approximations through parabolic wave equation approach and 

analytical solution is obtained for the same. The behavior of beam width parameter with the normalized 

distance of propagation is studied at various values of decentered parameter with different absorption levels in 

the medium. Their results show that the sharp self-focusing occurs on account of absorption. Further they 

suggested that depending up on the desirability of self-focusing effect in a particular application, the 

decentered parameter of Cosh-Gaussian beams can be exploited with appropriate absorption level in a 

parabolic medium. 

Xiong et al. (2010) investigated the influence of arbitrary outside magnetic field on self-focusing of 

short intense laser pulse propagating in underdense and magnetized cold plasma. They set the outside 

magnetic field in the plane that includes y and z-axis and used the angle between y-axis and outside magnetic 

field. Their results show that there is a different effect on self-focusing corresponding to different angle and 

intensity.  
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Patil et al. (2010) investigated the focusing of Hermit-Cosh-Gaussian (HChG) laser beams in 

collision-less magneto-plasma by considering ponderomotive nonlinearity. They presented the dynamics of the 

combined effects of nonlinearity and spatial diffraction and plotted the beam width parameter with distance of 

propagation for highlighting the nature of focusing and discussed the effect of mode index and decentered 

parameter on self-focusing of beams. They found that the self-focusing/defocusing of HChG beams is 

dependent on the mode index and decentered parameter. 

Gill et al. (2010) while studying the propagation of high power electromagnetic beam in relativistic 

magnetoplasma with higher order paraxial ray theory found that such a theory explains the phenomenon of 

ring formation in self-focusing followed by bright and dark rings. 

Kaur et al. (2011) studied steady state self-focusing, self-modulation of laser beam in an 

inhomogeneous plasma and found that increasing power density leads to trapping of particle in the potential. 

Further, they found that by increasing control parameters, strong self-focusing is observed. However, there are 

no chances for the beam to collapse. 

Kant et al. (2011) analyzed the ponderomotive self-focusing of a short laser pulse under a plasma 

density ramp and found that the ponderomotive self-focusing becomes stronger when plasma density ramp 

taken into account. They found that, for a given laser spot size, the oscillation amplitude becomes larger for a 

higher plasma density. By slowly increasing the density, the oscillation amplitude of the laser spot size can be 

significantly reduced. As the laser propagates through the density ramp region, it sees a slowly narrowing 

channel. In such a case the oscillation amplitude of the spot size shrinks, while its frequency increases. 

Therefore, the laser pulse propagating in a plasma density ramp tends to become more focused. If there is no 

density ramp, the laser pulse is defocused due to the dominance of the diffraction effect. As the plasma density 

increases, self-focusing effect becomes stronger. Similarly as in case of no density ramp, the beam width 

parameter does not increase much. After several Rayleigh lengths, the beam width parameter attains a 

minimum value and maintains it for a long distance. Consequently, the self-focusing effect is enhanced and 

the laser pulse is more focused. 

Navare et al. (2012) investigated the impact of linear absorption on self-focusing of Gaussian laser 

beam in collisional plasma and concluded that by considering the nonlinearity in dielectric constant mainly 

due to the elastic electron-ion collision, it is observed that absorption plays a vital role in self-focusing of laser 

beams, there by weakens the oscillatory behaviour of beam width parameter with the distance of propagation. 

Kant et al. (2012) while studying the self-focusing of Hermite- Gaussian laser beams in plasma under plasma 

density ramp found that the effect of plasma density ramp and initial intensity of the laser beam are important 

and play a vital role in laser plasma interaction and hence in strong self-focusing of laser beam. 
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Habibi et al. (2012) studied the stationary self-focusing of intense laser beam in cold quantum plasma using 

ramp density profile and found that in addition to quantum effects, the density transition causes much higher 

oscillation and better focusing of laser beam in cold quantum plasma than in classical relativistic case. 

Patil et al. (2012) investigated relativistic self-focusing of Cosh-Gaussian laser beams in a plasma and 

concluded that self-focusing occurs for decentered parameter b =0, 1 and all other curves are seen to exhibit 

sharp self-focusing for b = 2. Further, for such a beam the pinching effect becomes stronger by increasing the 

values of decentered. 

Nanda et al. (2013)investigated the self-focusing of Hermite-Cosh Gaussian laser beam in a magnetoplasma 

with a ramp density profile and concluded that the presence of plasma density ramp and magnetic field 

enhances the self-focusing effect to a greater extent. 

Mahajan et al. (2013) studied the interaction between two parallel Gaussian electromagnetic beams in a 

plasma with weakly relativistic ponderomotive regime and concluded that when the axis of two beams are 

initially parallel along z-axis in the xz plane, oscillatory self-focusing takes place in all the three cases. 

However, defocusing of two beams is also observed for a chosen set of parameters and the difference 

increases with increase in propagation distance. 

Patil et al. (2013) analysed the self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive 

regime using upward ramp of plasma density, WKB and paraxial approximations through parabolic equation 

approach. They found that upward plasma density ramp tends to enhance self-focusing significantly and the 

beam gets more focused while traversing several Rayleigh lengths as compared with uniform density 

relativistic plasma.  

          Kaur et al. (2013) while studying the interaction between parallel Gaussian electromagnetic beams in 

relativistic magnetoplasma found that self-focusing occurs only at lower values of propagation distance. 

However, with increase in propagation distance, defocusing of the beam occurs. 

Nanda et al. (2013) studied the sensitiveness of decentered parameter for relativistic self-focusing of Hermite-

Cosh-Gaussian laser beam in plasma and found that the proper selection of decentered parameter was very 

much sensitive to self-focusing.  

Patil et al. (2013) studied self-focusing of Gaussian laser beam in relativistic cold quantum plasma and 

observed that quantum effects play vital role in laser plasma interaction. Further while comparing the self-

focusing effect in quantum plasma with the classical relativistic case, they found that quantum effects produce 

better self-focusing than classical ones. 
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Nanda et al. (2014) while studying the enhanced relativistic self-focusing of Hermite- Cosh Gaussian laser 

beam in plasma under density transition observed that the proper selection of decentered parameter and 

presence of density transition results stronger self-focusing of laser beam. 

Liu et al. (2014) investigated the electron energy spectrum in circularly polarized laser irradiated overdense 

plasma and found that the evanescent field profile of a circularly polarized short pulse laser gets significantly 

modified because of relativistic mass variation and ponderomotive force. While ignoring the space charge 

field effects, the ponderomotive force pushes the electrons in the skin layer and transfers the quiver energy 

exactly in to the streaming energy. 

Aggarwal et al. (2014) studied the self-focusing of Cosh Gaussian laser beam in plasma with density ripple in 

relativistic ponderomotive regime under paraxial approximation and concluded that there is decrease in self-

focusing of the beam with increase in wavelength, intensity and ripple wave number of the beam. Further, by 

optimising these parameters, a strong self-focusing is observed. 
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OBJECTIVES 

1. Self-focusing of Hermite-Cosh-Gaussian laser beams in plasma under density transition 

ABSTRACT 

Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been 

discussed here. The field distribution in the medium is expressed in terms of beam width parameters and 

decentered parameter. The differential equations for the beam width parameters are established by a parabolic 

wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma 

density ramp is considered and to discuss the nature of self-focusing, the behaviour of beam width parameters 

with dimensionless distance of propagation for various values of decentered parameters is examined by 

numerical estimates. The results are presented graphically and the effect of plasma density ramp and 

decentered parameter on self-focusing of the beams has been discussed. 

Theoretical considerations 

We employed the propagation of HChG laser beam along z-axis in the plasma with the field distribution in the 

following form: 

2 2
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           (1) 

where m is the mode index associated with the Hermite Polynomial Hm, r0 is the waist width of Gaussian 

amplitude distribution, b is the decentered parameter, r is the radial coordinate, Eo is the amplitude of 

Gaussian beams for the central position at r=z=0, A0(r,z) is the amplitude of HChG beams in cylindrical 

coordinates and f is the dimensionless beam-width parameter, which is a measure of both axial intensity and 

width of  the beam. 

Nonlinear dielectric constant 

Further, we consider propagation of HChG laser beam in a nonlinear medium characterized by dielectric 

constant of the form 
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where ε0 and Φ represents the linear and nonlinear parts of dielectric constant respectively, ωp is plasma 

frequency, e is the electronic charge, m be the electron mass, n0 is the equilibrium electron density, 
dR is the 

diffraction length, ξ is the normalized propagation distance, d is a dimensionless adjustable parameter. 

Now, in case of collision-less plasma, the nonlinearity in the dielectric constant is mainly due to 

ponderomotive force and the nonlinear part of dielectric constant is given by 

* 2

2 0( ) (1/ 2)AA A  (5)With 2 2 2 2 2

2 b 02( / ) ; e M/6m K Tp        

Where M is the mass of scaterrer in the plasma, ω is the frequency of laser used, Kb is the Boltzmann constant 

and T0 is the equilibrium plasma temperature. 

Self-focusing 

The wave equation governing the propagation of laser beam may be written as 
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  The last term of equation (6) on left hand side can be neglected provided that  2 2  ln 1k     where ‘ k

’represents the wave number. Thus,  
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Now, employing Wentzel-Kramers-Brillouin (WKB) approximation, equation (7) reduces to a parabolic wave 

equation as: 
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To solve equation (8) we express A as 
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                                      (11) 

The solutions of equations (10) and (11) for a cylindrically symmetric HChG beam can be written as: 
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z z  
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                                                                                                              (12) 

And
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(13)
 

with  
1

z
( )

f

f z z






 

where  z  is the inverse radius of curvature of wave front and  z  is the phase shift.   

       Under the paraxial approximation, we have established the differential equation of the beam-width 

parameter for the m=0 mode as, 
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                                (14) 

Equations (14) is the required expression for beam width parameters .f  
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2. Self-focusing of Hermite-Cosine-Gaussian(HCosG) Laser Beams in Plasma Using density 

Transition 

 

ABSTRACT 

We present the self-focusing of Hermite-Cosine-Gaussian (HCosG) laser beam in plasma under density 

transition by considering ponderomotive nonlinearity. Analytical formulas for propagation of HCosG beam in 

plasma are derived. The field distribution in the medium is expressed in terms of beam width parameters and 

decentered parameter. To overcome the defocusing, localized upward plasma density ramp is considered. To 

highlight the nature of self-focusing, plot of beam width parameters versus dimensionless distance of 

propagation will be obtained for different laser and plasma parameters and hence the effect of plasma density 

ramp and decentered parameter on self-focusing of the beams will be discussed. 

THEORETICAL CONSIDERATIONS 

Considering theHermite-Cosine-Gaussian (HCosG) laser beam propagating along z-axis with the field 

distribution in the following form 

2 2

0 0 0

2 2 2 2

0 1 0 2 0 1 0 2 1 21 2

2 2
( , , ) exp

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
m n

E x yx y x y
E x y z H H Cos Cos

r f z r f z r f z r f z f z f zf z f z

           
               

         

 

                                                                                                                                                                           (1) 

Where 
mH or 

nH  is the mth-order or nth order Hermite polynomial, 
0E  is the constant amplitude, 

0r is the 

waist width, 
0 is the parameter associated with the cosine function, 

1( )f z and 
2 ( )f z are the beam width 

parameters in x and y directions.  

Nonlinear dielectric constant 

Further we consider the propagation of HCosG laser beam in plasma characterized by dielectric constant of 

the form
14

 

*

0 ( )EE  
                                                                                                             (2)                                                                                                                                                                               

 

With 
2 2 2 2

0 1 / , 4 n( )e /p p m         

And    0 / , / dn n Tan d z R   
                                                          (3) 

2 2 2 2

0 0 0 01 ( / ) ( / ), 4 /p pTan d n e m       
                                               (4)                                                                                                                                       
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Where ε0 and Φ represents the linear and nonlinear parts of dielectric constant respectively, ωp is plasma 

frequency, e is the electronic charge, m be the electron mass, n0 is the equilibrium electron density, 
dR is the 

diffraction length, ξ is the normalized propagation distance, d is a dimensionless adjustable parameter. 

Now, in case of collision-less plasma, the nonlinearity in the dielectric constant is mainly due to 

ponderomotive force and the nonlinear part of dielectric constant is given by
15

 

 
2

0* *

2

3
( ) 1 exp /

4

p m
EE EE Tan d

M


 



  
     

  
                                                        (5)                                                                                                 

Where 
2 2 2

b 0e M/6m K T  and M is the mass of scaterrer in the plasma, ω is the frequency of laser used, Kb 

is the Boltzmann constant and T0 is the equilibrium plasma temperature. 

Self-focusing 

The wave equation governing the propagation of laser beam may be written as 

2
2

2
  E E 0

c

E 




   
      

                                                                                                         (6)

 

  The last term of equation (5) on left hand side can be neglected provided that  2 2  ln 1k     Where ‘ k

’represents the wave number. Thus,  

2
2

2
  E E 0

c




 
   

                                                                                                                                (7)

 

   This equation is solved by employing Wentzel-Kramers-Brillouin (WKB) approximation. 

Employing the WKB approximation, Equation (7) reduces to a parabolic wave equation as:
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0

z Sec / R

4 R Tan / R

p d

d p d
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
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


                                                          (8) 

To solve equation (8) we express A as 

   , , ( , , )exp ( , , )mnA x y z A x y z iks x y z 
 (9)

 

Where,  
2

0

2
1 Tan / R

p

dk z d
c




   

Where ‘Amn’and ‘S’ are real functions of x, y and z. substituting for  , ,A x y z from equation (9) in equation 

(8) and equating real and imaginary parts on both sides of the resulting equation, one obtains: 
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                        (10) 

Imaginary part 
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The solutions of equations (10) and (11) can be written as: 
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(13)              

And 

 
 

1
1

1

1
z  

f

f z z


 
  

        ; 

 
 

2
2

2

1
z  

f
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

 
  
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Where  1 z and  2 z represent the curvature of the wavefront in x and y directions. Now, considering the 

first mode (m=0, n=0) and employing the paraxial approximation to obtain expressions for the beam width 

parameters f1 and f2 as:
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Where 0 0b r  is called decentered parameter and is the dimensionless distance of propagation. Equations 

(15) and (16) are the required expressions for beam width parameters
1f and

2f  respectively. 
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3. Plasma density ramp for Steady-State Self-focusing of Gaussian electromagnetic beams in an 

inhomogeneous nonlinear medium  

 

ABSTRACT 

Steady-state self-focusing of Gaussian electromagnetic beams in an inhomogeneous nonlinear medium under 

plasma density ramp is discussed here. The differential equation for the beam width parameter is established 

by a parabolic wave equation approach under paraxial approximation. To discuss the nature of self-focusing, 

the behaviour of beam width parameters with dimensionless distance of propagation is examined by numerical 

estimates and the effect of plasma density ramp on self-focusing of the beams is discussed. 

      Nonlinear dielectric constant 

The nonlinear dielectric function ε in an isotropic inhomogeneous medium can be expressed as: 

* *( , ) ( , )...........(1)r iz EE i z EE     

Where in general εr and εi are functions of r and the irradiance EE* (E is the amplitude of the electric vector); 

in this paper ε is assumed to vary only along the z direction. 

   The saturating nature of εrmay be expressed as  

*
* 2

0 *

2

( , ) ( ) ( ) ...........(2)
1

r s

EE
z EE z z

EE


   


 


 

or,  

*
* 2

0( , ) ( ) ( ) 1 exp ...........(3)r s

s

EE
z EE z z


   



  
    

  
 

Where ε0 and μ are functions of z and ε2 and εs are constants characteristic of the medium and frequency of 

radiation. 

For the case of plasma, the function μ(z) may be identified with the plasma frequency; in this case 

2

0 2

(0)
( ) 1 ( ).......(4)

p
z z


 



 
   

  

 

and 
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( ) ( ) (0).......(5)i iz z    

Where 

2 2

2 2

( )
( )

(0) (0)

p p

p p

z
z

 


 

 
   
 

and

2 2

2 2

( ) (0)
...........(6)

(0)

p p

s

p

z 


 

 
   
 

 

with  2 24 n e /p m  
       and       

   0 / .........(6 )n n Tan d a   

Therefore     2 2 2 2 2

0 0(4 e / ) / (0) / ; (0) 4 e /p p pn m Tan d Tan d n m          

Hence                 
2

2
( ) /

(0)

p

p

z Tan d


 


   

ωpis the plasma frequency, the suffix zero refers to z=o and ω is the wave frequency, εi is the characteristic of 

absorption in the medium and has been considered as independent of the irradiance in this paper; μ(z) is 

characteristic of the density of dipoles. 

In case of plasmas the saturation of εr conforms to all electrons, driven from the axis. In case of Gaussian 

beam EE* and hence ε is a function of r
2
, therefore ε can in the paraxial approximation be expanded in powers 

of r
2
 and the series, terminated at the term, having r

2
. Thus 

2

2

0( ) ( ) ( )...........(7)r r rz z r z     

Analysis and Self-focusing 

Consider the propagation of laser beam having Gaussian intensity distribution, with z-axis assumed to be in 

the direction of propagation. The amplitude of the electric vector E satisfies the scalar wave equation 

2 2 2

2 2 2

1
( , ) 0..........(8)

E
E r z E

z r r r c




   
    

   
 

Where c is the speed of light in vacuum. 

Eq. (8) can be solved in the paraxial approximation by following the analysis of Akhmanovet al. [17] and its 

extension by Sodhaet al. [18, 19]. 

   The solution of equation (8) is of the form 

 
0

( , ) , exp ( ) ...........(9)

z

E r z A r z ik z dz
 

  
 
  
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Where A(r,z) is the complex amplitude of the electric field and 

0

2
2

2
( ) ( ).........(10)rk z z

c


  

Substituting for E(r,z) from Eq. (9) in Eq.(8) and neglecting (∂
2
A/∂z

2
) in the WKB approximation, one obtains 

2 2
2

2 2

1
2 ( , ) 0.........(11)

A k A A
ik iA k A r z A

z z r r r c




   
      

   
 

To solve equation (11) in the paraxial approximation, the complex amplitude  ,A r z may be expressed as 

     0, , exp ( ) , ..........(12)A r z A r z ik z s r z     

Where A0 and S are real and the eikonal S is given by 

   
2

( , ) z z  .........(13 )
2

r
S r z a   

The function β(z) may be expressed as 

 
 
1

z   ..........(13 )
f

b
f z z


 

  
 

 

Where  z represents the curvature of the wavefront. 

 Substituting for A (r,z) and S from Eqs. (12) and (13), ε from Eqs. (1) and (7) in Eq. (11) and equating real 

and imaginary parts on both sides of resulting equation, one obtains: 

Real part   

2

0

2 22

0 0

2 2

0

( )2 1 1
2 .........(14)
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r

r

r zA AS S S k
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        

         
 

 Imaginary part 

 

0

2 22
2 20 0
0 02

Tan / R (0)1 1
.........(15)
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d i
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k z dA AS S S k
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                

 

The solution of Eq. (15) is  
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2

0

2

0

( )
..................(16)

( ) ( )

E z r

f z r f z

  
   
   

 

Where  is an arbitrary function and 2

0 ( )E z is the axial (r = 0) irradiance.  

For an initially Gaussian beam at z = 0 

2
* 2 2

0 00 2

0

exp ..........(17)
r

EE A E
r

 
   

 
 

Comparing Eqs. (16) and (17) at z = 0

0

0 0

1/2
2 22

* 2 00
0 2 2 2

0 0
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( , ) exp exp .....(18)

( ) ( ) ( ) ( )
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EE A r
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    
             
  

Where  2

0/c r z  and  0 /r c   are the dimensionless distance and beam width; the parameter 

 2

0 /r c  is known as the Rayleigh length. 

             Substituting for 2

0A  from Eq. (18) in Eq. (14) and equating the coefficients of r
2
 on both sides of the 

resulting equation, one obtains 
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2
/ 2 2 0

0 2
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 

 
  
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Thus, with a knowledge of the dependence of 
2

/

r on f  and on  , Eq. (19) could be solved for the beam width 

parameter f  as a function of  . 

    Expanding 2

0 ( , )A r z  from Eq. (16) in a series of 
2r  and retaining terms up to 

2r (in the paraxial 

approximation) 

2 2
* 0
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Substituting for EE* from Eq. (20) in Eq. (2) one obtains 
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and 
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Using Eq. (21) and (21a) in Eq. (19) we get 
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Equation (22) is the required equation for the beam width parameter f . 

4. Relativistic self-focusing of Hermite-Gaussian laser beams in plasma with density transition 

ABSTRACT 

Propagation of Hermite-Gaussian laser beam in a collision-less plasma with density transition has been 

investigated by taking in to account the relativistic effect. The differential equation for beam width parameter 

is obtained by using paraxial approach. The spot size of the laser beam decreases as the beam penetrates in to 

the plasma due to the role of a plasma density ramp. Since the laser beam shows an oscillatory self-focusing 

and defocusing behavior with the propagation distance. The density ramp could be important for the self-

focusing of a high-power laser by choosing the suitable laser and plasma parameters. To reduce the 

defocusing, localized upward plasma density ramp is introduced, so that the self-focusing becomes stronger. 

The effect of plasma density ramp and relativistic factor on self-focusing is seen. 

5. Effect of plasma density ramp on self-focusing of Cosh-Gaussian laser beams in plasma with 

linear absorption 

                                         ABSTRACT 

Propagation of Cosh-Gaussian laser beam in plasma with linear absorption has been investigated by taking in 

to account the density transition. The differential equation for beam width parameter is obtained by using 

paraxial approach. To reduce the defocusing, localized upward plasma density ramp is introduced, so that the 

self-focusing becomes stronger. The effect of plasma density ramp and linear absorption on self-focusing is 

seen. 
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6. Effect of linear absorption and plasma density ramp on self-focusing of Gaussian laser beam in 

collisional plasma. 

ABSTRACT 

We will investigate the impact of linear absorption on self-focusing of Gaussian laser beam in collisional 

plasma under plasma density ramp. A second order differential equation of dimensionless beam width 

parameter will be derived and solved numerically. The effect of plasma density ramp and linear absorption on 

self-focusing will be discussed. 

METHODOLOGY: 

1. FORMULATION OF HYPOTHESIS 

The hypothesis for the above problems is that we apply plasma density ramp to laser beams in plasma to see 

its effect on self-focusing. The differential equations for the beam width parameters have to be derived and 

solved numerically by using MATHEMATICA software.  The variation of beam width parameters with 

normalized propagation distance , has to be plotted in ORIGIN software. 

 

2. SOURCES OF DATA 

Theoretical results will be compared with experimental results collected through various research papers. 

3. RESEARCH DESIGN: 

 Theoretical analysis 

TOOLS: 

MATHEMATICA and ORIGIN software 
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