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ABSTRACT 

In this thesis, the most favourable location of collocated piezoelectric patches on a bare plate 

by considering different boundary conditions as free-free, simply supported, cantilever, 

clamped at all edges for vibration control is found out by viewing the mode shapes of steel 

plate. The steel plate is modelled in ABAQUS CAE software. Then the modal analysis of the 

flexible steel plate is obtained. A method was proposed for most appropriate location of 

piezoelectric patches by viewing the modal shapes of the plate. Through viewing method, it 

can be observed that the patches cannot be on the nodal line where displacement is zero as it 

doesn’t provide an effect and vibration control cannot be done.  

          Passive methods are not so effective in controlling low frequency noise. So, this leads 

to the efforts for developing active vibration control strategy. A direct output feedback 

method was proposed for active vibration control. A pole placement technique was used to 

find out the optimal value of direct output feedback gain (Gv). This is carried out by two 

steps. Initially, through pole placement graph, the dynamic properties of the structure are 

predicted. Then in later step, the velocity gain (Gv) value is varied in order to get the optimal 

controller gain value for desired changes in the properties of the structure. Then choosing the 

node number for applying hammer excitation force at which the control of vibrations will be 

reduced to minimum which are produced by the structure. This results are extracted by doing 

codding in MATLAB software 
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CHAPTER-1 

INTRODUCTION 

               The control of vibration by using a piezoelectric actuator and sensor had been the 

topic of interest of many researchers as it was the major problem in structures like automobile 

wings, tennis rackets, knocking sensors, sports, aircrafts, railway compartments, ultrasonic 

structures, and few more cavities in order to control the vibrations or disturbances produced 

by a system. Even though there are lots of techniques for vibration control such as damping 

system, remodelling of structure, extra mass adding, adding vibration isolation, high stiffness 

materials which are having good damping proportion, vibration absorber, increasing the 

width or thickness of plate are not so appropriate to control the vibrations produced i.e. low 

natural frequencies.                        

                 These techniques are failing due to lower frequencies; the wavelength will increase 

enormously which leads to the layer thickening of the noise absorbing systems and it will 

append the extra weight to the structure therefore it gets hard. As many advancements arrived 

in modern laptops had found an alternative at lower natural frequencies for this passive 

control systems in order to eradicate the unnecessary disturbance or sound. Based on the 

natural frequency range, the active and passive control methods are divided as disturbance 

below 1000Hz is active method and if disturbance above 1000Hz is passive method. But 

most of the times the active control method is preferred because it has a competency to 

operate at antithetical conditions. 

                 As technology was growing rapidly, the active noise control also increasing. 

Loudspeakers use internal auditory origin to abandon the incoming decibel with error signal 

from acoustic sensors which will comes under active noise cancellation of first classification. 

Piezoelectric patches are used for error signal in the auditory field comes under second 

classification and Active structural acoustic control system engages with both actuators and 

sensors will comes under third classification.  In this acoustic control system, the actuators 

like piezoelectric materials, magneto-rheological fluids, and optics will incorporate into the 

walls in order to reduce or control the vibrations or noise produced by the structures. The 

piezoelectric patches are placed on the both sides of structure and gives sufficient input to 

structure in order to control the response.  
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                The disturbances or unwanted noise which was formed in aircraft and automotive 

vehicles because of surrounding systems. Mainly two techniques are used to control the 

internal disturbance control as one of them is feed forward control and other is feedback. In 

automobiles, during the IC engine operations and in jet engines for aircraft structures, an 

unwanted noise will arise can be controlled by feedforward method. But this method will not 

work properly when the disturbance was caused by hard surface of the road, wind turbulence 

effect in case of aircrafts and during landing case also.  

             The Piezoelectricity means to generate electric charge. This electricity is formed due 

to pressure that which propagates on materials such as ceramics, solid crystals. The effect 

produced by piezo will acts as relation between electrical and mechanical systems. This effect 

was reversible when mechanical force is applied results in generation of electrical field. 

Similarly, it will act as irreversible when electrical forces are applied results in generation of 

mechanical field.  

          From the literary survey, it was found that if absence of piezoelectric patch may lead to 

deflection and buckling of material due to load. Then in presence of piezoelectric, deflection 

and buckling was avoided. Piezoelectric patch was used for vibration control purpose which 

was produced in systems because of reliability, easiness and regarding mass added to 

structures will not make heavy. But while fixing piezo patch, on top surface sensor is located 

and at bottom surface actuator is located. From sensor, the actual control loop signal will 

generate and then this signal is transferred to actuator. From there actual effect will be acting 

on the system to control the vibrations.  

            Some of the piezoelectric devices are transducers, generators, actuators, sensors and 

combination of them. A transducer is a device which will transforms the quantities like light, 

pressure, sound into electrical signal or vice-versa.  The direct piezoelectric material is 

mainly used in microphones, gas lighters etc., and voltage generated is used as sensors 

whereas indirect piezoelectric effect was used in dynamic control of variables and static 

control of variables such as medical applications, aircraft applications, automobile industry 

etc., 

              Equipment’s like ultrasound, transducer will transform electrical energy to 

mechanical vibrations with in a fraction of seconds, but the sound produced by the ultrasound 

will be too high which a human being cannot sustain. These vibrations are used mainly in 
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medical services like scanning. From Microphone device, the sound waves which are 

generated will be transformed into electric signals with the help of piezoelectric material by 

adding on the surface. Similarly, in gramophone an electric signal will generate which is 

converted to sound signals by piezoelectric. Indirect piezoelectric effect was used in watches 

as generation of electrical energy due to battery will make it to oscillate thousand times more 

in a second. These electrical signals are converted to mechanical energy with the help of 

small mortar which a piezoelectric is attached.   

      For optimization, vibration control, detection of any damages in structures or systems and 

better improvement of dynamic characteristics a modal analysis had been a prominent 

technology. This modal analysis not only limited to mechanical, automobiles but also 

applicable for aircraft structures, buildings, bio-medicals etc., when no external load is acting 

on a system, then free vibrations will occur due to oscillations produced by an initial 

deflection. Then system possess some amount of natural frequencies due to stiffness 

distribution and mass distribution and degrees of freedom. If it is a continuous system, it will 

result in infinite no of degrees of freedom and infinite no of frequencies.  

  The vibrations which are produced by external structure is controlled by 

considering the application of active vibration control. Active vibration control is a strategy 

which will impose equal and opposite forces produced by structure. Now-a-days, active 

vibration control method was applied to aerospace applications which is providing most 

gratification and very low weigth as compared to passive strategies. Active vibration control 

will develop an internal force in order to oppose the vibrations produced by structure. This 

strategy, external controller may absorb or supply the energy by using a vibration control 

algorithm. If the vibrations produced by structure are in periodic form then by considering 

this strategy it will provide cancellation of vibrations by simply providing the opposite 

acceleration. 

  An open loop pole gain can be obtained with out using any feedback in the 

controller. Open loop sytem will be completely acting on the input and output without the 

effect on control action. But closed loop system will alter the output according to the control 

action. 
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The state space representation was used in order to solve the high complexity which will be 

produced by the system of multiple inputs and outputs. The sample state space representation 

of a physical system was given as 

     
.

w t Aw t Bv t                                                                                                                     (1) 

     p t Cw t Dv t             (2) 

Wher w  is called the state vector and it is a function of time, A  is called the state matrix, B

is the input matrix, C is the output matrix, D is the direct transistion matrix, v  is the input 

matrix and is the function of time, p is the output matrix which is the function of time. The 

representation of the system is not unique as it varies for different physical structures. 

    In this thesis, it was discussed in order to control the vibrations produced by disturbances is 

done by placing a piezoelectric patch on the bare plate at most appropriate location where no 

nodal lines will pass through patch. This location was found out by viewing method. In this 

method, the mode shapes are viewed by conducting modal analysis for the plate in Abaqus 

software. Different boundary conditions like free-free, simply supported, cantilever, clamped 

at all edges of the plate is considered. From mode shapes, it is observed that piezoelectric 

patch cannot be placed on nodal lines where displacement is zero. The obtained result was 

validated by conducting Frequncy Response Function (FRF) analysis. Through analysis, it 

can be found that if piezo is not placed at an optimum location, the detection of all modes is 

not possible.  

Then active vibration control strategy was applied in order to oppose the disturbances which 

is produced by external elements. Pole placement methodology was proposed in order to find 

an optimal value of the velocity gain (Gv) controller. Then choosing the node number for 

applying hammer excitation force at which the control of vibrations produced by structure. 

State space representation is used for plotting the open loop and closed loop pole zero maps. 
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CHAPTER-2 

TERMINOLOGY 

Finite Element Method: This method is a technique or strategy used for unlocking the 

complications produced in mathematical engineering. Some Huge elements will be divided 

into smaller but the properties will remain same is a finite method. 

Shape Function: As the structure is divided into distinct elements like meshing. Shape 

functions are used in order to append the solution between the distinct elements for 

appropriate solution. 

Piezoelectric patch: The Piezoelectricity means to generate electric charge. This electricity 

is formed due to pressure that which propagates on materials such as ceramics, solid crystals. 

The effect produced by piezo will acts as relation between electrical and mechanical systems. 

This effect was reversible when mechanical force is applied results in generation of electrical 

field. Similarly, it will act as irreversible when electrical forces are applied results in 

generation of mechanical field.  

Nodal lines: when the structure is in vibration state, the vibrating structure remains stagnant 

at these lines and while remaining portion of structure will be in the mode of vibration. 

Viewing Method: In this method, the optimal location is found out by observing the modal 

shapes of plate, piezo cannot be placed on the nodal line where displacement is zero and 

strain is also zero it doesn’t provide a vibration control. 

Mode shapes: A mode shapes is a distinct pattern of vibrations which are carried out by a 

mechanical system at a particular frequency. 

Pole zero map: A map in which open loop and closed loop pole maps are used for designing 

the direct output feedback strategy for the optimal velocity gain value. 
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Some of the nomenclatre is represented 

below as:  

d = displacement field vector 

di = nodal displacement field 

w = displacement field in z direction [m] 

D = electric displacement vector [C/m
2
]
 

E = Young’s modulus [N/m
2
]
 

V = volume [m
3
]
 

K= stiffness matrix  

M = mass matrix 

T = kinetic energy [J] 

u = displacement field in x direction [m] 

U = potential energy [J] 

v = displacement field in y direction [m] 

W = work [J] 

N = shape function 

Greek Symbols  

ε = strain field  

σ = stress [N/m] 

ν = Poisson ratio  

ξ = dielectric tensor  

ζ = nodal displacement vector 

Φ = electric potential [Volts]  

ω = frequency [rad/s]  

ρ = material density [kg/m] 

Subscripts  

a = refers to the actuator  

b = relative to the body 

p = relative to the plate structure 

s = relative to the sensor 

sa =relative to the sensed voltage in the 

actuator 

x = relative to x direction 

y= relative to y direction 

qq = relative to the stiffness  

qΦ = relative to the piezoelectric stiffness 

ΦΦ = relative to the dielectric stiffness  

Superscripts 

e = relative to the element  

S = relative to constant strain  

T = matrix transpose 
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CHAPTER-3 

REVIEW OF LITERATURE 

K. B. Lim 1992[1]: In this paper, most prominent location of piezoelectric actuator and 

sensor was found out by a method which is based on the orthogonal projection of structural 

modes. From these modes, the observability and controllability grammians are used to weight 

the projections in which the three-dimensional design space was created. From this design, 

optimal location was found. A set of closed loop performance was a main objective for an 

efficient location 

 

J.H Han and I Lee 1999[2]: In this paper, efficient location of two piezoelectric sensor and 

actuator was found out by using genetic algorithm. The objective function was determined by 

considering the spill over prevention, observability and controllability and observed that the 

reduction occurs in first three modes of vibration. 

 

A M Sadri et al. 1999[3]: This paper summarises about the two controllability criteria such 

as Modal controllability and controllability Grammian were used for optimal location of two 

piezoelectric actuators on isotropic plates. The fitness function used in the controllability of 

system was taken from genetic algorithm. The analysis used for finding the optimal location 

is also used as to find the size of actuators in order to obtain maximum controllability of 

systems. 

 

M. Strassberger et al. 2000[4]: This paper deals with the noise, disturbance caused by 

mechanical equipment’s which are controlled by placing some noise controllers such as piezo 

patch at a most appropriate location. General methods or equipment’s are not sufficient to 

control the vibrations in space applications. It is concluded that the amplitudes which was 

caused by piezo patch which was measured by electrical devices to reduce the vibrations.  

 

 L. Bin et al. 2000[5]: In this paper, optimal location of piezoelectric actuators on flexible 

plate was found out by Maximal Modal Force rule which was taken from modal control 

theory. The emulation which was done by computer for control of vibration from plate is 

showed that the rule is correct and so effective.  
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H Zhang et al. 2000[6]: Optimal location of piezoelectric actuator and sensor for smart 

collocated cantilever beam was found out by float-encoded genetic algorithm technique by 

solving integrated optimisation problem. The result shows that the technique is so effective 

for generic optimisation tool. 

 

K. Hiramoto et al. 2000[7]: In this paper, Optimal location of two pairs of actuator and 

sensor on flexible structures is found out by using the modified H∞ based on simple addition 

and multiplication matrices in order to reduce the computational time then compared to 

standard norm. 

 

O.J. Aldraihem et al. 2000[8]: Optimum placement of piezoelectric actuators and sensors 

was found out by the modal controllability, observability methods. It was found that using 

two pairs of actuators/ sensors will be more effective for vibration control then compared to 

single pair. 

 

D. Sun et al. 2001[9]: In this paper, a novel approach was used to find the optimal location of 

piezoelectric sensors and actuators on a plate with a simply supported boundary condition. It 

was found that the location which was found by using this approach was most effective for 

vibration control. The optimum actuator location was found out by minimising the control 

spill over and energy and for sensor element is found out by minimising the observation error 

caused by sensor. 

 

P. Liu and V. S. Rao 2002[10]: In this paper, optimal placement of actuator and sensor for 

cantilever plate was found out by considering the both open loop system and closed loop 

optimal criteria.  In open loop system, the controlled modes are calculated on the basis of 

observability and controllability. In closed loop criteria, the location having high index values 

was determined by techniques like preferable pole location, H2 and H∞ norms. With the help 

of this technique, optimal location is very easy with high control performance and reduction 

of burden in computation. 

 

Y J Yan and L H Yam 2002[11]: Optimum location of actuator is found out by using 

redundant binary-valued genetic algorithm codding in structures for vibration control. Then 

the location found by this method is more effective for achieving better vibration control. 
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D. Halim and S.O.R. Moheimani 2003[12]: In this paper, optimal location of collocated 

piezoelectric actuator and sensor on a thin plate with simply supported boundary conditions is 

found out by the notions of modal controllability and by adding an extra spatial 

controllability constraint in the optimization procedure. This optimum location is validated by 

conducting experimental analysis in which Analytical and finite element modelling was done 

by using STRAND7 software. But it is found out that optimisation methodology was 

applicable only up to limited modes.  

 

G. Caruso et al. 2003[13]: This paper summarises about the vibration control of an elastic 

plate by using multiple piezoelectric sensors and actuators. To evaluate the performance 

obtained by different combinations of actuators and sensors was done by H2 control laws. 

The result obtained is compared with the simulation results. It was found out that if an 

excessive control voltage will damage the piezoelectric actuators and performance of a 

vibration control will be high if multiple sensors and actuators. 

 

P.U. Sik et al. 2003[14]: This paper summarises about the optimal location of piezoelectric 

sensors and actuators by using measures modal controllability and observability which was 

defined in balanced coordinate. It was found that the method used was more accurate and 

practically more useful then the convection measures. 

 

I.S. Sadek et al. 2003[15]: In this paper, the several laws which are applied on plates was 

examined by carrying a piezo patch. This piezo element results are transformed to way of 

integral form in order to rectify the problem caused by displacement which contains feedback 

control. Finally, the results obtained are converted to linear solution and then comparison was 

made between the two plates. 

 

G. L. C. M. de Abreu et al. 2004[16]: This paper summarises about the how plate is 

modelled when it was attached with piezo patch material. In order to derive eq.s for patch 

material, plate was modelled according to Kirchhoff theorization. Then the results obtained 

are compared analytically with ANSYS workbench software and it was found approximately 

same in both cases. From this paper, it was understood how electro-mechanical coupling is 

done by placing piezo patch element. 
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J.M.S. Moita et al. 2006[17]: In this paper, optimal location of piezoelectric patch for 

structures was found out by structural optimisation methodology which was based on 

simulated annealing algorithm. 

 

W. Seemann et al. 2006[18]: In this paper, the waves which are excited from elastic 

materials and nested by considering two piezo patches on both sides. It is concluded by doing 

comparison between these methods and observed that the method which was actuation will 

result in quick effect of materials and sizes 

 

K. R Kumar et al. 2007[19]: This paper summarises about the optimal placement of 

collocated piezoelectric actuator–sensor pairs on a thin plate by using a GENETIC 

ALGORITHM based on linear quadratic regulator (LQR) controller performance. The region 

where high model strain energy is produced is the Optimum location of actuator-sensor pairs 

on plate. The classical control laws, like direct proportional feedback, constant-gain negative 

velocity feedback and optimal control law which is based on LQR theory was used to study 

the performance of active vibration control. It is concluded that LQR optimal control will be 

more effective in vibration control then compared to other laws. 

 

W. Gawronski and K. B. Lim 2007[20]: In this paper, optimal location of piezoelectric 

patch on flexible structures was found out by evaluation of joint controllability and 

observability property by using the r.m.s law of Hankel singular values. 

 

Z. c Qiu et al. 2007[21]: In this paper, optimal location of piezoelectric actuator and sensor 

is based on degree of observability and controllability indices for cantilever plate. The results 

which obtained through theoretical are compared by conducting experimental study and 

found out that the results are feasible. 

 

M. Pietrzakowski 2008[22]: This paper deals with the control of vibrations produced by 

rectangle plates. For this reduction, piezo element is placed on both sides of plate which will 

perform the control of velocity. This model was carried out by Kirchhoff conjecture. It is 

concluded that if electrical bend and mechanical merging is made then plate stiffness and 

natural frequencies will increase and damping performance will be poor on thin laminated 

plates.  
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G. Zhao et al. 2008[23]: Optimum location of piezoelectric patches was found out by 

topological optimisation method and a continuous variable optimisation method. A new 

sensitivity analysis method which was based on Newmark time integration of structural 

transient dynamic responses was developed for topological optimisation 

 

M. Guney and E. Eskinat 2008[24]: In this paper, a closed loop method is used in which 

unconstrained nonlinear optimization algorithm i.e. gradient based optimisation algorithm 

was developed in order to find the optimum location. It was found that the eq.s which are 

obtained in optimisation are simply reduced to quadratic eq.s. Time consumed for solving 

these eq.s is less then compared to solving AREs fully. 

 

K.D. Dhuri, P. Seshu 2009[25]: In this paper, Multi-objective genetic algorithm was used in 

order to find the optimal location of piezoelectric actuator. Finite element technique has been 

used for the evaluation of the objective function in algorithm. The obtained result was 

compared with the exhaustive search method. It was found that result was same for multiple 

and short piezo. 

 

Z. Qiu et al. 2009[26]: This paper discusses about the requirement of aerospace applications 

such as it should be light weight and high resistance strength. Due to external disturbances in 

space, lot of bending and rotational vibrations will affect the plane and leads to imbalance of 

plane, causes danger. In order to avoid this piezoelectric patch as actuator and sensor are 

placed at best preferred location. Gyroscopic sensor is also placed in order to control the 

vibrations. Finally, it is concluded by conducting experimental setup and made validation that 

piezo and gyro-sensor will lower the vibrations. 

 

V. Gupta et al. 2010[27]: In this paper, A broad technical review was given about the   

optimization criteria for the optimal location of piezoelectric sensors and actuators on plate is 

presented. 

 

I. Bruant et al. 2010[28]: In this paper, optimal placement of a piezoelectric actuator and 

sensor on a plate for simply supported boundary condition was found out by genetic 

algorithm and the result which is obtained was validated by finite element modelling results. 

It was found that the procedure can be applied to more complex structures for vibration 

control. 
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Levent 2010[29]: This paper reviews about the problems related to vibrations can be easily 

solved by one stage of finite technique through ANSYS work bench software then results 

obtained are validated through analytical technique. ANSYS software is considered by testing 

analytical results of locating the control of mechanical system which includes piezoelectric. It 

is concluded that control of vibrations produced by structures is analysed by finite element 

analysis with the help of Integration control. 

 

M.R. Sajizadeh and I. Z. M. Darus 2010[30]: In this paper, optimum location of 

piezoelectric actuator on a square plate is found out by observability Grammian by using the 

Genetic Algorithm and Developed Optimisation Algorithm. It was observed that most 

vibration control was found in first and second mode of frequency. 

 

L. Starek et al. 2010[31]: In this paper, optimal location of piezoelectric actuator and sensor 

was found out by a method which was based on grammians. The results which are obtained 

were compared with the matrix norms of H∞ and observed that the result was same. The 

method which used grammians was applicable for the location of small actuator and sensor. 

 

B. Behjat et al. 2011[32]: This paper is deals with the free vibrations and transient responses 

integrated with piezoelectric patch material are found out by shear deformation theory when 

electrical and mechanical loads are loaded is carried out by finite element modelling method. 

It is extracted that when power index is increased then the influence will be high in larger 

finite graded piezoelectric material parameter. If this clamped plate is having high volume 

index, then it has higher frequencies then compared to simply supported plate. 

 

R. Dutta et al. 2011[33]: In this paper, optimal location of two collocated piezoelectric 

actuator and sensor was found out by two new swarm intelligence algorithms such as 

artificial bee colony and glow worm swarm optimisation algorithms. It was found out that the 

result which is obtained from this algorithm are so robust in practise and these algorithms can 

also be applied for optimal location of five piezoelectric actuator and sensor on plate. 

 

A H Daraji and J M Hale 2012[34]: In this paper, optimal placement of piezoelectric 

actuator and sensor pair on isotropic plates was found by using finite element modelling and 

Hamilton’s principle which was based on first order shear deformation by considering 

piezoelectric electro-mechanical coupling effects, mass and stiffness. For the location of eight 
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and ten piezoelectric actuators an MATLAB m-code genetic algorithm was built 

incorporating the new half and quarter chromosome technique. Due to this new technique, the 

reduction in calculations and search space of genetic algorithm was very high.  

 

F. Bachmann et al. 2012[35]: In this paper, optimum location of piezoelectric patch was 

found by strain energy which was based on finite element approach. The obtained result was 

compared with the state of the art approach. 

 

J. M Hale and A. H Daraji 2012[36]: In this paper, optimal placement of piezoelectric 

sensors and actuators on flexible structures was found out by genetic algorithm in which a 

new fitness function is taken based on modified H∞. It is found out that new fitness function 

achieved a higher reduction in vibration control and cost of the computation is also low. 

 

S. K. Parashar et al. 2013[37]: This paper deals with non-linear vibration behaviour such as 

amplitude and voltage of piezo-integrated structures when it is subjected to weak electric 

field for finite element modelling. The piezo-ceramic was considered because of high 

dielectric constant and top piezoelectric constant. In finite element modelling, the eq.s which 

are obtained are derived by introducing piezo-ceramics. These obtained eq.s are solved by 

modal reduction method.  

 

A. Zolfagharian et al. 2013[38]: This paper summarises about how to control the 

unnecessary disturbance or vibration produced by automobile parts such as wipers. This is 

solved by considering passive control process in which multi body system testing in 

ABAQUS CAE software was used in order to find out the frequencies produced by them and 

validated through finite element analysis by prototyping. Finally, it is concluded that the 

disturbances or vibrations caused by wind, rain for wiper can be reduced by considering 

active controllers. 

 

M. Ansari et al. 2013[39]: Vibration control in cantilever plate is done by attaching 

constrained layer damping patches on surface at optimum location. Optimum location of 

patch was found out by novel set method. This location was validated with the experimental 

results by proposed optimisation technique for 2D structures. 
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T. Nestorovic and M. Trajkov 2013[40]: In this paper, optimal location of piezoelectric 

actuator and sensor for large flexible structures is found out by balanced model reduction. 

This method is based on properties of the H2 and H∞ norms and approximations for their 

determining. This method was applied to cantilever beam, beam clamped on both sides and 

clamped plate to found out the optimal location of actuator and sensor It is concluded that the 

balanced model reduction method was an efficient modelling procedure with large no degrees 

of freedom. 

 

K.A. M. Nor et al. 2013[41]: In this paper, optimal location of piezoelectric actuator and 

sensor for simply supported plate was found out by swarm intelligent algorithm called Ant 

Colony Optimization. The result obtained was verified by Genetic Algorithm. 

 

N. Darivandi et al. 2013[42]: In this paper, it was proved that the optimisation algorithm is 

the faster and more accurate then compared to the genetic algorithm for finding the optimal 

location of piezoelectric actuator. 

 

Z. Qiu et al. 2014[43]: This paper summarises how finite element modelling was used for a 

cantilever plate with the combination of piezo element. Then the frequencies obtained by 

finite method is verified by ANSYS APDL software. By placing sensor and actuator at most 

preferable location, then the vibrations which are produced by buckling can be reduced. First 

two frequencies which are obtained through them was having high modes. 

 

M. Rahmoune 2014[44]: In this paper, optimal location of piezoelectric patch is found out 

by the application of topology optimisation combined with homogenization method. The 

result is valid only up to certain configurations and the calculation time is so conditional and 

very slow. 

 

A. Kumar et al. 2014:[45] This paper summarises about the problems faced by the 

automobile passenger compartments and aerospace interior for control of low frequency 

interior noise. By active structural acoustic control approach issue related to the feedback 

control of interior sound was proposed. The feedback control strategy was used when signals 

are not derived in application. Kalman filter was designed to estimate the status of cavity 

structure subjected to deflection depending upon piezoelectric patch mounted on flat plate at 
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particular location. The optimal location for piezoelectric sensor and actuator was also 

proposed for effective detection of acoustic potential energy. 

 

X. Huang et al. 2014[46]: This paper summarises about the optimal placement of 

piezoelectric sensors and actuators on thin cantilever plate by using modal-based linear 

quadratic independent modal space controller method. Linear quadratic regulations were 

taken as main objective for efficient location. In order to avoid the crossover and mutation 

probability, an adaptive genetic algorithm was considered. It was found that the technique is 

more effective and feasible. 

 

Z. Qiu, et al. 2014[47]: In this paper, optimal location of piezoelectric patch on flexible plate 

at clamped boundary condition was found out by Genetic Algorithm which is modelled in 

ANSYS software. It was observed that filtered-X least mean square feedforward control 

algorithm showed more performance in vibration control then compared to proportionality 

Derivative control algorithm. 

 

S.K. Vashist and D. Chhabra 2014[48]: In this paper, optimal location of piezoelectric 

actuators on thin cantilever plate was found out by integer codded genetic algorithm by 

taking controllability index as fitness function and Linear Quadratic Regulator optimal 

technique was applied in order to study the effectiveness of a vibration control. From results, 

location obtained through this technique was more effective for control of vibration. 

 

S. Thenozhi et al. 2014[49]: In this paper, it was discussed about the control of vibration 

caused by environments can be done by algorithms such as proportional derivative. This 

derivative was applicable for both linear structures as well as non-linear structures also. Then 

algorithm was considered in order to get the permanence as if total vibrations produced by 

them are terminated. It is concluded from this paper even though selection of gains was not 

appropriate, these active variables will lower the vibrations. 

 

Z. Shunqi et al. 2014[50]: This paper summarizes as appropriate vibration controller for 

thin-walled structures is finite element modelling which is based on first order shear 

deformation method. Vibrations may include free or forced depending upon structure. In 

order to control this PID is damped on both sides. Finally, comparison is made by using LQR 

method. This result is validated by piezoelectric layered smart plate for various excitations. 
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Conclusion is made from this as PID method gives most appropriate results then compared to 

LQR control whereas D control the free vibrations but has no effect on forced. 

 

M. Kerboua et al. 2014[51]: This paper revises about the vibration controller by using smart 

materials such as piezoelectric by applying a shunt control method. Initially Finite element 

method is used for optimum location and design of a piezoelectric, then the results which is 

obtained was 42% in reduction of vibrations. This is validated by MATLAB software by 

calculating natural frequency results and location also. 

 

N. Sehgal et al. 2014[52]: This paper reviews about the Meta-Heuristics Approaches for 

optimal location of piezoelectric actuator and sensor on a flexible cantilever plate such as 

swarm intelligence method, evolutionary approach, reactive tabu searching optimization 

technique and simulated annealing and comparison was made between them. 

 

K. Khorshidi et al. 2014[53]: In this paper, vibrations produced by the circular plate was 

controlled by placing two piezo electric patches with different thickness on both sides as 

actuator and sensor was carried out by classical plate theory The transverse sound waves 

which are excited from circular plate are controlled by using Fuzzy Logic Controller (FLC) 

and Linear-Quadratic Regulator (LQR) techniques. It was concluded that the frequencies 

obtained through this theory was most efficient to reduce vibrations at very quickly. 

 

M. K. Kwak et al. 2015[54]: This paper reviews about how the vibrations produced by plate 

are controlled. Piezo-electric actuator and sensor was bonded on two sides of plate in order to 

solve the problem. In experimental setup, the frequencies of a submerged plate are found out 

by introducing transfer function in this actuator and sensor. The frequency results which are 

obtained is validated by comparing with theoretical study of virtal mass model method. 

Finally, it was concluded that the natural frequency results which are obtained through this 

technique are most effective and also it was easy prediction for any changes in frequencies 

when it was partially submerged in a fluid. 

 

M. J. Jweeg et al. 2015[55]: This paper reviews about the control of vibration on fluid pipes 

was done by piezoelectric patches and then carried out to experimentally and simulation was 

done in ANSYS workbench and APDL software. Finally, it was concluded that as fluid 

velocity increases which will reduces the natural frequency. If piezoelectric patch is placed at 
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optimum location, it will result in reduction of vibrations produced by pipe and reduces 

displacement. 

 

W. Larbi et al. 2016[56]: In this paper, work is carried out by the sound which is transmitted 

through double laminated plate can be evaluated by piezoelectric shunt method. This gives to 

high cost, for low cost modal reduction method is used. In modal bases method, static 

correction was considered in order to take the higher modes effect. In spite of the size is 

reduced, this method was proved to be most efficient in case of simulation of laminated 

plates. In order to calculate the loss of sound transmission is done by Rayleigh integral 

method. 

 

V. Jawali et al. 2016[57]: In this paper, most preferable location of piezoelectric sensor and 

actuator on a plate was found out by genetic algorithm by minimising the maximum non-

detection probability as objective function and the result obtained was compared in 

MATLAB software by considering the continuous unit square plate with the help of 

fminimax solver. This technique was more effective for real structures. 

 

A. Koszewnik and Z. Gosiewski 2016[58]: In this paper, best preferred location of 

piezoelectric actuator and sensor on flexible rectangular plate with simply supported 

boundary condition was found out by Mindlin plate theory and the finite element method. 

The obtained location was verified by conducting experimental analysis. 

 

K. Kulinski et al. 2016[59]: This paper reviews about the beam of stability and disturbances 

produced when it is loaded at two ends and piezoelectric patch which is placed at optimal 

location. It is concluded that the piezo had affected the frequencies which are produced due to 

transverse vibrations. But the first two results obtained had more accuracy then compared to 

analytical model. If more piezo patches are placed, then the result will be more accuracy. 
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CHAPTER-4 

SCOPE OF THE STUDY 

 Vibrations produced in the systems such as automobiles, aerospace structures etc., are 

due to disturbances from surroundings.  

 

 So, scope is to control the vibrations by attaching a piezoelectric element to the 

system.  

 

 Patch cannot be placed at every location because where the displacement is zero, the 

strain will be zero.  

 

 The exact location of piezoelectric element was found out by viewing method. This 

method was applied to the plate with different boundary conditions like free-free, simply 

supported, cantilever, clamped at all edges of the plate. 

 

 Then pole placement methodology can be applied for the design of direct output 

feedback control. By plotting open and closed loop pole zero maps, there is scope of finding 

the optimal control gain value at optimum location of piezoelectric patch on plate. 
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CHAPTER-5 

OBJECTIVES OF THE STUDY 

There are three main objectives which represents the study are 

 

 Intially, finding the optimum location of piezoelectric patch on plate. 

 

 Later, finding out the optimal velocity gain value for the good control of vibrations 

 

 Finally, finding the node number where to apply the hammer excitation force for maximum 

reduction of vibrations produced by structure. 

 

 The above objectives can be resolved by these steps: A viewing method was used to find out 

the most preference location of piezo-electric patch on a plate. 

 

  The direct output feedback control strategy was used for finding the optimal velocity gain 

value which was designed by used pole placement technique. 

 

 In this technique, open loop poles map is plotted by taking the values of displacement gain 

(Gd) and velocity gain (Gv) has zero. Then closed loop poles map is plotted by considering 

the 3 different cases like [Gv=0; Gd  ], [Gv 0; Gd  ] and [Gd=0; Gv  ].  

 

  Then nodal displacement response at different node number and different response number 

on plate for different cases of dG  and vG  are represented in order to check whether the 

displacement of a structure is damped out completely or not.  
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CHAPTER-6 

MATERIALS AND RESEARCH METHODOLOGY 
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Consider a steel plate by considering as length of 0.261m, breadth of 0.3m, and thickness of 

0.001m. Properties of steel are taken as Young’s modulus of E=200 GPa, Density of 

 =7800Kg/m
3
, Poisson ratio of ν = 0.3.  

           A piezo P-876 A12 Dura Act piezoelectric patch is considering by taking a length of 

0.0522m, breadth of 0.05m and thickness of 0.0005m. Properties of piezoelectric patch is 

taken as Young’s modulus of E=23.3 GPa, Density of  =7800Kg/m
3
 Poisson ratio of ν = 

0.34, Piezoelectric strain coefficient e31 = -8.9678 C/m
2
, e32 = -8.9678 C/m

2
, Dielectric 

constant ɛ33 = 6.6075e
-9

[45]. 

            Optimum location of piezo element patch on rectangular plate was found out by 

viewing method though the modal analysis from ABAQUS CAE software where inbuilt 

options like piezo element properties etc., 

6.1 Finite element modelling of steel plate: A Finite element model of the steel plate is 

created in ABAQUS software. Meshing is done by taking the size of 10×12. Then material 

steel properties are added to the plate. Then by selecting step manager, under that procedure 

like linear perturbation then frequency is selected. Then next selecting load, choosing the 

boundary condition as clamped at all edges i.e. displacement and rotation is zero. Finally, job 

was created and Modal shapes of plate are extracted out. Similarly, applying the cantilever 

boundary condition to the left side of the plate i.e., displacement and rotation at the left side 

of the plate are taken as zero and mode shapes are extracted. Similarly, free-free and simply 

supported boundary condition was applied to the plate. 

6.2 Viewing the mode shapes of neat plate: In this method, the optimal location is found 

out by observing the modal shapes of plate, piezo cannot be placed on the nodal line where 

displacement is zero and strain is also zero it doesn’t provide a vibration control. 

6.3 Optimal location of piezoelectric patch: A patch cannot be placed at some locations on 

a plate because of vibrations produced by plate. In order to avoid these optimal location is 

found out. Optimum location is the place in which the piezoelectric patch was not placed on 

nodal line. If piezo is placed at a location other than optimum, then the control of vibrations 

produced by a plate will not be more effective Then Optimal location of piezoelectric patch 

on plate is found out by proposing a method as Viewing. 
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6.4 Finite Element modelling of the plate-piezoelectric patch: A Finite element model of 

piezo P-876 A12 Dura Act piezoelectric patch is created in ABAQUS software. Meshing is 

done by taking the size of 2×2. The patch is attached to the steel plate by using tie which is 

taken from constraint option in order to control the vibrations produced by the plate. 

Similarly, job was created and Modal shapes of plate-piezoelectric patch are extracted out. 

6.5 Application of Viewing method: By using this method, the optimum location of the 

piezoelectric patch on the plate for different boundary conditions. Through this method, it is 

observed that if piezo is placed at a location where nodal lines are passing then the control of 

vibrations will not be so effective. 

6.6   Validation through Frequency Response Function: Frequency response function is 

also called as a transfer function. It was used in modal analysis where the response of a 

vibration produced by structure was measured with respect to the applied force. The optimum 

location which was found for different boundary conditions like free-free, simply supported, 

cantilever, clamped at all edges was validated by conducting FRF analysis. 

6.7 Active Vibration Control of a plate: In order to extract the results of mass and stiffness 

matrix of plate, the finite element formulation of plate was done. Then finite element 

formulation plate with piezoelectric patch was formulated for mass and stiffness matrix of a 

plate with piezoelectric patch.  

6.7.1 Finite element formulation of plate: By using Kirchhoff assumptions as transverse 

normal stays as straight even after the deformation of plate and rotation of the plate will be 

always perpendicular to the mid surface of the plate, formulation of plate was modelled. 

Displacement fields like u, v and w with respect to x-axis, y-axis and z-axis are expressed by 

using Kirchhoff hypothesis. 

Displacement of plates 
dw

u z
dx

                                                       (3) 

dw
v z

dy
                                                                                                                         (4) 

( , )w w x y                                                                                    (5) 
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Fig (6.1): Coordinate system of a plate with integrated piezoelectric patches 

Curvatures of plate  
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As the deformation caused by transverse strain is neglected and strains expressed in the form 

of displacements are shown below as  

Strains relation 
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                                                                    (12) 

The nodal displacement matrix of a plate at node ‘i’ was represented as  

   
T

i i xi yid w                                                                               (13) 

The rotations are expressed in the form of transverse displacements as  
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x

w

y

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                                                                                                             (14)
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x



 


                                          (15) 

In order to produce a positive rotation with respect to y-axis, the ‘-‘ve sign in θy relation as   

‘-‘ve displacement w is required. 

Displacement function: 

  2 2 3

1 2 3 4 5 6 7

2 2 3 3 3

8 9 10 11 12

,i i i i i i i i i

i i i i i i i i i

w x y a a x a y a x a x y a y a x

a x y a x y a y a x y a x y

       

    
     (16) 

The transversal field ‘w’ was represented as  

   
T

w p a                                (17) 

   2 2 3 2 2 3 3 31Tp x y x xy y x x y xy y x y xy                                (18) 

The coefficient vector {a} was represented as  

   1 2 3 4 5 6 7 8 9 10 11 12

T
a a a a a a a a a a a a a                           (19) 

The nodal displacement field vector {di} for rectangular plate was represented as  

   1 1 1 2 2 2 3 3 3 4 4 4

T

i x y x y x y x yd w w w w                                          (20) 

    id C a                         (21) 

Where [C] is 12x12 matrix given by eq. (20) 
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             (22) 

     
1

a C d


                                                                            (23) 

Then substituting Eq. (21) in Eq. (15), the obtained expression is show in Eq. (22) 

     
1T

iw P C d


                     (24) 

  iw N d                                                                                      (25) 

Where [N] is the shape function which was represented in eq. (26) 

     
1T

N P C


                        (26) 

Curvature matrix was given as  

 
4 7 8 11

6 9 10 12

2 2

5 8 9 11 12

2 6 2 6

2 2 6 6

2 4 4 6 6

x

y

z

k a a x a y a xy

k k a a x a y a xy

k a a x a y a x a y

      
  

        
   

       

                                    (27) 

    k Q a                     (28) 

[Q] is the coefficient of matrix, from relation {a] 

    k B d                                (29) 

    
1

B Q C


                     (30) 

[D] is the consecutive matrix of isotropic materials 
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  2

1 0

1 0
1

1
0 0

2

PE
D








 
 
 

  
 
 
 

                   (31) 

Stiffness matrix of plate       
T

k B D B dxdy   where   

By substituting the results of [B], [D] in stiffness relation. It was found size of matrix is of 

order 12x12   

Substitute Eq. (24) in Eq. (12) then 

 
     

   
2 2 2

1

2 2
2

T
T T T

i

P P P
z C d

x yx y


    

    
    

                                    (32) 

       
1

k iz L C d


                      (33) 

 
     2 2 2

2 2
2

T
T T T

k

P P P
L

x yx y

   
 

    

                 (34) 

By differentiating the eq. (17) twice, the results are expressed in the eqns. (35), (36) and (37) 

 
 

2

2
0 0 0 2 0 0 6 2 0 0 6 0

T
P

x y xy
x





                                  (35) 

 
 

2

2
0 0 0 0 0 2 0 0 2 6 0 6

T
P

x y xy
y





                                (36) 

 2

2 20 0 0 0 1 0 0 2 2 0 3 3

T
P

x y x y
x y


    

                                 (37) 

The obtained results are substituted in the eq. (34) 

 
2 2

0 0 0 2 0 0 6 2 0 0 6 0

0 0 0 0 0 2 0 0 2 6 0 6

0 0 0 0 2 0 0 4 4 0 6 6

k

x y xy

L x y xy

x y x y

 
 

  
 
 

                   (38) 

The displacement fields like w, u and v are represented in vector form {d} as shown in  

eq. (39) 

   
T

d w u v                                                                           (39) 

By substituting Eqns. (3), (4) and (5) in Eq. (39), gives the expression as shown in Eq. (40) 
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 
T

dw dw
d w z z

dx dy

 
   
 

                                                                            (40) 

Sub Eq. (21) in Eq. (40), the following expression obtained is shown in Eq. (41) 

        
1T

M id L H C d


                    (41) 

Where  
T

ML and  H  are shown in Eq. (42) and Eq. (43) 

   
   

T
T T

T T

M

P P
L P

x x

   
  

   

                     (42) 

 

1 0 0

0 0

0 0

H Z

Z

 
 

 
 
  

                   (43)  

6.7.2 Finite element formulation of Piezoelectric patches: The stress tensor relation and 

electric displacement relations are taken from [16]  

      EC e E                         (44) 

       
T SD e E                                (45) 

where the superscript S means that the values are measured at constant strain and the 

superscript E means that the values are measured at constant electric field, {s} is the stress 

tensor, {D} is the electric displacement vector, {e} is the strain tensor, {E} is the electric 

field, [C]
E 

is the elastic constants at constant electric field,
 
[e] denotes the piezoelectric stress 

coefficients, and S    is the
 
dielectric tensor at constant mechanical strain. Then relation 

between [e] and [d], the piezoelectric strain coefficient is represented in eq. (44)  

   Ee C d                                                     (46) 

 Let’s assuming the electric field (E) is constant through the actuator and sensor elements 

thickness, the gradient operators are: 

z
z

d
E B

dz h

 



                        (47) 

Hamilton’s principle was considered as for the finite element formulation of piezoelectric 

patch 
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 
2

1

0

y

e m W

y

T U W W dt                                                                                    (48) 

T is the kinetic energy of a plate with piezoelectric patch which was expressed in eq.  (49) 

. .1
{ } { }

2

T

V

T d d dv                                                            (49) 

Differentiating the eq. (41) with respect to y constant for the value of 
.

{ }d then  

U is the potential energy of a plate with piezoelectric patch which was expressed in eq.  (50) 

   
1

2

T

V

U dv                                                                                                        (50) 

dv  is defined as in the eq. (51) 

p a sdv dv dv dv                                                                                  (51) 

From eq. (51) pdv refers to the change in volume with respect to the plate and expressed in 

the eq. (52) 

/2

/2

p

p

h a b

p

h a b

dv dxdydz
  

                                                                     (52) 

From eq. (51) adv  refers to the change in volume with respect to actuator and expressed in 

the eq. (53) 

/2

/2

p

p

h ha a b

a

h a b

dv dxdydz



 

                        (53) 

From eq. (51) sdv refers to the change in volume with respect to sensor and expressed in the 

eq. (54) 

/2

/2

p

p s

h a b

s

h h a b

dv dxdydz
  

                       (54) 

From eq. (48) eW  represents the work done by the electrical forces which was given in eq. 

(55) 

   
1

2

T

e

V

W E D dv                      (55) 

Here {D} is the electric displacement  

From eq. (48) W expression was given in eq. (56)    
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       
T T

b S e

V A A

W d f dv d f dA dA                       (56) 

 bf ,  Sf  and e  represents the body force, surface force and electrical stress. 

Then sub eq. (44) in eq. (50) and eq. (45) in eq. (55) then the modified expression of potential 

energy and work done by electrical force was given in eq. (57) and eq. (58) 

        
1 1

2 2

T TE

V V

U C e E dv                                                              (57) 

         
1 1

2 2

T T T S

e

V V

W E e E E dv                      (58) 

Then sub eqns. (49), (56), (57), (58) in eq. (48), the modified expression was given in eq. (59) 

        

         

       

2

1

..

{ } { }

0

T TT E

V V V
y

T T T S

y V V

T T

b A q

V A A

d d dv C e E dv

E e E E dv dt

d f dv d f dA dA

   



  

 
        

 
 

      
 
  
  

  

  

  

                         (59) 

Sub Eqns. (41), (25), (47) in eq. (59) then the modified expression was given in eq. (60) 

 

   

2

1

..

{ } { } { } { }
0

{ } { }

T e e e
y kdd dd k d

e ey
d k a

d M d K d K f
dt

K d K Q



 

 

 

  
                  

            

                        (60) 

Where e

ddM   , e

ddK   , e

dK 
    or e

dK
   , eK

   ,  aQ and { }f


are expressed in the eqns. 

(61), (62), (63), (64), (65) and (66) 

       
1T Te

dd M M

V

M C L H L C dv
 

                                (61) 

       
12T Te

dd K K

V

K C z L D L C dv
 

                                                                            (62) 

     
T T T Te e

d d K Z

V

K K C z L e B dv 


                                                                     (63) 

e T T

Z Z

V

K B B dv                                                                                                           (64) 
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 a d

A

Q dA                                 (65) 

   { } b A

V A

f f dv f dv


                                                                                                     (66) 

By generalising coordinates in the eq. (60), then the obtained equilibrium equations are given 

by eqns. (67) and (68) 

..

{ } { } { } { } 0e e e
kdd dd k dM d K d K f 



                                                                  (67) 

 { } { } 0e e

d k aK d K Q                                                                            (68) 

Where e

ddM    and eK   are the mass stiffness matrix and element stiffness matrix. 

Integrating the eq. (62) with respect to z-direction was given in eq. (69) 

       
3

1

1

T Te

dd i K i K

i

K h C L D L dA C
 



                                                                      (69) 

Where 1h , 2h  and 3h are represented in eqns. (70), (71) and (72) 

2
3

1
2 2 2

p a a
a

h h h
h h

 
   

 
                                                                                                    (70) 

3

2
12

ph
h                                  (71) 

2
3

3
2 2 12

p s s
a

h h h
h h

 
   

 
                                                               (72) 

The values of  iD  for i=1, 2, 3 are calculated by considering the eq. (31) and the value of the 

dA  was taken as dxdy .     

Similarly, integrating the eq. (61) with respect to z-direction is given in eq. (73) 

       
3

1

1

T Te

dd i M i M

i

M C L H L dA C
 



                                (73) 

Whereas i or a , p  and s  for i = 1, 2, 3 and similarly the values of  iH  are given by 

eqns. (72), (73) and (74) 
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   1 1

1

0 0

0 0

0 0

a

a

h

H H h

h

 
 

 
 
  

                                                                                            (74) 

 2 2

2

0 0

0 0

0 0

p

p

h

H H h

h

 
 

     
 
 

                                                                             (75) 

   3 3

3

0 0

0 0

0 0

s

s

h

H H h

h

 
 

 
 
  

                                                                                            (76) 

Similarly, electrical-mechanical coupling stiffness 

      21

2

TT Te

d p a a K zaa
A

K h h h C L e B dA


                                 (77) 

4 S

ae

s
a

ab
K

h


                                                                                      (78) 

      21

2

TT Te

d p s s K zss
A

K h h h C L e B dA


                                                     (79) 

4 S

ae

s
s

ab
K

h


                                                                          (80) 

6.7.3 Development of state space representation for plate and piezoelectric patch: A 

basic state space eq. for plate and piezoelectric patch was expressed in eq. (81). Which was 

employed from [60] 

.. .

t S t DM p C p K p f                                                                          (81) 

From above eq. (81), p  is the structural displacement, tM is the combination of plate and 

piezo-electric mass matrix, SC is the structural damping, tK  is the combination of plate and 

piezo-electric stiffness matrix and Df  is the type of disturbances which makes the structure to 
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vibrate, 

.

p represents the displacement produced by structure and 

..

p represents the 

acceleration of structure which was given by eq. (82) 

.. .
1 1 1

t D t S t tp M f M C p M K p                          (82) 

Then by choosing the structural displacement as ‘ p ’ and structural velocity as ‘

.

p ’with 

state variables as 1p  and  2p . 

   1p t p t and    
.

2p t p t                 (83) 

     
. .

21
p t p t p t                     (84) 

   
. ..

1 1 1

2 12 t D t S t tp t p t M f M C p M K p                      (85) 

The state space representation of closed loop plate- piezoelectric system. 

 

 

 

 

.

1 1

1 1 1.
2

2

0 0
D

t t t S t

p t I p t
f

M K M C p t M
p t

  

 
                       

                (86) 

The output eq. of a closed loop structural acceleration was represented in eq. (87) 

 
 

 

..
11 1 1

2

t t t S t D

p t
p t M K M C M f

p t

  
  

      
  

                (87) 

By comparing eqns. (86) and (87) with the eqns. (1) and (2), the values of matrix A, B, C and 

D are represented in eqns. (88), (89), (90) and (91) 

1 1

0
C

t t t S

I
A

M K M C 

 
  

  
                   (88) 
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1

0
C

t

B
M 

 
  
 

                     (89) 

1 1C

t t t SC M K M C                        (90) 

1C

tD M                       (91) 

6.7.3   Design of Direct Output Feedback:  In order to design the direct output feedback 

gain for optimal value of controller gain (Gv), the pole placement method was used. Initially, 

in order to find the optimal gain value of velocity gain ( vG ), the open loop pole zero maps 

were plotted by taking into consideration as displacement gain 0dG   and velocity gain 

0vG  . Then closed loop pole zero maps are plotted by varying dG   and  vG  values in 

order to get the change in design parameters like percentage peak overshoot  PO  value is 

given in eq. (92) damping loss factor   and settling time  sT  value is given in eq. (93). 

Then nodal displacement response for different values of dG  and vG  are represented in 

order to check whether the nodal displacement is damped out completely or not. Then 

hammer excitation force and response force is applied on the plate at the different nodes and 

from nodal displacement response it is possible to check that the vibrations produced by the 

plate is reduced completely or not. 

 
2

1
%

i
s

i
sPO e

 






                     (92) 

4
s i i

s s

T
 


                     (93) 
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CHAPTER-7 

RESULTS AND DISCUSSIONS 

7.1 Mode shapes of a plate with different boundary conditions: 

                     Best preferable location of piezoelectric patch was found out in ABAQUS CAE 

software by viewing method. Mode shapes of bare plate for different boundary conditions 

like clamped at all edges, cantilever, free-free, simply supported conditions are found by 

conducting modal analysis in Abaqus software. Table 7.1 represents the mode shapes of a 

plate with clamped at all edges boundary condition. Table7. 2 represents the mode shapes of 

a plate with cantilever boundary condition. Table 7.3 represents the mode shapes of a plate 

with free-free boundary condition. Table 7.4 represents the mode shapes of a plate with 

simply supported boundary condition 

Table 7.1: Mode shapes of bare plate with clamped at all edges boundary condition 

 

 

 

Mode 

shapes 

 

 

 

 
Mode 1 

 

 
Mode 2 

 

 
Mode 3 

 

 
Mode 4 

 

 
Mode 5 

Frequency 

(Hz) 

117 223 272 364 410.89 

 

Table 7.2: Mode shapes of bare plate with cantilever boundary condition 

 

 

 

Mode 

shapes 

 

 

 

 

 
 

Mode 1 

 

 
 

Mode 2 

 

 
 

Mode 3 

 

 
 

Mode 4 

 

 
 

Mode 5 

 

Frequency 

(Hz) 

 

12.59 

 

27.35 

 

73.09 

 

85 

 

105.34 
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Table 7.3: Mode shapes of bare plate with free-free boundary condition 

 

 

 

Modes 

shape 

 

 

 
 

Mode 1 

 

 
 

Mode 2 

 

 
 

Mode 3 

 

 
 

Mode 4 

 

 
 

Mode 5 

Frequency 

(Hz) 

41.94 57.22 83.77 103.57 114.98 

           

Table 7.4: Mode shapes of bare plate with simply supported boundary condition 

 

 

 

 

Modes 

shape 

 

 

 

 

 
 

Mode 1 

 

 
 

Mode 2 

 

 
 

Mode 3 

 

 
 

Mode 4 

 

 
 

Mode 5 

Frequency 

(Hz) 

 

63.32 Hz 

 

147.74 Hz 

 

177.79 Hz 

 

259.45Hz 

 

298.40 Hz 

 

7.1.1 Clamped boundary condition: 

Initially, boundary condition like clamped at all edges is applied to the plate. In this case, the 

rotation and displacement of the plate in all directions was taken as zero. From 1
st
 mode 

shape, it was observed that no nodal line was formed and piezo can be placed anywhere on 

the plate. From 2
nd

 mode shape, it was observed that one horizontal nodal line was formed at 

the centre. From 3
rd

 mode shape, it was observed that one vertical nodal line was formed at 

the centre. From 4
th

 mode shape, it was observed that one horizontal and one vertical nodal 

line was formed. From 5
th

 mode shape, it was observed that two horizontal lines are formed 

at above and below the centre. Piezo cannot be placed at a location where nodal lines are 

formed. The plate was divided into four quadrants as the boundary condition was clamped at 

all edges. Then by placing the piezo at one of the quadrants will be same as placing at all 

quadrants.  
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Initially, piezo is placed at centre location L1 (61, 62, 72, 73) and modal analysis had 

conducted for a plate with piezo. It was observed that only 1
st
 and 5

th
 mode shape is possible 

whereas 2
nd

, 3
rd

 and 4
th

 mode shape is not possible as nodal lines are passing through the 

piezo at centre. Then piezo is shifted to a horizontal location L2 (60, 61, 71, 72) away from 

the centre and observed that only 1
st
, 3

rd
 and 5

th
 mode shapes are possible whereas 2

nd
 and 4

th
 

mode shape is not possible. Then piezo is moved to a vertical location L3 (59, 60, 70, 71) 

away from the centre and observed that only 1
st
, 2

nd
 and 5

th
 mode shapes are possible whereas 

3
rd

 and 4
th

 mode shapes are not possible. Then piezo is shifted to different locations and 

observed that at location L4 (37, 38, 48, 49) all mode shapes are possible as no nodal line is 

passing through piezo. It was concluded that for simply supported boundary condition, the 

obtained location L 4 (37, 38, 48, 49) was an optimal location of the piezoelectric patch on 

the plate. Table 7.5 represents the mode shapes of the piezoelectric patch on the plate at an 

optimum location with frequency.  

 

Table 7.5: Optimum location of piezoelectric patch on bare plate for clamped at all edges    

boundary condition 

 
Location 

of 

Mode 

Shapes 
 

MODE 1 
 

MODE 2 
 

MODE 3 
 

MODE 4 

 

 
MODE 5 

Frequency 

(Hz) 

117 220 269 354 409 

Sensing 

Modes 

     

 

7.1.2 Cantilever boundary condition: 

Next cantilever boundary condition is applied to the left side of the plate. In this condition, 

displacement and rotation at the left side of the plate are taken as zero. By conducting modal 

analysis for the plate in Abaqus software, the mode shapes of a plate with cantilever 

boundary condition are extracted. From 1
st
 mode shape, it was observed that vertical nodal 

line was formed at the complete left side of a plate. From 2
nd

 mode shape, it was observed 
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that the combination of both vertical and horizontal nodal line was formed at the centre. From 

3
rd

 mode shape, it was observed that the combination of both vertical nodal line and from 

centre two cross 45
0
 nodal lines was formed. From 4

th
 mode shape, it was observed that the 

D-shaped nodal lines are formed on the plate. From 5
th

 mode shape, it was observed that the 

one horizontal nodal line at centre and two vertical nodal lines are formed at the edges of the 

plate. the piezoelectric patch cannot be placed at a location where nodal lines are formed.  

          

    Now piezo is attached to the plate at centre location L1 (61,62,72,73) and modal 

analysis had conducted for a plate with piezo. It was observed that only 1
st
 mode shape is 

possible as no nodal lines are passing through the piezo but 2
nd

,3
rd

, 4
th

 mode shapes are not 

possible as nodal lines are passing through piezo. So, this is not taken as optimum location. 

Next piezo is shifted to a horizontal location L2 (60,61,71,72) from the centre and modal 

analysis had conducted. It was observed that only 1
st
, 4

th
 mode shape is possible but 2

nd
, 3

rd
, 

5
th

 mode shapes are not possible. Then piezo is placed at vertical location L3 (59,60,70,71) 

above from centre and by conducting the modal analysis to plate with piezo it was observed 

that only 1
st
, 4

th
, 5

th
 mode shapes are possible but 2

nd
 and 3

rd 
mode shapes are not possible. 

Then piezo is placed at different locations and observed that at location L (28,29,39,40) all 

mode shapes are possible. It was concluded that for cantilever boundary condition, the 

obtained location L (28,29,39,40) was an optimal location of the piezoelectric patch on the 

plate. Table 7.6 represents the mode shapes of the piezoelectric patch on the plate at an 

optimum location with frequency. 

 

Table7.6: Optimum location of piezoelectric patch on a plate for cantilever boundary   

condition 

 
Location 

of 

Mode 

Shapes  
MODE 1 

 
MODE 2 

 
MODE 3 

 
MODE 4 

 
MODE 5 

Frequency 

(Hz) 

12.54 27.15 72.21 84.61 103.62 

Sensing 

Modes 

     
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7.1.3 Free- Free boundary condition: 

 Next free-free boundary condition was applied to the plate as displacement and 

rotation on all sides is not zero. By conducting modal analysis to the plate, it was observed 

that from 1
st
 mode shape a horizontal and vertical nodal lines are formed. From 2

nd
 mode 

shape, it was observed that two vertical semi-curve nodal lines are formed at above and 

below the centre. From 3
rd

 mode shape, it was observed that two horizontal semi-curve nodal 

lines are formed at left and right side of the centre. From 4
th

 mode shape, it was observed that 

one vertical at centre and two horizontal nodal lines are formed at above and below the 

centre. From 5
th

 mode shape, it was observed that two vertical and one horizontal nodal lines 

are formed at the centre. 

 

The piezoelectric patch is attached to the plate at centre location L1 (61,62,72,73). By 

conducting the modal analysis of a plate with piezo it was observed that only 2
nd

 and 3
rd

 

mode shapes are possible whereas 1
st
, 4

th
, 5

th
 mode shapes are not possible as a nodal line are 

passing through the piezo. Then piezo is shifted to a horizontal location L2 (60,61,71,72) 

away from the centre and observed that only 2
nd

, 3
rd

, 4
th

 mode shapes are possible but 1
st
, 5

th
 

mode shapes are not possible as nodal lines are passing through the piezo. Then piezo is 

moved to a vertical location L3 (59,60,70,71) away from the centre and observed that only 3
rd

 

mode shape is possible whereas 1
st
, 2

nd
, 4

th
, 5

th
 mode shapes are not possible as a nodal line 

are passing through the piezo. By placing the piezo at different locations of the quarter plate, 

it was observed that at location L (123,124,134,135) all mode shapes are a satisfying 

condition as no nodal lines are passing through piezo. It was concluded that the obtained 

location L (123,124,134,135) was an optimum location as no nodal lines are passing through 

piezo. Table 7.7 represents the mode shapes of the piezoelectric patch on the plate at an 

optimum location with frequency.  
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Table 7.7: Optimum location of piezoelectric patch on bare plate for free-free boundary 

condition 

 
Location 

of 

Mode 

Shapes  
MODE 1 

 

 
MODE 2 

 
MODE 3 

 
MODE 4 

 
MODE 5 

Frequency 

(Hz) 

40.27 56.85 82.16 101.40 113.40 

Sensing 

Modes 

     

7.1.4 Simply supported boundary condition: 

The simply supported boundary condition was applied to the plate as displacement 

with respect to all directions and rotation with respect to the z-axis is taken as zero but a 

rotation with respect to x-axis and y-axis is not taken as zero. By conducting the modal 

analysis for the plate, it was observed that from 1
st
 mode shape no nodal line was formed and 

piezo can be placed at any location. From 2
nd

 mode shape, it was observed that one horizontal 

nodal line was formed at the centre. From 3
rd

 mode shape, it was observed that one vertical 

nodal line was formed at the centre. From 4
th

 mode shape, it was observed that both 

horizontal and vertical nodal line was formed at the centre. From 5
th

 mode shape, it was 

observed that two horizontal nodal lines were formed at above and below the centre. The 

plate is divided into quadrants as simply supported boundary condition is applied. If piezo is 

placed at one of the quadrants, the result obtained will be same as remaining quadrants. 

The piezoelectric patch is attached to the plate at centre location L1 (61, 62, 72, and 73). By 

conducting a modal analysis of a plate with piezo, it was observed that only 1
st
 and 5

th
 mode 

shape is possible whereas 2
nd

, 3
rd

 and 4
th

 mode shape are not possible as nodal lines are 

passing through the piezo at centre. Then piezo is shifted to a horizontal location L2 (60, 61, 

71, 72) away from the centre and observed that only 1
st
, 3

rd
 and 5

th
 mode shapes are possible 

whereas 2
nd

 and 4
th

 mode shape is not possible. Then piezo is moved to a vertical location L3 

(59, 60, 70, 71) away from the centre and observed that only 1
st
, 2

nd
 and 5

th
 mode shapes are 

possible whereas 3
rd

 and 4
th

 mode shapes are not possible. Then piezo is shifted to different 

locations and observed that at location L4 (37, 38, 48, 49) all mode shapes are possible as no 

nodal line is passing through piezo. It was concluded that for simply supported boundary 
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condition, the obtained location L4 (37, 38, 48, and 49) was an optimal location of the 

piezoelectric patch on the plate. Table 7.8 represents the mode shapes of the piezoelectric 

patch on the plate at an optimum location with frequency.  

Table 7.8: Optimum location of piezoelectric patch on bare plate for simply supported 

boundary condition 

 

Location of 

Mode 

Shapes 

 
 

MODE 1 

 
 

MODE 2 

 
 

MODE 3 

 
 

MODE 4 

 
 

MODE 5         

Frequency 

(Hz) 

 

62.10  

 

141.90 

 

173.45 

 

249.15 

 

293.93 

Sensing 

Modes 

 
 

 
 

 
 

 
 

 
 

7.2 Validation through Frequency Response Function: 

    Initially, clamped at all edges boundary condition was considered in order to plot 

FRF graph. If piezo is placed at a location where nodal lines are passing, the FRF graph 

cannot detect all mode shapes. From fig 7.1, it was observed that detection of all mode shapes 

was possible at optimal location. From frf output, it was found that the 1
st
 mode shape is 

damping out very quickly then compared to other modes 

 
Fig 7.1: FRF graph for optimum location of piezo electric patch on a plate with clamped at all 

edges boundary condition 
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The FRF graph for cantilever boundary condition at the optimum location of the piezoelectric 

patch on the plate was plotted. From fig 7.2, it was observed that the detection of all mode 

shapes was possible at the optimum location. From frf output, it was found that the 1
st
, 2

nd
, 

and 3
rd

 mode shape are damping out very quickly then compared to other modes 

 
Fig 7.2: FRF graph for optimum location of piezo electric patch on a plate with cantilever 

boundary condition 

The FRF graph for free-free boundary condition at the optimum location of the piezoelectric 

patch on the plate was plotted. From fig 7.3, it was observed that detection of all mode shapes 

was possible at the optimum location of the piezoelectric patch on the plate. From frf output, 

it was found that the 3
rd

 and 5
th

 mode shape is damping out very quickly then compared to 

other modes 

 
         Fig 7.3: FRF graph for optimum location of piezoelectric patch on a plate with free-free 

boundary condition 
The FRF graph for simply supported boundary condition at the optimum location of the 

piezoelectric patch on the plate was plotted. From fig 7.4, it was observed that the detection 
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of all mode shapes was possible at the optimum location of the piezoelectric patch on the 

plate. From frf output, it was found that almost all mode shapes are damping out very 

quickly. 

 

 
 

Fig 7.4: FRF graph for optimum location of piezoelectric patch on a plate with                   

simply supported boundary condition. 

 

7.3 Active Vibration Control of a plate: 

Initially direct output feedback gain is designed for open loop pole zero maps at displacement 

aand velocity gain value equals to zero. Then closed loop pole zero maps are plotted by 

varying different displacement gain  dG  and velocity gain  vG  values which had 

considered in four different cases. 

Case 1: 

       In this case, displacement gain and velocity gain values are taken as zero. From fig (7.5) 

and fig (7.6), it was observed that there is no control of vibrations which are produced by the 

structure. 
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Fig 7.5: Pole zero map at 0vG   and 0dG   

 

Fig 7.6: Nodal displacement response at 0vG   and 0dG   

Case 2: 

 Initially taking the value velocity gain value as zero and the displacement gain values are 

taken from minimum of 0.01 to maximum of 1x10
5
. From tables (7.9) and (7.10), it was 

observed that there is no change in structural damping value. From figs. (7.7) and (7.8) it was 

observed that there is no effect in control of vibrations produced by structure. 
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Table (7.9): Changes in Design Parameters with respect to 0vG   and 0dG   

Mode 

frequency 

[Hz] 

Design 

parameter 

Gd 

0.001 

Gd 

0.01 

Gd 

0.02 

Gd 

0.03 

Gd 

0.04 

Gd 

0.05 

Gd 

0.06 

 

114 

ξ 

Ts (sec) 

PO (%) 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

 

208.4 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

 

250 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

 

332.6 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

 

369.2 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

 

 

Table (7.10): Changes in Design Parameters with respect to 0vG   and 0dG   

Mode 

frequency 

[Hz] 

Design 

parameter 

Gd 

0.07 

Gd 

0.08 

Gd 

0.09 

Gd 

0.1 

Gd 

1.0 

Gd 

1 e
3 

 

Gd 

1 e
5 

 

114 

ξ 

Ts (sec) 

PO (%) 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.005 

1.117 

98.4 

0.00499 

1.117 

98.4 

0.00499 

1.117 

98.4 

 

208.4 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.005 

0.610 

98.4 

0.00496 

0.610 

98.4 

0.00495 

0.610 

98.4 

 

 

250 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.005 

0.50 

98.4 

0.00495 

0.50 

98.4 

0.00493 

0.50 

98.4 

 

332.6 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.005 

0.382 

98.4 

0.00493 

0.382 

98.4 

0.00493 

0.382 

98.4 

 

369.2 

ξ 

Ts (sec) 

PO (%) 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.005 

0.3448 

98.4 

0.00492 

0.3448 

98.4 

0.00493 

0.3448 

98.4 
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Fig 7.7: Pole zero map at 0vG   and 0dG   

Fig (7.8): Nodal displacement response at 0vG   and 0dG   

Case 3: In this case, the value of displacement gain is taken as zero and the velocity gain 

values are taken from minimum of 0.01 to maximum of 1x10
5
. From tables (7.11), (7.12) and 

(7.13), it was found that the gain values from 0.001 to 0.08 have adorable variation in design 

parameter and when the gain value is 1x10
5
, the design parameters are closer to the initial 

values. From fig (7.9), it was observed that when the gain value is 0.08, the most of the 

closed loop poles are shifted to the left side of the pole zero map. From fig (7.10), after 

applying the control it was found that the nodal displacement had damped out so quickly 
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compared to other gain values. So, the optimal direct output feedback value was taken as 

0.08. 

Table (7.11): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

frequency 

[Hz] 

Design 

parameter 

GV 

0.001 

 

 

GV 

0.01 

 

 

GV 

0.02 

GV 

0.03 

GV 

0.04 

 

 

 

114 

ξ 

Ts (sec) 

PO (%) 

0.00504 

1.10 

98.4 

0.00538 

1.03 

98.3 

0.00573 

0.94 

98.2 

0.00601 

0.92 

98.1 

0.00621 

0.89 

98.1 

 

208.5 

ξ 

Ts (sec) 

PO (%) 

0.00544 

0.561 

98.3 

0.00917 

0.332 

97.2 

0.012 

0.254 

96.3 

0.0132 

0.231 

95.9 

0.0133 

0.229 

95.9 

 

250 

ξ 

Ts (sec) 

PO (%) 

0.00534 

0.477 

98.3 

0.00813 

0.313 

97.5 

0.0101 

0.252 

96.9 

0.0108 

0.235 

96.7 

0.0107 

0.237 

96.7 

 

332.6 

ξ 

Ts (sec) 

PO (%) 

0.00627 

0.305 

98 

0.016 

0.12 

95.1 

0.0201 

0.095 

93.9 

0.0191 

0.100 

94.2 

0.0171 

0.112 

94.8 

 

369.2 

ξ 

Ts (sec) 

PO (%) 

0.00567 

0.304 

98.2 

0.0113 

0.152 

98.4 

0.0152 

0.113 

95.3 

0.0162 

0.106 

95 

0.0156 

0.110 

95.2 

 

Table (7.12): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

frequency 

[Hz] 

Design 

parameter 

GV 

0.05 

GV 

0.06 

GV 

0.07 

GV 

0.08 

GV 

0.09 

 

114.11 

ξ 

Ts (sec) 

PO (%) 

 0.00635 

0.878 

98 

0.00642 

0.87 

98 

0.00644 

0.86 

98 

0.00644 

0.86 

98 

0.00642 

0.87 

98 

 

 

211.6 

ξ 

Ts (sec) 

PO (%) 

0.013 

0.231 

96 

0.0124 

0.45 

96.2 

0.0118 

0.472 

96.4 

0.0112 

0.49 

96.5 

0.0107 

0.52 

96.7 

 

 

251.46 

ξ 

Ts (sec) 

PO (%) 

0.0103 

0.245 

96.8 

0.00988 

0.25 

96.9 

0.00945 

0.27 

97.1 

0.00905 

0.28 

97.1 

0.00871 

0.29 

97.3 

 

342.18 

ξ 

Ts (sec) 

PO (%) 

0.0153 

0.121 

95.3 

0.0138 

0.134 

95.8 

0.0127 

0.146 

96.1 

0.0118 

0.157 

96.4 

0.0111 

0.167 

96.6 

 

374 

ξ 

Ts (sec) 

PO (%) 

0.0146 

0.116 

95.5 

0.0135 

0.126 

95.8 

0.0126 

0.135 

96.1 

0.0119 

0.143 

96.3 

0.0112 

0.151 

96.5 
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Table (7.13): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

Frequency 

 [Hz] 

Design 

parameter 

GV 

0.1 

GV 

1.0 

GV 

1e+3 

GV 

1e+5 

 

114.27 

ξ 

Ts (sec) 

PO (%) 

0.00638 

0.873 

98 

0.0052 

1.07 

98.4 

0.00499 

1.116 

98.4 

0.00499 

1.116 

98.4 

 

211.6 

ξ 

Ts (sec) 

PO (%) 

0.0103 

0.291 

96.8 

0.00554 

0.542 

98.3 

0.00495 

0.607 

98.5 

0.00495 

0.607 

98.5 

 

253 

ξ 

Ts (sec) 

PO (%) 

0.00841 

0.30 

97.4 

0.00534 

0.471 

98.3 

0.00496 

0.507 

98.5 

0.00496 

0.507 

98.5 

 

342.18 

ξ 

Ts (sec) 

PO (%) 

0.0105 

0.177 

96.8 

0.0055 

0.338 

98.3 

0.00493 

0.377 

98.5 

0.00493 

0.377 

98.5 

 

377.2 

ξ 

Ts (sec) 

PO (%) 

0.0107 

0.157 

96.7 

0.00553 

0.305 

98.3 

0.00492 

0.343 

98.5 

0.00492 

0.343 

98.5 

 

 

 
Fig (7.9): Pole zero map at 0dG  and  0.08vG   
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Fig (7.10): Nodal displacement response at 0dG  and  0.08vG   
Case 4: In this case, the values of both displacement gain and velocity gain are varied from 

minimum of 0.01 to maximum of 1x10
5
. From tables (7.14), (7.15) and (7.16), it was found 

that the gain values from 0.001 to 0.08 have adorable variation in design parameter and when 

the gain value is 1x10
5
, the design parameters are closer to the initial values. From fig (7.11), 

it was observed that when the gain value is 0.08, the most of the closed loop poles are shifted 

to the left side of the pole zero map. From fig (7.12), after applying the control it was found 

that the nodal displacement had damped out so quickly compared to other gain values. So, the 

optimal direct output feedback value was taken as 0.08. 

Table (7.14): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

Frequency[HZ] 

Design 

parameter 

Gd=0.001 

GV=0.001 

Gd=0.01 

GV=0.01 

Gd=0.02 

GV=0.02 

Gd=0.03 

GV=0.03 

Gd=0.04 

GV=0.04 

 

114 

ξ 

Ts (sec) 

PO (%) 

0.00504 

1.108 

98.4 

0.00538 

0.974 

98.3 

0.00573 

0.974 

98.2 

0.00601 

0.929 

98.1 

0.00621 

0.90 

98.1 

 

208.4 

ξ 

Ts (sec) 

PO (%) 

0.00544 

0.561 

98.3 

0.00917 

0.332 

97.2 

0.012 

0.254 

96.3 

0.0132 

0.231 

95.9 

0.0133 

0.230 

95.7 

 

250 

ξ 

Ts (sec) 

PO (%) 

0.00534 

0.477 

98.3 

0.00813 

0.313 

97.5 

0.0101 

0.252 

96.9 

0.0108 

0.235 

96.7 

0.0107 

0.238 

96.7 

 

342.18 

ξ 

Ts (sec) 

PO (%) 

0.00627 

0.30 

98 

0.016 

0.116 

95.1 

0.0201 

0.092 

93.9 

0.0191 

0.097 

94.2 

0.0171 

0.108 

94.8 

 

369.2 

ξ 

Ts (sec) 

PO (%) 

0.00567 

0.304 

98.2 

0.0113 

0.152 

96.5 

0.0152 

0.113 

95.3 

0.0162 

0.106 

95 

0.0156 

0.110 

95.2 
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Table (7.15): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

frequency 

[Hz] 

Design 

paramete

r 

Gd=0.05 

GV=0.05 

Gd=0.06 

GV=0.06 

Gd=0.07 

GV=0.07 

Gd=0.08 

GV=0.08 

Gd=0.09 

GV=0.09 

 

114 

ξ 

Ts (sec) 

PO (%) 

0.00634 

0.881 

98 

0.00642 

0.870 

98 

0.00644 

0.867 

98 

0.00644 

0.867 

98 

0.00641 

0.871 

98 

 

208.4 

ξ 

Ts (sec) 

PO (%) 

0.0129 

0.236 

96 

0.0124 

0.246 

96.2 

0.0118 

0.258 

96.4 

0.0113 

0.270 

96.5 

0.0107 

0.285 

96.7 

 

250 

ξ 

Ts (sec) 

PO (%) 

0.0103 

0.247 

96.8 

0.00988 

0.257 

96.9 

0.00944 

0.27 

97.1 

0.00905 

0.281 

97.2 

0.0087 

0.292 

97.3 

 

342.18 

ξ 

Ts (sec) 

PO (%) 

0.0153 

0.121 

95.3 

0.0138 

0.134 

95.8 

0.0127 

0.146 

96.1 

0.0118 

0.157 

96.4 

0.0111 

0.167 

96.6 

 

369.2 

ξ 

Ts (sec) 

PO (%) 

0.0146 

0.118 

95.5 

0.0135 

0.127 

95.8 

0.0126 

0.136 

96.1 

0.0119 

0.144 

96.3 

0.0112 

0.153 

96.5 

 

Table (7.16): Changes in Design Parameters with respect to 0dG   and 0vG   

Mode 

Frequency 

 [Hz] 

Design 

parameter 

Gd=0.1 

GV=0.1 

Gd=1.0 

GV=1.0 

Gd=1e
3
 

GV=1e
3 

Gd=1e
5
 

GV=1e
5
 

 

114.11 

ξ 

Ts (sec) 

PO (%) 

0.00638 

0.874 

98 

0.0052 

1.072 

98.4 

0.00499 

1.117 

98.4 

0.00499 

1.117 

98.4 

 

211.6 

ξ 

Ts (sec) 

PO (%) 

0.0103 

0.30 

96.8 

0.00554 

0.542 

98.3 

0.00495 

0.607 

98.5 

0.00495 

0.607 

98.5 

 

253 

ξ 

Ts (sec) 

PO (%) 

0.0084 

0.29 

97.4 

0.00534 

0.471 

98.3 

0.00496 

0.507 

98.5 

0.00496 

0.507 

98.5 

 

342.18 

ξ 

Ts (sec) 

PO (%) 

0.0105 

0.177 

96.8 

0.0055 

0.338 

98.3 

0.00493 

0.377 

98.5 

0.00493 

0.377 

98.5 

 

374 

ξ 

Ts (sec) 

PO (%) 

0.0107 

0.157 

96.7 

0.00553 

0.305 

98.3 

0.00492 

0.343 

98.5 

0.00432 

0.390 

98.5 
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Fig (7.11): Pole zero map at 0.08dG   and 0.08vG   

 

 

Fig (7.12): Nodal displacement response at 0.08dG   and 0.08vG   

      Next hammer excitation force and response force is applied on the plate of optimal 

velocity gain value (Gv) =0.08 at different nodes by taking the 8 different cases as represented 

in fig (7.13)  
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Fig (7.13): Finite element Mesh of plate with piezoelectric patch of different cases with 

respect to node number 

Case 1:  The hammer excitation force is applied at node 103 as no nodal lines are passing 

through that node number and response force is applied at the centre of plate i.e. node 72. The 

displacement respone of structure at node 72 was shown in fig (7.14). It was found that 

control of vibrations which are produced by structure was not so effective. 

 

Fig (7.14): Displacement response at node number f=103; r=72 
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Case 2: Then response force is applied just away from the centre of plate in horizontal 

direction at node 74. The displacement respone of structure at node 74 was shown in fig 

(7.15). It was found that control of vibrations which are produced by structure was not so 

effective as nodal lines are passing. 

 

Fig (7.15): Displacement response at node number f=103; r=74 

Case 3: Then response force is applied away from the centre of plate in vertical direction i.e. 

node 116. The displacement respone of structure at node 116 was shown in fig (7.16). It was 

found that control of vibrations which are produced by structure was not so effective as nodal 

lines are passing. 

 

Fig (7.16): Displacement response at node number f=103; r=116 
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Case 4:  In order to cover the complete plate, the response force is applied at the node 14. 

The displacement respone of structure at node 14 was shown in fig (7.17). It was found that 

control of vibrations which are produced by structure was not as effective as nodal lines are 

passing. 

 

Fig (7.17): Displacement response at node number f=103; r=14 

Case 5: Then response force is applied at the node 32. The displacement respone of structure 

at node 32 was shown in fig (7.18). It was found that control of vibrations which are 

produced by structure was not so effective as nodal lines are passing. 

 

Fig (7.18): Displacement response at node number f=103; r=32 
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Case 6: Then response force is applied at the node 103. The displacement response of 

structure at node 103 was shown in fig (7.19). It was found that control of vibrations which 

are produced by structure was not so effective as nodal lines are passing. 

 

Fig (7.19): Displacement response at node number f=103: r=103 

Case 7: Then response force is applied at the centre of piezoelectric patchon a plate i.e. node 

107. The displacement respone of structure at node 107 was shown in fig (7.20). It was found 

that control of vibrations which are produced by structure was effective as it was optimal 

location. 

 

Fig (7.20): Displacement response at node number f=107; r=107 
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Case 8: Then response force is applied at the centre of plate i.e. node 117. The nodal 

displacement respone of structure at node 117 was shown in fig (7.21). It was found that 

control of vibrations which are produced by structure was more effective then compared to 

the displacement response at centre of piezoelectric patch i.e at node 103. 

 

 

Fig (7.21): Displacement response at node number f=103; r=119 
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CHAPTER-8 

CONCLUSIONS AND FUTURE SCOPE 

 In this thesis, the optimal location of piezoelectric patch on bare plate for different 

boundary conditions like cantilever, free-free, simply supported, clamped at all edges 

was found.  

 

 A viewing method was proposed for optimal location of piezoelectric patch on plate. 

In this method, mode shapes are viewed by conducting modal analysis in Abaqus 

software. 

 

  By viewing the mode shape, it was found out that if piezoelectric patch was placed 

on the plate where nodal lines are passing it will result in the poor control of 

vibrations.  

 

 By placing the piezo at different locations with clamped at all edges boundary 

condition on plate, it was found out that at location L (37, 38, 48, 49) was taken as 

best optimum location of piezoelectric patch as it is satisfying all the mode shapes 

where no nodal lines are passing through the piezo.  

 

 For cantilever boundary condition, the location L (28, 29, 39, and 40) was found out 

as best optimum location of piezoelectric patch on plate as it is satisfying all the mode 

shapes. 

 

  For free-free boundary condition, the location L (123, 124, 134, and 135) was found 

out as the optimum location of piezoelectric patch on plate.  

 

 For simply supported boundary condition, the location L (37, 38, 48, and 49) was 

found out as the optimum location of piezoelectric patch on plate. It was concluded 

that the viewing method was quick and easy for finding the optimum location of 

piezoelectric patch. 
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 The optimum location for different boundary conditions which is obtained through 

viewing method was accurate and most effective as validation was done by 

conducting frequency response function (FRF) analysis.  

 

 From FRF output, it was observed that the detection of all mode shapes was possible 

at optimum location.  

 

 A direct output feedback method was proposed for active vibration control strategy. A 

pole placement technique was found to be more effective as it evaluates the reduction 

in the displacement of a structure from pole zero maps and nodal displacement 

response. 

 

 By plotting a closed loop pole zero maps it was found that the optimal velocity gain 

(Gv) value is at 0.08 and by plotting open loop pole zero map, it was found that there 

is no control of vibrations. 

 

 When hammer excitation force is applies on a plate at node number 119, it was found 

that from nodal displacement response the vibrations produced by structure are 

controlled more efficiently. 

 

 As in this thesis a viewing method was proposed for the optimum location of 

piezoelectric patch on a plate but there is scope in future a lot of robustic optimization 

techniques like Linear quadratic regulator, H∞, Modal reduction techniques etc. may 

be used for finding the most preferable location and to apply the active vibration 

control strategy for complete reduction of vibrations. 

 

 

 

 

 

 

 

 



58 
 

REFERENCES 

[1] K. B. Lim, “Method for Optimal Actuator and Sensor Placement for Large Flexible 

Structures,” vol. 15, no. 1, 1992. 

[2] J. Han and I. Lee, “Optimal placement of piezoelectric sensors and actuators for 

vibration control of a composite plate using genetic algorithms,” Smart Mater. Struct., 

vol. 257, 1999. 

[3] A. M. Sadri, J. R. Wright, and R. J. Wynne, “Modelling and optimal placement of 

piezoelectric actuators in isotropic plates using genetic algorithms,” vol. 490, 1999. 

[4] M. Strassberger and H. Waller, “Active noise reduction by structural control using 

piezo-electric actuators,” Mechatronics, vol. 10, no. 8, pp. 851–868, 2000. 

[5] A. H. S. LI BIN, LI YUGANG, YIN XUEGANG, “Maximal Modal Force Rule for 

Optimal Placement of Point Piezoelectric Actuators for Plates,” J. Intell. Mater. Syst. 

Struct., vol. 11, no. July 2000, pp. 512–515, 2000. 

[6] H. Zhang, B. Lennox, and P. R. Goulding, “A float-encoded genetic algorithm 

technique for integrated optimization of piezoelectric actuator and sensor placement 

and feedback gains,” Smart Mater. Struct., vol. 552, 2000. 

[7] H. D. A. G. O. K. HIRAMOTO, “OPTIMAL SENSOR / ACTUATOR PLACEMENT 

FOR ACTIVE VIBRATION CONTROL USING EXPLICIT SOLUTION OF 

ALGEBRAIC RICCATI EQUATION,” J, vol. 229, pp. 1057–1075, 2000. 

[8] O. J. Aldraihem, S. Arabia, T. Singh, and R. C. Wetherhold, “Optimal Size and 

Location of Piezoelectric Actuator / Sensors : Practical Considerations,” vol. 23, no. 3, 

2000. 

[9] D. Sun and L. Tong, “Vibration Control of Plates Using Discretely Distributed 

Piezoelectric Quasi-Modal Actuators / Sensors,” vol. 39, no. 9, 2001. 

[10] P. Liu, V. S. Rao, and M. Derriso, “Active Control of Smart Structures with Optimal 

Actuator and Sensor Locations,” vol. 4693, pp. 1–12, 2002. 

 



59 
 

[11] Y. J. Y. and L. H. Yam, “Optimal design of number and locations of actuators in active 

vibration control of a space truss,” Smart Mater. Struct., vol. 496, 2002. 

[12] D. Halim and S. O. R. Moheimani, “An optimization approach to optimal placement of 

collocated piezoelectric actuators and sensors on a thin plate q,” vol. 13, pp. 27–47, 

2003. 

[13] G. Caruso, S. Galeani, and L. Menini, “Active vibration control of an elastic plate 

using multiple piezoelectric sensors and actuators,” vol. 11, pp. 403–419, 2003. 

[14] P. U. Sik, C. J. Weon, Y. Wan-suk, L. M. Hyung, S. Kwon, L. J. Myung, and L. M. 

Cheol, “Optimal Placement of Sensors and Actuators Using Measures of Modal 

Controllability and Observability in a Balanced Coordinate,” vol. 17, 2003. 

[15] I. S. Sadek, J. C. Bruch, J. M. Sloss, and S. Adali, “Feedback control of vibrating 

plates using piezoelectric patch sensors and actuators,” Compos. Struct., vol. 62, no. 3–

4, pp. 397–402, 2003. 

[16] J. F. Ribeiro and V. Steffen, “Finite Element Modeling of a Plate with Localized 

Piezoelectric Sensors and Actuators,” J. Braz. Soc. Mech. Sci. Eng. Copyr., vol. XXVI, 

no. 2, pp. 117–128, 2004. 

[17] V. M. Franco and P. G. Martins, “Optimal design in vibration control of adaptive 

structures using a simulated annealing algorithm,” vol. 75, pp. 79–87, 2006. 

[18] W. Seemann, A. Ekhlakov, E. Glushkov, N. Glushkova, and O. Kvasha, “The 

modeling of piezoelectrically excited waves in beams and layered substructures,” J. 

Sound Vib., vol. 301, no. 3–5, pp. 1007–1022, 2007. 

[19] K. R. Kumar and S. Narayanan, “The optimal location of piezoelectric actuators and 

sensors for vibration control,” Smart Mater. Struct., vol. 2680, 2007. 

[20] W. Gawronski and K. B. Lim, “Balanced actuator and sensor placement for flexible 

structures,” no. March 2015, pp. 37–41, 2007. 

[21] Z. Qiu, X. Zhang, H. Wu, and H. Zhang, “Optimal placement and active vibration 

control for piezoelectric smart flexible cantilever plate,” vol. 301, pp. 521–543, 2007. 



60 
 

[22] M. Pietrzakowski, “Piezoelectric control of composite plate vibration: Effect of 

electric potential distribution,” Comput. Struct., vol. 86, no. 9, pp. 948–954, 2008. 

[23] G. Zhao, J. Wang, and Y. Gu, “Optimal placement of piezoelectric active bars in 

vibration control by topological optimization,” pp. 699–708, 2008. 

[24] E. E. Murat Guney, “Optimal actuator and sensor placement in flexible structures 

using closed-loop criteria,” J. Sound Vib., vol. 312, pp. 210–233, 2008. 

[25] K. D. Dhuri and P. Ã. Seshu, “Multi-objective optimization of piezo actuator 

placement and sizing using genetic algorithm,” vol. 323, pp. 495–514, 2009. 

[26] Z. cheng Qiu, H. xin Wu, and D. Zhang, “Experimental researches on sliding mode 

active vibration control of flexible piezoelectric cantilever plate integrated gyroscope,” 

Thin-Walled Struct., vol. 47, no. 8–9, pp. 836–846, 2009. 

[27] M. S. A. N. T. VIVEK GUPTA, “Optimization Criteria for Optimal Placement of 

Piezoelectric Sensors and Actuators on a Smart Structure :,” vol. 21, no. August, 2010. 

[28] I. Bruant, L. Gallimard, and S. Nikoukar, “Optimal piezoelectric actuator and sensor 

location for active vibration control , using genetic algorithm,” J. Sound Vib., vol. 329, 

no. 10, pp. 1615–1635, 2010. 

[29] L. Malgaca, “Integration of active vibration control methods with finite element 

models of smart laminated composite structures,” Compos. Struct., vol. 92, no. 7, pp. 

1651–1663, 2010. 

[30] I. Z. M. D. MR. Sajizadeh, “OPTIMAL LOCATION OF SENSOR FOR ACTIVE 

VIBRATION CONTROL OF OF FLEXIBLE SQUARE PLATE,” no. Isspa, pp. 393–

396, 2010. 

[31] D. Starek and P. Solek, “Suppression of vibration with optimal actuators and sensors 

placement,” vol. 20, no. 1, pp. 99–120, 2010. 

[32] B. Behjat, M. Salehi, A. Armin, M. Sadighi, and M. Abbasi, “Static and dynamic 

analysis of functionally graded piezoelectric plates under mechanical and electrical 

loading,” Sci. Iran., vol. 18, no. 4 B, pp. 986–994, 2011. 



61 
 

[33] R. Dutta, R. Ganguli, and V. Mani, “Swarm intelligence algorithms for integrated 

optimization of piezoelectric actuator and sensor placement and,” vol. 105018, 2011. 

[34] A. H. D. and J. M. Hale, “Active vibration reduction of a flexible structure bonded 

with optimised piezoelectric pairs using half and quarter chromosomes in genetic 

algorithms,” vol. 12039, 2012. 

[35] F. Bachmann, A. E. Bergamini, and P. Ermanni, “Optimum piezoelectric patch 

positioning : A strain energy – based finite element approach,” vol. 23, no. 14, pp. 

1575–1591, 2012. 

[36] J. M. H. and A. H. Daraji, “Optimal placement of sensors and actuators for active 

vibration reduction of a flexible structure using a genetic algorithm based on modified 

H _ infinity,” Mod. Pract. Stress Vib. Anal., 2012. 

[37] S. K. Parashar, U. von Wagner, and P. Hagedorn, “Finite element modeling of 

nonlinear vibration behavior of piezo-integrated structures,” Comput. Struct., vol. 119, 

pp. 37–47, 2013. 

[38] A. Zolfagharian, A. Noshadi, M. R. Khosravani, and M. Z. M. Zain, “Unwanted noise 

and vibration control using finite element analysis and artificial intelligence,” Appl. 

Math. Model., vol. 38, no. 9–10, pp. 2435–2453, 2014. 

[39] M. Ansari, A. Khajepour, and E. Esmailzadeh, “Application of level set method to 

optimal vibration control of plate structures,” J. Sound Vib., vol. 332, no. 4, pp. 687–

700, 2013. 

[40] M. Trajkov and T. Nestorovic, “Optimal actuator and sensor placement based on 

balanced reduced models,” vol. 36, pp. 271–289, 2013. 

[41] K. A. M. Nor, A. G. A. Muthalif, and A. N. Wahid, “Ant colony Optimization for 

Controller and Sensor-Actuator Location in Active Vibration Control,” vol. 32, no. 4, 

pp. 293–308, 2013. 

[42] N. Darivandi, K. Morris, and A. Khajepour, “An algorithm for LQ optimal actuator 

location,” vol. 35001, 2013. 

 



62 
 

[43] Z. Qiu and D. Ling, “Finite element modeling and robust vibration control of two-

hinged plate using bonded piezoelectric sensors and actuators,” Acta Mech. Solida 

Sin., vol. 27, no. 2, pp. 146–161, 2014. 

[44] M. Rahmoune, “Optimal Position of Piezoelectric Material on a Smart Structure,” vol. 

5, no. 1, pp. 1–9, 2014. 

[45] A. K. and S. V. Modak and Abstract, “Virtual Sensing of Acoustic Potential Energy 

Through a Kalman Filter for Active Control of Interior Sound,” Proc. 32nd Int. Modal 

Anal. Conf. (IMAC-XXXII), A Conf. Expo. Struct. Dyn. Florida, USA,(3 -6 February), 

pp. 221–241, 2014. 

[46] M. H. and H. C. Xiufeng Huang, “The optimal location of Piezoelectric 

Sensor/Actuator Based on Adaptive Genetic Algorithm,” Appl. Mech. Mater., vol. 637, 

pp. 799–804, 2014. 

[47] Z. Qiu and B. Ma, “Adaptive Resonant Vibration Control of a Piezoelectric Flexible 

Plate Implementing Filtered-X LMS Algorithm,” vol. 19, no. 4, 2014. 

[48] S. K. Vashist and D. Chhabra, “Optimal Placement of Piezoelectric Actuators on Plate 

Structures for Active Vibration Control Using Genetic Algorithm,” vol. 9057, pp. 1–

13, 2014. 

[49] S. Thenozhi and W. Yu, “Stability analysis of active vibration control of building 

structures using PD/PID control,” Eng. Struct., vol. 81, pp. 208–218, 2014. 

[50] S. Zhang, R. Schmidt, and X. Qin, “Active vibration control of piezoelectric bonded 

smart structures using PID algorithm,” Chinese J. Aeronaut., vol. 28, no. 1, pp. 305–

313, 2015. 

[51] M. Kerboua, A. Megnounif, M. Benguediab, K. H. Benrahou, and F. Kaoulala, 

“Vibration control beam using piezoelectric-based smart materials,” Compos. Struct., 

vol. 123, pp. 430–442, 2015. 

[52] N. Sehgal, M. Malik, and D. Chhabra, “Meta-heuristics Approaches for the Placement 

of Piezoelectric Actuators / Sensors on a Flexible Cantilever Plate : A Review,” vol. 3, 

no. 6, pp. 7–16, 2014. 



63 
 

[53] K. Khorshidi, E. Rezaei, A. A. Ghadimi, and M. Pagoli, “Active vibration control of 

circular plates coupled with piezoelectric layers excited by plane sound wave,” Appl. 

Math. Model., vol. 39, no. 3–4, pp. 1217–1228, 2015. 

[54] M. K. Kwak and D.-H. Yang, “Dynamic modelling and active vibration control of a 

submerged rectangular plate equipped with piezoelectric sensors and actuators,” J. 

Fluids Struct., vol. 54, no. 0, pp. 848–867, 2015. 

[55] P. M. J. Jweeg and T. J. Ntayeesh, “Active Vibration Control Analysis of Cantilever 

Pipe Conveying Fluid Using Smart Material,” vol. 6, no. 12, 2015. 

[56] W. Larbi, J. F. Deü, and R. Ohayon, “Finite element reduced order model for noise and 

vibration reduction of double sandwich panels using shunted piezoelectric patches,” 

Appl. Acoust., vol. 108, pp. 40–49, 2016. 

[57] V. Jawali, P. Parasivamurthy, and P. Prakash, “The Optimal Placement of Sensors by 

Minimizing the Maximum Probability of Non-Detection using Genetic Algorithm,” 

vol. 879, pp. 826–831, 2017. 

[58] A. Koszewnik and Z. Gosiewski, “Quasi-optimal locations of piezo-elements on a 

rectangular plate,” 2016. 

[59] K. Kuliński and J. Przybylski, “Piezoelectric effect on transversal vibrations and 

buckling of a beam with varying cross section,” Mech. Res. Commun., 2016. 

[60] Ashok K. Bagha and S.V.Modak, “ACTIVE STRUCTURAL-ACOUSTIC CONTROL 

OF INTERIOR NOISE USING DIRECT OUTPUT FEEDBACK,” Proc. 17th ISME 

Conf. ISME17, pp. 3–8, 2015. 

 

 

 

 

 

 

 

 

 



64 
 

Appendix 
 
Finite element formulation of structure/piezoelectric patch coupled  
%             Structure/piezo/cavity system (Properties) 
%__________________________________________________________________________ 
%Geometry and material properties of the structure:               |         
%For 2D plate: Material ____ steel                                | 
%           Density_______ 7800 Kg/m3                             | 
%           Young's Modulus ___ 200e09 N/m2                       | 
%           Length in x direction ___ 0.261 m                     | 
%           Length in y direction ____ 0.3 m                      | 
%           Thickness in z direction ___ 0.001 m                  | 
%           Poission's ratio ____________0.30 (no units)          | 
%           Modal damping factor__________0.005                   | 
%           Boundary Conditions _________Clamped-Clamped          |  
%           Mesh size___________________5*6                       | 
%_________________________________________________________________|________ 
%Properties of Dura Act P-876 A12 Transducer are:                 | 

  
%           Length in x direction_____0.0522 m                    | 
%           Length in y direction_____0.05 m                      | 
%           Thickness in zee direction___0.0005 m                 | 
%           Density____________________7800 Kg/m3                 | 
%           Poission's ratio___________0.3400                     | 
%Properties (Electrical)                                          | 
%           Piezoelectric stress coefficient:                     | 
%                             e31=e32=-8.9678 C/m2                | 
%           Dielectric constant:                                  | 
%                               emm_33=6.6075e-9 F/m              | 
%_________________________________________________________________|________ 
%__________________________________________________________________________ 
%                  TERMS AND ABBRIVATIONS 
%                  ______________________ 
%                  ______________________ 
% 
%w: mechanical displacement variable in z direction 
%v: electrical displacement variable i.e., electric potential difference 
%va:electric pot. difference for actuator 
%vs:electric pot. difference for sensor 
%p: acoustic variable (pressure inside the cavity) 
%ML: Mass of the Laminate(Msensor+Mstructure+Mactuator) 
%Mass_c: Mass of the acoustic domain 
%KL: stiffness of the Laminate(Ksensor+Kstructure+Kactuator) 
%stiffness_c: stiffness of the acoustic domain 
%S: coupling matrix connecting the mechanical variable(w)and acoustic 

var(p) 
%Kwva:coupling matrix for actuator which connecting w with v  
%Kwvs: coupling matrix for sensor which connecting w with vs 
%Kvva:electrical capacitance for actuator 
%Kvvs:electrical capacitance for sensor 
%Kel: electrical added stiffness matrix 
%F: vector of external mechanical loads apply to the structure 
%Qa: actuator electric charges brought to the electrode 

  
%__________________________________________________________________________ 
clear all % clears all the variables in the MATLAB workspace 
clc   %clears the command window 
format long 
%__________________________________________________________________________ 
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fr1=fopen('input_str.m','r+');% input file name is input_str (input file 

data related to structural data only) 
temp=fscanf(fr1,'%f %f %f %f %f %f %f %f %f %f',10); 
Length_x=temp(1,1); % length of plate in X axis direction in meters 
Lx=Length_x;        % Lx representation for width in x direction 
Length_y=temp(2,1); % length of plate in Y axis direction in meters 
Ly=Length_y;        % Ly representation for height in y direction 
thickness=temp(3,1);% thickness of plate in Z axis in meters 
t=thickness;        % t represents the thickness very small as compared 

with width and height of structure 
Young_modulus=temp(4,1); % Young's modulus of elasticity of plate in N/m2 
E=Young_modulus;    % E represents the mechanical property of isotropic 

plate      
rho=temp(5,1);      % density of the plate material 
neu=temp(6,1);      % Poissions ratio for aluminium taken from Google 

source 
nele_xs=temp(7,1);  % number of elements in x direction 
nele_ys=temp(8,1); % number of elements in y direction 
cd=temp(9,1);       %total nodes/coordinates for the structure 
nod=temp(10,1);      %total number of elements for structure  
DUMMY = fgets(fr1); 
DUMMY = fgets(fr1); 
temp=fscanf(fr1,'%f%f',[2 cd]); 
coordinates=temp'; 
x=coordinates(:,1); 
y=coordinates(:,2); 
DUMMY = fgets(fr1); 
DUMMY = fgets(fr1); 
for ii=1:nod 
    nodes(ii,:)=str2num(fgets(fr1)); 
end 
fclose(fr1); 

  
a=Length_x/(nele_xs*2); %a represents the element size from its center in x 

direction 
b=Length_y/(nele_ys*2); %b represents the element size from its center in y 

direction 

  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%plotMesh5(coordinates,nodes)   % Mesh, number of elements, node numbers 

for the structure 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  
nel=length(nodes);             % Total number of elements in the system for 

structure 
nnel=4;                        % number of nodes per element usually 4 
ndof=3;                        % number of dof per node usually 3 
nnode=length(coordinates);     % total number of nodes/coordinates in the 

system for structure 
sdof=nnode*ndof;               % total system dof for the structure 
edof=nnel*ndof;                % dof per element___for structure its value 

is 4*3=12 
h2=t^3/12;                     % Inertia propoertiy for structure 

represented by h2 

  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Initialization of matrices and vectors 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
stiffness=zeros(sdof,sdof);    % Global system stiffness matrix for 

structure 
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Mass=zeros(sdof,sdof);         % Global system mass matrix for structure 
index=zeros(edof,1);           % index vector for an element of structure 
%__________________________________________________________________________ 
% STRUCTURE : STIFFNESS 

  
for iel=1:nel                  % loop for the total number of elements for 

structure 

  
for i=1:nnel 
node(i)=nodes(iel,i);          % extract connected node for (iel)-th 

element of structure 
xx(i)=coordinates(node(i),1);  % extract x value of the node 
yy(i)=coordinates(node(i),2);  % extract y value of the node 
end 
%-------------------------------------------------------------------------- 
% ----------------------Element stiffness matrix for structure ------------ 
%-------------------------------------------------------------------------- 
[X] = Xmatrix( a,b ); 
[A] = Jaccobi( a,b ); 
E1=E/(1-neu^2); 
G=E/(2*(1+neu)); 
D=[E1 E1*neu 0;E1*neu E1 0;0 0 G];  %Bending property of plate 

material..... 
h2=t^3/12; 
temp1=0; 
for i=1:4 
    x=A(i,1); 
    y=A(i,2); 
    Lk=[0 0 0 2 0 0 6.*x 2.*y 0 0 6.*x.*y 0; 
        0 0 0 0 0 2 0 0 2.*x 6.*y 0 6.*x.*y; 
        0 0 0 0 2 0 0 4.*x 4.*y 0 6.*x.^2 6.*y.^2]; 
    LKT=Lk'; 
    KK=LKT*D*Lk+temp1; 
    temp1=KK; 
end 
K1=a*b*h2*(inv(X))'*KK*inv(X); 
ke = K1;                      % element stiffness matrix of size 12 * 12 
%-------------------------------------------------------------------------- 
%--------calculation for global stiffness matrix for structure ------------ 
%-------------------------------------------------------------------------- 

  
index=elementdof(node,nnel,ndof); 
                              % extract system dofs associated with element 

  
[stiffness]=assemble(stiffness,ke,index);     
                              % "assemble function" for assembly for 

stiffness 
                              % assemble Global stiffness  matrices  

                   
 %------------------------------------------------------------------------- 
 %-----------------Element mass matrix for structure ---------------------- 
 %------------------------------------------------------------------------- 

  
 % STRUCTURE: MASS 

  
 H=[t 0 0;0 h2 0;0 0 h2]; 
 temp2=0; 
 for i=1:4 
     x=A(i,1); 
     y=A(i,2); 
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     Lm=[1 x y x.^2 x.*y y.^2 x.^3 x.^2.*y x.*y.^2 y.^3 x.^3.*y x.*y.^3; 
         0 1 0 2.*x y 0 3.*x.^2 2.*x.*y y.^2 0 3.*x.^2.*y y.^3; 
         0 0 1 0 x 2.*y 0 x.^2 2.*x.*y 3.*y.^2 x.^3 3.*x.^2.*y]; 
     LM=Lm'*H*Lm+temp2; 
     temp2=LM; 
 end 
 M1=a*b*rho*(inv(X))'*LM*inv(X); 

  
 me=M1;                       % element mass matrix of size 12 * 12 
 %------------------------------------------------------------------------- 
 %-----------------  Global Mass matrix for structure --------------------- 
 %---------------------------------------------a 
index=elementdof(node,nnel,ndof); 
                              % extract system dofs associated with element 

  
[Mass]=assemblemass(Mass,me,index);  
                              % "assemblemass function" is used for 

assembly  
                              % assemble Global mass matrices  
end 

  
%-------------------------------------------------------------------------- 
% Mass and stiffness of the structure: 

  
Kstr=stiffness;   % Global stiffness of the structure 
Mstr=Mass;        % Global mass of the structure 

  
%-------------------------------------------------------------------------- 

  

      
% MODELING OF ACTUATOR/SENSOR ON STRUCTURE 

  
% PZT-5H ACTUATOR 

  
frp=fopen('input_actuator.m','r+');% input file name is input_piezo (input 

file data related to actuator data only) 
temp=fscanf(frp,'%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f 

%f',18); 
Length_x_a=temp(1,1);     % length of actuator in X axis in m 
Lx_a=Length_x_a;             
Length_y_a=temp(2,1);     % length of actuator in Y axis in m 
Ly_a=Length_y_a; 
thickness_a=temp(3,1);    % thickness of Actuator in Z axis in m 
ha=thickness_a;           %ha is the thickness of the actuator 
Young_modulus=temp(4,1);  % modulus of elasticity of PZT5 Material in N/m2 
E_a=Young_modulus; 
rho_a=temp(5,1);          % density of the PZT material Kg/m3 
neu_a=temp(6,1);          % Poissions ratio of PZT 
act_em=temp(7,1);         % actuator elements and connectivity 
nele_xpzo_a=temp(8,1);    % division of number of elements of piezoelectric 

actuator in x direction 
nele_ypzo_a=temp(9,1);    % division of number of elements of piezoelectric 

actuator in y direction 
C11=temp(10,1);           %Coefficient of elastic stiffness matrix 
C33=temp(11,1);           %Coefficient of elastic stiffness matrix 
C13=temp(12,1);           %Coefficient of elastic stiffness matrix 
C12=temp(13,1);           %Coefficient of elastic stiffness matrix 
C44=temp(14,1);           %Coefficient of elastic stiffness matrix 
C66=temp(15,1);           %Coefficient of elastic stiffness matrix 
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e31=temp(16,1);           %Piezoelectric stress coefficient 
e32=temp(17,1);           %Piezoelectric stress coefficient 
emm_33=temp(18,1);        %emmisivity in 33 direction 
DUMMY = fgets(frp); 
DUMMY = fgets(frp);  
for ii=1:act_em 
   act_em_c_c(ii,:)=str2num(fgets(frp));% number of actuator elements  
end 
fclose(frp); 
apzo_a=Length_x_a/(nele_xpzo_a*2); %apzo_a represents the element size from 

its center in x direction for PZT actuator (xpzo=xi*apzo_a) 
bpzo_a=Length_y_a/(nele_ypzo_a*2); %bpzo_a represents the element size from 

its center in y direction for PZT actuator (ypzo=eta*pzo_a) 

  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Initialization of matrices and vectors for actuator 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
index_actuator=zeros(edof,1);        % index vector for laminate part 
Mass_Able_actuator=zeros(sdof,sdof); % Mass matrix for laminate elements 

Global 
stiffness_Able_actuator=zeros(sdof,sdof); % stiffness matrix for laminate 

elements Global 
%__________________________________________________________________________ 

  
%EXTRACT ACTUATOR ELEMENTS   

  
for i=act_em_c_c 
    act_em_c=nodes(i,:);% connectivity between actuator elements 
end 
%__________________________________________________________________________ 

  
%GEOMETRY OF STRUCTURE COUPLED WITH PZT-5H(MESH, NO. OF ELEMENTS, NODE 

NO'S) 

  
PlotMesh_str_piezo(coordinates,nodes,act_em_c) 
%__________________________________________________________________________ 

  
h1=ha*(t/2 + ha/2)^2+ ha^3/12; 
Ha=[ha 0 0;0 h1 0;0 0 h1]; 

  
% MASS OF THE ACTUATOR 

  
[Apzo_a] = Amatrix(apzo_a,bpzo_a); 

  
A_a=[-1/sqrt(3).*apzo_a -1/sqrt(3).*bpzo_a; 
    1/sqrt(3).*apzo_a -1/sqrt(3).*bpzo_a; 
    1/sqrt(3).*apzo_a 1/sqrt(3).*bpzo_a; 
    -1/sqrt(3).*apzo_a 1/sqrt(3).*bpzo_a]; 

  
for iiel=1:act_em  
    for ii=1:nnel 
        node_actuator(ii)=act_em_c(iiel,ii); 
    end 
    temp3=0; 
    for i=1:4 
        x_a=A_a(i,1); 
        y_a=A_a(i,2); 
        Lm_a=[1 x_a y_a x_a.^2 x_a.*y_a y_a.^2 x_a.^3 x_a.^2.*y_a 

x_a.*y_a.^2 y_a.^3 x_a.^3.*y_a x_a.*y_a.^3; 
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            0 1 0 2.*x_a y_a 0 3.*x_a.^2 2.*x_a.*y_a y_a.^2 0 

3.*x_a.^2.*y_a y_a.^3; 
            0 0 1 0 x_a 2.*y_a 0 x_a.^2 2.*x_a.*y_a 3.*y_a.^2 x_a.^3 

3.*x_a.^2.*y_a]; 
        LM_a=Lm_a'*Ha*Lm_a+temp3; 
        temp3=LM_a; 
    end 

     
    Ma=apzo_a*bpzo_a*rho_a*(inv(Apzo_a))'*LM_a*inv(Apzo_a);% element mass 

matrix for actuator (Ma) 

                             
    index_actuator=elementdof_actuator(node_actuator,nnel,ndof); 
    

[Mass_Able_actuator]=assemblemass_actuator(Mass_Able_actuator,Ma,index_actu

ator);% Total assemble mass of the Actuator  
end 

  
%STIFFNESS OF THE ACTUATOR 

  
[ce_bar_pz,e_bar_pz,epsilon_pz,thick_pz,rho_pz,poir_pz] = 

fpiezo_P876_A12_mat_pic255(); 

  
Da=ce_bar_pz; 

  
for iiel=1:act_em 
    for ii=1:nnel 
        node_actuator(ii)=act_em_c(iiel,ii); 
    end 
    temp4=0; 
    for i=1:4 
        x_a=A_a(i,1); 
        y_a=A_a(i,2); 
        Lk_a=[0 0 0 2 0 0 6*x_a 2*y_a 0 0 6*x_a.*y_a 0; 
            0 0 0 0 0 2 0 0 2*x_a 6*y_a 0 6*x_a.*y_a; 
            0 0 0 0 2 0 0 4*x_a 4*y_a 0 6*x_a.^2 6*y_a.^2]; 
        LKT_a=Lk_a'; 
        K_Q_act=LKT_a*Da*Lk_a+temp4; 
        temp4=K_Q_act; 
    end 
    ka=apzo_a*bpzo_a*h1*(inv(Apzo_a))'*K_Q_act*inv(Apzo_a);% element 

stiffness matrix for actuator of size 12*12 
    index_actuator=elementdof_actuator(node_actuator,nnel,ndof); 
    

[stiffness_Able_actuator]=assemblestiffness_actuator(stiffness_Able_actuato

r,ka,index_actuator);% Total assemble stiffness of the Actuator 
end 

  
%-------------------------------------------------------------------------- 
Mact=Mass_Able_actuator;     % Global mass of the actuator 
Kact=stiffness_Able_actuator;% Global stiffness of the actuator 
%-------------------------------------------------------------------------- 

  
% ELECTROMECHANICAL COUPLING MATRIX Kwva  

  
ea=e_bar_pz'; 

  
%ea=[ e31 e32 0];  %PZT stiffness matrix 
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Bz= 1/ha;         % Strain-displacement matrix which relates electric field 

with electric potential (v)for a single layer 
Kwva=zeros(sdof,1);%Electromechanical coupling vector  
index_wv=zeros(edof,1); 
for iiel=1:act_em 
    for ii=1:nnel 
        node_actuator(ii)=act_em_c(iiel,ii); 
    end 
    temp5=0; %pre-assumed value 
    for i=1:4 
        x_a=A_a(i,1); 
        y_a=A_a(i,2); 
        Lk_wv=[0 0 0 2 0 0 6*x_a 2*y_a 0 0 6*x_a.*y_a 0; 
            0 0 0 0 0 2 0 0 2*x_a 6*y_a 0 6*x_a.*y_a; 
            0 0 0 0 2 0 0 4*x_a 4*y_a 0 6*x_a.^2 6*y_a.^2]; 
        LKT_wv=Lk_wv'; 
        Kwv_e=LKT_wv*ea'+temp5; 
        temp5= Kwv_e; 
    end 
    Cwv_e=-apzo_a*bpzo_a*(inv(Apzo_a))'*0.5*(ha^2 +ha*t)*Kwv_e*Bz; % Cwv_e 

element coupling electromechanical vector (12*1) 
    index_wv=index_a(node_actuator,nnel,ndof); 
    Kwva=assemble_wv(Kwva,Cwv_e,index_wv);% Global electromechanical 

coupling matrix 
end 

  
%-------------------------------------------------------------------------- 
% ELECTRICAL CAPACITANCE Kvv (actuator) 

  
emm_33=epsilon_pz; 

  
Kvva=-act_em*1/(ha) *4*apzo_a*bpzo_a*emm_33; 
%-------------------------------------------------------------------------- 

  

  
%PZT SENSOR 

  
frs=fopen('input_sensor.m','r+');% input file name is input_piezo (input 

file data related to actuator data only) 
temp=fscanf(frs,'%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f 

%f',18); 
Length_x_s=temp(1,1);     % length of sensor in X axis in m 
Lx_s=Length_x_s;             
Length_y_s=temp(2,1);     % length of sensor in Y axis in m 
Ly_s=Length_y_s; 
thickness_s=temp(3,1);    % thickness of sensor in Z axis in m 
hs=thickness_s;           %hs is the thickness of the sensor 
Young_modulus=temp(4,1);  % modulus of elasticity of PZT5 Material in N/m2 
E_s=Young_modulus; 
rho_s=temp(5,1);          % density of the PZT material Kg/m3 
neu_s=temp(6,1);          % Poissions ratio of PZT 
sen_em=temp(7,1);         % sensor elements and connectivity 
nele_xpzo_s=temp(8,1);    % division of number of elements of piezoelectric 

sensor in x direction 
nele_ypzo_s=temp(9,1);    % division of number of elements of piezoelectric 

sensor in y direction 
C11=temp(10,1);           %Coefficient of elastic stiffness matrix 
C33=temp(11,1);           %Coefficient of elastic stiffness matrix 
C13=temp(12,1);           %Coefficient of elastic stiffness matrix 
C12=temp(13,1);           %Coefficient of elastic stiffness matrix 
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C44=temp(14,1);           %Coefficient of elastic stiffness matrix 
C66=temp(15,1);           %Coefficient of elastic stiffness matrix 
es31=temp(16,1);          %Piezoelectric stress coefficient 
es32=temp(17,1);          %Piezoelectric stress coefficient 
emm_s33=temp(18,1);       %emmisivity in 33 direction 
DUMMY = fgets(frs); 
DUMMY = fgets(frs);  
for ii=1:sen_em 
   sen_em_c_c(ii,:)=str2num(fgets(frs));% number of actuator elements  
end 
fclose(frs); 
apzo_s=Length_x_s/(nele_xpzo_s*2); %apzo_s represents the element size from 

its center in x direction for PZT sensor (xpzo=xi*apzo_s) 
bpzo_s=Length_y_s/(nele_ypzo_s*2); %bpzo_s represents the element size from 

its center in y direction for PZT sensor (ypzo=eta*pzo_s) 

  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Initialization of matrices and vectors for sensor 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
index_sensor=zeros(edof,1);            % index vector for sensor  
Mass_Able_sensor=zeros(sdof,sdof);     % Mass matrix for laminate elements 

Global 
stiffness_Able_sensor=zeros(sdof,sdof);% stiffness matrix for laminate 

elements Global 
%__________________________________________________________________________ 

  
%EXTRACT SENSOR ELEMENTS   

  
for i=sen_em_c_c 
    sen_em_c=nodes(i,:);% connectivity between actuator elements 
end 
%__________________________________________________________________________ 

  
%GEOMETRY OF STRUCTURE COUPLED WITH PZT-5H(MESH, NO. OF ELEMENTS, NODE 

NO'S) 

  
PlotMesh_str_piezo_sensor(coordinates,nodes,sen_em_c) 
%__________________________________________________________________________ 

  
h3=hs*(t/2 + hs/2)^2 + hs^3/12; 
Hs=[hs 0 0;0 h3 0;0 0 h3]; 

  
% MASS OF THE SENSOR 

  
[Apzo_s] = Amatrix_s(apzo_s,bpzo_s); 

  
A_s=[-1/sqrt(3).*apzo_s -1/sqrt(3).*bpzo_s; 

     
    1/sqrt(3).*apzo_s -1/sqrt(3).*bpzo_s; 
    1/sqrt(3).*apzo_s 1/sqrt(3).*bpzo_s; 
    -1/sqrt(3).*apzo_s 1/sqrt(3).*bpzo_s]; 

  
for iiel=1:sen_em  
    for ii=1:nnel 
        node_sensor(ii)=sen_em_c(iiel,ii); 
    end 
    temp6=0; 
    for i=1:4 
        x_s=A_s(i,1); 
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        y_s=A_s(i,2); 
        Lm_s=[1 x_s y_s x_s.^2 x_s.*y_s y_s.^2 x_s.^3 x_s.^2.*y_s 

x_s.*y_s.^2 y_s.^3 x_s.^3.*y_s x_s.*y_s.^3; 
            0 1 0 2.*x_s y_s 0 3.*x_s.^2 2.*x_s.*y_s y_s.^2 0 

3.*x_s.^2.*y_s y_s.^3; 
            0 0 1 0 x_s 2.*y_s 0 x_s.^2 2.*x_s.*y_s 3.*y_s.^2 x_s.^3 

3.*x_s.^2.*y_s]; 
        LM_s=Lm_s'*Hs*Lm_s+temp6; 
        temp6=LM_s; 
    end 

     
    Ms=apzo_s*bpzo_s*rho_s*(inv(Apzo_s))'*LM_s*inv(Apzo_s);% element mass 

matrix for sensor (Ms) 

                             
    index_sensor=elementdof_sensor(node_sensor,nnel,ndof); 
    

[Mass_Able_sensor]=assemblemass_sensor(Mass_Able_sensor,Ms,index_sensor);% 

Total assemble mass of the sensor  
end 

  
%STIFFNESS OF THE SENSOR 

  
Ds=ce_bar_pz; 

  
for iiel=1:sen_em 
    for ii=1:nnel 
        nodesensor(ii)=sen_em_c(iiel,ii); 
    end 
    temp7=0; 
    for i=1:4 
        x_s=A_s(i,1); 
        y_s=A_s(i,2); 
        Lk_s=[0 0 0 2 0 0 6*x_s 2*y_s 0 0 6*x_s.*y_s 0; 
            0 0 0 0 0 2 0 0 2*x_s 6*y_s 0 6*x_s.*y_s; 
            0 0 0 0 2 0 0 4*x_s 4*y_s 0 6*x_s.^2 6*y_s.^2]; 
        LKT_s=Lk_s'; 
        K_Q_sen=LKT_s*Ds*Lk_s+temp7; 
        temp7=K_Q_sen; 
    end 
    ks=apzo_s*bpzo_s*h3*(inv(Apzo_s))'*K_Q_sen*inv(Apzo_s);% element 

stiffness matrix for sensor of size 12*12 
    index_sensor=elementdof_sensor(nodesensor,nnel,ndof); 
    

[stiffness_Able_sensor]=assemblestiffness_sensor(stiffness_Able_sensor,ks,i

ndex_sensor);% Total assemble stiffness of the Actuator 
end 

  
%-------------------------------------------------------------------------- 
Msen=Mass_Able_sensor;     % Global mass of the sensor 
Ksen=stiffness_Able_sensor;% Global stiffness of the sensor 
%-------------------------------------------------------------------------- 

  
% ELECTROMECHANICAL COUPLING MATRIX Kwvs (Sensor) 

  
es=e_bar_pz'; 

  
%es=[ es31 es32 0];  %PZT stiffness matrix 
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Bzs= 1/hs;          % Strain-displacement matrix which relates electric 

field with electric potential (v)for a single layer 
Kwvs=zeros(sdof,1); %Electromechanical coupling vector  
index_wvs=zeros(edof,1);% index vector for sensor 
for iiel=1:sen_em 
    for ii=1:nnel 
        nodesensor(ii)=sen_em_c(iiel,ii); 
    end 
    temp8=0; %pre-assumed value 
    for i=1:4 
        x_s=A_s(i,1); 
        y_s=A_s(i,2); 
        Lk_wvs=[0 0 0 2 0 0 6*x_s 2*y_s 0 0 6*x_s.*y_s 0; 
            0 0 0 0 0 2 0 0 2*x_s 6*y_s 0 6*x_s.*y_s; 
            0 0 0 0 2 0 0 4*x_s 4*y_s 0 6*x_s.^2 6*y_s.^2]; 
        LKT_wvs=Lk_wvs'; 
        Kwv_es=LKT_wvs*es'+temp8; 
        temp8= Kwv_es; 
    end 
    Cwv_es=apzo_s*bpzo_s*(inv(Apzo_s))'*0.5*(hs^2 +hs*t)*Kwv_es*Bzs; % 

Cwv_e element coupling electromechanical vector (12*1) 
    index_wvs=index_s(nodesensor,nnel,ndof); 
    Kwvs=assemble_wvs(Kwvs,Cwv_es,index_wvs);% Global electromechanical 

coupling matrix 
end 

  
%-------------------------------------------------------------------------- 
% ELECTRICAL CAPACITANCE Kvvs 

  
emm_s33=epsilon_pz; 

  
Kvvs=-sen_em*1/(hs) *4*apzo_s*bpzo_s*emm_s33; 
%-------------------------------------------------------------------------- 

  
%__________________________________________________________________________ 
PlotMesh_str_piezo_sensor_actuator(coordinates,nodes,sen_em_c,act_em_c) 
%__________________________________________________________________________ 

  

  
%-------------------------------------------------------------------------- 
%MASS OF THE LAMINATE 

  
ML=Msen+Mstr+Mact;  

  
%-------------------------------------------------------------------------- 
%STIFFNESS OF THE LAMINATE 

  
KL=Ksen+Kstr+Kact; 

  
%-------------------------------------------------------------------------- 
%DAMPING MATRIX FOR LAMINATED STRUCTURE 

  
% alpha_M=0.000001; 
%  beta_K=0.000001; 
%  
% CL=alpha_M*ML+beta_K*KL; 

  

  
%-------------------------------------------------------------------------- 
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% Boundary conditions 
%-------------------------------------------------------------------------- 
% BC = Clamped-Clamped case 

  
L1 = find(coordinates(:,2)==min(coordinates(:,2))) ; % at y = 0 (along X-

axes) 
n = length(L1) ; 
dofL1 = zeros(1,3*n) ; 
for i=1:n 
    i1 = 3*(i-1)+1 ; 
    i2 = i1+1 ; 
    i3 = i2+1; 
    dofL1(i1) = 3*L1(i)-2; 
    dofL1(i2) = 3*L1(i)-1 ; 
    dofL1(i3) = 3*L1(i); 
end 

     
L3 = find(coordinates(:,2)==max(coordinates(:,2))) ; % at y = b (along X-

axes) 
n = length(L3) ; 
dofL3 = zeros(1,3*n) ; 
for i=1:n 
    i1 = 3*(i-1)+1 ; 
    i2 = i1+1 ; 
    i3 = i2+1; 
    dofL3(i1) = 3*L3(i)-2; 
    dofL3(i2) = 3*L3(i)-1 ; 
    dofL3(i3) = 3*L3(i); 
end 

  
L2 = find(coordinates(:,1)==max(coordinates(:,1))) ; % at x = a (along Y-

axes) 
n = length(L2) ; 
dofL2 = zeros(1,3*n) ; 
for i = 1:n 
    i1 = 3*(i-1)+1 ; 
    i2 = i1+1 ; 
    i3 = i2+1; 
    dofL2(i1) = 3*L2(i)-2; 
    dofL2(i2) = 3*L2(i)-1 ; 
    dofL2(i3) = 3*L2(i); 
end 

  
L4 = find(coordinates(:,1)==min(coordinates(:,1))) ; % at x = 0 (along Y-

axes) 
n = length(L4) ; 
dofL4 = zeros(1,3*n) ; 
for i = 1:n 
    i1 = 3*(i-1)+1 ; 
    i2 = i1+1 ; 
    i3 = i2+1; 
    dofL4(i1) = 3*L4(i)-2; 
    dofL4(i2) = 3*L4(i)-1 ; 
    dofL4(i3) = 3*L4(i); 
end 

  
L1UL3 = union(dofL1,dofL3) ; 
L2UL4 = union(dofL2,dofL4) ; 
bcdof = union(L1UL3,L2UL4)' ; 
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%MODAL ANALYSIS: 

  
%-------------EigenValues/EigenVectors------------------------------------- 

  
[Eig_vec,Eig_val]=eig(KL,ML); 
[seigvl,seigvt]=seigdat(Eig_val,Eig_vec); 
natural=sqrt(seigvl); 
fre=natural/(2*pi); % natural frequency in rad/sec 
disp('Frequency ''fn_str_piezo''of coupled structure in (Hz)') 
frequency=diag(fre); 
diag(frequency); 
fn_str_piezo=diag(frequency); 
format short 
fn_str_piezo(1:1:10) 

  
________________________________________________________________________ 

  
% Calculation of Damping Matric Cs assumed modal damping factor is 0.005 
% for 500 Hz and after that it is zero. 

  
modal_damping_constant=0.005; 

  
interested_modes=5; 

  
rem=size(KL,1)-interested_modes; 

  
modal_dam_vector=modal_damping_constant*[ones(1,interested_modes) 

1*ones(1,rem)]; 

  
%CL=(inv(seigvt))'*2*diag(seigvl)*diag(modal_dam_vector)*inv(seigvt); 

  

  
%seigvt'*CL*seigvt % there is need of mass normalized mode shape matrix 
%rather simple mode shape matrix 

  
% Mass normalized modal matrix U 

  
for i=1:size(seigvt,1) 
    Us(:,i)=seigvt(:,i)/sqrt(seigvt(:,i)'*ML*seigvt(:,i)); 
end 

  
Mass_normalized_matrix=Us; 

  
% Mr=Mass_normalized_matrix'*ML*Mass_normalized_matrix; %Modal mass matrix 
%  
% Kr=Mass_normalized_matrix'*KL*Mass_normalized_matrix; % Modal stiffness 

matrix 
%  
% Cr=Mass_normalized_matrix'*CL*Mass_normalized_matrix; % Modal damping 

matrix 

  
CL=(inv(Mass_normalized_matrix))'*2*diag(sqrt(seigvl))*diag(modal_dam_vecto

r)*inv(Mass_normalized_matrix); 

  
%-------------------------------------------------------------------------- 
% Hammer Excitation node number  
%-------------------------------------------------------------------------- 
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force_number=103; % It is the node number where hammer/shaker excitation is 

applied 

  
Force=zeros(sdof,1);           % Global system force matrix for structure 
Force(force_number*ndof-2)=10;    
for I=bcdof  
    Force(I,:)=[];       
end 
f=find(Force>0); % dof where we want the response of the structure 

  
%-------------------------------------------------------------------------- 
% Response dof 
%-------------------------------------------------------------------------- 

  
res_node=103;% accelerometer node number 

  
Response=zeros(sdof,1); 

  
Response(res_node*ndof-2)=1; 

  
for I=bcdof  
    Response(I,:)=[];       
end 

  
r=find(Response>0); % dof of selected node for response 

  

  
%-------------------------------------------------------------------------- 
% Voltage applied by actuator because it is an open loop system 

  
 Va=0;  
%-------------------------------------------------------------------------- 

   
%-------------------------------------------------------------------------- 
%System 1 : Steel plate and PZT's (Open Loop) 
%-------------------------------------------------------------------------- 
A1=[zeros(size(ML)) eye(size(ML));-inv(ML)*KL -inv(ML)*CL];% State Matrix 

  
B1=[zeros(size(ML)) zeros(length(ML),1);inv(ML) -inv(ML)*Kwva]; % Input 

Matrix 

  
C1=[Response'  zeros(size(Response'))]; % Output Matrix for displacement 

  
D1=0; % Direct Transmission Matrix  

  
%% OPEN LOOP SYSTEM  
  

sys1=ss(A1,B1,C1,D1); % construct a system model 
%-------------------------------------------------------------------------- 
% System 2: Closed Loop---Direct Velocity feedback controller (DVFB) 
%-------------------------------------------------------------------------- 

  
G1=0.000; % displacement feedback gain 
G2=0.0800; % Velocity feedback gain   

  
%-------------------------------------------------------------------------- 
% Charge amplifier sensitivity 
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% Range : 0.01 mV/pC to 10 V/pC 

  
mV=0.01e-3;% 1mV=1e-3 V  

  
pC=1e-12; % 1 pC = 1e-12 C 

  
Sca=mV/pC; % Sensitivity of charge amplifier (0.01 mV/pC) 

  
%-------------------------------------------------------------------------- 
Kctrl=G1*Kwva*Kwvs'*Sca; % Active stiffness matrix 

  
Cctrl=G2*Kwva*Kwvs'*Sca;% Active damping matrix 
%-------------------------------------------------------------------------- 

  
A2=[zeros(size(ML)) eye(size(ML));-inv(ML)*(KL-Kctrl) -inv(ML)*(CL-Cctrl)]; 

% State Matrix 

  
B2=[zeros(size(ML));inv(ML)]; % Input Matrix 

  
C2=[Response'  zeros(size(Response'))];% Output Matrix for displacement 

  
D2=0;% Direct Transmission Matrix 

  

  
%% CLOSED LOOP SYSTEM 

  
sys2=ss(A2,B2,C2,D2); % construct a system model 

  
%% 
%-------------------------------------------------------------------------- 
% lsim command for open/closed loop  
%-------------------------------------------------------------------------- 

  
% Step 1: 

  
fc=max(fn_str_piezo);% highest frequency in the signal 

  
% fs>=2*fc 

  
fs=2.56*fc; % sampling frequency (according to Nyquist theorm) 

  
final_time=1; % time in sec 

 
sampling_period=1/fs; 

  
% Step 2: 

  
t=0:sampling_period:final_time; % simulation time = 1 seconds 

  
% Step 3: 

  
u_o=[Force;Va]*zeros(size(t));  % input vector..... function of time u_o(t) 

  
u_o(f,1)=10;  % u_o = 1, a transient input 

  
% Step 4: 
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[w]=lsim(sys1,u_o,t); % simulate 

  
% Step 5: 

  
plot(t,w,'-b','Linewidth',3.0); % plot the output vs. time 

  
hold on  

  
% lsim command for closed loop 

  
% Step 6: 

  
u_c=Force*zeros(size(t)); % input vector ..... function of time u_c(t) 

  
u_c(f,1)=10;  % u_c = 1, a transient input 

  
% Step 7: 

  
[w_c]=lsim(sys2,u_c,t); % simulate 

  
% Step 8: 

  
plot(t,w_c,'-y','Linewidth',2.0); % plot the output vs. time 

  
grid on 

  
xlabel('time (sec)') 

  
ylabel('Displacement (m)') 

  
legend('open loop','closed loop') 

  
title('displacement of structure with respect to time') 

  
%% DESIGN FOR OPTIMAL GAIN G1 AND G2 

  
figure() 

  
pzmap(sys1,'b') 

  
hold on 

  
pzmap(sys2,'r') 

  
legend('Open loop','Closed loop') 
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