
i

CONTROLLING SOFTWARE ARCHITECTURE

EROSION TO SUPPORT MAINTAINABILY

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

PALLAVIT SHARMA

11207607

Supervisor

MOHIT ARORA

School of Computer Science and Engineering (14 Bold)

Lovely Professional University

Phagwara, Punjab (India)

June 2017

@ Copyright LOVELY PROFESSIONAL UNIVERSITY, Punjab (INDIA)

June 2017

ALL RIGHTS RESERVED

ii

ABSTRACT

Software Architecture Erosion is a problem faced by many organization in the

software industry. It happens when 'as-implemented' architecture does not conform to

the 'as-intended' architecture, which result in low quality, complex, hard to maintain

software. Architecture erosion makes the software system more complex, more prone

to errors and less maintainable. In this I have created two architecture one is based on

spring MVC and hibernate framework and the other is simple java code. Based on

design principles such as separation of concerns, single responsibility principle,

principle of least knowledge I will compare the two architecture with the help of tools

i.e. SonarQube and JArchitect in order to find the cyclic-dependencies and

architectural violations between the two architectures. This will help us to make the

system more reliable and maintainable. In this we will then remove cyclic-

dependencies, code smells, vulnerabilities, and violations from source code by

modifying the source code of software system.

iii

DECLARATION STATEMENT

I hereby declare that the research work reported in the dissertation entitled

"CONTROLLING SOFTWARE ARCHITECTURE EROSION TO SUPPORT

MAINTAINABIILITY” in partial fulfilment of the requirement for the award of

Degree for Master of Technology in Computer Science and Engineering at Lovely

Professional University, Phagwara, Punjab is an authentic work carried out under

supervision of my research supervisor Mr Mohit Arora. I have not submitted this

work elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with

Lovely Professional University’s Policy on plagiarism, intellectual property rights,

and highest standards of moral and ethical conduct. Therefore, to the best of my

knowledge, the content of this dissertation represents authentic and honest research

effort conducted, in its entirety, by me. I am fully responsible for the contents of my

dissertation work.

 Pallavit Sharma

 11207607

iv

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled

“CONTROLLING SOFTWARE ARCHITECTURE EROSION TO SUPPORT

MAINTAINABIILITY”, submitted by Pallavit sharma at Lovely Professional

University, Phagwara, India is a bonafide record of his original work carried out

under my supervision. This work has not been submitted elsewhere for any other

degree.

 Signature of Supervisor

 Mohit Arora

 Date:

Counter Signed by:

1) Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

2) Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: __________________

Date: ___________________

v

ACKNOWLEDGEMENT

It is not until you undertake research like this one that you realize how

massive the effort it really is, or how much you must rely upon the selfless

efforts and goodwill of others. I want to thank them all from the core of my

heart.

I owe special words of thanks to my supervisor Mr. Mohit Arora for his

vision, thoughtful counselling and encouragement for this research on

“Controlling Software Architecture Erosion to support Maintainability”. I

am also thankful to the teachers of the department for giving me the best

knowledge guidance throughout the study of this research.

And last but not the least, I find no words to acknowledge the financial

assistance & moral support rendered by my parents and moral support given by

my friends in making the effort a success. All this has become reality because of

their blessings and above all by the grace of almighty.

Pallavit Sharma

vi

TABLE OF CONTENTS

CONTENTS PAGE NO.

Inner first page i

Abstract ii

Declaration by the Scholar iii

Supervisor’s Certificate iv

Acknowledgement v

Table of Contents vi

List of Tables ix

List of Figures x

CHAPTER1: INTRODUCTION 1

1.1 OBJECTIVES OF DESIGNING SOFTWARE

ARCHITECTURE 2

1.2 SOFTWARE FRAMEWORKS 4

1.3 ARCHITECTURE PATTERNS AND STYLES 8

 1.3.1 CLIENT/SERVER ARCHIETECTURE 8

 1.3.2 N-TIER/ 3-TIER ARCHITECTURE 9

 1.3.3 COMPONENT-BASED ARCHITECTURE 9

 1.3.4 DOMAIN DRIVEN DESIGN 11

vii

TABLE OF CONTENTS

CONTENTS PAGE NO.

 1.3.5 OBJECT-ORIENTED ARCHITECTURE 11

 1.3.6 LAYERED ARCHITECTURE 13

1.4 DESIGN PRINCIPLE OF SOFTWARE

ARCHITECTURE 15

1.5 SOFTWARE ARCHITECTURE EROSION 18

 1.5.1 TYPES OF ARCHITECTURE EROSION 20

1.5.2 SYMPTOMS OF SOFTWARE

 ARCHITECTURE EROSION 21

 1.5.3 THREAT OF ARCHITETURE EROSION 22

 1.5.4 REAL-TIME EXAMPLE OF SOFTWARE

 ARCHITECTURE EROSION 23

CHAPTER2: REVIEW OF LITERATURE 24

CHAPTER3: PRESENT WORK 30

3.1 PROBLEM FORMULATION 30

3.2 OBJECTIVES OF THE STUDY 32

CHPTER4: RESULTS AND DISCUSSION 33

 4.1 EXPERIMENTAL RESULTS 33

4.2 COMPARISION WITH EXISTING TECHNIQUE 50

CHAPTER5: CONCLUSION AND FUTURE SCOPE 54

 5.1 CONCLUSION 54

 5.2 FUTURE SCOPE 54

viii

REFERENCES 56

ix

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 Objectives of software structural design 2

Table 1.2 Architectural styles 8

Table 4.1 comparison of Sonaruqbe and JArchitect 50

Table 4.2 comparison between build edition

 and developer edition 53

x

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 1.1 Software architecture lifecycle 4

Figure 1.2 Controlling software architecture erosion 23

Figure 3.1 Flowchart of methodology 31

Figure 4.1 java code without beans 34

Figure 4.2 java code without beans output 34

Figure 4.3 controller class code 35

Figure 4.4 Spring MVC and hibernate output 35

Figure 4.5 Spring MVC framework database 36

Figure 4.6 Sonarqube output 36

Figure 4.7 spring MVC output (SonarQube) 37

Figure 4.8 spring MVC output (SonarQube) 37

Figure 4.9 spring MVC output (SonarQube) 38

Figure 4.10 spring MVC output (SonarQube) 38

Figure 4.11 spring MVC output (SonarQube) 39

Figure 4.12 spring MVC output (SonarQube) 39

Figure 4.13 project-2 output (SonarQube) 40

Figure 4.14 project-2 output (SonarQube) 40

Figure 4.15 project-2 output (SonarQube) 41

Figure 4.16 project-2 output (SonarQube) 41

Figure 4.17 Spring MVC output (JArchitect) 42

Figure 4. 18 Spring MVC output (JArchitect) 42

Figure 4.19 Spring MVC output (JArchitect) 43

Figure 4.20 Spring MVC output (JArchitect) 43

Figure 4.21 Dependency graph (JArchitect) 44

Figure 4.22 code query and rules (JArchitect) 44

Figure 4.23 Dependency Matrix (JArchitect) 44

Figure 4.24 Abstractness vs. Instability (JArchitect) 45

Figure 4.25 Metric tree (JArchitect) 45

Figure 4.26 Project-2 output (JArchitect) 46

Figure 4.27 Project-2 output (JArchitect) 46

xi

Figure 4.28 Project-2 output (JArchitect) 47

Figure 4.29 Abstractness vs. Instability (JArchitect) 47

Figure 4.30 Dependency graph (JArchitect) 48

Figure 4.31 Metric tree (JArchitect) 48

Figure 4.32 Dependency graph (JArchitect) 49

xii

Checklist for Dissertation-III Supervisor

Name: ___________________________ UID: ________ Domain: _____

Registration No: ____________Name of student: __________________

Title of Dissertation:

 Front pages are as per the format.

 Topic on the PAC form and title page are same.

 Front page numbers are in roman and for report, it is like 1, 2, 3…….
 TOC, List of Figures, etc. are matching with the actual page numbers

in the report.

 Font, Font Size, Margins, line Spacing, Alignment, etc. are as per the

guidelines.

 Color prints are used for images and implementation snapshots.

 Captions and citations are provided for all the figures, tables etc. and

are numbered and center aligned.

 All the equations used in the report are numbered.

 Citations are provided for all the references.

 Objectives are clearly defined.

 Minimum total number of pages of report is 50.

 Minimum references in report are 30.

Here by, I declare that I had verified the above mentioned points in the

final dissertation report.

Signature of Supervisor with UID

1

CHAPTER 1

INTRODUCTION

Software architecture is the major structures of a software system, and it pact

with how numerous software processes uphold to accomplish their functions or tasks.

The architecture of a system describe its extensive constituents, their interconnections,

and how they work together with each other, In other words we can say that,

Architecture work as a model for a system. It works a detachment to control the system

complications and settle an intercommunication and collocation mechanism amongst

constituents. It specify a framed clarification to meet all the technological and operative

requirements, while reform the similar factor property like performance and security. It

is about the architecture of programming concentrated frameworks, characterized as

―any framework where software contributes basic impacts to the outline,

development, sending, and advancement of the framework overall.

 Software architecture consists a set of guidelines to expand, establish as well as

drilling a software framework for a specific assignment. It characterizes an extremely

up level design of enormous software systems also the far reaching architecture of a

system in a perfect in addition to methodical way. The primary target of a software

architectural perspective of system is to sort the real parts of a system, to recognize the

relationships amongst the segments, components as well as describe them in like

manner. These alleged components are gathered collected by connectors that provide

the match or connection amongst various segments [2]. The connectors can thusly be

segments themselves. In general sense software architecture is a specific way in the

design and improvement of programming. It contains groupings of choices which relies

on upon incalculable angles in a wide scope of software improvement. Each of these

choices can have intense ampules on the overall accomplishment of the product. One of

the real issues in software systems development today is quality. A quality trait is a

non-functional characteristic of a component or a framework. ISO/IEC 9126-1 [17]

characterizes a product quality model. As indicated by this definition, there are six

classifications of attributes: usefulness, unwavering quality, convenience, effectiveness,

viability, and versatility.

2

1.1 Objectives of designing software architecture

 The objectives [20] of software architecture is to classify the prerequisites which

will influence the structure of the application. Goals for designing software architecture

are as follows:

Table 1.1: Objectives of software structural design

Goals Description

Platform independent Software structural design should not

rely on upon a suitable equipment

stage. This will run programming on

any implanted frameworks or PCs with

slightest conceivable details oblige.

Hardware modularity Hardware segments must be part in

little areas and might other

intercommunicate to one another via a

wired or remote medium. Software

design might determine tenets and

system for intercommunication among

different equipment parts. This will

give system with capacity of highlight

expanding without much exertion.

Increased productivity Structure of programming ought to be

very much portrayed, so it will be

simpler to include distinctive elements.

Code maintainability Code ought to be compatible and all

around organized so it will be less

demanding to channel and oversee.

Testability Organized software ought to give an

all-around characterized function

interfaces to end client, this facilitates

testability of a specific component.

Investigate and Debug It is additionally simple to distinguish

bugs or escape clauses inside an all-

around organized and modular code.

Software architectures ought to

coordinate analytic and troubleshoot

highlights while outlining a product

framework. In this way end client can

straightforwardly connect with

modules for demonstrative elements.

Simplicity The support and usage of the software

architecture must be in the easy to use

way.

3

Appropriate for outsized team Every designer or analyzer ought to

have the capacity to take a shot at free

modules parallel. This is conceivable

because of measured and organized

nature of software framework

characterized by software architecture.

Availability It characterizes the bit of time

framework is useful and working. It

can be uniform as the rate of the

aggregate framework downtime over

predefined period. It is influenced by

framework bugs, association issues,

fiendish assaults and framework stack.

Security A system’s capacity to manage
fiendish assault from outer or inner of

the system.

Performance Expanding framework's proficiency as

to reaction time, throughput, asset

usage and characteristics which

typically strife with each other

Lifetime The time period of the item it is full of

life formerly its retirement

Scalability It is ability of system to deal with an

expansion in system stack

Concurrency It is the property of system in which a

few errands are implementing together

and communicating with one another.

These assignments might be

implementing on the different centers

in a similar chip

Cost The cost of building, keeping up and

working the system.

Usability Convenience incorporates matter of

fulfillment of clients from utilizing the

system.

 The product architecture is a standout amongst the most basic articles inside the

life expectancy of a product system. Choices made at the design level have a straight

influence on the accomplishment of business objectives, functional as well as quality

necessities [19]. It comprises of arrangement of choices which relies on upon many

calculates an extensive variety of software advancement. Each of these choices can

have huge effect on the general achievement of the software.

4

Figure 1.1: Software architecture lifecycle

1.2 Software frameworks

 A product structure is a strong or theoretical stage where ordinary code with

bland usefulness can be particularly specific or superseded by engineers or customers.

Structures show up as libraries, where a very much characterized portrayed application

program interface (API) is reusable wherever inside the product a work in progress

[18]. Software structure comprises of frozen spots and hot spots. Frozen spots define

the general architecture of a product framework, in other words its fundamental

segments and the connection between them. These stay unaltered (frozen) in any

Software idea

Primary

requirement

scrutiny

Design of

Architecture

and system

main

Progress a

version

Deliver the

version

Include

customer

response

Elicit client

response

Deliver final

version

5

instantiation of the application structure. Hot spots signify those parts where the

programmers using the framework add their own code to add the functionality

particular to their personal project. Framework is an application that is finished aside

from the real usefulness, you connect to the usefulness and you have an application,

they are extremely valuable to designers. It contains the entire thing you have to make

an application. In reality you can frequently insignificantly make an ostensible

application with not very many lines of source that does literally nothing yet it gives

you window administration, sub-window administration, set of decisions, catch bars,

and so forth.

 Certain elements make a framework unique in relation to other library forms,

including the following:

 Default Behavior: Before customization, a framework demonstrations in a path

specific to the specialist's activity.

 Inversion of Control: Not at all like different libraries, the general stream of

control inside a structure is locked in by the system as opposed to the guest.

 Extensibility: A client can grow the framework by specifically substituting default

code with client code.

 Non-modifiable Framework Code: A client can grow the framework however not

change the code. The inspiration driving software framework is to make less

difficult the advancement condition, enabling planners to devote their endeavors to

the venture necessities, instead of managing the system's commonplace, repetitive

capacities and Libraries.

 In an object-oriented environment, a structure comprises of unique and

substantial classes. Instantiation of such a framework includes shaping and sub-classing

the present classes. When working up a solid software framework with a software

framework, creators utilize the problem areas as per the particular requirements and

necessities of the system. Software framework depend upon the Hollywood Principle:

"Don’t call us, we’ll call you". This suggests the client characterized classes (for

instance, novel subclasses), get messages from the predefined structure classes.

Architects by and large handle this by executing superclass dynamic techniques. While

structures for the most part allude to wide programming advancement stages, the term

can likewise be utilized to depict a particular system inside a bigger software design

condition. While structures usually allude to wide programming improvement stages,

6

the term can likewise be utilized to depict a precise system inside a bigger

programming condition. For instance, numerous Java frameworks.

Architecture Core Activities

 Architecturally significant requirements.

 Architecturally Analysis.

 Architecturally Synthesis.

 Architecturally evaluation.

 There are four basic exercises in software architecture plan. These fundamental

engineering exercises are accomplished iteratively and at various phases of the early

software improvement life-cycle, and also over the advancement of a framework:

 Architectural Analysis is the strategy of understanding the earth in which an

arranged system or system will work together and deciding the prerequisites for the

system.

 Architectural Synthesis or design is the way toward making architecture. Given

the necessities controlled by the examination, the present condition of the outline

and the results of any assessment exercises, the plan is made and made strides.

 Architecture Evolution is the procedure of maintaining and adjusting current

programming design to meet necessity and ecological changes. As software design

gives a critical structure of software system, its advancement and upkeep would

basically affect its essential structure. Thusly, design advancement is worried with

including novel usefulness and also keeping up current usefulness and framework

execution. Architecture requires unsafe supporting exercises. These supporting

exercises occur all through the centre software architecture process. They comprise

of information administration and correspondence, plan thinking and result making,

and documentation.

 Architecture supporting activities Software architecture supporting activities are

agreed out through basic software architecture exercises. These supporting

exercises bolster a product modeler to finish examination, union, evaluation and

movement. For example, a draftsman needs to assemble information, settle on

decisions and report amid the investigation stage.

7

 There are frameworks that cover specific territories of use headway, for

instance, JavaScript/CSS systems that aim the presentation (view) layer of the

application, and there are others that handle a more noteworthy measure of the active

parts of the presentation. Instances of structures that are starting at now offered by

benchmarks bodies or associations incorporate:

 Resource Explanation Framework, an arrangement of rules from the World Wide

Web Association for in what way to characterize some Internet asset, for example, a

Web webpage in addition to its substance.

 Internet Business Framework, a gathering of programs that frame the mechanical

establishment for the SAP item from SAP, the German organization that business

sectors a venture asset administration line of items.

 Sender Policy Framework, a well-defined methodology as well as programming

for making e-mail additional safe and sound.

Advantages

 Recycle code that has been pre-developed and pre-tried. Supports the dependability

of the novel application and lessen the programming and testing exertion, and time

to advertise.

 A framework can help develop better programming hones notwithstanding suitable

utilization of configuration examples and new programming apparatuses.

 A framework can give new usefulness, better execution, or better quality without

extra programming by the framework user.

 By definition, a system offers you with the way to extend its conduct.

Disadvantages

 Creating a framework is hard as well as timewasting (i.e. expensive).

 The learning arc for a novel framework can be sharp.

 In excess of time, a framework can come to be more and more difficult.

 Structures often enhance to the magnitude of programs, a phenomenon named

“code bloat”.

8

1.3 Architecture patterns and styles

 An architectural pattern is set of guidelines that form an application. It

consolidates design for instance, customer/server, service-oriented architecture (SOA),

section based design, layered architecture as well as message bus architecture. The

design styles for application is picked in perspective of outline, key models, real

advantages, and data. These styles portray diverse parts of utilizations. Some

engineering styles characterize arrangement designs, some characterize structure and

configuration issues, and others define communication factors. The applications as a

rule utilize a mix of more than one of the style.

Table 1.2: Architectural styles

Category Architecture styles

Communication Service-Oriented Architecture (SOA),

Message Bus

Deployment Client/Server, N-Tier, 3-Tier

Domain Domain Driven Design

Structure Component-Based, Object-Oriented, Layered

Architecture

1.3.1 Client/Server architectural style

 Client-server architecture concentrates on administrations distinctive customers

need to perform. This architecture is particularly fit when the equipment is sorted out as

various nearby PCs (e.g. individual workstations) and one central asset, for example, a

record tree, database, or a group of effective central computation PCs..

 A two level structural pattern is a customer/server structure that has an

application which is situated at the server side that is gotten to specifically by various

customers. The client/server architecture style clears up the association amongst a client

and the servers which can change from one to various or we can express that, in a

product customer-server system, there may be a couple of clients in one PC, and even

the server can continue running on a comparative PC.

 The limits of two level customer/server style of design is, penchant for

application information and in addition computational rationale to be firmly

consolidated on the server, which can unfavourably influence framework extensibility,

versatility notwithstanding its reliance on a focal server, which additionally thusly

influences framework unwavering quality undesirably. For conquering these limits, the

9

customer-server architecture style changed into a further broad 3-Tier structural style

likewise perceived as (N-Tier) style of architecture. The main benefits of client/server

architectural style are [20]:

 Higher security. All information is put away on the server, which for the most part

offers a more prominent controller of security than customer machines.

 Centralized data access. Since data is put away just on the server, get to and

updates to the data are far calm to direct than in other architectural styles.

 Ease of maintenance. Parts and also duties of a computing system are scattered

among a few servers that are perceived to each other through a system. This

guarantees a customer stays uninformed and furthermore unaffected by a server

repair, overhaul, or movement.

1.3.2 N-Tier / 3-Tier architectural style

 N-level/3-level are architectural style give insights about the partition of

functionality into different portions. Each piece is a level which can be originate on

particular single PCs. N-level/3-level style is created by methods for the segment based

method, being a substitute for message-based method. It incorporates the utilitarian

disintegration of administration parts, their applications and appropriated arrangement.

Each level is detached or have his own autonomous presence from every single other

level present, with the exception of quick above and underneath. Advantages of the N-

level/3-level structural style are adaptability, versatility, openness plus practicality.

1.3.3 Component-Based Architectural Style

 Component-based architecture defines [22] a way to deal with system design

and improvement. It involves the deterioration of the design into unmistakable

utilitarian or coherent segments. These constituents bring out all around characterized

correspondence gauges containing strategies, properties notwithstanding occasions. It

gives a higher measure of deliberation contrasted with question arranged outline

techniques. It doesn't concentrate on issues, for example, correspondence conventions

and shared state.

 A huge standard of the component-based style is the use of segments that are

recyclable, free, epitomized, not setting particular and in addition extensible. The

conventional sorts of constituents incorporate lattices, catches, colleague, utility

capacity and lined part. The key advantages of the part established building style are

10

simplicity of the organization, cheap price, simplicity of the advancement, recycle

ability as well as lightening of specialized multifaceted nature. Component-based

architecture style is measured to make an intricate design, that permit to effortlessly

supplant notwithstanding refresh singular segments. The main principle [20] of the

component-based style is the use of components that are:

 Reusable. Segments are usually intended to be reused in divergent situations in

various applications. In any case, a few constituents might be intended for a specific

errand.

 Replaceable. Segments might be promptly supplanted with other alike segments.

 Not setting particular. Segments are intended to work in various conditions and in

addition settings. Point by point data, for example, state information, ought to be

passed to the part as opposed to being fused in or gotten to by the segment.

 Extensible. A part can be extended from existing segments to give new conduct.

 Encapsulated. Parts uncover interfaces that enable the guest to use its usefulness,

notwithstanding not uncover data of the inside procedures or any inward factors or

state.

 Independent. Segments are intended to have minor conditions on different parts. In

this way segments can be sent into any appropriate condition without influencing

different components or systems.

The following are the main benefits of the component-based architectural style:

 Ease of arrangement. As new perfect forms wind up noticeably available, you can

substitute existing adaptations with no impact on alternate segments or the system

overall.

 Reduced cost. The use of outsider segments grants you to spread the cost of

improvement and in addition upkeep.

 Ease of advancement. Segments actualize surely understood interfaces to offer

characterized usefulness, allowing improvement without affecting different parts of

the system.

 Reusable. The utilization of reusable segments implies that they can be utilized to

spread the advancement notwithstanding support taken a toll over a few

applications or system.

 Mitigation of specialized many-sided quality. Segments ease multifaceted nature

through the utilization of a part compartment and its administrations. Illustration

11

part benefits contains segment initiation, lifetime administration, strategy lining,

eventing, and also exchanges.

1.3.4 Domain Driven Design (DDD)

 Domain Driven Design (DDD) [23] remains an object-oriented methodology. It

is built up on the structure area, its parts, the mode it works, plus the connections

among them. It intends to empower software structures that are an acknowledgment of

the hidden area by characterizing a space show passed on in the dialect of framework

area specialists. The space display legitimizes the arrangement. The fundamental

backings of the Domain Driven Design style are testability, extensibility and

correspondence. The following are the main benefits of the Domain Driven Design

style:

 Communication. All gatherings inside an advancement group can utilize the area

display notwithstanding the elements it characterizes to convey business learning

and prerequisites with a typical business space dialect, without requiring specialized

language.

 Extensible. The area model is now and then particular and adaptable, making it

simple to raise to date and reach out as conditions and necessities change.

 Testable. The space demonstrate items are generally coupled and strong, allowing

them to be all the more effortlessly tested.

1.3.5 Object-Oriented Architectural Style

The object oriented architecture [24] style is an arrangement of outline

standards in software development that spotlights on separating a system into individual

and reusable parts, or protests. Questions regularly comprise of information fields and

in addition methodology. Objects are normally occasions of classes, and a program can

be ponder to be a gathering of items associating with each other. This is as opposed to

them or regular procedural programming where a program is more like a rundown of

subroutines. Articles are partitioned, autonomous that are daintily coupled. They speak

with each other by means of interfaces, technique calls, and sending and accepting

messages.

12

 The normal uses of the protest arranged style grasp characterizing a question model

that backings complex logical operations and true antiquities inside a system domain.

The key principles of the object-oriented architectural style are:

 Abstraction. This lets you to decrease a mind boggling operation into a speculation

that keeps the base attributes of the process. For instance, a active interface can be a

perceived as the description that backings information get to operations with

straightforward strategies, for example, Get and Update. Another type of

deliberation could be metadata used to give a mapping between two configurations

that hold organized information.

 Composition. Items can be assembled from different questions, and can conceal

these interior articles from different classes or uncover them as basic interfaces.

 Inheritance. Items can get from different protests, and utilize usefulness in the base

question or overrule it to execute new conduct. Besides, legacy makes support

likewise refreshes less demanding, as changes to the base protest are spread

naturally to the acquiring objects.

 Encapsulation. Objects uncovered usefulness just through techniques, properties,

and occasions, and conceal the center points of interest, for example, state and

factors from different articles. This makes it less demanding to refresh or substitute

items, the length of their interfaces are perfect, without influencing different objects

in addition to code.

 Polymorphism. This enables you to overrule the conduct of a base sort that

backings operations in your application by executing new sorts that are

interchangeable with the existing object.

 Decoupling. Articles can be decoupled from the end client by characterizing a

theoretical interface that the protest executes and the end client can get it. This lets

you to give another executions without influencing clients of the interface.

The main benefits of the object-oriented architectural style are that it is:

 Understandable. It maps the application promote nearly to this present reality

objects, making it more fathomable.

 Reusable. It offers for reusability through polymorphism and additionally

deliberation.

 Testable. It conveys for upgraded testability through exemplification.

13

 Extensible. Exemplification, polymorphism, and reflection affirms that an

adjustment in the portrayal of data does not influence the interfaces that the

question uncovered, which would limits the ability to impart and additionally

communicate with different items.

 Highly Cohesive. By finding just related techniques and components in a question,

and utilizing disparate items for various arrangements of elements, you can finish

an abnormal state of attachment.

1.3.6 Layered architecture style

This architectural style [25] is finest suited for presentations that incorporate

particular classes of administrations which can be organized progressively. It stresses

on gathering the connected functionality inside an application hooked on unmistakable

conspicuous layers that are fixed vertically on top of one another. Every layer is

practically interrelated through other by a typical part. The communication amongst

layers is express also delicately coupled. This architectural style is an altered pyramid

of recycle where every layer adds up to the duties as well as reflections of the layer

specifically underneath it.

 This architectural pattern is comprehensively used to model message-passing

circumstances. This style know how to be utilized to structure various sorts of

programming frameworks. The non-parallelism can without much of a stretch be

portrayed by a layered model. On the off chance that there is parallelism of parts, we

can place the parallel procedures in single layer. The layered engineering style is

likewise suitable for unpredictable and configurable framework issues. Regular

standards for plans that utilization of the layered structural style include:

 Abstraction. Layered structural design abstracts the perspective of the framework

as entire while sufficiently giving subtle element to comprehend the parts and

obligations of individual layers and the connection between them.

 Encapsulation. No supposition should be made about information sorts, techniques

as well as properties, or usage amid plan, as these components are not uncovered at

layer limits.

 Visibly characterized functional layers. The division amongst usefulness in every

layer is flawless. Higher layers, for example, the introduction layer send guidelines

to inferior layers, for example, the business as well as information layers, and may

14

respond to occasions in these layers, enabling information to stream together up and

additionally down between the layers.

 High cohesion. Very much characterized duty confinements for each layer, and

guaranteeing that each layer incorporates usefulness straightforwardly identified

with the undertakings of that layer, will boost union inside the layer.

 Reusable. Bring down layers have no conditions on higher layers, conceivably

allowing them to be reusable in further situations.

 Loose coupling. Correspondence between layers depends on deliberation and

occasions to give free coupling between layers.

 The core welfares of the layered structural design style are:

 Abstraction. Layers enable alterations to be made at the theoretical level. You can

upsurge or reduction the level of reflection you use in each layer of the progressive

stack.

 Isolation. Grants you to segregate innovation moves up to individual layers keeping

in mind the end goal to limit chance and limit effect on the general framework.

 Manageability. Partition of centre concerns helps to distinguish conditions, and

sorts out the code into more sensible segments.

 Performance. Conveying the layers over numerous physical levels can enhance

versatility, adaptation to internal failure, and execution.

 Reusability. Parts advance reusability. For instance, in MVC, the Controller can

frequently be reused with other perfect Views keeping in mind the end goal to give

a part particular or a client altered view on to similar information and usefulness.

 Testability. Enhanced testability emerges from having very much characterized

layer interfaces, and in addition the capacity to switch among various usage of the

layer interfaces. Isolated Presentation designs allow you to fabricate taunt protests

that copy the conduct of solid questions, for example, the Model, Controller, or

View amid testing.

15

1.4 Design principles of software architecture

 Design is important to all product building exercises and is the focal incorporating

action that ties the others together [21]. The key rule that will manufacture an

architecture that obeys to demonstrated standards, limits costs and in addition support

necessities, and advances ease of use and extendibility. The key principles are:

 Separation of concerns. Isolate your application into particular components with

as pitiful cover in handiness as would be reasonable. The imperative component is

minimization of c interaction focuses to fulfil high connection and low coupling.

Nevertheless, segregating usefulness at the wrong limits can achieve high coupling

and versatile quality between parts in spite of the way that the contained

functionality inside a component.

 Single Responsibility standard. Each segment ought to be in charge of just a

specific element or functionality, or accumulation of bound together usefulness.

 Principle of Least Knowledge (otherwise called the Law of Demeter or LoD). A

segment or question ought not to think about interior parts of different segments or

protests.

 Don't repeat yourself (DRY). You ought to just need to determine expectation in

one place. For instance, as distant as application plan, specific functionality have to

to be actualized in just single fragment; the functionality have not to be repeated in

other part.

 Reduce upfront design. Just outline what is fundamental. At times, you might

need upfront exhaustive outline notwithstanding testing if the cost of improvement

or a dissatisfaction in the plan is in elevation. In unlike circumstances, particularly

for flexible improvement, you can keep away from big design upfront (BDUF). On

the off chance that your application prerequisites are uncertain, or if there is a

likelihood of the plan advancing after some time, withdraw from endeavouring

recklessly. This principle is sometimes known as YAGNI ("You ain’t gonna need

it").

When arranging a system, the aim of a product modeller is to confine the many-

sided quality by secluding the plan into different zones of concern. For example, the

user interface (UI), business dealing with, and data get to all address different area of

concern. Inside each locale, the segments you configuration focus on that specific area

16

and ought not to blend code from various regions of concern. The going with

anomalous state principles will consider the broad assortment of segments that can

impact the effortlessness of arranging, completing, and passing on, testing, as well as

keeping up your application:

Design principles

 Keep configuration designs predictable inside each layer. Inside a sensible layer,

where possible, the plan of segments should be dependable for a specific operation.

For instance, in the event that you select to utilize the Table Data Gateway example

to make a protest that goes about as a passage approach to tables or perspectives in

a database, you ought not hold onto another example, for example, Repository,

which utilizes a not an indistinguishable worldview for getting to information from

well as instating business elements.

 Do not copy functionality inside an application. There should be just a single

segment giving a specific usefulness—this usefulness ought not to be reproduced in

whatever other constituent. This makes your segments strong and in addition makes

it less demanding to improve the segments if a specific component or usefulness

change. Duplication of usefulness inside an application can roll out it intense to

actualize improvements, fall in clearness, notwithstanding present potential

irregularities.

 Prefer composition to inheritance. Wherever conceivable, utilize piece over

legacy while reusing usefulness since legacy rises the reliance amongst parent and

kid classes, along these lines controlling the reuse of youngster classes. This

additionally decreases the legacy chains of importance, which can turn out to be

extremely hard to manage.

 Establish a coding style and naming tradition for improvement. Verify whether

the association has built up coding style and in addition naming norms. If not, you

should build up regular norms. This offers a steady model that makes it less

demanding for colleagues to look at code they didn't compose, which prompts

better practicality.

 Maintain system quality utilizing mechanized QA systems amid improvement.

Utilize unit testing and other computerized Quality Analysis systems, for example,

reliance examination and static code investigation, amid advance. Depict clear

behavioral and execution measurements for segments and sub-frameworks,

additionally utilize computerized QA apparatuses for the time of the manufacture

17

procedure to guarantee that nearby outline or usage decisions don't unfavorably

influence the general system quality.

 Consider the operation of your application. Figure out what measurements and

agent information are required by the IT foundation to affirm the effective

organization notwithstanding operation of your application. Planning your

application's parts and sub-frameworks with a reasonable comprehension of their

different operational prerequisites will fundamentally ease add up to organization

and operation. Utilization of automated QA instruments for the time of

advancement to guarantee that the right operational information is conveyed by

your application's parts and sub-systems.

Application layers

 Isolate the areas of concern. Breakdown your application into specific elements

that cover in usefulness as meager as possibly will be normal the situation being

what it is. The essential favorable position of this approach is that a segment or

usefulness can be streamlined unreservedly of various components or usefulness.

What's more, in the event that one component comes up short, it won't make

different elements bomb too, and they can run unreservedly of each other. This

approach furthermore makes the application less requesting to grasp and arrange,

and empowers organization of complex dependent frameworks.

 Be explicit about how layers communicate with each other. Allowing each layer

in an application to be connected with or have endless supply of alternate layers

will bring about an answer that is all the more empowering to comprehend and also

oversee. Make unequivocal choices about the conditions between layers and

additionally the information stream between them.

 Use abstraction to execute free coupling between layers. This can be

accomplished by characterizing interface segments, for example, an exterior with

prestigious contributions to expansion to yields that make an interpretation of

solicitations into an organization comprehended by segments inside the layer.

Furthermore, you can likewise utilize Interface sorts or dynamic base classes to

characterize a typical interface or shared deliberation (reliance reversal) that must

be executed by interface segments.

 Do not blend diverse sorts of segments in the same logical layer. Begin by

distinguishing diverse zones of concern, and after that gathering parts related with

18

every range of worry into sensible layers. For instance, the UI layer ought not to

contain business preparing segments, but rather ought to contain parts used to deal

with client contribution to expansion to process client demands.

 Keep the information arrange reliable inside a layer or part. Blending

information configurations will make the application more hazardous to execute,

augment, and maintain. Each and every time you have to change information

starting with one configuration then onto the next, you are essential to execute

interpretation code to accomplish the operation and bring about a preparing

overhead.

1.5 Software architecture erosion

Software architecture erosion or disintegration is determined as the aspect that

happens when the executed design of a product framework go amiss from its normal

design. The actualized architecture is the model that has been executed or worked in

inside low-level plan builds and the source code. The term solid design additionally

alludes to the implemented architecture [26]. The proposed architecture is the result of

the design configuration handle, otherwise called the conceptual architecture [26] or the

arranged design. The deviation itself is not caused by venomous human activities yet

rather by routine repair and change work normal for a developing programming

framework.

The general impact of structural design choices as well as the exchange offs

between individual qualities is inspected by a planner. The software architecture ought

to just speak to the structure of the framework by concealing the execution subtle

elements in addition to controlling both the quality trait as well as the practical

necessity.

During the lifespan of some usual software system it experiences advancement

plus making of various prescriptive and clear architecture at various circumstances. On

the off chance that a man doesn't have sufficient learning about what the actualized and

proposed engineering is then the likelihood of the event [30] of software disintegration

turns high.

The impact of architecture disintegration causes the dis-fulfilment of partner's

prerequisites as the progressions wind up noticeably hard to utilize on the product and

in the most exceedingly bad, it can even prompt disappointment of programming

19

undertakings. Practically every other venture experiences disintegration at some stage

in software improvement cycle unless some exertion is done to conquer it.

In another normally referred to case of design disintegration, Godfrey and Lee

[27] depict their examination of the extricated models of the Mozilla web program

(which in this manner developed into Firefox) and the VIM content manager. Both

these product items demonstrated a substantial number of undesirable

interdependencies among their center subsystems. Actually, the gravely dissolved

design of Mozilla caused noteworthy postponements in the arrival of the item and

constrained engineers to revise some of its center modules starting with core modules

from scratch.

Architecture disintegration causes numerous bugs in programming, for example,

increment in inner unpredictability with the expansion of new usefulness, developing

time to change the product and time-to-market, diminished quality, expanding the test

exertion for upkeep of programming and so on in the meantime lessening the designer's

efficiency as much period is spent on understanding the difficult present portions of the

software. The final product is: costs rises and efficiency falls.

The contextual analysis of Garlan and Ockerbloom [28] portray various issues

(e.g., extreme code, poor execution, need to alter outer bundles, need to rethink existing

usefulness, superfluously confounded devices) caused by structural befuddle that

hampered effective reuse. Each of these issues requires alterations of the product with

the danger of digressing from the planned architecture. Software architecture

disintegration can be limited by consistence checking. Design consistence as a measure

to which degree the executed engineering in the source code fits in with the arranged

design (i.e., a consistence of 1.0 or 100% implies that there are no building

infringement, 0.0 or 0% the inverse). The figuring partitions the quantity of agreeable

conditions by the aggregate number of conditions between segments. Engineering

consistence checking is the way to gauge this. The consistence of the design can be

checked statically (i.e. without executing the code) and powerfully (i.e. run time). The

three main static architecture compliance checking approaches of a system are:

 Reflexion models: Reflexion models think about two models of a product

framework against each other, normally, a compositional model (the arranged or

proposed design) and a source code show (the genuine or actualized engineering).

The correlation requires a mapping between the two models to be thought about,

which is a human-based assignment.

20

 Relation conformance rules: Relation conformance rules empower indicating

permitted or illegal relations between two parts. They can distinguish comparable

deformities as reflexion models, yet the mapping is done naturally for every

conformance check.

 Component access rules: Component get to rules empower indicating basic ports

for segments, which different parts are permitted to call. These guidelines help to

expand the data stowing away of parts on a level, which won't not be conceivable

inside the physical architecture of the implementation language.

It turns out to be yet further costly when software disintegration brings about a

"product avalanche", when the measure of disintegration achieves a point where the

product can't be kept up or enhanced any further and modify turns into the main

arrangement, with all the utilized expenses and dangers. As the circumstance gets most

exceedingly terrible, the main conceivable alternative remain is to fabricate the product

sans preparation or at the end of the day "Rework" the product however this choice is

extraordinarily expensive and dangerous with respect to due dates or spending plan. As

revising includes the new programming to accomplish the majority of the usefulness

that the current programming have hence no time is left to make a change in the

product putting both the venture and association on stake. That is the reason the

product, and for the most part its engineering, must have the capacity to manage

various solicitations for change to forever remain in working condition.

Architecture disintegration prompts the steady of the engineering quality of

software systems. With the end goal of this overview we characterize designing quality

as a subsumption of compositional honesty (i.e. fulfillment, rightness and consistency),

conformance to quality characteristic prerequisites, and selection of sound

programming building standards. Building nature of a framework may not generally

liken to the nature of system performance. A well-performing system may have a

seriously eroded architecture. Be that as it may, such a framework is amazingly delicate

and has a high danger of separating at whatever point alterations are made..

1.5.1 Types of Software Architecture Erosion

The most common types of software architectural disintegration consists of:

 Architectural Rule violations- For re-architecting or encourage advancement a

few plan principles ought to be taken after e.g. maintain a strategic distance from

strict layering between subsystems

21

 Unreachable Code- It is also known as the dead code which is not ever executed

nor required for any utilization but rather it is as yet messing the code base

contributes towards structural disintegration.

 ‘Copy & Paste’ Codes- In spite of the fact that code duplication is well known

with the end goal of reuse and execution productivity as duplicate glue is the most

well-known strategy yet as the size builds the practicality cost increments, for

example, a settling a blunder or alteration in one clone case is probably going to

must be dispersed to the next clone illustrations.

 Metric outliers- Include further class progressive systems, huge bundles and

complex code.

 Dependency- Between bundles and modules lessens reusability, blocks upkeep,

anticipates extensibility, constrain testability and limits a designer ability to

comprehend the results of progress.

 Cyclic Dependencies- Are the most exceedingly terrible kind of disintegration.

Phases tend to snitch into plan. For example, if A and B are put in an alpha bundle,

and one is set in a various bundle, a cyclic reliance amongst alpha and numbers

exists despite the fact that the class structure is a cyclic. They ought to be repaired

or promptly wiped out as they wind up in delicate code.

1.5.2 Symptoms of software architecture erosion

There are certain side effects that show disintegration [29] in architectural

designs. They are:

 Inflexibility- It rolls out the product hard to improvement as a change can cause

infringement in ward modules hence surpassing an opportunity to play out that

change, along these lines the administrator's dread so much that they in the long run

deny to permit any adjustments in software.

 Brittleness- It is firmly identified with rigidity making the product crack each time

it is altered henceforth the administrator's dread that the product will burst in some

unforeseen way at whatever point they endorse a fix driving towards exorbitant

improve. Such programming is not reasonable to keep up as they turn out to be

most exceedingly bad as each alteration and bug settle takes significantly more. In

such cases, the designers lose the control on their product and it turns out to be truly

difficult for them to work through such software in addition to there is compel to

revamp the software.

22

 Serenity- It is the inability to recycle segments from identical or diverse software

ventures as the vast majority of the product includes much comparative kind of

modules composed by different designers. Tranquility shows up when the engineers

discover that the work and hazard important to part the needed parts of the product

from the undesirable parts are too huge to acknowledge thus the software is just

modified rather than reused.

 Reduced Effectiveness and Efficiency- because of deferral in software discharges,

spending overwhelms, quality bugs and so on.

1.5.3 Threat of software architecture erosion

There are a few danger connected by programming design for instance in the

improvement group where novel contracts might not comprehend the framework as

well as old representatives need to buckle down, not contradicting the anxiety, brings

about high turnover which is a reason for structural consumption as the learning of

engineering is lost when they assent. So also unbendable software is another issue as it

is extremely hard to improve and grow it. Quite possibly an alteration can even origin a

presentation of novel bug in software along these lines the product must be exceedingly

viable or repairable. The advancement group additionally has not a steady association

with the product's life as there is a probability that some part can left the group plus the

learning of the architecture and software related with them likewise vanishes. Software

Architecture disintegrates increasingly when new contracts commit errors and set aside

much opportunity to catch up the venture promptly. Engineering will additionally

disintegrate when the new contracts sufficiently lacking learning about design would

try to make changes to the framework.

1.5.4 Real-time example of architecture erosion

Lately, numerous genuine runtime cases of software structural design

disintegration have been perceived. Architecture erosion shows up when the system

progresses toward becoming disapprove and glutted. The illustration Describes that

simple software was made in March 2004 containing just 4 bundles, couple of months

after the fact new elements were included it was all the while going fine however in

May 2005 a first cyclic reliance showed up, in June 2006 another recurring reliance was

watched and in the end in 2009 the product was encompassed by many interweaves.

This venture can't be effortlessly repaired or looked after at this point. The case resolve

that the structural design was faultless at the beginning, in the wake of making a few

23

adjustments it was all the while running great yet with time its structure was debased

with the presentation of reliance subsequently a man can't really prevent the

disintegration from getting into place however measures should be possible to battle

against it by expel it to some development.

Controlling Software Architecture Erosion

Minimize Prevent Repair

Process-Oriented Architecture Recovery

 Conformance Architecture to Discovery

 Implementation linkage Reconcilation

 Architecture Design

 Documentation Self adaptation

 Architecture Analysis

 Architecture compliance

 Monitoring

Dependency

Architecture Evolution

 Management

 Architecture Design

 Enforcement

 Code Generation

 Architecture Patterns

 Architecture Framework

Figure 1.2 controlling software architecture erosion

24

CHAPTER 2

REVIEW OF LITERATURE

Palmen et.al (2011), “A Systemic Methodology for Software Architecture

Analysis and Design" proposes that another systemic strategy for examination and

plan of architecture design that addresses some real constraints in the present best in

class. It present another product engineering strategy that methodologies the product

design area with systemic procedures and we demonstrate expressly relevant considers

software architecture definition. It present the idea of example for the relevant

condition, which serve close by engineering designs as the essential vocabulary for

architecture depiction and examination. Our investigation approach utilizes a

probabilistic demonstrating and choice formalism to guide software architecture

evolution. Patterns are a fitting devices for measuring the dynamic ideas appropriate to

architecture, for example, "calculated uprightness" and "wellness for reason" as

opposed to breaking down those architectural concept to a smaller scale level

determination with the end goal of estimation and control [1].

 De Silva and Perera (2015), “Preventing Software Architecture Erosion
through Static Conformance Checking” propose some of apparatuses which help to

overcome from issue of disintegration. The apparatus which is used to overcome from

this issue is static engineering conformance checking device. Design conformance

checking suggests assessing the comparability of the executed plan to the proposed

engineering and can give a framework to perceiving software architecture

disintegration and prevent its negative results. This apparatus identify building

limitations pollutions and along these lines help to maintain a strategic distance from

the product plan disintegration. This device depends on GRASP ADL. Handle is a

printed engineering portrayal dialect fit for taking the "justification" behind building

outline decisions. It underpins an arrangement of compositional parts for catching the

engineering of framework. E.g.: System Element Layer Element, Component Element,

Link, Element, Connector Element, and Interface Element [3].

Terra, Valente et.al (2012), “Recommending Refactoring’s to Reverse
Software Architecture Erosion” recommends the essential plan of a proposal

framework whose rule explanation behind existing is to give refactoring principles to

engineers and maintainers during the undertaking of turning around a building breaking

25

down process. The paper formally delineates the approach which offers proposals to

evacuate architectural infringement recognized by DCL (Dependency Constraint

Language) which is space particular dialect and is utilized for depicting the auxiliary

limitations among the modules in programming framework. This dialect is

straightforward, simple reasonable sentence structure. Conformance apparatus is

utilized which is dclcheck and dclfix [4].

Kamran Sartipi (2003),” Software Architecture Recovery based on Pattern
Matching” recommends an pattern-based recuperation philosophy whose goals can be

determined as far as the structural properties that are very much characterized through a

architectural pattern. The proposed architectural pattern is fixated on architecture

description dialects (ADLs) and is incrementally made by means of an intuitive strategy

that permits to incorporate the learning from the application domain and system

documentation. The result of the recuperation can be specifically tried in opposition to

the recuperation destinations through: conformance checking with the available

documentation that affirms the decay of the fundamental framework usefulness into

segments, deciding the particularity nature of the recouped design to affirm the

recuperation of a viable framework, conformance with the segment and connector size

and sort limitations do by the example [5].

Pruijt and Brinkkemper (2013), “Architecture Compliance Checking of
Semantically Rich Modular Architectures” propose the Architecture Compliance

Checking (ACC) is a way to deal with confirm he conformance of executed program

code to abnormal state models of engineering outline. ACC is utilized to forestall

building disintegration amid the advancement and development of a software system.

Static ACC, in view of static programming examination strategies, concentrates on the

secluded design and particularly on tenets compelling the measured components. A

semantically rich modular design (SRMA) is expressive and may contain modules with

various semantics, similar to layers and subsystems, compelled by standards of various

sorts. To check the conformance to a SRMA, ACC-apparatuses ought to bolster the

module and manage sorts utilized by the draftsman. This paper presents necessities in

regards to SRMA bolster and a stock of normal module and lead sorts, on which

premise eight business and non-business apparatuses were tried [6].

De Silva and Balasubramaniam (2012), “Controlling Software Architecture

Erosion” recommends the methodologies and advancements that have been proposed

throughout the year to control software architecture disintegration or to distinguish and

26

re-establish design that have been dissolved. These methodologies incorporate the

instruments, systems and procedures, which are grouped into three classifications viz.,

limit, counteract and repair design disintegration. These procedures are as per the

following: process-oriented architecture conformance, architecture design enforcement,

architecture evolution management, self-adaptation, architecture to implementation

linkage, and architecture restoration techniques consisting of recovery, discovery and

reconciliation [7].

Chanda and Liu (2015), “Intelligent Analysis of Software Architecture

Rationale for Collaborative Software Design” proposes that the gathering of partners

trading their perspectives with a specific end goal to settle on plan choice since

architecture rationale behind different outline choices is not completely caught and

henceforth influences the practicality of software system. Keeping in mind the end goal

to catch and keep up the Software Architecture rationale for examination a keen

software architecture rationale basis catch framework has been composed that enables

distinctive member or partners to take an interest in an online discourse to determine

configuration issue cooperatively. This paper utilizes three distinct methodologies.

Right off the bat, we decide aggregate assessments of a gathering on various

perspectives and recognize perspectives which have picked up a huge consideration

into the online exchange. Besides, propose a technique to build up a traceability

network that connections different software architecture components to its related

software necessities. Thirdly, we perform printed investigation of partners' perspectives

to decide the points that are generally talked about [8].

Caracciolo, Lungu et.al (2015), “A Unified Approach to Architecture

Conformance Checking” suggests that software architecture disintegration can be

controlled by documenting design decision and using architecture description language

(ADLs) techniques [9].

Maqbool and Babri (2004), “Bayesian Learning for software Architecture

Recovery” proposes the utilization of Bayesian learning technique for automatic

recovery of as software system's architecture, given fragmented or obsolete

documentation. In this utilize programming modules with known characterizations to

prepare the Naive Bayes classifier. After this we utilize the classifier to put new cases,

i.e. Software modules, into appropriate sub-systems. At that point they will assess the

execution of the classifier by directing investigations on a product framework, and

contrast the outcomes got and a manually prepared architecture. To thinking and

27

finishing up results Bayesian learning utilizes the likelihood based approach. Bayesian

learning strategies depend on Bayes hypothesis. One of the Bayesian learning method is

Naïve Bayes classifier that has been successfully applied to solve many problems like

text classification, speech/image recognition [10].

Dargomir and Lichter (2012), “Model-based Software Architectural

Evolution and Evaluation” proposes a automatic assessment of software architecture,

intended to bolster the architecture based advancement of software systems at different

deliberation levels. It gives recoup, imagine and assess the software architecture of a

system. This paper comprises of two noteworthy objectives: Architecture monitoring

and representation: It starts with mapping the source code artefacts of a software

system to architecture components beginning from the system's architecture view, by

labelling the source code as needs be. Architecture evolution and assessment: It

address the advancement and assessment of the architecture of a software system. The

trigger of any advancement is change ask. The change demand can be caused, e.g., by

the expansion of new prerequisites or by the choice to structurally re-consider worsened

parts of the system [11].

Budi et.al (2010), “Automated Detection of Likely design Flaws in Layered
Architecture” suggests that Layered Architecture is a good principle for separating

concerns to make systems more maintainable. One example of layered architecture is a

separation of classes into three groups boundary, control, and entity these are refer to as

three analysis class stereotypes in UML. When the classes of different stereotypes

interact with each other, and properly design, the overall system would be maintainable

flexible and robust. Whereas poor design results in less maintainable system which is

more prone to errors. It provides a frame work which can automatically labelled classes

as boundary, control or entity, and detect design flows of rules associated with each

stereotype. There are two common rules variants: - Robustness rule and well-

formedness rules [12].

Herold, Counell et.al (2015) “Detection of Violent Causes in Reflection
Model” describes that Reflection Model is a technique used to detect architecture

violation that occurs during software architecture erosion. In this abnormal state

architecture is characterized by the designer which contains box and bolts. At that point

designer will characterize the mapping of abnormal state architecture to genuine source

code then tool analyse the source code and it will produce the Reflection Model. This

paper focuses on the technique which will help us to automatically detect the causes of

28

violation of reflection model and detection of typical symptoms for these causes.

Reflection model tools JITTAC. Common causes for violations in a reflection model:

Architecturally misplaced software units and Call-back. Symptoms for violation causes

are: Structural Symptoms (It basically describe the structural pattern in reflection

model, the mapping and the code) and Measurable Symptoms (It describes the

quantifiable properties of the elements in structural symptoms) [13].

Herold et.al (2013), “Checking Conformance with Reference
Architectures” this paper shows a report about the use of rule based architecture

conformance checking approach which examine a industrial reference for the German

open organization. The limitations for usage of reference architecture are formalized as

architecture guidelines empowering programmed conformance checking device bolster.

The above approach can recognize and keep away from design disintegration if

connected over the product life cycle. Way to deal with design conformance checking

are: (an) indicating the reference engineering as a meta-model to such an extent that the

engineering of a framework can be demonstrated and (b) formalization of building

elements required to be checked for conformance as intelligent expressions [14].

Eyck, Helleboogh et.al (), “Using code analysis tools for architectural

conformance checking” In this paper, we examine a couple of code examination

devices that can be utilized to check static conformance of a system to its architecture

that offer support for Java and consider their abilities for compositional conformance

checking: Architecture Rules, Macker, Lattix DSM, SonarJ, Structure101 and

XDepend. Checking software architecture conformance is vital to keep that the

framework erodes after some time and to defend the quality. At the point when a

system is executed or transformed, it is difficult to evaluate whether the real

implementation conforms in with the design. Architecture conformance checking is the

verification whether a framework conforms in with its planned architecture, which is

crucial to protect the quality characters of the system. A few methodologies exist to

support architecture conformance checking. One way to deal with accomplish

conformance is to combine an Architectural Description Language (ADL) general-

purpose programming dialect. A case of this approach for the Java programming dialect

is Arch-Java. Since engineering elements are top of the line segments in the tongue and

fill in as a starting point for usage, design conformance is approved by the lingo itself.

Along these lines compositional information is safeguarded inside the code, be that as it

may it requires the utilization of a committed dialect to fabricate the framework. [15].

29

Knodel, Popescu (2007), “A comparison of Static Architecture Compliance
Checking Approaches” This paper separate three static architecture consistence

checking approaches reflexion models, relation conformance guidelines, and

component access rules by looking over their pertinence in 13 specific measurements.

The three fundamental static engineering consistence checking methodologies of a

framework: Reflexion models: Reflexion models partners two models of a product

structure against each other, regularly, an outline model (the orchestrated or arranged

plan) and a source code display (the genuine or executed design). Relation

Conformance Rules: it empowers determining allowed or denied relations between two

sections. They can recognize practically identical deformations as reflexion models, yet

the mapping is done naturally for each conformance check. Component Access Rules:

empower determining straightforward ports for segments, which diverse parts are

allowed to call. These guidelines help to grow the data concealing without end of

segments on a level, which won't not be possible inside the physical architecture of the

execution dialect [16].

30

CHAPTER 3

PRESENT WORK

This report gives a comprehensive review of the architectural, utilizing various

diverse architectural perspectives to portray distinctive parts of the framework. It is

proposed to catch and convey on the critical architectural decisions which have been

made on the system.

It likewise exhibits a review of strategies and innovations that have been

proposed throughout the years either to anticipate architecture disintegration or to

distinguish and restore architectures that have been eroded. These methodologies,

which incorporate apparatuses, procedures and techniques, are basically grouped into

three non-specific classes that endeavour to limit, counteract and repair architecture

disintegration. Inside these general classifications, each approach is additionally

separated mirroring the abnormal state techniques embraced to handle disintegration.

These are: process-architecture conformance, architecture evolution management,

engineering outline authorization, architecture design enforcement, architecture to

implementation linkage, self-adaptation and architecture restoration techniques

consisting of recovery, discovery and reconciliation. Some of these procedures contain

sub-classes under which study results are exhibited. We talk about the benefits and

shortcomings of every technique and contend that no single methodology can address

the issue of disintegration. Further, we investigate the likelihood of joining

methodologies and present a case for further work in building up a comprehensive

structure for controlling architecture disintegration.

3.1 Problem formulation

By reviewing number of research papers, we concluded some of the important

aspects of software architecture problems which occurs regularly in software

development. There are some problems which we identified which are architectural

smells, code smells, code duplication, technical debt and possible relations of similar

types of problem which leads to Architectural problems. Here we are focusing about

the code smells, technical debt and code duplication majorly and which can be solved

with the help of through refactoring of code, placing proper design principles and

design patterns. To yield maximum architecture resources and software designers must

31

estimate the size of technical debt. This technical debt can be handled by framework

also, so that developer can write the code in better environment.

Following is the research methodology:

1 Analyze architecture and design the patterns.

2 Finalize and implement the architecture based on design principles and patterns.

3 Develop the one application without framework and one with spring MVC

framework.

4 Define the behavior of the classes to check the dependencies and violations rules.

5 Connect the implemented architectures with the JDBC and record their compilation

and run time.

6 Validate the compliance of both the application by checking violations of rules,

validate configuration with the help of tools SonarQube and JArchitect.

7 Check for code smells, vulnerabilities, number of issues in application, technical

debt using SonarQube and JArchitect.

8 Remove the issues manually in order to make application less prone to errors so that

new version of application can be produced.

Analyse the architecture and design patterns

Finalize and implement the architecture using design

principles

Develop two application with MVC framework and another

is without framework

Define the behaviour of classes with framework and without

framework

Connect the architectures with JDBC

record compilation and run time of both the

applications.

Identify rule violations, code smells, vulnerabilities in

application using SonarQube.

32

Figure 3.1: Flowchart of methodology

3.2 Objectives of the study

 Architectural level of understanding is crucial for software specifically when the

structure is to be reformed to meet varying requirements. In case of the old or legacy

software system, architectural documentation is not available, an attempt must be made

to recuperate the architecture from the source code.

 Our main objective is to rectifying an eroded software system architecture by

aligning the implemented architecture with the proposed architecture or planned

architecture. This process involves the support of architecture discovery (it is used

to build the planned architecture from system requirements, documents

specifications and system use cases) and recovery (used for recovering the

implemented architecture). To recover we will use some tools which will help to

obtain the executed architecture from the source code or source artefacts.

 To reduce the complexity of system in order to increase maintainability, security as

well as performance of software system.

Remove the issues manually from code to make

application less prone to errors.

33

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experimental results

 In order to control software architecture disintegration or erosion I have developed

two projects. One is developed using Spring MVC (Model-View-Controller)

framework and another one is developed with simple java without beans. The project

“SpringMVCHibernateCRUD” is developed using spring MVC framework and follows

all the design principle such as Separation of concerns, single entity responsibility and

principle of least knowledge. The other project “Project-2” is developed without using

design principles and design patterns.

These two projects are developed in eclipse. Both the projects consists of an

interface in which user will enter some of its basic information as shown in the figures

given below. These projects consists of four different classes UserController.java

(contains the servlets), UserDao.java (contains the logic for database operation),

User.java (contains the POJO (Plain Old Java Object)), Database.java (contains the

class for initiating database connection). The project “SpringMVCHibernateCRUD”

which consists of Spring MVC framework is developed using Maven. Apache Maven is

a product project administration and understanding tool. In view of the idea of a project

object mode (POM), Maven can deal with a project’s build, announcing and

documentation from a focal snippet of data. Maven takes care of managing

dependencies, developing a deployable component, runs application in Tomcat,

creating sample report.

The comparison of these projects are done with the help of SonarQube and

JArchitect. The SonarQube is an open source tool for quality administration and is

committed to persistently examining and measuring the technical quality of source

code, from project portfolio down to the technique level, and following the introduction

of new Bugs, Vulnerabilities, and Code Smells in the Leak Period. Bugs are code that is

more expected not providing the intended behaviour. Examples such as null-pointer

dereferences, memory leakages, and logic errors. Code smells are smelly codes which

are difficult to maintain and introduce bugs. For example, complex code, duplicate

code, codes which are not covered by unit testers. SonarQube helps to find and track

34

the security Vulnerability in code. For example, SQL injections, passwords, badly

managed errors.

JArchitect is a java static analysis and code quality tool. JArchitect assist in a large

amount of code metrics, permits for visualization of dependencies with the help

of directed graphs and dependency matrix. User can also write custom rules and query

code by using CQLinq (Code Query over LINQ), calculates Technical debt, checks for

Quality Gates, Issues Management, generate custom reports, explore existing

architecture, harness test coverage data.

Figure 4.1: Java code without beans

The figure 4.1 is the architecture which is based on java code which does not

consists of beans and spring MVC framework.

Figure 4.2: Java code without beans output

35

Figure 4.3: Controller class code

The figure 4.3 shows the code for the controller class which controls the data taken as

input from the user and putting the input into the database.

Figure 4.4: Spring MVC and hibernate output

The Spring Web MVC system gives Model-View-Controller (MVC) engineering in

addition to prepared parts that can be utilized to construct adaptable as well as approximately

coupled web applications. The figure 4.4 is based on spring MVC framework and consists of

beans. The objects that shape the foundation of your application and that are overseen by the

Spring IoC holder are called beans. A bean is a protest that is instantiated, unite, and

generally overseen by a Spring IoC holder. These beans are made with the setup metadata

that you supply to the container. For example, in the form of XML <bean/>.

36

Figure 4.5: Spring MVC framework database

The figure 4.5 shows the output of the spring MVC framework in MySQL

Workbench. This shows that how the values are entering into the database.

Figure 4.6: Sonarqube output

Figure 4.6 shows the rating of the four different projects. The Project-2 which is

developed without any architecture pattern and does not follow any design principle

shows ‘E’ rating in reliability, ‘B’ rating in security and ‘A’ rating in maintainability.
Where the project SpringMVCHibernateCRUD which is developed using MVC

(Model-View-Controller) architecture pattern and follows design principles shows ‘A’
rating in reliability, ‘A’ rating in security and ‘A’ rating in maintainability.

37

Figure 4.7: Spring MVC output (SonarQube)

Figure 4.7 shows the number of vulnerabilities, bugs, code smells, and

duplicated blocks in SpringMVCHibernateCRUD project which is developed by using

MVC architecture pattern and follows design principles. It consists of 4 code smells

and also shows the technical debt to remove the code smells.

Figure 4.8: Spring MVC output (SonarQube)

 Figure 4.8 shows the issues in the given project and effort needed to remove

single issue and code smell.

38

Figure 4.9: Spring MVC output (SonarQube)

 Figure 4.9 shows the location where the error occurs. It will tell us the package

and the class where the code smell will occur and also tell us whether it is minor or

major.

Figure 4.10: Spring MVC output (SonarQube)

39

Figure 4.11: Spring MVC output (SonarQube)

Figure 4.12: Spring MVC output (SonarQube)

40

Figure 4.13: Project-2 output (SonarQube)

Figure 4.14: Project-2 output (SonarQube)

41

Figure 4.15: Project-2 output (SonarQube)

Figure 4.16: Project-2 output (SonarQube)

42

Figure 4.17: Spring MVC output (JArchitect)

Figure 4.18: Spring MVC output (JArchitect)

43

Figure 4.19: Spring MVC output (JArchitect)

Figure 4.20: Spring MVC output (JArchitect)

44

Figure 4.21: Dependency graph (JArchitect)

Figure 4.22: Code query and rules (JArchitect)

Figure 4.23: Dependency matrix (JArchitect)

45

Figure 4.24: Abstractness vs. Instability (JArchitect)

Figure 4.25: Metric tree (JArchitect)

46

Figure 4.26: Project-2 output (JArchitect)

Figure 4.27: Project-2 output (JArchitect)

47

Figure 4.28: Project-2 output (JArchitect)

Figure 4.29: Abstractness vs. Instability (JArchitect)

48

Figure 4.30: Dependency graph (JArchitect)

Figure 4.31: Metric tree (JArchitect)

49

Figure 4.32: Dependency graph (JArchitect)

50

4.2 Comparison with existing technique

Table 4.1 comparison of Sonaruqbe and JArchitect

 SonarQube JArchitect

Version 6.2 4.0

License Lesser GNU General Public

License Proprietary

Purpose Continuous inspection of code

quality.

Static analysis tool for Java

code

Strengths Offers reports on duplicated

code, coding standards, unit

tests, code coverage, code

complexity, comments, bugs,

and security vulnerabilities.

Dependency Visualization,

Software metrics (82+),

Declarative code rule over

LINQ query

Operating

System

Cross Platform

Multiplatform

Integration Integrates

with Maven, Ant, Gradle, MS

Build and continuous

integration tools like

Bamboo, Jenkins, Hudson,

Integrates

with Maven, Ant, Gradle, MS

Build

 Rule

Categories

Language:

Type:

Tag:

Repository:

Status:

Beta:

Deprecated:

Ready:

 Find bugs PMD CheckStyle

 Version 3.0.0 5.2.2 6.1.1

 License Lesser GNU

Public License

 BSD-style license Lesser General

Public License

 Purpose Potential Bugs

 finds - as the name

suggests - bugs in

Java byte code

Bad Practices

 looks for potential

problems, possible

bugs,

 unused and sub-

optimal code and

over-

 complicated

expressions in the

Java source

 code

 Conventions

 scans source code

and looks for

coding standards,

 e.g. Sun Code

Conventions,

JavaDoc

https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Gradle
https://en.wikipedia.org/wiki/MSBuild
https://en.wikipedia.org/wiki/MSBuild
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Bamboo_(software)
https://en.wikipedia.org/wiki/Jenkins_(software)
https://en.wikipedia.org/wiki/Hudson_(software)
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Gradle
https://en.wikipedia.org/wiki/MSBuild
https://en.wikipedia.org/wiki/MSBuild

51

 Strengths - finds often real

defects

- low false detected

rates

- fast because byte

code

- less than 50% false

positive

-

finds occasionally real

defects

- finds bad practices

 - finds violations

of coding

conventions

 Weaknesses - is not aware of the

sources

- needs compiled

code

- slow duplicate code

detector

 - can't find real

bugs

 Number of

rules

 408 234

 132

52

 Rule

Categories

 Correctness

 Bad practice

 Dodgy code

 Multithreaded

Correctness

 Performance

Malicious

 Code Vulnerability

 Security

Experimental

 Internationalization

 JSP

 - Basic JSF

 - Basic JSP

 XSL

 - XPath in XSL

 Java

 - Design

 - Coupling

 - Jakarta Commons

Logging

 - Basic

 - Strict Exceptions

 - Security Code

Guidelines

 - Java Logging

 - Android -

Controversial

 - Comments

 - Type Resolution

 - Empty Code

 - String and

StringBuffer

 - Code Size

 - Braces

 - Unused Code

 - Unnecessary

 - J2EE

 - JavaBeans

 - Migration

 - Import Statements

 - JUnit

 - Naming

 - Finalizer

 - Optimization

 - Clone

Implementation

 Ecmascript

 - Basic Ecmascript

 - Unnecessary

 - Braces

 XML

 - Basic XML

 Annotations

 Block Checks

 Class Design

 Coding

 Duplicate Code

 Headers

 Imports

 Javadoc

Comments

 Metrics

 Miscellaneous

 Modifiers

 Naming

Conventions

 Regexp

 Size Violations

 Whitespace

53

S. No Features

Developer Edition

 Build Machine

1 Analysis of Application

Projects, Code Source

and Third-Party

Projects

Yes Yes

2.

Dashboard,

Smart Technical Debt

Estimation (On

windows version

only),

Quality Gate (On

windows version only)

Yes Yes

3.

Automatic Report

(HTML + javascript)

Production through

JArchitect.Console.exe

No Yes

4. Possible Integration

into the Build Process

No Yes

5. Warnings about the

Health of the Build

Process

No Yes

6. Interactive UI:

Dependency Graph

Yes Yes

7. Interactive UI:

Dependency Matrix

Yes

8. Interactive UI: Metrics

Visualization through

Treemaping

Yes

9. Build Comparison /

Code Diff

Yes Yes

10. Running an Analysis

from Power Tools

Yes Yes

54

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

The huge number of various procedures, in both scholarly research and modern

practice, shows that manageability of software systems is a vital issue in computer

science and strengthens our conviction that interests in programming resources should

be secured. Be that as it may, as examined under every arrangement, none of the

accessible strategies separately gives a compelling and far reaching answer for

controlling architecture disintegration. We chiefly concentrate on Repair strategy for

end of software architecture Erosion. This paper additionally quickly evaluated the

present condition of structural plan which impacts on software design issues. This work

has looked at software architecture, its different definitions, objectives, prerequisites

and styles. We reviewed numerous compositional styles or examples that risen out of

involvement of software architects in the business and research on software

architecture.

5.1 Conclusion

This paper provides an overview of current approaches for dealing with the

problem of architecture erosion. I have presented a lightweight classification

framework to categories these methods primarily for easier analysis of their efficacy. In

this paper I have proposed technique to control architecture erosion. In this I have

created two architecture one is based on spring MVC and hibernate framework and the

other is simple java code. Based on design principles such as separation of concerns,

single responsibility principle, principle of least knowledge I will compare the two

architecture with the help of tools i.e. SonarQube and JArchitect in order to find the

cyclic-dependencies and architectural violations between the two architectures. This

will help us to make the system more reliable and maintainable.

5.2 Future scope

We are still comparing the two architectures one is pattern (MVC) without

framework and the other is MVC with spring and hibernate framework. The

comparison is done based on the architecture design principles such as separation of

concerns, single responsibility principle, etc. The comparison will show that using the

MVC spring and hibernate framework we can minimize the architecture erosion. More

55

to go with JACOCO, In future we are going to implement the same thing using

JACOCO code analysis.

“JaCoCo should provide the standard technology for code coverage analysis in Java

VM based environments. The focus is providing a lightweight, flexible and well documented

library for integration with various build and development tools.”

One of most interesting

One of the most interesting thing regarding JACOCO is that it work for

functional as well non-functional characteristics and it also lightweight and works also

for VM. Today’s world is belongs to cloud, so everywhere we found virtual machines if

we are writing any code in cloud environment then this tool is very useful. Our next

focus is analysis of code in cloud environment using these tools.

56

References

[1] P. Petrov and U. Buy, “A systemic methodology for software architecture analysis and
design,” Proc. - 2011 8th Int. Conf. Inf. Technol. New Gener. ITNG 2011, pp. 196–
200, 2010.

[2] P. U. Chavan, M. Murugan, and P. P. Chavan, “A review on software architecture
styles with layered robotic software architecture,” Proc. - 1st Int. Conf. Comput.

Commun. Control Autom. ICCUBEA 2015, pp. 827–831, 2015.

[3] M. De Silva and I. Perera, “Preventing software architecture erosion through static

architecture conformance checking,” 2015 IEEE 10th Int. Conf. Ind. Inf. Syst. ICIIS

2015 - Conf. Proc., pp. 43–48, 2016.

[4] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “Recommending
refactorings to reverse software architecture erosion,” Proc. Eur. Conf. Softw. Maint.

Reengineering, CSMR, pp. 335–340, 2012.

[5] K. Sartipi, “Software architecture recovery based on pattern matching,” Softw.

Maintenance, 2003. ICSM 2003. Proceedings. Int. Conf., pp. 293–296, 2003.

[6] L. Pruijt, C. Köppe, and S. Brinkkemper, “Architecture compliance checking of
semantically rich modular architectures: A comparative study of tool support,” IEEE

Int. Conf. Softw. Maintenance, ICSM, pp. 220–229, 2013.

[7] L. De Silva and D. Balasubramaniam, “Controlling software architecture erosion: A
survey,” J. Syst. Softw., vol. 85, no. 1, pp. 132–151, 2012.

[8] N. Chanda and X. (Frank) Liu, “Intelligent Analysis of Software Architecture
Rationale for Collaborative Software Design,” ???, pp. 287–294, 2015.

[9] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, “A Unified Approach to Architecture
Conformance Checking,” Proc. - 12th Work. IEEE/IFIP Conf. Softw. Archit. WICSA

2015, pp. 41–50, 2015.

[10] O. Maqbool and H. A. Babri, “Bayesian Learning for Software Architecture

Recovery,” 2007 Int. Conf. Electr. Eng., pp. 1–6, 2007.

[11] A. Dragomir and H. Lichter, “Model-based software architecture evolution and

evaluation,” in Proceedings - Asia-Pacific Software Engineering Conference, APSEC,

2012, vol. 1, pp. 697–700.

[12] A. Budi, D. Lo, and S. Wang, “Automated Detection of Likely Design Flaws in
Layered Architectures,” no. July, pp. 7–9, 2011.

[13] S. Herold, M. English, J. Buckley, S. Counsell, and M. O. Cinneide, “Detection of
violation causes in reflexion models,” 2015 IEEE 22nd Int. Conf. Softw. Anal. Evol.
Reengineering, SANER 2015 - Proc., pp. 565–569, 2015.

[14] S. Herold, M. Mair, A. Rausch, and I. Schindler, “Checking conformance with

reference architectures: A case study,” Proc. - IEEE Int. Enterp. Distrib. Object

Comput. Work. EDOC, pp. 71–80, 2013.

[15] J. Van Eyck, N. Boucké, A. Helleboogh, and T. Holvoet, “Using code analysis tools
for architectural conformance checking.”

57

[16] J. Knodel and D. Popescu, “A Comparison of Static Architecture Compliance
Checking Approaches 1,” 2007.

[17] ISO/IEC 9126-1, Software Engineering - Product Quality - Part 1: Quality Model,

2001.

[18] N. M. Edwin, “Software Frameworks , Architectural and Design Patterns,” no. July,
pp. 670–678, 2014.

[19] Bosch, J (2000), "Design and Use of Software Architectures" , Addison-Wesley

Professional.

[20] Microsoft, Microsoft Application Architecture Guide. 2nd ed. Microsoft Press, 2009.

[21] Freeman, P. The Central Role of Design in Software Engineering. Software

Engineering Education Freeman, P. and Wasserman, A. eds. Springer-Verlag: New

York, 1976

[22] T. Abdellatif, S. Bensalem, J. Combaz, L. De Silva, and F. Ingrand, “Rigorous design
of robot software: A formal component-based approach,” Rob. Auton. Syst., vol. 60,
no. 12, pp. 1563–1578, 2012.

[23] G. S. Kumar, K. Rameetha, and K. P. Jacob, “A generic software architecture for a
domain specific distributed embedded system,” Int. Conf. Softw. Eng. Theory Pract.

2007, SETP 2007, pp. 41–46, 2007.

[24] P. Iñigo-blasco, F. Diaz-del-rio, M. C. Romero-ternero, D. Cagigas-muñiz, and S.

Vicente-diaz, “Robotics software frameworks for multi-agent robotic systems

development,” Rob. Auton. Syst., vol. 60, no. 6, pp. 803–821, 2012.

[25] W. Michael, “A Layered software architecture for Hard Real Time (HRT) embedded
systems Monterey , California,” 2002.

[26] J. B. Tran, R. C. Holt, Forward and reverse repair of software architecture, in:

Proceedings of the Conference of the Centre for Advanced Studies on Collaborative

Research, IBM, 1999, pp. 12–20.

[27] M. W. Godfrey, E. H. S. Lee, Secrets from the monster: Extracting Mozilla’s software
architecture, in: Proceedings of the International Symposium on Constructing Software

Engineering Tools, pp. 15–23.

[28] Garlan, D. A. & Ockerbloom, J. R., (1995) “Architectural mismatch: Why reuse is so

hard”. IEEE Software, 12(6):17–26, Nov 1995

[29] T. Abdellatif, S. Bensalem, J. Combaz, L. De Silva, and F. Ingrand, “Rigorous design
of robot software: A formal component-based approach,” Rob. Auton. Syst., vol. 60,
no. 12, pp. 1563–1578, 2012.

[30] S. Herold, M. Mair, A. Rausch, and I. Schindler, “Checking conformance with
reference architectures: A case study,” Proc. - IEEE Int. Enterp. Distrib. Object

Comput. Work. EDOC, pp. 71–80, 2013.

58

