
ANALYSIS OF SHA-3 FINAL ROUND CANDIDATE
ALGORITHMS AND DESIGN OF VARIANT TO SKEIN

HASH FAMILY

A Thesis Submitted to Lovely Professional University

For the Award of

DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE AND ENGINEERING

By
RAJEEV SOBTI

Guide
Dr. G. GEETHA

FACULTY OF TECHNOLOGY AND SCIENCES
LOVELY PROFESSIONAL UNIVERSITY

PUNJAB, INDIA
MAY, 2016

	

	

	

i	

DECLARATION

I declare that the thesis entitled ‘Analysis of SHA-3 Final Round Candidate

Algorithms and Design of Variant to Skein Hash Family’ has been prepared by me�

under the guidance of Dr. G. Geetha, Professor of School of Computer Applications,

Lovely Professional University. No part of this thesis has formed the basis for the award

of any degree or fellowship previously.

Rajeev Sobti

School of Computer Science and Engineering

Lovely Professional University

Jalandhar-Delhi G.T. Road (NH-1)

Phagwara, Punjab, INDIA

DATE : 11 May 2016

	

	

	

ii	

CERTIFICATE

I certify that Rajeev Sobti has prepared his thesis entitled ‘Analysis of SHA-3 Final

Round Candidate Algorithms and Design of Variant to Skein Hash Family’, for the

award of Ph.D. degree of Lovely Professional University, under my guidance. He has

carried out the work at the School of Computer Science and Engineering, Lovely

Professional University.

Dr. G. Geetha

Professor and Associate Dean

School of Computer Applications

Lovely Professional University

Jalandhar-Delhi G.T. Road (NH-1)

Phagwara, Punjab, INDIA

Date : 11 May 2016

	

	

	

iii	

ABSTRACT

Technological advancements and globalization have made faster exchange of

information a very vital aspect of human life and society. The exponential growth of

networks, internet, and portable devices have contributed to proliferation of information.

With all this, securing information has become equally important and challenging.1

Cryptography in general and Cryptographic Hash Functions in particular are extensively

used to accomplish security of information. Cryptographic Hash Functions are crucial in

implementing multiple security goals and have led their way into various security

applications like: digital signatures, storing passwords, digital time stamping,

constructing block ciphers, generating pseudorandom numbers, maintaining secure web

connections, encryption key management, virus scanning, indexing data in hash tables,

and detecting accidental data corruption as checksums etc.2

Among all hash functions being used, those from SHA (Secure Hash Algorithm)

family covering SHA-0, SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)

have been the most commonly used ones. This SHA family of functions was developed

by National Security Agency (NSA) and certified as Federal Information Processing

Standard (FIPS) by National Institute of Standards and Technology (NIST), US

Department of Commerce. All these are based on MD4 and MD5 algorithms, commonly

known as MDx family of hash functions. A few other important hash functions like

HAVAL and RIPEMD are also based on MDx family. Around year 2004 and later,

majority of hash functions based on MDx family (MD4, MD5, HAVAL, RIPEMD, SHA-

0 and SHA-1) were attacked and cryptanalysis of these functions brought serious

weaknesses in them to the fore.2 Given that SHA-2 functions are in the same family and

share a common heritage and design principles as the earlier broken functions, these

attacks shook the long term confidence of cryptographers in nearly all hash functions. A

question that perturbed everybody’s mind was what if SHA-2 is compromised or

successfully cryptanalyzed or broken and what could be its repercussions? If this proved

1 R. Sobti, A. Bagga and G. Ganesan, "Security of Online Social Networks," in International Conference

on Control, Communication, Computer & Mechanical Engineering, New Delhi, 2012
2 R. Sobti and G. Ganesan, "Cryptographic Hash Functions: A Review," IJCSI International Journal of

Computer Science, vol. 9, pp. 461-479, 2012

	

	

	

iv	

true, the world would not be left with any option because SHA-2 was the best that we had

at that time.

To handle this situation, NIST, initiated a design competition (public open

competition) in November 2007 for designing next generation of hash functions. The

objective of the competition was to design a new hash standard named ‘SHA-3’ to

augment current standard (SHA-2). NIST received 64 hash function submissions from

over 200 cryptographers around the world. NIST also invited the public to evaluate the

submissions and consequently a lot of cryptanalysis and public review were carried out.3

In December 2010, five algorithms (Blake, Grøstl, JH, Keccak, and Skein) advanced to

the final round.

The ‘Reference platform’ announced by NIST for SHA-3 competition consisted of

general purpose machine (Windows Intel machines). Considerable domain of

architectures like the ones prevalent in Smart Cards, Embedded systems, and Mobile

platforms were ignored.

The first objective of this thesis revolves around these five SHA-3 final round

candidate algorithms and analysis of their performance on architecture other than the one

specified in ‘Reference platform’ and thus in its way contribute to NIST’s public call to

evaluate and compare performance of these candidate algorithms on platform other than

Reference platform. For this objective, ARM architecture was selected as the Target

platform for evaluation. The choice of the Target platform was a two-step decision. In the

first step, the decision to go for embedded and mobile platform was directed by the recent

surge in usage of these devices. In the second step, for zeroing down on ARM

architecture, its market dominance and technical features were the main consideration.

The rationale behind selection of ARM architecture is thoroughly discussed in the thesis.

ARM Cortex-A8, Cortex-M4, and ARM7TDMI processors were picked to cover all

possible range of processor series from ARM portfolio. Evaluation on Cortex-A8 and

Cortex-M4 was done on hardware (OpenBoard-AM335x and Stellaris® LM4F232

Evaluation Board respectively) and for ARM7TDMI, evaluation was done on simulator.

The Methodology and approach used for evaluation on these processors differ from each

other because of the nature of these devices. Cortex-A8 based device runs Linux OS and

3 S. Chauhan, R. Sobti and S. Anand, "Cryptanalysis of SHA-3 Candidates - A Survey," Research

Journal of Information Technology, vol. 5, no. 2, pp. 149-159, 2013

	

	

	

v	

has MMU, while Cortex-M4 based device is a bare machine without any Operating

system. For Cortex-A8, Coprocessor CP15’s registers were accessed to compute cycles

and for Cortex-M4, Data Watchpoint and Trace Unit’s CYCCNT counter was accessed

for computing cycles. The tools, methodologies, and approach used for different

processor series are detailed in the thesis. Cycles per Byte (CPB) was used as performance

metric and results were obtained for short and long messages separately as defined in

KAT (Known Answer Test) values specified by NIST. Comparison was done for 224,

256, 384 and 512-bit hash values.

The obtained results reflect that, for almost all algorithms, CPB consumption by 224-

bit and 384-bit hash match with those of 256-bit and 512-bit hash respectively. As input

size increases, consumption of Cycles per Byte decreases for almost all algorithms on all

ARM architectures.4,5,6,7 This trend is prominently visible in Skein and Grøstl. Skein,

Blake, and Keccak showed good performance on all ARM processors. Position of the

best performer or No. 2 / 3 performer changes with change in hash size or input message

type (long or short messages) or ARM processor used for evaluation. For example, for

long messages on Cortex-A8, Skein exhibits the best performance with average of 325

CPB, followed by Keccak at No. 2 with 360 CPB, and Blake at No. 3 with 367 CPB to

generate 512-bit hash size. With the same ARM processor (Cortex-A8) and input message

type (long messages), but for different hash size (256-bit in place of 512-bit), the relative

performance of algorithms changes. In this case, Blake outperforms others with average

of 197 CPB, followed by Keccak at No. 2 with 207 CPB, and Skein at No 3 with average

of 325 CPB. Performance of JH and Grøstl is found to be quite slow compared to other

three algorithms on all processor series of ARM. Grøstl is No. 4 performer on all ARM

processors.5,6,7 Depending on hash size, input message type and ARM processor used,

Grøstl takes 47% to 220% more CPB than No. 3 performer. 5,6,7 JH is even slower and

4 R. Sobti, G. Ganesan and S. Anand, "Performance Comparison of Grøestl, JH and BLAKE – SHA-3

Final Round Candidate Algorithms on ARM Cortex M3 Processor," in 2012 International Conference on
Computing Sciences, 2012

5 R. Sobti and G. Ganesan, "Performance Comparison of Keccak, Skein, Grøstl, Blake and JH: SHA-3
Final Round Candidate Algorithms on ARM Cortex A8 Processor," International Journal of Security and
Its Applications, vol. 9, no. 12, pp. 353-370, December 2015

6 G. Singh and R. Sobti, "SHA-3 Blake Finalist on Hardware Architecture of ARM Cortex A8
Processor," International Journal of Computer Applications, vol. 123, no. 13, pp. 22-27, August 2015

7 R. Sobti and G. Ganesan, "Performance Evaluation of SHA-3 Final Round Candidate Algorithms on
ARM Cortex-M4 Processor," International Journal of Information Security and Privacy. (Accepted for
Publication)

	

	

	

vi	

depending on the hash size, input message type, and ARM processor, consumes between

29% to 235% more CPB than Grøstl.5,6,7 Skein exhibits another important characteristic

that CPB does not increase as we increase the size of message digest from 224/256 bits

to 384/512 bits. On ARM architeture as a whole, use of Skein with 512-bit hash is

recommended for long messages whereas Blake and Keccak are recommended for short

messages like Password hashing.

The second objective of the thesis is to design a hash function that can act as a variant

to Skein hash family and perform better than Skein on ‘Reference platform’ (announced

by NIST) and ‘Target platform’ (chosen in this study for evaluation of SHA-3 final round

candidate algorithms). To achieve the second objective, this study presents a new

primitive named Modified ChaCha Core (MCC) that can be used to construct a stream

cipher or block cipher or compression function of cryptographic hash function. MCC is

an improvisation over Salsa and ChaCha core and experiment conducted during this study

reflects that MCC creates more diffusion than its counterparts. On an average, MCC’s

Quarter round results in gain of 16% and 88% over Quarter rounds of ChaCha and Salsa

respectively.8 This study also contributes to improvement in Salsa and ChaCha core by

evaluating their diffusion properties for different rotation constants and suggest

alternative constants that result in more diffusion.

Using MCC, a new ARX based hash function named as Cocktail is presented that

builds its compression function from this core (MCC) and infuses sub-keys in alternate

rounds. This newly function Cocktail, the proposed algorithm, is a simple, flexible, and

efficient hash function that blends security with speed. Cocktail can work on 32-bit as

well as 64-bit word size and generates hash output of variable sizes. It is secure and does

not suffer from any generic attack. The thesis presents detailed specifications of

Cocktail.

5 R. Sobti and G. Ganesan, "Performance Comparison of Keccak, Skein, Grøstl, Blake and JH: SHA-3

Final Round Candidate Algorithms on ARM Cortex A8 Processor," International Journal of Security and
Its Applications, vol. 9, no. 12, pp. 353-370, December 2015

6 G. Singh and R. Sobti, "SHA-3 Blake Finalist on Hardware Architecture of ARM Cortex A8
Processor," International Journal of Computer Applications, vol. 123, no. 13, pp. 22-27, August 2015

7 R. Sobti and G. Ganesan, "Performance Evaluation of SHA-3 Final Round Candidate Algorithms on
ARM Cortex-M4 Processor," International Journal of Information Security and Privacy. (Accepted for
Publication)

8 R.Sobti and G. Ganesan, “Analysis of Quarter Rounds of Salsa and ChaCha Core and Proposal of an
Alternative Design to Maximize Diffusion,” Indian Journal of Science and Technology, vol. 9, no. 3,
January 2016

	

	

	

vii	

In addition to a normal hash function, Cocktail can be used in different other operating

modes like HMAC, CMAC, Randomized hashing, PRF ensemble. Cocktail may be used

for various security applications that require use of hash functions like Digital Signature,

Pseudo Random Number Generator, Password hashing, Digital Time Stamping,

Identifying file or data, Verifying File Integrity etc. Cocktail’s compression function can

also be used to construct block cipher, processing 512-bit message blocks, in any

operation mode like ECB (Electronic Codebook) or CBC (Cipher Block Chaining) or

CFB (Cipher Feedback) mode. Cocktail may also work with Random Key Chaining

Mode (RKC), an authenticated encryption mode designed by these researchers, which is

enlisted as one of the 14 recommended authenticated encryption modes by NIST,

Computer Security Division, U.S. Department of Commerce 9.

On the performance front, Cocktail can generate 256-bit message digest with average

speed of 13 Cycles per Byte and 512-bit message digest with average speed of 8.7 Cycles

per Byte on Intel x86_64 Architecture. It can achieve considerably high level of

parallelism and performs better than Skein on ARM architecture (Target platform opted)

and x86 architecture (Reference platform). Cocktail consumes 45% lesser operations

than Skein. In comparison to Skein, Cocktail consumes 15% to 87% lesser Cycles Per

Byte depending on the architecture used and size of hash output. Besides Skein, Cocktail

performs faster than SHA-3 winner (Keccak) as well as other SHA-3 final round

candidate algorithms on Intel x86 and ARM platform.

9 P. Kaushal, R. Sobti and G. Ganesan, "Random Key Chaining (RKC): AES Mode of Operation,"

International Journal of Applied Information Systems, vol. 1, no. 5, pp. 39-45, February 2012.

	

	

	

viii	

ACKNOWLEDGEMENTS

It is a pleasure for me to thank all those who have helped me to accomplish this Ph.D.

thesis. In the first place, I wish to express my deepest gratitude to Dr. G. Geetha for

guiding me throughout this research work. She was the one who introduced me to

research in cryptography that has now turned into my passion. She has been a great

adviser and an outstanding support.

I am pleased to acknowledge the help, assistance, and support of Sami Anand, Puneet

Kaushal, and Shilpa Chauhan, my M.Tech students; Mr. Nikesh Bajaj, my ex-colleague

from School of Electronics and Communication Engineering; Col. T. S. Sangha from

Content Development Cell, Mr. Gurpreet from Imbuent Technologies, and the ever

helpful Mr. Varun Kumar from Department of Mathematics, LPU.

I would like to extend my special thanks to my dearest friend Aman, who has always

been a great support and encouraged me when it mattered the most - the time when little

was known and much was obscure and doubted.

I am grateful to the Management of LPU - Mr. Ashok Mittal, Ms. Rashmi Mittal, and

my seniors - Dr. Lovi Raj Gupta and Dr. Sanjay Modi - for all the support and

encouragement they have been rendering from so long.

I also want to express my thanks to my friends and colleagues at LPU, Mr. Gaurav

Sethi and Mr. Navdeep Dhaliwal, for their encouragement, interest, and comments. Many

thanks go to my colleagues Mr. Amandeep Nagpal, Mr. Lalit Bhalla, and Mr. Hitesh, who

helped me to concentrate on my work by shouldering some of my administrative

responsibilities.

Special thanks go to examiners of term end reports and reviewers of the journals who

vetted my submissions and gave valuable comments to improve the work further. I am

really thankful to SERSC Korea branch for providing the necessary financial support

towards publishing research on evaluation of Algorithms on ARM Cortex-A8.

Finally, I wish to express my profound gratitude to my mother, father, wife, son and

all other members of my family. Their love, support and unshakable faith in me provides

umpteen strength to succeed in all the goals of the life. I take this opportunity to express

my gratitude to all my teachers who have shaped me and have contributed immensely to

my knowledge and skills development since my childhood.

	

	

	

ix	

TABLE OF CONTENTS

CHAPTER	1:	INTRODUCTION	
1.1	Status	of	Cryptographic	Hash	Functions	in	Cryptology	 4	

1.2	Formal	Definition	of	Cryptographic	Hash	Functions	 5	

1.3	Cryptographic	Competitions	 7	

1.4	Motivation,	Research	Gap,	and	Objectives	 9	

1.5	Contribution	to	the	Field	of	Computer	Science	 13	

1.6	Outline	and	Main	Contributions	 14	

CHAPTER	2:	REVIEW	OF	LITERATURE	
2.1	Security	Services	of	Cryptographic	Hash	Functions	 15	

2.2	Iterative	Structure	of	Cryptographic	Hash	Functions	 20	

2.3	Security	Properties	of	Cryptographic	Hash	Functions	 26	

2.4	Methods	of	Attack	on	Cryptographic	Hash	Functions	 30	

2.5	Type	of	Cryptographic	Hash	Functions	Based	on	Design	of	Underlying	Compression	

Function	 40	

2.6	Migration	from	SHA-2	to	SHA-3	 50	

2.7	About	This	Thesis	 53	

CHAPTER	3:	PERFORMANCE	ANALYSIS	OF	SHA-3	FINAL	ROUND	CANDIDATE	ALGORITHMS	

3.1	Selection	of	Target	Platform	and	the	Rationale	behind	It	 54	

3.2	A	Brief	about	ARM	Architecture	 59	

3.3	ARM	Processor	Portfolio	and	Finalization	of	Processor(s)	for	Analysis	 63	

3.4	Introduction	to	SHA-3	Final	Round	Candidate	Algorithms	 66	

3.5	Performance	Analysis	of	Algorithms	on	ARM	Cortex-A8	Processor	 71	

3.6	Performance	Analysis	of	Algorithms	on	ARM	Cortex-M4	Processor	 93	

3.7	Performance	Analysis	of	Algorithms	on	Classical	Processor-ARM7TDMI	 102	

3.8	Concluding	Remarks	on	Performance	of	SHA-3	Final	Round	Candidate	Algorithms	on	

ARM	Architecture	 108	

CHAPTER	4:	DESIGNING	AND	DEVELOPMENT	OF	‘Modified ChaCha Core’	-	A	

CRYPTOGRAPHIC	PRIMITIVE,	LEADING	TO	THE	DESIGN	OF	'Cocktail'	–	AN	ARX	BASED	

NEW	HASH	FUNCTION	

	

	

	

x	

4.1	Analysis	of	Quarter	Rounds	of	Salsa	and	ChaCha	Core	and	Proposal	of	an	Alternative	

Design	(MCC)	for	Maximizing	Diffusion	 112	

4.2	Introduction	to	Cocktail and	Description	of	Notations	and	Operations	Used	 131	

4.3	Iterated	Construction	of	Cocktail	 134	

4.4	Specifications	of	Cocktail-512	 135	

4.5	Specifications	of	Cocktail-1024	 144	

4.6	Complexity	of	Cocktail	 147	

4.7	Design	Philosophy,	Design	Decisions,	and	Its	Rationale	 148	

4.8	Using	Cocktail	 166	

4.9	Security	Aspects	of	Cocktail	 172	

4.10	Concluding	Remarks	 176	

CHAPTER	5:	Cocktail's PERFORMANCE	COMPARISON	WITH	OTHER	SHA-3	FINALISTS	
5.1	Performance	Results	of	Cocktail	 178	

5.2	Comparison	of	Cocktail	and	Skein	 182	

5.3	Cocktail	and	SHA-3	final	Round	Candidate	Algorithms	 193	

5.4	Concluding	Remarks	 196	

CHAPTER	6:	CONCLUSIONS	AND	FUTURE	ENHANCEMENTS	

6.1	Conclusion	 198	

6.2	Future	Enhancements	 201	

	

	

	

xi	

LIST OF TABLES

Table	1.	12	Secure	Schemes	to	Design	Hash	Function	from	Block	Cipher	 42	
Table	2.	List	of	Processors	Selected	for	Evaluation	of	SHA-3	Final	Round	Candidate	Algorithms	 66	
Table	3.	Details	of	c9	Register	of	CP15	Coprocessor	 78	
Table	4.	Mean,	Median	and	Quartiles	of	CPBs	Consumed	by	SHA-3	Finalists	on	Cortex-A8	 91	
Table	5.	Comparison	of	Skein-512	and	Skein-1024	for	Generating	512-bit	Hash	 92	
Table	6.	Mean,	Median	and	Quartiles	of	CPBs	Consumed	by	SHA-3	Finalists	on	Cortex-M4	 99	
Table	7.	Comparison	of	Performance	on	Cortex-A8	and	Cortex-M4	 102	
Table	8.	Mean,	Median,	and	Quartiles	of	CPBs	Consumed	by	SHA-3	Finalists	on	ARM7TDMI	 106	
Table	9.	Diffusion	Matrix	 121	
Table	10.	Diffusion	Matrix	of	Salsa’s	Quarter	Round	 123	
Table	11.	Diffusion	Matrix	of	ChaCha’s	Quarter	Round	 123	
Table	12.	Top	12	Sets	of	Rotation	Constants	with	Mean	≥	7.70	 127	
Table	13.	Diffusion	Matrix	of	MCC’s	Quarter	Round	 127	
Table	14.	Cocktail’s Overview	 132	
Table	15.	Round	Constants	for	Key	Derivation	Words(Cocktail-512)	 139	
Table	16.	Diffusion	Matrix	for	One	Double	Round	of	MCC	 143	
Table	17.	Round	Constants	for	Key	Derivation	Words	(Cocktail-1024)	 146	
Table	18.	Diffusion	Matrix	for	MCC’s	Quarter	Round	(64-bit	version)	 156	
Table	19.	Diffusion	Matrix	of	One	Double	Round	of	MCC (64-bit	version)	 157	
Table	20.	Spread	of	Diffusion	in	Four	Column	Quarter	Rounds	followed	by	Four	Row	Quarter	Rounds	162	
Table	21.	Spread	of	Diffusion	in	Interlaced	Column	and	Row	Quarter	Rounds	 162	
Table	22.	Performance	Results	of	Cocktail	on	Intel	x86	Architecture	 180	
Table	23.	Performance	Results	of	Cocktail	on	ARM	Architecture	 181	

	

	

	

xii	

LIST OF FIGURES

Figure	1.	Types	of	Cryptography	 3	
Figure	2.	Hash	Function	SHA-2	Generating	256-bit	Hash	Result	 6	
Figure	3.	Contribution	of	the	Thesis	in	the	Field	of	Computer	Science	as	per	ACM	CCS	 13	
Figure	4.	Usage	of	Hash	Function	in	Implementing	Digital	Signature	(RSA	approach)	 17	
Figure	5.	Merkle-Damgard	Construction	 20	
Figure	6.	Wide	Pipe	Design	 22	
Figure	7.	The	Sponge	Construction	for	Hash	Functions	 24	
Figure	8.	Twin	Pipe	Based	3C	Construction	 26	
Figure	9.	Classification	of	Attacks	on	Hash	Functions	 31	
Figure	10.	Compression	Function	Based	on	Block	Cipher	 41	
Figure	11.	History	of	MDx-type	Hash	Functions.	 49	
Figure	12.	Time	Spent	with	Digital	Media	in	USA		 56	
Figure	13.	Time	Spent	with	Internet,	by	Device,	in	the	USA		 56	
Figure	14.	ARM	Market	Share	as	per	ARM	Holdings	2012	Q4	results	 58	
Figure	15.	ARM	Dominance	in	Different	Market	Segments	 59	
Figure	16.	ARM	Register	Set		 61	
Figure	17.	Program	Status	Register	Fields	 61	
Figure	18.	Four	of	the	72	Rounds	of	Threefish	512	 68	
Figure	19.	Working	of	Grøstl	 68	
Figure	20.	Local	Wide	Pipe	of	Blake	 69	
Figure	21.	Compression	Function	of	JH	 70	
Figure	22.	Cortex-A8	Based	OpenBoard-AM3359	from	PHYTEC	 72	
Figure	23.	Host	and	Target	Machine	Setup	for	OpenBoard-AM335x	 73	
Figure	24.	Format	of	Performance	Monitor	Control	Register	 79	
Figure	25.	Format	of	Count	Enable	Set	Register		 80	
Figure	26.	Format	of	User	Enable	Register	 82	
Figure	27.	Results	on	Cortex-A8	for	Short	Messages	(224-bit	Message	Digest)	 85	
Figure	28.	Results	on	Cortex-A8	for	Short	Messages	(256-bit	Message	Digest)	 86	
Figure	29.	Results	on	Cortex-A8	for	Short	Messages	(384-bit	Message	Digest)	 86	
Figure	30.	Results	on	Cortex-A8	for	Short	Messages	(512-bit	Message	Digest)	 87	
Figure	31.	Results	on	Cortex-A8	for	Long	Messages	(224-bit	Message	Digest)	 88	
Figure	32.	Results	on	Cortex-A8	for	Long	Messages	(256-bit	Message	Digest)	 88	
Figure	33.	Results	on	Cortex-A8	for	Long	Messages	(384-bit	Message	Digest)	 89	
Figure	34.	Results	on	Cortex-A8	for	Long	Messages	(512-bit	Message	Digest)	 89	

	

	

	

xiii	

Figure	35.	Cortex-M4	Based	Stellaris	LM4F232	Board	from	Texas	Instruments	 94	
Figure	36.	Host	and	Target	Machine	Setup	for	Stellaris	EK-LM4F232	 95	
Figure	37.	Results	on	Crotex-M4	for	Short	Messages	(256-bit	Message	Digest)	 98	
Figure	38.	Results	on	Cortex-M4	for	Short	Messages	(512-bit	Message	Digest)	 98	
Figure	39.	Results	on	Cortex-M4	for	Long	Messages	(256-bit	Message	Digest)	 100	
Figure	40.	Results	on	Cortex-M4	for	Long	Messages	(512-bit	Message	Digest)	 101	
Figure	41.	Results	on	ARM7TDMI	for	Short	Messages	(256-Bit	Message	Digest)	 104	
Figure	42.	Results	on	ARM7TDMI	for	Short	Messages	(512-Bit	Message	Digest)	 105	
Figure	43.	Results	on	ARM7TDMI	for	Long	Messages	(256-bit	Message	Digest)	 106	
Figure	44.	Results	on	ARM7TDMI	for	Long	Messages	(512-bit	Message	Digest)	 106	
Figure	45.	Performance	of	Blake,	Keccak,	and	Skein	for	Long	Messages	on	Cortex-A8	(512-bit	Message	

Digest)	 109	
Figure	46.	Quarter	Round	of	Salsa	Core	 115	
Figure	47.	Quarter	Round	of	ChaCha	Core	 117	
Figure	48.	Quarter	Round	of	MCC	 119	
Figure	49.	Mean	and	Standard	Deviation	of	Diffusion	Matrices	of	Salsa’s	Quarter	Round	 124	
Figure	50.	Mean	and	Standard	Deviation	of	Diffusion	Matrices	of	ChaCha’s	Quarter	Round	 125	
Figure	51.	Mean	and	Standard	Deviation	of	Diffusion	Matrices	of	MCC’s	Quarter	Round	 126	
Figure	52.	Sequence	of	Parameters	Ensure	Uniform	Diffusion	 128	
Figure	53.	Comparison	of	Quarter	Rounds	of	Salsa	Core,	ChaCha	Core	and	MCC	 129	
Figure	54.	Zoomed	Version	of	Comparison	of	Three	Designs	for	Mean	≥	7.0	 130	
Figure	55.	Iterative	Structure	of	Cocktail Hash	Function	 135	
Figure	56.	Message	'M'	after	Padding	in	Cocktail-512	 135	
Figure	57.	Structure	of	10	Round	Compression	Function	Cocktail	 138	
Figure	58.	Process	of	Computing	Key	Derivation	Words	 140	
Figure	59.	Working	of	Column	and	Row	Round	of	Cocktail-512	 142	
Figure	60.	The	Output	Transformation	(O)	of	Cocktail	 144	
Figure	61.	Message	'M'	after	Padding	in	Cocktail-1024	 145	
Figure	62.	Mean	and	Standard	Deviation	of	Diffusion	Matrices	of	MCC’s	Quarter	Round	(64-bit)	 156	
Figure	63.	HMAC	with	Cocktail	for	Achieving	Message	Integrity	and	Authentication	 167	
Figure	64.	CMAC	using	Cocktail’s	Compression	Function	 168	
Figure	65.	Password	Based	Authentication	Using	Cocktail	 169	
Figure	66.	Performance	of	Skein	and	Cocktail for	512-bit	Internal	State	on	Intel	x86_64	Machine	 187	
Figure	67.	Performance	of	Skein	and	Cocktail	for	1024-bit	Internal	State	on	Intel	x86_64	Machine	 187	
Figure	68.	Performance	of	Skein	and	Cocktail	for	512-bit	Internal	State	on	Intel	x86_32	Machine	 188	
Figure	69.	Performance	of	Skein	and	Cocktail	for	1024-bit	Internal	State	on	Intel	x86_32	Machine	 188	

	

	

	

xiv	

Figure	70.	Performance	of	Skein	and	Cocktail	for	512-bit	Internal	State	on	Cortex-A8	Processor	 189	
Figure	71.	Performance	of	Skein	and	Cocktail	for	1024-bit	Internal	State	on	Cortex-A8	Processor	 189	
Figure	72.	Performance	of	Skein	and	Cocktail	for	512-bit	Internal	State	on	Cortex-M4	Processor	 190	
Figure	73.	Performance	of	Skein	and	Cocktail	for	1024-bit	Internal	State	on	Cortex-M4	Processor	 190	
Figure	74.	Performance	of	Skein	and	Cocktail	for	512-bit	Internal	State	on	ARM7TDMI	Processor	 191	
Figure	75.	Performance	of	Skein	and	Cocktail	for	1024-bit	Internal	State	on	ARM7TDMI	Processor	 191	
Figure	76.	Comparison	of	Skein	and	Cocktail’s	Recommended	and	Extended	Rounds	on	Different	

Architectures	(512-bit	Internal	State)	 193	
Figure	77.	Comparison	of	Skein	and	Cocktail’s	Recommended	and	Extended	Rounds	on	Different	

Architectures	(1024-bit	Internal	State)	 193	
Figure	78.	Comparison	of	Cocktail	and	All	SHA-3	Final	Round	Candidate	Algorithms	 195	
Figure	79.	Performance	of	JH	and	Grøstl	on	Various	Platforms	 196	

	

	

	

xv	

LIST OF APPENDICES

APPENDIX	I.	Guidelines	to	Setup	and	Use	MiniCom	 																													222	
APPENDIX	II.	Inline	Assembly	and	Kernel	Module	Used	for	Accessing	CP15	Registers																											225	

APPENDIX	III.	Using	Code	Composer	Studio																																																																																																			229	

APPENDIX	IV.	Using	IAR	Embedded	Workbench																																																																																												233	

APPENDIX	V.	Process	of	Generating	Initial	Values	for	Cocktail																																																																	236

APPENDIX	VI.	Full	Diffusion	in	Cocktail and	Skein																																																																																							237

APPENDIX	VII.	Test	Vectors	of	Cocktail																																																																																																									252

	

	

	

1	

CHAPTER 1: INTRODUCTION

"The last thing that we find in making a book is to know what we

must put first."

 Blaise Pascal

The digital era, with dominance of internet in all spheres of human activities, bears

testimony to a paradigm shift in creation, exchange, and preservation of information. The

modes of interacting with people, reading news, playing games, listening songs,

shopping, transacting businesses, financial payments, preparing documentation, giving

instructions, making representations have all witnessed a total revolution. Information, in

the contemporary society, has become a valuable asset as never before and keeping the

information secure has become equally crucial.

Earlier, all these were not only dependent on human beings, their messengers, drum

beaters, trained flight carriers be it pigeons, hawks and eagles but were also restricted.

The restrictions were either due to the mindfulness or due to the lack of resources or

competency on how to make, transact, give, and share information. The creation of cyber

space, evolution of internet, availability and accessibility of high speed networks, and

addictive use of technology have all contributed to unprecedented proliferation of

information. With all this, challenges in securing information have also increased

manifold. The security aspect is important for all the users of information be it an

individual, a business, an organization, a government or the world as a whole.

The principal objectives of security of information are directed by the need of ensuring

confidentiality i.e. the information should be rendered unintelligible to an unauthorized

person; integrity i.e. to ensure that the information does not get altered in storage or

during transmission without the knowledge of the sender or the receiver; authentication

i.e. both the sender and the receiver can identify each other as well as the source and

destination of the information; availability i.e. the information created and stored by an

individual or organization is available to authorized entities when required.

In earlier days, people used different ways to achieve these security objectives.

Confidentiality was achieved using sealed envelopes, lockers etc. Signatures, fingerprints

	

	

	

2	

and specific government seals helped in maintaining authenticity of information (integrity

as well authentication). In ancient times in India, tallies (a piece of wood scored across

with notches for the items of an account and then split into halves, each party keeping

one) were used as tool to identify individuals and the business they transacted.

Communication used to take place either in person or through confidential emissaries.

The chances of eavesdropping were little. Nowadays, majority of our data is getting

digitized and communication is taking place through phones or internet and thus

challenges of maintaining confidentiality, integrity, and authentication are getting bigger

and bigger. The data might be present on, or being communicated through, open networks

or cloud from where it might be easy for an adversary to read, copy, modify or delete.

The adversary could be anyone who wants to do something against the wishes of the

communicating parties. Adversaries are enemies and may disrupt and thwart the goals of

communication between the two parties. An adversary may exist in the shape of a human

or a machine programmed and controlled by any human. So it becomes imperative to

develop tools and techniques to protect ourselves from the tricks of our adversaries and

outwit them.

Cryptography comes as a rescue and helps us to secure information from these

adversaries and thus achieve objectives of security. Cryptography is the science of

writing in secret codes and thus provides a method of storing and transmitting information

so that only those who are intended to receive it can read, understand and process it.

The origin of cryptography technique is dated back to circa 2000 BC., where Egyptians

used hieroglyphics, complex pictograms, the full meaning of which was only known to

an elite few. Julius Ceaser (100 BC to 44 BC) is also generally credited as the first user

of modern cipher. He did not trust his messengers. So, to communicate with his governors

and officers, he created a system in which each character in the messages was replaced

by a character three positions ahead of it in the Roman alphabet.

With the passage of time, a lot of advancements have taken place in the field of

cryptology. Cryptology consists of two complimentary fields: cryptography and related

cryptanalysis. A cryptographer is concerned with the development of new schemes or

algorithms, to protect the security of the information being communicated through any

communication channel. A cryptanalyst on the other hand is concerned with the

development of attack methodologies that break a cryptographic algorithm, allowing, for

	

	

	

3	

example, unauthorized people access to secret information or gain ability to forge

documents.

For many years, cryptology in its modern form was practiced exclusively by military

and government organizations. History also credits the victory of the Allies in World War

II due to the decryption of ENIGMA. United State’s National Security Agency (NSA),

and its peers in other countries including USSR, UK, Israel, France etc., have spent

billions of dollars in securing their own information and communication while trying to

access and decrypt everyone else’s [1]. Kahn in [2] has also given a comprehensive

account of how cryptographic techniques have been used for many centuries to protect

military and diplomatic secrets.

In last 30 – 35 years, the scenario has changed considerably and research in

cryptography has evolved and is being carried out outside the walls of military and

government organizations also. Undoubtedly, classical cryptography has been into

practice by ordinary citizens for centuries but computer based cryptography was restricted

within the walls of military and governmental organizations. However nowadays, even

individuals practice the field of cryptography and can thus protect their data against the

most powerful of adversaries.

There are, in general, three types of cryptographic schemes to accomplish the

objectives of security.

Figure 1. Types of Cryptography

These are:

	

	

	

4	

a) Symmetric Cryptography (also known as Secret key or Private key cryptography)

• Uses single secret key for both encryption and decryption

b) Asymmetric Cryptography (also known as Public key cryptography)

• Uses two keys; one key for encryption and the other for decryption (one of

the key is secret (private) while the other is public).

c) Cryptographic Hash Functions:

• Uses mathematical transformation to encrypt information and obtain

message digest that is irreversible i.e. plaintext can not be obtained from

this message digest.

The main focus of this thesis is third category of cryptographic algorithms i.e.

Cryptographic Hash Functions.

1.1 Status of Cryptographic Hash Functions in Cryptology

Until mid 70s, the term cryptography referred to safeguarding confidentiality of the

information and cryptanalysis referred to breaking the confidentiality. So through out the

history of cryptology, confidentiality has taken the primary seat and it was believed that

if confidentiality / privacy of information is achieved (using symmetric encryption) then

other security goals such as authentication and integrity would be automatically

achieved. The logic was, if decryption of an encrypted text results in a meaningful

message it must have been constructed by someone who knows the secret key.

The trend changers were Diffie and Hellman, who are credited for advent of public

key cryptography in mid 70s. Their seminal paper “New Directions in Cryptography” [3]

gave birth to a number of relevant concepts like digital signatures that are still extensively

used. Diffie and Hellman differentiated the problem of confidentiality from

authentication and to quite an extent initiated the development of cryptographic schemes

for the protection of authenticity (authentication and integrity). These schemes make use

of cryptographic primitive under discussion in this thesis i.e. Cryptographic Hash

Functions.

In the past, cryptographic hash functions received much less attention from the

cryptologic community than encryption schemes. Rompay in his thesis [4] quoted the

example of NESSIE (New European Scheme for Signature Integrity and Encryption)

project to illustrate how cryptographic hash functions had been ignored in the past. In

	

	

	

5	

NESSIE project, seventeen block ciphers and six stream ciphers were submitted as

candidates (both are categories of encryption schemes), but only one un-keyed hash

function and two keyed hash functions (also known as MAC – Message Authentication

Code) were submitted. Rompay also gave example of open competition used by the

National Institute of Standards and Technology (NIST) in the United States to decide on

the block cipher to be used as Advanced Encryption Standard [5]. This competition had

fifteen candidates out of which Rijndael block cipher was finally chosen. On the other

hand, for its hash function standard [6], NIST simply chose the SHA hash functions,

designed by NSA without disclosure of their design strategy or any supporting

cryptanalytic results.

However, the trend has changed in recent years because of the wide range of

applications areas of cryptographic hash functions. One of the first application of hash

function was to construct efficient Digital signatures. Ever since then, hash function has

led their way into various security applications like: storing passwords, digital time

stamping, constructing block ciphers, generating pseudorandom numbers, maintaining

secure web connections, encryption key management, virus scanning, indexing data in

hash tables and detecting accidental data corruption as checksums etc. [7]. Cryptographic

hash functions also form an integral part in the functionality of other cryptographic tools

like key distribution protocols and zero knowledge proofs. Usage of hash functions in

achieving security goals in several information processing applications is much more

widespread than block or stream ciphers.
Considerable research has been undergoing in the field of cryptographic hash

functions. Hash functions are being generated from existing primitives like block ciphers

e.g. Whirlpool [8] and Skein [9] as well as being explicitly and specially constructed from

scratch like MD4 [10], MD5 [11] and SHA family [12] of hash functions. A new ARX

(Arithmetic, Rotation and XOR) based hash function designed using Modified ChaCha

Core is also presented in this thesis. The details are given in Chapter 4.

1.2 Formal Definition of Cryptographic Hash Functions

Hash function is defined as a function that processes an arbitrary length input message

into fixed length digest known as hash code (also known as hash value or hash result or

message digest). However, if it satisfies some additional requirements (as detailed

	

	

	

6	

further), then it can be referred as ‘Cryptographic Hash Functions’ and can be used for

cryptographic applications like ensuring authenticity of message over an insecure

communication channel.

Figure 2. Hash Function SHA-2 Generating 256-bit Hash Result

Formally, hash function may be defined as:

A hash function is a function !:		$	à	%, where the domain $	 = 	 {0,1}∗ and %	 =

	{0,1}- for some .	 ≥ 	1.

Cryptographic hash functions are broadly of two types i.e. Keyed hash functions; the

one which uses a secret key, and Un-keyed hash functions; the other one which does not

uses a secret key. The Keyed hash functions are referred to as Message Authentication

Code (MAC). Generally, the term hash functions refer to un-keyed hash functions and

this thesis concentrates on Un-keyed hash functions only. MACs (i.e. Keyed hash

functions) are commonly constructed from Un-keyed hash functions. Un-keyed or

simply Hash functions (sometimes also known as MDC – Manipulation Detection Code)

can be further classified into OWHF (One-Way Hash Functions) or CRHF (Collision

Resistant Hash Functions) depending on various properties satisfied by them.

1.2.1 One-Way Hash Functions (OWHF)

OWHF as defined by Merkle [13] is a hash function H that satisfies the following

requirements:

I. ! can be applied to block of data of any length. (In practice, ‘any length’ may be

actually be bounded by some huge constant, larger than any message we ever

would want to hash.)

II. ! produces a fixed-length output.

III. Given ! and 0 (any given input), it is easy to compute message digest !(0).

IV. Given ! and !(0), it is computationally infeasible to find 0.

	

	

	

7	

V. Given ! and !(0), it is computationally infeasible to find 0 and 0′ such that

!(0) 	= 	!(0′)

The first three requirements are must for practical applications of a hash function to

message authentication and digital signatures. The fourth requirement, also known as

Pre-image resistance or One-way property, states that it is easy to generate a message

code given a message but hard (virtually impossible) to generate a message given a code.

The fifth requirement, also known as Second pre-image resistance property, guarantees

that an alternative message, hashing to the same code as a given message, cannot be

found.

1.2.2 Collision Resistant Hash Functions (CRHF)

One of the early definitions of Collision Resistant Hash functions (CRHF) was given

by Merkle [14]. Based on the same, CRHF may be defined as a hash function ! that

satisfies all the requirements of OWHF (As listed in ‘1.2.1 One-Way Hash Functions

(OWHF)’) and in addition satisfies the following collision resistance property:

VI. Given !, it is computationally infeasible to find a pair (0,04) such that ! 0 =

	!(04)

1.3 Cryptographic Competitions

Cryptographic community has a long tradition of open competitions (focused or

broader) for identifying new efficient cryptographic primitives that can act as new

protocols or standards for government and public use. These competitions and projects

have been a great motivator and have helped a lot in understanding of cryptographic

primitives and have given a great push to the research in cryptology. The important

cryptographic competitions, that have been instrumental in identification of

cryptographic primitives and finalization of standards, are listed below:

a) Process for DES (1973 – 1977): On 15 May 1973, National Bureau of Standards

(NBS) – US standards body, now-a-days known as NIST (National Institute of

Standards and Technology), after identifying the need for a government-wide standard

for encrypting unclassified sensitive information, invited proposals for a cipher that

would meet prescribed design criteria. Candidate submitted by IBM was eventually

selected and a modified version of this algorithm was published as a Federal

	

	

	

8	

Information Processing Standard (FIPS) for United States in 1977 [15]. The standard

was widely known as Data Encryption Standard (DES).

b) AES competition (1997 – 2000): Announced by NIST, AES competition was initiated

to replace DES. The competition attracted 15 block cipher submissions from 50

cryptographers around the world. All submissions were subjected to extensive

cryptanalysis and finally Rijndael was chosen as Advanced Encryption Standard

(AES) [5]. The competition is considered as one of the most successful, open and

transparent cryptographic competition. The whole process helped a lot in increasing

confidence in the security aspect of winning algorithm which is still being used as

encryption standard.

c) NESSIE project (2000 – 2003): “New European Schemes for Signatures, Integrity,

and Encryption” was a project of European commission with an objective to establish

a portfolio of strong cryptographic primitives comprising of algorithms for encryption,

authentication and digital signatures. 42 algorithms were submitted and cryptanalysis

by cryptographic community went for about 2 years. 12 algorithms were selected as

portfolio algorithms. [16]

d) eSTREAM (2004 – 2007): A project initiated by ECRYPT - European Network of

Excellence in Cryptology, an European research initiative, called for submission of

new stream ciphers suitable for widespread adoption. This call attracted 34 stream-

cipher submissions from 100 cryptographers around the world. Just like AES (but on

larger scale), hundreds of security evaluations and performance evaluations were done.

Eventually, the eSTREAM committee selected a portfolio containing several stream

ciphers. [17]

e) SHA-3 competition (2007 – 2012): In Nov 2007, NIST announced an open

competition [18] for development of a new cryptographic hash standard named "SHA-

3". This competition attracted 64 hash-function submissions from 200 cryptographers

around the world, and then a tremendous volume of security evaluations and

performance evaluations were carried by the cryptographic community. This research

also contributes to performance analysis of the candidate algorithms. Eventually

NIST chose Keccak [19] as SHA-3.

f) PHC - Password Hashing Competition (2013 – 2015): Inspired by the success of

AES and SHA-3 competition, “Password Hashing Competition” was announced in

	

	

	

9	

year 2003 to select a new standard algorithm for password hashing. In the light of

allegations that NSA may influence NIST for some specific algorithm, this

competition was run by independent panel of cryptographer and security practitioners.

The competition attracted 24 entries of which Argon2 was selected the winner. [20]

g) CAESAR (2013 onwards): A new competition CAESAR (Competition for

Authenticated Encryption: Security, Applicability, and Robustness) is under progress

at the time of writing this thesis. The objective of this competition is to identify a

portfolio of authenticated ciphers that (1) offer advantages over AES-GCM and (2) are

suitable for widespread adoption. As this thesis is being written, the second round of

the competition is going on and out of 56 entries received from about 200

cryptographers around the world, 29 algorithms have advanced to the second round.

[21]

Motivation for this research is derived from SHA-3 competition that was under

progress during the same time when literature for this study was being reviewed and

problem formulation was being worked upon.

1.4 Motivation, Research Gap, and Objectives

As stated, this research originated from and was motivated by cryptographic

competition conduced by NIST, USA for development of a new cryptographic hash

standard named "SHA-3".

The competition was a necessity. Around 2005, majority of commonly used hash

functions belonged to SHA (Secure Hash Algorithm) family. These were SHA-0 [22],

SHA-1 [23], SHA-2 {SHA-224, SHA-256, SHA-384, SHA-512} [6]. All these were

developed by NSA and certified as FIPS by NIST. SHA functions as mentioned above

are based on MD4 [10] and MD5 [11] algorithms, commonly known as MDx family of

hash functions. The practical attack on MDx family, followed by attack on SHA-0 and

SHA-1 were carried out in year 2004 and 2005. Various other attacks like Joux

Multicollisions and attack on HAVAL and RIPEMD were also reported. The details are

discussed in ‘Chapter 2: Review of Literature’. SHA-2, the best known hash function at

that time, also belonged to same family and shared a common heritage and design

principles as the earlier broken functions. This created doubt in everybody’s mind, as to

what would happen if SHA-2 also gets compromised or successfully

	

	

	

10	

cryptanalyzed/broken. If this proved true, the world would not be left with any reliable

hash standard.

Motivated by the big success of AES (Advanced Encryption Standard) competition

that took place a few years ago and forced by recent attacks on existing family of widely

used hash functions, NIST decided to hold a public competition in search of a new hash

standard. The idea was to have the new algorithm parallel to current SHA-2 and this new

algorithm is to be used in case the worst came to pass i.e. SHA-2 faces some serious

challenge. In Nov 2007, to augment the hash algorithms currently specified in the FIPS

180-4, Secure Hash Standard [12], NIST announced a public competition [18] for

development of a new cryptographic hash standard named "SHA-3".

 By October 31, 2008, NIST received sixty-four entries (in comparison to the 15

entries received in AES Competition). NIST selected fifty-one algorithms that fitted their

guidelines and advanced to the first round on December 10, 2008. There was a lot of

cryptanalysis and many hash functions were broken and some were found unappealing

on performance parameters. Fourteen algorithms advanced to the second round on July

24, 2009. A year was allocated for the public review of the fourteen second-round

candidates. Significant feedback was received from the cryptographic community. Based

on the public feedback and internal reviews of the second-round candidates, NIST

selected five SHA-3 finalists, which advanced to the third (and final) round of the

competition on December 9, 2010. These five SHA-3 finalists were Skein [9], Keccak

[19] , Grøstl [24], JH [25] and Blake [26].

The concurrency of on going SHA-3 competition and Literature review for this study

had a compelling influence in finalizing the problem formulation and its research

objectives. The following two objectives were finalized:

1.4.1 Objective 1: Performance Analysis of SHA-3 Final Round Candidate

Algorithms

A) Motivation and Research Gap

For SHA-3 competition, NIST had announced a ‘Reference Platform and Complier’

[27] on which the candidate algorithms were to be evaluated. The Reference platform and

compiler, announced by NIST, was Wintel personal computer, with an Intel Core 2 Duo

Processor, 2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-bit

	

	

	

11	

(x86) and 64-bit (x64) Edition and ANSI C compiler in the Microsoft Visual Studio 2005

Professional Edition. Because of this Reference platform, there was high probability that

final round candidates had optimized their code for the Reference platform and compiler.

But a considerable domain of architecture like 8 /16 /32-bit architectures used by Smart

Cards, Embedded systems, Portable devices like mobile phones etc. might have skipped

the attention of cryptographers of final round. It may happen that a seemingly fast

function on Reference platform is not performing well on embedded system or mobile

devices. So a performance analysis of SHA-3 final round candidate algorithms on other

platforms is desired. NIST notice introducing the competition [27] also invited the public

to evaluate candidate algorithms on platforms other than Reference platforms and

compare results. Motivated by NIST’s public call, we decided to contribute to the efforts

of analysing the final round candidate algorithms (Cryptographic Hash functions) that

would be used for multiple applications in future on variety of platforms.

B) Scope

Scope of the first objective is to analyse performance of SHA-3 final round candidate

algorithms on any one of the platforms other than the one specified as ‘Reference

platform’ by NIST. The platform may be ARM processors or 8-bit/16-bit machine or

various languages and compilers like C or Java.

1.4.2 Objective 2: Design of a New Hash Function that can Act as a Variant

to Skein Hash Family

A) Motivation and Research Gap

Motivated by the current scenario of existing cryptographic hash functions and excited

by SHA-3 competition, we decided to contribute to the field of cryptography in general

and hash function in particular by designing of a new hash function that can perform

better than the existing algorithms under discussion.

Skein (one of the finalists of SHA-3) as submitted by Schneier and his team is a family

of hash functions with three different internal state sizes: 256-bit, 512-bit and 1024-bit

[9]. In October 2010, an attack combining rotational cryptanalysis with rebound attack

was published by Khovratovich and his team. The attack found rotational collisions for

53 of 72 rounds in Skein-256, and 57 of 72 rounds in Skein-512. It affected Threefish

cipher [28]. This was a follow-up to the earlier attack published in February 2010 which

	

	

	

12	

broke 39 and 42 rounds respectively [29]. So, Skein was initially found to be prone to

Rotational Cryptanalysis. We thought that an alternative was desired and it motivated

us to design a new hash function that can act as a variant to Skein hash family.

However, during revised submissions, Schneier and his team tweaked (key schedule

constant was changed) Skein to overcome the threats posed by rotational cryptanalysis.

Major findings that came out after going through various papers in initial months of 2012

were that, the security five SHA-3 finalists had been carefully analysed in the last 2 – 3

years and cryptographic community did not expect serious flaws or vulnerabilities to be

found in any of them. NIST’s computer scientists Quynh Dang & Tim Polk in their

presentation during 83rd meeting of the Internet Engineering Task Force (IETF)

reinstated the similar facts [30] as given below:

a) Confidence in the security of SHA-3 candidates is very high.

b) SHA-3 Candidates are based on new constructions and thus are not

vulnerable to well known attacks on MD5, SHA-1 and SHA-2 and on Merkle-

Damgard construction (e.g. length extension attacks) on which all three are

based.

c) NIST also may not expect across the board performance increase from SHA-3 as

they got with AES (Advanced Encryption Standard) compared with triple DES.

d) SHA-3 could be faster than SHA-2 in some environments e.g. Skein & Blake is

faster in software on high-end computing platforms and Keccak is fast in hardware

in general.

e) SHA-3 potentially offers significantly better performance for hash based MAC on

short message.

f) SHA-256 is competitive in low-end SW platforms and “Constrained” HW.

Depending on the selected algorithms,

g) SHA-2 collision resistance seems fine but SHA-3 candidates have greater

security margins.

h) All candidates have much higher multi-collision resistance than SHA-2 and

fix other generic limitations of Merkle-Damgard.

The above evidence was enough to conclude that that cryptographic community did

not expect serious flaws or vulnerabilities to be found in any of SHA-3 finalists. No

	

	

	

13	

algorithm was knocked out by cryptanalysis and different algorithms had different depth

of cryptanalysis. However, performance-characteristics vary from one platform to other.

From the available scenario, it looked quite evident that NIST’s decision to select

SHA-3 algorithm may be based on performance of the finalists in hardware and software.

The trend was shifting towards performance. It was also visible in the research being

carried out at that time. The cryptographic community had been putting much efforts

dedicated to optimizing software or hardware implementations of the SHA-3 finalists on

different platforms. So, with the aforementioned proceedings in mind, it was decided to

focus on performance characteristics of the new hash function to be developed for

achieving the second objective of this research.

B) Scope

Scope of second objective is to design a new hash function that can act as a variant to

Skein Hash family and perform better than Skein on Reference platform prescribed by

NIST and Target platform selected for the first objective.

1.5 Contribution to the Field of Computer Science

The following Venn Diagram (Figure 3) represents the contribution of this thesis to

the field of Computer Science as per ACM Computing Classification System.

Figure 3. Contribution of the Thesis in the Field of Computer Science as per ACM CCS

	

	

	

14	

1.6 Outline and Main Contributions

The outline of the thesis is as below:

Þ Chapter 1 introduces the thrust of our thesis and the background of the motivation

of our research on cryptographic hash functions.

Þ Chapter 2 presents the review of literature and is organized as applications of hash

functions, their internal structures, their security properties, ways of designing the

hash functions and various type of attacks that hash functions are prone to. This

study of cryptographic hash functions was also published as a review paper in [7].

Þ Chapter 3 concentrates on the first objective of the research i.e. Performance

analysis of SHA-3 final round candidate algorithms - Keccak, Skein, Grøstl, Blake

and JH. The chapter provides a detailed explanation of the rationale behind

selection of Target platform for performance analysis of these algorithms, gives a

brief introduction to Target platform and these algorithms, discusses methodology,

and shares results of performance of these algorithms on Target platform.

Þ Chapter 4 fulfils the second objective of this thesis and presents a new ARX based

hash function function (named Cocktail) that has been designed using Modified

ChaCha Core. Initial sections concentrate on design and performance of Modified

ChaCha Core and in later part of the chapter, specifications of new hash function

(Cocktail) are given followed by its design philosophy and rationale behind

design decisions. The chapter ends with discussion on various modes of using

Cocktail and its security aspects.

Þ Chapter 5 presents the performance results of Cocktail on Intel x86 and ARM

architecture. The Comparison of Cocktail with Skein and other SHA-3 final round

candidate algorithms is also discussed in this Chapter.

Þ In Chapter 6, Conclusion and future enhancements are listed.

	

	

	

15	

CHAPTER 2: REVIEW OF LITERATURE

“Literature is an investment of genius which has dividends to all

subsequent times.”

 John Burroughes

Cryptographic Hash function (also known as Hash function), an important

cryptographic primitive, is used extensively to achieve number of security goals. The

literature reviewed for this study is presented by organizing this chapter into following

headings:

• Security Services of Cryptographic Hash Functions (2.1)

• Iterative Structure of Cryptographic Hash Functions (2.2)

• Security Properties of Cryptographic Hash Functions (2.3)

• Methods of Attack on Cryptographic Hash Functions (2.4)

• Types of Cryptographic Hash Functions based on Design of Underlying

Compression Function (2.5)

• Migration from SHA-2 to SHA-3 (2.6)

2.1 Security Services of Cryptographic Hash Functions

The review of literature, in relation to various security services and applications of

cryptographic hash functions is detailed here:

2.1.1 Achieving Integrity and Authentication

Integrity and Authenticity is of utmost importance in computer systems and networks.

Two parties communicating over an insecure channel always require mechanism to

validate the integrity and authenticity of information being communicated. There are

multiple ways to implement message Integrity and authentication. Symmetric Encryption

based mechanisms may be used but they have their own drawbacks.

Tsudic in [31] has highlighted drawbacks like speed, cost factor, optimization for data

sizes etc. Such methods combine the confidentiality and authentication functions.

However, there are instances where encrypting full message (confidentiality) is not

	

	

	

16	

required. For such applications keeping message secret is not important as authenticating

it is. For example, in SNMP (Simple Network Management Protocol), it is usually

important for a managed system to authenticate incoming SNMP commands (like

changing the parameters of the managed system), though concealing the SNMP traffic is

not essential. Tsudic in [31] has detailed a protocol for achieving message authentication

and integrity goals with one-way hash functions without the use of symmetric encryption.

Rompay in [4] has also detailed the ways of ensuring authentication using hash

functions alone as well as using hash functions with encryption.

Bellare et al. in [32] have stated that one of the alternative ways to implement integrity

and authentication is with MACs but even MACs are being constructed extensively using

cryptographic hash functions. As per the authors, usage of hash functions for message

authentications and ensuring message integrity has surged because majority of hash

functions are faster than block ciphers in software implementation and these software

implementations are readily and freely available.

2.1.2 Implementing Efficient Digital Signature

In a cryptosystem, Digital Signatures achieve goal of authenticity and also provide the

security service of non-repudiation. Non-repudiation means the creator or sender of

information can not deny his/her role or intentions in creation or transmission of the

information. 	
Diffie and Hellman in [3] were the first one to realize the need of a message dependent

electronic signature (fingerprint) so that disputes between sender and receiver could be

avoided and RSA by Rivest et al. [33] was the first public key cryptosystems with digital

signature capabilities.

However, Singh in [34] has put forward an interesting aspect of this invention. As per

S. Singh; James Ellis, Clifford Cocks, and Malcolm Williamson from GCHQ

(Government Communication Head Quarters), Cheltenham, Britain perhaps invented the

idea of Public key in 1972. The three Britons had to sit back and watch as their discoveries

were rediscovered by Diffie, Hellman, Merkle, Rivest, Shamir, and Adleman over the

next three years because of the policies of GCHQ that all work was top secret and could

not be shared with anyone.

Use of hash functions to optimize the digital signature schemes is nicely presented by

Stalling in [35]. Without the use of hash, the signature will be of same size as message.

	

	

	

17	

The idea is that instead of generating the signature for the entire message, the sender of

the message only signs the digest (hash result) of the message using a signature generation

algorithm. The sender then transmits the message and the signature to the intended

receiver. The receiver verifies the signature of the sender by computing the digest of the

message using the same hash function as used by the sender and comparing it with the

output of the signature verification algorithm. It is obvious that this approach saves a lot

of computational overhead involved in signing and verifying the messages in the absence

of hash functions.

Figure 4 explains how hash functions are used to generate efficient digital signatures.

Here, for generating signatures, private key of the sender is used and for verifying the

signature, public key of sender is used.

Figure 4. Usage of Hash Function in Implementing Digital Signature (RSA approach)

2.1.3 Authenticating Users of Computer Systems

Hash functions may be used to authenticate the users at the time of login. The

passwords are stored in the form of message digest to avoid access of the same even to

Database Administrators (because of pre-image resistance of hash digest). Whenever a

user tries to login and enter the password, the message digest of the entered password is

computed and compared with the digest stored in the database. If it matches, then login

is successful, otherwise user is not authenticated. Specialized efficient hash functions for

passwords have also been suggested in literature. A Password Hashing competition [20]

was conducted to select specific password hash functions that can be recognized as

recommended standard. Argon2 [36] has been selected as the winner of this competition.

	

	

	

18	

Hatzivasilis et al. [37] have conducted a survey and presented an analysis of password

hash functions submitted in this competition.

2.1.4 Digital Time Stamping

Majority of text, audio, and video documents are available in digital format and a

number of simple techniques and tools are available to change digital documents. So,

some sort of mechanism is required to certify when such a document was created or last

modified. Digital timestamp solves the purpose by providing a temporal authentication.

Rompay [4] in his study has suggested multiple ways - simple scheme based on trusted

third party, scheme that links timestamps into temporal chain, and the other one that make

use of Merkle Tree. He has highlighted that digital time stamp helps in protecting

intellectual property rights, ensuring strong auditing procedures, and implementing true

non-repudiation services.

Before Rompay, Haber and Stornetta [38] have also detailed how one-way hash

functions and digital signatures can be used to implement digital time stamping.

2.1.5 Hash Functions as PRNG

Hash functions can be used to implement PRNG (Pseudo Random Number Generator).

A very simple technique can be starting from an initial value (5) known as seed and

computing !(5), ! 5 + 1 ,!(5 + 2) and so on. Bellare et al. in [39] and Haitner et al.

in [40] have given some other ways of constructing Pseudo random strings from hash

functions.

2.1.6 Deriving Session Keys

Hash functions as one-way functions can be used to generate sequence of session keys

that are used for the protection of successive communication sessions. Starting from a

master key 80, the first session key can be 81	 = 	!(80) and second session key can be

82	 = 	!(81) and so on. Matyas et al. in [41] have described the key management

scheme based on control vectors which uses hash functions and encryption functions for

generating session keys.

2.1.7 Construction of Block Ciphers

Block ciphers can be used to construct a cryptographic hash function. However, the

inverse is also true and there has been block ciphers designed using hash functions.

	

	

	

19	

Handschuh and Naccache in [42] proposed to use the compression function of

cryptographic hash function SHA-1 [23] in encryption mode. The name of the cipher was

SHACAL. SHACAL-1 (originally named SHACAL) and SHACAL-2 are block ciphers

based on SHA-1 [23] and SHA-256 [12] respectively. SHACAL-1 is 160-bit clock cipher

and SHACAL-2 is 256-bit block cipher. Both were selected for the second phase of

NESSIE project. In 2003 SHACAL-1 was not recommended for NESSIE portfolio

because of concerns about its key schedule, while SHACAL-2 was finally selected as one

of the 17 NESSIE finalists.

2.1.8 Identifying File or Data

A hash result can be used to reliably identify a file. A number of Source Code

Management systems like Git, Monotone etc. use ‘sha1sum’ or ‘shasum’ (computer

programmes that calculate and verify SHA hashes.) of directory tree, file content etc. to

uniquely identify them. Not only in Source Code Management systems, hash functions is

also used for identifying files on peer to peer file-sharing networks.

2.1.9 File Verification

D. Armstrong in [43] has nicely explained how hash functions have been used in

verifying the integrity or authenticity of a file on computer. Rather than comparing files

bit by bit, their message digests (hash values also known as checksums in this case) are

stored for future comparisons. If a file got corrupted because of faulty storage media,

transmission errors, errors while copying or moving or because of software bugs, then

comparison of checksums (message digests of files) with previous calculated checksums

can let us know whether the file is corrupted or not. Software utilities like 'md5deep’ etc.

use the same methodology to verify integrity of files. The same methodology is also used

by anti-virus software to cross check whether file has been corrupted by any bot or virus.

2.1.10 Email, IP and Web Security Services and Protocols

Cryptographic hash functions are crucial in implementing E-mail, IP, and Web

security. As explained in [35], Email security services like PGP (Pretty Good Privacy)

and S/MIME (Secure/Multipurpose Internet mail Extension), Web security services like

SSL (Secure Socket Layer), TLS (Transport Layer Security), and IPSec, and X.509

Authentication service, all make use of hash functions to provide secure internet services.

	

	

	

20	

2.2 Iterative Structure of Cryptographic Hash Functions

All Cryptographic hash functions create a fixed-size output (known as message digest

/ hash value / hash result / hash code) out of a variable-size message input. To process

this variable size input, iteration is used. Instead of creating a function with variable-size

input, a function with fixed-size input (called compression function) is designed and same

is called iteratively until an arbitrary length message is processed completely. Lai and

Massey [44] named such schemes as Iterated Hash Structure.

The commonly used iterative design of cryptographic hash functions are listed below:

2.2.1 Merkle-Damgard Iterated Hash Design (MD Structure)

At Crypto ’89, Damgard [45] and Merkle [14] independently proposed a similar

iterative structure to construct a collision resistant hash function using fixed length input

collision resistant compression function. Both independently provided proofs in their

papers that if there exists a fixed length collision resistant compression function:

9:	{0,1}-	:	{0,1};à	{0,1}- then by iterating this compression function, one can design

a variable length input collision resistant hash function !:	{0,1}∗		à	{0,1}-. It means if

compression function is vulnerable to some attack, then hash function will also be

vulnerable but converse of this is not always true. Originally named “Merkle’s Meta

Method”, this scheme is now mostly called the Merkle-Damgard construction.

 Figure 5 represents the structure of hash function based on Merkle-Damgard

construction:

Figure 5. Merkle-Damgard Construction

Merkle–Damgard construction consists of the following steps:

a) Every hash function fixes an .-bit Initial Value (IV) and maximum length of the

message that it can process. Let us assume the length of the message is 2< − 1	.

	

	

	

21	

b) The input message is extended by padding bit 1, followed by enough 0 bits so that

extended message is > bits short of one full block. After 0 bits, length of the

message in binary form is appended.

c) After this padding, extended message can be evenly divided into block of ?	bits

each i.e. the whole message can be viewed as @ blocks of ? bits each. First block

is named 0A , second as 0B and the last one as 0C.

d) Each block 0D is iterated using the compression function computing !D	 =

9	 !DEA	, 0D	 , FℎHIH	J	KLIJH5	9IMN	1	OM	@. This iterative process produces hash

value ! 0 =	!C.

!D is also known as internal state (chain value). The padding technique as mentioned

above may vary from one algorithm to the other. Merkle [14] and Damgard [45]

suggested that if IV is not fixed then finding second pre-image or collision is trivial and

also if length is not padded then attacks based on fixed points can be used to break iterated

hash structure. Both independently provided proof that if IV is fixed as well as length

padding is used then hash function will be collision resistant if compression function is

collision resistant. The process of fixing IV and adding length padding is known as MD-

strengthening.

Majority of hash functions launched in recent years and being used these days follow

the iterated hash function. MD4 [10], MD5 [11], SHA-1, SHA-256 and SHA-512 [12]

are all influenced by the Merkle-Damgard’s iterated hash design as explained above. The

new hash function designed in this thesis also uses a variation of Merkle-Damgard

construction.

Merkle-Damgard construction as explained above has some drawbacks like it suffer

from some generic attacks (to be discussed subsequently) like Joux Multicollision [46],

Herding attacks [47], Extension attacks [48] etc. To overcome these structural

weaknesses, some other constructions have been suggested in the literature.

2.2.2 Wide Pipe Iterated Hash Design

Lucks in [49], proposed an improvement over Merkle-Damgard structure named

‘Wide Pipe Hash Design’. The idea was to overcome Length extension and Joux

multicollision attacks. Wide pipe design is quite similar to MD design, but it has larger

internal state size (chain value). Lucks [49] suggested that Joux multicollisions [46] and

	

	

	

22	

length extension are mainly based on internal collisions which can be avoided if we widen

the internal pipe from . bits to F ≥ .	bits. If a hash of N	bits is desired, then two

functions 9	L.P	Q	will be required. Function 9	is known as compression function and

function Q	is referred as Output transformation. Generally, F = 2 ∗ .	is chosen. Figure 6

represents the Wide Pipe Design.

Figure 6. Wide Pipe Design

The compression function, Output transformation, and Wide Pipe Iterated hash design

may be defined as follows:

A compression function is a function 9 ∶ $ → % where $ = {0,1}T	:	 0,1 ; and % =

{0,1}T for some F, ?	 ≥ 1.

An output transformation is a function Q:$ → % where $ =	 {0,1}T and % = 	 {0,1}-,

for some F, .	 ≥ 1	and F	 ≥ ..

Suppose that a compression function 9 ∶ 	 {0,1}T:	{0,1}; 	→ 	 {0,1}T and an output

transformation Q:	{0,1}T → 	 {0,1}- are given. Then an iterated hash function is the hash

function !:	{0,1}∗ → 	 {0,1}- defined by ! 0 = 		! 0U,0A, … ,0C	 = Q(!C)

where	!D = 9	(!DEA,0D) for 1	 ≤ J	 ≤ @. The input block 0D 1	 ≤ J	 ≤ @ = {0,1}; and

Initial chaining value !U = XY	 ∈ {0,1}T

SHA-224 and SHA-384 are based on the same design and are derived from SHA -256

and SHA-512 respectively.

	

	

	

23	

In addition to wide pipe, Lucks [49] has also proposed double-pipe hash (twined pipe)

design. A variant of twin pipe, suggested by Gauravram in [50] and named as 3C and

3C-X Construction, is briefly explained under the head ‘Other constructions’ in this

section only.

2.2.3 Hash Iterated Framework (HAIFA)

Biham and Dunklemnn [51] in 2006 proposed the HAIFA structure to overcome

many of the pitfalls observed in Merkle-Damgard Construction. The main idea behind

HAIFA are the introduction of number of bits that were hashed so far and a salt value into

the compression functions. Formally, instead of using a compression function of the form

9 ∶ 	 {0,1}[X	{0,1}; 	→ 	 {0,1}[, Biham and Dunkleman [51] proposed to use form 9 ∶

	{0,1}[X	{0,1};	X	{0,1}#^D_`	X	{0,1}` 	→ 	 {0,1}[i.e. in HAIFA chaining value !D is

computed as

!D = 9	(!DEA,0D, #aJO5, 5)

#bits are number of bits hashed so far and s is a salt value.

2.2.4 Fast Wide Pipe Design (FWP)

A further improvement of wide pipe design was suggested by Nandi and Paul [52] in

2010. They proposed that FWP was nearly twice as fast as the Wide-pipe for a reasonable

selection of the input and output size of the compression function. The idea behind FWP

was to divide the internal state (i.e. wide pipe chaining value) into two halves. One half

is inputted to the compression function but the other half is not fed to the current

compression function. The other half is feed-forwarded and XORed with the output of

the current compression function and result of XOR act as input to next compression

function.

2.2.5 Sponge Construction

Bertoni et al. in [53] [54] [55] proposed sponge construction to design hash functions

that closely map the random oracle. In the context of cryptographic hash

functions, sponge functions provide a particular way to generalize hash functions to more

general functions whose output length is arbitrary. Bertoni et al. in [54] explained that

sponge functions are only distinguishable from random oracles by the detection of inner

collisions and the probability of inner collisions can be made arbitrarily small by

	

	

	

24	

increasing a security parameter, called the capacity. As per Bertoni et al. [55] the sponge

construction is a simple iterated construction for building a function b	with variable-

length input and arbitrary output length based on a fixed-length transformation (or

permutation) 9 operating on a fixed number of bits a, known as width.

The sponge construction operates on a state of a = I + c	bits; I is called bitrate and c

as capacity. Initially all the a bits of state are set to zero and I/P message is padded and

divided into block of I bits each. Then sponge construction proceeds in two phases:

Absorbing phase and Squeezing Phase.

Figure 7. The Sponge Construction for Hash Functions. M is input, Z is hashed output [55]

In first phase input is "absorbed" into the hash state at a given rate, then an output hash

is "squeezed" from it at the same rate. To absorb I bits of data, the data is XORed into

the leading bits of the state, and the block permutation is applied. To squeeze, the

first I bits of the state are produced as output, and the block permutation is applied if

additional output is desired.

Central to the Sponge construction is capacity c of hash function and it can be adjusted

based on security requirements. SHA-3 [18] winner Keccak [19] is based on Sponge

construction and it sets a conservative capacity value i.e. c = 2., where . is the size of

the output

2.2.6 Other Constructions

Other important constructions that have been proposed in literature include Enveloped

Merkle-Damgard (EMD Construction) by Bellare and Ristenpart [56], Randomized

	

	

	

25	

Hashing (also known as RMX construction) by Halevei and Krawczyk [57], and

3C/3C-X construction by Gauravaram [50].

EMD construction [56] preserves collision resistance, pre-image resistance, and

pseudo-randomness of the compression function. The message blocks are processed in

the same manner as Merkle-Damgard up to pre-final message block. Final message block

(0C) is concatenated with internal state value (!CEA), and is given as input to next

iteration of compression function with distinct Initial Value named IV2. Using the same

notation as used in Merkle Damgard construction, EMD construction can be described

as:

 !U = XY

 !D = 9	 !DEA,0D 9MI	J = 1,2, … , @ − 1

 ! 0 = !C = 9	(!CEA 0C , XYB)

 RMX construction [57] is based on the idea of randomization of the message before

padding. A random string I of length between the smallest number of padding bits and

message block size is generated. Then three other strings IU	(by appending 0 bits to I),

IA	(by repeating I as many times as required) and IB	(by extracting some part of I) are

generated from I. IU is attached to the beginning of the message, IA is XORed with all

message blocks and IB	is XORed with padded block. After obtaining Hash result, I is sent

(or stored) along with hash result. RMX construction can be represented as:

 !A = 9	(XY, IU)

 !D = 9	 !DEA, IA ⊕0DEA 9MI	J = 2,3, … , @

 !CfA = 9	(!C, IB 0C)

 !CfA = !CfA

3C and 3C-X construction [50] are similar to double pipe hash construction. In 3C

construction, one line (main pipe) iterates in the same way as MD construction. However,

there is an additional line that takes input from main line and iterates similarly. At the

end, output of both lines are fed to compression function to generate hash result. Figure

8 represents the twin pipe based 3C construction. For 3C-X construction, the author

replaced compression function (except the last compression function) in second line with

an XOR operation to make it lighter.

	

	

	

26	

Figure 8. Twin Pipe Based 3C Construction

Andreeva et al. have proposed two related hash structures named RMC [58] and

ROX [59] with an aim to preserve the collision resistance of the compression function

along with pre-image resistance, second pre-image resistance, and all their possible

variants.

Cascaded constructions have also been discussed in the literature to build large hash

values by concatenating several smaller hashes. For example, given two hash functions

!1	L.P	!2, the concatenation !1 0 	 !2 0 can be used to generate large hash value

for message 0. In this construction, !1	L.P	!2 can either be two completely different

hash functions or two slightly different instances of the same hash function. But Joux

[46] using multi-collisions proved that If !1	L.P	!2 are good iterated hash functions

with no attack better than the generic birthday paradox attack, then the large hash function

!1 0 	 !2 0 obtained by concatenating !1	L.P	!2 is not really more secure than

either !1	MI	!2	taken individually.

Biham and Dunkleman in [51] has explained how multiple constructions like wide

pipe design, EMD construction, randomized hashing, RMC and ROX can be instantiated

with their proposed structure named HAIFA (Hash Iterated Framework).

2.3 Security Properties of Cryptographic Hash Functions

2.3.1 Basic Security Properties

Basic notion of security of hash functions revolves around pre-image resistance,

second pre-image resistance and collision resistance as defined in Chapter 1 under the

heading ‘1.2 Formal Definition of Cryptographic Hash Functions’. In literature, Collision

	

	

	

27	

resistance property is referred to as collision freeness or strong collision resistance;

second pre-image resistance as weak collision resistance; and pre-image resistance as

one-wayness [50]. It is easy to see that collision resistance implies second pre-image

resistance i.e. if a hash function ! is collision resistant then ! is also second pre-image

resistant. However, second pre-image resistance and one-wayness are incomparable (the

properties do not follow/imply one another). Hash functions which are one-way but not

second pre-image resistant are quite contrived. In practice, collision resistance is the

strongest property among all three, hardest to satisfy and easiest to breach, and breaking

it is the goal of most attacks on hash functions [44].

Rogaway and Shrimpton [60] extended the notion of hash function security and

defined seven different security notions, three on pre-image resistance, three on second

pre-image resistance, and one on collision resistance.

2.3.2 Avalanche Criteria and Completeness

From a good hash function, it is desired that the output for two different inputs, should

be completely different, regardless of difference in inputs. Frouzan and Mukhopadhay

in [61] has formalized this with two properties i.e. Completeness and Avalanche effect.

Avalanche effect (sometime referred as Diffusion property) represents a property when

small change in input result in a significant change in message digests. Completeness

(also known as Full Diffusion) represents a property when each input bit affects all output

bits.

Webster and Tavares [62] combined both properties of avalanche effect and

completeness and coined the term Strict Avalanche Criterion. It represents a property

when a change in one bit of input results in changing every bit of the output (message

digest) with a probability of ½. If this criterion is not satisfied, then the probability of

successful attack on the hash functions increases considerably.

2.3.3 Certification Properties and Weaknesses

In addition to basic properties, some certificational properties have been defined in

literature from time to time. For example Mironov [63] and Gauravram [50] suggested

near collision resistance, partial pre-image resistance, free start collision resistance,

pseudo collision resistance, semi Free start collision as certificational properties for hash

functions and / or underlying compression functions. Lack of resistance of these

	

	

	

28	

properties is termed as certificational weaknesses. Certificational properties for hash

functions and compression functions on the surface appear desirable but cannot be shown

as necessary properties of hash functions. Certificational weaknesses does not result in

breaking a hash function directly but is enough to cast doubt on its design principles and

may lead to full collision under certain circumstances. Certificational Properties or

weaknesses w.r.t. hash function may be defined as a whole or for underlying compression

function only. These certificational properties, weaknesses, and possible attacks on these

properties are briefly touched upon in this section:

A) Certificational Properties of Hash Functions

Near Collision resistance: As per Mironov [63], a hash function is said to be Near

Collision resistant if it is hard to find two messages 0	L.P	0′ such that the hamming

distance between ! 0 L.P	! 04 is small (typically a few bits). Near collision may

also be termed as almost collision and can be defined for underlying compression function

also. With respect to underlying compression function, almost / near collision means that

two message blocks are found for which the difference between the outputs has a low

Hamming weight. Gauravram [50] quoted the example of how near collisions in case of

hash functions with truncated outputs can lead to full collision. If we have a truncated

hash function that makes use of leftmost 224 bits of output after chopping rightmost 32

bits then if near collision is found such that message digests differs only in the rightmost

32 bits then such a near collision is practically full collision only.

Partial Pre-image resistance: A hash function is said to be partial pre-image resistant

if the difficulty in finding a partial pre-image is same as finding pre-image from a given

digest. Also it is hard to find the input if part of the input is known along with digest.

B) Certificational Properties of Compression Function

Certificational properties or weaknesses of the compression functions used in the MD

or other similar iterative structures are classified based on the XY	/	!U (Initial value) used.

These classifications and nomenclature vary from author to author. For example, Pseudo

collision resistance, as defined by Boer and Bosselaers in [64], is termed as Special

pseudo (type-3) collision resistance in [50]. Similarly, Rompay in [4] named a specific

attack as Random IV collision and the same attack is named in [50] as Semi free start

collision. Furthermore, Mironov in [63] has defined Pseudo Collision resistance and

	

	

	

29	

Free Start collision resistance as two separate properties. On the other side, Gauravram

in [50] and Knudsen [65] have termed pseudo collision resistance and free start collision

resistance as one and the same thing. In this sub section we use the terminology and

classification done by Gauravram in [50] as it has been found the most exhaustive and

clear but at the same time we also list the alternative nomenclature used by different

authors.

Type - 1 collision: Type-I collision resistance is not a certificational property but it is

discussed here as it related to other certificational properties based on initial value. Type-

I collision refers the collision in a compression function using an IV (initial value)

specified in the specification of the hash functions for two distinct messages.

Corresponding property may be defined as:

It is hard to find two message blocks 0	L.P	0′ for compression function

9:	{0,1}-	:	{0,1}[→ {0,1}- such that 9 !,0 = 	9 !,0′ , where !	represents the

initial value (IV) specified in the specification of hash function.

Type-1 collision is also referred to as strong collision.

Type - 2 collision: Type – 2 collision resistance is also termed as Random IV Collision

resistance [4] or Semi Free Start collision resistance [50]. Type-2 collisions are the

collisions using the same random (arbitrary) initial values for two distinct message inputs.

Corresponding property may be defined as:

It is hard to find two message blocks 0	L.P	0′ for compression function

9:	{0,1}-	:	{0,1}[→ {0,1}- such that 9 !,0 = 	9 !,0′ , where computation starts

from an arbitrary (random) value ! for the input chaining variable.

Type – 3 collision: Type - 3 collision resistance is also termed as Pseudo collision

resistance [50] or Free start collision resistance [65]. Type-3 collisions are the collisions

of compression function using two different initial values for two distinct message inputs.

Corresponding property may be defined as:

It is hard to find two pairs !,0 	L.P	 !4,04 for compression function

9:	{0,1}-	:	{0,1}[→ {0,1}- such that 9 !,0 = 	9 !′,04 , where !	/	!′ represent

initial / intermediate chaining value and M/M’ represent message blocks.

Special Type – 3 collision: Special Type – 3 collision are the collisions of the

compression function using two different initial values on the same message block.

Corresponding property may be defined as:

	

	

	

30	

It is hard to find two pairs !,0 	L.P	 !4,0 for compression function

9:	{0,1}-	:	{0,1}[→ {0,1}- such that 9 !,0 = 	9 !′,0 , where !	/	!′ represent

initial / intermediate chaining value and M represents message blocks.

Note that Rompay in [4] and Boer and Bosselaers in [64] use pseudo collision

resistance to represent this property. However, Gauravram [50] categorized it as a

special category of Pseudo collision resistance and named it as Special pseudo collision

resistance.

Inner (almost) collisions: As defined by Rompay [4], these are collisions or almost-

collisions for the temporary values of the chaining variable (for two distinct message

blocks) at some stage of the compression function (for example after 51	step operations

where 51	 < 	OMOL?	5OHi5). This may be helpful for an attacker who tries to generate a

collision in the output of the compression function.

The collision attacks on compression functions as described above are also applicable

on the iterative modes of their hash functions. Type-1 collision attacks are practical ones

and can be used to attack applications that in turn make use of Type-1 susceptible hash

functions. Attack demonstrated by Mikle in [66] is such an example. Type-2 or Type -3

attacks are not practical but create doubts on the hash functions. Attacks by Boer and

Bosselaers in [64] and Dobbertin in [67] are examples of Type-2 or Type-3 attacks. In

[64], Boer and Bosselaers gave an early, although limited, result of finding a ‘pseudo

collision’ (Type- 3) of the MD5 compression function i.e. two different initialization

vectors which produce an identical digest. In [67], Dobbertin published an attack (Type-

2), without details, that found a collision in MD5 with an IV (Initial value) chosen by him

that was different from the one actually used in MD5. While this was not an attack on the

full MD5 hash function, it was close enough for cryptographers to recommend switching

to a replacement, such as SHA-1. Attacks demonstrated by Wang et al. in [68] and [69]

are also examples of Type-1 attacks.

2.4 Methods of Attack on Cryptographic Hash Functions

Attacking a hash function means breaking one of its security properties (basic,

extended or certificational property). For example, breaking pre-image resistance means

that the adversary is able to break the pre-image property. In other words, the adversary

is able to create a message that hashes to a specific hash. Breaking certificational

	

	

	

31	

properties may not yield a practical attack but are an important warning to reflect

weakness in the hash / compression function. Switching to a strong hash function is

recommended when an attack on certificational properties is observed. In an iterated hash

function, if a pre-image or collision (Type-1 collision only) can be found for compression

function 9 , the same can be extended and an attack on hash function can be derived. So

attacks may focus on structure of hash function or on algorithm of compression function.

In this sub section we will review different types of attacks on hash functions. Depending

upon its nature these attacks can be classified into two broad categories - Brute Force

Attacks and Cryptanalytical Attack.

Figure 9. Classification of Attacks on Hash Functions

2.4.1 Brute Force Attacks

Brute force attacks work on all hash functions independent of their structure and any

other working details. They are similar to exhaustive search or brute-force key recovery

attacks on the encryption schemes to extract the secret key of the encryption scheme. The

security of any hash function lies on its output bit size. For a hash code of length ., the

level of effort required for brute force classical attacks on hash functions is given below:

	

	

	

32	

Pre-image attack: Effort required for brute force attack is of the order of

2-(approximately 0.69 ∗ 2-). In this attack, for a given .-bit digest !C	of the hash

function, the attacker evaluates ! 0 with every possible input message 0 until the

attacker obtains the value !C.

2nd Pre-image attack: Effort required for brute force attack of the order of

2-(approximately 0.69 ∗ 2-+1). In this attack, for a given message 0	and the hash

function !(), the attacker tries !() with every possible input message 	04 ≠ 0 until the

attacker obtains the value 	!(0).

Collision attack: Effort required for brute force attack =2-/B. In this attack, for a given

hash function !() the attacker tries to find two messages 0	L.P	04such that 0	 ≠

04and ! 0 = ! 04 . On average the opponent would have to try B
n

B
	= 	2-EA messages

to find one that matches the hash code of the intercepted message. However because of

Birthday Paradox as illustrated by Bellare and Kohno in [70] , the effort required for

finding collision in a hash function is of the order of 2-/B in place of 2-EA (approximately

1.18 ∗ 2-/B). Collision attack is also referred as Birthday attack.

In addition to the classical attacks discussed above, the following natural extensions

have also been studied by different authors. The nomenclature as given by Lucks in [49]

is written here:

K-Way collision attack for p ≥ q: Find 8	different messages 0D such that ! 0A =

⋯ = !(0s).

K-Way (2nd) pre-image attack for p	 ≥ t : Given u	(or 0 with ! 0 = 	u) , find

8 different messages 0D, with ! 0D = u	L.P	0D ≠ 0.	

2.4.2 Cryptanalytical Attacks

Cryptanalysis of hash functions focuses on the underlying structure of hash function

and/or on the algorithm of compression function. Due to fixed size of the hash values

compared to much larger size of the messages, collisions must exist in hash functions.

However, for the security of the hash function, they must be computationally infeasible

to find. Collisions in hash functions are much easier to find than pre-images or 2nd pre-

images.

Informally, a hash function is said to be "broken" when a reduced number of

evaluations of the hash function compared to the complexities of brute force attack and

	

	

	

33	

the strengths estimated by the designer of the hash function are used to violate at least

one of its properties immaterial of the computational feasibility of that effort. For

example, assuming that it requires 290 evaluations of the hash function to find a collision

for a 256-bit hash function. Though it is impractical to generate this amount of

computational power today, the hash function is said to be broken as this factor is less

than the 2128 evaluations of the hash function required by the Birthday attack. It should

be noted that hash functions are easier to attack practically than encryption schemes

because the attacker does not need to assume any secrets and the maximum computational

effort required to attack the hash function is only upper bounded by the attacker's

resources not user’s gullibility. This is not the case with block ciphers where the

maximum practical count of executions of the block algorithm is limited by how much

computational effort the attacker can get the user to do [50].

Collision finding algorithm and attacks may be classified as single block attacks or

multi block attacks depending on whether that attack uses single block (i.e. one

compression function) or more than one block (i.e. more than one iteration of

compression function) for finding collision or pre-images. Cryptanalytical attacks on hash

function may be categorized in two types i.e. Generic and Specific attacks.

A) Generic Attacks

The attacks that work on a general hash function construction are called Generic

attacks. For example, attacks on the Merkle-Damgard construction that work on all hash

functions designed using Merkle Damgard construction are the generic attacks. Generic

attacks are applicable even if we replace the underlying compression function by some

abstract oracle. Length extension attacks [48] , Joux multicollision attacks [46], Generic

2nd pre-image attacks (like the one based on Fixed points, correcting block attack),

Herding Attacks, and Meet in the Middle attacks are example of generic cryptanalysis

attacks.

A-I. Length Extension attacks: Length extension, also known as ‘message extension’

or ‘padding’ attack, is well known weakness of MD construction. Biham and

Dunkleman in [51], Lucks in [49], and many other authors have highlighted this pitfall

of MD construction. Given ℎ = ! 0 , it is straightforward to compute 04L.P	ℎ4, such

that ℎ4 = 	!(0||04) even for unknown 0	(but for known length |0|). The attack uses

! 0 as an internal hash for computing !(0||04). Kaliski and Robshaw [71] have

	

	

	

34	

also highlighted how hash of a message and its length may be used to compute hash of

longer messages that start with the initial message and include the padding required for

the initial message to reach multiple of block size. Tsudic [31] also studied length

extension attack way back in 1992. However, even these days’ certain vulnerabilities

based on this simple attack are being observed. Duong and Rizzo [72] in 2009 showed a

vulnerability in the Flickr (one of the best online photo management and sharing

application in the world) signing process making use of Flickr authentication API. This

vulnerability allowed an attacker to generate valid signatures without knowing the shared

secret. So, using Flickr’s API by exploiting vulnerability, an attacker could send valid

arbitrary requests on behalf of any application. When combined with other vulnerabilities

and attacks, an attacker can gain access to accounts of users who have authorized any

third party application.

A-II. Joux Multicollision attacks: Joux in [46] studied the generic multicollision

attack on iterated hash functions. Joux showed that finding multicollisions, i.e. I-tuples

of messages that all hash to the same value, is not much harder than finding ordinary

collisions (i.e. pairs of messages), even for extremely large values of I. More precisely,

the ratio of the complexities of the attacks is approximately equal to the logarithm of I

i.e. constructing 2w collisions cost P times as much effort as building ordinary 2

collisions. In this attack, it is assumed that collision finding algorithm (say x) for

compression function 9 exists. A call to algorithm x takes chain value (!D)	as input and

generates two message blocks 0	L.P	@ as output such that 9 !D,0 = 	9 !D, @ . To

start with, the attacker calls this collision finding algorithm for the compression function

with the initial state !U and algorithm return two messages 01	L.P	@1	such that

9 !U,01 = 	9 !U, @1 = 		!A. Then the attacker calls this algorithm with state !A and

algorithm returns two message block	02	L.P	@2	such that 9 !A,02 = 	9 !A, @2 =

		!B . Similarly, successive calls to algorithm can be made. If only two calls are made,

then we have obtained 22 = 4 different messages that maps to digest !B.

9 9 !U,01 ,02 = 	9 9 !U,01 , @2 = 	9 9 !A, @1 ,02 = 	9 9 !A, @1 , @2 = 	!B

If we assume collision finding algorithm was based on brute force attack and every call

takes time 2-/B then it took y(2 ∗ 	2
n
z) time to find 4-collisions. Joux [46] demonstrated

that this technique requires y(P ∗	2
n
z) time for finding 2d-collisions instead of a brute

	

	

	

35	

force collision finding algorithm that may require Ω(2-∗|) time where } = 	 (2w − 1)/2w.

Here . is the size of message digest.10

A-III. Multi (2nd) pre-image attacks based on Joux technique: The notion multi

(2nd) pre-image represents multiple pre-images as well as multiple 2nd pre-images. The

technique presented by Joux [46] can be extended and multi (2nd) pre-images can be found

at a cost less than the brute force complexity of finding multiple (2nd) pre-images.

A-IV. Generic 2nd pre-image attacks: In a generic 2nd pre-image attack on a hash

function of length . bits, the attacker tries to find second pre-image 04 for a target

message 0	such that 0	 ≠ 04 and ! 0 = 	!(04) with an effort less than 2-. A number

of techniques have been suggested to produce generic 2nd pre-image attacks. Correcting

Block attacks as defined in [4] can be used to generate generic 2nd pre-image attacks.

Dean [73] used Fixed Point attacks to generate generic 2nd pre-images and Kelsey and

Schneier [74] made use of Joux multi-collisions for generating 2nd pre-image attacks. In

this subsection we provide a brief overview of these attacks:

a) Correcting Block attack: As stated by Preneel in [75], Correcting Block attack

may be used for collision attack as well as pre-image attacks in addition to generic

2nd pre-image attacks. Preneel has also referred it by chosen prefix attack. For a

pre-image attack, one arbitrary message :	is chosen and then adversary tries to

find one or more correcting blocks Y such that !(:| u comes out to a specific

desired value. For a 2nd pre-image attack on target message :||u,	adversary freely

choose message :4and then searches one or more correcting blocks u4 such that

!(:||u) 	= !(:4||u4). :4may be chosen equal to : also. For a collision attack,

two pair of messages :	L.P	:4 are chosen such that :	 ≠ :′ and then one or more

correcting blocks u	L.P	u4are chosen so that !(:||u) 	= !(:4||u4).

To implement the above for 2nd pre-image, opponent uses a pre-existing <message,

digest> pair and tries to change one or more message blocks such that the resulting

digest remains same. To generate a second pre-image :′ for a target message :,

the adversary chooses one of the input blocks :D and replaces it with an alternative

block :D4 so that 9(!D, :D4) 	= 	9(!D, :D). If all other blocks of the alternative

10 Formally the symbol y and Ω are used for representing expected running time. y asymptotically

represent “at most” and Ω asymptotically represent “not less than”.

	

	

	

36	

message :′ are equal to the corresponding blocks of target message :, then the

same hash result will be obtained and a second pre-image can be found.

As per Rompay [4], if the size of the internal state i.e. chaining variable is c bits

and block size is a bits and a	 > 	c, then the number of blocks :D4 satisfying the

property	9(!D, :D4) 	= 	9(!D, :D) are approximately 2^/2� i.e.	2^E�. The challenge

is that such blocks are small subset of all possible blocks and to find one such block

for an ideal hash function, about 2� operations are needed. One round of MD5 has

been detected for this attack. In MD5, the attacker takes a message block :

(consisting of 16 words), fixes the 11 words of :, modifies one word and calculates

the remaining 4 words to generate a message block :’ which maps to the same

digest.

Correcting block attack is possible if the pre-images for compression function can

be obtained with the computation starting from pre-specified chaining values.

Fixing the value of IV helps in thwarting the attack thus MD strengthening in case

of Merkle-Damgard construction prevents this attack from working on complete

hash functions [50].

Kelsey and Sheiner [74] have also improved the generic correcting block attack

using the notion of expandable messages such that it bypasses the defense provided

by MD strengthening.

b) Fixed Point attack: Bard [76] and Preneel [75] has given a nice explanation of

Fixed Point attack. In this attack, adversary looks for a fixed point in the

compression function 9. A fixed point is chaining variable !D such that

9(!D, :D) 	= 	!D . Few authors refer the pair (!D, :D)	 as fixed point. Whenever

fixed point exists, the presence of message block :D	does not affect the message

digest. To generate pre-images of message :, one may insert arbitrary number of

blocks with value :D to the message :	where chaining variable takes the value !D .
Fixed point attack can be avoided by inserting the message length at the end of

message. As MD strengthening pad the message length at the end of original

message, MD strengthening thwarts fixed point attacks from affecting complete

hash functions. However, if fixed points occur at more than one iteration of

compression function, then attack may become practical. In such a case the

attacker can insert message block :D at stage J such that 9(!D, :D) 	= 	!D and can

	

	

	

37	

remove :D	from : at some later stage Å, such that 9(!Ç, :Ç) 	= 	!Ç . Even in this case

attack is only possible if the initial value is not fixed or the attacker chooses XY =

	!D, or if fixed points can be found for a significant fraction of all chaining values.

Dean in [73] presents different techniques that make use of fixed points to produce

attack on complete hash functions even in the presence of Merkle-Damgard

strengthening. One very simple technique proposed by Dean [73] for MD4 and

MD5 hash functions is to repeat the fixed point block 255 times, which adds 264 bits

to the input. Since the message length in MD4 and MD5 is computed modulo 264,

this effectively adds 0 to the length field, and the proper hash value comes out.

A-V. Herding attack: Kesley and Kohno in [47] presented a new attack on hash

functions based on MD structure, called the Herding attack. In herding attack, an attacker,

who can find many collisions on the hash functions by brute force, can first provide the

hash of a message, and later “herd” any given starting point of a message to that hash

value by the choice of an appropriate suffix. With this attack Kesley and Kohno identified

an essential security property for hash functions called Chosen Target Forced Prefix

(CTFP) pre-image resistance. CTFP pre-image resistance as defined by Kesley and

Kohno in [47] is reproduced here:

In the first phase of the attack, adversary performs some pre-computation and then

outputs an n-bit hash value H: H is his “Chosen Target”. The challenger then selects

some prefix P (picks uniformly at random from large but finite set of strings) and supplies

it to adversary; P is the “Forced Prefix.” In the second phase of attack, adversary

computes and outputs some String S. Adversary is said to compromise the CTFP pre-

image resistance if it takes less than 2n evaluations of the hash function to find S such that

hash(P||S) = H.

As per Kesley and Kohno [47] the following steps are used for applying herding

attack:

• In the first phase of a herding attack, the attacker repeatedly applies a collision-

finding against a hash function to build a diamond structure11.

• In the second phase of the attack, the attacker exhaustively searches for a string É’

such that Ñ	||	É’ collides with one of the diamond structure’s intermediate states.

11Diamond structure is a data structure reminiscent to a binary tree. Diamond structure is a structure of

messages constructed to produce large multicollisions. Details are available in [47].

	

	

	

38	

• Having found such a string É’, the attacker can construct a sequence of message

blocks Q from the diamond structure, and thus build a suffix S = S’ || Q such that

hash (P||S) = H.

Kesley and Kohno [47] also described the various contexts in which herding attack

can be used. Nostradamus attack, stealing credits for inventions, tweaking a signed

document, and Random number fixing are examples of such contexts explained in [47].

A-VI. Meet in the Middle attack: This attack is a variation of birthday attack and is

applicable to hash function that make use of compression function 9 invertible to the

chaining variable !D or the message block :D. As per Bakhtiari et al. [77], this attack

allows the attacker to construct messages that correspond to certain digest. To apply this

attack, the adversary generates I1 samples for the first and I2 samples for the last part of

a bogus message. The adversary then moves forward from the initial value and goes

backward from the hash value. The probability that the two intermediate values are same

is given by Ñ ≈ 1 − exp	(−I1 ∗
âB

Bn
) , where .	 = length of initial value or chaining value

or message digest. If the meeting point is found, then the concatenation of the message

parts creates a bogus message that results in the target hash value.

B) Specific Attacks

The attacks that work on specific hash function or the algorithm of its compression

function are called specific attacks. Attacks illustrated by Wang et al. on MD4, MD5,

RIPEMD, HAVAL, SHA-0, SHA-1 in [68] [69] [78] [79] [80] and by Biham et al. in

[81] are examples of collision attacks on the specific hash functions. Attacks using

differential cryptanalysis, linear cryptanalysis, rotational cryptanalysis and attack on the

underlying encryption algorithms are type of specific cryptanalysis attacks. The most

successful of these are the attacks based on differential cryptanalysis.

B-I. Differential cryptanalysis: Differential cryptanalysis, introduced by Biham and

Shamir [82] was a technique mainly devised to analyse block ciphers. It is used to study

the correlation between the difference in input and output. If :	L.P	:’ are two inputs,

then the difference between them is defined as ∆:	 = 	:	Mi	:’. If !	L.P	!’ are two

corresponding message digests, then the difference between them is defined as ∆!	 =

	!	Mi	!’. The difference operation Mi can be XOR operation or Integer subtraction or

any other operation. For differential cryptanalysis attack, the attacker searches for specific

	

	

	

39	

difference in inputs (∆:) that result in specific difference in output (∆!) with high

probability. In case of hash function, the difference in output should be zero to result in

collisions. Examples of specific attacks using differential cryptanalysis are [68] [69] [78]

[79] [80] [81] [83] [84].

B-II. Linear cryptanalysis: Linear cryptanalysis was proposed by Matsui in

Eurocrypt’93 [85] as a theoretical attack on DES and later successfully used in the

practical cryptanalysis of DES. Linear cryptanalysis tries to take advantage of high

probability of having linear relationships between plaintext bits, ciphertext bits and sub-

key bits. Heys has exhaustively explained linear cryptanalysis in [86]. The basic idea is

to estimate the operation of a part of an encryption algorithm with a linear equation of the

following type:

:Dã ⊕ :Dz ⊕	:Då ⊕ …	⊕ :Dç ⊕ uÇã ⊕ uÇz ⊕	uÇå ⊕ …	⊕ uÇn = 0

where :D represents the J_é bit of the input and uÇ represents the Å_é bit of the output.

If an encryption algorithm shows a high probability of satisfying or not satisfying the

above equation, then the cipher is weak and lacks randomization abilities. Hash functions

based on the encryption algorithm can be susceptible to linear cryptanalysis, but till date

not many successful attacks on hash functions using linear cryptanalysis has been

reported.

B-III. Rotational cryptanalysis: The term Rotational cryptanalysis was coined in

February 2010 by Khovratovich and Nikolic in [29]. The attack may also be classified

as generic attack because, as per the authors, this attack may be applied on all the

algorithms that are based on three operations - modular addition, rotation, and XOR

(ARX for short). However, we have placed it under the category of specific attacks as

this attack has been demonstrated by Khovratovich and Nikolic against reduced round

Threefish cipher – part of Skein hash function [9], a SHA3 competition [18] candidate

only. Secondly as per classification done in this thesis, the generic attacks are applicable

to all the hash functions falling under a particular structure like Merkle-Damgard, so it is

better to consider rotational cryptanalysis as a specific attack. In October 2010, a follow

up attack that combines rotational cryptanalysis with the rebound attack was presented

by the same authors along with Rechberger in [28]. In rotational cryptanalysis, the

authors studied the propagation of rotational pair (:, :) through out the cryptographic

primitive. The authors presented that operation XOR and rotation both preserve the

	

	

	

40	

rotational pair with probability of 1, while modular addition does it with probability up

to 3/8 (and that depending on rotation constant with which : is obtained). So with a high

probability, a rotational pair of inputs is converted into a rotational pair of output bits.

B-IV. Attacks on underlying encryption algorithm: If the underlying compression

function of hash function is implemented using the Encryption algorithm, then the

weakness in encryption algorithm can be exploited to attack hash functions. Encryption

function may have complementation property or weak keys or may have fixed points and

the same may be used to attack complete hash function based on encryption algorithm.

Miyaguchi et al. in [87] analysed the hash functions from the standpoint of the

complementation property and weak keys of the block ciphers used in them and notified

their weaknesses.

 2.5 Type of Cryptographic Hash Functions Based on Design of

Underlying Compression Function

From the discussion in heading ‘2.2 Iterative Structure of Cryptographic Hash

Functions’, it is evident that for processing arbitrary length of input the iterative structure

of hash function (may be MD structure or any other) is desired and the crucial part of this

iterative structure is Compression Function. The classification of hash function can be

done, based on the way the compression function is built. This section deals with various

ways of building compression function of a cryptographic hash.

2.5.1 Hash Functions Based on Block Cipher as Compression Functions

One of the possible approaches that have been studied by the researchers is to design

a compression function from an existing cryptographic primitive like block ciphers. The

advantages as highlighted by Rompay in [4] is that the existing implementations in

hardware or software can be reused. Secondly, some existing block ciphers like DES [88]

or AES [5] have received a lot of scrutiny, and thus there is a lot of trust in their security

properties.

At the same time a number of drawbacks of block cipher based hash functions have

also been observed. Stalling in [35] put forward the arguments that the block ciphers do

not possess the properties of randomizing functions. For example, they are invertible.

This lack of randomness may lead to weakness that may be exploited. Secondly, the

	

	

	

41	

differential cryptanalysis is easier against block operations in hash functions than against

block operations used for encryption; because the key is known so several techniques can

be applied. The attacks presented by Preneel et al. in [89] and Rijmen and Preneel in

[90] are examples where techniques of differential cryptanalysis are used for attacking

hash functions based on block ciphers. Thirdly, it has been suggested that block cipher

based on hash functions are significantly slower than hash functions based on

compression function specially designed for hash functions. It is also felt that use of a

block cipher for a purpose for which it was not designed may reveal some other

weaknesses which may not be relevant in case of encryption.

However, with the adoption of AES, there has been renewed interest in developing a

secure hash function based on strong bock cipher and these have been exhibiting good

performance [35]. Hash functions based on block ciphers can be further classified as

follows:

A) Single Block Length Construction

These are the schemes in which size of hash code equals the block size of underlying

block cipher. A number of proposals have been made and the basic concept is to construct

compression function f from block cipher. The general scheme works like:

 !U = XY

 !D = 	èê ë ⊕ x

Figure 10. Compression Function Based on Block Cipher

è	is the block cipher that encrypts input ë with key í. í, ë, x	can be either 0D,

!DEA,0D ⊕ !DEA or a constant 8 (may be equal to zero or any other value). !U is some

	

	

	

42	

random initial value XY. The message is divided into blocks and padding is performed in

the same or similar way as done in MD-structure. Figure 10 represents the same.

The three different variables í, ë, L.P	x can take on one of the four possible values.

So there are 64 total schemes of this type. Preneel et al. [91] studied all these schemes

and showed that fifteen of these schemes are trivially weak because the result does not

depend on one of the inputs, thirty-seven are insecure for subtle reasons, and remaining

12 of these schemes, depicted in Table 1 , are considered secure. Schneier in [1] has also

highlighted that first 4 schemes as mentioned in the Table 1, are secure against all attacks

and the last 8 are secure against all but a fixed-point attack, which is not really worth

worrying about. A formal proof of security of the 12 schemes is given by Black et al.

[92].
Table 1. 12 Secure Schemes to Design Hash Function from Block Cipher

Secure Schemes based on Block cipher to
generate Compression function

Other Common Name for the scheme
as per the Literature

!D = 	èìîïã 0D ⊕ 0D Matyas-Meyer-Oseas Scheme [93]

!D = 	èìîïã 0D	 ⊕ !DEA	 ⊕ 0D ⊕	!DEA	 --

!D = 	èìîïã 0D ⊕ !DEA ⊕ 0D Miyaguchi – Preneel Scheme.
Independently proposed by Miyaguchi
[94] and Preneel [95]

!D = 	èìîïã(0D ⊕ !DEA) ⊕ 0D --

!D = 	èñî
(!DEA) ⊕ !DEA Known as Davies-Meyer Scheme in

literature e.g. in [96] [97]

!D = 	èñî
(0D ⊕ !DEA) ⊕ 0D ⊕ !DEA --

!D = 	èñî
(!DEA) ⊕ 0D ⊕ !DEA --

!D = 	èñî
(0D ⊕ !DEA) ⊕ !DEA --

!D = 	èñî⊕ìîïã(0D) ⊕ 0D --

!D = 	èñî⊕ìîïã(!DEA) ⊕ !DEA --

!D = 	èñî⊕ìîïã(0D) ⊕ !DEA --

!D = 	èñî⊕ìîïã(!DEA) ⊕ 0D --

B) Double Block Length Construction

A hash function, generating 64-bit (or 128-bit) digest is insecure as brute force

collision will require 2óB(or 2òô) operations only. Using the single block length

	

	

	

43	

construction schemes as mentioned in previous sub-section, we will get a 64-bit digest

with DES as underlying block or 128-bit digest with AES as underlying block cipher. To

increase the digest size of hash function and to make it more secure, double length block

construction is suggested. These are the schemes in which size of hash code doubles the

block size of underlying block cipher. This means DES will result in a 128-bit hash

function and AES in a 256-bit hash function. As suggested by Rompay [4], the best

known schemes in this class are MDC2 (designed by Brachtl et al. in [98]) and MDC4

(designed by Meyer and Schilling in [99]). MDC-2 is sometime called as Meyer-

Schilling scheme. The compression function of MDC2 makes uses of two parallel

computations of Matyas-Meyer-Oseas scheme [93]. Explanation of MDC-2 as given in

[4] is reproduced here using the terminology used in previous subsection.

Let x<	L.P	xö denote the left and right halves of a a − aJO	value. Then the

compression function of MDC-2 can be described by

 !DfA||!õfA = 9	(!D||!õfA), and these values depend on following computations:

 xDfA	 = 	èìî 0D ⊕0D

 xõfA = 	èìú 0D ⊕0D

 !DfA	 = 	xDfA
< ||	xõfA

ö

 !õfA = 	xõfA
< ||	xDfA

ö

If the left and right halves are not switched as done above, then the two chains

(!DfA, !õfA) will be independent and could thus be attacked independently.

The compression function of MDC-4 consists of two sequential executions of MDC-

2 compression function. For the second MDC-2 compression, the keys are derived from

the outputs (chaining variables) of the first MDC-2 compression, and the plaintext inputs

are the outputs (chaining variables) from the opposite sides of the previous MDC-4

compression.

A few other authors like Lai in [100], Lai and Massey in [44], Preneel et al. in [101],

Quisquater and Girault in [96], and Hohl et al. in [102] have also presented different

mechanism of constructing hash functions based on block ciphers. Lai in [100] and Lai

and Massey in [44] modified the Davies–Meyer scheme to use IDEA cipher for

generating 64-bit hash value. The scheme proposed by Preneel et al. in [101] is also

called Preneel-Bosselaers-Govaerts-Vandewalle scheme (in the name of authors) and this

scheme produces hash value twice the block length of encryption cipher. The scheme

	

	

	

44	

proposed by Quisquater and Girault in [96] also generates hash twice the block length.

This scheme appeared in 1989 Draft ISO standard [1] but was dropped later. Scheme by

Hohl et al. [102], known as Parallel Davies Meyer, also produces hash twice the block

length.

C) Few More Examples of Hash Functions Based on Block Ciphers

A few other famous hash functions based on block ciphers are listed below:

GOST hash function – This hash function comes from Russia and is specified in the

GOST R.34.11-94. It uses the GOST block encryption algorithm. The algorithm is

defined in [103].

AR hash function: AR hash function was developed by Algorithmic Research Ltd.

and has been distributed by the ISO for information purposes only. Its basic structure is

a variant of underlying block cipher (variant of DES) in Cipher Block Chaining mode.

The AR hash function is defined in [104]

Whirlpool hash function: Whirlpool is one of the only two hash functions endorsed

by NESSIE (New European Scheme for Signatures, Integrity and Encryption). It has also

been adopted by International Standard Organization (ISO) and International Electro-

Technical Commission (IEC). Unlike virtually all other proposals for a block-cipher

based hash function, Whirlpool uses a block cipher that is specifically designed for use

in the hash functions and that is unlikely ever to be used as a standalone encryption

function. The block cipher used by Whirlpool is substantially modified version of AES

[5] and uses Miyaguchi-Preneel scheme [94] [95] for generating hash function. The hash

function is explained in [8].

Skein hash function: Skein hash function was one out of the five finalists in the NIST

hash function competition held to design SHA-3 standard. The algorithm is based on

Threefish tweakable Block Cipher. The algorithm is described in [9] and introduction of

the same is given under the heading ‘3.4 Introduction to SHA-3 Final Round Candidate

Algorithms’.

2.5.2 Hash Functions Based on Modular Arithmetic

Compression function can also be designed using modular arithmetic. This allows the

reuse of existing implementations of modular arithmetic such as in asymmetric

cryptosystems. The idea of cryptosystems based on modular arithmetic is to reduce the

	

	

	

45	

security of a system to the difficulty of solving the problems in number theory. Two

important hard problems in number theory which can act as a base for generating

cryptosystems are factorization and Discrete logarithm. Rompay in [4] has referred to

design of two variants of MASH hash functions based on modular arithmetic. The

advantage of such hash functions is that the level of security can be easily enhanced by

choosing modulus M of appropriate length but hash functions based on modular

arithmetic are very slow, even slower than block cipher based hash functions. Also many

such constructions have been broken in the past.

2.5.3 Dedicated Hash Functions

Dedicated hash functions are the one which are designed for the explicit purpose of

hashing. Compression functions of dedicated hash functions are not based on the existing

cryptographic primitives like block ciphers and are not constrained to reuse existing

components such as block ciphers or modular arithmetic. This means that they can be

designed with optimized performance in mind. A number of such hash functions have

been designed. A few of the famous dedicated hash functions and the status of attacks on

these hash functions are as follows:

A) MDx Family of Hash Functions

MD2, MD4, and MD5 are three hash functions from MDx family based on Merkle-

Damgard structure. Compared to the other two, MD2 is slower and has not obtained much

success. However, the dedicated hash functions to have received the most attention in

practice are those that are based on MD4 algorithm. Proposed by Rivest in 1990 [10],

MD4 is a hash function designed specifically towards software implementation on 32-bit

platforms. Rivest in 1991 came up with MD5 [11], a conservative version, to replace the

earlier hash MD4 because of security concerns.

To process variable length input to 128-bit hash, MD5 divides the input message into

blocks of 512-bit each (arranged in 16 words of 32-bit each). The padding process is same

as defined under the heading ‘2.2.1 Merkle-Damgard Iterated Hash Design (MD

Structure)’. The internal state (chain value), a 128-bit value represented as 4 words of 32-

bit each, is denoted by í, ë, x, L.P	$ and initialized to specific constants. The algorithm

calls each 512-bit block of input to modify 4 words of internal state. For each message

	

	

	

46	

block of 512-bits, four rounds (each of 16 operations) are used. Four rounds use non-

linear function b, ù, !, L.P	X as defined below:

b :, u, û = 	: ∧ u	 ∨ (¬: ∧ û) -- Used in Round 1

ù :, u, û = 	: ∧ û	 ∨ (u ∧ ¬û) -- Used in Round 2

! :, u, û = : ⊕ u⊕ û -- Used in Round 3

X :, u, û = u ⊕ (: ∨ ¬û) -- Used in Round 4

Round 1, calls 16 operations one for each word of 512-bit message block. All these 16

operations are quite similar and make use of function b and few constants to update

internal state. The same process is carried out in Round 2 to Round 4 using different

functions (as described above) for their 16 operations.

As such, MD5 became a milestone in the development of Hash. It was a well-known

iterated hash function (generating 128-bit output), widely used in various applications

including SSL/TLS, IPsec, and many other cryptographic protocols. It was also

commonly-used in implementations of time stamping mechanisms, commitment

schemes, random-number generation, and integrity-checking applications for online

software. Type-2 (Semi free start collision) and Type-3 (Pseudo collision) attacks on

MD5 were reported in [64] [67]. Strong collisions (Type-1 collisions) on MD4 and MD5

have been reported by Wang et al. in [68] [69] [78] and these attacks made the further

usage of these hash functions questionable.

B) SHA-1 and SHA-2 Family of Hash Functions

Secure Hash Algorithm (SHA) developed by the National Institute of Standards and

Technology (NIST) was also designed on the same principle as MD4 and was published

as Federal Information Processing Standard (FIPS 180) in 1993 [22]. A revised version,

generally referred to as SHA-1, was issued as FIPS180-1 [23] in 1995. When the revised

version of SHA-1 was published, details of the weaknesses found in SHA-0 (originally

SHA) were not provided. SHA-1 produces a hash value of 160 bits. In 2002, NIST

produced a revised version of the standard known as FIPS180-2 [6]. Three new versions

of SHA with digest lengths of 256, 384 and 512 were defined and these are known as

SHA-256, SHA-384, and SHA-512 respectively. Collectively known as SHA-2, these

functions include significant changes from its predecessor SHA-1. In October 2008,

FIPS 180-2 was replaced by FIPS 180-3 [105] and in this new standard, SHA-224 was

added which is similar to other SHA algorithms and produces 224-bit message digest. In

	

	

	

47	

March 2012, standard was updated in FIPS 180-4 [12] by adding SHA-512/224 and

SHA-512/256 making SHA-2 family as collection of six hash functions.

SHA-256 and SHA-512 are main hash functions based on 32-bit and 64-bit words

respectively and all other hash functions of SHA-2 family are derived from these

functions. A brief description of SHA-256 is given here.

To process input of variable length, the input message is divided into blocks of 512-

bit each. The padding process is almost similar to MD-structure. The internal state (chain

value) is of 256 bits, represented as 8 words of 32-bit each, and is initialized to some

specific constants (known as initial value). The algorithm calls each 512-bit block of input

to modify 8 words of internal state. Message block of 512-bit is represented as 16 words

of 32-bit each. To process a single block, the algorithm generates 64 more words (known

as message schedule) from 16 words of the message block. All the message blocks go

through 64 steps updating the internal state at each step. After all the 64 steps, internal

state is added to the chain value that existed before processing these 64 steps. The whole

process makes use of following six logical operations:

 xℎ :, u, û = 	: ∧ u	 ∨ (¬: ∧ ¬û)

 0LÅ :, u, û = 	: ∧ u	 ⊕ (: ∧ û)⊕ (u ∧ û)

 :¢AB
U = %y£%B : ⊕	%y£%Aó : ⊕	%y£%BB :

 :¢AB
A = %y£%ò : ⊕	%y£%AA : ⊕	%y£%B¢ :

 §U
¢AB = %y£%• : ⊕ 	§%y£%A¶ : ⊕	É!%ó :

 §A
¢AB = %y£%A• : ⊕ 	§%y£%Aß : ⊕	É!%AU :

Here %y£%- ® represents circular rotation of ®	towards right-side (i.e. less

significant bits) by . bits. É!%- ® 	represents right shift (towards less significant bits)

by . bits. Out of this §U¢AB, §A¢AB are used for generating message schedule and all the rest

are used in 64 steps.

SHA-512 is identical in structure but differs in word size (64-bit in place of 32-bit),

block size (1024-bit in place of 512-bit), rotation and shift constants used in logical

operations, and number of operations for each block (80 in place of 64). SHA-224 and

SHA-384 are truncated versions of SHA-256 and SHA-512 respectively. Both SHA-

512/224 and SHA-512/256 are truncated versions of SHA-512. The technique for

generating initial values in SHA-512/224 and SHA-512/256 is also a bit different

compared to other functions of SHA-2 family as defined in FIPS 180-4.

	

	

	

48	

Attacks on SHA-0 and SHA-1 have been reported in [79] [80] [81]. Till date no

practical attack has been reported on SHA-2.

C) RIPEMD Family of Hash Functions

RIPEMD family of hash functions consists of RIPEMD, RIPEMD-128, RIPEMD-160,

RIPEMD-256, and RIPEMD-320. RIPEMD, a 128-bit hash function based on MD4

algorithm, was developed in the framework of the EU (European Union) project RIPE

(RACE Integrity Primitives Evaluation) by Dobbertin, Bosselaers, and Preneel.

Compared to MD4, the order of message words is modified and two instances of

algorithms are run in parallel. Both instances are same except the constants. After each

block, output of both instances are added to internal state. This arrangement makes this

algorithm quite strong against cryptanalysis [1].

RIPEMD-160 [106] was an improved version of RIPEMD. The 128-bit version was

intended only as a drop-in replacement for the original RIPEMD, which had been found

to have questionable security. The 256 and 320-bit versions diminish chances of

accidental collision and don’t have higher level of security compared to RIPEMD-160.

RIPEMD-160 was designed in the open academic community, compared to NSA

designed SHA-1 and SHA-2. However, RIPEMD has been used less frequently than

SHA.

A collision on RIPEMD was reported in [68] but that does not affect RIPEMD-160.

Till date no practical attack has been observed on RIPEMD-160.

D) HAVAL Hash functions

HAVAL hash function was invented by Zeng, et al. in 1992 [107] . To certain extent

it takes the motivation from MD4 hash function only. However, HAVAL can produce

hashes of different length i.e. 128, 160, 192, 224 or 256 bits. In addition, HAVAL has a

parameter that controls the number of passes a message block (of 1024 bits) is processed.

A message block can be processed in 3, 4 or 5 passes. By combining output length with

pass, authors provided fifteen (15) choices for practical applications to meet the different

levels of security requirements. Algorithm was designed for 32-bit computers.

Experiments showed that HAVAL is 60% faster than MD5 when 3 passes are required,

15% faster than MD5 when 4 passes are required, and as fast as MD5 when full 5 passes

are required. Researchers have uncovered weaknesses which make further use of

	

	

	

49	

HAVAL (at least 128-bit variant with 3 passes) questionable. The strong collision attack

on HAVAL was reported by Wang et al. in [68].

All the above dedicated hash functions somehow derive motivation from MD4

algorithm only and are therefore sometime collectively known as MDx type hash

functions. Figure 11, as referred in [7], represent the status of MDx family of hash

functions. The vertical line shows the year when a hash function was invented and

functions that have been attacked are shown crossed with red lines.

Figure 11. History of MDx-type Hash Functions.

E) More Examples of Dedicated Hash Functions

Some other famous dedicated hash functions reported in literature are Snefru [108],

Tiger [109], JH [25], Keccak [19], and Blake [26] . Snefru; designed by Merkle in

1990, like Khufu and Khafre block ciphers was named after an Egyptian Pharaoh. Snefru

can generate message digest of 128-bit or 256-bit. Snefru’s initial design as well as

modified design have been shown to be insecure against differential cryptanalysis [110].

Tiger hash function was designed by Anderson and Biham in 1995 mainly for 64-bit

platforms. It is quite efficient on software but its inherent use of large S-Boxes, makes

implementation in hardware or small microcontrollers difficult. Tiger hash function is

frequently used in Merkle Hash tree form where it is referred to as Tiger Tree hash (TTH).

TTH is used by many clients on Direct Connect and Gnutella file sharing networks. The

last three in the list i.e. JH, Keccak and Blake were among the five finalists in the NIST

hash function competition [18] to design SHA-3 standard. Structure of these algorithms

	

	

	

50	

with other SHA-3 finalists is introduced separately in subsequent section ‘3.4

Introduction to SHA-3 Final Round Candidate Algorithms’

2.5.4 Other Approaches to Design Compression Function

There have been few hash functions that are not based on existing cryptographic

primitives like block ciphers or modular arithmetic. These are rather based on some hard

problems like Knapsack problem, Cellular automata or Discrete Fourier transformations.

Hash function based on knapsack was proposed by Damgard in [45] but the same was

shown to be broken in [111] and [112]. Cellular automata based hash function was

proposed by Wolfram in [113] and by Daemen et al. in [114]. Schnorr proposed hash

functions based on discrete Fourier transformations called FFT-Hash-II in [115]. This

hash function was an improved variant of the algorithm FFT-Hash I presented by the

same author in the rump session of CRYPTO’91. Schnorr along with Vaudenay

proposed parallel FFT Hashing in [116]. First two modifications, FFT-Hash I and FFT-

Hash II, were broken a few weeks after the proposal [117] [118]. Third modification is

quite slow. As a whole, all these approaches (based on knapsack or cellular automata or

FFT) did not find much success and are not generally used these days.

2.6 Migration from SHA-2 to SHA-3

The first widely used dedicated hash function was MD4. Developed by Rivest in 1990,

MD4 started encountering attacks after which Rivest created a stronger function named

MD5 in 1992. However, Boer and Bosselaers [64] and Dobbertin [67] reported semi

free start collision and pseudo collision attack on MD5.

 As discussed earlier, Secure Hash Algorithms (SHA-0 and SHA-1) published as FIPS

by NIST were also based on MDx family of hash functions. In Crypto’ 98, Chabaud and

Joux [119] reported attacks on SHA-0. In 2002, NIST came up with revised version of

the standard (FIPS180-2) adding SHA-256, SHA-384, SHA-512 (collectively known as

SHA-2) and SHA-224 was added to these few years later.

This development up to year 2004, has been nicely summarized by Kelsey from NIST

in [120]. Kesley observes “By year 2004, we as a cryptographic community thought we

knew what we were doing”. We were well aware that MD4 had been broken, and MD5

known to have weaknesses, as reported by Den Boer, and Bosselaers and Dobbertin, was

still widely used. SHA-0 was not used because of weaknesses. SHA-1 was considered to

	

	

	

51	

be very strong. SHA-2 appeared promising and Merkle Damgard was considered a

normal way to build hash functions.

The situation changed in years 2004 and 2005, after the practical attack on MDx family

followed by attacks on SHA-0 and SHA-1 created doubts about the security of existing

hash functions. These attacks have been referred to in the previous section also under the

heading ‘2.5.3 Dedicated Hash Functions’ but are discussed here again to clarify the

sequence of events that led to SHA-3. Joux [46] showed generic multi collision attack on

Merkle Damgard based hashes and reflected that cascaded hashes do not help security

much. A number of attacks were reported mainly by Biham and Chen [121], Biham

et.al. [81] and also by a team of researchers led by Wang from Shandong University in

Jinan, China. The same team also broke HAVAL-128, RIPEMD, and SHA-1 [68] [69]

[78] [79] [80].

Looking at the variety of hash functions that had been attacked by this team, it looked

as if their approach might explore vulnerability in all cryptographic hashes in the MDx

family, including all variants of SHA. Burr from US National Institute of Standards and

Technology also concurred with this possibility in [122]. Burr pointed out, “With SHA-

1 and SHA-2 in its cryptographic toolkit, NIST had hoped to be done with hash functions

for a long time. Besides a near break of MD5 by Dobbertin [67] in 1996, researchers

made little progress in hash function analysis until mid-2004. Since then, Wang, Joux and

Biham have attacked nearly all the early hash functions, including SHA-1.

Cryptographers have learned much about hash functions and how to attack them in the

past couple of years, and yet cryptanalysts generally agree that practical attacks on the

SHA-2 hash functions are unlikely in the next decade. However, attacks and research

results could reduce their strength well below theoretical work levels (2112, 2128, 2192, and

2256 operations for SHA-224, SHA-256, SHA-384, and SHA-512, respectively)”. [122]

In 2006, Hoch and Shamir [123] studied the multi collisions on Iterated Concatenated

Expanded (ICE) Hash Functions. They extended the idea presented by Joux [46] in 2004

which showed that in any iterated hash function it is relatively easy to find exponential

sized multicollisions, and thus the concatenation of several hash functions does not

increase their security. But Joux attack does not work on ICE i.e. it does not work in the

situation when message Expansion is added in addition to Iterated and Concatenated hash

function technique i.e. each iterated function process message block more than once.

	

	

	

52	

Hoch and Shamir [123] considered the general case (ICE) and proved that even if we

allow each iterated hash function to scan the input multiple times in an arbitrary expanded

order, their concatenation is not stronger than a single function. Finally, Hoch and Shamir

extended their result to tree-based hash functions with arbitrary tree structures. They

showed that a large class of natural hash functions (ICE and its generalization TCE) is

vulnerable to a multicollision attack, and hoped that the techniques they developed would

help in creating multicollision attacks against even more complicated types of hash

functions. Such a conclusion was perhaps hinting to probable attack on SHA 2 family

of hash functions.

Pre-image attacks on 41 steps SHA-256 and 46 steps SHA-512 presented by Sasaki

et al. in [124] reduced the security margin of SHA-256 and SHA-512 also. SHA-256 and

SHA-512 having 64 and 80 steps, respectively, then seemed secure but created a doubt

for future.

As highlighted earlier under the heading ‘1.4 Motivation, Research Gap, and

Objectives’, these attacks called into question all the widely used hash functions. As

SHA-2 function belonged to the same family and shared a common heritage and design

principles, so these attacks raised many questions on the future of Hash Standards. The

cryptographic community was thinking what would happen if SHA-2 was compromised

or successfully cryptanalyzed or broken.

Under such circumstances, NIST started public competition to design a new hash

standard named SHA-3. The competition was NIST’s response to advances in

cryptanalysis of hash algorithms. NIST, through this open public competition, was

looking to design one or more additional hash algorithms that could be used in place of

SHA-2.

As discussed earlier, starting in Nov. 2007 and after few rounds of analysis, NIST

selected five SHA-3 finalists; Skein [9], Keccak [19] , Grøstl [24], JH [25], and Blake

[26], who advanced to the third (and final) round of the competition on 9th December,

2010. All finalists were tweaked in the final round. BLAKE and JH increased the number

of rounds, Grøstl changed the Q permutation, Keccak modified the padding technique,

and Skein tweaked the key-schedule constant. Keccak was announced the winner on 2nd

October 2012. On 2nd February 2013, Keccak team made a presentation at NIST and

NIST’s SHA-3 standardization plans were presented at various forums as mentioned in

	

	

	

53	

[120] [125] [126] [127]. NIST announced Draft FIPS 202, “SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions” [128] on May 28, 2014 and

invited public comments on it. However, SHA-3 standard has not been implemented at

the time of writing this thesis. NIST policy on hash function [129] suggests no need of

transiting applications from SHA-2 to SHA-3.

2.7 About This Thesis

This thesis revolves around five SHA-3 final round candidate algorithms and analyses

their performance on platform other than Reference platform as discussed in ‘1.4

Motivation, Research Gap, and Objectives’.

A serious effort has been made to present a new hash function that outperforms Skein

[9] and other SHA-3 final round candidate algorithms on reference and Target platform.

The structure and design of new hash functions is based on the accumulated wisdom of

the literature that was reviewed.

	

	

	

54	

CHAPTER 3: PERFORMANCE ANALYSIS OF SHA-3

FINAL ROUND CANDIDATE ALGORITHMS

"Performance, and performance alone, dictates the predator in

any food chain."

SEAL Team saying

This chapter is focused on the first objective of the research i.e. Performance Analysis

of SHA-3 final round candidate algorithms on Target platform (platform other than the

Reference platform) as discussed in ‘1.4.1 Objective 1: Performance Analysis of SHA-3

Final Round Candidate Algorithms’. This chapter is organized into various headings

covering:

• Selection of Target Platform and the Rationale behind It (3.1)

• Brief about Architecture of Target Platform (3.2)

• Various Types of Processors (Processor Series) Available in Target Platform and

Finalization of Processors for Analysis of Algorithms (3.3)

• Introduction to SHA-3 Final Round Candidate Algorithms (3.4)

• Performance Analysis on ARM Cortex-A8 (3.5)

• Performance Analysis on ARM Cortex–M4 (3.6)

• Performance Analysis on ARM7TDMI (3.7)

• Concluding Remarks (3.8)

3.1 Selection of Target Platform and the Rationale behind It

The prime decision of looking for a Target platform, on which these final round

candidate algorithms were to be analysed, was viewed as a two-step process. In the first

step, it was decided to go for an architecture prevalent in Embedded and Mobile

platforms. The second step was zeroing down to ARM series processors for their being

leaders in Embedded and Mobile platforms. The motivation and rationale behind this is

provided here.

	

	

	

55	

3.1.1 Decision – 1: Going for Embedded and Mobile Platform

The narrowing down to the Embedded and Mobile platform was driven by the

following two observations:

A) Reference Platform Having Ignored Embedded and Mobile Platforms

The Reference platform, announced by NIST, was a General Purpose system

(Windows Vista Ultimate 32-bit (x86) and 64-bit (x64) Edition and ANSI C compiler in

the Microsoft Visual Studio 2005 Professional Edition). The fact that had been

overlooked was that the ‘General Purpose computers’ comprise of hardly 1% of total

computing devices. The remaining 99% comprises of Embedded and Mobile devices like

mobile phones, digital TVs, mass storage controllers, smart cards, smart sensors,

automotive body electronics, printers, networking devices like routers etc. The

architecture of these Embedded and Mobile systems is considerably different from the

General Purpose machines and is generally characterized by small size, limited

processing resources, and low power consumption. Importantly, Embedded and Mobile

systems, particularly smart phones and netbooks etc., do use hash functions for various

security applications. So, logic dictates that evaluation of these hash functions should be

carried out on architecture from Embedded and Mobile segment.

B) Recent Surge in Usage of Mobile and Embedded Devices

Another factor that buttressed this decision is the present surge in mobile usage. In

recent years the trend of mobile devices has increased considerably and now more and

more people prefer to use mobile devices as compared to desktops. Some of the statistics

from various sources that vindicate this observation are listed below:

a) ITU (International Telecom Union) collects statistics from 200 economies and

over 100 indicators. The latest ICT Facts and Figures 2015 report [130] clearly

shows exponential surge in mobile broadband penetration. Globally, mobile

broadband penetration reaches 47% in 2015, a value that increased 12 times since

2007, clearly signifying the increasing trend towards mobile usage.

b) Mary Meeker, an analyst from Kleiner Perkins Caufield Byers (KPCB), reviews

technology trends and publishes them in and around May every year. She had

predicted in 2008 that mobile will overtake the fixed internet access by 2014. The

latest “2015 Internet Trend Reports” [131] from KPCB reflecting that we have

	

	

	

56	

crossed that tipping point proves Meeker’s prediction. One of the slides from her

2015 report, reproduced below, reflects that time spent with digital media per adult

per day in the USA through mobile phones is higher at 52% compared to that

through desktops (42%).

Figure 12. Time Spent with Digital Media in USA [131]

c) Murtagh in [132] clearly presents the fact that Mobile now exceeds PC as far as

usage of internet is concerned.

Figure 13. Time Spent with Internet, by Device, in the USA [132]

	

	

	

57	

d) The statistics presented by Bosomworth in [133] and CNET survey results of 2014

presented in [134] [135] , unambiguously reflect the surge in mobile usage and its

domination over desktops. Even famous online shopping websites like Flipkart,

Myntra etc. have started giving more thrust to their businesses through mobile

phones compared to PCs and laptops. India’s e-commerce leader Flipkart is taking

big steps towards going app-only. For example, its five-day Big Billion-day sale

was launched only on its app [136]. Launch of ‘Flipkart-Lite’ and ‘Snap-Lite’, new

mobile web applications, are targeting audience that access shopping websites

through mobile phones [137] [138].

As evident from the foregoing statistics, mobile usage is increasing day by day and

mobile platforms are being used to access internet, read emails, do purchases, and

consequently all such things do require use of hash functions for security applications.

So, opting for architecture prevalent in Mobile platform is quite justifiable.

3.1.2 Decision – 2: Zeroing Down to ARM Architecture

Once the choice narrowed down to Embedded and Mobile platforms, the decision to

be made was to select a suitable candidate from among the prevalent architectures in this

segment like ARM, MIPS, AVR32, PowerPC etc. The final decision to select ARM

architecture was based on its market dominance and performance characteristics that are

discussed hereunder.

A) ARM designs cores that are based on RISC (Reduced Instruction Set Computing)

architecture. ARM cores have been specifically designed to be small, reduce power

consumption, yet have high code density. Both these features make it apt for battery

operated devices and also for devices having limited on-board memory like Mobile

Phones, PDAs etc. Certain features - like variable instruction cycle for specific

instructions (e.g. load-store-multiple instruction), Inline barrel shifter, Thumb 16-bit and

Thumb2 instruction set providing high code density, ability of core to switch between

ARM and Thumb instruction state, seven different operating modes, and multiple

addressing modes including modes that allow direct bit shifting and conditional execution

of instructions - make ARM architecture unique and also improve its performance.

Multiple extensions developed by ARM like Jazelle, TrustZone, and SIMS/NEON

technologies also give ARM an extra edge in this Embedded and Mobile market.

	

	

	

58	

B) The present study found that ARM (Advanced RISC machines) has grown to

become world’s leading microprocessor IP (Intellectual Property) company, and the

ARM processor portfolio covers every area of microprocessor applications from very

low-cost embedded microcontrollers to high-performance multicore processors. ARM

designs scalable and energy efficient processors and related technologies which are found

in many of the digital devices in different market segments including Smartphones, Smart

watches, Netbooks, eReaders, PDAs, Digital TVs, Home Gateways, Automotive

breaking systems, Storage Controllers, Microcontrollers, Smart sensors, Servers, and

Networking etc. The whole ARM market may be divided into the following segments:

• Mobile App Processors & Devices for Home– covering smartphones, tablets,

laptops, PDAs, smart watches, consumer entertainments etc.

• Enterprise Infrastructure – covering servers, hard disks, SSDs, networking

infrastructures like routers etc.

• Embedded Intelligence – covering automotive app processors, automotive chips,

microcontrollers, smartcards etc.

 The data of ARM market share in different segments, as obtained from ARM

Holdings 2012 Q4 results [139], is shown in Figure 14.

Figure 14. ARM Market Share as per ARM Holdings 2012 Q4 results [139]

	

	

	

59	

ARM core is being used by more than 1000 partners. These partner companies, which

make chips based on ARM architecture, include Apple, Samsung, Qualcomm, Atmel,

Broadcom, Freescale Semiconductor, Nvidia, ST Microelectronics, and Texas

Instruments.

Globally, ARM is one of the most widely used processor architecture. Till date, more

than 50 billion ARM processors have been sold and out of which 10 billion were shipped

in 2013 alone [140] . As per ARM Holdings 2013 Strategic report [141], ARM technology

is now reaching 75% of people in the world and ARM partners are shipping more than

2.5 billion ARM based chips every quarter. Another statistics states that ARM based chips

are found in nearly 60 percent of the world’s mobile devices and if these chips are laid

end-to-end, they would encircle the globe a dozen times [142]. All this vindicates Steve

Fuber’s statement in [143] that ARM 32-bit architecture is the most widely used

architecture in mobile devices and is one of the most popular 32-bit architectures in

embedded systems. The latest reports of ARM holdings for year 2015 obtained from

[139], also vindicates the fact that ARM chips are being used by leaders of different

industry segments. Figure 15 shows the market dominance of ARM in various segments.

Figure 15. ARM Dominance in Different Market Segments [139]

The way ARM has come to dominate this segment of computing, it becomes quite

logical that evaluation of the algorithms under discussion be done on ARM architecture.

3.2 A Brief about ARM Architecture

ARM processor was built in 1985 by Acorn Computer, a British company, with the

objective of using it for low cost personal computers (PCs). Later, Acorn introduced an

advanced RISC machine and changed ARM from Acrorn RISC Machines to Advanced

RISC Machines [144].

ARM itself does not manufacture its own electronic chips, but licenses its designs to

other semiconductor manufacturers known as partners (as referred to in the previous

section). From time to time, ARM upgrades its design and releases these under license to

	

	

	

60	

manufacturers for manufacturing the products. Till now, ARM has released eight such

designs from ARMv1, ARMv2 to ARM v7 and ARM v8, which are presently operational.

Since the first ARM1 prototype in 1985, ARM designs have come a long way. Now

ARM processor has become a key component of many 32-bit embedded systems. The

success of ARM is attributed to its simple and powerful original design based on RISC

(Reduced Instruction Set Computing), which is continuously being improved with

technical innovations [145]. Pure RISC philosophy is based on five major design rules;

a) less complexity at hardware level and have simple instruction that executes in single

cycle, b) compiler / programmer handle complex operations by combining simple

operations, c) majority of instructions of fixed length resulting in efficient pipelines, d)

large general purpose registers used for data as well as addresses, and e) usage of Load-

Store instructions for transferring data between register-banks and external memory.

However, the difference of ARM instruction set from pure RISC definition in certain

ways makes it more suitable for embedded and mobile applications. These are:

3.2.1 Variable Cycle Execution for Certain Instructions

Execution of every ARM instruction does not take place in a single cycle. Some of the

instructions like Load – Store may require more cycles when called to transfer multiple

registers. Such execution of instructions of variable cycles improves code density as

multiple register transfer is common operation at the start and end of function/subroutine

call.

3.2.2 Inline Barrel Shifter

Inline Barrel Shifter is a hardware component that can pre-process one of the operands

before it is used for operation. It enhances the capability of many instructions and

improves the code density and performance.

3.2.3 Unique Register Set and Seven Operating Modes

ARM cores implement the concept of General purpose registers and Banked registers,

all of 32-bit size. ARM core has total of 37 registers – 31 general purpose registers and 6

status registers. But all the registers are not accessible all the time. The visibility and

operation on register depends on the operating mode of ARM processor. The processor

can work in seven different operating modes with maximum of 18 registers accessible in

	

	

	

61	

an operating mode. These processor operating modes are: abort, fast interrupt, request,

interrupt request, supervisor, system, undefined, and user. For example in the user mode,

we can access 17 registers (IUOM	IA¢, L.P	ci5I).	Registers IAó, IAô, IA¢	are also tagged as

5i − 5OLc}	iMJ.OHI, ?I − ?J.}	IHQJ5OHI	L.P	ic − iIMQILN	cM´.OHI.

Figure 16. ARM Register Set [145]

All registers, except IAô, IA¢ are orthogonal, and ci5I (Current Program Status

Register) is used to monitor and control internal operations. Status register has four fields

- Flags, Status, Extension, and Control.

Figure 17. Program Status Register Fields

 Shaded parts in Figure 17 are not used in several ARM cores and are reserved. Flags

are used for implementing conditional execution. Control field has three parts – ‘Mode’

to select processor operating mode, ‘T’ to switch to thumb state, and ‘interrupt mask’.

Except user mode, all other modes are privileged and can read as well as write all

fields of ci5I. However, in user mode, flag fields can be read as well as written but

	

	

	

62	

control field can only be read. Supervisor mode is the mode in which kernel of operating

system works. Processor operating mode can be changed by writing in control field of

ci5I. However, this can not be done in user mode. It can be done in privilege mode only.

Change in mode also takes place whenever core responds to interrupts or exceptions.

All modes (except system mode) have set of banked registers (coloured grey in Figure

16). Banked registers map one to one onto a user mode register. Whenever the operating

mode is changed, the banked registers from the new mode will replace an existing

register. For example, whenever these is a change in the operating mode from user mode

to interrupt request mode because of some interrupt, the user registers IAó	L.P	IAô are

banked and replaced by IAó_Dâ≠	L.P	IAô_Dâ≠ respectively and ci5I also gets stored in

5i5I_JIÆ. However, ci5I is not stored when mode is changed by writing into control

field of ci5I.

This study uses the concepts briefed in this subsection to read Cycle Count Register

for profiling the SHA-3 final round candidate algorithms on ARM architecture.

3.2.4 Conditional Execution

Most ARM Instructions can be executed only if certain conditions are met (based on

setting of Flags). This helps in reducing branch instructions and thus achieve better

performance and improve code density.

3.2.5 Thumb, Jazzele, and SIMD Instruction Sets

ARM cores support multiple instruction sets. For example, ARM cores, since

ARM7TDMI, have Thumb instruction set for improving code density. When the

processor executes in Thumb state, it executes a compact 16-bit subset of ARM

instruction set. This helps in saving of space by limiting some possibilities compared to

full ARM instruction set or by making certain operands implicit. Thumb2 technology, an

extension of Thumb instruction set, has certain additional 32-bit instructions like bit

manipulation, conditional execution etc. added to Thumb set to give it more breadth.

Certain ARM cores also support 8-bit Jazzele instruction set for efficient execution of

Java byte codes. Certain Cortex-A Series processors of ARM also support SIMD and

Advanced SIMD instruction set (also known as NEON instruction set) which is a

combined 64 and 128-bit SIMD instruction set for media and signal processing

applications.

	

	

	

63	

The state of ARM core can be switched from ARM to Thumb or to Jazzele instruction

set by changing the relevant bits in ci5I. This helps in achieving efficiency and high code

density.

3.2.6 Pipeline

ARM implements the pipeline execution characteristics of a pure RISC design

philosophy by fetching next instruction while instructions in hand are still being decoded

and processed for speeding up execution. The pipeline design differs from one family of

ARM cores to the other. For example, ARM7 uses three-stage pipeline, ARM9 uses five-

stage pipeline, and ARM10 extends it further to six-stage pipeline, though the pipeline

executing characteristics remains the same.

3.2.7 Core Extensions

Core Extensions, the hardware components placed next to ARM core, improve

performance, manage resources, and provide extra functionality. The Hardware

extensions coupled with ARM core will differ from one ARM family to the other, but a

few common ones that are wrapped around ARM core in majority of ARM families are:

Cache Memory Modules, Memory Management, Coprocessors. Coprocessor CP15 is

used in this study to compute cycles consumed by coded algorithms.

More than one coprocessor can also be attached to ARM core. Coprocessors extend

the processing features by extending instruction set or sometime by providing

configuration registers. To access coprocessor, ARM provides group of dedicated

instructions. For example, ARM core uses Coprocessor CP15 to control the cache,

memory management etc. Coprocessors can also provide specialized instruction sets like

vector floating point operations.

3.3 ARM Processor Portfolio and Finalization of Processor(s) for

Analysis

3.3.1 Different ARM Processors

ARM designs a number of processors that are grouped into different families. The

ARM processor portfolio [146] consists mainly of:

	

	

	

64	

A) Cortex–A Series: Also known as ARM Cortex Application Processors, Cortex-A

series processors are high performance processors for devices undertaking complex

computational tasks like hosting a feature rich operating system and supporting multiple

software applications. These processors are used in high performing consumer,

embedded, and enterprise devices like Smartphones, Tablets, Netbooks, Smart TVs,

Servers etc. that have memory management system controlled by rich operating systems

like Android, iOS or some sort of Linux flavour. ARM Cortex-A8 architecture empowers

mobile processors that are used in mobile phones and tablets in today’s world. The

commonly used processors in this range include Cortex-A5, Cortex-A7, Cortex-A8,

Cortex-A9, Cortex-A15, Cortex-A17. All these processors are based on ARMv7-A

architecture and all support traditional ARM, Thumb, and high performance Thumb2

instruction set.

B) Cortex–R Series: Also known as ARM Cortex Real Time processors, Cortex-R

processors are used for deeply embedded and real time markets where high availability,

fault tolerance, and deterministic real-time responses are crucial. These processors are

commonly used in ASIC, ASSP, and MCU SOC applications in Automotive sector (e.g.

airbag, braking, engine management etc.), Storage (hard disk and solid state drive

controllers), Enterprise (inkjet and multi functional printers), and Home (Blu-ray players,

cameras) etc. The main processors in this series are Cortex-R4, Cortex-R5, Cortex-R7.

C) Cortex-M Series: Also known as ARM Cortex Embedded Processors, Cortex-M

processors are targeted towards smart and embedded applications. These processors are

generally optimized for Micro Controller Units and mixed signal devices such as IoT,

connectivity (router etc.), human interface devices, consumer products, and medical

instrumentation. The main processors in this series are Cortex-M0, Cortex-M1, Cortex-

M3, Cortex-M4, Cortex-M7.

D) Classic Processors: ARM Classic processors refer to the processor families before

the launch of Cortex series. These families include ARM11, ARM9 and ARM7

processors. Classic ARM processors have been in the market for more than 15 years and

are still widely licensed through out the world, providing cost effective solutions to many

of today’s applications. Of these processors, ARM7TDMI is still the highest shipped 32-

bit processor in the market. As per ARM website, with more than 500 licenses and

shipping of over 1 billion devices every quarter, these processors are at the heart of over

	

	

	

65	

1/4th of all electronic products shipped. The main classic processors currently being used

are ARM7TDMI, ARM926EJ, ARM946E, ARM968E, ARM1136J(F), ARM1156T2(F),

and ARM1176JZ(F).

E) SecurCore Processors: SecurCore processors are mainly used for Smartcards. The

three processors in this series are SC300, SC100, and SC000 which are either based on

Cortex-M series processors or Classic ARM7 processors.

3.3.2 Finalization of ARM processor(s) for Analysis of Algorithms

From the foregoing discussion on all ARM processor series (processor families), it can

be concluded that:

a) Application areas of Cortex-R processors do not require usage of hash functions.

So R-series processor family has been excluded from this analysis of five SHA-

3 final round candidate algorithms (hash functions).

b) On the other side, Cortex-A series processors are most commonly used in devices

(like Smartphones, Netbooks, Smart TVs, and servers) that run applications

requiring use of hash functions for security concerns like achieving integrity and

authentication, implementing digital signatures and digital time stamping,

generating session keys, maintaining secure web connections, and verifying

integrity of files etc. So it was decided to carry out analysis of SHA-3 final round

candidate algorithms (hash functions) on processor from Cortex-A series.

c) Cortex-M series processors are generally not independently used in devices with

rich operating systems. However, their usage in human interface devices (like

gaming), consumer devices, networking devices like routers may require usage

of hash functions for achieving one or other security objectives. So it was decided

to carry out analyses of SHA-3 final round candidate algorithms on processor

from Cortex-M series.

d) Classic Processors: It was decided to analyse the selected candidate algorithms

on processor from the classic family also as these processors are still widely used

in many application areas.

e) SecurCore Processors are either based on Cortex-M series or Classic ARM7

series [146]. As processors from both these families have been already included,

so no separate evaluations were done on SecurCore Processors.

	

	

	

66	

The matrix in Table 2 represents the final list of processors from different processor

series that were finalized for evaluating performance of SHA-3 final round candidate

algorithms.
Table 2. List of Processors Selected for Evaluation of SHA-3 Final Round Candidate Algorithms

3.4 Introduction to SHA-3 Final Round Candidate Algorithms

The five SHA-3 final round candidate algorithms are briefly introduced in this section.

3.4.1 Keccak

The SHA-3 winner Keccak has nothing that looks like MD4 / MD5. It uses Sponge

construction (as explained under the heading ‘2.2.5 Sponge Construction’) for building

hash function 8HccL} − b with variable length input and arbitrary output length based

on a fixed length permutation 8HccL}	 − 9 operating on fixed number of bits a. The

building block 8HccL} − 9 uses one of the permutation out of the seven permutations

named as 8HccL} − 9[a] and width a is defined as a	 = 	25 ∗

	2;	FℎHIH	?	KLIJH5	9IMN	0	OM	6.	

As per the above relation, width a can be 25, 50, 100, 200, 400, 800 or 1600.

8HccL}	– 	9[a], characterized by two parameters: bit rate I and capacity c, holds the

relation a	 = 	I	 + 	c,	and operates on state	L. The inner state L is a three-dimensional

array of elements of GF (2) and is written as L 5 5 [2;]. For Keccak – f[1600], state L

ARM Processor Series Processor and Tools used

ARM Application

Processors (Cortex-A

series)

Cortex-A8 processor

• Using Open Board AM-3359 from Phytec.

• Running Embedded Linux

ARM Embedded

Processor (Cortex-M

series)

Cortex-M4 processor

• Using Stellaris LM4F232H5QD Evaluation Board

• Without Any Operating System

Classical ARM

Processor (ARM7

family)

ARM7TDMI processor

• Using IAR Embedded Workbench (Simulator)

	

	

	

67	

will be three dimensional array L 5 5 [64] and for Keccak – f [100], state L will be

three dimensional array L 5 5 [4]. Initially, all the bits of state are initialized to zero.

The input message is padded using multi-rate padding and divided into blocks of I	bits

each. The sponge construction as explained in “2.2.5 Sponge Construction” then proceeds

in two phases: ‘Absorbing Phase’ in which each block of input message is XORed with

I bits of state followed by application of Keccak-f[b], and all this is succeeded by

‘Squeezing Phase’, in which first I bits of the state are returned as output block,

interweaved with application of Keccak-f[b]. The number of blocks are decided by the

user depending on the desired hash output size. The last c bits of the state are neither

affected by the input messages nor are outputted during the squeezing phase.

Each permutation ‘f’ (also termed as Keccak – f[b]) as mentioned in Figure 7 is an

iterated permutation that makes use of .â rounds (indexed from 0	OM	.â	– 	1) and each

round % carries out multiple operation in GF(2). For SHA-3, NIST needed four hash sizes

i.e. 224, 256, 384, and 512 bits and for these sizes, Keccak recommended the following

fixed output length variants:

For output size of 224: b = 1600, r = 1152, c = 448; for output size of 256: b = 1600, r

= 1088, c = 512; for output size of 224: b = 1600, r = 832, c = 768; for output size of 224:

b = 1600, r = 576, c = 1024. Full details are available in [19].

3.4.2 Skein

Skein is defined for three different internal state sizes: 256-bit, 512-bit, and 1024-bit.

As per [9], Skein – 512 is prime proposal, Skein-1024 is ultra-conservative variant, and

Skein-256 is low memory variant. Skein can produce variable length hash output as

desired by the user. Skein uses tweakable block cipher – Threefish, as the basic building

block and UBI (Unique Block Iteration) chaining mode to process arbitrary input size to

generate desired output.

Threefish uses three mathematical operations - XOR, Addition, and Rotation (with a

constant) - all of which are done on 64-bit words. The core of Threefish is MIX function

which is used in different rounds. Every round of Threefish–512 uses four MIX functions

followed by a permutation, named ‘Permute’ of the eight 64-bit words. A sub-key is

inputted every four rounds. Figure 18 illustrates four of the 72 rounds of Threefish-512.

The rotation constant of MIX function are chosen that are repeated every eight rounds.

	

	

	

68	

UBI calls multiple instances of Threefish to process variable size input to fixed size

output. Skein is detailed in [9].

Figure 18. Four of the 72 Rounds of Threefish 512 [9]

3.4.3 Grøstl

Grøstl is an iterated hash function and its compression function is built from two large

distinct fixed permutations. It is a byte oriented SP (Substitution and Permutation)

network that makes use of S boxes and diffusion layer similar to AES. It is based on the

wide pipe design i.e. size of internal state is considerably larger than the hash output size.

Grøstl can output message digest of any number of bytes from 1 to 64 i.e. 8 bits to 512

bits in steps of 8 which covers SHA-3 submission requirement i.e. to have message

digests of 224, 256, 384, and 512 bits.

Figure 19. Working of Grøstl [24]

For 256-bit or lesser output, Grøstl uses the state size (and block size) of 512 bits but

for higher output sizes, it uses 1024 bits as state (and block) size. The input message is

divided into blocks of ? bits each (512 or 1024 as stated above) and an initial value !U 	=

	

	

	

69	

	XY is defined, and subsequently the message blocks mi are processed as !D 	=

	9	(!DEA	,0D) where J varies from 1 to maximum number of blocks. The final output is

truncated to the desired width in a final output transformation	Ω.

The compression function 9	is based on two permutation functions ¥ and µ and can

be defined as 9 ℎ,N = Ñ ℎ⨁N ⨁∑(N)⨁ℎ	. Two types of compression functions have

been defined - one for hash size up to 256 bits and the other for hash sizes of more than

256 bits. For 256-bit hash size, the state size is defined as 8x8 matrix whereas for larger

hash size, the state matrix has 8 rows and 16 columns. Just like the AES, each round

consists of four operations: Add-Round-Constant, Substitute-Bytes, Shift-Bytes, and

Mix-Bytes. S boxes are also similar to AES and value of constants vary for P and Q

blocks. For 256-bit hash sizes, a total of 10 rounds are operated but for longer hash sizes,

14 rounds are operated. The final output is obtained using Ω ® = OI´.c-	(Ñ ® 	⨁	®)

where trunkn discards all but trailing n bits of x. Details of various round operations are

available in [24].

3.4.4 Blake

The Blake hash function is based on HAIFA iteration mode. For 256-bit hash, Blake

operates on 32-bit word size and 512-bit block size whereas for 512-bit hash it operates

on 64-bit word size and 1024-bit block size. Blake-224 is derived from Blake-256 while

Blake-384 is derived from Blake-512 with changed initial values. The compression

function uses local wide pipe design making use of salt, counter (number of message bits

processed so far) to compress each message block distinctively. As illustrated in Figure

20, the large inner state is initialized from salt, counter, and initial values which is updated

with message dependent rounds. At the end, state is compressed to return chain value for

the next call of compression function for another message block.

Figure 20. Local Wide Pipe of Blake [26]

	

	

	

70	

The compression function takes Chain value (8 words - ℎU	OM	ℎ•), Counter (2 words -

OU, OA), Salt (4 words - 5UOM	5ó) and Message block (16 words - NU	OM	NA¢) as input to

generate a new chain value of eight words (ℎU4 	OM	ℎ•4) as output. The initial value used in

Blake is same as that of SHA-2 but Blake also makes use of 16 constants (cU	OM	cA¢) and

ten permutations. The inner state of compression function is of 16 words (32-bit or 64-bit

word depending on the hash size) and is arranged in a matrix of 4x4. The compression

function of Blake-224/256 iterates a series of 14 rounds whereas that of Blake-384/512

iterates a series of 16 rounds. In each round, all the four columns of inner state are updated

independently after which four disjoint diagonals are updated. While updating column or

diagonal, two message words are injected according to round dependent permutation. To

minimize similarity, each round is parameterized by a distinct constant. After all the

rounds of compression function, a new chain value is extracted from state KU	OM	KA¢ with

an input of initial chain value and salt. Blake is detailed in [26].

3.4.5 JH

JH uses large block cipher with constant key to generate compression function. It

utilizes generalized AES design methodology to design a large block cipher from small

components [25]. The compression function structure, as given in Figure 21, compresses

512-bit message block 0(D) and 1024-bit !(DEA)into 1024-bit !(D).

Figure 21. Compression Function of JH [25]

The JH hash function consists of the following steps : (a) Pad the message 0 so that

it is in multiples of 512 bits, (b) Parse the padded message into N 512-bit blocks named

as 0(A),0(B), . . . , 0(C) and each 512-bit block is expressed as four 128 bit words e.g.

	

	

	

71	

0U
(D),0A

(D), 0B
(D), 0ó

(D)	are four 128 bit words of J_é block (c) Set the initial value !U (d)

Compute !(C)by compressing	0(A),0(B), . . . , 0(C) iteratively as mentioned in Figure 21.

(e) Generate the message digest by truncating !(C). The last 224, 256, 384, or 512 bits of

!(C) are selected as message digest for JH-224, JH-256, JH-384, KH-512 respectively.

Operations carried out by èw and other operations are detailed in [25].

3.5 Performance Analysis of Algorithms on ARM Cortex-A8 Processor

Cortex application series processors, as discussed earlier, are extensively used in

environment that require usage of hash function for achieving multiple security goals.

This section will present in detail the technique, procedures, tools and methodology used

to evaluate SHA-3 final round candidate algorithms on ARM Cortex-A8 processor. The

work discussed in this section has been published in [147].

3.5.1 Hardware and Software Tools Used

A) Cortex – A8 Core

From among the Cortex Application series, ARM Cortex-A8 processor was picked for

this study. ARM Cortex-A8, a high-performance single core 32-bit processor, introduced

by ARM Holdings in 2005, was the first processor supporting the ARMv7-A architecture.

Cortex-A8 was also the first Cortex design to be adopted for mass consumption [148]. It

has been widely shipped in a range of mobile consumer devices. A few of the Systems

on Chips (SOC) that have implemented Cortex-A8 core includes Apple A4, Samsung

Exynox 3110, Texas Instruments (TI) Sitara ARM Processors, TI OMAP3, Rock chip

RK2918, Freescale Semiconductor i.MX51. Key features of Cortex-A8 [149] are:

• Frequency up to 1GHZ giving 2 Dhrystone MIPS / MHZ.

• Supports Thumb, Thumb-2, NEON(64-bit) and VFPv3 Floating point ISA

• Optimized and integrated L1 and L2 cache integrated into the processor to ensure

power efficiency and optimal performance. L1 cache can give single cycle access

time.

• Implements Dynamic Branch predictor with >95% accuracy and houses a full MMU

that enables Cortex-A8 to run rich OS in variety of applications.

• Support integer pipeline depth of 13-stage.

	

	

	

72	

B) Target Machine: OpenBoard-AM335x Kit with phyCORE-AM335x SOM

For evaluation, OpenBoard-AM335x kit from PHYTEC [150] was used. This

Development kit houses phyCORE-AM335x System on Module (SOM) that features

Texas Instruments’ SitaraTM ARM CortexTM – A8 CPU. Texas Instruments’ AM335x

family of processors deliver up to 720 MHz performance. The OpenBoard-AM335x also

includes graphics chip, communication subsystem, 512 MB DDR3 RAM, 512 MB

NAND, 10/100/1000 Ethernet with dual-port switch and UART (RS232) interface. Image

of the board is given in Figure 22.

Figure 22. Cortex-A8 Based OpenBoard-AM3359 from PHYTEC [151]

The OpenBoard has boot loader, kernel, and file system. It runs embedded Linux

kernel 3.2.0. PHYTEC also provided board support packages including GCC C/C++

cross development tool chains and bash shell script to prepare the host machine for

development [151].

C) Host Machine Running Linux

This study needed a host system that could be used to code the algorithms, cross

compile the same for target machine (OpenBoard-AM335x), access the target machine

thorough ‘Minicom’ (explained in next section), and transfer files to the target machine

through SCP (Secure Copy protocol) or such other tools.

For this, Dell Inspiron 3542 Laptop housing 1.7 GHz Intel Core i5 4210U processor

with 4 GB DDR3 RAM was used as host machine. This machine runs 32-bit Linux

Ubuntu 12.04 LTS version.

D) Host and Target Machine Setup

The host machine (Dell Inspiron laptop running Linux Ubuntu) and the target machine

shared two communication links one through Ethernet ports and the other through USB

and Serial port (RS232) (using MCP2200 USB to Serial converter microchip).

	

	

	

73	

Figure 23. Host and Target Machine Setup for OpenBoard-AM335x

E) Minicom Software and Its Initial Setting

‘Minicom’ is a utility software used as text-based terminal emulation programme in

Linux and other such operating systems. It is commonly used for setting up remote serial

console (based on RS-232 interface). Minicom was used to emulate OpenBoard-AM335x

from host machine through serial port. Minicom provides command line interface to

access Linux target board on host machine. Using the terminal emulation provided by

Minicom, one can configure Linux on target board (like installing boot loaders, flashing

kernel) and run SCP or TFTP to transfer files from host to board and vice versa. As host

machine did not have serial port so USB to serial converter (MCP2200) was used for

connecting host and target machine (board). The instructions to setup and use Minicom

are given in Appendix -1.

F) GNU Cross-Platform Development Tool-chain

The host machine, on which the algorithms were coded, is an x86 machine running

Linux Ubuntu and the target machine on which the algorithms were to be evaluated is

ARM Cortex-A8 based machine running embedded Linux. So, a cross compiler was

required that could create executable code for platform other than the one on which the

compiler itself is running. In fact, to generate binaries of coded algorithms that can

execute on target Cortex-A8 board, not only cross compiler, but full cross-platform tool-

chain is required. Tool-chain includes linkers, assembler, C (or other language) compiler,

library, and headers.

Configuring and building an appropriate cross-platform GNU development tool-chain

is a complex and delicate operations. Yaghmour has given detailed steps in chapter 4 of

[152] to configure and build tool chains. For the present study, tool chain provided by

PHYTEC has been used.

	

	

	

74	

G) SCP Program and Interface Configuration Utility

For transferring files between the host and target machines, we used SCP program that

implements SCP (Secure Copy Protocol) as a service daemon. SCP uses Secure Shell

(SSH) for data transfers. Command line scp is provided in most of the SSH

implementations. The syntax of scp is similar to cp command:

Copying from host:

scp			source_file			user@host:directory/targetfile	

Copying to host:

scp			user@host:directory/sourcefile			target_file	

To use scp program, both the host and target machine of the setup need to be connected

to Ethernet cable (as shown in Figure 23) and identified by unique IP address. To assign

unique addresses to both the host and target machine, interface configuration (ifconfig)

utility	was used. Ifconfig is quite a versatile utility and is used to configure, manage, and

query network. The command used to assign address to the host and target machines was:

ifconfig		eth0		192.168.1.12	up		

The same command was used on both the host and target side but with different IP

addresses. For the setup, IP 192.168.1.12 was assigned to the host machine and

192.168.1.11 to the target machine.

H) Additional Development Tools by PHYTEC

The Ubuntu does not come with all the pre-requisite archives for development. So to

prepare the host for development, the bash shell script provided as Board support package

with OpenBoard-AM335x [151] was also downloaded. The commands used were:

wget			ftp://ftp.phytec.de/	Products/India/OpenBoardAM335x/.../elinux_pkg.sh	

chmod		+x		elinux_pkg.sh		and	then	run		sh		elinux_pkg.sh	

3.5.2 Methodology Used

A) CPB as Performance Metric

For evaluating the performance of various algorithms on Cortex A8 processor, the

performance parameter used was ‘Cycles per Byte’ (CPB) where CPB is the number of

cycles consumed by the hash function divided by the number of input bytes.

	

	

	

75	

For performance metric, execution speed in units of time was the other option. For this

study, CPB was preferred as performance metric because contrary to execution speed,

CPB is architecture oriented, and does not change with the frequency of the device used.

Thus CPB is a better measure than execution speed.

Secondly, for computing CPB, the cycles after computation were divided by total bytes

with padding. For example, if data of 100 bytes (800 bits) is inputted to Grøstl-512

algorithm, then initialization functions will do padding to generate at least one block of

1024 bits. So, the cycles consumed were divided by 1024 (bits after padding) rather than

800 bits (input data without padding).

B) Hash Function as a Whole rather than Compression Phase Alone

The five candidate algorithms, just like other hash functions, have three stages i.e.

Initialization, Compression, and Finalization. Initialization involves padding the input

data, setting the initial value to internal state and parameters, and generation of lookup

tables etc. The compression phase is the main part that consists of multiple calls to

compression function depending on the number of input blocks. In every call to

compression function, the internal hash state is updated using the current state and one

message block. The amount of time spent in this phase is directly proportional to the

message length and accounts for the largest part of overall execution time or cycles

consumed. The Finalization phase usually involves the processing of final block

(including padding block) and a final call to output transformation that gives the resulting

value. Many researchers often measure the compression phase only for benchmarking

purpose as it is a major part of the total execution time. Undoubtedly, initialization and

finalization phases take relatively lesser time than the compression phase. However, these

phases also vary considerably with the algorithm concerned. So, in this study for

performance evaluation, the clock cycles consumed by all the three phases were measured

rather than only the compression phase.

C) Optimized 32-bit Implementation of Hash Algorithms Used

As desired for SHA-3 submission, the five finalist algorithms can produce hash output

of 224, 256, 384, and 512 bits. The federal notice for SHA-3 competition [27] had asked

for reference implementation as well as two optimized implementations – one optimized

for 32-bit platform and another for a 64-bit platform. As the Target platform (Cortex A8)

	

	

	

76	

selected for this study is a 32-bit platform, so a 32-bit optimized submission was used and

all five SHA-3 finalists were implemented for 224, 256, 384 and 512-bit hash output.

The algorithms were coded with minimum optimization for Target platform (i.e.

ARM) as the purpose was to analyse performance of the algorithms with minimum

optimization on Target platform to get realistic results rather than optimized results which

may vary according to the level of optimization of the code. Also all coded hash functions

were compiled without any compiler’s optimization level using GNU cross-platform

development chain provided along with OpenBoard335x. The syntax of the same is:

arm-cortexa8-linux-gnueabi-gcc	 algorithm_code.c				-o					algo_binary			

D) Computation of Cycles Using System Control Coprocessor

To measure the cycle consumed, System Control Coprocessor CP15 available with

Cortex A8 was used. The CP15 controls and provides status information like cycle counts.

Out of various system control registers of CP15, ‘c9’ register was used. The detailed

methodology and approach of using CP15’s ‘c9’ for accessing cycle count is detailed in

section ‘3.5.3 How Coprocessor CP15 is Used to Access Cycle Count Register (CCNT)’.

Using this methodology, the function for reading the Cycle Count register was written

and this function was called before and after the call to !L5ℎ	() function. The difference

in the two readings gave us the cycles consumed by the hash algorithm.

E) Averaging the Cycle Count and Subtracting the Overhead

The two calls to a function, one before a function Hash () and another after function

Hash (), that reads Cycle Count register will measure the exact cycles consumed by the

function Hash () as well as the cycles spent in other processes or in the kernel. There is

no way to restrict the measurement to a single thread. To reduce this effect, the cycle

consumption was measured multiple times and then the average was calculated to record

the readings. Also the above function, used to read Cycle Count Register, is not free. It

also has some overhead. This overhead however is fixed and it was computed multiple

times on an idle system and averaged out to find the exact overhead.

3.5.3 How Coprocessor CP15 is Used to Access Cycle Count Register (CCNT)

For counting cycles consumed by a set of instructions, System Control Coprocessor

CP15, available in Cortex-A8, was used. The purpose of CP15 was to control and provide

	

	

	

77	

status information for the functions implemented in the processor. The main functions of

the System Control Coprocessor CP15 as detailed in [149] are:

• Overall system control and configuration

• Cache configuration and management

• Memory Management Unit (MMU) configuration and management

• Preloading engine for L2 cache

• System performance monitoring.

And out of the above, the main concern of this study was System performance

monitoring function. Performance monitoring function keeps track of system events

such as cycle counts, cache misses, TLB misses, pipeline stalls, and other related features

for enabling system developers to profile the performance of their systems. Before

proceeding further, a brief about coprocessor instructions is being given as the same will

be used to access various registers of CP15.

Syntax of Coprocessor Instructions: For reading and writing from Coprocessor

register, MRC and MCR instructions are used. MRC is used to read coprocessor registers

and MCR instructions is used to write coprocessor registers.

The template of instruction is:

< 0%x|0x% > 	 {< cM.P >}	ci, MicMPH1, %P, x., xN	{, MicMPH2}	

• ci represent the coprocessor number. In this case it will be i15	(xÑ15).

• MicMPH fields represent operation to take place on the coprocessor.

• The x., xN describe registers within coprocessor. x. is primary register, xN is

the secondary register, and MicMPH2 is a secondary register modifier. Secondary

register is also known as ‘extended or operation register’.

With respect to xÑ15, the example of MRC and MCR instructions is given below:

0%x	i15, 0, < %P >, c9, c12, 0	; 	%HLP	Ñ0@x	%HQJ5OHI	

0x%	i15, 0, < %P >, c9, c12, 0	; 	πIJOH	Ñ0@x	%HQJ5OHI	

The first instruction in the above example reads Performance Monitor Control Register

(addressed by c9, c12	cMiIMcH55MI	IHQJ5OHI5)	and copies the contents to %P register of

ARM core (%P may be any register from IU to IAó as detailed in ‘3.2.3 Unique Register

	

	

	

78	

Set and Seven Operating Modes’). Similarly, the second instruction writes content to

Performance Monitor Control Register.

CP15 Coprocessor Registers used for Cycle Count: CP15 has multiple System

Control Coprocessor registers and of these the most important register for this research is

c9, which has 16 operation registers from c0 to c15. The register allocation details of c9

(extracted from [149]) is given below in Table 3.
Table 3. Details of c9 Register of CP15 Coprocessor

Sr.
No.

Primary
Register

Opcode1 Operation
Register

Opcode2 Detail (Register or operation)

 c9 0 c0 to c11 0 to 7 undefined

A c9 0 c12 0 Performance Monitor Control
register

B 1 Count Enable Set Register

 2 Count Enable Clear

C 3 Overflow Flag Status register

 4,5 Multiple purposes not related to
this study

 6, 7 Undefined

D c9 0 c13 0 Cycle Count register

 1,2 Multiple purposes not related to
this study

 3 to 7 Undefined

E c9 0 c14 0 User enable register

 1 Interrupt enable set

F 2 Interrupt enable clear register

 3 to 7 Undefined

 c9 0 c15 1 to 7 Undefined

The items in bold font (and serial numbered from A to F) are important for accessing

cycle count from programme running in user mode. These primary and secondary

(operation) registers, important for accessing cycle count, are discussed below.

A) ∫ª, ∫tq	 ºΩ∫ºæøq = ¿ -Performance Monitor Control Register:

 The purpose of the Performance Monitor Control register (PMNC) is to control the

operation of a) the four Performance Monitor Count Registers, and b) the Cycle Counter

Register (CCNT).

	

	

	

79	

PMNC is read/write register and is accessible as determined by "c9, c14	(MicMPH2	 =

0)- User enable Register” (Sr. No. E in Table 3). The PMNC Register is always accessible

in privileged modes.

Figure 24. Format of Performance Monitor Control Register [149]

The details of various bits shown in Figure 24 are available in [149]. The important

ones that were accessed for measuring cycle count are:

E (Enable Bit) : Set to 1 to enable all counters including CCNT.

P (Performance Counter Reset) : Set to 1 to reset all performance counters to zero.

C (Cycle Counter Reset) : Set to 1 to reset CCNT to zero

D (Cycle Count Divider) : Kept it to 0 as we wanted cycle counter to be

incremented after every cycle rather than after 64

processor cycles.

The code used to implement the setting of PMNC bits is given below.

static	inline	void	initialize	(int32_t	reset,	int32_t		divider)	{	
	 int32_t	value	=	1;		//	This	will	initialize	bit	‘E’	of	PMNC	and	thus	enable	all	counters		
	 //	For	resetting	the	counters	
	 if	(reset)	
	 {	
	 	 value	|=	2;					//	Set	Bit	‘P’	as	well	‘E’.	So	enable	and	reset	all	counters	to	0	
	 	 value	|=	4;					//	Set	Bit	‘C’	thus	also	reset	cycle	counter	to	zero.	
	 }	
	 if	(divider)	
	 	 value	|=	8;					//	enable	"by	64"	divider	for	CCNT.	Not	done	in	our	case.	
	 value	|=	16;		//	Enable	export	of	events	from	the	event	bus	to	monitoring	block	
	 //	program	the	PMNC	register:	
	 asm	volatile	("MCR	p15,	0,	%0,	c9,	c12,	0\n"	::	"r"(value));		
}	

The initialize	()	function as defined in the code is called with parameter 1 and 0 i.e. 32-

bit variable reset	 is assigned with value 1 and divider is assigned with value 0. The

comments in red colour explain the various bits set by the code. asm	volatile	keywords

are used to embed assembly instruction MCR in ‘C’ code. The comparison of MCR

instruction, used in this code with template given in the beginning of this section, clarifies

	

	

	

80	

that instead of ARM register %P, the immediate value is used. MicMPH1 and MicMPH2 is

assigned the value 0 in this instruction. A brief introduction of writing inline assembly in

C is also given in Appendix-II.

B) ∫ª, ∫tq	 ºΩ∫ºæøq = t -Count Enable Set Register:

The purpose of the CouNT ENable Set register (CNTENS) is to enable or disable any

of the Performance Monitor Count Registers. The CNTENS Register is also accessible

as determined by "c9, c14	(MicMPH2	 = 0)- User enable Register” (Sr. No. E in Table

3).

The format of CNTENS is given in Figure 25.

Figure 25. Format of Count Enable Set Register [149]

The bit C is set to Enable Cycle Counter and P3, P2, P1 and P0 are set to enable all

counters. In initialize(int32_t	reset,	 int32_t	divider) function, the following instructions

has been used:

/*	Immediate	value	passed	to	source	register	make	sure	all	bits	as	CNTENS	are	set.	Opcode2	
also	changed	to	1	to	access	CNTENS	register	*/	

	 asm	volatile		("MCR	p15,	0,	%0,	c9,	c12,	1	\n"	::	"r"(ox8000000f));	

C) ∫ª, ∫tq	 ºΩ∫ºæøq = ¬ -Overflow Flag Set Register:

The purpose of the Overflow Flag Status register (FLAG) is to enable or disable any

of the performance monitor counters producing an overflow flag. While writing this

register, any overflow flag written with a value of 0 is ignored i.e. it does not get updated.

Any overflow flag written with a value of 1 clears the counter overflow flag to 0. The

FLAG Register is also accessible as determined by "c9, c14	(MicMPH2	 = 0)- User

enable Register” (Sr. No. E in Table 3).

	

	

	

81	

Format of FLAG register (i.e. bit positions required to be set) are exactly same as

CNTENS register and the following instruction in initialize(int32_t	reset,	int32_t	divider)

function are used to clear overflows.

//	Immediate	value	passed	to	source	register	make	sure	all	bits	as	FLAG	register	are	set.	
Opcode2	changed	to	3	to	access	FLAG	register	

	 asm	volatile		("MCR	p15,	0,	%0,	c9,	c12,	3	\n"	::	"r"(ox8000000f));	

D) ∫ª, ∫t¬	 ºΩ∫ºæøq = ¿ -Cycle Count Register:

The purpose of the Cycle CouNT (CCNT) register is to count the number of clock

cycles since the reset of register. The CCNT Register is also accessible as determined

by “c9, c14	(MicMPH2	 = 0)- User enable Register” (Sr. No. E in Table 3).

In all previous cases, the specific bits of registers were enabled by writing using MCR

coprocessor instruction, but this register will be read using MRC instruction. The

following code has been used to access CCNT register after calling initialize(int32_t	reset,	

int32_t	divider)	function.

Two calls to Read_cycle(void)	function are made, one before Hash()	and other after

Hash(). The difference in these values give the cycles consumed by Hash() function.

static	inline	unsigned	int	Read_cycle(void)		
{	

unsigned	int	value;		//	This	variable	will	be	used	to	store	cycles	clicked	since	last	reset	
						/*	Read	CCNT	register.	In	this	case	operational	register	has	changed	to	c13	and	opcode	2				
												has	been	set	to	0	*/	

asm	volatile		("MRC	p15,	0,	%0,	c9,	c13,	0	\n"	::	"r"(value));		
					return	(value);	}

E) ∫ª, ∫t√	 ºΩ∫ºæøq = ¿ -User Enable Register:

This is one of the most important register for accessing all the preceding registers. In

all previous registers (PMNC/CNTENS/FLAG/CCNT), it was mentioned that these

registers are accessible as determined by ‘c9, c14	(MicMPH2 = 0)-User Enable

Register”. Also a few of the above registers are accessible only in privileged mode e.g.

PMNC register. However, setting of EN bit in "c9, c14	(MicMPH2	 = 0)- User enable

Register” enables user mode access of all performance monitor registers.

	

	

	

82	

USERN is writable only in privileged mode and readable in any processor mode. The

format of USERN register is given in Figure 26.

Figure 26. Format of User Enable Register [149]

For enabling all performance monitor registers, EN bit needs to be set. The instruction

used to set the same in the present study is as follows:

asm	volatile		("MCR	p15,	0,	%0,	c9,	c14,	0	\n"	::	"r"(1));	

However, this instruction is neither written in Read_cycle(void)	 function nor in

initialize(int32_t	reset,	 int32_t	divider)	function. In fact, the above instruction acts as a

prerequisite for both these functions (Read_cycle and initialize). These functions will work

only if all performance monitoring registers have been enabled using the above

instruction. Also this instruction can not run in user mode and this instruction has to be

executed in supervisor mode. More details about this are in the next section.

F) ∫ª, ∫t√	 ºΩ∫ºæøq = q -Interrupt Enable Clear Register:

The purpose of the INTerrupt ENable Clear (INTENC) register is to determine if any

of the Performance Monitor Count Registers, PMCNT0 to PMCNT3 and CCNT,

generates an interrupt on overflow. The INTENC is a read/write register and its format is

exactly same as of CNTENS (given in Figure 25). When reading this register, any

interrupt overflow enable bit as 0 means the interrupt overflow flag is disabled and bit 1

indicates the interrupt overflow flag enabled. When this register is written, any interrupt

overflow bit written with 0 is ignored i.e. not updated and any interrupt overflow bit

written with 1 clears the corresponding interrupt overflow enable bit to 0.

The following code is used to disable counter overflow interrupts.

asm	volatile		("MCR	p15,	0,	%0,	c9,	c14,	2	\n"	::	"r"(0x8000000f));	

Practically this situation will not happen in any evaluation being done in this thesis.

The maximum value that a 32-bit register can store is 4,294,967,295 and none of the

coded algorithm under discussion in this study consumes so many cycles. Cycle count is

also reset after every computation.

	

	

	

83	

This register is also accessible only in privileged mode. So just like USEREN, there is

a challenge in writing into INTENC register as well. The next section deals with this

challenge.

3.5.4 Writing Kernel Module for Accessing USEREN and INTENC Register

The challenge in hand was to write USEREN and INTENC register of coprocessor

CP15. As discussed in the foregoing section, these registers can not be written in user

mode as these are accessible only in privileged mode. This challenge can be overcome

with the help of a Loadable Kernel module which are piece of code that can be loaded

and unloaded from the kernel on demand. This offers an easy way to extend the

functionality of a base kernel without having to rebuild or recompile the kernel again and

also allow execution of a code in privileged supervisor mode. Majority of device drivers

are also implemented as Linux kernel modules.

So, a kernel module containing the MCR instructions for enabling bits in USEREN

and INTENC register was written. The source code of kernel module written for this

thesis (named accessCP15.c) is given in Appendix–II. The makefile used to make the

code accessCP15.c is also given in Appendix-II. The make commands result in

accessCP15.ko file which is the desired loadable Kernel module.

The kernel module is loaded using insmod	accessCP15.ko command and unloaded

using rmmod	accessCP15.ko	command.

3.5.5 Step-wise Process at Host and Target Machine for Performance Analysis

A) At Host Machine

I. Create a Linux Kernel Module as mentioned under the head ‘3.5.4 Writing Kernel

Module for Accessing USEREN and INTENC Register’.

II. Code all the SHA-3 final round candidate algorithms in C with the same

methodology as specified under the head ‘3.5.2-C) Optimized 32-bit

Implementation of Hash Algorithms Used’. All codes follow API Profile�for

SHA-3 Submissions as mandated by NIST in [153]. The output of coded

algorithms must match the test vectors submitted in respective NIST submissions.

	

	

	

84	

III. Write Read_cycle(void) and initialize(int32_t	reset,	int32_t	divider) functions in all

the coded algorithms to access Cycle Count Registers as detailed in ‘3.5.3 How

Coprocessor CP15 is Used to Access Cycle Count Register (CCNT)’.

IV. Generate binaries for all algorithms, coded in step III, using GNU cross-platform

development chain provided with OpenBoard-AM335x. The command used for

compilation is:

arm-cortexa8-linux-gnueabi-gcc			algo_code.c			-o			algo_binary			

V. Transfer the following files from the host machine to target machine using the

ƒ∫Ω programme explained in ‘3.5.1-G) SCP Program and Interface Configuration

Utility’

a. Loadable kernel module – accessCP15.ko (created in Step-I)

b. The binaries as obtained in step IV.

c. All input files on which binaries will run and generate results.

The command used for transfer is scp		source_file			root@192.168.1.11:/home	

A) At Target Machine

I. Access target machine through Minicom serial console using following command

and enter password.

sudo	minicom.	

II. For confirmation, check the listing of files to ensure files sent from host machine

has been copied.

III. Load the Kernel module accessCP15.ko using following command

insmod	accessCP15.ko.	

IV. Run object file (binaries sent using ≈∆« command from host machine) one by one.

The algorithms were coded to read KAT files provided by NIST and the codes

generate output files containing message digests and cycle counts for each

separate input message. The output files are transferred back using scp	command

to host machine for further analysis.

3.5.6 Results and Discussion

For each algorithm, results were obtained for four different hash sizes i.e. 224, 256,

384, and 512 bits. For each hash size of an algorithm, results were recorded for 2554

	

	

	

85	

different inputs – input values starting from 0 bit, 1 bit up to 34304 bits. The various input

values chosen were same as KAT – Known Answer Test values asked by NIST [154].

The input values in KAT were classified as ‘Short’ and ‘Long’ message values and the

results presented here are also categorized accordingly. The ‘Short’ input values range

from 0 bit to 2040 bits (255 bytes) in a step of 1 bit each and ‘Long’ input values vary

from 2048 bits to 34304 bits (256 bytes to 4288 bytes) in steps of 64 bits each. So, for

each hash size of an algorithm, 2554 inputs were given and the obtained results were

recorded for analysis.

In this section, the results of all the five algorithms for 224-bit, 256-bit, 384-bit, and

512-bit hash sizes are presented in graphs.

A) Results for Short Messages

The results for Short messages are presented in Figure 27, Figure 28, Figure 29, and

Figure 30. The major observations on the results are as follows:

A-I) Blake, Keccak, and Skein compete closely

i. For 224 and 256-bit hash output, Blake stands out as the most efficient

algorithm, closely followed by Keccak. Skein, with an average CPB of 469,

about double than 213 CPB of Blake, is considerably far at No. 3.

Figure 27. Results on Cortex-A8 for Short Messages (224-bit Message Digest)

ii. For 384-bit output, Keccak outperforms Blake. For shorter messages, Blake

perform better than Skein but as message size increases, Skein starts improving

and performs almost as good as Blake.

	

	

	

86	

iii. For 512-bit hash output, these three algorithms are quite close. For shorter

messages, Keccak is slightly better than Blake followed by Skein. However, as

the message size increases, performance of all algorithms come quite close to

each other.

Figure 28. Results on Cortex-A8 for Short Messages (256-bit Message Digest)

Figure 29. Results on Cortex-A8 for Short Messages (384-bit Message Digest)

A-II) Grøstl is at No. 4

i. For all output sizes (224, 256, 384 and 512-bit), Grøstl stands at No. 4.

ii. For 224 and 256-bit output, on an average, Grøstl takes approximately 1.8

times more clock cycles per byte than No. 3 performer and for 384 and 512-

	

	

	

87	

bit output, Grøstl takes about 2.6 times more clock cycles per byte than No.

3 performer

A-III) JH is at the last

i. For all output sizes (224, 256, 384 and 512 buts), JH stands at No. 5.

ii. For 224 and 256-bit output, on an average, JH takes approximately 2.5 times

more clock cycles than No. 4 performer and for 384 and 512-bit output, JH

takes about 1.7 times more clock cycles than No. 4 performer.

Figure 30. Results on Cortex-A8 for Short Messages (512-bit Message Digest)

A-IV) CPB improves with input size: CPB consumed by an algorithm starts

improving as the input size increases. This is more obvious in Skein and Grøstl compared

to other algorithms. A close look at Table 4 clarifies it better. For Grøstl and Skein, the

CPB values decreases from 1st quartile to median to 3rd quartile. But for other algorithms

this change is less evident. For JH, it is the least visible.

B) Results for Long Messages

For Long messages (256 to 4288 bytes) results are shown in Figure 31, Figure 32,

Figure 33, Figure 34 and have been elaborated upon as done in case of Short messages.

B-I) Blake, Keccak, and Skein compete closely

i. For 224 and 256-bit output, Keccak and Blake perform almost equal and stand

out from other algorithms. Skein, with average of 352 CPB compared to

approximately 198 for Keccak and Blake, is at No. 3.

	

	

	

88	

ii. For 384-bit output, Skein narrowly outperforms Blake, but Keccak is slightly

better than Skein.

iii. For 512 bit output, Skein stands at No. 1 as it narrowly overtakes Keccak

which is at No. 2 followed by Blake at No. 3.

Figure 31. Results on Cortex-A8 for Long Messages (224-bit Message Digest)

Figure 32. Results on Cortex-A8 for Long Messages (256-bit Message Digest)

B-II) Grøstl at No. 4 and JH at No. 5

i. Just like Short messages, for all output sizes (224, 256, 384, and 512-bit),

Grøstl stands at No. 4 and JH at No. 5.

	

	

	

89	

ii. On an average, Grøstl takes approximately 2 times more CPB than No. 3

performer for 224 and 256-bit hash, and 2.5 times more CPB than No. 3

performer for 384 and 512-bit hash.

Figure 33. Results on Cortex-A8 for Long Messages (384-bit Message Digest)

Figure 34. Results on Cortex-A8 for Long Messages (512-bit Message Digest)

iii. On an average, JH takes approximately 3.35 times more CPB than No. 4

performer for 224 and 256-bit hash, and 2.35 times more CPB than No. 4

performer for 512-bit hash.

	

	

	

90	

B-III) Change in CPB with input size: Just like Short Messages, in Long messages

also the ‘Cycles per Byte’ consumed by an algorithm improve (reduce) as the input size

increases. However, this change is less evident as compared to the change observed in

‘Short’ messages. This trend is considerably visible in Grøstl and least visible in JH. For

other three algorithms, CPB do reduce but in comparison to Grøstl the change is lesser.

C) Few Important Observations and Recommendation

To conclude the performance analysis of of SHA-3 final round candidate algorithms

on Cortex-A8 processor, in addition to the graphs shown above, Table 4 is presented

which contains median, 1st quartile (QL), 3rd quartile (QL), and mean (calculated after

arranging data in decreasing order) of CPB consumed by various algorithms. The major

observations and conclusions drawn from the above mentioned graphs and Table 4 are

listed here.

i. For all algorithms, the results are same for 224-bit and 256-bit hash sizes i.e.

CPB taken by an algorithm for 224-bit hash and 256-bit hash are almost the same.

Similarly, the results for 384-bit and 512-bit hash are quite close. The reason for

such a behaviour lies in the internal structure of all algorithms. All authors have

deigned their algorithms keeping 256-bit hash and 512-bit hash as their prime

proposal. Generally, 224-bit hash is extracted from 256-bit hash proposal and 384-

bit hash is extracted from 512-bit hash proposal using truncation and/or output

transformation. The rest of mechanism like padding etc. is same and thus number

of calls to compression function are also same for 224 and 256-bit hash (and

similarly for 384-bit and 512-bit hash). Based on this observations, this study has

considered only 256-bit hash and 512-bit hash for comparisons on remaining ARM

architectures.

ii. As we increase message digest from 224/256-bit to 384/512-bit, the cost in terms

of CPB increases in Keccak, Blake, and Grøstl i.e. more cost for better security

margins. But on this front, Skein looks better as CPB does not increase for Skein

as we increase the size of message digest from 224/256 bits to 384/512 bits. The

logic behind this lies in the internal state size used by Skein. A close insight into

the submission of Skein algorithm reflects that for 224 and 256-bit hash output,

the Skein’s authors used 512-bit internal state i.e. the internal state is atleast double

	

	

	

91	

the size of the hash output which is in line with recommendation of Stefan Lucks

in [49] and many other authors. Lucks in [49] suggested that Joux multicollisions

[46] and length extension attacks [48] are mainly based on internal collisions

which can be avoided if we widen the internal pipe (internal state) and make it at

least double the size of hash output. Designs by Biham and Dunkleman [51] and

Nandi and Paul [52] also utilize wide internal state.
Table 4. Mean, Median and Quartiles of CPBs Consumed by SHA-3 Finalists on Cortex-A8

SHA-3

Msg.

Type

Short Messages Long Messages

(input from 0 bits to 2040) (input from 2048 bits to 34304)

Hash Size 224 256 384 512 224 256 384 512

Skein

Average 468.9 468.6 468.4 468.9 325.2 324.8 325.8 325.6

1st QL 543.4 537.8 539.2 539.7 326.5 326.0 327.1 326.1

Median 461.7 460.9 460.0 461.6 320.4 320.2 320.3 320.3

3rd QL 411.0 410.4 410.8 410.8 318.0 317.7 317.9 317.5

Keccak

Average 253.9 264.0 312.7 407.9 197.9 207.0 259.9 360.3

1st QL 271.4 282.4 340.0 447.4 198.7 207.9 260.2 360.9

Median 270.8 281.4 298.4 403.7 195.0 204.3 257.6 358.3

3rd QL 231.2 241.7 297.6 387.1 193.4 202.8 256.2 357.4

Blake

Average 212.5 212.9 388.8 389.7 196.7 196.9 367.3 367.4

1st QL 213.5 214.1 408.6 410.1 197.0 197.2 369.9 370.0

Median 207.0 207.3 391.8 383.3 196.1 196.2 367.8 367.7

3rd QL 203.8 204.0 369.4 370.1 195.6 195.7 364.3 364.3

Grøstl

Average 846.6 851.1 1255.9 1258.3 650.1 650.6 919.6 919.4

1st QL 854.9 864.9 1395.1 1397.9 653.3 653.6 926.6 926.4

Median 783.7 786.3 1148.4 1150.0 643.9 643.7 904.7 904.9

3rd QL 744.6 746.8 1134.2 1135.6 639.6 639.6 896.0 895.8

JH

Average 2182.2 2181.2 2182.9 2181.6 2176.1 2177.7 2177.6 2176.7

1st QL 2183.6 2183.3 2183.5 2183.0 2176.9 2176.9 2177.2 2177.2

Median 2180.8 2180.5 2180.9 2180.4 2175.4 2175.4 2175.4 2175.3

3rd QL 2178.8 2178.4 2178.8 2178.5 2174.4 2174.5 2174.4 2174.3

However, for 512-bit hash output, Skein’s authors did mention that Skein-1024

(with internal state of 1024-bit) may also be used but their submission to NIST

uses Skein-512 (with internal state of 512-bit only) i.e. the size of internal state is

not more than hash output and this characterstic may be exploited to generate inner

collisions that may lead to length extension and joux multicollision attacks.

	

	

	

92	

Contrary to Skein, other competing SHA-3 submissions have internal state

considerably wider than hash output size. If the size of internal state of Skein for

512-bit hash output is increased, the benefit that Skein algorithm reflects on this

front (CPB does not increase with increase in size of message digest i.e. CPB cost

remains same with increased security margins) may dilutes a little. Experiment

was carried to cross check this and obtained results reflect that to generate 512-bit

hash, Skein’s CPB consumption with wide internal state for short messages does

increase but it decreases for longer messages. Table 5 gives average CPB

consumed for generating 512-bit hash on small messages and long messages using

Skein-512 and Skein-1024 (wide internal state).
Table 5. Comparison of Skein-512 and Skein-1024 for Generating 512-bit Hash

Short Messages (up to 255 bytes) Long Messages (more than 255 bytes)

Skein-512
Skein-1024

(Wide Pipe)
Skein-512

Skein-1024

(Wide Pipe)

468.9 CPB 600.4 CPB 324.9 CPB 243.3 CPB

Also till date, no specific attack on Skein based on this characterstic (internal state

same as hash output) has been reported and hence author’s proposal i.e. Skein-

512 (with internal state of 512 bit) is used for the comparison on ARM architecture

(Crotex-A8 and other processors).

iii. As the input size increases , CPBs decreases for all algorithms except JH. This

trend is more prominent in Skein and Grøstl in comparison to other algorithms.

For example, Skein consumes about 385 CPB for a 255 byte message and this CPB

consumption reduces to 317 (by about 17.6%) as the size of message is increased

to 4200 bytes. Other algorithms show similar behaviour but percentage change

may be lesser. It means hash functions handle large input in better manner because

for smaller size input the bare minimum block(s) {because of padding and MD

stregthening} and certain other initialization and finalization phases are always

processed.

iv. Certain spikes are also visible in the graphs which are because of some system

interrupts that could have happened while recording the clock cycles on our target

board.

	

	

	

93	

v. Recommendation: From the above graphs and tables it is evident that for security

applications requiring use of hash functions in ARM Cortex A8 based devices,

Grøstl and JH are not good choices. Skein seems a good option for long messages

as the cost in terms of Cycles per Byte does not increase when used for bigger

message digest of 512 bits (rather than 224/256 bit for better security margins).

Skein is also the fastest of the lot for long messages producing 512 bit output. For

short messages and particularly for 256-bit hash size, Blake is a good option as it

outperfoms Keccak also for 224/256 and 512 bit hash lengths.

3.6 Performance Analysis of Algorithms on ARM Cortex-M4 Processor

This section concentrates on performance evaluation of SHA-3 final round candidate

algorithms on ARM Cortex-M4 processor. Details of Hardware and Software tools used,

techniques/ approach adopted, and results arrived at are given in this section.

3.6.1 Hardware and Software Tools Used

A) Cortex–M4 Core

From the Cortex Embedded series, ARM Cortex-M4 processor was picked. This is a

32-bit embedded processor and is considered conceptually as an enhanced version of

Cortex–M3 with DSP (Digital Signal Processing) instructions and optional FPU (Floating

point unit). The processor which contains core with FPU is referred to as Cortex-M4F

otherwise it is simply Cortex-M4. Cortex-M4 is based on ARMv7E-M architecture,

supports Thumb and Thumb2 instruction set, and has 3-stage pipeline as well branch

speculator [146]. Important point about Cortex-M4, and for that matter about all

embedded processors series, is the absence of MMU (Memory Management Unit) as

these processors will be used in environment without operating system. Cortex-M4 is

used in broad range of devices including microcontrollers, control systems, wireless

networking, and sensors. A few important microcontroller chips based on Cortex-M4 are

Texas Instruments LM4F, STMicroelectronics STM32 F3, NXP LPC 4000, LPC4300,

Toshiba TX04.

B) Target Machine: Stellaris® LM4F232 Evaluation Board (EK-LM4F232)

For evaluation, Stellaris® LM4F232 Evaluation Board (EK-LM4F232) from Texas

Instruments was used. Board is an evaluation platform for Stellaris LM4F232H5QD

	

	

	

94	

microcontroller which is based on ARM CortexTM-M4F processor. The board supports

USB2.0 OTG/Host/Device interface that helped to connect it with the host machine.

Evaluation kit also supported On-board Stellaris® In-Circuit Debug Interface (ICDI)

which is required for debugging the code burnt on the MCU. Board also features 256-KB

Flash memory (where code can be burnt) and 32-KB SRAM (for storing data), RTC and

a battery backed hibernation module. The MCU operates on 80-MHz [155].

Figure 35. Cortex-M4 Based Stellaris LM4F232 Board from Texas Instruments [155]

Contrary to the Cortex-A8 based board (used in the last section), this target machine does

not have any operating system. However, TI provided Code Composer StudioTM IDE to

be used on host machine for connecting and using the target board.

C) Host Machine

Dell Inspiron N410 Laptop housing 2.67 GHz Intel Core i5 M480 processor with 4

GB DDR3 RAM was used as a host machine. The host machine runs Microsoft Windows

7.0.

D) Host and Target Machine Setup

The host machine (Dell Inspiron laptop running Microsoft Windows) and Target

machines were connected using USB connection as the target machine also provided

USB2.0 interface.

In order to use the target machine for debugging, downloading, and running the

executable files of coded SHA-3 programmes in the microcontroller’s Flash memory and

for using Virtual COM Port connectivity using Stellaris based In-Circuit Debugging

Interface (ICDI), certain drivers (Stellaris Virtual Serial Port, Stellaris ICDI JTAG,

	

	

	

95	

Stellaris ICDI DFU) as provided by TI are required to be installed on the host machine.

The detailed instructions, used to install drives and setup the host machine so that it can

be used to connect and work with EK-LM4F232, are given in [156].

Figure 36. Host and Target Machine Setup for Stellaris EK-LM4F232

E) Code Composer Studio

Code Composer Studio is an Integrated Development Environment provided by Texas

Instruments for TI embedded processors only. It includes debugger, compiler, editor, and

simulator. The IDE is built on Eclipse open source software framework that has been

extended by TI to support device capabilities. The details of installing CCS on host

machine are available in [156]. CCS may be used as a simulator to compile, debug, and

run the codes without connecting the target machine. However, for this study, CCS was

used for compiling, debugging, burning, and running the code on Stellaris LM4F232

board. This required considerable settings to be done on CCS so that executable could be

generated for the target machine and then executed on target machine after burning the

binary on flash of MCU (target machine). As the target board is a bare machine without

any OS, so even the basic settings like size of stack and size of heap to be used are

required to setup, otherwise code may not run properly. The step wise process followed

for using CCS (version 5.2.1.00018) to debug, burn, and run the code are given in

Appendix-III.

3.6.2 Methodology Used

Methodologies and techniques adopted for performance evaluation on Cortex-A8 are

used here also. There are:

a) CPB is used as performance metric {already discussed in Section (3.5.2 – A)}

b) Evaluation is done for hash function as a whole rather than for Compression Phase

alone {already discussed in section (3.5.2 – B)}

	

	

	

96	

c) Optimized 32-bit implementation of Hash Algorithms is used {discussed already

in Section (3.5.2 – C)}. However, for compilation, in place of GNU cross-platform

development chain, the inbuilt compiler of CCS (Code Composer Studio) was

utilized.

d) Averaging the Cycle Count and Subtracting the Overhead {already discussed in

Section (3.5.2 – E)}. However, the overhead in this case is quite less as the target

machine is without OS. So, processor is dedicated in executing the coded algorithm

burnt on flash.

e) Data Watchpoint and Trace Unit (DWT) of Cortex-M4F used for counting

cycles

Cortex-M4 core offers many options to add on to the basic core. DWT (Data

Watchpoint and Trace Unit) is an important add-on component that is used for

debugging and profiling along with other such components like ITM

(Instrumentation Trace Macrocell) and ETM (Embedded Trace Macrocell). DWT

consists of counters for Clock Cycle (CYCCNT), folded instructions, Load Store

Unit (LSU) operations, sleep cycles, Interrupt overhead etc. CYCCNT counter of

DWT was used for profiling the codes under this study.

Code Composer Studio provides an important feature named ‘Count Events’ that

helps to read these counters and provide necessary profiling information on

graphical interface. For using this feature (‘Count Events’), breakpoint needs to be

put around the instructions which we want to profile. Then breakpoint properties

can be setup to count any of the events like clock cycles (CYCCNT), exception

overheads, sleep cycles, and LSU (load-store unit) operations etc. as mentioned

above. The properties were set to count clock cycles. Hardware configuration of

breakpoints can also be configured to reset clock cycle count at each breakpoint or

let clock cycle count increment irrespective of breakpoint and give cycle count

since start of the execution of the code in MCU. This study made use of the first

option i.e. hardware configuration of breakpoint which was configured to reset

clock cycle count at each breakpoint. So the event reading, recorded on second

breakpoint, gave the clock cycles consumed by the code written between two

breakpoints. The detailed steps that were followed to do profiling (in terms of clock

cycles consumed by the code) on CCS are detailed in Appendix – III.

	

	

	

97	

f) No support for file handling

Cortex-A8 based board, that were used in previous section, runs on embedded

Linux and thus supports file handling. File handling could help record results for

all 2554 different input values specified by NIST in [154] as KAT – Known

Answer Test values. However, Cortex-M4 based boards do not run any

operating system and therefore do not support file handling either. For every input

value, the cycle count reading had to be recorded individually as mentioned in

previous paragraph. Each single input value required two breakpoints to be setup

(one before the code and the other after the code) and then use ‘count event’ feature

to compute and record the clock cycles consumed by the code. This process could

not be iterated automatically, contrary to what could be done on board supporting

operating system and file handling, as it required considerable manual

intervention. So for each algorithm, results were recorded for 100 different input

values (short as well as long messages) ranging from 8 bits to 34304 bits.

3.6.3 Results and Discussions

Based on our observations mentioned under the head ‘3.5.6-C) Few Important

Observations and Recommendation’, it was concluded to conduct comparison of

algorithms under discussion for 256-bit hash and 512-bit hash outputs only. The results

for Short message (input message up to 2040 bits i.e. 255 bytes) and Long messages (from

2048 bits to 34304 bits i.e. 256 bytes to 4288 bytes) are presented separately on similar

lines as done for Cortex-A8.

A) Results for Short Messages

Figure 37, Figure 38, and first part of Table 6 present the performance of SHA-3 final

round candidate algorithms on Cortex-M4 processor for short messages. The major

observations are listed below:

A-I) Blake performs the best among the lot: For 256 as well as 512-bit hash outputs,

Blake is clearly the best performer. For 256-bit hash output, Blake on an average takes

108 Cycles per Byte (CPB) which is about 27% lesser than that of No. 2 performer and

for 512-bit hash output this value improves further and goes up to 40%.

A-II) Keccak and Skein share the 2nd and 3rd position: For 256-bit hash, Keccak

with 149 CPB is clearly at No. 2 and Skein with average of 255 CPB is at No. 3. However,

	

	

	

98	

clear cut distinction between these two near performers diminishes somewhat for 512-bit

hash. Keccak’s performance with an average of 258 CPB and median of 256 is consistent.

Skein also gives average around 263 CPB but its performance improves only with

increase in input size. For small input size Skein is behind Keccak but outperforms

Keccak when input size increases beyond 130 bytes.

Figure 37. Results on Crotex-M4 for Short Messages (256-bit Message Digest)

Figure 38. Results on Cortex-M4 for Short Messages (512-bit Message Digest)

A-III) Grøstl and JH share the last two positions

i. Grøstl and JH are at the last two positions. For 256-bit hash JH is at No. 5

and Grøstl is at No. 4 with considerable difference in performance. Grøstl, on

	

	

	

99	

an average consumes 486 CPB and JH consumes 682 i.e. about 1.4 times more

CPB than Grøstl.

Table 6. Mean, Median, and Quartiles of CPBs Consumed by SHA-3 Finalists on Cortex-M4

SHA-3

Finalists

Msg. Type
Short Msg. Long Msg.

(input from 0 to 2040 bits) (input from 2048 bits to 34304)

Hash Size 256 512 256 512

Skein

Average 254.7 263.7 159.7 160.5

1st Quartile 319.2 333.8 160.7 161.6

Median 233.4 240.6 156.6 157.1

3rd Quartile 216.9 222.6 155.0 155.3

Keccak

Average 149.2 257.6 131.9 240.8

1st Quartile 154.5 270.2 132.3 241.2

Median 154.3 255.9 131.1 240.1

3rd Quartile 142.8 250.4 130.6 239.7

Blake

Average 107.9 149.6 99.4 141.4

1st Quartile 109.0 152.8 99.5 141.5

Median 105.3 147.6 99.1 140.9

3rd Quartile 104.2 146.5 98.9 140.7

Groestl

Average 486.0 713.2 375.4 525.6

1st Quartile 490.3 793.9 376.6 532.8

Median 447.5 650.3 371.8 517.0

3rd Quartile 432.4 646.6 369.6 510.5

JH

Average 681.6 681.8 679.1 679.0

1st Quartile 682.3 682.6 679.1 679.0

Median 681.2 681.4 678.8 678.9

3rd Quartile 680.6 680.7 678.8 678.8

ii. For 512-bit, JH and Grøstl shuffle their positions. In fact, JH continues to

consume the same CPB but performance of Grøstl deteriorates to 713 CPB

taking it to the last position.

iii. The difference in performances of JH and Grøstl in comparison to the first

three performers is quite a lot. For 256-bit hash output, No. 4 performer takes

1.9 times more clock cycles than No. 3 performer and for 512-bit hash output

the difference widens and increases up to 2.6.

	

	

	

100	

A-IV) Change in CPB with input Size: Skein and Grøstl show considerable

improvements with increase in input size. Generally, the CPB consumption reduces as

input size increases. For Skein, this change is more than 25% (for both 256-bit hash

and 512-bit hash) as we move from 1st quartile to median and for Grøstl it is around

9% for 256-bit hash and 18% for 512-bit hash. There is no visible change for JH.

Performances of Keccak and Blake do improve but not as considerably as those of Skein

and Grøstl.

B) Results for Long Messages

For Long messages (256 to 4288 bytes), results are shown in Figure 39, Figure 40 and

Table 6. The results are quite similar to the results of short messages. The top performers

are same differing only in percentage improvement. Details are given below:

Figure 39. Results on Cortex-M4 for Long Messages (256-bit Message Digest)

B-I) Blake performs best out of the lot: Similar to Short messages, Blake seen to

perform better than the other algorithms for both 256 and 512-bit hash. Its performance

(in terms of CPB) is around 37.7% better than the 2nd position holder for 256-bit hash.

However, for 512-bit hash, this value goes up to 11.9% only.

B-II) Keccak and Skein share 2nd and 3rd Position

i. For 256-bit hash, Keccak with an average of 132 CPB is at No. 2 and Skein

with average of 160 CPB is at No. 3.

	

	

	

101	

ii. However, for 512-bit hash, Skein outperforms Keccak and with better margins.

In this case Skein consumes 160 CPB compared to 241 by Keccak.

B-III) Grøstl and JH share last two positions

i. Contrary to short messages (where JH and Grøstl switch their position with

change in hash size), for long messages JH is at last position for 256-bit as

well 512-bit hash (with about 679 CPB).

ii. Grøstl is at No. 4 position and looks much better than JH in terms of

performance for 256-bit hash. However, the difference in performance narrows

down for 512-bit hash.

iii. Compared to the other 3 algorithms, performance of these two is quite slow.

Grøstl consumes more than double CPB compared to No. 3 performer. JH is

even slower taking about 1.8 times more CPB than Grøstl for 256-bit hash and

1.3 times more in case of 512-bit hash.

Figure 40. Results on Cortex-M4 for Long Messages (512-bit Message Digest)

B-IV) Change in CPB with input Size: For long messages, this trend is visible but

not as evident as it is for short messages. Skein and Grøstl show this behaviour more

than the other three algorithms

C) Few Important Observations and Recommendations

i. For ARM Cortex-M4 based devices, Blake is the best choice as it performs better

than all the algorithms for all message digests irrespective of input sizes. Skein is

	

	

	

102	

also a good second option in cirumstances where, for higher security margins,

we need 512-bit hash compared to 256-bit hash. The reason to recommend Skein

is based on its characterstic that cost in terms of CPB does not increase as we

move from 256-bit hash to 512-bit hash.

ii. Comparison of results of all the algorithms on Cortex-M4 with the results

obtained on Cortex-A8 processor reflects that cycles consumed by all the

algorithms on Cortex-M4 are lesser than those by Cortex-A8. The following table

gives a glimpse of the same:

Table 7. Comparison of Performance on Cortex-A8 and Cortex-M4

 256-bit Hash

(Short Msg.)

256-bit Hash

(Long Msg.)

512-bit Hash

(Short Msg.)

512-bit Hash

(Long Msg.)

Top performer on
Cortex-A8 212.9 196.9 389.7 325.6

Top Performer on
Cortex-M4 107.9 99.4 149.6 141.4

This result looks interesting because of the fact that though Cortex-A8 is more

powerful core as compared to Cortex-M4 but algorithms took more cycles on the

former. The reason behind this lies in the environment in which these cores are

being utilized. Cortex-A8 is running an operating system with memory

management unit and also supports multiple other devices. So whenever a code is

run from user space, considerable time is spent to run other kernel threads also

which are out of the control of the user. However, in case of Cortex-M4 based

machine, there was no operating system and only the code burnt on its flash was

being executed on this bare machine so no other threads were consuming CPU

cycles. Because of this, results reflect lesser consumption of cycles for Cortex-

M4 based machine compared to Cortex-A8 based machine.

3.7 Performance Analysis of Algorithms on Classical Processor-

ARM7TDMI

The last processor, that we picked for evaluation of SHA-3 final round candidate

algorithms was ARM7TDMI from ARM7 series of processors. As per ARM website

	

	

	

103	

[146], ARM7TDMI has been one of the highest shipped core from ARM. Its 32-bit core,

that supports Thumb 16-bit instruction set, has multiplier unit, and implements Embedded

ICE logic to provide powerful debugging environment. It also supports JTAG connection

for debugging. ARM7TDMI is based on ARMv4 architecture and a few important chips

based on ARM7TDMI are: NXP LPC 2100/2200/2300/2400, Samsung S3C44B0X, ST

Microelectronics STR7. Nokia 6110 was also designed using ARM7TDMI core.

3.7.1 Tools Used

The evaluation of the algorithms on ARM7TDMI is done on simulator rather than

actual hardware. IAR Embedded Workbench by IAR Systems was used for this study.

The IAR Embedded workbench is the leading C/C++ compiler, debugger, and simulator

tool suite for applications based on 8, 16, and 32 bits MCUs (Microcontroller Units). The

process was started with the ‘Kickstart edition v6.30 (32k)’ as available from IAR systems

web site. However, the final results were obtained on version 7.40.5 of ‘IAR Embedded

Workbench’ for ARM. There are two different trial versions available on ARM website,

one with size limit of 32K and other one is a time limited edition that has full functionality

but works for a month. The latter one (time limited version) was used in this study as

certain algorithms required more than 32K of data and code space. The other hardware

that we required was a windows machine that could support IAR. The same machine,

which was used as host machine for evaluation on Cortex-M4, was used in this case also.

Except IAR Embedded Workbench and this host machine, no other hardware or software

tool was used.

3.7.2 Methodology Used

Methodology used for evaluation was the same as mentioned for Cortex-M4 processor.

The only difference lay in the way of calculation of clock cycles. The function profiler

and Timeline tool of IAR embedded workbench was used to simulate the cycles

consumed by the code. Function profiler and timeline tool provides the graphical interface

showing cycles consumed by different functions of the code. To start the use of IAR

Embedded Workbench, certain settings like selection of processor variant, endian mode,

debug drivers etc. are to be configured. The settings and procedure followed to setup and

use IAR for profiling the algorithms are given in Appendix-IV.

	

	

	

104	

3.7.3 Results and Discussions

The results obtained on ARM7TDMI processor core through this simulator are

discussed here in this section. The number of input values and approach used to present

the result is same as done for Cortex-M4. First are presented the results for Short message

(input message up to 2040 bits i.e. 255 bytes) and then those for Long messages (from

2048 bits to 34304 bits i.e. 256 bytes to 4288 bytes).

A) Results for Short Messages

Figure 41, Figure 42 and Table 8 present the result of SHA-3 final round candidate

algorithms on ARM7TDMI processor for Short messages.

A-I) Keccak, Blake and Skein compete closely

i. Contrary to results obtained on Cortex-M4, no single algorithm is clearly

outperforming other algorithms. Keccak, Blake, and Skein’s performances are

quite close to each other with Keccak performing marginally better than the

others for 256-bit hash. The difference in performance of these three

algorithms is marginal.

ii. For 512-bit hash, Blake does better than Keccak but as input size increases

above 120 – 130 bytes even Skein marginally outperforms Keccak (it is the

same behaviour as was visible on Cortex-A8 also).

Figure 41. Results on ARM7TDMI for Short Messages (256-Bit Message Digest)

	

	

	

105	

Figure 42. Results on ARM7TDMI for Short Messages (512-Bit Message Digest)

A-II) Grøstl is at No. 4 and JH is at No. 5

On ARM7TDMI also, Grøstl and JH are at the last two positions; Grøstl is at No. 4

and JH is at No. 5. JH’s performance is consistent at around 1508 CPB for both 256 and

512-bit message digests. However, Grøstl does better while generating 256-bit hash (634

CBP) compared to 512-bit hash (950 CPB).

A-III) CPB reduces with increase in input size

This characteristic is evident prominently in Skein and Grøstl in comparison to the

other algorithms. As we move from 1st quartile to median, change in Skein is around

25% and for Grøstl it is around 8% and 17% for 256-bit and 512-bit hash respectively.

B) Results for Long Messages

For Long messages (256 to 4288 bytes), results are shown in Figure 43, Figure 44 and

Table 8.

B-I) Keccak and Skein share the first position while Blake is at No. 2

i. The performance of Keccak, Skein, and Blake is comparable but Keccak stands

out as the most efficient algorithm for 256-bit hash (150 CPB compared to

169 by No. 2 performer, Blake).

ii. For 512-bit hash, Skein with about 200 CPB stands out as the most efficient

algorithm compared to No. 2 performer Blake with 232 CPB.

iii. Blake retains No. 2 position for both 256-bit hash and 512-bit hash.

	

	

	

106	

Figure 43. Results on ARM7TDMI for Long Messages (256-bit Message Digest)

B-II) Grøstl and JH are at the last two positions: Grøstl is at position No. 4 and JH

is at No. 5. The performance of JH is consistent irrespective of size of message digest or

size of input messages. Grøstl performs better for 256-bit hash as compared to 512-bit

hash. Similar behaviour was visible for short messages also.

Figure 44. Results on ARM7TDMI for Long Messages (512-bit Message Digest)

B-III) Except Grøstl, reduction in CPB with increase in message size is not

prominently visible.

	

	

	

107	

Table 8. Mean, Median and Quartiles of CPBs Consumed by SHA-3 Finalists on ARM7TDMI

SHA-3 Algo.
Msg. Type

Short Msg. Long Msg.

(input from 0 to 2040 bits) (input from 2048 bits to 34304)

Hash Size 256 512 256 512

Skein

Average 297.1 297.0 199.6 199.6

1st Quartile 365.0 365.2 200.6 200.6

Median 275.3 274.1 196.5 196.5

3rd Quartile 257.4 257.5 194.8 194.8

Keccak

Average 167.4 288.1 150.4 271.5

1st Quartile 172.8 300.6 150.8 271.7

Median 172.5 286.4 149.7 270.9

3rd Quartile 161.1 280.9 149.3 270.6

Blake

Average 177.4 240.2 168.9 232.1

1st Quartile 178.2 243.3 169.0 232.3

Median 174.7 238.5 168.7 231.8

3rd Quartile 173.5 237.2 168.5 231.5

Groestl

Average 633.9 949.8 499.9 709.3

1st Quartile 637.4 1052.6 501.4 713.1

Median 586.4 868.5 495.4 698.8

3rd Quartile 568.4 865.5 492.9 692.6

JH

Average 1507.6 1507.7 1505.3 1505.8

1st Quartile 1508.5 1508.6 1505.6 1505.7

Median 1507.5 1507.6 1505.5 1505.5

3rd Quartile 1506.9 1507.0 1505.4 1505.4

C) Recommendation for ARM7TDMI Based Devices

Close look at the results reflects that for 512-bit message digests Skein’s performance

is quite good whereas Keccak is seen to be performing better for 256-bit hash. Looking

at the high security margins provided by 512-bit message digest, Skein is recommended.

Keccak is the second best option to use for ARM7TDMI based devices particularly if the

requirement is mainly for 256-bit message digest.

	

	

	

108	

3.8 Concluding Remarks on Performance of SHA-3 Final Round

Candidate Algorithms on ARM Architecture

This chapter attempts to provide an exhaustive detail of the rationale behind the

selection of ARM architecture as Target platform for evaluation of SHA-3 final round

candidate algorithms. Presenting the logic behind selection of specific processor series,

performance results of algorithms on these processor series have been thoroughly

discussed. After each processor series, recommendations are given on algorithms to be

used on that specific processor series. A few other points that require special mention are

discussed here in this denouement.

a) As all these processor series (Cortex-A, Cortex-M, and Classical Processor) are

considerably related and derived from same ARM architecture so broad

performance characteristics shown by the algorithms across these processor series

are similar.

b) JH and Grøstl are among the bottom two performers irrespective of a) Size of

message digest, b) Type of Input message (long or short message) c) Processor

series used. So, the use of JH and Grøstl is not recommended for security

applications that may require usage of hash functions on ARM architecture.

c) Skein, Blake, and Keccak have shown good performances on ARM architecture

on the whole. The positions of the best performer and the No. 2/3 performer have

been changing with change in hash size or input message type or processor series

used for evaluation. Graphs shown in previous sections might reflect performance

of all these to be very close and this is because of the fact that high CPB consumed

by JH and Grøstl makes other graph lines look quite close. But if JH and Grøstl

are taken out of discussion, then the comparison of all these three algorithms

reflects considerable difference in their performances. For example, we have

reproduced the results of Skein, Keccak, and Blake on Cortex-A8 for long

messages producing 512-bit hash in the graph shown in Figure 45.

The difference in performance is up to 12.7% and this is a considerable

difference on the target machine (ARM Cortex series) which is generally

characterized by low power consumption, small size, and limited processing

resources.

	

	

	

109	

Figure 45. Performance of Blake, Keccak, and Skein for Long Messages on Cortex-A8 (512-bit Message Digest)

d) Before zeroing on to framing the final recommendation, the following points

require to be highlighted:

a. Out of all the three processor series that were discussed, Cortex-A based

processor are the ones which fetch maximum applications requiring use of

hash functions. So it becomes imperative for the algorithms to perform

good on Cortex-A series.

b. It is mainly the long messages that are more affected by algorithm’s CPB

performance. So while comparing and recommending algorithms,

performance on long messages becomes very important.

c. A Brute-force Collision attack on 256-bit hash requires 2AB¶ operations (as

per Birthday paradox). Of course this looks quite safe but the cryptanalysis

attacks can bring it down considerably and the same had happened with

multiple algorithms. As 512-bit hash gives much higher security margins

so an algorithm that gives better performance on 512-bit hash becomes an

important candidate for consideration.

e) Based on the above points, Skein appears to be a promising option for long

messages out of the whole lot. For longer messages in general and 512-bit message

digest in particular, Skein has shown good performance. Secondly, moving from

256-bit message digest to 512-message digest, the cost in terms of CPB does not

increase in case of Skein. So the first recommendation of this study is to use Skein

for 512-bit hash followed by Blake and Keccak for 256-bit hash. However, for

	

	

	

110	

Short messages (e.g. in Password hashing, pseudo random number generator, and

many such applications) Blake and Keccak are better alternatives.

The next chapter presents the design and development of a new cryptographic

primitive - Modified ChaCha Core (MCC) that leads to the design of a new hash function

which performs considerably well on ARM architecture as well as the Reference platform

announced by NIST. This new hash function, as presented in the next chapter, may be

used as a variant to Skein Hash family. Besides Skein, this new hash function may also

be used in place of other SHA-3 final round candidate algorithms.

	

	

	

111	

CHAPTER 4: DESIGNING AND DEVELOPMENT OF

‘MODIFIED CHACHA CORE’ - A CRYPTOGRAPHIC

PRIMITIVE, LEADING TO THE DESIGN OF

‘COCKTAIL' - AN ARX BASED NEW HASH

FUNCTION

"The most important part of design is finding all the issues to be

resolved. The rest are details."

Sumeet Lanka

In fulfilment of the second objective of the thesis, this chapter presents a new ARX

based hash function that has been designed using Modified ChaCha Core (MCC). In its

initial sections is presented the design of MCC, the basic primitive that is used as a

building block for construction of the new hash function named as Cocktail. The

subsequent part of the chapter details the specifications of Cocktail followed by

Cocktail’s design philosophy and rationale behind various design decisions. The last

section presents the various ways of using Cocktail and its security aspects. As such the

whole chapter is organized into multiple headings covering:

• Analysis of Quarter Rounds of Salsa and ChaCha Core and Proposal of an

Alternative Design (MCC) for Maximizing Diffusion (4.1)

• Introduction to Cocktail and Description of Notations and Operations Used (4.2)

• Iterated Construction of Cocktail (4.3)

• Specifications of Cocktail-512 (4.4)

• Specifications of Cocktail-1024 (4.5)

• Complexity of Cocktail (4.6)

• Cocktail’s Design Philosophy, Design Decisions, and its Rationale (4.7)

• Using Cocktail (4.8) and Its Security Aspects (4.9)

	

	

	

112	

4.1 Analysis of Quarter Rounds of Salsa and ChaCha Core and Proposal

of an Alternative Design (MCC) for Maximizing Diffusion

This section discusses the design of MCC – Modified ChaCha Core, the basic

primitive, that has been used to build Cocktail. MCC is an improvisation over Salsa

[157] and ChaCha Core [158] that has been used for generating stream ciphers. The

following few paragraphs carry a brief about stream ciphers, Salsa, and ChaCha Core.

The later part of this section presents MCC and results of an experiment that reflects

MCC is better than Salsa and ChaCha core.

Stream ciphers are symmetric key encryption methods in which encryption and

decryption are done one symbol (character or bit) at a time. Stream ciphers generate

pseudorandom key streams and each digit of plaintext is encrypted one at a time with

digit of key stream. A prominent example of stream cipher is A5/1 cipher which has been

used in GSM mobile phone standard for voice encryption. RC4 is another example which

has been extensively used for encrypting internet traffic. Being typically smaller, stream

ciphers execute faster than block ciphers and are traditionally considered more efficient

than block ciphers. Efficient for software-optimized stream ciphers means they take fewer

processor cycles to encrypt and efficient for hardware-optimized stream ciphers mean

they take fewer gates and smaller chip area than a block cipher for encrypting data at the

same data rate. However, modern block ciphers have been doing really well in software

as well as in hardware. Example is AES [5] in software and PRESENT [159] in hardware.

About eSTREAM: ECRYPT - European Network of Excellence in Cryptology, a

European research initiative launched on 1st February 2004, issued a call for steam cipher

primitives in November 2004 under the Project eSTREAM [17]. The objective of

eSTREAM was to identify new stream ciphers suitable for widespread adoption. Stream

cipher proposals were solicited in one of the following two profiles - Profile 1: Stream

ciphers for software applications with high throughput requirements. Profile 2: Stream

ciphers for hardware applications with restricted resources such as limited storage, gate

count, or power consumption.

The eSTREAM project was completed in April 2008. Selected Profile 1 algorithms

were: HC-128, Rabbit, Salsa20/12 [157], and SOSEMANUK. The selected Profile 2

algorithms were: F-FCSR-Hv2, Grain v1, Mickey v2, and Trivium. Out of these, F-FCSR

was originally in eSTREAM profile but was removed later on because of its cryptanalysis.

	

	

	

113	

Salsa and ChaCha: MCC improvises one of the eSTREAM profile cipher Salsa20

(also known as Snuffle 2005) and its improvement ChaCha [158] (also known as Snuffle

2008) stream cipher. Salsa20/12 and Salsa20/8 are reduced round variants of Salsa20

encryption function (Stream Cipher) that make use of 12 and 8 rounds respectively in

place of 20 rounds (10 Double rounds) of Salsa20. Salsa20 encryption functions (stream

cipher) uses Salsa20 core that diffuses 4x4 matrix representing nonce, key and constants.

ChaCha family is an improvement over Salsa family and has variants like ChaCha8,

ChaCha12 and ChaCha20 corresponding to Salsa20/8, Salsa20/12 and Salsa20. Both

Salsa core and ChaCha core are based on ARX operations (Arithmetic, Rotation with

constant and XOR)

Salsa and ChaCha as stream ciphers: Salsa and ChaCha family arranges the data

into a matrix of 4x4 elements where each element is a 32-bit word representing

nonce/block number, key, and constants. Twenty rounds of Salsa20 core (or ChaCha20

core) diffuses these values and the resultant value is used to encrypt 64-byte plaintext by

XORing plaintext with this hashed value (output of Salsa20/ChaCha20 core). This

concept is expanded to generate encryption for longer plaintexts. The following

explanation as given by Bernstein in Salsa 20 stream cipher [157] illustrates the working

of Salsa as stream cipher. ChaCha20 stream cipher works in the similar fashion.

Let key (k) be of 32 bytes. Let ‘v’ be an 8-byte sequence. Let ‘m’ be an ‘l’-byte

sequence for some ?	 ∈ 	 0,1, … , 2•U . The Salsa20 encryption of ‘m’ with nonce ‘v’

under key k, denoted ÉL?5L20| v 	⊕N	is an ‘l’-byte sequence. Normally ‘k’ is a secret

key; ‘v’ is a nonce, i.e., a unique message number; ‘m’ is a plaintext message; and

ÉL?5L20| v 	⊕N is a cipher text message. ÉL?5L20| v is also generated as 2•U	byte

sequence represented as

ÉL?5L20| K, M , ÉL?5L20| K, 1 , ÉL?5L20| K, 2 , … , ÉL?5L20| K, 2òô − 1 		

Here ‘i', the second argument to ÉL?5L20| K, M , ÉL?5L20| K, 1 	HOc.	is the unique 8-

byte sequence (JU,	JA,	JB,	Jó,	Jô,	J¢,	Jò,J•) such that J = 	 JU +	2¶JA +	2AòJB+. . . +	2¢òJ•.

Combination of k, v, i is mapped to matrix of size 4x 4 (of 32 bits each) with some

constants and Salsa20 core or ChaCha20 core (or reduced round version) is applied. The

result is used as key that is XORed with plaintext to obtain encrypted value.

The approach in this study: Salsa core and ChaCha core (used to hash 4x4 matrix

representing nonce, key, and constants) are analysed in this study to know how much

	

	

	

114	

diffusion both bring. Twenty rounds of Salsa20 core or ChaCha20 core may be viewed

as 10 Double rounds, where each Double round consists of 4 Column Quarter rounds and

4 Row (or Diagonal) Quarter rounds i.e. operations on each single column/row is termed

as Quarter Round. The Quarter rounds of Salsa and ChaCha use same number of

operations but differ considerably. Quarter rounds of both the functions involve 32-bit

Additions, 32-bit XOR, and 32-bit constant Rotations. For both Salsa and ChaCha core,

Bernstein [157] [158] has suggested specific rotation constants.

An experiment was conducted to analyse diffusion property of Quarter rounds of both

the functions to see how the diffusion changes with change in rotation constants. This

study also proposes an alternative design of Quarter round involving same number of

operations but exhibiting better diffusion properties. Based on this newly constructed

Quarter round, a new core, named Modified ChaCha Core (MCC), is designed which

uses Column and Row rounds with changed parameter values for better diffusion.

The next subsection (4.1.1), introduces the Quarter rounds of the Salsa and ChaCha

core and also explains the Column and Row (or Diagonal) rounds of both the cores. The

subsequent subsection (4.1.2), introduces the new design MCC. Subsection 4.1.3,

explains the experiment used to analyse the diffusion of all three candidate Quarter rounds

(Salsa, ChaCha, and Modified ChaCha). The results of the experiment are discussed in

subsection 4.1.4.

4.1.1 Salsa and ChaCha Core

To explain both Salsa and ChaCha core, bottom up approach is followed. First the

basic primitive Quarter round is introduced, followed by Column and Row/Diagonal

round, and lastly Double round. All the operations are carried out on 4x4 matrix where

each element is 32-bit word. Let’s assume the input matrix ‘x’ is:

®U ®A ®B ®ó
®ô ®¢ ®ò ®•
®¶ ®ß ®AU ®AA
®AB ®Aó ®Aô ®A¢

	

A) Salsa Core

The operations of Salsa core [157] is introduced below:

	

	

	

115	

Quarter round of Salsa core takes four 32-bit words as input and mixes these words

and generates four 32-bit words as output. If ® = 	 ®U, ®A, ®B, ®ó	 is four word input to

∑´LIOHI%$… ;` (®), then output (ÀU, ÀA, ÀB, Àó)	is defined as

ÀA = 	®A ⊕ 	 	®U +	®ó 	⋘ 7

ÀB = 	®B ⊕ 	 	ÀA +	®U 	⋘ 9

Àó = 	®ó ⊕ 	 	ÀB +	ÀA 	⋘ 13

ÀU = 	®U ⊕ 	 	Àó +	ÀB 	⋘ 18

Quarter round makes use of four 32-bit XORs, four 32-bit Additions and four 32-bit

Rotations (left rotation i.e. towards higher bits) with constants. The output

À = 	∑´LIOHI%$… ;` (®) is graphically represented in Figure 46.

Figure 46. Quarter Round of Salsa Core

Column round takes 16 words as input and generates 16 words as output. In fact,

Column round makes use of Quarter rounds. If ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 is 16

words input to xM?´N.%$… ;` (®), then output À = 	 ÀU, ÀA, ÀB, … , ÀAó, ÀAô, ÀA¢ is

defined as:

ÀU, Àô, À¶, ÀAB	 = ∑´LIOHI%$… ;` ®U, ®ô, ®¶, ®AB

À¢, Àß, ÀAó, ÀA	 = ∑´LIOHI%$… ;` ®¢, ®ß, ®Aó, ®A

	

	

	

116	

ÀAU, ÀAô, ÀB, Àò	 = ∑´LIOHI%$… ;` ®AU, ®Aô, ®B, ®ò

ÀA¢, Àó, À•, ÀAA	 = ∑´LIOHI%$… ;` ®A¢, ®ó, ®•, ®AA 	

Row round also takes 16 words as input and generates 16 words as output. Just like

Column round, Row round also makes use of four Quarter rounds. If À =

	(ÀU, ÀA, ÀB, … ÀAó, ÀAô, ÀA¢)	is 16 words input to %MF%$… ;` (À), then output Œ =

	(ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	is defined as:

ŒU, ŒA, ŒB, Œó	 = ∑´LIOHI%$… ;` (ÀU, ÀA, ÀB, Àó)

Œ¢, Œò, Œ•, Œô	 = ∑´LIOHI%$… ;` À¢, Àò, À•, Àô

ŒAU, ŒAA, Œ¶, Œß	 = ∑´LIOHI%$… ;` (ÀAU, ÀAA, À¶, Àß)

ŒA¢, ŒAB, ŒAó, ŒAô	 = ∑´LIOHI%$… ;` ÀA¢, ÀAB, ÀAó, ÀAô 	

In Column (or Row) round, each Column (or Row) of the matrix is used to call Quarter

round function but ordering of parameters passed to ∑´LIOHI%$… ;` is different for each

column (or row). For example for the first row, parameter passed to ∑´LIOHI%$… ;` 	is

(ÀU, ÀA, ÀB, Àó)	but for second row, the parameters are not passed in the same sequence

i.e. rather than (Àô, À¢, Àò, À•), parameters passed are (À¢, Àò, À•, Àô)	.

Double round takes 16 words ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 as input and generates

16 words Œ = 	 (ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	 as output. In fact, Double round is a Column

round followed by a Row round and is defined as:

Œ = 	$M´a?H%$… ;` ® = 	%MF%$… ;` (xM?´N.%$… ;` ®)

Salsa20 core calls 10 Double rounds. Reduced round versions Salsa20/12 or Salsa20/8

call Double round 6 and 4 times respectively. eSTREAM [17] has Salsa20/12 cipher in

its profile that uses Salsa20/12 core as detailed above.

B) ChaCha Core

ChaCha core [158], proposed by Bernstein, was an improvement over Salsa core to

increase diffusion using the same number of operations. The details of ChaCha core are

given below:

Quarter round of ChaCha, like Salsa’s Quarter round, takes four 32-bit words as

input and mixes these words and generates four 32-bit words as output. If ® =

	 ®U, ®A, ®B, ®ó is four word input to ∑´LIOHI%$œé œé (®), then output

(ÀU, ÀA, ÀB, Àó)	is defined as:

´U = 	®U + ®A ; ´ó = 	®ó ⊕ ´– ; ´ó = 	´ó 	⋘ 16 ;

	

	

	

117	

´B = 	®B + ´ó ; ´A = 	®A ⊕ ´B ; ´A = 	´A 	⋘ 12 ;

ÀU = 	´U + ´A ; Àó = 	´ó ⊕ À– ; Àó = 	Àó 	⋘ 8 ;

ÀB = 	´B + Àó ; ÀA = 	´A ⊕ ÀB ; ÀA = 	ÀA 	⋘ 7 ;

The À = 	∑´LIOHI%$œé œé (®) is graphically represented in Figure 47.

Figure 47. Quarter Round of ChaCha Core

A close look at Quarter rounds of both Salsa and ChaCha core reflects following major

differences:

i. ChaCha Quarter round, unlike Salsa Quarter round, gives each input word a

chance to affect each output word.

ii. ChaCha updates each input word twice. For example, initially ®U is updated to ´U

and then updated again to ÀU.

iii. Because of the above two reasons, diffusion by ChaCha Quarter round is much

better than Salsa which is evident in the result of experiment discussed in

subsequent sub-section.

iv. Rotation distances have been changed. Salsa uses 7, 9, 13, 18 as rotation constants

while ChaCha uses 16, 12, 8, 7.

	

	

	

118	

Column round of ChaCha core is a little different from Salsa core in terms of

sequence of parameters passed to Quarter rounds. If ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 is

16 words input to xM?´N.%$œé œé (®), then output À = 	 ÀU, ÀA, ÀB, … , ÀAó, ÀAô, ÀA¢ is

defined as:

ÀU, Àô, À¶, ÀAB	 = ∑´LIOHI%$œé œé ®U, ®ô, ®¶, ®AB

ÀA, À¢, Àß, ÀAó	 = ∑´LIOHI%$œé œé ®A, ®¢, ®ß, ®Aó

ÀB, Àò, ÀAU, ÀAô	 = ∑´LIOHI%$œé œé ®B, ®ò, ®AU, ®Aô

Àó, À•, ÀAA, ÀA¢	 = ∑´LIOHI%$œé œé ®ó, ®•, ®AA, ®A¢ 	

Diagonal round: In place of Row round, ChaCha makes use of Diagonal round that

calls four Quarter rounds; one for each diagonal of input matrix. If À =

	(ÀU, ÀA, ÀB, … ÀAó, ÀAô, ÀA¢)	is 16 words input to $JLQM.L?%$œé œé (À), then output Œ =

	(ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	is defined as:

ŒU, Œ¢, ŒAU, ŒA¢	 = ∑´LIOHI%$œé œé (ÀU, À¢, ÀAU, ÀA¢)

ŒA, Œò, ŒAA, ŒAB	 = ∑´LIOHI%$œé œé ÀA, Àò, ÀAA, ÀAB

ŒB, Œ•, Œ¶, ŒAó	 = ∑´LIOHI%$œé œé (ÀB, À•, À¶, ÀAó)

Œó, Œô, Œß, ŒAô	 = ∑´LIOHI%$œé œé Àó, Àô, Àß, ÀAô 	

Double round of ChaCha also takes 16 words ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 as

input and generates 16 words Œ = 	 (ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	 as output. Double round of

ChaCha is Column round followed by a Diagonal round and is defined below:

Œ = 	$M´a?H%$œé œé ® = 	$JLQM.L?%$œé œé (xM?´N.%$œé œé ®)

ChaCha20 core calls 10 Double rounds. Reduced round versions ChaCha12 or

ChaCha8 calls Double round 6 and 4 times respectively. One more difference in ChaCha

and Salsa Core that has not been highlighted here is in the mapping of nonce/block

number, key, and constants to initial matrix ′®’.

4.1.2 Modified ChaCha Core (MCC)

A close look at the Quarter round of ChaCha core (refer Figure 47) reflects that the

first and third words (word ‘a’ and ‘c’) always get updated with 32-bit addition operation,

while second and fourth words (word ‘b’ and ‘d’) always get updated with an XOR

operation followed by Rotation with a constant. In the proposed design (named MCC’s

Quarter round), this symmetry is broken to create an alternative design as shown in Figure

	

	

	

119	

48. In this proposed design, all four words are exposed to Addition, XOR, and Rotation

operation. For example, word ‘b’ initially gets updated with a 32-bit addition operation

and next with a 32-bit XOR and last by a 32-bit rotation operation. Similarly, all other

words are updated with all three operations. The result of experiment, as discussed in next

sub-section, reflect that this alternative design creates better diffusion than Quarter round

of Salsa and ChaCha.

Figure 48. Quarter Round of MCC

The formal definition of Quarter round as well as Column and Row rounds of MCC

is given below:

Quarter round of MCC: If ® = 	 ®U, ®A, ®B, ®ó is four word input to

∑´LIOHI%$ñœœ(®), then output (ÀU, ÀA, ÀB, Àó)	is defined as:

´A = 	®A + ®U ; ´B = 	®B ⊕ ´A ; ´B = 	´B 	⋘ J ;

´ó = 	®ó + ´B ; ´U = 	®U ⊕ ´ó ; ´U = 	´U 	⋘ Å ;

ÀB = 	´B + ´U ; ÀA = 	´A ⊕ ÀB ; ÀA = 	ÀA 	⋘ } ;

ÀU = 	´U + ÀA ; Àó = 	´ó ⊕ ÀU ; Àó = 	Àó 	⋘ ? ;

This section does not specify any particular rotation constants. The discussion on

rotation constants is done in the next section.

	

	

	

120	

Column round of MCC operates in a fashion similar to Salsa’s Column round. Even

the parameters passed are in the same sequence. If ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 is 16

words input to xM?´N.%$ñœœ(®), then output À = 	 ÀU, ÀA, ÀB, … , ÀAó, ÀAô, ÀA¢ is

defined as:

ÀU, Àô, À¶, ÀAB	 = ∑´LIOHI%$ñœœ ®U, ®ô, ®¶, ®AB

À¢, Àß, ÀAó, ÀA	 = ∑´LIOHI%$ñœœ ®¢, ®ß, ®Aó, ®A

ÀAU, ÀAô, ÀB, Àò	 = ∑´LIOHI%$ñœœ ®AU, ®Aô, ®B, ®ò

ÀA¢, Àó, À•, ÀAA	 = ∑´LIOHI%$ñœœ ®A¢, ®ó, ®•, ®AA 	

Row round of MCC is different from both Salsa and ChaCha. In fact, ChaCha has

diagonal round in place of Row round. If À = 	 (ÀU, ÀA, ÀB, … ÀAó, ÀAô, ÀA¢)	is 16 words

input to %MF%$ñœœ(À), then output Œ = 	 (ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	is defined as

ŒA, ŒB, Œó, ŒU	 = ∑´LIOHI%$ñœœ(ÀA, ÀB, Àó, ÀU)

Œò, Œ•, Œô, Œ¢	 = ∑´LIOHI%$ñœœ Àò, À•, Àô, À¢

ŒAA, Œ¶, Œß, ŒAU	 = ∑´LIOHI%$ñœœ(ÀAA, À¶, Àß, ÀAU)

ŒAB, ŒAó, ŒAô, ŒA¢	 = ∑´LIOHI%$ñœœ ÀAB, ÀAó, ÀAô, ÀA¢

The reason for passing different sequence of parameters in Row and Column round is

detailed in the sub-section ‘4.1.4 Results and Discussion’.

Double round of MCC takes 16 words ® = 	 ®U, ®A, ®B …®Aó, ®Aô, ®A¢	 input and

generates 16 words Œ = 	 (ŒU, ŒA, ŒB, … ŒAó, ŒAô, ŒA¢)	output. Double round of MCC is

Column round followed by a Row round and is defined below:

Œ = 	$M´a?H%$ñœœ ® = 	%MF%$ñœœ(xM?´N.%$ñœœ ®)

Different number of rounds for MCC can be proposed as done for Salsa and ChaCha

core like Salsa20 or ChaCha8. The number of rounds may be decided on the basis of

diffusion factor required i.e. how many full diffusions are needed in a cryptographic

primitive. MCC is able to generate one full diffusion in second Double round.

4.1.3 Experiment Used to Measure the Diffusion Property of Quarter Rounds

Diffusion, considered as one of the main properties of the operation of a cryptographic

primitive, refers to the property of a function to quickly spread a small change in the input

to maximum possible bits in the output. From the perspective of Quarter round functions,

diffusion may be measured in terms of change in output words with a small change in

input words. Higher diffusion means a better Quarter round function.

	

	

	

121	

Quarter rounds of all three candidate designs have four rotation constants: { i, j, k, l }.

For Salsa, Bernstein [157] has defined these rotation constants as {7, 9, 13, 18} and for

ChaCha [158], it is defined as {16, 12, 8, 7}. For MCC, the exact value of rotation

constants is determined based on the analysis of all possible diffusion matrices as detailed

in this section.

To understand the diffusion property of all three candidate Quarter rounds (Salsa,

ChaCha, and MCC), the matrix, as mentioned in Table 9, were calculated for all possible

values of i, j, k, and l where i, j, k, and l varies from 0 to 31. This will generate

32*32*32*32 = 1,048,576 (more than one million) different matrices for each alternative

design.

Table 9. Diffusion Matrix

 OP
IP

a b c d

a $ $ ^ $ � $ w

b $^ $^^ $^� $^w

c $� $�^ $�� $�w

d $w $w^ $w� $ww

Each cell like "$ ^" of the matrix (Table 9), refers average number of bits modified

in word ‘b’, given a random one-bit difference in input word ‘a’. So, the first row of the

matrix reflects the change (average number of bits modified) in output words (a to d) with

a one-bit difference in input word ‘a’. Similarly, the second row reflects the change in

output words with one-bit difference in input word ‘b’ and so do the third and the fourth

row represent changes for input words ‘c’ and ‘d’ respectively.

For all three alternative designs, the following algorithm was executed to obtain

diffusion matrices (as explained above) for all possible rotation constants.

Step 1: Take four words (a, b, c, d) of 32 bits each.

Step 2: Run the following steps (Step 3 to 9) for different values of i, j, k, and l ; each

varying from 0 to 31 (so there will be four nested loops totalling to 1,048,576 iterations)

Step 3: Generate four 32-bit random values and assign these values to words a, b, c and

d respectively.

Step 4: Run the Quarter round of the concerned design

	

	

	

122	

L4, a4, c4, P4 = ∑´LIOHI%$ L, a, c, P with rotation constant as i, j, k, and l.
[These will be called ∑´LIOHI%$… ;` L, a, c, P or ∑´LIOHI%$œé œé L, a, c, P or

∑´LIOHI%$ñœœ	 L, a, c, P depending on the design for which this algorithm is being called]

Step 5: Flip one bit of word ‘a’ randomly and keep all other words (b, c, and d) same

and call the Quarter round functions of concerned design again.

L44, a44, c44, P44 = ∑´LIOHI%$ L—;D““”w, a, c, P with rotation constant as i, j, k, and l.

Step 6: Compare L4, a4, c4, P4 with L44, a44, c44, P44 and find how many bits are different

in each word and store it in one dimensional array $ having four elements

[$, $ ^, $ �, $ w]. $ ^ represent change in word ‘b’ because of one bit flip in word

‘a’ i.e. difference in a4 and a4′. Similarly, $ � represent the change in word ‘c’ i.e.

difference in c4 and c4′ with one bit flip in word ‘a’.

Example: If a4 is 11100110111001101110011011100110 and a4′ is

10111111111001101011111110111111 then it means change (No. of bits modified) in

word ‘b’ because of change in one bit of word ‘a’ is 12. This will be stored in $ ^.

Step 7: Repeat step 5 and 6. But this time, rather than flipping one bit of ‘a’, flip one bit

of word ‘b’ and keep all words same. This means, we will generate L44, a44, c44, P44 =

∑´LIOHI%$ L, a—;D““”w, c, P with rotation constant as i, j, k, l and will accordingly

calculate $^ having four elements [$^ , $^^, $^�, $^w].

Step 8: Similar to step 7, find $� and $w by flipping one bit of word ‘c’ and ‘d’

respectively. After all this we will have matrix ‘D’ with first row as $ =

[$, $ ^, $ �, $ w]; second row as $^ = [$^ , $^^, $^�, $^w]; third row as $� =

[$� , $�^, $��, $�w] and fourth row as $w = [$w , $w^, $w�, $ww]

Step 9: Repeat Step 3 to 8 one thousand times and find average of each element of D.

After averaging that out, we will get diffusion matrix as mentioned in Table 9 for one

set of rotation constants i, j, k and l.

Using the above algorithm, the obtained diffusion matrices for Salsa and ChaCha for

the rotation constants {7, 9, 13, 18} and {16, 12, 8, 7} are given in Table 10 and Table

11 respectively.

Matrices in Table 10 and Table 11 clearly reflect that Quarter round of ChaCha

performs better diffusion than Salsa. Salsa diffusion matrix makes it evident that change

in word ‘b’ and ‘c’ does not bring much change in word ‘b’ and / or word ‘c’.

	

	

	

123	

Table 10. Diffusion Matrix of Salsa’s Quarter Round

OP
IP a b c d

a 12.205 1.955 4.316 6.430
b 7.255 1.0 1.946 4.330
c 4.333 0 1.0 1.958
d 8.784 1.958 2.468 5.649

Mean: 4.0992, Standard Deviation: 3.1887

Table 11. Diffusion Matrix of ChaCha’s Quarter Round

OP
IP a b c d

a 4.047 11.285 9.331 5.989
b 5.987 13.418 10.825 7.794
c 2.47 6.781 4.803 2.47
d 2.399 8.528 6.751 3.399

Mean: 6.6424, Standard Deviation: 3.2731

The above algorithm was executed for all three candidate Quarter round designs

(Salsa, ChaCha, and MCC). For each design, 1,048,576 different diffusion matrices were

obtained that corresponded to all 1,048,576 possible permutations of rotation constants i,

j, k, and l (each varying from 0 to 31). For MCC, the experiment was a way to decide the

exact rotation distances (constants) to be used. For Salsa and ChaCha, Bernstein [157]

[158] had already prescribed the rotation constants. However, diffusion matrices for

different rotation distances were still calculated with an objective to study whether there

exist rotation distances that generate better diffusion than the prescribed rotation

distances.

4.1.4 Results and Discussion

Each diffusion matrix contains 16 values, all representing diffusions in different words

(a, b, c, and d). To evaluate all these diffusion matrices (that are more than 1 million

matrices per design), the mean and standard deviation for each matrix were calculated

and plotted with mean on ‘x’ axis and standard deviation on ‘y’ axis. For every single

	

	

	

124	

diffusion matrix (that corresponded to a specific permutation of i, j, k, and l), one point is

plotted on the graph. So the graphs of Quarter round of Salsa (Figure 49), ChaCha (Figure

50) and MCC (Figure 51) represent 1,048,576 points each. The graphs for all three

designs and their comparison is discussed in this subsection:

A) Results for Quarter Round of Salsa Core

As mentioned earlier, the graph for Quarter round of Salsa core is given in Figure 49.

Some interesting observations from the results of Salsa’s Quarter round are:

i. There are more than 45000 (4.3%) permutations of i, j, k, and l; that give slightly

better results than the prescribed value of rotation constants i.e. mean is higher and

standard deviation is lower than the mean and standard deviation obtained with

prescribed rotation constants {7, 9, 13, 18}.

Figure 49. Mean and Standard Deviation of Diffusion Matrices of Salsa’s Quarter Round

ii. The rotation constants that generate the diffusion matrix with the highest mean is

{12, 21, 12, 3} i.e. use of these rotation constants will result in more diffusion than

the diffusion obtained with rotation constants prescribed by Bernstein in [157].

However, the improvement in the mean is not considerable and is just slightly more

than the mean obtained using prescribed rotation constants. The mean and standard

deviation of diffusion matrix at {12, 21, 12, 3} are 4.2462 and 3.1821 respectively.

	

	

	

125	

iii. The rotation constants that generate diffusion matrix with smallest standard

deviation is {12, 18, 6, 8}. The mean and standard deviation for the diffusion

matrix corresponding to these rotation constants are 4.1076 and 2.9392

respectively.

B) Results for Quarter Round of ChaCha Core

The graph for Quarter round of Salsa core is given in Figure 50. Some interesting

observations that emerge from the results of ChaCha’s Quarter round are given below:

i. For ChaCha Quarter round, Bernstein [158] changed the rotation constants from

{7, 9, 13, 18} to {16, 12, 8, 7}. However, on examination of the diffusion matrices

of ChaCha’s Quarter round on both these sets, not much improvement could be

found. For 1000 random values, the experiment reflected that for rotation constants

{7, 9, 13, 18}, ChaCha’s Quarter round created diffusion matrix with mean =

6.8377 and standard deviation = 3.2872, and for rotation constants of {16, 12, 8,

7}, it generated diffusion matrix with mean = 6.6424 and standard deviation =

3.2731.

Figure 50. Mean and Standard Deviation of Diffusion Matrices of ChaCha’s Quarter Round

ii. There are more than 58000 (5.5%) permutations of i, j, k, and l; that give better

results than the prescribed value of rotation constants i.e. the mean is higher and

	

	

	

126	

standard deviation is lower than the mean and standard deviation obtained with the

prescribed rotation constants {16, 12, 8, 7}.

iii. The rotation constants that generate the diffusion matrix with the highest mean is

{14, 24, 19, 11} i.e. if we use these rotation constants then we will have maximum

diffusion. The mean and standard deviation of diffusion matrix at these rotation

constants is 7.0599 and 3.5353 respectively.

iv. The rotation constants that generate diffusion matrix with the smallest standard

deviation is {5, 13, 6, 23}. The mean and standard deviation for the diffusion matrix

corresponding to these rotation constants are 6.6526 and 2.8851 respectively.

C) Results for Quarter Round of MCC

The graph for Quarter round of MCC core is given in Figure 51.

Figure 51. Mean and Standard Deviation of Diffusion Matrices of MCC’s Quarter Round

Results of the experiment for MCC Quarter round yielded some important

observations that led to the decision of a) rotation constants to be used for MCC

Quarter round and b) about the sequence of parameters to be passed in Column and

Row round of MCC. These are detailed below:

i. There are 12 sets of rotation constants that generate diffusion matrices with mean

more than 7.70. These 12 top sets are listed in Table 12.

	

	

	

127	

Table 12. Top 12 Sets of Rotation Constants with Mean ≥ 7.70

Sr.
No.

1st
rotation
constant

(i)

2nd
rotation
constant

(j)

3rd
rotation
constant

(k)

4th
rotation
constant

(l)

Mean of
diffusion
matrix

Std. dev. of
diffusion
matrix

1. 20 17 24 9 7.743 3.669
2. 27 14 22 16 7.730 3.657
3. 4 16 8 19 7.728 3.607
4. 24 16 21 15 7.726 3.527
5. 4 17 8 0 7.716 3.605
6. 21 17 24 15 7.709 3.551
7. 4 17 9 19 7.708 3.652
8. 26 13 23 24 7.706 3.674
9. 4 17 8 16 7.705 3.637
10. 26 14 23 8 7.704 3.644
11. 19 23 15 1 7.704 3.587
12. 26 14 23 22 7.700 3.641

ii. Diffusion matrices of top 12 sets of rotation constants are quite similar to each

other and any one of them can be picked for the best possible diffusion. However,

set number 5 with rotation constants {4, 17, 8, 0} was picked for its specific

property i.e. its 4th rotation constant is zero. Non-requirement of 4th rotation means

reduction in execution cost as we have to do one operation lesser and still be able

to generate the best possible diffusion.

iii. The diffusion matrix of MCC corresponding to rotation constants {4, 17, 8, 0} is

given in Table 13.
Table 13. Diffusion Matrix of MCC’s Quarter Round

OP
IP a b c D

a 13.4 9.03 7.271 15.266
b 10.551 6.909 5.207 12.287
c 7.733 4.319 4.32 9.369
d 5.39 2.77 2.78 6.861

iv. The diffusion matrix shown in Table 13 diffuses output words ‘a’ and ‘d’ more

than ‘b’ and ‘c’. To be precise, word ‘d’ is diffused most and word ‘c’ is diffused

the least. So in Column and Row rounds, parameters are passed in a different

sequence to make sure that each row and each column have equal opportunities for

diffusion. Figure 52 illustrates this concept. The element with highest diffusion is

coloured red, the second in diffusion is coloured green, followed by the third and

fourth in blue and yellow. For example, in Column round, the sequence of

	

	

	

128	

parameters in first call to Quarter round is ®U, ®ô, ®¶, ®AB and this sequence results

in highest diffusion in ®AB (element of fourth row, coloured red), followed by ®U

(the element of first row, coloured green) and then ®ô (element of second row,

coloured blue) and least diffusion in ®¶(element of third row, coloured yellow).

So, in calling Quarter round for subsequent columns / rows, the intention is to

create more diffusion in those elements which belong to rows that had lesser

diffusion in previous calls. With this objective, sequence of parameters is decided

in Column and Row round. It is evident from Figure 52 that after all four calls of

Column round, each column and row has exactly one element that has been

diffused maximum and similar behaviour is ascertained by different Row rounds.

This sequence of parameters results in uniform diffusion.

Figure 52. Sequence of Parameters Ensure Uniform Diffusion

	

	

	

129	

D) Comparison of Quarter Round of Salsa Core, ChaCha Core, and MCC

The graph in Figure 53 gives better picture of relative performance of these three

designs. Figure 54 is a zoomed version of this graph showing points having means ≥ 7.0.

Important observations from result of all three algorithms are listed below:

i. MCC’s and ChaCha’s Quarter round perform better than Salsa’s Quarter

round: For majority of values of i, j, k, and l; Quarter round of ChaCha and MCC

creates more diffusion than Salsa and the same is evident from Figure 53.

ii. MCC’s Quarter round outperforms ChaCha’s Quarter round: It is evident

from Figure 53 and Figure 54 that Quarter round of MCC has better diffusion

property than that of ChaCha. For considerably high number of permutations of i,

j, k and l, MCC’s Quarter round creates more diffusion than ChaCha’s Quarter

round. The experiment reflected that:

Figure 53. Comparison of Quarter Rounds of Salsa Core, ChaCha Core and MCC

• For at least 200 thousand permutations (about 21%), MCC’s Quarter round

have higher mean than the highest possible mean (7.0599) of ChaCha’s Quarter

round.

	

	

	

130	

• Highest possible mean of ChaCha’s diffusion matrix, was not achieved with

permutation constants prescribed by Bernstein in [158]. If the prescribed

permutation constants are considered, the resultant diffusion matrix has mean of

6.6424, and MCC’s core gives at least 450 thousand permutations (about 44%)

that have higher mean than this.

• The similar trend is visible if we look at the standard deviation of diffusion

matrices of both the designs. For more than 650 thousand permutations (about

64%), MCC Quarter round generates diffusion matrices, having standard

deviation better (lesser) than the best possible diffusion matrix (having lowest

standard deviation of 2.8851) of ChaCha’s Quarter round. As discussed earlier,

this diffusion matrix (with least standard deviation) is not observed at the rotation

constants prescribed by the author (Bernstein in [158]). Using authors prescribed

rotation constants, the diffusion matrix result in standard deviation of 3.2731. For

about 90% permutations, MCC’s Quarter round results in diffusion matrix

having lesser standard deviation than this.

Figure 54. Zoomed Version of Comparison of Three Designs for Mean ≥ 7.0

• If we compare both mean and standard deviation, more than 340 thousand

permutations (about 32%) generate diffusion matrices, that have more mean as

well as lesser standard deviation than the diffusion matrix generated by ChaCha’s

Quarter round at {16, 12, 8, 7} (rotation constants prescribed by the author).

	

	

	

131	

• On average, more than 250 thousand permutations (about 22%) were found in

MCC that produce diffusion matrices with mean greater than equal to 7.0 and only

about 150 permutations (less than 0.02%) in ChaCha that produce mean greater

than or equal 7.0. This is reflected in Figure 54.

Concluding Remarks about the Experiment: Analysis of Quarter round of Salsa

and ChaCha core for all possible rotation distances reflect that there are considerably high

number of alternative rotation distances that perform better than the rotation constants

prescribed by Bernstein in [157] and [158]. Quarter round of MCC creates more

diffusions than its counterpart and it does so in lesser operations. The Quarter round of

MCC as described in Figure 48 is proposed with rotation constants of {4, 17, 8, 0} i.e.

without fourth rotation. So the improved design uses four 32-bit additions, four 32-bit

XORs and three 32-bit rotations against four rotations in ChaCha as well as Salsa’s

Quarter round. Even after having one operation lesser, MCC has more diffusion than

ChaCha and Salsa. MCC’s Quarter round, on an average, generate diffusion matrices with

mean of 7.716 against 6.6424 of ChaCha and 4.0992 of Salsa i.e. on an average, gain of

16% from ChaCha and 88% from Salsa Quarter round. The MCC core, based on Quarter

round as per Figure 48, calls multiple Double rounds and may be used to generate stream

cipher, block ciphers or may be used to generate collision resistant compression function

[160] for a cryptographic hash algorithm. Spritz [161] and Rumba [162] are examples of

such an attempt where compression function or hash has been designed from basic

structure used by stream cipher. This thesis has used MCC core for generating collision

resistant compression function for cryptographic hash algorithm named Cocktail.

4.2 Introduction to Cocktail and Description of Notations and

Operations Used

This chapter presents a new hash function named Cocktail which can act as a variant

to Skein Hash family [9] . Besides Skein, it can be used in place of any existing hash

function. Cocktail is simple, flexible, and efficient but still secure.

Cocktail is based on ARX i.e. Arithmetic, Rotation (with constants) and XOR

operations and does not use any S Boxes lookups or Integer multiplications at all which

makes Cocktail quite simple as well as efficient.

	

	

	

132	

Cocktail is an iterated hash function and its compression function is based on

Modified ChaCha Core (MCC). MCC is an alternative to Bernstein’s Salsa [157] and

ChaCha core [158]. Salsa was submitted in eSTREAM [17] project and is one of

eSTREAM’s profile algorithm. Its security has been intensively analysed. ChaCha and

MCC are extensions of Salsa core and offer similar or higher level of security (because

both offers more diffusion). Apart from the security aspect, MCC offers high level of

parallelism that can be exploited for better performance. Designing compression function

around MCC (which is an improvement over an existing primitive Salsa and ChaCha)

instils great confidence in security and performance of Cocktail.

Cocktail is a Wide Pipe iterated design [49] which is an improvement over Merkle

Damgard construction [14] [45]. The internal hash state of Cocktail is at least double the

size of the output (message digest) size. In fact, Cocktail also uses bits hashed so far in

chain value and thus implements the feature of Biham and Dunkleman’s HAIFA [51]

construction also. Such wide pipe design, along with introduction of number of bits

hashed so far, makes Cocktail more secure from multiple generic attacks like second

pre-image attacks, internal collision, length extension and Joux Multicollisions.

Cocktail is flexible as it can output message digest of varying sizes. This study

presents the two variants of Cocktail hash function: Cocktail-512 and Cocktail-1024.

Akin to SHA-2, Cocktail has a 32-bit version (Cocktail-512) and a 64-bit version

(Cocktail-1024). Table 14 illustrates Cocktail’s usage.

Table 14. Cocktail’s Overview

Algorithm to
be used

Word
Size

Size of
Message
Block and
Internal
Hash State

Message
Digest

Initial Values Input
Message
Length

Cocktail-512 32 bits 512 32 bits to
256 bits in
steps of 32
bit each.

16 constants of
32 bit each

 Less than
264

Cocktail-1024 64 bits 1024 320 bits to
512 bits in
steps of 64
bit each.

16 constants of
64 bits each

Less than
2128

	

	

	

133	

4.2.1 Definitions, Symbols, Notations, Operations and Parameters Used

A) Terms

Bit A binary digit having value 0 or 1

Byte A group of 8 bits

Word 32 bits i.e. 4 bytes in case of Cocktail – 512 and 64 bits i.e. 8 bytes in case

of Cocktail – 1024. Big Endian Notation has been used for converting

bytes into words. For example, if Location 0, 1, 2, and 3 contains 0x12,

0x34, 0x56, and 0x78 respectively, then the 32-bit word will be

0x12345678 i.e. the byte stored at location 0 is considered as the most

significant byte.

B) Symbols and Operations

= Assignment operation. A variable assigned to other variable

+ Addition of two words. Addition will be modulo 232 for Cocktail-512 and

 module 264 for Cocktail-1024

⊕ XOR Operation of two words

⋙ ’ Rotation of r bits towards right i.e. towards less significant bits

⋘ ’ Rotation of r bits towards left i.e. towards more significant bits

C) Algorithm Parameters

÷ The Message to be hashed.

◊ Length of the message M in bits.

ÿ Number of zeroes appended to message during the padding step.

Ÿ Size of the Block or Internal Hash State in bits (512 for Cocktail -512 and

1024 for Cocktail-1024).

⁄ Total number of Message Blocks after padding.

÷€ The €‹› Message Block of size Ÿ	bits. ÷¿ represent the first Block and

 ÷⁄Et represent the final message block.

÷fi
€
 The fi‹› word of €‹› Message Block. ÷¿

€ represent the first and the left

most word of message block €.

fl€ The €‹› chain value (Internal Hash State) of size Ÿ	bits. fl¿ represent the

Initial Value also termed as IV (Initial Value) and fl⁄Et is the final state

	

	

	

134	

value outputted from last compression function and is used to determine

the message digest using output transformation.

flfi
€
 The fi‹› word of €‹›	internal hash state value.

‡¿
€

 Lower order word representing number of bits hashed up to €‹› message

block (compression function)

‡t
€

 High order word representing number of bits hashed up to €‹› message

 block (compression function)

⁄· Number of rounds used in each compression function.

’ Used to signify the round number of compression function. ’ varies from

0 to ⁄· − t

p€
 The Key Derivation Word (KDW) to be used in €‹› compression function.

pfi
€
 The fi‹› word of KDW to be used in €‹› compression function.

‚pƒ
€ ƒ‹› Sub-Key used in I_éround of the J_écompression function, where

 I = 2 ∗ 5

‚pƒ,fi
€ The fi‹› word of ƒ‹›Sub-Key of J_écompression function.

fl(÷) Message Digest i.e. Final Hash Value of Message ÷

 „ Size of Message Digest required.

4.3 Iterated Construction of Cocktail

The whole Message ÷ is padded and divided into ⁄ blocks of Ÿ bits each. An Initial

Chain Value (IV) of Ÿ bits is also defined where Ÿ is of 512 bits for Cocktail-512 and of

1024 bits for Cocktail-1024. The compression function ‰ takes three inputs: Message

Block, Chain Value (Internal Hash State) and number of bits hashed until now

(represented by ‡ which will be of two words i.e 2 words of 32 bits each (totaling 64 bits)

for Cocktail-512 and 2 words of 64 bits (totalling 128 bits) each for Cocktail-1024).

Compression function generates Ÿ	bits output. The iterated structure works as follow:

 !U = XY

 !D = 9	 !DEA, 	0DEA, £DEA 	⊕	0DEA

After the last block 0CEA is processed, the Final Hash value is computed using Output

Transformation Â as defined below:

 ! 0 = 	y	 !C

	

	

	

135	

 y ® = 	 OI´.cLOH- Q ® ⊕ ®

Figure 55. Iterative Structure of Cocktail Hash Function

The iterated structure of cocktail is a variant of Matyas – Mayer – Oseas [93] iteration

mode and is represented graphically in Figure 55. The compression function ‰ and output

transformation Â are detailed in subsequent sections.

4.4 Specifications of Cocktail-512

Hash function Cocktail-512 operates on 32-bit words and can be used to generate

message digest of any length from 32 bits to 256 bits in steps of 32 bit each (i.e. output

of 32, 64, 96, 128, 160, 192, 224, and 256 bits are possible). Internal Hash State and

Message Block Size is of 512 bits represented as 16 words of 32 bits each. This section

illustrates Initial Values, padding technique used, Compression Function, and Output

Transformation for Cocktail-512 in detail.

4.4.1 Padding

Cocktail uses multi-rate padding. For a message 0 of length >, the following steps

are adopted for padding in Cocktail-512.

Step 1: Append Bit ‘1’ to Message 0.

Step 2: Append û	 = 	 (−	>	– 	66)	NMP	512	 zero (‘0’) bits i.e. enough zeroes so that

message after insertion of bit 1 and zeroes is congruent to 447 NMP´?M 512.

Step 3: Append bit ‘0’ followed by 64-bit representation of message length >.

Figure 56. Message 'M' after Padding in Cocktail-512

At least one bit and maximum of 512 bits are appended. After following the above

steps, Message will always be multiple of 512 bits. The maximum length of the message

that can be hashed with Cocktail-512 is (2òô − 1) bits.

	

	

	

136	

4.4.2 Initial Values

For Cocktail-512, 16 words of 32-bit each (i.e. 512 bits) are needed as IV (initial

values). The 16 words of initial values are derived from first 16 prime numbers (i.e. 2, 3,

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53). Initial value is the fraction part of the

square root of the corresponding prime numbers after converting them to binary and

keeping only the first 32 bits. Appendix –V gives steps to generate these initial values.

!U
U

 = 6A09E667 !A
U = BB67AE85

!B
U

 = 3C6EF372 !ó
U

 = A54FF53A

!ô
U

 = 510E527F !¢
U

 = 9B05688C

!ò
U = 1F83D9AB !•

U
 = 5BE0CD19

!¶
U

 = CBBB9D5D !ß
U

 = 629A292A

!AU
U

 = 9159015A !AA
U

 = 152FECD8

!AB
U

 = 67332667 !Aó
U

 = 8EB44A87

!Aô
U

 = DB0C2E0D !A¢
U

 = 47B5481D

4.4.3 Compression Function of Cocktail-512

This section delineates the compression function of Cocktail-512 wherein all details

for Compression function called for J_é Message Block (0D) is given. As evident from

Figure 55, the compression function ‰ of Cocktail-512 has the following following

inputs and outputs:

A) Inputs

• Message Block of 512 bits represented as 16 words of 32-bit each. For example

the 16 words of message block € will be 0U
D , 0A

D , … ,0A¢
D 	.

• Hash State (Chain Value) of 512 bits represented as 16 words of 32-bit each. The

16 words are represented as !UD , !AD , … , !A¢D 	. For the first compression function,

IV (Initial Values), as mentioned in ‘4.4.2 Initial Values’, will be used and for

subsequent compression functions, output of previous compression function acts

as Hash State (Chain Value) input.

• Two words input representing the message bits hashed so far (excluding any

padding bits). These words are represented as £UD	L.P	£AD. £UD is the lower order 32-

bits and £AD is the high order 32-bits representing the number of bits hashed up to

	

	

	

137	

J_é message block (without considering the padding data). Example: If the original

message is of 330 bits, then after padding, Message will be of one block of 512

bits. In this case £AD	will have zero value and £UD will represent 300 value.

B) Output

 The compression function mixes the message block and hash state to give the hash

state / chain value (!DfA) as o/p which is used in next compression function ‰ or output

transformation y.

C) Internal State of Compression Function

Cocktail-512, for processing, arranges Internal State within the compression function

and other date items (Message Block, Key etc.) in a matrix of 4x4 where each element of

matrix is of 32 bits. The Internal state of Compression function is represented with the

following matrix.

:	 =

®U ®A ®B ®ó
®ô ®¢ ®ò ®•
®¶ ®ß ®AU ®AA
®AB ®Aó ®Aô ®A¢

Whenever Compression function is called, this Internal State matrix of compression

function is initialized with the 16 words of Message Block for which compression

function is called.

: = 0D	

Various words of Message Block 0D may be represented using the following matrix:

0D =

0U
D 0A

D 0B
D 0ó

D

0ô
D 0¢

D 0ò
D 0•

D

0¶
D 0ß

D 0AU
D 0AA

D

0AB
D 0Aó

D 0Aô
D 0A¢

D

D) Rounds and Steps of Compression Function

Compression function of Cocktail-512 (refer Figure 57) makes use of the following

three steps:

• Add Sub-Key (Added in Alternate rounds)

• Four Column Quarter Rounds

• Four Row Quarter Rounds

	

	

	

138	

Figure 57. Structure of 10 Round Compression Function Cocktail

The number of rounds (@%) is flexibility in the hands of the user and can be decided

depending on the full diffusions required and the speed expectations. 10 rounds are

proposed for Cocktail-512 and the structure of the same is represented in Figure 57.

Before explaining the steps to be followed in each round, key expansion method used to

obtain Sub-Keys for alternate rounds of compression function, are explained.

E) Sub-Keys and Its Expansion

Each alternate round of the compression function makes use of 16 words of key. So

for all @% rounds (0	OM	@% − 1) of compression function we need 16 ∗ 	(@%/2) words

	

	

	

139	

of sub-key (for 10 rounds, it will be 80 words). All these sub-key words are derived from

Internal Hash State /chain value (!UD 	, !AD , … , !A¢D) and two words (£UD, £AD) representing

number of bits hashed so far.

Key words to be used in 5_é sub-key of J_é compression function is termed as É8`D and

is represented as:

É8`
D =

É8`,U
D É8`,A

D É8`,B
D É8`,ó

D

É8`,ô
D É8`,¢

D É8`,ò
D É8`,•

D

É8`,¶
D É8`,ß

D É8`,AU
D É8`,AA

D

É8`,AB
D É8`,Aó

D É8`,Aô
D É8`,A¢

D

5 will vary from 0	OM	(Cö
B
− 1) and 5_é sub-key will be used in I_é	round of

compression function where I = 2 ∗ s. For example first round I = 0 of compression

function will make use of first sub-key 5 = 0 and then third I = 2 	round of

compression function will make use of second sub-key 5 = 1 and so on.

To understand the process of obtaining sub-keys (É8`D) for alternate rounds of

compression function, we define Key Derivation Words (KDWs) 8UD	OM	8 Aò∗
ÁË
z
EA

D (NR

is total number of rounds) and these KDWs will be used to obtain round keys É8`D.

First 16 Key Derivation Words (KDWs) i.e. 8UD	OM	8A¢D are obtained using following

formulae

8Ç
D = 	!Ç

D	,																				9MI	Å = 0	OM	15

The remaining KDWs i.e. 8AòD 	OM	8(Aò∗ÁË
z
EA)

D are obtained using the following

formulae. The technique to obtain remaining KDWs is inspired from key expansion

technique used by AES [5].

8Ç
D = 	

π ⊕8ÇEAò
D , 9MI	Å	%	16 = 0	

	8ÇEA
D 	⊕	8ÇEAò

D , yOℎHIFJ5H

where π = 	(8ÇEA
D ⋘ 8) 	⊕ %xM.32(%P	%	8) {L.P	%P = Å/16	}

%xM.32 %P is a round constant dependent on sub-key number for which KDWs are

being calculated and is given in Table 15.
Table 15. Round Constants for Key Derivation Words(Cocktail-512)

 ·Íº„¬q ·æ ·Íº„¬q ·æ

%P = 1 0x10000000 %P = 2 0x20000000

	

	

	

140	

%P = 3 0x40000000 %P = 4 0x80000000

%P = 5 0x1B000000 %P = 6 0x36000000

%P = 7 0x6C000000 %P = 8 0xD8000000

Figure 58 represents the process of computing KDWs.

Figure 58. Process of Computing Key Derivation Words

Once the KDWs, have been computed, the round keys É8`D are computed as per

following details:

First Sub-Key i.e. Sub-Key for first Round : ‚p¿
€ ∶ First sub-key i.e. sub-key for for

the first round (5 = 	I	 = 	0) is defined as:

É8U,Ç
D = 	

8Ç
D +	£U

D, 9MI	Å = 	0, 15

8Ç
D 	+ 	£A

D, 9MI	Å = 5

8Ç
D +	£B

D, 9MI	Å = 10

8Ç
D, 9MI	Å = 1	OM	4, 6	OM	9, 11	OM	14

where £BD = 	£UD 	⊕	£A
D

The same can be represented in matrix shape as below:

É8U,U
D É8U,A

D É8U,B
D É8U,ó

D

É8U,ô
D É8U,¢

D É8U,ò
D É8U,•

D

É8U,¶
D É8U,ß

D É8U,AU
D É8U,AA

D

É8U,AB
D É8U,Aó

D É8U,Aô
D É8U,A¢

D

			= 			

8U
D +	£U

D 8A
D 8B

D 8ó
D

8ô
D 8¢

D +	£A
D 8ò

D 8•
D

8¶
D 8ß

D 8AU
D +	£B

D 8AA
D

8AB
D 8Aó

D 8Aô
D 8A¢

D +	£U
D

From above equation it is evident that ‡ words (no. of bits hashed so far) affect each

row and column of the Sub-key matrix.

	

	

	

141	

Sub-key for Subsequent Rounds : ‚pƒ
€ : The sub-key for subsequent rounds (5	 =

1	OM
Cö

B
− 1) is defined as:

É8`,Ç
D = 	

8ÎfÇ
D +	£ `fU %ó		

D , 9MI	Å = 	0, 15

8ÎfÇ
D +	£ `fA %ó

D 		, 9MI	Å = 5

8ÎfÇ
D +	£ `fB %ó	

D , 9MI	Å = 10

8ÎfÇ
D 		, 9MI	Å = 1	OM	4, 6	OM	9, 11	OM	14

 where ´ = 16 ∗ 5 and 5	 ∈ (1, 2, … , Cö
B
− 1)

The 16 words of 5_é	sub-key used in I_é round (where I = 2 ∗ 5)	may be represented

as following matrix of 4x4.

É8`
D = 	

É8`,U
D É8`,A

D É8`,B
D É8`,ó

D

É8`,ô
D É8`,¢

D É8`,ò
D É8`,•

D

É8`,¶
D É8`,ß

D É8`,AU
D É8`,AA

D

É8`,AB
D É8`,Aó

D É8`,Aô
D É8`,A¢

D

=

8Î
D +	£ `fU %ó		

D 8ÎfA
D 8ÎfB

D 8Îfó
D

8Îfô
D 8Îf¢

D +	£ `fA %ó
D 8Îfò

D 8Îf•
D

8Îf¶
D 8Îfß

D 8ÎfAU
D +	£ `fB %ó	

D 8ÎfAA
D

8ÎfAB
D 8ÎfAó

D 8ÎfAô
D 8ÎfA¢ +	£ `fU %ó		

D

where ´ = 16 ∗ 5 and 5	 ∈ (1, 2, … , Cö
B
− 1)

The key expansion method as explained above ensures that each row and column of

all Sub-key matrices get some impact of no. of bits hashed so far (i.e. £UD	MI	£AD	FMIP5).

F) Add Sub-Key

‘Add Sub-Key’ step is not used in each round of the compression function. ‘Add Sub-

Key’ step is called in alternate round i.e. in 0th, 2nd, 4th, 6th and 8th round of a 10 round

compression function. ‘Add Sub-Key’ step, XOR the internal state matrix of

Compression function with the 16 words of Sub-Key. The operation can be represented

as: : = :	 ⊕ É8`
D

G) Column and Row Quarter Rounds

Four Column and Four Row Quarter Rounds are practically one Double round of

Modified ChaCha Core (as defined in ‘4.1.2 Modified ChaCha Core (MCC)’). The

Figure 59 represent the block diagram of one set of Four Column and Four Row Quarter

	

	

	

142	

rounds. Column Quarter round call four Quarter rounds one for each column of the

internal state and Row round does the similar operation by calling four Quarter rounds

again but for each row of the internal state.

Figure 59. Working of Column and Row Round of Cocktail-512

The logic behind sequence of parameters (elements of internal state) passed in each

call to Quarter round was detailed in previous section under the head ‘4.1.4-C) Results

for Quarter Round of MCC’. The specific sequence of parameters ensures uniform

diffusion. In Table 16, we present the diffusion matrix generated by one set of Column

and Row Quarter rounds (4 Column and 4 Row Quarter rounds). The values are rounded

to closest integer. Majority of elements of internal state matrix gets diffusion close to

ideal. The ideal value is 16 (i.e. out of 32 bits, 50% bits are modified by only one-bit

change in the input).

As evident from the Table 16, just one set of Column and Row Quarter rounds, results

in about 80% (79.6% to be precise) elements (words of internal state) getting diffusion

close to 16 (above 10) and about 40% of these elements get ideal diffusion (diffusion of

	

	

	

143	

16 bits). All this takes place in just one round of Cocktail and Cocktail has10 such

rounds and 5 out of these will also have influx of 16 words of sub-key which will help in

bringing confusion.
Table 16. Diffusion Matrix for One Double Round of MCC (Four Column and Four Row Quarter Rounds)

 Ï¿ Ït Ïq Ï¬ Ï√ ÏÌ ÏÓ ÏÔ Ï Ïª Ït¿ Ïtt Ïtq Ït¬ Ït√ ÏtÌ

Ï¿ 16 16 14 14 11 16 16 11 13 11 16 15 16 16 16 16

Ït 16 16 16 15 6 11 9 6 6 6 12 10 12 8 6 13

Ïq 15 14 11 7 15 16 16 15 9 9 13 12 12 7 7 13

Ï¬ 16 15 12 12 8 15 15 12 16 16 16 16 14 12 12 16

Ï√ 16 14 12 12 12 16 15 12 12 8 15 15 16 16 16 16

ÏÌ 16 16 16 16 14 16 16 14 11 11 16 16 15 12 10 16

ÏÓ 13 12 8 6 15 16 16 16 6 6 11 9 10 6 6 12

ÏÔ 13 12 7 7 7 14 14 11 15 15 16 16 12 9 9 14

Ï 14 12 9 9 7 13 12 7 11 7 14 14 16 16 15 16

Ïª 16 16 16 16 12 16 14 12 12 12 16 15 15 12 8 15

Ït¿ 16 15 13 11 16 16 16 16 14 14 16 16 16 11 11 16

Ïtt 12 10 6 6 6 13 12 8 16 15 16 16 9 6 6 11

Ïtq 11 9 6 6 6 12 10 6 8 6 13 12 16 16 15 16

Ït¬ 16 16 16 15 9 13 12 9 7 7 13 12 14 11 7 15

Ït√ 15 15 12 7 16 16 16 16 12 12 15 14 15 12 12 16

ÏtÌ 16 16 11 11 11 16 15 13 16 16 16 16 16 14 14 16

The algorithm to generate diffusion matrix is similar to the one discussed in ‘4.1.3

Experiment Used to Measure the Diffusion Property of Quarter Rounds’. Instead of four

words (a, b, c, d), difference in sixteen words are analysed. Also in Step 4 and Step 5 of

the prescribed algorithm; rather than calling ∑´LIOHI%$ñœœ L, a, c, P ,

$M´a?H%$ñœœ ®U, ®A, . . , ®A¢ is called and accordingly diffusion matrix is generated for

analysis.

H) Final XOR with Message Block

@% number of rounds (proposed @% = 10) of compression functions call Add Sub-

Key (@%/2)	times, Column and Row Rounds @% times, and updates the internal State

Matrix : at each step and round. After @% rounds, the outcome of the compression

	

	

	

144	

function (Hash State / Chain value for next compression function/output transformation)

is obtained by using the following XOR operation.

!DfA = :	 ⊕	0D

4.4.4 Output Transformation of Cocktail-512

The Output Transformation of Cocktail-512, as defined below, is used to obtain the

message digest from the final hash state / chain value (!C).

! 0 = 	y	 !C

y ® = 	 OI´.cLOH-	 Q ® ⊕ ®

OI´.cLOH- ® operation discards all but the trailing . bits of ®. Q ® calls one set of

Column and Row Quarter rounds i.e. four Column and four Row Quarter rounds. The

Output Transformation is illustrated in Figure 60.

Figure 60. The Output Transformation (O) of Cocktail

Output transformation helps in achieving variable size hash as described in Table 14.

4.5 Specifications of Cocktail-1024

Cocktail-1024 operates on 64-bit words and can be used to generate message digest

of more than 256 bits and less than or equal to 512 bits. The possible sizes of hash values

are: 320, 384, 448, and 512 bits. In Cocktail-1024, Internal Hash State and Message

Block is of 1024 bits represented as 16 words of 64 bits each. Specifications of Cocktail-

1024 are similar to Cocktail-512 except the changes in size of word, initial values,

padding technique, number of rounds, round constants for expanding keys and rotation

constants used in column and row quarter round. All these changes are discussed here in

this section.

	

	

	

145	

4.5.1 Padding

As detailed earlier, Cocktail makes use of multi-rate padding. Padding in Cocktail-

1024 is almost similar to the one used in Cocktail-512. For a message 0 of length >, we

follow the following steps for padding in Cocktail-1024:

Step 1: Append Bit ‘1’ to Message ‘M’

Step 2: Append û	 = 	 (−	>	– 	130)	NMP	1024 zero (‘0’) bits i.e. enough zeroes so

that message after insertion of bit 1 and zeroes is congruent to 895 modulo 1024.

Step 3: Append bit ‘0’ followed by 128-bit representation of message length ‘L’.

At least one bit and maximum of 1024 bits are appended. After following the above

steps, Message will always be multiple of 1024 bits.

Figure 61. Message 'M' after Padding in Cocktail-1024

The maximum length of the message that can be hashed with Cocktail-1024 is

(2AB¶ − 1) bits.

4.5.2 Initial Values

Cocktail-1024 also requires16 words of 64-bit each as Initial value. Like Cocktail-

512, the 16 words of initial values for Cocktail-1024 are also derived from first 16 prime

numbers (i.e. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53). Initial value is the

fraction part of the square root of the corresponding prime numbers after converting them

to binary and keeping only the first 64 bits. The details are available in Appendix-V.

!U
U

 = 6A09E667F3BCC908 !A
U = BB67AE8584CAA73B

!B
U

 = 3C6EF372FE94F82B !ó
U

 = A54FF53A5F1D36F1

!ô
U

 = 510E527FADE682D1 !¢
U

 = 9B05688C2B3E6C1F

!ò
U = 1F83D9ABFB41BD6B !•

U
 = 5BE0CD19137E2179

!¶
U

 = CBBB9D5DC1059ED8 !ß
U

 = 629A292A367CD507

!AU
U

 = 9159015A3070DD17 !AA
U

 = 152FECD8F70E5939

!AB
U

 = 67332667FFC00B31 !Aó
U

 = 8EB44A8768581511

!Aô
U

 = DB0C2E0D64F98FA7 !A¢
U

 = 47B5481DBEFA4FA4

	

	

	

146	

4.5.3 Compression Function and Output Transformation of Cocktail-1024

 The Input, Output, Internal state of compression function, Add Round Key, Column

and Row Quarter rounds, Key expansion, and Output transformation for Cocktail-1024

is same as that of Cocktail-512 except the following changes:

i. All 32-bit words are replaced by 64-bit words. For example, all 16 words of

Message Block 0D are 64-bit each making message block size equal to 1024 bits.

Similarly, Key words, Internal state words, all are 64-bits wide.

ii. There is a minor change in the process of calculating KDWs. First 16 Key

Derivation Words (KDWs) i.e. 8UD	OM	8A¢D are obtained in the same fashion as in

case of Cocktail-512 using the following formulae:

8Ç
D = 	!Ç

D	,																				9MI	Å = 0	OM	15

For calculating the remaining KDWs i.e. 8AòD 	OM	8(Aò∗ÁË
z
EA)

D , the process for calculating

temporary variable π is changed a bit and the same is detailed below:

8Ç
D = 	

π ⊕8ÇEAò
D , 9MI	Å	%	16 = 0	

	8ÇEA
D 	⊕	8ÇEAò

D , yOℎHIFJ5H

where π = 	(8ÇEA
D ⋘ 16) 	⊕ %xM.64	(%P	%	8) {L.P	%P = Å/16	}

%xM.64 %P is a round constant dependent on rounds for which KDWs are being

calculated and is given in Table 17.
Table 17. Round Constants for Key Derivation Words (Cocktail-1024)

 ·Íº„Ó√	 ·æ ·Íº„Ó√ ·æ

%P = 1 0x1020000000000000 %P = 2 0x2040000000000000

%P = 3 0x4080000000000000 %P = 4 0x801B000000000000

%P = 5 0x1B36000000000000 %P = 6 0x366C000000000000

%P = 7 0x6CD8000000000000 %P = 8 0xD801000000000000

iii. Number of rounds proposed for Cocktail-1024 are 12. However, it is a tuneable

parameter in the hands of user.

iv. Rotation constants used in Quarter round are changed from {4, 17, 8, 0} to {52,

41, 16, 0} for Cocktail-1024. The rationale for this is given in subsequent section

‘4.7.6 Use of Modified ChaCha Core and Choice of Rotation Distances’.

	

	

	

147	

4.6 Complexity of Cocktail

The number of operations used in Cocktail and its memory requirements are detailed

here in this section. The calculations shown are of Cocktail-512, and those of Cocktail-

1024 may be computed accordingly.

4.6.1 No. of Operations Used

KDWs and Sub-Key calculation: The first 16 KDWs are same as Internal Hash State

and calculation of remaining KDWs (8AòD 	OM	8(Aò∗ÁË
z
EA)

D) require 2 XOR and 1 Rotation

operation if word is multiple of 16 and require only 1 XOR operation for all other words.

Once KDWs are calculated, the calculation of sub-key words for each alternate round

require only 4 Addition operations. So for 10-round compression function, 5 sub-keys are

required and key expansion will require the following operations.

yiHILOJM.5	aÀ	8$π5	 = 4 ∗ 2	:y%5 + 1	%MOLJM. + 	4 ∗ 15 ∗ 1	:y%

yiHIOJM.5	OM	cMNi´OH	É´a − 8HÀ = 5 ∗ 	 4	íPPJOJM.5 + 1	:y% (for calculating £BD)

Add Sub-Key uses 16 XOR operations, one for each word of Internal State matrix.

However, Add Sub-key is called on alternate rounds. So for total 10 rounds, Add Sub-

Key is called 5 times. So total operations become 16 ∗ 	AU
B
= 	80	:y% operations.

Column and Row Quarter Rounds in Compression Function: Each Quarter round

makes use of 4 Additions, 4 XORs, and 3 Rotations. Thus 4 Column and 4 Row Quarter

rounds make 8	 ∗ 	 (4	íPPJOJM.5	 + 	4	:y%5	 + 	3	%MOLOJM.) and for total of 10 rounds it

becomes 10	 ∗ 	8	 ∗ 	 (4	íPPJOJM.5	 + 	4	:y%5	 + 	3	%MOLOJM.).

Final XOR with Message Block: Final XOR with message block involves 16	:y%5.	

Output Transformation: Output transformation consists of one set of Column and

Row Quarter Rounds {that requires 8 ∗ 	(4	íPPJOJM.5	 + 	4	:y%5	 + 	3	%MOLOJM.)},

followed by XOR with chain value {that requires 16	:y%5}, and finally computation of

desired number of hash words {which involves 16	íPPJOJM.5}. So Output Transformation

in total requires 48	íPPJOJM.5	 + 	48	:y%5	 + 	24	%MOLOJM..

Total Operations: So a 10 round Cocktail-512 requires: ¬, 32 −

aJO	LPPJOJM.5; Ì¬¬, 32 − aJO	:y%5	L.P	qÓ	%MOLOJM.5 summing up 1189

operations. The overhead for initialization the hash structure, padding the message and

	

	

	

148	

implementing the logic of algorithm is omitted here as their cost is negligible compared

to that of compression function and output transformation.

4.6.2 Memory Requirement

Cocktail-512 requires 64 bytes and 32 bytes to store Initial Values and Round

Constants (used for key expansion) respectively. In RAM, Cocktail-512 requires

memory for storing Internal State of compression function X,	Message Block M, Sub-

Keys SK, Hash State (Chain Value) H, T	words storing message bits hashed so far, and

few other integer / character variables for implementing logic of algorithm. The memory

requirement for these data items is mentioned below:
!L5ℎ	ÉOLOH	!	L.P	X.OHI.L?	5OLOH	:	M9	xMNiIH55JM.	b.:		Ó√	˙˚‹øƒ	ø¸∫›	(€. ø. tq	˙˚‹øƒ)

	0H5LQH	ë?Mc}	÷	IHÆ´JIH5:		Ó√	˙˚‹ø5

É´a − 8HÀ5	‚p	IHÆ´JIH5:		64 ∗
@%

2
	aÀOH5	J. H. ¬q¿	˙˚‹øƒ	9MI	10	IM´.P5

‡	cM.OLJ.J.Q	NH55LQH	aJO5	ℎL5ℎHP	5M	9LI	IHÆ´JIH5:			˙˚‹øƒ

The memory required for sub-keys can be reduced to 70 bytes only by computing it

dynamically for each round rather than pre-computing in advance for all rounds. So total

memory requirement for Cocktail-512 is 96 bytes (for Constants) and 270 bytes for

other data items in RAM. In addition to this, about 50 – 100 bytes may be required for

implementation of logic.

4.7 Design Philosophy, Design Decisions, and Its Rationale

4.7.1 Simplicity

The basic guiding principle has been to keep the design as simple as possible.

Simplicity ensures that design is easy to understand and in turn easy to analyse. The easy

analysis instils more confidence in the design. Cocktail uses simple operations

Arithmetic, Rotation and XOR) on words of 32 bit / 64 bits and makes use of long chain

of these three simple operations to add confusion and diffusion.

4.7.2 ARX Based Design

Cocktail is based on ARX design and uses three simple operations: 32-bit Addition,

32-bit-XOR, and constant distance 32-bit Rotations. Addition and XOR break linearity

and rotation diffuses the changes from high bits to lower bits. The decision to build

	

	

	

149	

Cocktail around ARX operations is well thought of and is based on a lot of literature

survey.

ARX based cryptographic primitives have been well analysed by the cryptographic

community. The concept of ARX is quite old and even legacy cryptographic primitive

like FEAL [163] used ARX based design way back in 1987. A lot of recent cryptographic

primitives have also been designed around ARX operations. Examples are:

• Lightweight Block Cipher: Speck [164] recently launched by NSA (National

Security Agency, USA) in June 2013.

• Block Cipher : RC5 [165], Threefish [9]

• Stream Ciphers: Salsa20 [157], ChaCha [158], HC-128 [166]

• Hash Functions: SHA-3 finalists - Blake [26], Skein [9] and many other SHA-3

first and second round candidate algorithms like Blue Midnight Wish, CubeHash,

EDON-R etc.

Some other quite famous cryptographic primitives had their designs close to ARX but

not exactly ARX. Examples are TEA [167], XTEA [168], XXTEA [169] block ciphers

and all these three, make use of addition, XOR and left / right shift operations in place of

rotations.

Mouha in [170] has given a detailed analysis of ARX based designs. The major

advantage of using ARX based design is that they are relatively fast on PCs and cheap in

hardware and software. Its implementation is quite compact and generally results in easy

algorithm. ARX designs are also immune to timing attacks as they run in constant time.

ARX designs are functionally complete and using these three simple operations one can

simulate any circuit. Using these three operations, one can achieve security level

achievable with any other set of operations.

Bernstein in [157] has given a lot of arguments in favour of using these simple

operations over Integer multiplication and S-Box Substitution that are commonly used in

design of various cryptographic primitives. These choices are discussed one by one

hereunder.

A) Integer multiplication

Integer multiplication NMP´?M 264 or 232 is quite an efficient operation on some CPUs.

Example of Cryptographic primitives that have used integer multiplication includes

	

	

	

150	

IDEA [171], MESH [172]. In integer multiplication, output has a complicated

relationship with inputs and thus mixes the words considerably well. In fact,

multiplication mixes words more thoroughly than a few simple integer operations.

However, integer multiplication suffers from following drawbacks:

a) Integer multiplication will generally require several cycles even on faster CPUs

and on an average CPU, cycle requirement will be even more. Undoubtedly integer

multiplication is becoming faster but is still not consistent across CPUs. Contrary

to this, long chain of simple operations (ARX) are quite efficient and achieve

desired mixing.

b) Secondly, integer multiplication may result in timing attacks. Bernstein [157] has

given example of Motorola PowerPC 7450 (G4e) and 8641D where integer

multiplication takes different cycles depending on second operands bit pattern.

Such a timing leak may be exploited for timing attacks.

B) S-Boxes

S-Boxes have also been extensively used in design of cryptographic primitives. DES

[88], AES [5], Whirlpool [8], Grøstl [24], Blowfish [173], and Twofish [174] are

examples of cryptographic primitives based on S-Boxes. S-Box (Substitution Box)

involves substitution of input bits with output bits. Input bits acts as an index and are used

to lookup an S-Box (Table) and looked up value replaces the input bits. AES uses an S-

Box consisting of 16 rows and 16 columns and each cell contains one byte. The input

byte is used to locate the byte from S-Box that will substitute the input byte. Undoubtedly

S-Box creates great diffusion/confusion and mingles input quite exhaustively which is

difficult to do with simple integer operations. However, it suffers from the following

drawbacks:

a) The size of S-Box can be detrimental. For example, in AES the size of S-Box will

be around 2048 bytes and using this size of S-Box we are able to mix one byte at

a time. On the other side, in ARX based constructions, generally we mix 32-bit

data at a time i.e. four bytes are mixed at once. So if we do it using S-Boxes, then

we need series of S-Box looks up or quite a big S-Box that may not fit into L1

Cache of certain CPUs.

	

	

	

151	

b) Secondly, S-Box lookups can also be exploited for timing attacks. Bernstein has

shown the same in [175].

C) Rotation over Shift:

Rotations create better diffusions than Shift operations when used with XOR.

Generally, one rotation and XOR will yield the same level of diffusion as two shifts (one

in the direction of rotation and other in opposite direction) will yield with two XORs.

Example below illustrates the concept:

Example of Rotation with one XOR

ùJKH.	$LOL	XOHN	 5LÀ	í	M9	8	aJO5 ∶ 	1	0	1	0	0	1	1	1	

û	 = 	í	 <<< 	3																																					 ∶ 	0	0	1	1	1	1	0	1

í⊕ û																																																							 ∶ 	1	0	¿	t	t	¿	1	¿

$J99´5JM.	ícℎJHKHP																											 ∶ 5	aJO5	(IHP	cM?MIHP)

Example of Shift with one XOR

ùJKH.	$LOL	XOHN	 5LÀ	í	M9	8	aJO5	 ∶ 	1	0	1	0	0	1	1	1	

û	 = 	í	 ≪ 3																																													 ∶ 	0	0	1	1	1	0	0	0

í⊕ û																																																								 ∶ 	1	0	¿	t	t	1	1	1

$J99´5JM.	ícℎJHKHP																											 ∶ 		3	aJO5	(IHP	cM?MIHP)

Example of Two Shift with two XORs

ùJKH.	$LOL	XOHN	 5LÀ	í	M9	8	aJO5 ∶ 	1	0	1	0	0	1	1	1	

u1	 = 	í ≪ 3																																											 ∶ 	0	0	1	1	1	0	0	0

u2	 = 	í ≫ 8 − 3 																															 ∶ 	0	0	0	0	0	1	0	1

û1 = 	í	 ⊕ u1																																								 ∶ 	1	0	0	1	1	1	1	1

û2 = û1⊕ u2																																								 ∶ 	1	0	¿	t	t	¿	1	¿

$J99´5JM.	ícℎJHKHP				 ∶ 						5	aJO5	 IHP	cM?MIHP 	HÆ´L?	OM	M.H	IMOLOJM.	FJOℎ	:y%

In addition to the reasons mentioned above, one important reason of using ARX over

any other operations was the objective to design a hash function that performs better

(faster) than Skein at the similar level of security. Skein is based on ARX operations and

it would not have been possible to perform faster than Skein by using any other set of

operations that are fully complete.

	

	

	

152	

4.7.3 Need for Padding and Initial Value

Cocktail follows Merkle-Damgard’s Iterated hash structure that make use of fixed

length collision resistant compression function 9:		{0,1} 		:	{0,1}^à	{0,1}� to design

variable length input collision resistant hash function !:	{0,1}∗		à	{0,1}-. The details

about MD Structure are given in Chapter 2- Review of Literature.

Adding message length (padding) and fixing IV (Initial Value) in MD structure is very

important as without these, finding second pre-image or collision is trivial. The following

two paragraphs, dwell on the rationale behind inserting length padding and fixing IV in

Cocktail.

Padding’s importance: Consider a message 0 that is divided into @	message blocks

0U,0A, . . , 0CEA	and is being processed by hash function !() that does not use message

length padding. An adversary that wishes to find another message : such that ! 0 =

!(:) need to randomly select :′ until he gets ! :′ equal to any of the @ chaining values

computed during calculation of !(0). When such a :′ is found, the adversary can

concatenate :′ with remaining blocks of 0 starting from the given chaining value to get

: = :′||0| …0CEA	 such that ! : = 	! 0 . Here } represents iteration of

compression function at which we get chaining value equal to :′. This attack can be foiled

if message length is appended at the end of the message as message length is expected to

differ for : and 0. Message padding also helps in thwarting fixed point attacks as

insertion of fixed point pair will not match with existing message length.

IV’s importance: Correcting block attack may be used to generate 2nd pre-image of

an existing message 0. To generate 2nd pre-image : of target message 0, adversary

choses one of the message block 0D, and replaces it with an alternative block :D such that

9 !D,0D = 	9 !D, :D . If all other blocks of 0 and : are same, the same hash result

will be obtained and thus 2nd pre-image can be found. This attack is feasible, if the pre-

images for compression function can be obtained with the computation starting from pre-

specified chaining values. However, if we fix the Initial Value, this attack can be thwarted

[50].

Cocktail’s iterative structure also make use of MD strengthening i.e. have a fixed

Initial Value (16 words of 32 or 64 bit each) and length of the message is built within the

	

	

	

153	

padding technique. Having Fixed value and length padding overcomes the challenges as

mentioned above.

4.7.4 Using Wide Pipe Design with HAIFA features

Certain pitfalls have been observed for Merkle Damgard Structure (MD structure).

Length extension attacks also known as “Message extension” or “padding attacks” is one

of the well known weaknesses of MD construction. Joux in [46] also studied generic

multi-collision attack on iterated structure and showed that finding multi-collisions is not

much harder than finding ordinary collisions. Dean [73] presented different techniques

that uses fixed points to produce attack on complete hash functions even in the presence

of Merkle-Damgard strengthening. Kesley and Schneier [74] also improved generic

correcting block attack using the notion of expandable messages such that it bypasses the

defense provided by MD strengthening. Kesley and Schneier [74] used multi-collision

technique to produce an expandable message.

The Wide Pipe Iterated Design proposed by Lucks [49] and HAIFA structure proposed

by Biham and Dunkleman [51] create more security against the generic attacks mentioned

in previous paragraph. These two designs are introduced in Chapter 2.

Cocktail’s structure implements wide pipe design where internal pipe (chain value) is

double the size of hash output. The Output Transformation O (as defined earlier under the

head ‘Specification of Cocktail-512’) does the same purpose as Q mentioned in Figure

6. Wide Pipe Design Cocktail also includes #aJO5 i.e. number of bits hashed so far in the

iterative structure and thus implements features of both Wide Pipe Design and HAIFA to

overcome majority of generic attacks as mentioned earlier.

4.7.5 Support for 32-bit as well as 64-bit Architecture

Cocktail proposes set of two hash functions. Cocktail-512 works on 32-bit words and

Cocktail-1024 works on 64-bit words. Undoubtedly, the 32-bit version will work faster

on a 32-bit architecture and 64-bit version will give better performance on 64-bit

machines. This philosophy of supporting two word sizes is akin to SHA-2 that also

support both 32-bit and 64-bit versions. Such approach is always beneficial than

supporting only one version. For example Skein [9] supports only 64-bit version and thus

runs more efficiently on 64-bit architecture compared to 32-bit systems. Also NIST

	

	

	

154	

Federal notice for SHA-3 competition [27], prescribed both 32-bit (x86) and 64-bit (x64)

version of operating system as Reference platform.

Looking at the current industry scenario, down to the levels of processor and operating

system, it becomes evident that though the industry is progressing towards 64-bit

architecture, yet a considerable segment is still using 32-bit machines, operating systems

or applications. In the PC and laptop segments, majority of processors being launched are

of 64-bit that support both 32-bit and 64-bit operating systems and applications. But at

the level of portable devices like smartphones, ARM (Advance RISC machines) is

leading the market and its majority of ‘Application’ series processors are of 32-bit with

exception of Cortex-A57 and Cortex A-53 processors that support both 32-bit and 64-bit

processing [146]. An analysis of operating systems on PC / Laptops shows that the market

share of 64-bit operating systems is increasing day by day (perhaps because majority of

new machines are being shipped with updated copy of operating system which is

generally 64-bit) but still a lot of machines use 32-bit operating systems. A close insight

into Smartphone segment is also interesting. Android has considerable market share in

smartphone segment. The entire Android stack, that is based on Linux, is in fact, 32 bit

that is cross compiled usually over 32/64-bit host environment. Host environment is

generally one of distributions of Linux. Google recommends Ubuntu for building and

cross compiling Android. From last three versions of Android, i.e. Ice Cream Sandwich

(Android 4.0) and Jelly Beans (Android 4.1) onwards, cross compilation with 64-bit host

environment is being promoted.

From the foregoing discussion it is evident that though the trend is in the direction of

64-bit architectures but the current status demands provision of options that support both

32-bit and 64-bit versions. History also suggest in the same direction. When 32-bit

processors were launched, transition from 16-bit windows to 32-bit windows took

considerable time. In fact, it took more than 10 years (from 1985 to about 1995) to get a

32-bit windows operating system and even after launch of 32-bit windows, a few people

continued to use 16-bit windows applications on older version of windows for

considerable time. Undoubtedly in this transition from 32-bit to 64-bit, industry has learnt

from previous experience and new OS (64-bit) are being released at the same time as new

processors but still we do not have too many 64-bit applications. Already about 15 years

have passed since the advent of the first 64-bit processors and the surge of 64-bit

	

	

	

155	

operating systems over 32-bit OS is being witnessed in the last few years only. In spite

of this, 32-bit applications are still prevailing and dominating the market.

Taking cognizance to all the points as discussed above, it was decided to design

Cocktail that supports both 32-bit and 64-bit words.

4.7.6 Use of Modified ChaCha Core and Choice of Rotation Distances

Cocktail uses Modified ChaCha Core (MCC) which is an improvisation over Salsa

and ChaCha core. The first section of this chapter, under the head ‘4.1 Analysis of Quarter

Rounds of Salsa and ChaCha Core and Proposal of an Alternative Design (MCC) for

Maximizing Diffusion’ provides thorough details of MCC and also proves that MCC

creates more diffusion than Salsa and ChaCha core. MCC’s Quarter round, on an average

generates diffusion matrices with mean of 7.716 against 6.6424 of ChaCha and 4.0992 of

Salsa i.e. on an average, gain of 16% from ChaCha and 88% from Salsa Quarter round.

More than 44% permutations of i, j, k, and l	were found that result in diffusion matrices

having mean greater than ChaCha’s diffusion matrix. That section also gives the rationale

behind choice of rotation constants.

However, all the details mentioned in that section are applicable for Cocktail-512 (32-

bit word size). Cocktail-1024 deals with 64-bit word size and accordingly a similar

experiment (based on algorithm specified in ‘4.1.3 Experiment Used to Measure the

Diffusion Property of Quarter Rounds’) was conducted for 64-bit word size also. For 64-

bit word size, the performance of Quarter round of Modified ChaCha Core (MCC) for

different values of rotation constants (i, j, k, l) is given in Figure 62. For generating this

plot, more than 16 million (to be precise 16,777,216) possible permutation of rotation

constants i, j, k and l (each varying from 0 to 63) were evaluated.

There are more than 72 sets of rotation distances that generate diffusion matrix with

mean greater than 8.45. The set {8, 34, 16, 37} results in diffusion matrix with highest

mean (8.4942). However, this study opted for set {52, 41, 16, 0} with mean 8.4676. Both

these sets of rotation constants generate comparable diffusion matrices and are quite

efficient. In the first set {8, 34, 16, 37}, two rotation distances are byte aligned and in

other set {52, 41, 16, 0} one rotation distance is zero (i.e. fourth rotation is not required)

and one rotation distance is byte aligned. The rotation distances opted for were the second

set i.e. {52, 41, 16, 0}.

	

	

	

156	

Figure 62. Mean and Standard Deviation of Diffusion Matrices of MCC's Quarter Round (64-bit)

There were 2 more set of rotation distances [{7, 34, 18, 0}, {54, 31, 45, 0}] among the

top 72 sets where the fourth rotation constant was zero but these rotation distances were

not selected as other three rotation distances of these sets were not byte aligned. Also the

mean of diffusion matrices generated by these sets were lesser than the rotation constants

finally opted for this study.

The diffusion matrix for Quarter round and Double round generated by rotation

distances {52, 41, 16, 0} is given in Table 18 and Table 19 respectively.

Table 18. Diffusion Matrix for MCC's Quarter Round (64-bit version)

OP
IP a b c d

a 15.684 9.234 7.287 17.492

b 11.533 7.273 5.282 13.588

c 7.928 4.451 4.45 9.634

d 5.429 2.46 2.461 7.213

	

	

	

157	

Table 19. Diffusion Matrix on One Double Round of MCC (64-bit version)

 Ï¿ Ït Ïq Ï¬ Ï√ ÏÌ ÏÓ ÏÔ Ï Ïª Ït¿ Ïtt Ïtq Ït¬ Ït√ ÏtÌ

Ï¿ 28 25 18 18 17 27 25 17 17 15 26 22 32 20 28 31

Ït 30 29 26 22 6 14 9 6 6 6 13 10 13 9 6 15

Ïq 20 19 13 8 25 31 32 27 9 9 18 15 13 8 8 15

Ï¬ 25 22 14 14 10 22 20 15 29 27 31 31 20 13 13 25

Ï√ 25 20 13 13 15 26 23 15 15 10 22 20 31 29 27 31

ÏÌ 31 32 30 28 18 28 26 18 17 17 27 25 23 17 15 26

ÏÓ 15 13 9 6 22 30 29 26 6 6 13 9 11 6 6 13

ÏÔ 15 13 8 8 8 20 18 13 27 25 31 32 15 9 9 18

Ï 17 15 9 9 8 15 13 8 13 8 20 18 32 27 25 31

Ïª 31 31 29 27 13 25 20 13 14 14 26 23 20 14 9 21

Ït¿ 26 23 17 15 28 31 32 30 18 18 28 26 25 17 17 27

Ïtt 13 10 6 6 6 16 13 9 26 22 30 29 9 6 6 14

Ïtq 14 9 6 6 6 13 10 6 9 6 16 13 29 26 22 30

Ït¬ 31 32 27 25 9 18 15 9 8 8 15 13 18 13 8 20

Ït√ 22 20 15 10 27 31 31 29 13 13 25 20 22 14 14 26

ÏtÌ 27 24 17 17 15 26 23 17 30 28 31 32 25 18 18 28

4.7.7 Rationale behind Sequence of Parameters Passed in Row and Column

Rounds of MCC

The logic behind the sequence of parameters passed in Row and Column rounds, as

detailed in ‘4.1.4-C) Results for Quarter Round of MCC’ and Figure 52, is based on the

level of diffusion that various output words experience in MCC’s diffusion matrix.

Diffusion matrix of 64-bit version (Table 18) of MCC’s Quarter round shows similar

behaviour as that of 32-bit version (Table 13) i.e. word ‘d’ is diffused most, followed by

word ‘a’, then word ‘b’ and at last word ‘c’. So the logic for deciding sequence of

parameters is applicable for 64-bit version of MCC also.

4.7.8 Number of Rounds

Number of rounds is dependent on how efficiently internal primitive structure of our

compression function diffuses / mixes the bits of message block / internal state matrix

	

	

	

158	

and thus achieve full diffusion. Full diffusion is the number of rounds to propagate a

single-bit change to all bits.

For understanding how many rounds Cocktail’s compression function consumes to

achieve full diffusion, the Column and Row rounds of MCC should be pseudo-run. For

explaining this point, 32-bit version of MCC is used here. Appendix-VI details the output

of dry (pseudo) run and it is very much evident from the output that one bit change in

internal state affects all 512-bits of internal state within two rounds. In fact, full

diffusion is accomplished even before the completion of the second round. In Appendix-

VI, Quarter round is represented as an eight step process. Row Quarter rounds of Round-

2 accomplish full diffusion in 4th or 5th step of Quarter round.

The other way of analysing the diffusion property of compression function is based on

diffusion matrices computed for MCC through the experiment detailed in ‘4.1.3

Experiment Used to Measure the Diffusion Property of Quarter Rounds’. Table 13 gives

the diffusion property of basic primitive of compression function i.e. Quarter round which

is used in Column and Row round. One-bit change in any of the four input words is spread

to different bits of all four words by Quarter round. Certain words get more diffusion than

others. For example, random change of one bit in input word ‘a’, on an average results in

change of more than 13 bits of word ‘a’, 9 bits of word ‘b’, 7 bits of word ‘c’ and 15 bits

of word ‘d’. However, on an average, one-bit change in input words, results in more than

7-bit change in output words. When multiple call to Quarter round function are made by

Column and Row rounds, then this diffusion gets multiplied. For example if one bit of

word ®U	of internal state matrix : is changed, then first call to Quarter round by Column

round (for ®U, ®ô, ®¶, ®AB) will spread these changes in all ®U, ®ô, ®¶, L.P	®ABwords. After

this call, on an average 13, 9, 7 and 15 bits of ®U, ®ô, ®¶, L.P	®AB are changed. Four

subsequent calls to Quarter round function by Row rounds will spread these changes to

all the remaining words of internal state matrix. In fact, mixing of bits will get multiplied.

For second row ®ò, ®•, ®ô, ®¢ ; input word		®ô, is already affected by 7 bits and call to

Quarter round will affect almost all bits of ®ò, ®•, ®ô, ®¢. Looking at worst case (fourth

row of Table 13) or using a dry run (as per Appendix-VI), it can easily be concluded that

before completion of second round every bit of internal state matrix affects all other 512

bits of internal state matrix / message block.

	

	

	

159	

Based on the properties of the basic primitive which result in full diffusion in second

round, we decided to have 10 rounds in Cocktail-512 to give at least 5 full diffusions

in each compression function.

The decision to have at least five full diffusions was based on the attacks on previous

hash functions. Insufficient diffusion has been exploited in the past to attack the hash

functions. Attack on MD and SHA family of hash functions [68] [69] [78] [121] [176]

[177] are examples where insufficient diffusion has been exploited. In SHA-1, full

diffusion takes place after 30 steps (total steps - 80) and thus offer diffusion factor of 2.7.

SHA-256 and SHA-512 have better diffusion factor. In the former, full diffusion takes

place after 14 steps (total steps – 64) and in the later, full diffusion takes place after 18

steps (total steps – 80) so they offer diffusion factor of 4.6 and 4.4 respectively. It was

decided to have full diffusions more than that of SHA-256 and SHA-512. In Cocktail,

full diffusion is achieved in the second round, even before it is fully completed (At least

30 percent operations of the second round are still pending when full diffusion is

achieved). So with a target of at least five full diffusions, the following number of rounds

are proposed for Cocktail:

Cocktail-512 - 10 Rounds

Cocktail-1024 - 12 Rounds

The other argument that vindicates the proposal to have 10 rounds for Cocktail-512

is based on performance of Salsa20, ChaCha, and Modified ChaCha Core. The

following points present an alternative argument in favour of this decision:

a) Each round of Cocktail-512 is equivalent to one Double round of Salsa20 or ChaCha

or MCC. So 10 rounds Cocktail-512 are equivalent to 20 rounds (10 Double rounds)

of Salsa20 or ChaCha or MCC.

b) ECRYPT’s eSTREAM project [17] chose a version of Salsa20 with 12 rounds (6

Double rounds) in its profile and is still being used as a profile algorithm. MCC’s 12

rounds (6 Double rounds) are at least as strong as 12 rounds of Salsa20. MCC gives

much better diffusion than Salsa and thus offers much better security. So if we keep

eSTREAM as a benchmark, only six rounds of Cocktail-512 would have been

	

	

	

160	

enough. But opting for a conservative choice of 10 rounds (equivalent to 20 rounds

of MCC which are stronger than Salsa20’s 20 rounds) was better for providing high

security margins.

c) Cocktail’s basic primitive MCC is an improvisation of ChaCha [158] which itself is

an improved version of Salsa. Till date the best attack on ChaCha is reported by [178].

Aumasson et al. [178] attacked 256-bit ChaCha6 (6 round ChaCha in place of 20)

with complexity of 2Aóß and ChaCha7 with complexity of 2Bô¶. On the other hand,

128-bit ChaCha6 was attacked with complexity of 2AU• and the author claimed that

the attack failed to break 128-bit ChaCha7. The author also showed collision and pre-

image attacks for simplified versions of Rumba 3 (three round Rumba), a compression

function based on Salsa.

The Cocktail’s compression function has been generated using Modified ChaCha

Core. Attacks on three rounds of Rumba should not affect the compression function

of Cocktail as MCC is considerably different from Salsa and provide much better

security. Similarly attacks on 6 rounds of ChaCha are not exactly on compression

function and does not reflect any pre–image or collision attack on compression or

hash function. And lastly ChaCha is not being used exactly.

d) Even for reference, if it is assumed that same attack is possible on compression

function of Cocktail, and somehow (hypothetical assumption) some sort of

simplified variation of Cocktail is exploited up to 6 or lesser rounds out of 20 rounds.

Even in such a hypothetical scenario, we have a safety factor of more than 3.3. It is

worth noting that when AES [5] standardization process was underway, at that time

attack on 6 of 10 rounds of AES were reported i.e. AES had a safety factor of about

1.7. Similarly during SHA-3 competition, when Skein [9] algorithm was being

submitted, attack on 35 of 72 rounds of tweaked Threefish-512 (underlying block

cipher for Skein hash function) was already reported i.e. Skein at the time of

submission had a safety factor of little over 2.0. So Cocktail has much higher security

factor to play with.

Cocktail-1024 has more rounds, as larger state size requires more rounds to spread

the affect on all bits and achieve similar level of security.

We have kept number of rounds as a tuneable parameter. Current proposal of 10 rounds

for Cocktail-512, performs faster than all SHA-3 final round candidate algorithms. For

	

	

	

161	

more conservative security margins, the number of rounds may be increased further. The

experiment reflects that up to 14 rounds, Cocktail will still perform faster than majority

of SHA-3 final round candidate algorithms. Secondly, the number of rounds will affect

the throughput but not the memory requirements or gate requirements for implementation

on Hardware.

4.7.9 Four Column Quarter Rounds followed by Four Row Quarter Rounds

rather than Interlacing of Row and Column Quarter Rounds

Every round of Cocktail’s compression function uses four Column Quarter rounds

followed by four Row Quarter rounds. The other option is to have interlaced Column and

Row Quarter rounds i.e. one Column Quarter round followed by a row Quarter round that

is succeeded by another Column round and Row round and so on. Interlaced Column and

Row Quarter round can result in faster diffusion in the first round compared to the other

option of having four Column Quarter rounds followed by four Row Quarter rounds. For

comparing these two options, a dry run of these options is done to cross check how change

in one bit of word ®U will affect other words.

Option-1: Four Column rounds followed by four Row rounds: Four Column

Quarter rounds call the Quarter round function of MCC for each column one by one.

Details are mentioned under the head ‘4.1.2 Modified ChaCha Core (MCC)’. The first

call will spread the effect of one bit change in ®U to all words of the first column i.e. to

®U, ®ô, ®¶, ®AB	 . The subsequent calls will not have any common words and thus will not

spread any changes in ®U to words in the second, third, and fourth columns. Now when

the first Row Quarter round is called, the effect of change in ®U is diffused to other words

of the first round and similarly succesive Row Quarter rounds spread the effect to other

rows. Table 20 reflects how diffusion spreads in this option. Red coloured words mean,

the word has some impact of change in one bit of ®U.

Option – 2: Interlaced Column and Row Quarter rounds: The first Column

Quarter round will spread the effect of one bit change in ®U to all the first column words

and subsequent Row round will immediately pass on the diffusion to words of first

column and successive Column round will effect all words of second column. Table 21

reflect the spread of diffusion in this option. As evident from in Table 21, diffusion is

faster in Option – 2 (Interlaced Column and Row Quarter round). Not only faster, the

	

	

	

162	

diffusion is more. For example before calling second Row Quarter round, ®ô and ®¢

words have already got some effect of change in one bit of ®U word. However, the call to

the second Row Quarter round will effect and diffuses these words further.
Table 20. Spread of Diffusion in Four Column Quarter Rounds followed by Four Row Quarter Rounds

First Column QR Second Column QR Third Column QR Fourth Column QR

Ï¿ ®A ®B ®ó
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ ®A ®B ®ó
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ ®A ®B ®ó
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ ®A ®B ®ó
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

First Row QR Second Row QR Third Row QR Fourth Row QR
Ï¿ Ït Ïq Ï¬
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ®•
Ï Ïª Ït¿ Ïtt
Ïtq ®Aó ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ®•
Ï Ïª Ït¿ Ïtt
Ïtq Ït¬ Ït√ ÏtÌ

Table 21. Spread of Diffusion in Interlaced Column and Row Quarter Rounds

First Column QR First Row QR Second Column QR Second Row QR

Ï¿ ®A ®B ®ó
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ®¢ ®ò ®•
Ï ®ß ®AU ®AA
Ïtq ®Aó ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ®ò ®•
Ï Ïª ®AU ®AA
Ïtq Ït¬ ®Aô ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï Ïª ®AU ®AA
Ïtq Ït¬ ®Aô ®A¢

Third Column QR Third Row QR Fourth Column QR Fourth Row QR
Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï Ïª Ït¿ ®AA
Ïtq Ït¬ Ït√ ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï Ïª Ït¿ Ïtt
Ïtq Ït¬ Ït√ ®A¢

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï Ïª Ït¿ Ïtt
Ïtq Ït¬ Ït√ ÏtÌ

Ï¿ Ït Ïq Ï¬
Ï√ ÏÌ ÏÓ ÏÔ
Ï Ïª Ït¿ Ïtt
Ïtq Ït¬ Ït√ ÏtÌ

Though option-2 seemed better, even then we opted for option–1 i.e. four Column

Quarter rounds followed by four Row Quarter rounds because this gives chance to exploit

parallelism and achieve better performance in terms of speed. All four Column rounds

can be executed in parallel and similarly all four Row Quarter rounds can be executed in

parallel after Column Quarter rounds. The speed gain achieved with parallelism can be

close to 4 times wherever the diffusion speedup is not comparable to this speed gain.

4.7.10 Maximum Size of Input Message

Cocktail imposes a constraint on the length of the message (without padding) that it

should be less than 2AB¶ as number of bits reserved for storing size of message during the

padding step in Cocktail-1024 is 128 bits. This means that using Cocktail hash function

	

	

	

163	

we can not hash message of more than 2AB¶. But this is not a problem as 2AB¶ bits is big

enough a size that generally the storage of a system can manage. The following example

will further illustrate that message length constraint of Cocktail is not a serious problem

at all.

Let us say we have a message of 2AB¶ bits and we need to send it to someone over the

network. If we try to transfer this data with a speed of 2òô bits per second then it will take

years to send this much data. And a communication network that can transmit the data at

a speed of 2òô bits per second is currently not available. The maximum speed of network

that was recently reported is 255 Tbps (close to 2ô¶ bits per second) [179].

4.7.11 Key Schedule / Key-Expansion

Generally, we find complex key schedules in various block ciphers and hash functions.

Complex Key Schedules require considerable clock cycles to setup. For large blocks of

message, it is not a big cost but when small size messages are to be encrypted or hashed

and key is to be changed for every next block, then complex key schedules are sometime

irritating. However, Complex key schedule may act as a motivation to have lesser rounds.

Key Expansion of Cocktail is inspired from AES. It is considerably simple and requires

fewer operations. Cocktail’s key is not calculation intensive. Ten round compression

function of Cocktail-512 requires 68 XORs, 20 additions, and 8 rotations for generating

key schedule. Sub-Keys do not repeat and can be implemented using a small looping

construct and one branch instruction. Sub-keys do have impact of number of bits hashed

so far and diagonal words of sub-key are added with number of bits hashed so far to make

sure that each column and row round gets some impact of this value. The details about

Cocktail’s Key Schedule is mentioned under the heading ‘Specification of Cocktail-

512’.

4.7.12 Matyas-Meyer-Oseas Iterative Structure

The work of Preneel et al. [91] referred to in section ‘2.5.1 - A) Single Block Length

Construction’, explains various ways of constructing hash functions from block ciphers.

Preneel et al. showed that there are 64 options of creating iterative structures (Figure 10)

and 12 out of these are secure (Table 1). The most commonly used schemes among these

12 listed secure schemes are Matyas-Meyer-Oseas [93], Miyaguchi-Preneel [94] [95],

	

	

	

164	

and Davies–Meyer [96] [97]. These three commonly used schemes are given in brief as

under:

Matyas-Meyer-Oseas scheme

!D = èìîïã	 0D ⊕	0D

Miyaguchi-Preneel Scheme

!D = èìîïã	 0D ⊕	!DEA ⊕0D

Davies-Meyer Scheme

!D = èñî	 !DEA ⊕	!DEA

Cocktail uses Matyas-Meyer-Oseas scheme to construct iterative hash structure from

compression function based on MCC. Selection of Matyas–Meyer–Oseas scheme over

the other two schemes (listed above) is based on some personal convenience and the fact

that the other schemes have no added advantage over Matyas-Meyer-Oseas scheme.

However, Davies-Meyer scheme does suffer some drawbacks and a few of these have

been discussed by Ferguson et al. in [9]. These drawbacks with reference to Cocktail’s

iterative structure are highlighted here.

The main ways of attacking hash functions involve adversary to choose data input.

Data input act as key in Davies-Meyer scheme and thus corresponds to the chosen-key

attack on cipher. While in case of Matyas-Meyer-Oseas scheme (used in Cocktail’s

structure), it corresponds to chosen-plaintext attack. The cryptographic community has

considerably high experience in safeguarding block ciphers against chosen-plaintext

attacks, but have less experience in the field of chosen-key attacks. So it was decided to

stay with what the world knows better.

The second argument that goes in favour of Matyas-Meyer-Oseas scheme is defence

that both these schemes present against differential cryptanalysis. In Cocktail (based on

Matyas-Meyer-Oseas scheme), difference in data block results in difference in each round

of the compression function. However, with Davies-Meyer scheme, as data block is used

as a key, so difference can be cancelled at the level of one sub-key and reintroduced at

successive sub-key level. And this could be done repeatedly within one block also. This

drawback makes differential attack considerably easy which is equivalent to giving free

pass to differentials through some rounds of compression function.

	

	

	

165	

Lastly, finding fixed point in a Davies Meyer structure is quite simple. For any

message block 0D, finding value of !D such that !D = èñî	 !D ⊕	!D is easy as we just

need to compute !D = è
ñî
EA	 0 .

The above arguments were the main rationale behind the decision of designing

iterative structure based on Matyas-Meyer-Oseas Scheme.

4.7.13 Familiarity and Based on Intensively Analysed Constructs

Keeping primitives based on some structure that has been analysed thoroughly brings

more confidence in its security. The second advantage is that the cryptographers and

cryptographic software implementers will feel familiar with Cocktail.

Cocktail makes use of matrix notation for representing internal hash state and other

data constructs. Matrix operations have already proven to be really helpful in creating

efficient diffusion and confusion and has been used in AES [5], Whirlpool [8], Grøstl

[24] and many other cryptographic primitives.

Cocktail is based on MCC, an improvised version of ChaCha which itself is an

improved version of Salsa. Salsa 20/12 (12 round version) is also a profile algorithm in

ECRYPT’s eSTREAM project [17] since April 2008. Both Salsa and ChaCha have been

considerably analysed and not much weakness has been observed in them. Existing

cryptanalysis on Salsa and ChaCha gives a fair confidence in Modified ChaCha core’s

security and compression function built on that.

4.7.14 Flexibility

One of the concerns of this study was to design a hash function that could generate

varying size message digests. This concern provided a major rationale to have separate

output transformation which can generate digests of varying sizes. Flexibility to have

message digests of varying sizes increases the application area of hash functions.

Cocktail offers flexibility in terms of number of rounds also. User can increase or

decrease the rounds. Though 10 rounds are recommended for Cocktail-512, the value

can be changed depending on the performance and security margins that the user of hash

function is looking for.

Also Cocktail can be implemented on different environments (hardware and software)

varying from 8-bit microcontroller to large processors. As memory requirements given

	

	

	

166	

under the head ‘4.6 Complexity of Cocktail’ are not huge, Cocktail can be implemented

easily in resource constrained environments like Smart Cards. This study plans to

implement Cocktail in FPGA, ASICs, 8 bit Microcontrollers, and other environments in

the near future.

4.7.15 Speed

Another major concern, that needs a special mention, is performance of hash function

in terms of execution speed. Though the objective of this study was to design an algorithm

that performs better than Skein [9], yet the endeavours were to have performance better

than other SHA-3 final round candidate algorithms also.

The decision to have an ARX based design was backed up by this objective of speed.

ARX based designs offer a very good speed. The decision to follow 32-bit or 64-bit

system also has a lot to do with speed expectations. The 32-bit and 64-bit systems found

favour in this study in place of byte oriented approach used in AES [5] and many other

cryptographic primitives. Byte oriented approach might have helped in achieving

efficient diffusion and also help to allay the concerns about endian-ness of the system.

But 32-bit or 64-bit systems help in achieving performance efficiency much better than

byte oriented approach with just one caveat that full diffusion must take place; and in

Cocktail, full diffusion does take place efficiently. The performance degradation in case

of byte oriented approach was evident from the results that have been obtained for various

SHA-3 final round candidate algorithms while pursuing the first objective of this

research. Performance of Grøstl (byte oriented design) has been found quite slow as

compared to other algorithms.

4.8 Using Cocktail

Cocktail can be used at all places where hash functions are generally used for

implementing various security objectives. Various applications of hash functions have

been listed in Chapter 2 under the heading ‘2.1 Security Services of Cryptographic Hash

Functions’. Therefore, this section gives a list of some important ways of using Cocktail

for implementing various security applications including those mentioned in Chapter 2.

	

	

	

167	

4.8.1 Cocktail as HMAC

HMAC (Hashed Message Authentication Code), as specified in NIST’s standard FIPS

PUB 198-1 [180], is a technique to achieve data integrity and message authentication.

Cocktail may be used to implement HMAC that takes two input: Message 0 and Key 8

(shared between sender and receiver). HMAC can be obtained from Cocktail by

computing the following:

!0íxœ–�_ D;	 8,0 = 	xMc}OLJ?[8U ⊕ MiLP ||xMc}OLJ?{	 8U ⊕ JiLP ||	0)}]

Cocktail-512 or Cocktai-1024 may be used depending on the requirement. If

Cocktail-512 is used, then the message 0 is divided into blocks of 512-bit each. 8U is

the modified key obtained after necessary pre-processing of 512-bit key. As defined in

FIPS PUB 198-1 [180], JiLP and MiLP are inner and outer pad respectively. There is no

property of Cocktail that prevents its usage as HMAC. Figure 63 represents usage of

HMAC for achieving message integrity and data origin authentication.

Figure 63. HMAC with Cocktail for Achieving Message Integrity and Authentication

4.8.2 Cocktail’s Compression function as CMAC

CMAC is cipher based message authentication code and is recommended by NIST in

[181]. CMAC may be used to generate MAC like HMAC but from block cipher. So rather

than using Cocktail as a whole, we can use the compression function of Cocktail

(without £ words i.e. number of bits hashed so far) to generate CMAC.

For using Cocktail in CMAC, the shared key is used as Initial Value for the

compression function. Figure 64 illustrates how CMAC can be generated from

Cocktail’s compression function. Structure is based on [181]. The } used in last block is

obtained by multiplying o/p of compression function with ®	MI	®B depending on whether

the message is padded or not.

	

	

	

168	

Figure 64. CMAC using Cocktail’s Compression Function

4.8.3 Cocktail as PRF Family

Pseudo Random Function family (known as PRF family) is a collection of efficiently

computable hash functions that can emulate random oracle. To generate a family of PRF

from Cocktail, we can use any one of the following techniques:

a) The J.PH® used to select function can be concatenated to Message input 0 either

before or after 0. i.e. xMc}OLJ?	(0||J.PH®) or xMc}OLJ?	(J.PH®||0). So

depending on index, we will have separate random output of message 0.

b) The second way is to have Initial Value of Cocktail based PRFs dependent on

J.PH®. Initial Value for various functions can be computed as XYD = 9(XY, J).

Where XYD is the Initial Value for J_é pseudo random function.

4.8.4 Cocktail in Digital Signature

Cocktail may be used to implement Digital Signatures efficiently. Rather than signing

message 0, the digest xMc}OLJ? 0 is signed with private key of sender. This makes

signature quite efficient as encrypting a long message with asymmetric key is time

consuming. ÉJQ.LO´IH = 	è.cIÀiO!"__|”#_`”-w”â(xMc}OLJ? 0). The Message 0 and

ÉJQ.LO´IH is sent to receiver. On the other side, receiver can verify the authenticity and

integrity by calculating xMc}OLJ? 0 = 	$HcIÀiO!Î^_|”#_`”-w”â ÉJQ.LO´IH and digest

again and then comparing both. The scheme is shown in Figure 4 and discussed in ‘2.1.2

Implementing Efficient Digital Signature’. The approach shown in Figure 4 is based on

	

	

	

169	

RSA approach. Other digital signature schemes prescribed as FIPS 186-4 standard [182]

may also be implemented using Cocktail.

4.8.5 Cocktail in Randomized Hashing Mode

Randomized hashing may be used to free the security of digital signature from relying

on collision resistance of underlying cryptographic hash function. NIST, in its Special

Publication SP 800-106 [183] , has recommended to randomize the message before using

it in digital signature. Cocktail may be used in randomized mode and to do the same, the

input message is randomized using a random value IK for every signature following the

technique outlined in [57] or [183]. If we use technique specified in [183], random value

IK between 40 bits to 1024 bits is generated. Then two other values - %Y	and ?H.â" - are

computed. %Y is obtained by repeating IK as many times as required and then appending

the leftmost bits of IK to make it equal to message size whereas ?H.â" is 16-bit

representation of length of random value. Cocktail in randomized hashing mode is

represented as:

xMc}OLJ?â -w–[0, IK = 	xMc}OLJ?	(IK 0⊕ %Y ?H.â")

4.8.6 Cocktail for Password Based Authentication

Password is one of the oldest and most commonly used technique of entity

authentication to access a system. If password is stored as plaintext in the password file

(database) on a system, then then the administrator can access the same.

Figure 65. Password Based Authentication Using Cocktail

However, if the hash result of the password is stored in password file then even verifier

(administrator) can not have access to the same. Salting the password is better technique

to make brute-force attack tougher even if length of the password is small. Figure 65

represents how Cocktail may be used for password based authentication.

	

	

	

170	

4.8.7 Cocktail as Key Derivation Functions (KDF)

Key derivation functions use PRFs like cryptographic hash or cipher or HMAC to

derive one or more secret keys (also known as derived keys) from a master key (password

/ passphrase) and a salt value. To generate these derived keys, KDFs iterate PRFs multiple

times to add computational work which makes cracking of the derived key much more

difficult. PBKDF2 – Password Based Key Derivation Function 2 is a KDF that is

published as IETF’s (Internet Engineering Task Force) RFC 2998 [184].

The Cocktail may be used in PBKDF2 using the following mechanism.

8HÀw”â"D”w	 = Ñë8$b2	(xMc}OLJ?, ÑL55FMIP, ÉL?O, JOHILOJM., ?H.w”â"D”w_|”#)

?H.w”â"D”w_|”# is desired length of derived key and is multiple of output length of

Cocktail function (.). Maximum value is limited to (2óB − 1) ∗ (.). 8HÀw”â"D”w	is

computed using

8HÀw”â"D”w	 = 8$A	||	8$B|| … ||8$(;”-$%&'î%$_(%))/-

FℎHIH	8$Ç = !0íxœ–�|_ D;	(ÑL55FMIP, ÉL?O, JOHILOJM., Å).

Cocktail will be used in HMAC mode (section 4.8.1) and called multiple	times.

However, input to the same will change in every iteration.

!0íxœ–�|_ D;	 ÑL55FMIP, ÉL?O, JOHILOJM., Å = 	x£_yÑA ⊕ x£_yÑB ⊕	…⊕ 	x£_yÑD_”â _D–-)

where x£_yÑD is output of Cocktail in HMAC mode.

In the first call to Cocktail in HMAC mode, ÑL55FMIP	is inputted as key and ÉL?O

concatenated with Å, encoded in 32-bit integer format, is inputted as message input. In the

subsequent calls, output of the previous call act as message input and ÑL55FMIP continue

to act as key. If output of multiple calls is named x£_yÑ. Then we have

x£_yÑA = !0íxœ–�|_ D;	(ÑL55FMIP, ÉL?O	||	X.OHQHI_32aJO(Å))

x£_yÑB = !0íxœ–�|_ D;	(ÑL55FMIP, x£_yÑA)

:

x£_yÑD_”â _D–- = !0íxœ–�|_ D;	(ÑL55FMIP, x£_yÑD_”â _D–-EA)

Generally, number of JOHILOJM.5	is kept quite high. At the time of writing the PBKDF

standard for the first time, the recommended value was 1000 and nowadays even

iterations of more than 100000 are also used for password based authentication at server

side.

	

	

	

171	

4.8.8 As Stream and Block Cipher

Cocktail’s basic primitive MCC may be used to generate efficient stream cipher on

the same lines as Salsa and ChaCha Core are used. Cocktail’s compression function

(based on MCC) is a bijective function and thus can be used for encryption as well as

decryption. Cocktail’s compression function (without use of £ words i.e. number of bits

hashed so far) may be used to generate block ciphers processing 512-bit message blocks

in any operation mode like ECB (Electronic Codebook) or CBC (Cipher Block Chaining)

or CFB (Cipher Feedback). Cocktail may also be used with RKC (Random Key

Chaining) mode [185], enlisted as one of the 14 recommended authenticated encryption

mode by NIST, Computer Security Division, U.S. Department of Commerce [186] which

is designed by the team consisting of present researcher. Whenever Cocktail’s

compression function is used as block cipher, decryption algorithm will process inverse

of MCC’s Quarter round as shown below:

MCC’s Quarter Round

(for Encryption)

Inverse of MCC’s Quarter Round

(for Decryption)

Step 1: a	 = a + L;

Step 2: c = c	 ⊕ a ⋘ 4;

Step 3: P = P + c;

Step 4: L = 	 L	 ⊕ P ⋘ 17;

Step 5: c = c + L;

Step 6: a = 	 a	 ⊕ c ⋘ 8;

Step 7:	L = L + a;

Step 8: P = P	 ⊕ L;

Step 1: P = P	 ⊕ L;

Step 2: L = L − a;

Step 3: a = c	 ⊕	 a	 ⋙ 8 ;

Step 4: c = c − L;

Step 5: L = 	P	 ⊕ L ⋙ 17 ;

Step 6: P = P − c;

Step 7: c = a	 ⊕ c ⋙ 4 ;

Step 8: a	 = a − L;

Also in decryption algorithm, row rounds will be processed before column rounds and

sub-keys will be injected in reverse order.

4.8.9 Other Applications of Cocktail as Hash Function

In the preceding paragraphs, different modes of using Cocktail have been discussed.

However, Cocktail may be used to implement various other security services that are

based on any generic hash functions like Digital Time stamping, generating Pseudo

Random Number Generators, identifying file or data, verifying file integrity on computer

	

	

	

172	

system and the enormous gamut of email, IP, and web security protocols. All these are

listed in ‘2.1 Security Services of Cryptographic Hash Functions’ also.

4.9 Security Aspects of Cocktail

The design philosophy, as detailed in ‘4.7 Design Philosophy, Design Decisions, and

Its Rationale’, has already highlighted different design decisions that ensure security of

Cocktail. This section touches upon various security aspects of Cocktail to substantiate

that it does not succumb to important generic attacks.

4.9.1 Local Collisions
Cocktail is free from localized collision in a compression function. Local collision in

a compression function exists when two distinct messages yield same internal state

(within a compression function) after few rounds. Cocktail exhibits this property because

of the fact that its round function is a Double round of MCC with an infusion of key and

thus practically is a permutation of input message i.e. permutes input message using

various Quarter rounds. So, for two distinct messages, with same initial state (IV and £

words) the permutations and in turn output will be different. And this property will hold

for any number of rounds.

4.9.2 Fixed Points

Fixed point is a chaining variable !D such that 9(!D, :D) 	= 	!D . Once fixed point exist,

the presence of message block :D	does not affect the message digest and pre-images can

be computed by creating expandable messages (using arbitrary number of :D messages)

as detailed in [73] and [74].

Fixed points may be easily computed for compression functions constructed using

‘Davies-Meyer’ principle i.e. compression function constructed in the following manner:

9 !DEA,0D = èñî !DEA Mi	!DEA {Mi is XOR or ADD operation}

In such cases adversary can create a fixed point by selecting a message 0D and

computing !DEA = 	è
ñî
EA 0 . This !DEA acts as fixed point as shown below:

!D = 	9 !DEA,0D = èñî !DEA Mi	!DEA = 0	Mi	!DEA = 	!D

SHA-1, SHA-2 and many other hash functions are based on Davies Meyer scheme and

hence fixed points can be easily found for these functions.

	

	

	

173	

As Cocktail is based on Matyas-Meyer-Oseas scheme [93], so fixed point can not be

easily computed as mentioned above. To find fixed point for Cocktail we need to find

0DEA ⊕ 9œ–�|_ D;(0
DEA, !DEA) that results in !DEA and estimating this is not simple as in

Davies-Meyer based structures. Secondly, Internal state of Cocktail is double the size of

hash output which results in cost of constructing expandable message from fixed point

quite huge (2;/B = 	2-).

4.9.3 Simulates Random Oracle

 A hash function is always desired to work as random oracle i.e. for a random input

the output should also be random. In other words, we can say that any difference or

relation between two inputs should not be statistically related to difference or relation of

corresponding output values. Cocktail’s compression function is based on MCC, a

variant of Salsa and ChaCha core, and till date any non-randomness property of these

constructs has not been identified. In [178], non-randomness (truncated differentials

having 1-bit input and output difference) up to 3 steps of ChaCha was detected (equivalent

to one and a half round of Cocktail if we hypothetically assume this attack is applicable

on MCC also) but this was not visible in the fourth step. Cocktail inherit pseudo-

randomness of ChaCha core. Infusion of round dependent key and input of £ words

(counter recording number of bits hashed so far) to compression function simulates each

call of compression function unique and all this contributes in making Cocktail

complicated enough to behave like random oracle.

4.9.4 Length Extension

Length extension (also known as padding or message extension) attack is a weakness

of MD structure. Given ℎ = ! 0 , and an adversary computes 04L.P	ℎ4, such that ℎ4 =

	!(0||04) even for unknown 0	(but for known length |0|). The attack uses ! 0 as

an internal hash for computing !(0||04).

Cocktail does not suffer from length extension attack. Input of £	words (number of

message bits hashed so far) in call to compression function for each message block

prevents length extension attack as the last call to compression function becomes unique.

This is illustrated by the following example. Let us assume we have a message 0	of 1040

bits. After padding, the message will be of three block 0U,0A	L.P	0B	. £U will contain

	

	

	

174	

512, £A will contain 1024, and £B will contain 1040. Final chain value (before output

transformation) will be !ó = 9œ–�|_ D;(!
B,0B, £B) i.e. !ó = 9œ–�|_ D;(!

B,0B, 1040). If

adversary applies length extension attack and extend the message with another block 0ó

(with desired padding) and tries to hash 0′ = 	0U 0A 0B||0ó by using chain value

between 0B and 0ó then adversary will receive !ó = 9œ–�|_ D;(!
B,0B, 1040). But in

fact for 0′ the correct value should be !ó = 9œ–�|_ D;(!
B,0B, 1536). So length

extension is prevented. The presence of output transformation also makes length

extension impossible (even without £ words) because ! 0 that the adversary uses is

not !ó. It is y(!ó) and it can not be used as intermediate chain value to compute !(0′).

4.9.5 Collision Multiplication

Aumasson et al. [26] have coined the term collision multiplication to refer to the ability

of extending a given collision (0,0′) to derive a number of other collisions. For example

in MD structure let us assume we already have a collision (0,0′) for a hash function !

with 0 = |0′|. Hash function pads 0	and 0′ to get 0 and 0′. Now by choosing any

message suffix 5 , we can have @ =	0||5 and @′ = 	0′||5 which will also collide. So a

single collision (0,0′) can be used to generate multiple collisions for free. It is basically

a type of length extension attack. The method as stated above is not easy to apply on

Cocktail unless the message collision takes place before output transformation and

finding collision will require 2;/B time complexity (as per Birthday attack) which is equal

to or greater than 2- for all hash outputs and this is certainly more than brute-force attack.

Also for the same reasons as mentioned in the previous point, Cocktail resists collision

multiplication.

4.9.6 Joux Multicollisions

By }-multicollisions, we mean that there are } messages that all collide to same hash

value. Joux in [46] presented an attack to find }-multicollisions for a hash ! in time

Ο(?MQB} ∗ 2
n
z) instead of Ω(2-∗

$ïã
z). The Joux multicollision is applicable to Cocktail

also and for that matter applicable to all hash functions based on HAIFA or MD structure.

The wide internal state used by Cocktail helps in resisting any practical concerns because

of Joux multicollisions. As per Lucks [49], the complexity to find }-collisions in a wide

pipe design is approximately of ?MQB} ∗ 2
+
z where ?	 ≥ 2 ∗ .	in case of Cocktail. That

	

	

	

175	

makes time complexity of ?MQB} ∗ 2- for Cocktail which is comparable to a Brute-Force

}-collision attack for which complexity is around }!A/| ∗ 2|∗(|EA)/| [24].

4.9.7 Kelsey & Schneier and Faster Multicollisions

Kesley and Schneier in [74] highlighted another method of finding multi-collisions.

The cost of finding }-collisions with this method is independent of } and is given by 3 ∗

2-/B, where . is size of hash output. The method works only when fixed points for

compression function are easily computed. As fixed points for Cocktail cannot be easily

computed so Kesley and Schneier’s method of multicollisions is not applicable to

Cocktail. Faster multicollisions suggested by Aumasson et al. in [187] is also not

applicable to Cocktail because that technique also requires fixed points to be found in

compression function and it is assumed that IV is chosen by the adversary.

4.9.8 Second Pre-image attack

Dean in [73] and Kelsey and Schneier in [74] presented generic attack on an n-bit hash

function to generate second pre-image in much less than 2- evaluations of the

compression function. For an n-bit hash function based on n-bit compression function,

these techniques generate second pre-image in 2-E| evaluations of compression function

if the first pre-image of 2| message block is given. The large internal state of Cocktail

makes this attack also not worth worrying about. For example, if the first pre-image of

2òô	blocks is given then finding second pre-image using these methods will require 2;Eòô

which is considerably higher than 2-E|	.

4.9.9 Algebraic Attacks

Algebraic attacks express the cipher operation as system of equations, then substitute

known data in some of the variables and then solve for key. The high complexity of

Cocktail and absence of any such attack on Salsa and ChaCha core reflects the resistance

of Cocktail against these attacks.

4.9.10 Side Channel Attacks

Cocktail process all input messages in the same way, independent of its content and

thus is not prone to timing attacks or power analysis. Not using S-Boxes also help in

preventing these attacks. Cache-Timing analysis of eSTREAM finalists was carried out

	

	

	

176	

by [188] which suggests that Salsa and ChaCha are not vulnerable to this attacks.

Cocktail’s basic primitive MCC is based on ChaCha and Salsa and thus Cocktail inherit

this property.

4.9.11 Few Other Important Concerns

In the last few points, Cocktail’s resistance to major generic attacks have been

discussed. A few other important factors highlighting security aspects that need special

mention are: Using fixed IV, padding the length of the message, and possibility of

differential cryptanalysis. The message padding and fixed initial value prevents trivial

attacks like correcting block attacks which has already been discussed in the previous

section under the head ‘4.7.3 Need for Padding and Initial Value’. Differential

cryptanalysis uses relationship that may exist between differentials of input messages and

corresponding output messages. Cocktail’s each round is practically Double Round of

MCC which is an improvisation of ChaCha and Salsa core’s Double round for better

diffusion. Differential analysis of ChaCha and Salsa core have been extensively analysed

without any real success and this also reposes confidence in Cocktail. Till date the best

attack on ChaCha is reported by [178]. This attack is based on the existence of truncated

differentials after three steps but after four steps no differentials were found. This means

that if it is assumed hypothetically that such differentials can be found for MCC also,

then it is equivalent to two rounds of Cocktail. For 10 round Cocktail with infusion of

sub-keys and counter words (representing number of bits hashed so far) these attacks are

not worth worrying about. Most importantly, these differentials should not affect the

compression function of Cocktail as MCC performs differently than ChaCha and offers

better diffusion and thus better security also.

4.10 Concluding Remarks

The newly designed Cocktail is a simple, flexible, and efficient hash function that

blends security with speed. Use of Modified ChaCha Core as a basic primitive ensures

good speed and high diffusion properties and also gives scope of exploiting parallelism

which can add to the performance extensively. Cocktail can be efficiently used in 32-bit

as well 64-bit architecture. The various design choices for Cocktail make sure to prevent

it from any generic attacks. In addition to a normal hash function, Cocktail can be used

	

	

	

177	

in different other operating modes like HMAC, CMAC, Randomized hashing, Key

derivation functions, and can also be used to build block and stream cipher.

	

	

	

178	

CHAPTER 5: COCKTAIL'S PERFORMANCE

COMPARISON WITH SKEIN AND OTHER SHA-3

FINALISTS

"Many things difficult to design prove easy to performance”
Samuel Johnson

Second objective of the thesis is to design a new hash function that can act as a variant

to Skein Hash family and perform better than Skein on Reference platform prescribed by

NIST and Target platform chosen for first objective. In chapter 4, proposal for new hash

function Cocktail was presented and this chapter presents the performance results of

Cocktail both on Reference and Target platform. This chapter also carry the comparison

of Cocktail’s performance with Skein and other SHA-3 finalists.

The chapter is organized under the following headings:

• Performance Results of Cocktail (5.1)

• Comparison of Cocktail and Skein (5.1)

• Comparison of Cocktail and SHA-3 Finalists (5.3)

5.1 Performance Results of Cocktail

Cocktail may be implemented on different platforms varying from resource

constrained devices like smart cards, 8 / 16 bit microcontrollers to large processors. Here

in this section results of Cocktail are presented on x86 architecture (Reference platform

[27] announced by NIST for SHA-3 competition) and on ARM architecture (Target

platform selected for the first objective of this study).

5.1.1 Performance Results on Intel x86_64 and x86_32 Architecture

A) Hardware and Software Used

The machine used for performance results on x86_64 architecture had Intel Core i3

– 4150 CPU @ 3.50 GHz x 4 (Quad Core) processor that supports 64-bit instruction set

architecture. The machine had 8 GB RAM with L1d and L1i Cache of 32K, L2 Cache of

	

	

	

179	

256K and L3 Cache of 3072K. The operating system used was 64-bit version of Linux

Ubuntu 14.04.1 (Kernel version: 3.13.0-32-generic).

For performance results on x86_32 architecture, Intel Core 2 Duo CPU E7500 @

2.93 GHz x 2 (Dual Core) processor, that supports 32-bit instruction set architecture, was

used. It had 2 GB RAM and L2 cache of 3MB. The machine operated on 32-bit version

of Linux Ubuntu 14.04.1 (Kernel version 3.16.0-23-generic) operating system.

B) Methodology Used

All results were obtained by running tests on a platform where BIOS was optimized

by removing every factor that could cause indeterminism. All power optimizations, Intel

Hyper threading, core multiprocessing, frequency scaling, and turbo mode functionalities

were turned off. Disabling core multiprocessing resulted in only one core available to the

operating system.

To read TSC (Time Stamp Counter), RDTSC – Read Time Stamp Counter instruction

supported by almost all x86 Intel Architecture systems was used. Using RDTSC before

and after the code (to be profiled) gives the value of cycles consumed before and after the

code and accordingly cycles consumed by the code can be calculated. However, there are

multiple issues that needs to be addressed before using RDTSC instruction. These are:

• RDTSC instruction fills EAX and EDX register with value of TSC and change in

these registers may result in segmentation fault. To avoid this, we should push the

register before using RDTSC and pop after RDTSC usage. Other option is to use

clobbered register in Inline assembly which acts as a message to the processor that

this instruction is effecting EAX and EDX register. The second option was used in

this study.

• Majority of Intel Architecture machines support ‘out of order’ execution which

may break the temporal sequence of operations and might give incorrect result of

cycle count because of execution of adjacent instructions between two calls to

RDTSC, which may not be part of the code to be profiled. To overcome this issue,

the solution lies in using some serializing instruction. CPUID instruction was used

as serializing instruction and its usage before first call to RDTSC ensures execution

of all instructions before RDTSC.

	

	

	

180	

• Using combination of CPUID and RDTSC at the end of code (to be profiled) may

add variance in results as highlighted by Paoloni in [189]. So, combination of

RDTSCP and CPUID as suggested in [189] was used for x86_64 machine but not

in x86_32 machine as that machine did not support RDTSCP instruction. The code

used is discussed as an example in Appendix-II.

• To counter the effect of caches, warming up was done by calling the code a few

times before profiling it.

Code written in ‘C’ was compiled using “gcc – O3” option i.e. the highest possible

optimization level for execution speed (level 3). The Cycles per Byte (CPB) consumed

by Cocktail are listed in Table 22. For computing CPB, the cycles after computation

were divided by total bytes after padding. Averaging and overhead subtraction was done

in the similar fashion as mentioned in ‘3.5.2 E) Averaging the Cycle Count and

Subtracting the Overhead’.
Table 22. Performance Results of Cocktail on Intel x86 Architecture

Type of
x86

Arch.

Input

Hash
1 byte 100 bytes 1000 bytes 5000 bytes

64-bit

Arch.

256 bit 16.53 14.09 12.54 12.28

512 bit 10.24 10.21 8.28 8.02

32-bit

Arch.

256 bit 22.61 19.23 17.01 16.13

512 bit 49.75 49.88 36.73 35.16

On x86_64 architecture, Cocktail, on an average, takes 8.7 Cycles Per Byte to

generate 512-bit hash and 13.0 Cycles per Byte to generate 256-bit hash output. On

x86_32 architecture, Cocktail, on an average, takes 39.2 Cycles Per Byte to generate

512-bit hash and 17.6 Cycles per Byte to generate 256-bit hash output.

5.1.2 Performance Results on ARM Architecture

The performance results of Cocktail on ARM architecture is given in Table 23. The

presented results are for Cortex-A8, Cortex-M4, and ARM7TDMI processors.

Methodologies and tools used were same as those used for evaluation of SHA-3 final

round candidate algorithms on this platform. On Cortex-A8, code was compiled using

‘gcc –O3’option.

	

	

	

181	

Table 23. Performance Results of Cocktail on ARM Architecture

Type ARM
Arch.

Input

Hash
1 byte 100 bytes

1000

bytes

5000

bytes

Cortex-A8
256 bit 45.38 37.20 30.33 29.47

512 bit 103.45 103.15 91.99 89.44

Cortex-M4
256 bit 79.19 64.62 53.28 51.98

512 bit 113.30 111.41 93.38 91.32

ARM7TDMI
256 bit 137.39 121.27 108.22 106.73

512 bit 181.14 179.76 156.05 153.34

On Cortex-A8, Cocktail, on an average, takes 94.59 Cycles Per Byte to generate

512-bit hash and 32.64 Cycles per Byte to generate 256-bit hash output. On Cortex-M4,

Cocktail, on an average, takes 97.81 Cycles Per Byte to generate 512-bit hash and 57.37

Cycles per Byte to generate 256-bit hash output. On ARM7TDMI, Cocktail, on an

average, takes 161.86 Cycles Per Byte to generate 512-bit hash and 113.2 Cycles per

Byte to generate 256-bit hash output.

5.1.3 Few Important Observations

• A close perusal of the results reflects that on all 32-bit machines (x86_32, Cortex-A8,

Cortex-M4 and ARM7TDMI), 256-bit output takes lesser time than 512-bit output

whereas on 64-bit machines (x86_64), 512-bit output is more efficient than 256-bit

output.

• Just like any other hash algorithm, Cocktail’s efficiency improves with increase in

size of input message. The reason for this is that a few preliminary tasks are always

required for implementation of the algorithm.

• Cocktail gives the best result on Intel x86 machines and it is quite obvious as the

architecture is more powerful and dedicated for general purpose PCs as compared to

ARM architecture that is targeted towards Mobile and Embedded systems.

The subsequent sections contain a comparison of Cocktail’s performance with Skein and

other SHA-3 final round candidate algorithms.

	

	

	

182	

5.2 Comparison of Cocktail and Skein

Before discussing performance results of Cocktail and Skein, it is important to

consider some important structural differences in both these algorithms that eventually

affect their performances. The discussion on structural differences is followed by

comparison of their performance results on Reference and Target platform.

5.2.1 Difference in Structure of Cocktail and Skein

Both Cocktail and Skein are based on Matyas-Meyer-Oseas structure [93] and use

ARX (Arithmetic, Rotation and XOR) operations for hashing. The structure of Cocktail

is detailed in Chapter 4 and introduction to Skein is given in Chapter 3 under the head

‘3.4 Introduction to SHA-3 Final Round Candidate Algorithms’. The important

difference in the structure of these algorithms are:

a) Cocktail works on 64-bit as well as 32-bit word size while Skein works on 64-bit

word size only. On a 64-bit machine, Skein might have minor advantage.

However, supporting both the word sizes results in good performance of Cocktail

on both 32-bit as well as 64-bit machines. The other important points that

influenced the decision in favour of both 32-bit and 64-bit word size is listed in

section ‘

b) 4.7.5 Support for 32-bit as well as 64-bit Architecture’.

c) Skein family consists of three different functions - Skein-256, Skein-512, and

Skein-1024 with internal state of 256, 512, and 1024 bits respectively - all

operating on 64-bit word size. However, Cocktail family consists of Cocktail-

512 (32-bit) and Cocktail-1024 (64-bit) with 512 and 1024-bit internal state only.

Cocktail with 256-bit internal state has not been defined because of concerns

shown by Lucks [49], and Biham and Dunkleman [51]. According to them, the

maximum size of hash that can be generated with 256-bit internal state without any

threat of inner collision (and thus length extension attack) is 128-bit. Based on

Birthday paradox, 128-bit is too small a size for message digest as the brute-force

collision attack will take approximately 1.18 * 2òô operations to break it and these

operations are not a big challenge for machines available these days.

Ferguson et al. [9] have dedicated Skein-256 for constrained devices such as 8-bit

Smart cards or other 16-bit devices. However, it will be really inefficient for an 8

	

	

	

183	

or 16-bit devices to process an algorithm based on 64-bit words. Cocktail-256 can

also be designed for smaller constrained devices. By changing all the words from

32-bit to 16-bit and defining new constants (initial values, round constants, and

rotation constants for MCC), Cocktail-256 may be derived from Cocktail-512.

Such an algorithm is expected to be efficient than Skein-256 on 8/16-bit

constrained devices.

d) The padding technique used by Skein does not append message length at the end

of message. Avoiding fixed point attacks is more challenging in this scenario.

Insertion of fixed pairs add to message length and length padding can detect it. But

without length padding, detection will be difficult. Similarly, attack discussed

under the head ‘4.7.3 Need for Padding and Initial Value’ will pose more

challenges for Skein. On the other hand, Cocktail makes use of length padding to

avoid such attacks.

e) Skein is based on tweakable block cipher Threefish and the basic primitive used

by Threefish is a MIX function which is derived from Helix [190] and Phelix [191]

ciphers. On the other hand, the basic primitive of Cocktail is Modified ChaCha

Core, an improvisation of Salsa and ChaCha core used in stream ciphers.

f) Different MIX functions used in a specific round of Skein can be processed in

parallel using Tree Hashing. However, compared to Cocktail, the No. of

operations that can be executed in parallel are lesser. Each MIX operation involves

one addition, one rotation, and one XOR. A single round of Skein-512 can execute

four MIX operations in parallel. Contrary to this, Cocktail has considerable

operations that can be executed in parallel to have good performance gains. All

four Columns (and Row Quarter rounds) can be executed in parallel and each such

round consists of (4 additions, 4 XORs and 3 rotations).

g) Cocktail is based on wide pipe design and uses the #aJO5 hashed as one of input

parameter to compression function. The wide internal state pipe and usage of #aJO5

enhances security against Length Extension and Joux Multicollisions as stated in

[49] and [51] . Skein on the other hand can use wide pipe and also uses tweak that

can incorporate message size hashed so far. However, when Skein-512 is used to

generate 512-bit hash output, then its internal state is no longer wide which may

create challenges in avoiding above mentioned attacks.

	

	

	

184	

h) Diffusion is a desirable property of a hash function. For 512-bit internal state,

Skein’s compression function (Threefish Cipher) requires 10 rounds for one full

diffusion (detailed in Appendix-VI). In comparison, Cocktail’s compression

function for the same internal state is able to generate full diffusion in the second

round. In fact, full diffusion is achieved even before the second round is completed

(More than 30 percent operations of second round are still pending before we

achieve full diffusions). Appendix-VI details how full diffusion is achieved in

Cocktail and Skein.

i) Skein-512 works on diffusion factor of 7.2 (72 rounds and 10 rounds for one full

diffusion) and Cocktail-512 works on diffusion factor of 5.9 (10 rounds proposed

and about 1.7 rounds for one full diffusion). Undoubtedly, Skein’s diffusion factor

is higher than Cocktail and to have same diffusion factor, Cocktail-512 should

be run with 12 rounds. The number of rounds have been kept as tuneable

parameters and it is proposed to have 10 rounds based on few other rationales as

discussed in ‘4.7.8 Number of Rounds’. Even with 12 rounds (to have diffusion

factor of 7 or more), Cocktail executes faster than Skein.

j) Comparison of operations and memory used by both these algorithms is quite

interesting and gives fairly good judgment about their performance characteristics.

For Cocktail, both these details are explained under the head ‘4.6 Complexity of

Cocktail’.

Comparison of Operations:

• For 512-bit Internal state, Skein requires 1083 operations involving 64-bit

words which on a 32-bit machine are equivalent to 2166 operations on 32-

bit words. (994 additions, 596 XORs and 576 rotations). In comparison, 10-

round Cocktail for 512-bit internal state requires 1189 operations involving

32-bit words (388 additions, 533 XORs and 268 rotations). To have same

diffusion factor as Skein’s 72 rounds, a 12-round Cocktail-512 requires 1387

operations involving 32-bit words which are 36% lesser than that of Skein.

• For 1024-bit internal state, Skein requires 2171 operations involving 64-bit

words (871 additions, 660 XORs and 640 rotations). In comparison, 12 round

Cocktail requires 1391 operations (456 additions, 614 XORs and 317

rotations). If we increase the rounds from 12 to 14 (to have higher diffusion

	

	

	

185	

factor), the No. of operations consumed by Cocktail will be 1585 i.e. 27%

lesser than Skein.

Comparison of Memory Requirement:

• For 512-bit internal state. Cocktail requires 96 bytes for constants (64 bytes

for Initial Value and 32 bytes for round constants used for key expansion). In

comparison, Skein uses 32 bytes to store rotation constants for different

rounds, 64 bytes for initial chaining values, 8 bytes for constant used in key

derivation, and 8 bytes for permutation constants. All this sum up to 112

bytes.

• In RAM, for 512-bit internal state Cocktail requires 270 bytes to store Hash

State H, Internal State of Compression function, Sub-Keys (computed

dynamically for each round), variable to store No. of bits hashed so far, and

local copy of message block to be processed in each compression function.

Skein also stores all these variables and the memory requirement for hash

state, internal state of compression function, sub keys (computed

dynamically), and for local copy of message block is same as Cocktail.

However, tweak words of Skein require 16 bytes compared to 8 bytes required

to store input bits hashed so far in Cocktail. In totality, the amount of RAM

required is almost the same.

The above comparison reflects that both Cocktail and Skein can be easily

implemented on memory constrained devices but from perspective of execution

speed, Cocktail is expected to perform better.

k) Some of the important features of Skein, that need to be highlighted are mentioned

below:

• Skein can generate variable output sizes (in byte increments). However,

Cocktail’s output is not as flexible as Skein. Cocktail generate few selected

byte sizes as hash output (32, 64, 96, 128, 160, 192, 224, 256, 320, 384, 448,

512)

• As far as total number of operations are concerned, Cocktail undoubtedly

outperforms Skein. However, Key Expansion of Skein is very efficient and

can generate sub-keys much faster than Cocktail.

	

	

	

186	

• Skein uses Tweak input in compression function that enables Skein to support

multiple optional arguments which adds flexibility. For example, if ‘Tree

hashing’ is to be done, then optional arguments can be setup accordingly.

5.2.2 Difference in Performance of Cocktail and Skein

This subsection presents the comparison of performance of Cocktail and Skein on

Reference platform (x86 architecture) as prescribed by NIST in [27] and Target platform

(ARM architecture) chosen under this study for evaluation of SHA-3 final round

candidate algorithms. All the results are compared separately for 512-bit internal state

(Cocktail-512 and Skein-512 recommended for 256-bit hash output) and separately for

1024-bit Internal state ((Cocktail-1024 and Skein-1024 recommended for 512-bit hash

output)

A) Comparison on Reference Platform (Intel x86 Architecture)

Figure 66, Figure 67, Figure 68, and Figure 69 present the performance comparison of

Cocktail and Skein on CISC based 64-bit and 32-bit Intel architecture commonly

referred as x86_64 and x86_32 (IA32) architecture. The software and hardware tools used

are same as mentioned in previous section ‘5.1.1 Performance Results on Intel x86_64

and x86_32 Architecture’. For comparison, Skein’s reference submission as available on

NIST SHA-3 competition website was used. The code for both Cocktail and Skein were

written in ‘C’ language and compiled using ‘gcc –O3’ i.e. highest level of optimization

for execution speed. Clock cycles were computed by using RTDSCS, CPUID, and

RDTSCP instructions as mentioned in previous section. All the other methodologies as

mentioned in chapter 3 under the head ‘3.5.2 Methodology Used’ were followed.

Some important observations from these graphs are listed below:

a) On Intel 64-bit machine (x86_64 architecture), Cocktail-512 consumes 13 Cycles

per Byte (CPB) compared to 15.5 CPB consumed by Skein-512. However,

Skein-512 performs better as size of input increases above 650-700 bytes. The

major reason behind comparatively better performance of Skein is the word size

used by Cocktail-512. Cocktail-512 works on 32-bit word size and Skein-512

works on 64-bit word size. On a 64-bit architecture, an algorithm processing 64-

bit data will undoubtedly have an advantage. However, Skein-1024 does not have

the advantage over Cocktail-1024 as both these algorithms use 64-bit word size

	

	

	

187	

and inherent efficiency of Cocktail results in better performance. Cocktail-1024

takes 8.68 CPB compared to 22.73 CPBs of Skein.

Figure 66. Performance of Skein and Cocktail for 512-bit Internal State on Intel x86_64 Machine

b) On Intel 32-bit machine (x86_32 / IA32 architecture), Cocktail-512 performs

much better than Skein-512. Skein does improve with increase in input size but

on average the CPB consumed are 71.73 compared to 17.56 by Cocktail-512.

Similar scenario exists for 1024-bit internal state also. Cocktail-1024 on an

average consumes 39.2 CPB compared to 100.47 CPB by Skein-1024.

Figure 67. Performance of Skein and Cocktail for 1024-bit Internal State on Intel x86_64 Machine

	

	

	

188	

Figure 68. Performance of Skein and Cocktail for 512-bit Internal State on Intel x86_32 Machine

Figure 69. Performance of Skein and Cocktail for 1024-bit Internal State on Intel x86_32 Machine

B) Comparison on Target Platform (ARM Architecture)

The target architecture selected for evaluation of SHA-3 finalists was ARM

Architecture of which Cortex-A8, Cortex-M4, and ARM7TDMI were used for evaluation

(detailed in Chapter 3). In this subsection, the performance comparison of Cocktail and

Skein on these processors is presented. Various tools, methodologies, and approach used

for evaluation on the selected ARM processors were exactly the same as detailed in

Chapter 3 under respective sections. For evaluation on Cortex-A8, codes of both

algorithms were compiled with –O3 optimization. Figure 70, Figure 71 present results for

	

	

	

189	

Cortex-A8; Figure 72, Figure 73 present results for Cortex-M4, and Figure 74, Figure 75

present results for ARM7TDMI. In all cases, Cocktail was found to perform better than

Skein.

Some of important observations are highlighted below:

a) The average CPB consumed by Cocktail-512 is 32.64, 57.37, and 113.2 for

Cortex-A8, Cortex-M4 and ARM7TDMI respectively. In Comparison Skein-512

consumes 270.86 CPB (8 times more) for Cortex-A8, 197.10 CPB (3.4 times

more) for Cortex-M4 and 238 CPB (2 times more) for ARM7TDMI.

Figure 70. Performance of Skein and Cocktail for 512-bit Internal State on Cortex-A8 Processor

Figure 71. Performance of Skein and Cocktail for 1024-bit Internal State on Cortex-A8 Processor

	

	

	

190	

b) For 1024-bit internal state also Cocktail performs better than Skein. CPBs

consumed by Cocktail-1024 are 94.59, 97.81, and 161.86 for Cortex-A8, Cortex-

M4, and ARM7TDMI respectively. In comparison, Skein-1024 consumes 337.22,

238.81, and 346.65 CPBs for Cortex-A8, Cortex-M4, and ARM7TDMI

respectively.

Figure 72. Performance of Skein and Cocktail for 512-bit Internal State on Cortex-M4 Processor

Figure 73. Performance of Skein and Cocktail for 1024-bit Internal State on Cortex-M4 Processor

c) For Cortex-A8 and x86 machines, considerable spikes in CPB values were

observed because these machines are used with multiple other peripherals and run

operating systems. Because of this, CPU is interrupted by external devices and

	

	

	

191	

other software that causes considerable spikes. Such spikes are not visible in

Cortex-M4.

Figure 74. Performance of Skein and Cocktail for 512-bit Internal State on ARM7TDMI Processor

Figure 75. Performance of Skein and Cocktail for 1024-bit Internal State on ARM7TDMI Processor

d) In all 32-bit machines (x86 or ARM), consumption of CPBs increases considerably

as Cocktail switches from 512-bit internal state (256-bit hash output) to 1024-bit

internal state (512-bit hash output). For example, in x86 32-bit architecture this

value goes up to 123%. In comparison, Skein performs better on this front and

CPB increases by about 40% as we switch from 512-bit internal state to 1024-bit

	

	

	

192	

internal state on x86_32 architectures. Same attribute of Skein was also noticed

while comparing it with other SHA-3 finalists in Chapter 3.

e) Cycles per byte consumed by Cocktail and Skein decrease with increase in input

size but this is more obvious in Skein as compared to Cocktail.

C) Summary

As a whole Cocktail performs better than Skein on Intel x86 architecture as well as

ARM architecture. The only scenario where Skein marginally performs better than

Cocktail is for 512-bit internal state on a 64-bit machine. In all other cases, Cocktail

performs much better than Skein as the consumption of Cycles per Byte is at least

60% lesser in case of x86 machines and in ARM architecture this improvement

(reduction in CPB) is even better and goes up to 88% for 512-bit internal state on

Cortex-A8 machine.

The above comparison was done with 10 round Cocktail-512 and 12 round Cocktail-

1024. Number of rounds have been kept as tuneable parameter for Cocktail. To keep its

diffusion factor same as that of Skein, even if the number of rounds of Cocktail-512 and

Cocktail-1024 are increased to 12 and 14 respectively, then also Cocktail performs

better than Skein. This proves that better performance of Cocktail is not the result of

lesser rounds but is because of its inherent structure. This is discussed in section ‘5.2.1

Difference in Structure of Cocktail and Skein’ under the sub head ‘Comparison of

Operations’ which reflect that in comparison to Skein, Cocktail even with extended

rounds uses 36% lesser operations for 512 bit internal state and 27% lesser

operations for 1024-bit internal state.

The graphs in Figure 76 and Figure 77 present comparison of performance of Skein

with Cocktail when its number of rounds are increased to match diffusion factor of

Skein. Extended Cocktail {written as Cocktail (ER)} in these figures, means rounds of

Cocktail-512 increased from 10 to 12; and of Cocktail-1024 increased from 12 to 14. In

these figures, Cocktail with recommended rounds is written as Cocktail (RR).

It is evident from the graphs that even with extended rounds (shown in grey colour)

Cocktail continues to consume lesser Cycles Per Byte compared to those by Skein. Only

in case of 64-bit Intel x86 architecture, Skein-512 performs better than Cocktail-512.

	

	

	

193	

The reason behind better performance of Skein-512 is the usage of 64-bit word size even

for 512-bit hash. However, with 1024-bit internal state, Cocktail gets better.

Figure 76. Comparison of Skein and Cocktail’s Recommended and Extended Rounds on Different Architectures

(512-bit Internal State)

Figure 77. Comparison of Skein and Cocktail’s Recommended and Extended Rounds on Different Architectures

(1024-bit Internal State)

5.3 Cocktail and SHA-3 final Round Candidate Algorithms

After comparing Cocktail with Skein in the previous section, this section is devoted

to the comparison of Cocktail with all SHA-3 final round candidate algorithms on

various platforms. The comparative values of Cycles per byte consumed by all algorithms

on different architectures are presented in Figure 78. As the performance of all algorithms

	

	

	

194	

have been discussed in detail (for varying input sizes) in Chapter 3, this section deals with

comparison of average CPB consumed by various algorithms to give a summarized

comparison on performance of Cocktail and all other algorithms. The methodologies and

tools used for computing these values are same as mentioned in Chapter 3 for ARM

architecture processors and in this chapter under the heading ‘5.2.2 - A) Comparison on

Reference Platform (Intel x86 Architecture)’ for Intel x86 architecture.

Figure 78 represents the results for 256-bit hash as well as 512-bit hash. For Skein,

results are presented using author’s [9] prime submission (Skein-512) as well as using

wide pipe for 512-bit hash output {written as Skein (WP) in the figure}. For Cocktail,

the presented results are for recommended rounds as well as for the increased rounds

{written as Cocktail (ER) in the figure}. The results of Grøstl and JH are not shown in

Figure 78 as the CPBs consumed by these algorithms are too high and that affect the

visibility of the CPBs consumed by other algorithms in the figure. These values are given

separately in Figure 79.

The following observations are drawn from the comparisons:

i. For all algorithms, on 32-bit architectures, as we move from 256-bit hash output

to 512-bit hash output for better security margins, the cost in terms of CPB

increases. This increase in CPB consumption as per architecture varies from 40%

to 170% for Blake, for Keccak it varies from 70% to 90%, for Cocktail it varies

from 40% to 100%, and for Grøstl it is around 40-50%. Only JH and Skein shows

consistent performance irrespective of output size. JH otherwise takes

considerably high CPB.

ii. For Skein, the rationale behind such performance is not using wide internal state

for 512-bit hash output and is detailed in Chapter 3. Figure 79 also presents CPB

consumed by Skein for 512-bit hash with wide internal state (i.e. 1024 bit internal

state). Results reflect that with wide pipe, Skein does consume more CPB but the

increase is not as high as for other algorithms. For Cortex-A8, it does not increase

at all but for other 32-bit processors it varies from 20-40 percent.

iii. On 64-bit x86 Machine: Cocktail runs about 15% faster than No. 2 performer

(Skein and Blake) for 256 as well as 512-bit hash. An extended Cocktail (with

increased round) continues to be the best for 512-bit hash. However, for 256-bit

hash, it is at the second position, lagging marginally behind Skein.

	195	

Figure 78. Comparison of Cocktail and All SHA-3 Final Round Candidate Algorithms

	196	

Figure 79. Performance of JH and Grøstl on Various Platforms

iv. On 32-bit x86 Processor, Cocktail runs about 25% faster than No. 2 performer

for 256-bit hash output and about 35% faster than No. 2 performer for 512-bit

hash output. Increasing number of rounds decreases the difference. With increased

rounds, for 256-bit hash, it is still 13% faster than No. 2 but in case of 512-bit hash

it is marginally better by 4%

v. On ARM Cortex-A8 Processor, Cocktail retains its best position in terms of

speed. It is fastest and better than No. 2 position holder by 21% and 11% for 256

and 512-bit hash respectively. Increase in rounds does not deter the position but

difference reduces in 512-bit hash which is about 6%.

vi. On ARM7TDMI and Cortex-M4 also, Cocktail comes out to be the fastest

among all candidate algorithms. In case of Cortex-M4, it is faster than No. 2

performer by about 44% and 32% for 256 and 512-bit hash respectively, and on

ARM7TDMI this difference is 27% and 31% for 256 and 512-bit hash.

5.4 Concluding Remarks

Our new designed hash function, Cocktail, is flexible and quite efficient. It performs

faster than SHA-3 winner and other SHA-3 final round candidate algorithms on majority

of platforms under discussion.

On 32-bit architecture (ARM as well as Intel), Cocktail is the fastest among all the

candidate algorithms irrespective of whether we use Cocktail with recommended rounds

or increased rounds (increased by 20% for 256-bit hash and 16.6% for 512-bit hash). For

	

	

	

197	

256-bit hash output, the difference remains considerable even with increased rounds but

for 512-bit hash, difference in speed is not very considerable with increased rounds.

On Intel 64-bit architecture, Skein’s performance for 256-bit hash is quite

competitive. With same diffusion factor (increased rounds of Cocktail), it is faster than

Cocktail but for 512-bit hash Cocktail proves to be the best.

	

	

	

198	

CHAPTER 6: CONCLUSION AND FUTURE

ENHANCEMENTS

"An objective achieved makes culmination pleasant”

Anonymous

6.1 Conclusion

This thesis accomplishes two objectives; the first being performance analysis of SHA-

3 final round candidate algorithms on a platform other than the ‘Reference platform’

announced by NIST; and the second is the designing of a new cryptographic hash function

that performs better than Skein on both the Reference platform (announced by NIST) and

Target platform (selected under the present study for performance evaluation of SHA-3

finalists).

The decision to opt for ARM architecture as Target platform for evaluation of SHA-3

final round candidate algorithms is supported by the rationale provided in Chapter 3.

Briefly put, the decision to go with ARM architecture includes inter alia the recent surge

in usage of mobile and portable devices while the ‘Reference platform’ did not cover

Embedded and Mobile segment. The market dominance of ARM in Mobile and

Embedded segment, supported by its technical capabilities was a major factor that also

went into this decision. Cortex-A8 (ARM application series), Cortex-M4 (ARM

Embedded series), and ARM7TDMI (classical processor) were picked for evaluation of

algorithms under discussion. The performance parameter was Cycles per Byte consumed

by an algorithm and results are presented for short and long messages separately.

For evaluation on Cortex-A8, OpenBoard-AM335x kit that features Texas

Instruments SitaraTM ARM CortexTM – A8 CPU and runs Linux kernel was utilized.

Control Coprocessor CP15 was used to access cycle counts consumed by various

algorithms. Methodology involved writing a Kernel module to initialize and access

various coprocessor registers. Evaluation on Cortex-M4 was also done on hardware

using Stellaris® LM4F232 Evaluation Board (EK-LM4F232) from Texas Instruments.

This machine is a bare machine and does not run any operating system. Code Composer

	

	

	

199	

studio was used to code, debug, burn, and run the code on target machine. To measure

cycle counts consumed by various algorithms, DWT’s CYCCNT counter was utilized.

Evaluation on ARM7TDMI was done using IAR Embedded Workbench (simulator)

and cycle counts were computed using function profiler and timeline tool.

The results reflect that JH and Grøstl are quite slow compared to other three

algorithms. Grøstl is at number 4 and JH is at the last position in terms of consumption

of Cycles per Byte (CPB). On Cortex-A8, Grøstl consumes at least double (100%

increase) and 1.8 times (80% increase) the CPB than No. 3 performer for long and short

messages respectively. On same platform JH consumes at least 136% and 73% more CPB

than Grøstl for long and short messages respectively. The same trend is visible on Cortex-

M4 and ARM7TDMI also. Value of percentage increase in consumption of CPB by

Grøstl (compared to No. 3 performer) varies from 47% to 118% and 113% to 220% for

Cortex-M4 and ARM7TDMI respectively depending on hash size and input message type

(long or short messages). CPB consumption by JH is 29% to 80% and 58% to 137% more

than Grøstl on Cortex-M4 and ARM7TDMI respectively depending on the hash size, and

input message type.

For all ARM processors and all hash output sizes, Skein, Blake and Keccak have

shown good performance. Position of the best performer or No. 2 or No. 3 performer

changes with change in hash size or input message type or ARM processor used for

evaluation. On Cortex-A8 and for short messages, Blake and Keccak perform faster than

Skein but as message size increases and particularly for 512-bit hash, Skein outperforms

the other three. On Cortex-M4, Blake stands out as the best but for long messages Skein

improves considerably to generate 512-bit hash. On ARM7TDMI, Keccak performs

better than the other two competitors for 256-bit hash but for 512-bit hash, Skein is the

best for long messages whereas Keccak is marginally ahead for short messages.

For almost all algorithms, result of 224-bit and 384-bit hash match with 256-bit and

512-bit hash respectively. As input size increases, consumption of Cycles per Byte

decreases for almost all algorithms on all ARM architectures This trend is prominently

visible in Skein and Grøstl.

Skein however exhibits an important characteristic that CPB does not increase as we

increase the size of message digest from 224/256 bits to 384/512 bits. On ARM

architecture as a whole, for long messages, this study recommends the use of Skein for

	

	

	

200	

512-bit hash followed by Blake and Keccak for 256-bit hash. Whereas, for Short

messages (e.g. in Password hashing, pseudo random number generator, and many such

applications) Blake and Keccak are better alternatives.

To accomplish the second objective, a new primitive named Modified ChaCha Core

(MCC) was designed that can be used to construct a stream cipher or block cipher or

compression function of cryptographic hash function. MCC is an improvisation over

Salsa and ChaCha core. An exhaustive experiment was conducted to study the diffusion

property of Quarter round of our proposed primitive and its counterparts. The experiment

studied all possible rotation distances that result in 1 million permutations for 32-bit word

size and 16 million for 64-bit word size. This experiment reflected that MCC creates

more diffusion than its counterparts. The Quarter round of MCC, on average, results in

gain of 16% over that of ChaCha and 88% over that of Salsa. The performance of Salsa

and ChaCha core for different rotation distances were also evaluated and we propose

alternative constants (other than the one specified by the author) to have better diffusion.

This study reflects that there are 45000 (4.3%) and 58000 (5.5%) set of rotation distances

for Salsa and ChaCha respectively that give better results than prescribed value of rotation

constants.

 A new ARX based hash function named Cocktail that makes use of Modified

ChaCha Core (MCC), to build its compression function and output transformation, is

presented. Cocktail’s iterative structure is a variant of Matyas–Mayer–Oseas iteration

mode and uses number of message bits hashed so far as one of the input to compression

function that makes every call to compression function unique. Cocktail family consists

of two hash functions - Cocktail-512 and Cocktail-1024 - that work on 32-bit and 64-

bit word size respectively and internal state is always double the output size. Each round

of compression function is a Double round of MCC and sub-key is injected in alternate

rounds. The key expansion is quite efficient and uses round dependent constants.

Cocktail’s compression function can generate full diffusion in the second round. The

whole algorithm can be implemented in about 350 bytes of RAM and additional 96 bytes

for constants. Number of rounds is taken as a tuneable parameter. However, to have

diffusion factor of more than five, 10 rounds for Cocktail-512 and 12 rounds for

Cocktail-1024 are recommended. Decision to have ARX based design makes it quite

simple and efficient. Multi-rate padding, fixed initial value, and wide internal state helps

	

	

	

201	

in thwarting multiple generic attacks. The decision to have four column rounds followed

by four row rounds gives a lot of scope to exploit parallelism. Being based on familiar

constructs that have been analysed considerably, helps in generating more confidence in

Cocktail for its security and efficiency.

 Discussion in the last section of Chapter 4 substantiates that Cocktail is free from any

generic attack and no specific attack is anticipated in future. Cocktail can be used in

multiple ways to achieve various security objectives like implementing efficient Digital

signature, password hashing, verifying data integrity and authentication as

HMAC/CMAC, Key derivation functions, and also to build block and stream cipher. On

the performance front, Cocktail can generate 256-bit message digest with average speed

of 13 Cycles per Byte and 512-bit message digest with average speed of 8.7 Cycles per

byte on Intel x86_64 Architecture.

Though our attempt was to design a variant that could perform better than Skein

family, the new designed hash function Cocktail outperforms Skein as well as all SHA-

3 finalists including ‘Keccak’, the winner announced by NIST. The comparison with

Skein and other SHA-3 final round candidate algorithms reflects that, on 32-bit

architecture (ARM as well Intel), Cocktail is fastest among all the candidate algorithms

irrespective of whether Cocktail is used with recommended rounds or increased rounds

(increased by 20% for 256-bit hash and about 17% for 512-bit hash). With recommended

rounds, Cocktail is 11% to 45% faster than SHA-3 final round candidate algorithms

depending on hash size and processor architecture used. With increased rounds, this

margin reduces and varies between 4% to 23%.

On Intel 64-bit architecture, Skein’s performance for 256-bit hash is quite

competitive. With same diffusion factor (increased rounds of Cocktail), Skein is

marginally faster (15.49 CPB compared to 15.60 CPB) than Cocktail, but for 512-bit

hash Cocktail is the best with 8.7 CPB (16% better than No. 2 performer).

6.2 Future Enhancements

Although the researcher has put in his best efforts on the present study, still

cryptographic hash functions have wide scope for further research. Like a stepping stone,

this research has enough scope for further enhancements. Thus, for future research and in

	

	

	

202	

light of the results and conclusions of this study, the following future work may be carried

out:

a) Extending Cocktail so that it can generate hash output of any size. Presently it

generates output up to 256 bits in steps of 32 and from 256 to 512 bits in steps of

64.
b) Improving key-generation algorithm of Cocktail to reduce CPB consumption

further.
c) Implementation of Cocktail on various platforms including FPGA, ASIC and 8-

bit microcontroller and evaluation of its performance in comparison to other

prevalent algorithms as done in [192] and [193] for FPGAs.
d) Conducting further experiments with MCC and analyse how it performs.

e) Designing stream and block cipher from existing or updated MCC core.
f) Broadening the sphere of cryptanalysis of Cocktail to open new doors to further

improve and enhance it in emerging scenarios.

	

	

	

203	

BIBLIOGRAPHY

[1] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,
John Wiley & Sons, 2007.

[2] D. Kahn, The Codebreakers, Weidenfeld and Nicolson, 1974.

[3] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 5, pp. 644-654, November 1976.

[4] B. V. Rompay, Analysis and Design of Cryptographic Hash Functions, MAC
Algorithms and Block Ciphers (Ph.D. Thesis), Lauven, Flanders: Katholieke
Universiteit Leuven, 2004.

[5] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Advanced Encryption Standard
(AES), Federation Information Processing Standards Publication (FIPS PUB) 197,”
NIST Computer Security Publications, 2001.

[6] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Secure Hash Standard, Federal
Information Processing Standards Publication (FIPS PUB) 180-2,” NIST Computer
Security Publications, 2002.

[7] R. Sobti and G. Ganesan, “Cryptographic Hash Functions: A Review,” IJCSI
International Journal of Computer Science, vol. 9, pp. 461-479, 2012.

[8] P. S. Barreto and V. Rijmen, “The WHIRLPOOL Hashing Function,” in Final report
of European project number IST-1999-12324, named New European Schemes for
Signatures, Integrity, and Encryption(NESSIE), Springer-Verlag, 2004, pp. 563-572.

[9] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas and J.
Walker, “The Skein Hash Function Family,” 1 October 2010. [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html. [Accessed
23 January 2011].

[10] R. Rivest, “The MD4 Message Digest Algorithm,” in Advances in Cryptology -
CRYPTO'90 Proceedings, vol. 537 of the series Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 1991, pp. 303-311.

[11] R. Rivest, “The MD5 Message Digest Algorithm,” Internet Engineering Task Force,
April 1992. [Online]. Available: http://www.faqs.org/rfcs/rfc1321.html. [Accessed 18
July 2011].

[12] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Secure Hash Standard, Federation
Information Processing Standards Publication (FIPS PUB) 180-4,” NIST Computer
Security Publications, 2015.

	

	

	

204	

[13] R. C. Merkle, Secrecy, Authentication and Public Key Systems (Ph.D. Thesis),
Stanford, California: Stanford University, 1979.

[14] R. C. Merkle, “One Way Hash Functions and DES,” in Advances in Cryptology —
CRYPTO’ 89 Proceedings, vol. 435 of the series Lecture Notes in Computer Science,
Springer New York, 1990, pp. 428-446.

[15] W. Tuchman, “A Brief History of the Data Encryption Standard,” in Internet Besieged,
D. E. Denning and P. J. Denning, Eds., New York, NY: ACM Press/Addison-Wesley
Publishing Co., 1998, pp. 275-280.

[16] Information Society Technology (IST) Programme of the European Commision,
“NESSIE - New European Schemes for Signatures, Integrity, and Encryption,”
[Online]. Available: https://www.cosic.esat.kuleuven.be/nessie/. [Accessed 21 June
2012].

[17] ECRYPT - European Network of Excellence for Cryptology, Information Societies
Technology (IST) Programme of European Commision, “The eSTREAM Project,” 8
September 2008. [Online]. Available: http://www.ecrypt.eu.org/stream/project.html.
[Accessed 11 December 2011].

[18] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “The SHA-3 Cryptographic Hash
Algorithm Competition,” [Online]. Available: http://csrc.nist.gov/groups/ST/hash/sha-
3/. [Accessed 12 January 2010].

[19] G. Bertoni, J. Daemen, P. Michaël and G. V. Assche, “The Keccak reference,” 14
January 2011. [Online]. Available: http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html. [Accessed 22 January 2011].

[20] “Password Hashing Competition,” [Online]. Available: https://password-hashing.net.
[Accessed 15 February 2014].

[21] D. J. Bernstein, “CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness,” 02 September 2015. [Online]. Available:
http://competitions.cr.yp.to/caesar.html. [Accessed 04 Dec 2015].

[22] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Secure Hash Standard, Federation
Information Processing Standards Publication (FIPS PUB) 180,” NIST Computer
Security Publications, 1993.

[23] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Secure Hash Standard, Federation
Information Processing Standards Publication (FIPS PUB) 180-1,” NIST Computer
Security Publications, 1995.

[24] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M.
Schlaffer and S. S. Thomsen, “Grøstl – a SHA-3 candidate,” 2 March 2011. [Online].

	

	

	

205	

Available: http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html.
[Accessed 12 May 2011].

[25] H. Wu, “The Hash Function JH,” 16 January 2011. [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html. [Accessed
12 March 2011].

[26] J. P. Aumasson, L. Henzen, W. Meier and R. C.-W. Phan, “SHA-3 Proposal BLAKE,”
16 July 2010. [Online]. Available: http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html. [Accessed 22 January 2011].

[27] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA–
3) Family,” 02 November 2007. [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf. [Accessed 12
January 2010].

[28] D. Khovratovich, I. Nikoli ́c and C. Rechberger, “Rotational Rebound Attacks on
Reduced Skein,” Cryptology ePrint Archive, Report 2010/538, 2010.

[29] D. Khovratovich and I. Nikolić, “Rotational Cryptanalysis of ARX,” in Fast Software
Encryption : 17th International Workshop, FSE 2010, vol. 6147 of the series Lecture
Notes in Computer Science, Seoul, Springer Berlin Heidelberg, 2010, pp. 333-346.

[30] Q. Dang and T. Polk, “SHA-3 for Internet Protocols,” in IETF-83 Proceedings, 2012.

[31] G. Tsudik, “Message authentication with one-way hash functions,” ACM SIGCOMM
Computer Communication Review, vol. 22, no. 5, pp. 29-38, 1992.

[32] M. Bellare, R. Canetti and H. Krawczyk, “Keying Hash Functions for Message
Authentication,” in Advances in Cryptology — CRYPTO ’96, 16th Annual
International Cryptology Conference Proceedings, vol. 1109 of the series Lecture
Notes in Computer Science, Santa Barbara, California: Springer Berlin Heidelberg,
1996, pp. 1-15.

[33] R. L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-
126, 1978.

[34] S. Singh, The Code Book : The Evolution of Secrecy from Mary, Queen of Scots to
Quantum Cryptography, New York: Doubleday, 1999.

[35] W. Stallings, Cryptography and Network Security Principles and Practices, Prentice
Hall, 2005.

[36] A. Biryukov, D. Dinu and D. Khovratovich, “Argon2: The Memory-hard Function for
Password Hashing and Other Applications,” 1 October 2015. [Online]. Available:
https://password-hashing.net/argon2-specs.pdf. [Accessed 01 December 2015].

	

	

	

206	

[37] G. Hatzivasilis, I. Papaefstathiou and C. Manifavas, “Password Hashing Competition -
Survey and Benchmark,” Cryptology ePrint Archive, Report 2015/265, 2015.

[38] S. Haber and S. W. Stornetta, “How to Time-stamp a Digital Document,” Journal of
Cryptology, vol. 3, no. 2, pp. 99-111, January 1991.

[39] M. Bellare, R. Canetti and H. Krawczyk, “Pseudorandom Functions Revisited: The
Cascade Construction and Its Concrete Security,” in Proceedings of 37th Annual
Symposium on Foundations of Computer Science, 1996., IEEE, 1996, pp. 514-523.

[40] I. Haitner, D. Harnik and O. Reingold, “Efficient Pseudorandom Generators from
Exponentially Hard One-Way Functions,” in Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006 Proceedings, Part-II, vol. 4052 of the
series Lecture Notes in Computer Science, Venice, Springer Berlin Heidelberg, 2006,
pp. 228-239.

[41] S. M. Matyas, A. V. Le and D. Abraham, “A Key-management Scheme Based on
Control Vectors,” IBM Systems Journal, vol. 30, no. 2, p. 175, 1991.

[42] H. Handschuh and D. Naccache, “SHACAL-2,” in Final report of European project
number IST-1999-12324, named New European Schemes for Signatures, Integrity, and
Encryption(NESSIE), Springer-Verlag, 2004, pp. 555-559.

[43] D. Armstrong, “An Introduction to File Integrity Checking on Unix Systems,” GIAC
practical repository, SANS Institute, 2003. [Online]. Available:
http://www.giac.org/paper/gcux/188/introduction-file-integrity-checking-unix-
systems/104739.

[44] X. Lai and J. L. Massey, “Hash Functions Based on Block Ciphers,” in Advances in
Cryptology — EUROCRYPT’ 92, Workshop on the Theory and Application of
Cryptographic Techniques, 1992 Proceedings, vol. 658 of the series Lecture Notes in
Computer Science, Balatonfüred, Springer Berlin Heidelberg, 1993, pp. 55-70.

[45] I. B. Damgård, “A Design Principle for Hash Functions,” in Advances in Cryptology
— CRYPTO’ 89 Proceedings, vol. 435 of the series Lecture Notes in Computer
Science, Springer New York, 1990, pp. 416-427.

[46] A. Joux, “Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions,” in Advances in Cryptology – CRYPTO 2004, 24th Annual International
Cryptology Conference, Proceedings, vol. 3152 of the series Lecture Notes in
Computer Science, Santa Barbara, California: Springer Berlin Heidelberg, 2004, pp.
306-316.

[47] J. Kelsey and T. Kohno, “Herding Hash Functions and the Nostradamus Attack,” in
Advances in Cryptology - EUROCRYPT 2006, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings, vol. 4004
of the series Lecture Notes in Computer Science, St. Petersburg, Springer Berlin
Heidelberg, 2006, pp. 183-200.

	

	

	

207	

[48] Y. Dodis, T. Ristenpart and T. Shrimpton, “Salvaging Merkle-Damgård for Practical
Applications,” in Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, vol. 5479 of the series Lecture Notes in Computer Science,
Cologne, Springer Berlin Heidelberg, 2009, pp. 371-388.

[49] S. Lucks, “Design Principles for Iterated Hash Functions,” IACR Cryptology ePrint
Archive, Report 2004/253, p. 253, 29 September 2004.

[50] P. Gauravaram, Cryptographic Hash Functions: Cryptanalysis, Design and
Applications (Ph.D. Thesis), Brisbane, Queensland: Queensland University of
Technology, 2007.

[51] E. Biham and O. Dunkleman, “A Framework for Iterative Hash Functions - HAIFA,”
Cryptology ePrint Archive, Report 2007/278, 2006.

[52] N. Nandi and S. Paul, “Speeding Up The Wide-pipe: Secure and Fast Hashing,”
Cryptology ePrint Archive, Report 2010/193, 2010.

[53] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On the Indifferentiability of
the Sponge Construction,” in Advances in Cryptology – EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques,Proceedings , vol. 965 of the series Lecture Notes in Computer Science,
Istanbul, Springer Berlin Heidelberg, 2008, pp. 181-197.

[54] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Functions,” in
ECRYPT hash workshop, vol. 2007, 2007.

[55] G. Bertoni, D. Joan, M. Peeters and G. Van Assche, “Cryptographic Sponges,”
[Online]. Available: http://sponge.noekeon.org. [Accessed 23 January 2011].

[56] M. Bellare and T. Ristenpart, “Multi-Property-Preserving Hash Domain Extension and
the EMD Transform,” in Advances in Cryptology – ASIACRYPT 2006, 12th
International Conference on the Theory and Application of Cryptology and
Information Security, Proceedings, vol. 4284 of the series Lecture Notes in Computer
Science, Shanghai, Springer Berlin Heidelberg, 2006, pp. 299-314.

[57] S. Halevi and H. Krawczyk, “Strengthening Digital Signatures Via Randomized
Hashing,” in Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Proceedings, vol. 4117 of the series Lecture Notes in
Computer Science, Santa Barbara, California: Springer Berlin Heidelberg, 2006, pp.
41-59.

[58] E. Andreeva, G. Neven, B. Preneel and T. Shrimpton, “Seven-properties-preserving
Iterated Hashing: The RMC construction,” ECRYPT document STVL4-KUL15-RMC-
1.0, private communications, 2006.

[59] E. Andreeva, G. Neven, B. Preneel1 and T. Shrimpton, “Seven-Property-Preserving
Iterated Hashing: ROX,” Cryptology ePrint Archive, Report 2007/176, 2007.

	

	

	

208	

[60] P. Rogaway and T. Shrimpton, “Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance,” in Fast Software Encryption, 11th International Workshop,
FSE 2004, Revised Papers, vol. 3017 of the series Lecture Notes in Computer Science,
New Delhi, Springer Berlin Heidelberg, 2004, pp. 371-388.

[61] B. A. Forouzan and D. Mukhopadhyay, Cryptography and Network Security, Tata
McGraw Hill Education Private Limited, 2nd Edition.

[62] A. F. Webster and S. E. Tavares, “On the Design of S-Boxes,” in Advances in
Cryptology — CRYPTO ’85 Proceedings, vol. 218 of the series Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 1986, pp. 523-534.

[63] I. Mironov, “Hash functions: Theory, attacks, and applications,” Microsoft
Research, Silicon Valley Campus, pp. 1-22, 14 November 2005.

[64] B. d. Boer and A. Bosselaers, “Collisions for the Compression Function of MD5,”
in Advances in Cryptology — EUROCRYPT ’93, Workshop on the Theory and
Application of Cryptographic Techniques, Proceedings, vol. 765 of the series Lecture
Notes in Computer Science, Lofthus, Springer Berlin Heidelberg, 1994, pp. 293-304.

[65] L. Knudsen, Block Ciphers: Analysis, Design and Applications (Ph.D. Thesis),
Aarhus: Aarhus University, 1994.

[66] O. Mikle, “Practical Attacks on Digital Signatures Using MD5 Message Digest,”
Cryptology ePrint Archive, Report 2004/356, 2004.

[67] H. Dobbertin, “Cryptanalysis of MD5 compress,” German Information Security
Agency, 1996.

[68] X. Wang, D. Feng, X. Lai and H. Yu, “Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD,” Cryptology ePrint Archive, Report 2004/199, 2004.

[69] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” in Advances
in Cryptology – EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings, vol. 3494 of the
series Lecture Notes in Computer Science, Aarhus, Springer Berlin Heidelberg, 2005,
pp. 19-35.

[70] M. Bellare and T. Kohno, “Hash Function Balance and Its Impact on Birthday
Attacks,” in Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings, vol. 3027
of the series Lecture Notes in Computer Science , Interlaken, Springer Berlin
Heidelberg, 2004, pp. 401-418.

[71] B. Kaliski and M. Robshaw, “Message Authentication with MD5,” CryptoBytes (RSA
Labs Technical Newsletter), vol. 1, no. 1, 1995.

	

	

	

209	

[72] T. Duong and J. Rizzo, “Flickr's API Signature Forgery Vulnerability,” 2009. [Online].
Available: http://netifera.com/research/flickr_api_signature_forgery.pdf. [Accessed 12
April 2010].

[73] R. D. Dean, Formal Aspects of Mobile Code Security (Ph.D. Thesis), Princeton:
Princeton University, 1999.

[74] J. Kelsey and B. Schneier, “Second Preimages on n-bit Hash Functions for Much Less
than 2^n Work,” in Advances in Cryptology – EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, vol. 3494 of the series Lecture Notes in Computer Science,
Aarhus, Springer Berlin Heidelberg, 2005, pp. 474-490.

[75] B. Preneel, “Cryptographic Primitives for Information Authentication - State of the
Art,” in State of the Art in Applied Cryptography - Course on Computer Security and
Industrial Cryptography, B. Preneel and V. Rijmen, Eds., Leuven, Springer, 1997.

[76] V. G. Bard, “The Fixed-Point Attack,” in Algebraic Cryptanalysis, Springer, 2009, pp.
17-28.

[77] S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, “Cryptographic Hash Functions: A
Survey,” Centre for Computer Security Research, Department of Computer Science,
University of Wollongong, Australia, 1995.

[78] X. Wang, X. Lai, D. Feng and H. Chen , “Cryptanalysis of the Hash Functions MD4
and RIPEMD,” in Advances in Cryptology – EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, vol. 3494 of the series Lecture Notes in Computer Science,
Aarhus, Springer Berlin Heidelberg, 2005, pp. 1-18.

[79] X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search Attacks on SHA-0,” in
Advances in Cryptology – CRYPTO 2005, 25th Annual International Cryptology
Conference, Proceedings, vol. 3621 of the series Lecture Notes in Computer Science,
Santa Barbara, California: Springer Berlin Heidelberg, 2005, pp. 1-16.

[80] X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the Full SHA-1,” in Advances
in Cryptology – CRYPTO 2005, 25th Annual International Cryptology Conference,
Proceedings, vol. 3621 of the series Lecture Notes in Computer Science, Santa
Barbara, California: Springer Berlin Heidelberg, pp. 17-36.

[81] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby, “Collisions of
SHA-0 and Reduced SHA-1,” in Advances in Cryptology – EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, vol. 3494 of the series Lecture Notes in Computer Science,
Aarhus, Springer Berlin Heidelberg, 2005, pp. 36-57.

	

	

	

210	

[82] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,” in
Advances in Cryptology-CRYPT0’ 90 Proceedings, vol. 537 of the series Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 1991, pp. 2-21.

[83] E. Biham and A. Shamir, “Differential Cryptanalysis of FEAL and N-Hash,” in
Advances in Cryptology — EUROCRYPT ’91, Workshop on the Theory and
Application of Cryptographic Techniques, Proceedings, vol. 547 of the series Lecture
Notes in Computer Science, Brighton, Springer Berlin Heidelberg, 1991, pp. 1-16.

[84] E. Biham and A. Shamir, “Differential Cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer,” in Advances in Cryptology — CRYPTO ’91 Proceedings, vol. 576
of the series Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1992, pp.
156-171.

[85] M. Matsui, “Linear Cryptanalysis methods for DES Cipher,” in Advances in
Cryptology — EUROCRYPT ’93, Workshop on the Theory and Application of
Cryptographic Techniques, Proceedings, vol. 765 of the series Lecture Notes in
Computer Science, Lofthus, Springer Berlin Heidelberg, 1994, pp. 386-397.

[86] H. M. Heys, “A Tutorial on Linear and Differential Cryptanalysis,” Cryptologia, vol.
26, no. 3, pp. 189-221, 2002.

[87] S. Miyaguchi, K. Ohta and M. Iwata, “Confirmation that some Hash Functions are not
Collisions Free,” in Advances in Cryptology — EUROCRYPT ’90, Workshop on the
Theory and Application of Cryptographic Techniques, Proceedings, vol. 473 of the
series Lecture Notes in Computer Science, Aarhus, Springer Berlin Heidelberg, 1991,
pp. 326-343.

[88] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “Data Encryption Standard (DES), Federation Information
Processing Standards Publication (FIPS PUB) 46-3,” 1999.

[89] B. Preneel, R. Govaerts and J. Vandewalle, “Differential cryptanalysis of hash
functions based on block ciphers,” in Proceedings of the 1st ACM Conference on
Computer and Communications Security, ACM, 1993, pp. 183-188.

[90] V. Rijmen and B. Preneel, “Improved characteristics for differential cryptanalysis of
hash functions based on block ciphers,” in Fast Software Encryption, Second
International Workshop, Proceedings, vol. 1008 of the series Lecture Notes in
Computer Science, Leuven, Springer Berlin Heidelberg, 1995, pp. 242-248.

[91] B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions Based on Block Ciphers:
A Synthetic Approach,” in Advances in Cryptology — CRYPTO’ 93, 13th Annual
International Cryptology Conference, Proceedings, vol. 773 of the series Lecture
Notes in Computer Science, Santa Barbara, California: Springer Berlin Heidelberg,
1994, pp. 368-378.

	

	

	

211	

[92] J. Black, P. Rogaway and T. Shrimpton, “Black-box Analysis of the Block-cipher-
based Hash Function Constructions from PGV,” in Advances in Cryptology —
CRYPTO 2002, 22nd Annual International Cryptology Conference, Proceedings, vol.
2442 of the series Lecture Notes in Computer Science, Santa Barbara, California:
Springer Berlin Heidelberg, 2002, pp. 320-335.

[93] S. M. Matyas, C. H. Meyer and J. Oseas, “Generating Strong One-way Functions with
Cryptographic Algorithm,” IBM Technical Disclosure Bulletin, vol. 27, no. 10A, pp.
5658-5659, 1985.

[94] S. Miyaguchi, M. Iwata and K. Ohta, “New 128-bit Hash Function,” in 4th
International Joint Workshop on Computer Communications, Proceedings , Tokyo,
1989, pp. 279-288.

[95] B. Preneel, R. Govaerts and J. Vandewalle, “Cryptographically Secure Hash Functions:
An Overview,” ESAT Internal Report, KU Leuven, 1989.

[96] J.-J. Quisquater and M. Girault, “2n-Bit Hash-Functions Using n-Bit Symmetric Block
Cipher Algorithms,” in Advances in Cryptology — EUROCRYPT ’89, Workshop on
the Theory and Application of Cryptographic Techniques, Proceedings, vol. 434 of the
series Lecture Notes in Computer Science, Houthalen, Springer Berlin Heidelberg,
1990, pp. 102-109.

[97] R. S. Winternitz, “Producing a One-Way Hash Function from DES,” in Advances in
Cryptology, Proceedings of Crypto 83, Springer US, 1984, pp. 203-207.

[98] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr, C. H. Meyer, J. Oseas,
S. Pilpel and M. Schilling, “Data Authentication Using Modification Detection Codes
Based on a Public One Way Encryption Function”. Patent U.S. Patent No. 4,908,861,
13 March 1990.

[99] C. H. Meyer and M. Schilling, “Secure Program Load with Manipulation Detection
Code,” in Proceedings Securicom, vol. 88, 1988, pp. 111-130.

[100] X. Lai, On the Design and Security of Block Ciphers (Dissertation - Doctor of
Technical Sciences), Zurich: SWISS FEDERAL INSTITUTE OF TECHNOLOGY,
1992.

[101] B. Preneel, A. Bosselaers, R. Govaerts and J. Vandewalle, “Collision-Free Hash
Functions Based on Block Cipher Algorithms,” in Proceedings of the 1989 Carnahan
Conference on Security Technology, 1989.

[102] W. Hohl, X. Lai, T. Meier and C. Waldvogel, “Security of Iterated Hash Functions
Based on Block Ciphers,” in Advances in Cryptology — CRYPTO’ 93, 13th Annual
International Cryptology Conference, Proceedings, vol. 773 of the series Lecture
Notes in Computer Science, Santa Barbara, California: Springer Berlin Heidelberg,
1994, pp. 379-390.

	

	

	

212	

[103] Center for Information Protection and Special Communications of the Federal Security
Service of the Russian Federation, GOST R 34.11-2012, Information technology.
Cryptographic Data Security. Hashing function, Federal Agency on Technical
Regulating and Metrology, 2012.

[104] ISO N179, AR Fingerprint Function, ISO-IEC/JTC1/SC27/WG2, International
Organization for Standardization, 1992.

[105] U.S. Department of Commerce, National Institute of Standards and Technology
(NIST), Information Technology Laboratory (ITL), “Secure Hash Standard, Federation
Information Processing Standards Publication (FIPS PUB) 180-3,” NIST Computer
Security Publications, 2008.

[106] H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160: A Strengthened Version
of RIPEMD,” in Fast Software Encryption, Third International Workshop,
Proceedings, vol. 1039 of the series Lecture Notes in Computer Science, Cambridge,
Springer Berlin Heidelberg, pp. 71-82.

[107] Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL — A one-way hashing algorithm with
variable length of output (extended abstract),” in Advances in Cryptology —
AUSCRYPT '92, Workshop on the Theory and Application of Cryptographic
Techniques, Proceedings, Gold Coast, Queensland: Springer Berlin Heidelberg, 1993,
pp. 81-104.

[108] R. C. Merkle, “A Fast Software One-way Hash Function,” Journal of Cryptology, vol.
3, no. 1, pp. 43-58, 1990.

[109] R. Anderson and E. Biham, “Tiger — A Fast New Hash Function,” in Fast Software
Encryption, Third International Workshop, Proceedings, vol. 1039 of the series
Lecture Notes in Computer Science, Cambridge, Springer Berlin Heidelberg, pp. 89-
97.

[110] E. Biham, “New techniques for Cryptanalysis of hash functions and improved attacks
on Snefru,” in Fast Software Encryption, 15th International Workshop, FSE 2008,
Revised Selected Papers, vol. 5086 of the series Lecture Notes in Computer Science,
Lausanne, Springer Berlin Heidelberg, 2008, pp. 444-461.

[111] P. Camion and J. Patarin , “The Knapsack Hash Function proposed at Crypto’89 can
be broken,” in Advances in Cryptology — EUROCRYPT ’91, Workshop on the Theory
and Application of Cryptographic Techniques, Proceedings, vol. 547 of the series
Lecture Notes in Computer Science, Brighton, Springer Berlin Heidelberg, 1991, pp.
39-53.

[112] A. Joux and L. Granboulan, “A Practical Attack against Knapsack based hash
functions,” in Advances in Cryptology — EUROCRYPT'94, Workshop on the Theory
and Application of Cryptographic Techniques, Proceedings, vol. 950 of the series

	

	

	

213	

Lecture Notes in Computer ScienceS, Perugia, Springer Berlin Heidelberg, 1995, pp.
58-66.

[113] S. Wolfram, “Cryptology with Cellular Automata,” in Advances in Cryptology —
CRYPTO ’85 Proceedings, vol. 218 of the series Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 1986, pp. 429-432.

[114] J. Daemen, R. Govaerts and J. Vandewalle, “A framework for the design of one-way
hash functions including cryptanalysis of Damgård's one-way function based on a
cellular automaton,” in Advances in Cryptology — ASIACRYPT '91, International
Conference on the Theory and Application of Cryptology, Proceedings, vol. 739 of the
series Lecture Notes in Computer Science, Fujiyosida , Springer Berlin Heidelberg,
1993, pp. 82-96.

[115] C. P. Schnorr, “FFT-Hash II, Efficient Cryptographic Hashing,” in Advances in
Cryptology — EUROCRYPT’ 92, Workshop on the Theory and Application of
Cryptographic Techniques, Proceedings, vol. 658 of the series Lecture Notes in
Computer Science, Balatonfüred, Springer Berling Heidelberg, 1993, pp. 45-54.

[116] C. P. Schnorr and S. Vaudenay , “Parallel FFT-hashing,” in Fast Software Encryption,
Cambridge Security Workshop, Proceedings, vol. 809 of the series Lecture Notes in
Computer Science, Cambridge, Springer Berlin Heidelberg, 1994, pp. 149-156.

[117] J. Daemen, A. Bosselaers, R. Govaerts and J. Vandewalle, “Collisions for Schnorr's
hash function FFT-Hash presented at Crypto '91,” in Advances in Cryptology —
ASIACRYPT '91, International Conference on the Theory and Application of
Cryptology, Proceedings, vol. 739 of the series Lecture Notes in Computer Science,
Fujiyosida, Springer Berlin Heidelberg, 1993, pp. 477-480.

[118] S. Vaudenay, “FFT-Hash II is not yet Collision Free,” in Advances in Cryptology —
CRYPTO’ 92, 12th Annual International Cryptology Conference, Proceedings, vol.
740 of the series Lecture Notes in Computer Science, Santa Barbara, California:
Springer Berlin Heidelberg, 1993, pp. 587-593.

[119] F. Chabaud and A. Joux, “Differential collisions in SHA-0,” in Advances in Cryptology
— CRYPTO '98, 18th Annual International Cryptology Conference, Proceedings, vol.
1462 of the series Lecture Notes in Computer Science, Santa Barbara, California:
Springer Berlin Heidelberg, 1998, pp. 56-71.

[120] J. Kesley, “SHA3: Past, Present, and Future,” in Workshop on Cryptographic
Hardware and Embedded Systems CHES 2013 (Invited Talk), Santa Barbara, USA,
2013.

[121] E. Biham and R. Chen, “Near-Collisions of SHA-0,” in Advances in Cryptology –
CRYPTO 2004, 24th Annual International Cryptology Conference, Proceedings , vol.
3152 of the series Lecture Notes in Computer Science , Santa Barbara, California:
Springer Berlin Heidelberg, 2004, pp. 290-305.

	

	

	

214	

[122] W. E. Burr, “Cryptographic Hash Standards: Where do we go from here?,” Security &
Privacy, IEEE, vol. 4, no. 2, pp. 88-91, 2006.

[123] J. J. Hoch and A. Shamir, “Breaking the ICE – Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions,” in Fast Software Encryption, 13th
International Workshop, FSE 2006, Revised Selected Papers, vol. 4047 of the series
Lecture Notes in Computer Science, Graz, Springer Berlin Heidelberg, 2006, pp. 179-
194.

[124] Y. Sasaki, L. Wang and K. Aoki, “Preimage Attacks on 41-Step SHA-256 and 46-Step
SHA-512,” Cryptology ePrint Archive, Report 2009/479, 2009.

[125] Q. Dang, “SHA-3 Update,” in IETF 86, 2013.

[126] B. Burr, “SHA3 Where we’ve been, where we’re Going (update to RSA 2013 talk),”
in DIMACS Workshop on Current Trends in Cryptography, 2013.

[127] Q. Dang, “NIST Draft FIPS 202: SHA-3 Permutation- Based Hash Standard-Status,”
in IETF 87, 2013.

[128] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, DRAFT FIPS PUB 202,” 2014.

[129] “NIST policy on Hash functions,” [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/policy.html. [Accessed August 2015].

[130] ICT Data and Statistics Division, Telecommunication Development Bureau,
International Telecommunication Union (ITU), “ICT Facts and Figures - The World in
2015,” May 2015. [Online]. Available: https://www.itu.int/en/ITU-
D/Statistics/Documents/facts/ICTFactsFigures2015.pdf. [Accessed 20 June 2015].

[131] M. Meeker, “Internet Trends 2015 - Code Conference,” 27 May 2015. [Online].
Available: http://www.kpcb.com/internet-trends. [Accessed 20 June 2015].

[132] R. Murtagh, “Mobile Now Exceeds PC: The Biggest Shift Since the Internet Began,”
8 July 2014. [Online]. Available:
http://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-
biggest-shift-since-the-internet-began. [Accessed 10 July 2014].

[133] D. Bosomworth, “Mobile Marketing Statistics 2015,” 22 July 2015. [Online].
Available: http://www.smartinsights.com/mobile-marketing/mobile-marketing-
analytics/mobile-marketing-statistics/. [Accessed 10 August 2015].

[134] S. Byrne, “Survey results: Devices we use daily in 2014,” CNET, 15 September 2014.
[Online]. Available: http://www.cnet.com/au/news/survey-results-devices-we-use-
daily-in-2014/. [Accessed 20 September 2014].

[135] S. Byrne, “Survey results: Laptops, tablets and phones - together or apart?,” CNET, 16
September 2014. [Online]. Available: http://www.cnet.com/au/news/survey-results-
laptops-tablets-and-phones/. [Accessed 20 September 2014].

	

	

	

215	

[136] M. Velayanikal, “How Flipkart hopes to shut out rivals by going app-only in India,”
Tech In Asia, 13 October 2015. [Online]. Available:
https://www.techinasia.com/flipkart-hopes-shut-rivals-apponly-india/. [Accessed 14
October 2015].

[137] NDTV Gadget, “Flipkart Partners With Google to Launch App-Like Mobile Website,”
Gadget 360 (An NDTV Venture), 10 November 2015. [Online]. Available:
http://gadgets.ndtv.com/apps/news/flipkart-lite-app-like-mobile-website-launched-
with-google-763542. [Accessed 11 November 2015].

[138] Times of India Tech, “Snapdeal takes on Flipkart Lite with Snap-lite,” Times of India,
13 November 2015. [Online]. Available: http://timesofindia.indiatimes.com/tech/tech-
news/Snapdeal-takes-on-Flipkart-Lite-with-Snap-lite/articleshow/49766314.cms.
[Accessed 13 November 2015].

[139] ARM Holdings, “ARM Holdings plc Results Centre,” [Online]. Available:
http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-presentations. [Accessed 10
November 2015].

[140] T. Robinson, “Celebrating 50 Billion shipped ARM-powered Chips,” 12 February
2014. [Online]. Available:
https://community.arm.com/community/news/blog/2014/02/12/celebrating-50-
billion-shipped-arm-powered-chips. [Accessed 14 July 2014].

[141] ARM Holdings, “ARM Holdings plc Annual Report 2013: Strategic Report,” [Online].
Available: http://financialreports.arm.com/pdfs/ARM_FullReport_2013.pdf.
[Accessed 12 July 2015].

[142] S. Murry, “ARM’s Reach: 50 Billion Chip Milestone,” 3 March 2014. [Online].
Available: http://www.broadcom.com/blog/chip-design/arms-reach-50-billion-chip-
milestone-video/. [Accessed 14 July 2014].

[143] S. ByraM, “An Interview with Steve Furber,” Communications of the ACM, vol. 54,
no. 5, 2011.

[144] S. E. Kady, M. Khater and M. Alhafnawi, “MIPS, ARM and SPARC- an Architecture
Comparison,” in Proceedings of the World Congress on Engineering, 2014.

[145] A. N. Sloss, D. Symes and C. Wright, ARM Systems Developer's Guide, Designing
and Optimizing System Software, Morgan Kaufmann Publishers, 2014.

[146] “ARM Processors,” [Online]. Available:
http://www.arm.com/products/processors/index.php. [Accessed 10 April 2012].

[147] R. Sobti and G. Ganesan, “Performance Comparison of Keccak, Skein, Grøstl, Blake
and JH: SHA-3 Final Round Candidate Algorithms on ARM Cortex A8 Processor,”
International Journal of Security and Its Applications, vol. 9, no. 12, 2015.

	

	

	

216	

[148] R. Gupta, “ARM Cortex: The force that drives mobile devices,” The Mobile Indian, 26
April 2013. [Online]. Available: http://www.themobileindian.com/news/11825_ARM-
Cortex-The-force-that-drives-mobile-devices. [Accessed 12 August 2015].

[149] ARM Limited, “Cortex A8 Technical Reference Manual (Revision r3p2),” ARM
Limited, Cambridge, 2010.

[150] “OpenBoard-AM335x,” PHYTEC Embedded Pvt. Ltd., [Online]. Available:
http://www.phytec.in/products/sbc/openboard-am335x.html. [Accessed 20 May
2014].

[151] PHYTEC Embedded Pvt. Ltd., “OpenBoard-AM3359 Software Development kit for
Linux,” January 2013. [Online]. Available:
http://www.phytec.in/manuals/OpenBoard-AM335x_SDK.pdf. [Accessed 20 May
2014].

[152] K. Yaghmour, Building Embedded Linux Systems, O'Reilly Media Inc..

[153] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “ANSI C Cryptographic API Profile for SHA-3 Candidate
Algorithm Submissi,” 11 February 2008. [Online]. Available:
csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf. [Accessed 21 July 2010].

[154] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “Description of Known Answer Test (KAT) and Monte Carlo
Test (MCT) for SHA-3 Candidate Algorithm Submissions,” 20 February 2008.
[Online]. Available: csrc.nist.gov/groups/ST/hash/documents/SHA3-KATMCT1.pdf.
[Accessed 21 July 2010].

[155] Texas Instruments, “Stellaris® LM4F232 Evaluation Board User Manual,” 14
September 2012. [Online]. Available:
http://www.ti.com/lit/ug/spmu272/spmu272.pdf. [Accessed 12 November 2012].

[156] Technical Training Organization, Texas Instruments, “Getting Started with
StellarisWare® and the ARM® CortexTM-M4F Workshop: Student Guide and Lab
Manual,” July 2012. [Online]. Available: http://software-
dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-M4F-
StellarisWare/M4F_Workbook.pdf. [Accessed 01 September 2012].

[157] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers,” in New Stream Cipher
Designs, The eSTREAM Finalists, vol. 4986 of the series Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2008, pp. 84-97.

[158] D. J. Bernstein, “ChaCha, a variant of Salsa20,” 28 January 2008. [Online]. Available:
http://cr.yp.to/chacha/chacha-20080128.pdf. [Accessed 22 June 2014].

[159] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robsha, Y.
Seurin and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Cipher,” in
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International

	

	

	

217	

Workshop, Vienna, Austria, September 10-13, 2007. Proceedings, vol. 4727, Springer
Berlin Heidelberg, 2007, pp. 450-466.

[160] Y. Nakano, J. Kurihara, S. Kiyomoto and T. Tanaka, “Stream Cipher-Based Hash
Function and Its Security,” in e-Business and Telecommunications, 7th International
Joint Conference, ICETE 2010, Revised Selected Papers, vol. 222 of the series
Communications in Computer and Information Science, Athens, Springer Berlin
Heidelberg, 2010, pp. 188-202.

[161] R. R. Rivest and J. C. N. Schuldt, “Spritz - A Spongy RC4-Like Stream Cipher and
Hash Function,” in Presented at CRYPTO 2014 Rump Session, 2014.

[162] D. J. Bernstein, “The Rumba20 compression function,” 2007. [Online]. Available:
http://cr.yp.to/rumba20.html. [Accessed 12 January 2015].

[163] A. Shimizu and S. Miyaguchi, “Fast Data Encipherment Algorithm FEAL,” in
Advances in Cryptology — EUROCRYPT’ 87, Workshop on the Theory and
Application of Cryptographic Techniques, Proceedings, vol. 304 of the series Lecture
Notes in Computer Science, Amsterdam, Springer Berlin Heidelberg, 1988, pp. 267-
278.

[164] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and L. Wingers, “The
SIMON and SPECK Families of Lightweight Block Ciphers,” Cryptology ePrint
Archive, Report 2013/404, 2013.

[165] R. L. Rivest, “The RC5 Encryption Algorithm,” in Fast Software Encryption, Second
International Workshop, Proceedings, vol. 1008 of the series Lecture Notes in
Computer Science, Leuven, Springer Berlin Heidelberg, 1995, pp. 86-96.

[166] H. Wu, “The Stream Cipher HC-128,” in New Stream Cipher Designs, The eSTREAM
Finalists, vol. 4986 of the series Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2008, pp. 39-47.

[167] D. J. Wheeler and R. M. Needham , “TEA, A Tiny Encryption Algorithm,” in Fast
Software Encryption, Second International Workshop, Proceedings, vol. 1008 of the
series Lecture Notes in Computer Science, Leuven, Springer Berlin Heidelberg, 1995,
pp. 363-366.

[168] R. M. Needham and D. J. Wheeler , “Tea Extensions,” Computer Laboratory,
University of Cambridge, 1997.

[169] D. J. Wheeler and R. M. Needham, “Correction to XTEA,” Computer Laboratory,
Cambridge University, 1998.

[170] N. Mouha, “ARX-based Cryptography,” 3 June 2011. [Online]. Available:
https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/nicky_mouha_arx
-slides.pdf. [Accessed 18 August 2014].

[171] J. Massey and X. Lai, International Data Encryption Algorithm (IDEA), 1991.

	

	

	

218	

[172] J. Nakahara Jr., V. Rijmen, B. Preneel and J. Vandewalle, “The MESH Block Ciphers,”
in Information Security Applications, 4th International Workshop, WISA 2003, Revised
Papers, vol. 2908 of the series Lecture Notes in Computer Science, Jeju Island,
Springer Berlin Heidelberg, 2004, pp. 458-473.

[173] B. Schneier , “Description of a New Variable-length Key, 64-bit Block Cipher
(Blowfish),” in Fast Software Encryption, Cambridge Security Workshop,
Proceedings, vol. 809 of the series Lecture Notes in Computer Science, Cambridge,
Springer Berlin Heidelberg, 1994, pp. 191-204.

[174] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson, “The Twofish
Encryption Algorithm: A 128-bit Block Cipher,” John Wiley & Sons, Inc., 1999.

[175] D. J. Bernstein, “Cache-timing attacks on AES,” 14 04 2005. [Online]. Available:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf. [Accessed 20 May 2015].

[176] M. Stevens, “Fast Collision Attack on MD5,” Cryptology ePrint Archive, Report
2006/104. , 2006.

[177] V. Klíma, “Finding MD5 Collisions – a Toy For a Notebook,” Cryptology ePrint
Archive, Report 2005/075, 5 March 2005.

[178] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier and C. Rechberger, “New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba,” in Fast Software Encryption,
15th International Workshop, FSE 2008, Revised Selected Papers, vol. 5086 of the
series Lecture Notes in Computer Science, Lausanne, : Springer Berlin Heidelberg,
2008, pp. 470-488.

[179] S. Anthony, “255Tbps: World’s fastest network could carry all of the internet’s traffic
on a single fiber,” 27 October 2014. [Online]. Available:
http://www.extremetech.com/extreme/192929-255tbps-worlds-fastest-network-could-
carry-all-the-internet-traffic-single-fiber. [Accessed 17 January 2015].

[180] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “The Keyed-Hash Message Authentication Code (HMAC) ,
Federation Information Processing Standards Publication (FIPS PUB) 198-1,” 2008.

[181] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication, NIST Special Publication 800-38B,” 2005.

[182] US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), “Digital Signature Standard (DSS), Federation Information
Processing Standards Publication (FIPS PUB) 186-4,” 2013.

[183] Q. Dang, “NIST Special Publication 800-106 Randomized Hashing for Digital
Signatures,” 2009.

	

	

	

219	

[184] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification (Version 2.0),”
Internet Engineering Task Force, September 2000. [Online]. Available:
https://tools.ietf.org/html/rfc2898. [Accessed 12 August 2015].

[185] P. Kaushal, R. Sobti and G. Ganesan, “Random Key Chaining (RKC): AES Mode of
Operation,” International Journal of Applied Information Systems, vol. 1, no. 5, pp. 39-
45, February 2012.

[186] National Institute of Standards and Technology, “Modes Development - Proposed
Modes,” [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html. [Accessed 12
January 2015].

[187] J.-P. Aumasson, “Faster Multicollisions,” in Progress in Cryptology - INDOCRYPT
2008, 9th International Conference on Cryptology in India, Proceedings, vol. 5365 of
the series Lecture Notes in Computer Science, Kharagpur, Springer Berlin Heidelberg,
2008, pp. 67-77.

[188] E. Zenner, “A Cache Timing Analysis of HC-256,” in Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Revised Selected Papers, vol. 5381 of the
series Lecture Notes in Computer Science, Sackville, New Brunswick: Springer Berlin
Heidelberg, 2009, pp. 199-213.

[189] G. Paoloni, “How to Benchmark Code Execution Times on Intel® IA-32 and IA-64
Instruction Set Architectures,” September 2010. [Online]. Available:
http://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-
64-benchmark-code-execution-paper.pdf. [Accessed 12 May 2015].

[190] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks and T. Kohno, “Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive,” in Fast Software
Encryption, 10th International Workshop, FSE 2003, vol. 2887 of the series Lecture
Notes in Computer Science, Lund, Springer Berlin Heidelberg, 2003, pp. 330-346.

[191] D. Whiting, B. Schneier, S. Lucks and F. Muller, “Phelix: Fast Encryption and
Authentication in a Single Cryptographic Primitive,” [Online]. Available:
https://www.schneier.com/cryptography/archives/2005/01/phelix.html. [Accessed 12
June 2013]

[192] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid and M. U. Sharif,
"Comprehensive Evaluation of High-Speed and Medium-Speed
Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs,"
Cryptology ePrint Archive 2012/368, 2012.

[193] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung and J.
Pham, "Lightweight Implementations of SHA-3 Candidates on FPGAs," in
Progress in Cryptology - INDOCRYPT 2011, 12th International Conference on

	

	

	

220	

Cryptology in India Proceedings, vol. 7107 of the series Lecture Notes in
Computer Science, Chennai, Springer Berlin Heidelberg, 2011, pp. 270-289.

	

	

	

221	

LIST OF PUBLICATIONS

[1] R. Sobti and G. Ganesan, "Cryptographic Hash Functions: A Review," IJCSI
International Journal of Computer Science, vol. 9, pp. 461-479, 2012.

[2] R. Sobti, A. Bagga and G. Ganesan, "Security of Online Social Networks," in
International Conference on Control, Communication, Computer & Mechanical
Engineering, New Delhi, 2012.

[3] P. Kaushal, R. Sobti and G. Ganesan, "Random Key Chaining (RKC): AES Mode of
Operation," International Journal of Applied Information Systems, vol. 1, no. 5, pp. 39-
45, February 2012.

 US department of Commerce, National Institute of Tech (NIST), Information
Technology Lab (ITL), "Modes Development - Proposed Modes," [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html. [Accessed 12
January 2015].

[4] S. Chauhan, R. Sobti and S. Anand, "Cryptanalysis of SHA-3 Candidates - A Survey,"
Research Journal of Information Technology, vol. 5, no. 2, pp. 149-159, 2013.

[5] R. Sobti, G. Ganesan and S. Anand, "Performance comparison of Grøestl, JH and
BLAKE – SHA-3 Final Round Candidate Algorithms on ARM Cortex M3 Processor,"
in 2012 International Conference on Computing Sciences, 2012. {Scopus Indexed}

[6] G. Singh and R. Sobti, "SHA-3 Blake Finalist on Hardware Architecture of ARM Cortex
A8 Processor," International Journal of Computer Applications, vol. 123, no. 13, pp.
22-27, August 2015.

[7] R. Sobti and G. Ganesan, "Performance Comparison of Keccak, Skein, Grøstl, Blake
and JH: SHA-3 Final Round Candidate Algorithms on ARM Cortex A8 Processor,"
International Journal of Security and Its Applications, vol. 9, no. 12, pp. 353-370,
December 2015. {Scopus Indexed}

[8] R. Sobti and G. Ganesan, "Analysis of Quarter Rounds of Salsa and ChaCha Core and
Proposal of an Alternative Design to Maximise Diffusion," Indian Journal of Science
and Technology, vol. 9, no. 3, 2016 {Scopus Indexed}

[9] R. Sobti and G. Ganesan, "Performance Evaluation of SHA-3 Final Round Candidate
Algorithms on ARM Cortex-M4 Processor," International Journal of Information
Security and Privacy. (Accepted for Publication) {Scopus Indexed}

	

	

222	

APPENDIX I
GUIDELINES TO SETUP AND USE MINICOM

1.1 Installing USB to Rs232 Driver for MCP2200 Converter Chip

The driver for MCP220 USB-to-Serial device are generally preloaded in the Linux

Kernel. It might be present either in CDC-Communication Device Class or USB Class

depending on whether MCP2200 is based on CDC interface or USB interface. The

following steps may be used to install drivers in both the cases. For this study, CDC

interface was used.

i. For CDC class, one the following command is used to cross check loadable

module:

lsmod	|	grep	cdc		 or	

dmesg	|	grep	ttyACM	

ii. For USB class, one the following command is used to cross check loadable

module:	

lsmod	|	grep	USB		 or	

dmesg	|	grep	ttyUSB	

iii. Cross check the /dev	folder using the following command	

ls			/dev/ttyACM* (for CDC class) or

ls		/dev/ttyUSB* (for USB class)

One should be able to locate something like /dev/ttyACMx or /dev/ttyUSBx

iv. Map /ttyACMx (or /ttyUSBx) to a serial port. To map, the following command

is used:

ln			-sf		 /dev/ttyACMx				/dev/ttyS0		 or	

ln			-sf		 /dev/ttyUSBx		 	/dev/ttyS0	

Note: Certain Minicom software versions may allow us to use ttyACMx directly

while configuring Minicom as mentioned in the next section.

	

	

	

223	

1.2 Setting up Minicom for the First Time

The following steps should be followed for setting up Minicom for the first time.

i. Install Minicom using the following command.

sudo		apt-get		install		minicom		

ii. Start Minicom by executing the following command:

sudo		minicom		–s.		

After this, follow the following steps.	

iii. Select option ‘Serial Port Setup’ from the menu and press ‘Enter’.	

iv. A new screen showing current settings will be displayed. Change the values to

make settings as shown in the following figure. The settings can be changed by

pressing alphabets given on the left. For example, to change the baud rate, press

‘E’ and when the cursor blinks, enter the desired value.

v. After making all changes, press ‘Enter’ and following screen will be visible.

	

	

	

224	

vi. Then select ‘Exit’. It will take us to Minicom serial terminal.

1.3 Using Minicom for Accessing Target Machine

i. To open Minicom, use the following command and enter password

sudo	minicom		

ii. Certain initialization activities will take place and display version number, port

name etc.

iii. Switch on the target board (OpenBoard-AM335x). Minicom will start emulating

the board and will display the Linux booting process on target board.

iv. Login with root and we can start using ls or any other command to see the files

transferred.

	225	

APPENDIX II
INLINE ASSEMBLY AND KERNEL MODULE USED FOR

ACESSING CP15 REGISTERS

This appendix gives a brief of Inline assembly and also presents the loadable kernel

module written for this study to access USEREN and INTENC registers and in turn access

all other registers of CP15 coprocessor necessary for reading cycle counters.

2.1 Inline Assembly

Set of assembly instructions written as inline function are called inline assembly.

Using keyword asm, assembly instructions can be mixed with C program. Inline

assembly is used in this study to access assembly instructions like RTDSC and CPUID

for x86 machine, and MCR and MRC instructions for ARM architecture. Assembly

language has two flavours - Intel style and AT&T style. As GCC uses AT&T style, so

this study has used the same. Few important points for using inline assembly in AT&T

style are:

i. While accessing CPU registers through inline assembly register, name should be

prefixed with %	i.e. for accessing eax register, use %eax.

ii. Assembly code can be written as:	

asm	(“Assembly	Instructions”);		OR	__asm__(“Assembly	instructions”);	

iii. Multiple assembly instructions can be written using semicolon. For example, the

following instructions add 5 and 10 and store result in eax register.

asm	(“movl	$5,	%eax;”	“movl	$10,	%ebx;”	“addl	%ebx,	%eax;”);	

iv. Extended Assembly can be written using colon after the assembly code.

asm	(“Assembly	Instructions”	

	 :	output	operand	

	 :	input	operands	

	 :	clobbered	registers);	

v. Output and input operands help to work on variables. For example, in the

following instruction %0 reflect that we have an operand and %% is used to

distinguish register from operand. Contents of eax register are copied to value	

variable.

	

	226	

asm	(“movl	%%eax,	%0;”	:	“=r”	(value));	

vi. We can have output as well as input operands. The following is an example of a

code, where both output/input operands and clobbered register are used. If output

operands are missing, then two colons ::	will be used before input operand.

asm	(“movl	%1,	%%eax;”	“movl	%%eax,	%0;”		

	 :	 “=r”(value)	 	

	 :	 “=r”(ivar)	

	 :		 “%eax”);	 	

The above code will copy content of ivar to	value	variable. The %eax is defined

as clobbered register which tells CPU that content in this register will change.

The concepts discussed above have been extensively used for writing inline assembly

for this study. The following is an example of code used to access Time Stamp Counter

using RDTSC, CPUID, and RDTSCP assembly instructions as mentioned in Chapter 5.

static	word64	startreading	(void)			
{	
		unsigned	int	cycles_high,	cycles_low;	
	
		preempt_disable();	/*	Disable	CPU	preemption.	Works	in	Supervisor	mode	only*/	
	

		raw_local_irq_save(flags);	/*Disable	hard	Interrupts	Works	in	Supervisor	mode	only*/	
	
		asm	volatile	("CPUID\n\t"	
																		"RDTSC\n\t"	
																		"mov	%%edx,	%0\n\t"	
																		"mov	%%eax,	%1\n\t":	"=r"	(cycles_high),	"=r"	(cycles_low)::	
																				"%rax",	"%rbx",	"%rcx",	"%rdx");	
	
					return	(((word64)cycles_low)	|	(((word64)cycles_high)	<<	32));	
}	
	
static	word64	endreading(void)	
{	
		unsigned	int	cycles_high,	cycles_low;	
	
		asm	volatile("RDTSCP\n\t"	
																	"mov	%%edx,	%0\n\t"	
																	"mov	%%eax,	%1\n\t"	
																"CPUID\n\t":	"=r"	(cycles_high),	"=r"	(cycles_low)::	"%rax",	
																"%rbx",	"%rcx",	"%rdx");	
	
		raw_local_irq_restore(flags);	/*Enable	hard	interrupts	on	our	CPU*/	
			
		preempt_enable();	/*Enable	preemption*/	
	

	

	227	

	return	(((word64)cycles_low)	|	(((word64)cycles_high)	<<	32));	
}	

2.2 Loadable Kernel Module Used for Accessing CP15 Registers

Loadable kernel modules are the code that can be loaded and unloaded from the kernel

as per requirement. It is required whenever some specific code is to be executed in

supervisor / privilege mode. A kernel module should have an __init and __exit	module.

The instructions written in __init	module are executed when we load the kernel module

using insmod command whereas instructions written in __exit	module are executed

whenever the kernel module is unloaded using rmmod	command.	

The loadable kernel module written for this study to access USEREN and INTENC

register of Coprocessor CP15 is given below:

	//	File	Name	:	accessCP15.c	
//Module	name	:	accessCP15.ko	
	
#include	<linux/module.h>				//	To	include	all	kernel	modules	
#include	<linux/kernel.h>				//	To	include	KERN_INFO	
#include	<linux/init.h>						//	To	include	__init	and	__exit	macros	
MODULE_AUTHOR("Rajeev	Sobti");	
MODULE_DESCRIPTION("Writing	USEREN	and	INTENC	register	of	CP15");	
	
static	int	__init	start_code	(void)		//can	have	any	name	in	place	of	start_code	
{	

/*	Enable	user-mode	access	to	the	all	performance	counters	*/	
asm	volatile		("MCR	p15,	0,	%0,	c9,	c14,	0	\n"	::	"r"(1));	
	
/*	Disable	counter	overflow	interrupts	*/	
asm	volatile		("MCR	p15,	0,	%0,	c9,	c14,	2	\n"	::	"r"(0x8000000f));	
	

				 printk(KERN_INFO	"Necessary	Action	Taken\n");	
					 return	0;				//	Non-zero	return	means	that	the	module	couldn't	be	loaded.	
}	
	
static	void	__exit	cleanup(void)		//can	have	any	name	in	place	of	cleanup	
{	
				printk(KERN_INFO	"Exiting	Module.\n");	
}	
	
module_init(start_code);		//	name	given	above	to	be	used	
module_exit(cleanup);		//	name	given	above	to	be	use	

The makefile used to make the above kernel module is given below:

obj-m	+=	accessCP15.o	//	name	of	source	code	file	followed	by	.o	

	

	228	

	
all:	
				make	-C	/lib/modules/$(shell	uname	-r)/build	M=$(PWD)	modules	
clean:	

				make	-C	/lib/modules/$(shell	uname	-r)/build	M=$(PWD)	clean	

	229	

APPENDIX III
USING CODE COMPOSER STUDIO

This appendix gives a brief introduction on the use of Code Composer Studio (CCS),

an Integrated Development Environment from Texas Instruments, that is used to code,

compile, debug, and burn the code on TI processors. This study used CCS for executing

and profiling the candidate algorithms on Stellaris® LM4F232 Evaluation Board.

CCS may be downloaded from http://processors.wiki.ti.com/index.php/Download_CCS.

Version 5.2.1.00018 was used for this study. The installation process is detailed in [156].

Rather than installing the complete feature set, ‘custom’ installation was used and

Stellaris Cortex M MCU processor architecture was selected for installation. It should be

ensured that JTAG emulator support is installed.

In addition to CCS, ICDI (In-Circuit Debug Interface), that supports programming and

debugging of the onboard microcontroller, is also required. Installation of StellarisWare

is also useful as one can get access to sample projects to understand working on Stellaris

Board. In addition to the above mentioned software, drivers of board are also installed on

the host machine. The details of downloading and installing all software and drivers are

available in [156]. Once all software and drivers are installed, the following steps are

required to be followed for accessing CYCCNT counter of Data Watchpoint and Trace

unit of Cortex-M4.

3.1 Creating New Project

i. Create a new Project by following File	à	New	àCCS	Project

ii. For the new CCS project, certain setup information needs to be provided. The

following information was added against different fields.

Device Family - ARM

	230	

Device Variant - Cortex

Chip Name - Stellaris LM4F232H5QD

Connection for Debugging and Interfacing with Stellaris Board – Stellaris ICDI

iii. Set Project as active project to start writing the code.

iv. Heap and Stack size need to be setup depending on the type and size of data being

used in the project. The same can be set by modifying properties of Project (e.g.

HASH shown in the figure). Properties can be accessed by right clicking the

project name from Project Explorer window. After that, from the ARM	Linker	à	

Basic	Options,	the heap and stack size can be set as shown in the following figure.

v. Now the written code can be run on target machine by connecting Target Board

to Host and then pressing Debug Button or the same may be done from

Project menu.

	231	

3.2 Using Breakpoints to Access DWT’s CYCCNT Events

CCS provides ‘Count Event’ feature that can be used to count various counters

provided by DWT (Data Watchpoint and Trace Unit of Cortex-M4). For this study, the

important counter to access was CYCCNT (Clock Cycle Counter). The steps as

mentioned below should be followed to count cycles consumed by a specific code.

i. The target board must be connected to the host machine.

ii. Put the breakpoints around the code that we want to profile. Breakpoint can be set

by clicking on breakpoint icon as shown in the following figure.

iii. The following figure presents breakpoints put around call to Hash() function. The

breakpoint properties need to be set and to access the same, right click Count Event

(H/W BP).

	232	

iv. The following settings need to be changed in ‘Breakpoint Properties’ interface.

• Set ‘Type’ to ‘Count Event’ and ‘System Event’ to ‘Clock Cycles’.

• Set ‘Reset Count on Run’ to ‘True’

v. After all these settings, the code can be ‘Reset’ and ‘Run’. Execution will halt at

the first breakpoint.

vi. Press ‘Run’ again and now program will halt at the second breakpoint. The ‘Count

Event’ will display the cycles consumed by the code put within the breakpoints.

	 233	

APPENDIX IV
USING IAR EMBEDDED WORKBENCH

This appendix gives a brief introduction on the use of IAR Embedded Workbench.

IAR Embedded Workbench is a leading C/C++ compiler, debugger, and simulator tool

suite from IAR Systems for 8, 16, and 32-bit Microcontroller units. The ‘Kickstart

edition’ (trial version) can be downloaded from IAR website. For this study, version

7.40.5 was used. After installing the time limited ‘Kickstart edition’, the following steps

can be used to create a project and use Function Profiler for knowing cycle count

consumed by different functions/subroutines of the code.

i. Create a new project from the Project menu. ‘Create New Project’ interface will

ask for ‘Tool chain’ and ‘Project template’ to be used. Select ARM as Tool chain

and Càmain as ‘Project template’.

ii. The following screen will appear. Write code that is to be profiled.

iii. Existing header and source files can be added from the ‘Project’ menu.

	

	 234	

iv. Before compiling and profiling the code, certain settings need to be done. The

settings can be done through the ‘Option’ interface and the same can be accessed

by right clicking the project name as shown in the following figure.

v. The major settings that need to be selected are in ‘General Options’ and

‘Debugger’ category.

a. In ‘General Option’ category, under ‘Target’ tab, select the Core.

(ARM7TDMI was selected for this study)

b. Few other settings like Endian mode, Floating Point Settings etc. can also

be done.

c. Under ‘Debugger’ category, select driver as ‘Simulator’.

	

	 235	

vi. After doing necessary settings, the code can be downloaded and debugged from

the ‘Project’ menu or by using shortcut icons as shown in the following figure.

vii. The Function Profiler can be accessed from ‘Simulator’ menu.

viii. After all the settings are done and Function Profile is switched on, the code can be

run by using shortcut icons or from the ‘Project’ menu.

ix. The cycles consumed by different functions will be shown under Function Profiler.

The value under ‘Accumulated Time’ reflects the cycles consumed by the function

written on the left as well as any other function called by this function.

	 236	

APPENDIX V
PROCESS OF GENERATING INITIAL VALUES FOR

COCKTAIL

This appendix presents the steps to generate Initial Values used by Cocktail.

Cocktail-512 uses 16 words of 32-bit each and Cocktail-1024 uses 16 words of 64-bit

each as Initial Values. The 16 words of Initial Values for Cocktail-512 are derived from

first 16 prime numbers i.e. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53. The

following table represents steps for first Initial Value i.e. Initial Value corresponding to

prime number 2.

Steps Input Output

Step 1:

Find the square root of the

prime number

2 1.414213562373095

Step 2:

Convert the result to binary

form

1.414213562373095 1.011010100000100111100

1100110011111110011101

1110011000101100001000

1…

Step 3:

Keep only first 32 bits of

fractional part

1.011010100000100111100

1100110011111110011101

1110011000101100001000

1…

01101010000010011110

011001100111

Step 4:

Convert to Hexadecimal

notation

01101010000010011110

011001100111

0x6A09E667

(First Initial value 𝐻")

Similarly, Initial Values corresponding to other prime numbers can be obtained. For

Cocktail-1024, process is same except step 3. In step 3, rather than first 32 bits of

fractional part, we keep 64 bits and then convert it to Hexadecimal. For example, output

of step 3 for first Initial Value (corresponding to prime number 2), in case of Cocktail-

1024 will be: 0110101000001001111001100110011111110011101111001100010110000100

and its hexadecimal conversion is 0x6A09E667F3BCC908

	 237	

APPENDIX VI
FULL DIFFUSION IN COCKTAIL AND SKEIN

This appendix shows the result of pseudo running the rounds of Cocktail and Skein to understand how many rounds of compression

function of these algorithms take to achieve full diffusion. Full diffusion is number of rounds to propagate a single-bit change to all the

bits.

6.1 Full Diffusion in Cocktail
To understand how many rounds Cocktail’s compression function consumes to achieve full diffusion, the Column and Row rounds of

MCC are pseudo run. To put forward this point, 32-bit version of MCC is used.

The internal state of Cocktail-512 is represented as following matrix where each element is a 32-bit word.
𝑥" 𝑥# 𝑥$ 𝑥%
𝑥& 𝑥' 𝑥(𝑥)
𝑥* 𝑥+ 𝑥#" 𝑥##
𝑥#$ 𝑥#% 𝑥#& 𝑥#'

	

This appendix will demonstrate how change in any one bit affects all 512 bits of internal state in different Column and Row Quarter

rounds. For the purpose of this appendix, different bits of 32-bit word 𝑥- are numbered from 1 to 32 as shown below.

Bit-32 Bit - 1

Quarter round of MCC can be represented as

𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677	 𝑎, 𝑏, 𝑐, 𝑑

{

Step 1: 𝑏	 = 𝑏 + 𝑎;

	238	

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4

Step 3: 𝑑 = 𝑑 + 𝑐

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17

Step 5: 𝑐 = 𝑐 + 𝑎

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8

Step 7:	𝑎 = 𝑎 + 𝑏;

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎;

}

Let’s assume bit No. 32 of 𝒙𝟎 is changed. Next few tables present how change in this bit propagates to other bits of internal state.

6.1.1 ROUND 1: (Column Quarter Rounds)

There will be four Column Quarter rounds i.e. four calls to Quarter round of MCC, one for each column.

A) 1st Column Quarter Round

1st Column Quarter round means call to MCC’s Quarter round for 1st Column i.e. 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥", 𝑥&, 𝑥*, 𝑥#$. The changes that

take place after this call are given in the following table.
Parameters = (𝑥", 𝑥&, 𝑥*, 𝑥#$) Bits Positions affected

STEPS 𝒙𝟎 = a 𝒙𝟒 = 𝒃 𝒙𝟖 = c 𝒙𝟏𝟐 = 𝒅

Step 1: 𝑏	 = 𝑏 + 𝑎; 32

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 4

Step 3: 𝑑 = 𝑑 + 𝑐 4

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 21

Step 5: 𝑐 = 𝑐 + 𝑎 21,4

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 29,12, 8

	239	

Step 7:	𝑎 = 𝑎 + 𝑏; 29,21,12,8

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 29,21,12,8,4

B) 2nd, 3rd, and 4th Column Quarter Rounds

These calls will not propagate change in 𝑥"	to any other words of internal state as 2nd, 3rd, and 4th Column Quarter rounds do not involve

any word which has been impacted by 1st Column Quarter round (i.e. 𝑥", 𝑥&, 𝑥*, 𝑥#$)	.

6.1.2 ROUND 1: (Row Quarter Rounds)

There will be four Row Quarter rounds i.e. four calls to Quarter round of MCC, one for each row.

A) 1st Row Quarter Round

1st Row Quarter round means call to MCC’s Quarter round for 1st Row i.e. 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥#, 𝑥$, 𝑥%, 𝑥" . The call results in changes

as per the following table. 𝑥" is the only word from previous affected words that is appearing in this call and 𝑥" will affect other words of

first row.
Parameters = (𝑥#, 𝑥$, 𝑥%, 𝑥") Bits Positions affected

STEPS 𝒙𝟏 = a 𝒙𝟐 = 𝒃 𝒙𝟑 = c 𝒙𝟎 = 𝒅

Step 1: 𝑏	 = 𝑏 + 𝑎; --

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 --

Step 3: 𝑑 = 𝑑 + 𝑐 29,21,12,8

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 29,25,14,6

Step 5: 𝑐 = 𝑐 + 𝑎 29,25,14,6

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 22,14,5,1

Step 7:	𝑎 = 𝑎 + 𝑏; 29,25,22,14,6,5,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 29,25,22,21,14,12,8,6,5,1

	240	

B) 2nd Row Quarter Round

2nd Row Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥(, 𝑥), 𝑥&, 𝑥' . In this call, 𝑥& is the only already affected word and thus 𝑥& will

propagate the changes.
Parameters = (𝑥(, 𝑥), 𝑥&, 𝑥') Bits Positions affected

STEPS 𝒙𝟔 = a 𝒙𝟕 = 𝒃 𝒙𝟒 = 𝒄 𝒙𝟓 = 𝒅

Step 1: 𝑏	 = 𝑏 + 𝑎; --

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 16,12,1

Step 3: 𝑑 = 𝑑 + 𝑐 16,12,1

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 29,18,1

Step 5: 𝑐 = 𝑐 + 𝑎 29,18,16,12,1

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 26,24,20,9,5

Step 7:	𝑎 = 𝑎 + 𝑏; 29,26,24,20,18,9,5,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 29,26,24,20,18,16,12,9,5,1

C) 3nd Row Quarter Round

3rd Row Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥##, 𝑥*, 𝑥+, 𝑥#" . In this call, 𝑥* is the only already affected word and thus 𝑥* will

propagate the changes.
Parameters = (𝑥##, 𝑥*, 𝑥+, 𝑥#") Bits Positions affected

STEPS 𝒙𝟏𝟏 = a 𝒙𝟖 = 𝒃 𝒙𝟗 = 𝒄 𝒙𝟏𝟎 = 𝒅

Step 1: 𝑏	 = 𝑏 + 𝑎; 21,4

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 25,8

Step 3: 𝑑 = 𝑑 + 𝑐 25,8

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 25,10

Step 5: 𝑐 = 𝑐 + 𝑎 25,10,8

	241	

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 29,18,16,12,1

Step 7:	𝑎 = 𝑎 + 𝑏; 29,25,18,16,12,10,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 29,25,18,16,12,10,8,1

D) 4th Row Quarter Round

4th Row Quarter round means i.e. 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥#$, 𝑥#%, 𝑥#&, 𝑥#' . In this call, 𝑥#$ is the only already affected word and thus 𝑥#$

will propagate the changes.
Parameters = (𝑥#$, 𝑥#%, 𝑥#&, 𝑥#') Bits Positions affected

STEPS 𝒙𝟏𝟐 = a 𝒙𝟏𝟑 = 𝒃 𝒙𝟏𝟒 = 𝒄 𝒙𝟏𝟓 = 𝒅

Step 1: 𝑏	 = 𝑏 + 𝑎; 29,21,12,8,4 29,21,12,8,4

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 25,16,12,8,1

Step 3: 𝑑 = 𝑑 + 𝑐 25,16,12,8,1

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 29,25,21,18, 14,10,6,1

Step 5: 𝑐 = 𝑐 + 𝑎 29,25,21,18,16,14,12,10,8,

6,1

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 29,26,24,22,20,18,16,14,12

,9 5,1

Step 7:	𝑎 = 𝑎 + 𝑏; 29,26,25,24,22,21,20,18,16

,14,12,10,9, 6,5,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 29,26,25,24,22,21,20,18,16

,14,12,10,9, 8,6,5,1

After round1, each word has considerable bits already affected by one bit change in 𝒙𝟎. The summary of affected bits of each word,

after 1st round, is given below:

𝒙𝟎	:29,25,22,21,14,12,8,6,5,1 𝒙𝟏	:29,25,22,14,6,5,1 𝒙𝟐	:22,14,5,1

𝒙𝟑	:29,25,14,6 𝒙𝟒	:29,18,16,12,1 𝒙𝟓	:29,26,24,20,18,16,12,9,5,1

	242	

𝒙𝟔	:29,26,24,20,18,9,5,1 𝒙𝟕	:26,24,20,9,5 𝒙𝟖	:29,18,16,12,1

𝒙𝟗	:25,10,8 𝒙𝟏𝟎	:29,25,18,16,12,10,8,1 𝒙𝟏𝟏	:29,25,18,16,12,10,1

𝒙𝟏𝟐	: 29,26,25,24,22,21,20,18,16,14,12,10,9,6,5,1 𝒙𝟏𝟑	:29,26,24,22,20,18,16,14,12,9 5,1

𝒙𝟏𝟒	:29,25,21,18,16,14,12,10,8,6,1 𝒙𝟏𝟓	:29,26,25,24,22,21,20,18,16,14,12,10,9, 8,6,5,1

6.1.3 ROUND 2: (Column Quarter Rounds)

The round 2 will have multiplying effect as already all words have considerable number of bits affected by single bit change in 𝑥".

A) 1st Column Quarter Round

1st Column Quarter round mean 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥", 𝑥&, 𝑥*, 𝑥#$ and this results in changes as per the following table.
Parameters = (𝑥", 𝑥&, 𝑥*, 𝑥#$) Bits Positions affected

STEPS 𝒙𝟎 = a 𝒙𝟒 = 𝒃 𝒙𝟖 = c 𝒙𝟏𝟐 = 𝒅

BEFORE START 29,25,22,21,14,12,8,6,5,1 29,18,16,12,1 29,18,16,12,1 29,26,25,24,22,21,20,18,16,

14,12,10,9,6,5,1

Step 1: 𝑏	 = 𝑏 + 𝑎; 29,25,22,21,18,16,14,12,8,6

,5,1

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 29,26,25,22,20,18,16,12,10,

9,5,1

Step 3: 𝑑 = 𝑑 + 𝑐 29,26,25,24,22,21,20,18,16,

14,12,10,9,6,5,1

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 31,29,27,26,25,23,22,18,

14,11,10,9,7,6,5,3,1

Step 5: 𝑐 = 𝑐 + 𝑎 31,29,27,26,25,23,22,20,18,

16,14,12,11,10,9,7,6,5,3,1

	243	

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 31,30,29,28,26,24,22,20,19,

18,17,16,15,14,13,11,9,7,5,

3,2,1

Step 7:	𝑎 = 𝑎 + 𝑏; 31,30,29,28,27,26,25,24,23,

22,20,19,18,17,16,15,14,13,

11,10,9,7,6,5,3,2,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 31,30,29,28,27,26,25,24,23,

22,21,20,19,18,17,16,15,14,

13,12,11,10,9,7,6,5,3,2,1

B) 2nd Column Quarter Round

2nd Column Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥', 𝑥+, 𝑥#%, 𝑥# and this results in changes as per the following table.
Parameters = (𝑥', 𝑥+, 𝑥#%, 𝑥#) Bits Positions affected

STEPS 𝒙𝟓 = a 𝒙𝟗 = 𝒃 𝒙𝟏𝟑 = c 𝒙𝟏 = 𝒅

BEFORE START 29,26,24,20,18,16,12,9,5,1 25,10,8 29,26,24,22,20,18,16,14,12,

9 5,1

29,25,22,14,6,5,1

Step 1: 𝑏	 = 𝑏 + 𝑎; 29,26,25,24,20,18,16,12,10,

9,8,5,1

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 30,29,28,26,24,22,20,18,16,

14,13,12,9,5,1

Step 3: 𝑑 = 𝑑 + 𝑐 30,29,28,26,25,24,22,20,18,

16,14,13,12,9,6,5,1

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 31,30,29,26,23,22,18,

15,14,13,11,10,9,7,5,3,1

	244	

Step 5: 𝑐 = 𝑐 + 𝑎 31,30,29,28,26,24,23,22,20,

18,16,15,14,13,12,11,10,9,7

,5,3,1

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 32,31,30,28,26,24,23,22,21,

20,19,18,17,16,15,13,11,9,

7,6,5,4,2,1

Step 7:	𝑎 = 𝑎 + 𝑏; 32,31,30,29,28,26,24,23,22,

21,20,19,18,17,16,15,14,13,

11,10,9,7,6,5,4,3,2,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 32,31,30,29,28,26,25,24,23,

22,21,20,19,18,17,16,15,14,

13,12,11,10,9,7,6,5,4,3,2,1

C) 3rd Column Quarter Round

3rd Column Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677(𝑥#", 𝑥#&, 𝑥$, 𝑥() and this results in changes as per the following table.
Parameters = (𝑥#", 𝑥#&, 𝑥$, 𝑥() Bits Positions affected

STEPS 𝒙𝟏𝟎 = a 𝒙𝟏𝟒 = 𝒃 𝒙𝟐 = c 𝒙𝟔 = 𝒅

BEFORE START 29,25,18,16,12,10,8,1 29,25,21,18,16,14,12,10,8,6

,1

22,14,5,1 29,26,24,20,18,9,5,1

Step 1: 𝑏	 = 𝑏 + 𝑎; 29,25,21,18,16,14,12,10,8,6

,1

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 29,26,25,22,20,18,16,14,12,

10,9,5,1

Step 3: 𝑑 = 𝑑 + 𝑐 29,26,25,24,22,20,18,16,14,

12,10,9,5,1

	245	

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 31,29,27,26,25,22,18,

14,11,10,9,7,5,3,1

Step 5: 𝑐 = 𝑐 + 𝑎 31,29,27,26,25,22,20,18,

16,14,12,11,10,9,7,5,3,1

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 30,29,28,26,24,22,20,19,18,

17,16,15,14,13,11,9,

7,5,3,2,1

Step 7:	𝑎 = 𝑎 + 𝑏; 31,30,29,28,27,26,25,24,22,

20,19,18,17,16,15,14,13,11,

10,9,7,5,3,2,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 31,30,29,28,27,26,25,24,22,

20,19,18,17,16,15,14,13,12,

11,10,9,7,5,3,2,1

D) 4th Column Quarter Round

4th Column Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥#', 𝑥%, 𝑥), 𝑥## and this results in changes as per the following table.
Parameters = (𝑥#', 𝑥%, 𝑥), 𝑥##) Bits Positions affected

STEPS 𝒙𝟏𝟓 = a 𝒙𝟑 = 𝒃 𝒙𝟕 = c 𝒙𝟏𝟏 = 𝒅

BEFORE START 29,26,25,24,22,21,20,18,16,

14,12,10,9, 8,6,5,1

29,25,14,6 26,24,20,9,5 29,25,18,16,12,10,1

Step 1: 𝑏	 = 𝑏 + 𝑎; 29,26,25,24,22,21,20,18,16,

14,12,10,9, 8,6,5,1

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 30,29,28,26,25,24,22,20,18,

16,14,13,12,10,9,5,1

	246	

Step 3: 𝑑 = 𝑑 + 𝑐 30,29,28,26,25,24,22,20,18,

16,14,13,12,10,9,5,1

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 31,30,29,27,26,25,23,22,18,

15,14,13,11,10,9,7,6,5,3,1

Step 5: 𝑐 = 𝑐 + 𝑎 31,30,29,28,27,26,25,24,23,

22,20,18,16,15,14,13,12,11,

10,9,7,6,5,3,1

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 32,31,30,29,28,26,24,23,22,

21,20,19,18,17,16,15,14,13,

11,9, 7,6,5,4,3,2,1

Step 7:	𝑎 = 𝑎 + 𝑏; 32,31,30,29,28,27,26,25,24,

23,22,21,20,19,18,17,16,15,

14,13,11,10,9, 7,6,5,4,3,2,1

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; 32,31,30,29,28,27,26,25,24,

23,22,21,20,19,18,17,16,15,

14,13,12,11,10,9,

7,6,5,4,3,2,1

After all four Column rounds of Round 2, each word has almost all bits already affected by one bit change in 𝒙𝟎. The summary of

affected bits of each word, after all four Column rounds of Round 2, is given below:

𝒙𝟎	: All – {4,8,12,21,32} 𝒙𝟏	: All – {8,27}

𝒙𝟐	:All – {2,4,6,8,13,15,17,19,21,23,24,28,30,32} 𝒙𝟑	: All – {8,10,12,25,27}

𝒙𝟒	: All – {4,6,8,10,12,21,23,25,27,32} 𝒙𝟓	: All – {8,12,25,27}

𝒙𝟔	: All – {4,6,8,21,23,32} 𝒙𝟕	: All – {2,4,8,17,19,21,32}

𝒙𝟖	: All – {2,4,8,13,15,17,19,21,24,28,30,32} 𝒙𝟗	: All – {3,8,10,12,14,25,27,29}

	247	

𝒙𝟏𝟎	: All – {4,6,8,12,21,23,32} 𝒙𝟏𝟏	: All – {8}

𝒙𝟏𝟐	: All – {4,8,32} 𝒙𝟏𝟑	: All – {2,4,6,8,17,19,21,25,27,32}

𝒙𝟏𝟒	: All – {4,6,8,10,12,21,23,25,27,31,32} 𝒙𝟏𝟓	: All – {8, 12}

6.1.4 ROUND 2: (Row Quarter Rounds)

A) 1st Row Quarter Round

1st Row Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥#, 𝑥$, 𝑥%, 𝑥" and this results in changes as per following table:

Parameters = (𝑥#, 𝑥$, 𝑥%, 𝑥") Bits Positions affected

STEPS 𝒙𝟏 = a 𝒙𝟐 = 𝒃 𝒙𝟑 = c 𝒙𝟎 = 𝒅

BEFORE START All – {8,27} 31,29,27,26,25,22,20,18,

16,14,12,11,10,9,7,5,3,1

All – {8,10,12,25,27} All – {4,8,12,21,32}

Step 1: 𝑏	 = 𝑏 + 𝑎; All – {8}

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 All – {12}

Step 3: 𝑑 = 𝑑 + 𝑐 All – {12}

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 All

Step 5: 𝑐 = 𝑐 + 𝑎 All

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 All

Step 7:	𝑎 = 𝑎 + 𝑏; All

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; All

B) 2nd Row Quarter Round

2nd Row Quarter rounds means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥(, 𝑥), 𝑥&, 𝑥' and this results in changes as per following table:

Parameters = (𝑥(, 𝑥), 𝑥&, 𝑥') Bits Positions affected

STEPS 𝒙𝟔 = a 𝒙𝟕 = 𝒃 𝒙𝟒 = c 𝒙𝟓 = 𝒅

	248	

BEFORE START All – {4,6,8,21,23,32} All – {2,4,8,17,19,21,32} 31,30,29,28,26,24,22,20,19,

18,17,16,15,14,13,11,9,7,5,

3,2,1

All – {8,12,25,27}

Step 1: 𝑏	 = 𝑏 + 𝑎; All – {4,8,21,32}

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 All –{4,8,12,25}

Step 3: 𝑑 = 𝑑 + 𝑐 All – {8,12,25}

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 All-{25}

Step 5: 𝑐 = 𝑐 + 𝑎 All-{25}

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 All

Step 7:	𝑎 = 𝑎 + 𝑏; All

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; All

C) 3rd Row Quarter Round

3rd Row Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥##, 𝑥*, 𝑥+, 𝑥#" and this results in changes as per following table:

Parameters = (𝑥##, 𝑥*, 𝑥+, 𝑥#") Bits Positions affected

STEPS 𝒙𝟏𝟏 = a 𝒙𝟖 = 𝒃 𝒙𝟗 = c 𝒙𝟏𝟎 = 𝒅

BEFORE START All – {8} All – {2,4,8,13,15,17,19,21,

24,28,30,32}

All – {3,8,10,12,14,25,27

,29}
All – {4,6,8,12,21,23,32}

Step 1: 𝑏	 = 𝑏 + 𝑎; All – {8}

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 All –{12}

Step 3: 𝑑 = 𝑑 + 𝑐 All – {12}

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 All

Step 5: 𝑐 = 𝑐 + 𝑎 All

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 All

	249	

Step 7:	𝑎 = 𝑎 + 𝑏; All

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; All

D) 4th Row Quarter Round

4th Row Quarter round means 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑅𝐷677 𝑥#$, 𝑥#%, 𝑥#&, 𝑥#' and this results in changes as per following table:

Parameters = (𝑥#$, 𝑥#%, 𝑥#&, 𝑥#') Bits Positions affected

STEPS 𝒙𝟏𝟐 = a 𝒙𝟏𝟑 = 𝒃 𝒙𝟏𝟒 = c 𝒙𝟏𝟓 = 𝒅

BEFORE START All – {4,8,32} All – {2,4,6,8,17,19,21,25,

27,32}

All – {4,6,8,10,12,21,23,25,

27,31,32}
All – {8, 12}

Step 1: 𝑏	 = 𝑏 + 𝑎; All – {4,8,32}

Step 2: 𝑐 = 𝑐	 ⊕ 𝑏; 𝑐 = 𝑐	 ⋘ 4 All –{4,8,12}

Step 3: 𝑑 = 𝑑 + 𝑐 All – {8,12}

Step 4: 𝑎 = 𝑎	 ⊕ 𝑑; 𝑎 = 𝑎	 ⋘ 17 All-{25}

Step 5: 𝑐 = 𝑐 + 𝑎 All

Step 6: 𝑏 = 𝑏	 ⊕ 𝑐; 𝑏 = 𝑏	 ⋘ 8 All

Step 7:	𝑎 = 𝑎 + 𝑏; All

Step 8: 𝑑 = 𝑑	 ⊕ 𝑎; All

6.2 Full Diffusion in Skein

The diffusion in Skein is shown with an example of Skein-512 i.e. Skein with internal state of 512 bits. Skein works with 64-bit word

size. The figure as shown in section 3.4.2 is reproduced below to understand the diffusion process in Skein. The figure represents three of

the 72 rounds of Skein-512 (without sub-key) and also its basic primitive structure named Mix function. The 512-bit internal state is

arranged as eight 64-bit words. Each round uses four Mix functions and one permutation. The 64-bit word is numbered 1 to 64 with the

	250	

most significant bit numbered as 64 and the least significant bit as 1. Let us assume that bit No. 64 of the first word (left most word in the

figure) is changed. In next few paragraphs, we will see how change in 64th bit of 𝑥" affects all other 512 bits.

Permute Function
Input Word 0 1 2 3 4 5 6 7

Output Word 2 1 4 7 6 5 0 3

Round Constants
Round No. 1 2 3 4 5 6 7 8

Mix-1 46 33 17 44 39 13 25 8

Mix-2 36 27 49 9 30 50 29 35

Mix-3 19 14 36 54 34 10 39 56

Mix-4 37 42 39 56 24 17 43 22

In Round-1, first Mix function (operating on 𝑥" and 𝑥#) affects 18th bit of second word (𝑥#) because rotation by 46 has shifted 18th bit

of 𝑥# to 64th position. All other MIX functions don’t involve 𝑥" and therefore do not affect any other word. The ‘Permute’ function of

Round-1, keeps this effect to 18th bit of 𝑥# only as 𝑥# is not permuted with any other word. After Round-1, only one bit is affected (18th

bit of 𝑥#) by change in 64th bit of 𝑥".

Position of all words will change as per permute function for example 𝑥(will be the first word for round 2 in place of 𝑥". If we name

the new sequence of words (for second round) as 𝑥-
V(𝑗	𝑖𝑠	𝑟𝑜𝑢𝑛𝑑	𝑛𝑢𝑚𝑏𝑒𝑟), then for the second round we will have 𝑥"$ = 	𝑥(, 𝑥#$ = 	𝑥#,

𝑥$$ = 𝑥", 𝑥%$ = 	𝑥), 	𝑥&$ = 𝑥$,	𝑥'$ = 	𝑥', 𝑥($ = 	𝑥&, 𝑥)$ = 𝑥%

In Round-2, 18th bit of 𝑥#$	(𝑥#) affects 18th bit of 𝑥"$	(𝑥() through Mix-1 and	𝑥#$ also gets rotated with rotation value of 33 and thus

18th bit of 𝑥#$ becomes 51st bit. So, after Mix function of Round-2, we have 18th bit of 𝑥"$ and 51st bit of 𝑥#$ already affected by change in

64th bit of 𝑥".

	251	

Permute function of Round-2 , shifts 𝑥"$ to 𝑥$% and keep 𝑥#$ to 𝑥#% which means after Round 2, we will have 18th bit of 𝑥$% and 51st bit

of 𝑥#% affected by change. (2 bits affected)

Position of all words will change again as per permute function Just like the above mentioned two words (of third round), all other

words will also change as per the following:

𝑥"% = 	𝑥($ (= 𝑥&), 𝑥#% = 	𝑥#$ = 𝑥# , 𝑥$% = 	𝑥"$	 = 𝑥(, 𝑥%% = 	𝑥)$	(= 𝑥%), 	𝑥&% = 	𝑥$$ (=𝑥"),		𝑥'% = 	 	𝑥'$	(= 	 𝑥'), 𝑥(% = 	 	𝑥&$ = 𝑥$, 	𝑥)% =

		𝑥%$(= 𝑥))

In Round-3, effect will be distributed further by 𝑥#% (through Mix-1) and 𝑥$% (through Mix-2). Mix-1 will result in affecting 51st bit of

𝑥"% and 4th bit of 𝑥#% which, after permutation, becomes 51st bit of 𝑥$& and 4th bit of 𝑥#&. Mix-2 will result in affecting 18th bit of 𝑥$% and

33rd bit of 𝑥%% (rotation by 49 has brought 33rd bit of 𝑥%% to position No. 18) which after permutation has shifted to 18th bit of	𝑥&& and 33rd

bit of 𝑥)&. So in Round 3, effect has multiplied and we have four bits affected (4th bit of 𝑥#&, 51st bit of 𝑥$&, 18th bit of 𝑥&& and 33rd bit of 𝑥)&)

by one bit change in 𝑥".

In Round-4, these four bits - 4th bit of 𝑥#&, 51st bit of 𝑥$&, 18th bit of 𝑥&&, and 33rd bit of 𝑥)& - will multiply the effect by making use of

Mix-1, Mix-2, Mix-3, and Mix-4 respectively. Each bit will affect two more bits in this round. For example, effect of 4th bit of 𝑥#& will

spread to 4th bit of 𝑥$' and 48th bit of 𝑥#' through Mix-1 and Permute. In this fashion, after Round-4, we will have eight bits affected

In Round-5, effect of 8 bits will be distributed to 16 bits and in Sixth round, it will spread further to 32 bits. Going in the same way,

after 10 round all 512 bits be affected by change in 64th bit of 𝑥".

	 252	

APPENDIX VII
TEST VECTOS OF COCKTAIL

Test Vectors of Cocktail-512 and Cocktail-1024, for few sample inputs, are given here

in Hexadecimal notation.

Cocktail-512 (256-bit hash)

Message :

FF

Hash Output:

59 13 ED 2C 57 CD C1 50 9A AB 09 9F
40 2C BC 2F FF 37 07 AF FA A9 9E 9A
C4 80 D4 51 66 3D D9 9A

Message :

FE

Hash Output:

3A 32 8B 64 39 04 41 2D 5C 42 47 C9
AD AE 63 E6 E3 45 60 4B AE 7A F0 3D
CC 16 01 56 93 BF 10 1B

Message :

AE CB B0 27 59 F7 43 3D 6F CB 06 96
3C 74 06 1C D8 3B 5B 3F FA 6F 13 C6
Hash Output:

DB D8 7A E5 D6 C1 58 7F 62 CF AD 87
46 F4 F0 EF A5 AD 08 47 A5 A1 A4 20
5C CF 44 01 3E E3 55 56

Message :

2F DA 31 1D BB A2 73 21 C5 32 95 10
FA E6 94 8F 03 21 0B 76 D4 3E 74 48
D1 68 9A 06 38 77 B6 D1 4C 4F 6D 0E
AA 96 C1 50 05 13 71 F7 DD 8A 41 19
F7 DA 5C 48 3C C3 E6 72 3C 01 FB 7D
Hash Output:

48 68 C1 62 FD B4 AD 8F 3B 62 5E C6
79 20 D2 74 46 76 53 EC CA A1 A6 67
4A AE B7 92 7D 8B 2B 53

	 253	

Message :

FF (repeated 200 times)

Hash Output:

40 8D CB 0B 74 37 B1 E9 C1 FA C8 80
74 C9 2F 02 58 4B 71 8F D1 1E 7A 4D
31 81 63 71 BE 9C 75 A5

Message :

00 (repeated 200 times)

Hash Output:

EA F5 C9 E6 DD 65 AC D1 7B 38 2A 6B
C6 BF A0 65 7E 81 CE AF C2 51 7B 41
8A 32 94 21 22 51 5E 90

Cocktail-1024 (512-bit hash)

Message :

FF

Hash Output:

3D 97 11 E9 0C 2D 54 B8 2E 8A A8 3B
51 8A E4 02 57 09 F4 D2 49 A9 AD 9C
F0 A9 8F 71 CF 49 48 5F 99 86 27 8D
79 23 B3 89 94 65 31 15 B9 9E 43 DF
6D F0 21 ED DB A2 37 70 AB BD 77 02
53 63 30 57

Message :

FE

Hash Output:

FF F9 26 E3 FC C5 DE 53 E3 59 59 D8
A4 98 A2 9F 0C B0 A9 C1 7B 27 8F 6A
7E 20 1C 06 DA 24 27 B1 C0 FD 39 EB
DF 9E BC A1 88 5F E7 C9 1B 3B 5F FF
4A 63 BC 75 87 89 75 15 07 FD 64 E9
B2 D6 56 8D

Message :

AE CB B0 27 59 F7 43 3D 6F CB 06 96
3C 74 06 1C D8 3B 5B 3F FA 6F 13 C6
Hash Output:

FA D2 63 80 2A D8 5A 0D 13 B9 EF 4B

	 254	

AA 2E 56 2C A4 23 2D D5 F5 46 10 D8
51 DE 54 40 FD AF 68 8C 19 29 1A 06
65 FE 09 86 F0 D6 46 82 00 9C 8E 18
AF A6 DA AE 1B 25 F0 01 CD 70 4F 05
67 79 75 83
Message :

2F DA 31 1D BB A2 73 21 C5 32 95 10
FA E6 94 8F 03 21 0B 76 D4 3E 74 48
D1 68 9A 06 38 77 B6 D1 4C 4F 6D 0E
AA 96 C1 50 05 13 71 F7 DD 8A 41 19
F7 DA 5C 48 3C C3 E6 72 3C 01 FB 7D
Hash Output:

80 98 46 B6 54 C2 A0 78 8A 32 B0 41
D1 28 87 0A 1D D4 B5 13 79 BB 47 D5
87 FE 49 19 68 1B FA A7 68 D8 B1 79
E4 42 B2 E8 B6 E5 BE DB F7 66 2F AA
58 D0 5E C6 2C 7F 50 56 4F 72 90 8D
22 85 46 A1

Message :

FF (repeated 200 times)

Hash Output:

44 B8 7C 77 CB 13 65 FA 2F 6B 3B 91
3B 37 0D 26 2C 61 86 B8 FE 01 DE B8
5D 58 56 F6 23 E0 39 64 FC DB 4B 1A
0E C4 62 19 2B C1 86 44 DE E7 26 3C
15 1A FE DC AF 01 ED 5F E6 53 A9 71
CE A9 0F 66

Message :

00 (repeated 200 times)

Hash Output:

5F 0C 25 B0 96 72 B0 D0 67 B6 6F 13
32 65 64 63 5B AF 7B 10 A1 48 EE AE
BA 34 F3 EC 27 8C 8C 04 59 57 9C 71
21 71 79 47 AE AC 3E 44 7D 63 75 D1
99 B2 4F 4D 02 2C D4 B3 9D 8E C1 EB
95 63 E0 71

	Thesis Title Page
	Main Document
	Appendix-1-minicom
	Appendix-2-Kernel
	Appendix-3-CCS
	Appendix-4-IAR
	Appendix-5-IVs
	Appendix-6-Full_Diff
	Appendix-7-Test Vectors

