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ABSTRACT

My research aims to analyze hall current effects and double diffusive effects in the

presence of suspended particles on the thermal instability of the non-Newtonian

viscoelastic fluid whose non linear relation between the stress and strain rate (which

includes deformation, rotation and extension) is given by Rivlin-Ericksen in 1955.

To understand the applied problem of real life, one must know the physics of the

problem and able to interpret the results obtained. In the introductory chapter, all the

basics which are essential for the understanding of the problems discussed in thesis are

well explained. Basic terms explained with the help of examples and real life

applications. No problem can be solved without assumptions, so fundamental

assumptions are also explained. In this chapter all the terms used in the thesis are

explained for the understanding of general investigations in the subsequent chapters 2,

3 and 4. Flow governing equations based on the various principles of conservation like

mass, momentum and energy are discussed in detail. Fluid properties, fluid types like

Newtonian and non-Newtonian fluid with their specific applications and uses are

explained in this introductory chapter. Concept of hydrodynamic stability of the system

in terms of various parameters is also explained. Also light is thrown on the procedure

of the problems formulated in the subsequent chapters.

Problem is formulated for non-Newtonian and viscoelastic fluid named

Rivlin-Ericksen in porous medium in chapter 2. Fluid is permeated with suspended

particles and uniform magnetic field is also considered. Governing equations for the

problem were obtained and the initial state of the system described in terms of various

parameters like velocity field, Pressure, magnetic field etc. is perturbed or disturbed.

All the disturbances analyzed and it is found that relation between strain rate and stress

become linear in case of stationary convection. Perturbations due to the magnetic field

were decaying while the perturbations due to the suspended particles and medium

permeability were growing. Oscillatory modes exist only due to the presence of

magnetic field.

Study devoted to the effect of magnetic field which change the direction of flow of

electric current when applied at right angle to electric field on the thermal instability in

porous medium of dusty viscoelastic fluid in chapter 3. Problem related to the effect of
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hall current on the thermal instability of viscoelastic fluid with dust in porous medium

was modeled in terms of mathematical equations, initial state of the system is perturbed

as in previous chapter by giving small perturbations to the physical quantities like

pressure, velocity, temperature, density and magnetic field etc. Linearize the system by

neglecting all the non linear terms. Dispersion relation is obtained after the normal

mode analysis. It is observed that perturbations due to suspended particles and hall

current were growing while the perturbations due to the magnetic field and

compressibility were decaying in the system for the case of stationary convection.

Magnetic field stabilize the effect of permeability on thermal instability. Oscillatory

modes were introduced by viscoelastic parameter, magnetic field and hall current.

Behavior of hall current, permeability, magnetic field and suspended particles on the

critical thermal Rayleigh number were shown graphically.

Double diffusive or thermosolutal convection i.e. the presence of more than one

component with different diffusivities like heat and salt in the fluid layer, explained in

chapter 4. Now temperature and salt field are two destabilizing sources for the density

difference whereas in standard Bénard problem, temperature field is the only

destabilizing source. This situation is similar to ocean where both salt and heat are

present simultaneously and chemical engineering with two or more components of

different molecular diffusivities. Also in case of stellar helium acts like salt in raising

the density and diffusing more slowly than heat. Mathematical model for the problem

of double-diffusive convection in presence of compressible fluid with fine dust was

designed in terms of equation. Using the same procedure and techniques or methods as

in previous chapters to find the solution. It is observed that relation between strain rate

and stress become linear in case of stationary convection due to vanishing of

viscoelastic parameter. Presence of stable solute gradient, suspended particles and

viscoelasticity introduced oscillatory modes. The stable solute gradient and

compressibility has a stabilizing effect and suspended particles hasten the onset of

thermosolutal instability.

Programming codes were written for the variations of Rayleigh numbers obtained

in the chapters 2, 3 and 4 by assigning numerical values to all other parameters, these

codes will calculate the Rayleigh number and will also plot the graph.
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Chapter 1

Introduction

In the introductory chapter, all the basic terms and procedures have been explained for

the understanding of general investigation in the subsequent chapters.
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1.1 Introduction

Fluid dynamics is subject of my research in which continuous movement of a

non-Newtonian viscoelastic Rivlin-Ericksen fluid is modelled. This subject is

challenging as the fluid is in motion. Fluid dynamics and Electromagnetic theory were

being developed independently of each other almost upto the first half of the 20th

century. A systematic study of the hydrodynamics of a conducting fluid immersed in a

magnetic field was started in 1942 by Alfvn. This study known as Hydromagnetics or

Magnetohydrodynamics(MHD).

Magnetohydrodynamics is the science where in the presence of magnetic field, the

motion of electrically conducting fluid is considered. The study of the interaction

between magnetic field and electrically conducting fluids is currently receiving

considerable interest. This interest has been spurred primarily by astrophysical

problems and by problems associated with the fusion reactor. Thus in a very lucid

manner, hydromagnetics or MHD is the union of fluid dynamics and electromagnetic

theory. It is concerned with physical systems specified by the equations that result from

the fusion of those of hydrodynamcis and electromagnetic theory. It is a well known

fact that when a conductor moves in a magnetic field, electric currents are induced in

it. These currents experience a mechanical force called the ‘Lorentz force’, due to

magnetic field. This force tends to modify the initial motion of the conductor.

Moreover, a magnetic field which is generated by the induced currents is added on to

the applied magnetic field. Thus there is a coupling between the motion of the

conductor and electromagnetic field, which is exhibited in a more pronounced form in

liquid and gaseous conductors. This is due to the fact that the molecules composing the

liquids and gases enjoy more freedom of movement than those of solid conductors.

The Lorentz force is usually small unless inordinately high magnetic fields are applied.

Therefore, this force is too small to alter the motion as a whole considerably but if it

acts for a sufficiently long period, the molecules of gases and liquids may get

accelerated considerably to change the initial state of motion of these types of

conductors. Therefore, the coupling between the electromagnetic fields and the motion

of a conductor could only be judged appreciably by confining attention to liquid and

gaseous conductors.
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1.2 Fluid

Fluid is something which can flow it can be gas or liquid. The study of

characteristic of fluid in motion is hydrodynamics and the study of characteristic of

fluid at rest is hydrostatic. Pressure difference applies force, which can create motion.

It is substance that flows or deforms continuously under the action of forces applied

may pressure difference or shearing (acting tangentially). Fluid has no ability to resist

the force of deformation. If there is no pressure difference or shearing force, it implies

that fluid is at rest and all other forces are perpendicular to the plane in which these

force acting.

1.2.1 Properties of Fluid

Temperature, density and pressure describe the thermodynamic state of the fluid

along with other properties like internal energy or entropy. Viscosity is unique property

of fluid by which we can differentiate between two fluids. Fluid has also other properties

like kinematic viscosity, velocity and surface tension.

Density

Density = Mass
Volume = Mass per unit volume.

It is the distribution of mass and denoted by ρ. Its dimension is M
L3 = ML−3. Density

is different for different liquids as :

• Density of water = 1000 kg/m3.

• Density of blood = 1060 kg/m3.

• Density of salty water = 1027 kg/m3.

• Density of air = 1.29 kg/m3.

Relative Density

Relative density is the dimensionless or unit less number which is used to compare

the heaviness of different fluids. It is defined as, Relative Density = Density of Material
Density of water .
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Relative density of Mercury = 13.6, which means that mass of mercury in the volume

of 1 m3 is 13600 kg which is 13.6 times the mass of water.

Pressure

Pressure is proportionate to force and inversely proportionate to area. It is defined

as, Pressure = Force
Area = Force per unit area. It is denoted by p and its unit is Pascal,

dimension of pressure is given by, 1 Pascal = 1 Newton
m2 = MLT−2

L2 = ML−1T−2.

Stress has also the same units. A physical quantity with no direction is scalar and

quantity having one direction is vector and quantity having more than one or many

directions is tensor. So pressure is the tensor as it has direction in all the directions.

For instance, fill air in the balloon, now pressure is inside the balloon, puncture the

balloon at the top and flow of air will be in upward direction so pressure will also have

an upward direction, similarly repeat it in any direction and you will find the pressure in

all the directions.

Pascal’s Law says that pressure inside a fluid is same throughout. Its direction is

always normal (at right angle) to the surface in contact. This law is for the case where

gravity is not included but pressure varies with depth inside fluid because of gravity

i.e. pressure will be different at different heights inside the fluid. Above the surface

of earth, atmosphere consists of molecules (having mass) so gravity will be in effect.

Atmosphere presses the earth. Molecules apply force on the surface of earth. Effect of

this force is F/A i.e. the pressure created by atmosphere called atmospheric pressure. It

is maximum on the earth and decreases gradually as we move up. Barometer is used to

measure atmospheric pressure.

Viscosity

Viscosity is the Property of fluid when it is in motion. In flowing liquid there is a

force which resist or opposes the motion is called viscosity or viscous drag. It is assumed

that fluid flow in layers and all the layers move with different velocity. The layer near

the lower fixed surface has zero velocity and the layers away from it have larger velocity

that is change in velocity as the height increases. When tangential force is applied

on surface of upper layer, stress is created which is called tangential stress. As we

4



move down from the upper layer, the velocity decreases. More the tangential stress will

increase the velocity of all layers of fluid. It is denoted by τ and is directly proportional

to velocity gradient because during flow of liquid when tangential stress is increased the

velocity gradient also increases and τ = µdu
dy

, where µ is constant of proportionality,

known as the coefficient of viscosity. So, µ = Tangential stress
Velocity gradient = Force/area

Velocity/length .

For fixed tangential stress, liquid with greater value of constant µ will have less

velocity i.e. fluid is more viscous and vice versa. Viscous drag is opposite to the

direction of the tangential stress and it is between the two consecutive layers of fluid.

Viscosity is characteristic of liquid which is fixed. It will not change by increasing the

stress. Variables are force and velocity gradient .

Dimension of µ = Dimension of
[

Force/area
Velocity/length

]
= MLT−2/L2

(L/T )/L
= M

LT
= ML−1T−1.

Kinematic Viscosity

The ratio of coefficient of viscosity µ to the density ρ determines the effect of

viscosity on the motion of fluid is called kinematic viscosity. It is denoted by ν and

defined as ν = µ
ρ
. Its dimension is ML−1T−1

ML−3 = L2

T
= L2T−1.

Stokes’ Drag

It is the quantity of force due to viscous drag.

F = 6π ∗ coefficient of viscosity ∗ radius r of body ∗ velocity of body = 6πµrv.

Surface Tension

Surface tension is characteristic of the surface of liquid due to which it tries to

decrease its area and for this purpose applies a force of attraction between molecules in

the surface. For this reason surface of liquid behaves like stretched membrane.

Surface tension is the force that acts at each point of the surface of a fluid due to

interaction of the neighbouring molecules on the molecule situated at this point. It

expressed as the force per unit length of the surface in the tangential direction. It is

property of static liquid and it does not depend on the quantity. Surface tension is

calculated as force per unit length across an imaginary line drawn on the surface. Its

unit is Newton per meter which is different from the unit of force.

5



Blade of steel does not sink in the water whenever its density is more than water

because of surface tension.

1.3 Buoyancy Force

When a solid is dip in a liquid and displaces its molecules, those displaced molecules

apply a force on the solid and trying to eject it out. This force is called buoyancy force

and phenomenon is buoyancy. It is the Natural force and solid dip inside the water

because of gravity i.e. thrust applied by solid in downward direction. Liquid molecule

apply the force in upward direction i.e. upthurst by the liquid.

1.4 Fluid Types

• Newtonian fluid.

• Non-Newtonian fluid.

Newtonian fluid

The fluid in which stresses are the linear composite function of the instantaneous

velocity gradients are called Newtonian fluids. In other words stresses are the linear

function of strain rate and strain rate are expressible in velocity gradients. Graph of

this relation of stress and strain rate is a straight line. Flow governing equations for

the Newtonian fluid are Navier-Stokes’ equations. Moreover Newtonian fluid cannot

explain every type of phenomenon.

Non-Newtonian fluid

The fluid in which stresses are the non linear composite function of the

instantaneous velocity gradients are called non-Newtonian fluids. In other words

stresses are the non linear function of strain rate and strain rate are expressible in

velocity gradients. Graph of this relation of stress and strain rate is a curve not a

straight line. Equations which govern fluid flow are obtained by using the principle of

conservation of mass and momentum.
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Rivlin-Ericksen Fluid

Several Models have been proposed for non-Newtonian fluids (having non linear

relation between the shearing stress and strain rate) like :

• Ostwaldde Waele power law model (1925, Ball point pen ink, molten chocolate).

• Carreau Yasuda model (1972, Properties of polystyrene fluids).

• Newtonian fluid Cross model (1965, Pseudoplastic systems).

• Sisko model (1958, Lubricating greases).

• Bingham Herschel-Bulkley model (1922, Paints, toothpaste, mango jam etc.)

• Rivlin-Ericksen model (1955), Known as Rivlin-Ericksen fluids proposed by

Ronald Samuel Rivlin and Jerald LaVerne Ericksen. This fluid model is known

as order fluid model: 2nd order, 3rd order or nth order. And many more models.

I focused my study on the Rivlin-Ericksen model for non-Newtonian fluid because

it can be used in various shear damping fluid devices, modeling of blood and in many

other safety equipments which can be helpful to the society.

In 1955, Rivlin-Ericksen proposed a theory of non-linear viscoelasticity based on the

assumption that the stress can be expresses in terms of velocity gradients. The resulting

constitutive equations for an isotropic incompressible viscoelastic liquid were shown in

the form :

Tkl = −pδkl + τkl, (1.1)

τkl = ρ

(
ν + ν ′

∂

∂t

)
ekl, (1.2)

ekl =
1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
(1.3)

where Tji → stress tensor, τji → shear stress tensor, eji → strain rate tensor, δji →

Kronecker delta, vi → velocity vector, xi → position vector, p → isotropic pressure,

µ→ viscosity and µ′ → viscoelasticity.

The flow of a conducting viscoelastic Rivlin-Ericksen fluid through Porous medium

in a long uniform straight tube of rectangular cross-section under the influence of

transverse uniform MF (magnetic field) has been studied by Gaurav Mishra et al. [1].

The upper limits to the complex growth rate of arbitrary oscillatory motions of growing
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amplitude in the Rivlin-Ericksen fluid heated from below in the presence of uniform

vertical magnetic field was studied by Ajaib S.Banyal1 et al. [2]. The problem of

thermal convection of a Rivlin-Ericksen fluid permeated with suspended particles in

porous medium heated from below with variable gravity is analyzed by the method of

positive operator by Pushap Lata [3]. An analysis is presented with MHD free

convective viscoelastic flow of a fluid through a porous medium bounded by an

oscillating porous plate in the slip flow regime in presence of heat source by

R.Choudhury and B.Das [4]. Study of Instability of Streaming Rivlin-Ericksen Fluid in

Porous Medium is made by B.Jana and J.Sarkar [5]. The effect of suspended particles

on thermal convection of incompressible Rivlin-Ericksen elastico-viscous fluid in a

porous medium is considered G.C.Rana and R.C.Thakur [6]. A theoretical study is

made to investigate the influences of relaxation and retardation times of viscoelastic

fluid on the onset of convection in a horizontal fluid layer heated underneath by Rajib

Basu1 and G.C.Layek [7]. The thermal instability of a layer of Rivlin-Ericksen

elastico-viscous rotating fluid in a porous medium in hydromagnetics is considered by

S.K.Kango and Vikram Singh [8]. An investigation is made on the effect of Hall

currents and suspended particles on the hydromagnetic stability of a compressible,

electrically conducting Rivlin-Ericksen elastico-viscous fluid by U.Gupta et al [9]. The

unsteady Hele-Shaw flow of a viscoelastic Rivlin-Ericksen conducting fluid between

two parallel walls by S.Sreekanth et al. [10]. Bertrand Rollin and Malcolm J.Andrews

extended the Goncharov model for nonlinear Rayleigh-Taylor instability of perfect

fluids to the case of Rivlin-Ericksen viscoelastic fluids with surface tension [11].

Oscillatory onset of convection is studied numerically for Rivlin-Ericksen, Maxwell

and Jeffreys liquids by considering free-free and rigid-free isothermal/adiabatic

boundaries by P.G. Siddheshwar et al. [12]. An analysis for the steady two-dimensional

boundary-layer stagnation-point flow of Rivlin-Ericksen fluid of second grade with a

uniform suction is carried out via symmetry analysis by M.B.Abd-el-Malek and

H.S.Hassan [13]. P.Riesen, K.Hutter and M.Funk present a viscoelastic constitutive

relation which describes transient creep of a modified second grade fluid enhanced with

elastic properties of a solid. The material law describes a Rivlin-Ericksen material and

is a generalization of existing material laws applied to study the viscoelastic properties

of ice [14]. The thermosolutal convection in Rivlin-Ericksen elastico-viscous fluid in
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porous medium is considered to include the effect of suspended particles and rotation.

The sufficient conditions for the validity of principle of exchange of stabilities are

obtained by A.K.Aggarwal [15]. Hyam Abbouda and Toni Sayah propose a

finite-element scheme for solving numerically the equations of a transient

two-dimensional grade-two non-Newtonian Rivlin-Ericksen fluid model [16].

Motivated by the aim of modelling the behavior of swirling flow motion, F.Carapau

present a 1D hierarchical model for an Rivlin-Ericksen fluid with complexity n = 2,

flowing in a circular straight tube with constant and no constant radius [17]. Ronald

Rivlin was an outstanding figure in the development of modern nonlinear continuum

mechanics in the second half of the 20th century. Much of his research is characterized

by the innovative, systematic and effective use of methods based on invariant theory.

A.J.M.Spencer had summarize his work in this area, and show that it continues to be

effective in applications to recent research in the mechanics of fibre-reinforced elastic

materials[18]. The flow of an unsteady third-grade Rivlin-Ericksen fluid on an

oscillating plate is discussed by Muhammad R.Mohyyuddin et al [19]. The stability of

the plane interface separating two viscoelastic (Rivlin-Ericksen) superposed fluids in

the presence of suspended particles is studied by P.Kumar and G.J.Singh [20].

Applications of non-Newtonian fluid

It is used in many safety equipments and some mathematical models had developed

on the basis of non -Newtonian fluid. Some useful applications are :

• It is used in the formation of various materials like rope, seatbelt and safety

harness.

• Some shear damping fluid devices are based on the shear thickening property of

the non-Newtonian fluid which can reduce the injuries in road accidents or sports.

• Blood behaves as a non-Newtonian fluid in the core. Thus, it is modeled as a

non-Newtonian fluid.

• Magma fluid is non-Newtonian fluid because it does not obey the Newton’s law

of viscosity. The study of these fluids is an important area of research.

• It can be used in military suit which would change to solid state when the bullet

hits.
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• Because of shear thickening characteristics of non-Newtonian, it is used in of

shoes. it remain in liquid state while running, walking, standing and change to

solid state while fast running. it can prevent injuries.

1.5 Basic Hydrodynamic Terms

1.5.1 Temperature and Heat

Temperature of an object is the degree of its hotness. It is the physical quantity

which decides the direction of flow of heat energy. Heat is a type of energy contents in

an object. Heat flow from an object of higher temperature to object of lower temperature.

For example, if we touch an ice, the heat will flow from our body to ice because our body

is at higher temperature. If we touch a hot water then heat will flow from hot water to

our body because our body is at lower temperature.

Convection

In Convection, heat energy is transferred from higher temperature region to lower

temperature region through the displacement of the particles of the medium. Thus

convective heat transfer is associated with displacement of fluid element.

In natural convection, fluid element is displaced due to density difference arising out

of temperature difference. In forced convection, fluid element is forced to change its

position by applied external energy. Heat transfer takes place due to the presence of

temperature difference. The driving force is the temperature difference.

Thermal Expansion

Whenever we give heat energy to molecules of an object, the activity /vibrations of

molecules increases and need a larger space to exist and what we get finally expansion

called thermal expansion.

In other words, when an object is heated, the distance between molecules increases

and therefore its volume increase. If any one dimension is negligible then we say that

area has increased, if depth and width both are negligible, then we consider only

longitudinal expansion.
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Let us consider the volume of one cubic meter and raise the temperature by one

degree by giving heat, change in volume is called the volumetric thermal expansion.

Coefficient of volumetric thermal expansion is denoted by α, where

α = Coefficient of expansion = Change in Volume
Original volume ∗ Change in temperature = V−V0

V0∗(T−T0)

⇒ New volume, V = V0[1 + α(T − T0)].

With the increase in volume the density will decrease and it will be given by the

relation ρ = ρ0[1 + α(T − T0)].

Specific Heat

Specific heat of an material is the heat required to raise the temperature of 1kg of that

material by 1 degree Celsius. Its unit is joule per kg pre degree Celsius and represented

by c. It is a property of material.

Specific heat at the constant volume is the heat required to raise the temperature of

one mole of gas by one degree Celsius by keeping volume constant. It is denoted by Cv.

Specific heat at the constant pressure is the heat required to raise the temperature of

one mole of gas by one degree Celsius by keeping the pressure constant whereas Volume

may change. It is denoted by Cp.

Specific heat at the constant pressure, Cp, is always greater than specific heat at the

constant volume, Cv.

Heat Capacity

Heat capacity of an object is the heat required to raise its temperature by one degree

Celsius. Its unit is joule. It is a property of an object and defined as,

Heat capacity of an object = Mass of an object ∗ Specific heat of the an object .

An object with more heat capacity can store more heat.

1.5.2 Laminar and Turbulent Flow

Fluid flow can happen in two ways, Laminar/Streamline or Turbulent/Random.

Suppose all the fluid molecules moving in row with certain velocity, if there is no

change in the sequence and velocity throughout, motion is laminar/streamline. In other

words, in laminar flow, fluid particles maintain its order and cross any particular point
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with same velocity. There will be no extra pressure on the walls of pipe in pipe flow

during laminar flow.

In turbulent flow, fluid particles do not maintain their serial order and overtake each

other. There will be an extra pressure on the walls of pipe in pipe flow during turbulent

flow and pipe can burst out. Fluid flows in lines and different lines can have different

velocity. All the particles have the same velocity with respect to line in laminar flow.

These lines are called streamline. Numerical value of Dimensionless Reynold’s number

decides the pattern of flow which depends on the velocity of fluid. If a liquid flows in

pipe then it is defined as Rn = ρvd
µ

where d→ is the diameter,

v → is the velocity,

ρ→ is the density,

µ→ is coefficient of viscosity.

For Rn < 1000, flow is laminar.

For Rn > 1000, flow is turbulent.

For Rn ≥ 1000 and Rn ≤ 2000, flow is mixed.

Engineers use this number to optimize the flows in pipe.

1.5.3 Compressible and Incompressible

Gases are highly compressible as compare to liquids. In case of gases, small change

in pressure may bring large change in specific volume
(

1
ρ

)
or in volume per unit mass.

In case of liquids, effect of pressure on density is neglected and we assume

ρ = Constant.

Dimensionless, Mach number decides whether the fluid flow is compressible or

incompressible which depends upon the velocity of fluid. It is denoted by M and

defined as, M = Fluid velocity
Speed of sound = v

a
= v

332m/s
. If fluid velocity, v > 99m/s, then

compressibility effects are to be considered.

1.5.4 Prandtl Number

During convection, conduction also take place in fluid. Both processes reduce the

temperature difference due to heat transfer. Rates of convection and conduction are
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different for different fluids. The dimensionless Parndtl number decides the which

process will dominate and defined as

Pr = Kinematic viscosity
Thermal diffusivity = ν

α
= cpµ

κ
, where

ν = µ
ρ
, kinematic viscosity

α = κ
ρcp

, thermal diffusivity

κ = thermal conductivity and

ρ = density, If fluid is more viscous or stickier, then Pr is greater and the heat transfer

will be less convective.

1.5.5 Porous Medium

Porous media defined as solid bodies that contain pores. Pores are void or the

empty spaces which must be distributed more or less frequently through the porous

material. Extremely small voids in a solid are called molecular interstices and very

large voids are called caverns. Pores are the void spaces intermediate in size between

caverns and molecular interstices. The pores in a porous system may be interconnected

or non interconnected. The interconnected part of the pore system is called the

effective pore space of the porous medium. Pore spaces can be ordered or disordered.

Porosity

A porous media can be characterized by a variety of geometrical properties. The ratio

of void to the total volume is called porosity and denoted by ε, where ε = Ratio of V oid
Total V olume

.

If the calculation of porosity is based upon the interconnected pore space interval of

the total pore space, the resulting quantity is termed as effective porosity. Porosity can

be measured by a variety of methods:

• Direct Method: Porosity is determined by measuring bulk volume of a piece of

porous material and then compact the body so as to destroy all the voids, and to

measure the difference between the volumes. This method is applicable only if

material is very soft like bread.

• Optical Method: In this method porosity is determined by looking at a section

of the porous medium under microscope. Numerical value of porosity obtained in

this manner of the random section must be the same as that of the porous material.
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• Density Method: If the density ρG of the material making up the porous medium

is known, then the bulk density ρB of the medium, which can be calculated, is

related to the fractional porosity ε, where ε = 1− ρG
ρB

.

• Gas Expansion Method: The basic principle of this method is the direct

measurement of the volume of air or gas contained in the pore space. This can be

achieved either by continuously evacuating the air out of the specimen.

Permeability

It is the measure of ease with which a fluid can move through a porous rock.

1.6 Fundamental Assumptions

We now discuss two fundamental assumptions.

• Continuum Hypothesis.

• Newtonian Mechanics.

Continuum Hypothesis

Fluid is appeared to smooth and continuous but in reality it has discrete structure

of molecules and atoms. A detailed molecular approach for understanding fluid flow is

very difficult. Concept of property at a point has no meaning if a point is located in the

void between the atoms or at the center of an atom. Let density ρ at a point P is defined

as ρP = lim
∇V→0

∆m

∆V

where ∇V → volume element surrounding a point P in a fluid containing total mass

∆m. If P lies at the center of the atom, then ∆V = 0 and ρP →∞. If P lies between in

the void between two atoms then ∆m = 0 and ρP → 0.

Thus at some points the density is infinite and at some points the density is zero.

In order to overcome these inconsistencies we shall assume that masses are uniformly

distributed over the whole volume and consider matter as continuous. By assuming

continuum hypothesis, we can give meaning to pressure, momentum, density at a point

and treat them as a continuous function of space and time variables.
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Newtonian Mechanics

Newtonian mechanics is one which follows the three law of motion of Newton. Thus

it is assumed that fluid velocity is very small as compared to the speed of light otherwise

the theory of relativity has to be considered.

1.7 Basic Hydrodynamical Equations

Fundamental equations governing fluid flow are :

• Mass Conservation (Continuity) equation.

• Momentum Conservation (Fluid Motion) equations.

• Energy equation.

• Equation of state.

1.7.1 Equation of Continuity - Conservation of Mass

Mass conservation on the fluid in the control volume states that

Rate of accumulation of mass in the control volume

= Rate of inflow of mass in control volume

− Rate of outflow of mass from control volume

+ Any source.

Let u, v, w be the components of the velocity ~v, ρ be the density at the point (x, y, z)

in a fluid domain, the mathematical equivalence of the verbal statement of conservation

of mass for every point in the fluid domain is

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

⇒ ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0

⇒ Dρ

Dt
+ ρ(∇.~v) = 0. (1.4)
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Case 1 : If ρ is homogeneous and incompressible i.e. ρ is same at all the points and

constant in the fluid domain i.e density of an element does not alter as that element

moves about, then equation of continuity becomes

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.5)

Case 2 : If ρ is heterogeneous and incompressible i.e. ρ is different at different points

and constant in the fluid domain then equation of continuity becomes

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.6)

Case 3 : For compressible steady fluid
(
∂
∂t

= 0
)
, equation of continuity becomes

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0. (1.7)

1.7.2 Equations of Motion - Conservation of Momentum

Momentum conservation on the fluid in the control volume states that

Rate of accumulation of momentum

= Rate of inflow of momentum

− Rate of outflow of momentum

+ Net external forces acting on the control volume.

Since momentum is a vector quantity, so there are 3 equations of momentum as:

Rate of accumulation of momentum in x-direction

= Rate of inflow of momentum in x-direction

− Rate of outflow of momentum in x-direction

+ External forces acting on control volume in x-direction.

Rate of accumulation of momentum in y-direction

= Rate of inflow of momentum in y-direction

− Rate of outflow of momentum in y-direction

+ External forces acting on control volume in y-direction.
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Rate of accumulation of momentum in z-direction

= Rate of inflow of momentum in z-direction

− Rate of outflow of momentum in z-direction

+ External forces acting on the control volume in z-direction.

Let u,v,w be the components of the velocity ~v, ρ be the density and p be the pressure

at the point (x, y, z) in a fluid domain or mass of fluid, and let X,Y,Z be the components

of external force ~F per unit mass at the same point. Mathematical equivalence of the

above verbal statement for every point in the fluid domain in x-direction is :

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρX.

Forces present everywhere in the fluid domain like pressure force, gravitational

force, viscous force, magnetic force and electric force etc. Mainly two types of forces

considered are body force (gravitational force) and stress (normal and shear stress).

Therefore X = ρgx + Σ (stress component in x-direction x area of the surface

perpendicular to stress component). There will be six such stress components if we

consider cuboid as the control volume, three in positive direction and three in negative

direction. So momentum balance equation at a point (x, y, z) in x-direction is

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρgx +

∂

∂x
Txx +

∂

∂y
Tyx +

∂

∂z
Tzx

where Tij = −pδij + τij , δij is the kronecker delta, and τij is shear stress component in

j direction and i is the axis to which the plane face is perpendicular and above equation

reduces to

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρgx −

∂p

∂x
+

∂

∂x
τxx +

∂

∂y
τyx +

∂

∂z
τzx.

(1.8)

Similarly other two equations in y-direction and z-direction are

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) +

∂

∂z
(ρvw) = ρgy −

∂p

∂y
+

∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy.

(1.9)
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∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂y
(ρvw) +

∂

∂z
(ρw2) = ρgz −

∂p

∂z
+

∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz.

(1.10)

There are four equations (three momentum balance equations and one continuity

equation) in 12 variables (u, v, w, τxx, τyx, τzx, τxy, τyy, τzy, τxz, τyz, τzz). So more

equations are required. Energy equation will generate the new variable, it will not

resolve the problem. More information is required to resolve the situation in the

formulation of model. Constitutive model/expression is required,one of such model is

τ = µdu
dy

, where µ is coefficient of viscosity that can be measured, τ is the

tangential/shearing stress and velocity gradient du
dy

is not a new variable. It means stress

τ can be expressed in the known variables, only need to identify the τ with one of the

nine shear stress components. It is specific for one-dimensional flow and further need

of constitutive law i.e the relation between stress and rate of strain which describes the

stresses within fluid.

As the fluid will continue to deform when stress is applied and does not take

original shape as the stress removed but deformation stops. So rate of strain is

considered not strain (considered in solid mechanics). Various combinations of

velocity gradients describe the strain rates as :

Rotational strain rate =
1

2

(
∂v

∂x
− ∂u

∂y

)
Shear strain rate =

1

2

(
∂v

∂x
+
∂u

∂y

)
Extensional strain rate in x-direction =

∂u

∂x

General isotropic (invariant to the orientation of co-ordinate axes) and linear relation

between stress and strain rate is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

(
∂uk
∂xk

)
δij

where µ is kinematic viscosity and λ is second coefficient of viscosity which is important

only in case of compressible fluids and disappears for incompressible fluid.
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Thus, for compressible fluids

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
+ λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
δij

and for incompressible fluids

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
.

Similarly other stress components can be expressed in terms of velocity gradients.

Substitute the values of all stress components in the equations (1.8) - (1.10) and we get

all the equations in the variables u, v, w, p and material property constants ρ, µ, λ.

Momentum balance equations (1.8)-(1.10) are called Navier-Stokes’ equations for

motion of viscous compressible fluid. These equations are valid only for the Newtonian

fluid which obeys isotropic condition and linear relation between stress and stress rate.

For non-Newtonian fluids different constitutive relations between stress (arises out of

fluid motion) and strain rate are required.

Navier-Stokes’ equation for viscous incompressible fluid are, in x-direction is

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.11)

Similarly other two equations in y-direction and z-direction are

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂p

∂y
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.12)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz −

∂p

∂z
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.13)

Now we have closed system of equations i.e four equations in four variables u, v, w, p.
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1.7.3 Equation of Energy - Conservation of Energy

It is required in case of heat transfer. Principle of the conservation of energy in the

control volume states that

Rate of change of energy in the control volume

= Rate of inflow of energy− Rate of outflow of energy

+ Rate of heat addition to the fluid contained in control volume

+ Rate of work done by the forces acting on control volume

+ Generation of energy from sources within control volume.

The Mathematical equivalence of the above verbal statement for viscous

compressible fluids is

∂

∂t
(ρCvT ) +

∂

∂xj
(ρCvTuj) =

∂

∂xi

(
q
∂T

∂xj

)
− p∂uj

∂xj
+ Φ (1.14)

where Φ = 2µe2ij −
2

3
µ (eij)

2

is the ‘rate of viscous dissipation’ and gives the heat generated because of frictional

forces and

eij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]

is the ‘rate-of-strain tensor’, Cv is the specific heat when volume is constant and q is

the coefficient of heat conduction. For an incompressible fluid, eij = 0 and the

corresponding expression for Φ is given by Φ = 2µe2ij . Thus, for an incompressible

fluid, the equation of energy (1.14) takes the form

ρ
∂

∂t
(CvT ) + ρuj

∂

∂xj
(CvT ) =

∂

∂xj

(
q
∂T

∂xj

)
+ 2µe2ij. (1.15)

1.7.4 Equation of State

When the motion of compressible fluid is considered, a relation is required between

the state variable, pressure→ p, density→ ρ or volume→ V and temperature→ T , in
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order to obtain sufficient number of equations to determine the physical and dynamical

variables involved in the problem. Such a relation is called the equation of state and has

the general form g(p, V, T ) = 0 or g(p, ρ, T ) = 0.

If we neglect the compressibility of a fluid, its density remains constant. Thus for an

incompressible fluid the equation of state is ρ = Constant.

In viscous compressible flow: Equations of energy and motions are coupled. Energy

equation involves viscous dissipation function and temperature which are functions of

velocity. Thus temperature and velocity are coupled. Similarly equations of motion

involves velocity components u,v,w and pressure p which are function of temperature.

So velocity and temperature are coupled.

In viscous incompressible flow: Density, thermal conductivity and coefficient of

viscosity are fluid properties constants and equations of energy and motions are

uncoupled. Therefore four equations of continuity and motion can be solved for four

variables u, v, w and p. Using the values of velocity components we can solve the

energy equation and find temperature. When initial and boundary conditions are

specified, we can find the solution of above equations physically.

1.8 Initial and Boundary Conditions

Equations describing the motion are partial differential (not algebraic) equations

which are valid at all the points in flow domain so it is necessary to have boundary and

initial conditions in order to have a solution. Initial conditions may be of the form

u(x, y, z, t0) = f1 (x, y, z),

v(x, y, z, t0) = f2 (x, y, z),

w(x, y, z, t0) = f3 (x, y, z)

and p(x, y, z, t0) = f4 (x, y, z).

There are three types of boundary conditions :

• Dirichlet’s Boundary Conditions of the type u = Constant.

• Neumann’s Boundary conditions of the type ∂u
∂x

= Constant.

• Robin’s Boundary Condition of the mixed type au+ ∂u
∂x

= Constant.

For fluid flow situation we need more realistic or physical boundary conditions. At

inlet, flow entering the boundary so apply dirichlet’s boundary conditions. At outlet,
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flow is leaving the boundary , so apply the Robin’s boundary conditions and for free

shear boundary apply Neumann’s boundary conditions. For fully developed flow apply

same boundary conditions as at the outlet.

1.8.1 Implication of Boundary conditions:

Any kind of boundary condition for any problem is not justified. For unique

solution, solution continuously depend on initial and boundary conditions, with the

change of these conditions solution will change. This type of sensitivity is exhibited by

the boundary conditions. Type of conditions depend upon the physics of the problem.

So the mathematical problem must be well posed for the solution.

1.9 Hydrodynamic Stability - Basic Concepts

Let the system be defined by parameters as

Y1 → dimensions of the system ,

Y2 → velocity field,

Y3 → temperature gradients ,

Y4 → pressure gradients ,

Y5 → magnetic fields ,

Y6 → magnitude of forces ,

Y7 → density ,

and Y8...Yn → denotes other parameters.

The above system is stable with respect to any disturbance, if the initial state of

parameter is disturbed/perturbed and disturbance gradually decay in amplitude. Thus

system considered as stable, If it is stable with respect to all disturbances in all the

parameters. Otherwise the system is unstable. In other words, stability means there

exist no disturbance by which system is unstable and no disturbance grow in amplitude.
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1.10 Flow Instabilities

Flow instability occur everywhere and effect every fluid phenomenon, there are

several examples of fluid instability like smoke rises because it is lighter than

surrounding air. Instability is the first step in events which generate turbulence. Some

flow instabilities are:

• KH (Kelvin- Helmholtz) Instability/Double-Diffusive Convection.

• RT (Rayleigh-Taylor) Instability.

• Thermal (Bénard) Instability.

• Shock Wave Instability.

1.10.1 Thermal Instability - Bénard Convection

A layer of fluid heated from underside or below may becomes unstable because of

heavier fluid at the top and lighter one at the bottom. The heating element is at the

bottom. As heat is turn on, fluid become unstable and hot buoyant fluid get away before

it loses heat and buoyancy to its surroundings.

The critical parameter is the Rayleigh number which involves gravity(g), thermal

expansion coefficient(α), the vertical temperature gradient
(
dT
dz

)
, the effects which tends

to prevent instability i.e. kinematic viscosity(ν) and thermometric conductivity(κ) and

finally a length parameter or thickness of fluid layer (h) and it is given byRa = gαh4

κν
|dT
dz
|.

Rayleigh number can be increased by heating the bottom, As this dimensionless

number goes beyond critical value, instability sets in the form of Bénard cells. Below

the critical value the flow is stable. The earliest experiments to demonstrate the onset

of thermal instability are those of Bénard in 1900, though the phenomenon of thermal

convection itself had been recognized earlier by James Thomson(1882) and Count

Rumfort (1797).

Bénard’s Experiment

He carried out experiments on a very thin layers of fluid, about one mm in depth, or

less, standing on a leveled metallic plate maintained at constant temperature. He did

experiments on many liquids with different physical constants. He was particularly

interested in the role of viscosity. He observed when the temperature of the lower
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surface was gradually increased, at a certain instant, the layer became reticulated and

revealed its dissection into cells. There were motions inside the cells and two phases in

the succeeding development of the cellular pattern in which the cells are hexagonal,

equal and properly aligned. R.K.Zeytounian [21] had used the results of this

experiment during his research on convection in fluids.

Figure 1.1: Bénard cells

Schmidt-Milverton Principle for detecting the onset of thermal instability

Schmidt and Milverton incorporated a principle for the detection of the onset of

thermal instability which is so direct and simple that it served as the basis for all later

experiments in this area. They applied their principle to determine the critical Rayleigh

number for the onset of thermal instability in horizontal layers of water confined

between two rigid planes. The critical value RC = 1770± 140, they derived from their

experimental results and is satisfactory agreement with the theoretical value 1708.

The Precision experiments of Silveston

The experiments of Schmidt and Milverton have been repeated by Saunders,

Malku, Silveston and others to achieve greater range and precision. Siveston used

water, Heptane, Silicon AK-3, ethylene glycol and silicon oil AK-350 in his

experiments. From an experimentation of results obtained for the Rayleigh numbers in

the range 1000-10,000. Silveston derives for the critical Rayleigh number for the onset

of instability the value RC = 1700 ± 51. It is very good accord with the theoretical

value 1708.
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Figure 1.2: Visualization of onset of thermal convection by Silveston. The photograph
on the left was obtained for the Rayleigh number 1,500 while the photograph on the right
was obtained for a Rayleigh number 1,800. The depth of the layer in these experiments
was 7 mm.

Figure 1.3: Visualization of onset of thermal convection by Silveston. Photographs for
different depths and increasing Rayleigh numbers.
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1.10.2 Double Diffusive Convection(or Thermosolutal Instability)

In the standard Bénard problem, the instability is driven by the density difference

which is caused by a temperature difference between the upper and the lower planes

bounding the fluid. If the fluid layer additionally has salt dissolved in it, then there are

potentially two destabilizing sources for the density difference i.e. the temperature field

and the salt field. When the simultaneous presence of two or more components with

different diffusivities is considered, the phenomenon of convection which arises is

called thermosolutal or double diffusive convection. For the specific case involving a

temperature field and sodium chloride it is frequently referred as thermohaline

convection. Double-diffusive convection has been proved, when we think about ocean

where both heat and salt (or some dissolved substances) are important. In

thermosolutal convection, when the thermal and solutal effect are aiding each other, the

convective flow behaviour remains qualitatively similar to that of pure thermal

convection. In these problems, the solute is commonly, but not necessarily, as salt.

Related effects have now been observed in other contexts and the name

double-diffusive convection has been used to cover this wide range of phenomena.

1.11 Suspended Particles

The effect of suspended particles on the stability of superposed fluids might be of

industrial and chemical engineering importance. Further motivation for this study is the

fact that knowledge concerning fluid-particle mixtures is not commensurate with their

industrial and scientific importance. Also we are motivated to the study because of the

decades old contradiction between the theory for onset of convection and experiement.

A contradiction between the theory and his experiments for the onset of convection in

fluids heated from below was observed by Chandra [22]. He performed the experiments

in an air layer and found that the instability depended on the depth of the layer. A

Bénard-type cellular convection with fluid descending at the cell centre was observed

when the predicted gradients were imposed, for layers deeper than 10 mm. However, if

the layer depth was less than 7 mm, convection, which was different in character from

that in deeper layers, occurred at much lower gradients than predicted.
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Chandra called this motion “Columnar instability.” A complete survey of

subsequent experimental studies, which confirm Chandra’s result, can be found in

report by Jones (1962) on the effect of different aerosols on stability. According to him

the effects, which may be important, are thermal forces, electrostatic charges,

evaporation, condensation and buoyancy forces. Jones concluded that columnar

instability is not an example of single-phase natural convection and that it is most

likely due to the unique properties of aerosol suspensions. Theoretical discussions of

columnar instability, have been given by Sutton (1950) and Segel and Stuart (1962).

Motivated by interest in fluid-particle mixtures generally and columnar instability

in particular, Scanlon and Segel [23] investigated the effect of suspended particles on

the onset of Bénard convection and found that the critical Rayleigh number was

reduced solely because the heat capacity of the pure gas was supplemented by that of

the particles.

The effect of suspended particles was found to destabilize the layer i.e. to lower the

critical temperature gradient. Sharma, Prakash and Dube (1976) have studied the effect

of suspended particles on the onset of Bénard convection in the presence of magnetic

field and rotation separately. They have found that the magnetic field and rotation have

stabilizing effects whereas the effect of suspended particles is to destabilize the layer.

1.12 Effect of Magnetic Field

Consider a fluid to be electrically conducting and be under the influence of a

magnetic field. The electrical conductivity of the fluid and the prevalence of magnetic

field contribute to effects of two kinds. First, by the motion of the electrically

conducting fluid across the magnetic lines of force, electric currents are generated and

the associated magnetic fields contribute to changes in the existing fields, and second,

the fact that the fluid elements carrying currents transverse magnetic lines of forces

contributes to additional forces acting on the fluid elements. It is this two-fold

interaction between the motions and the fields that is responsible for patterns of

behaviour which are often striking and unexpected. The interaction between the fluid

motions and magnetic fields are contained in Maxwell’s equations. As a consequence

of Maxwell’s equations, equations of hdyrodynamics are modified suitably.
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In the outer layers of stars like the Sun, thermal convection is affected by the

presence of magnetic fields. In stellar interiors and atmospheres, the magnetic field

may be variable and may altogether alter the nature of the instability. For example,

Kent (1966) studied the effect of a horizontal magnetic field, which varies in the

vertical direction, on the stability of parallel flows and showed that the system is

unstable under certain conditions, while in the absence of magnetic field, the system is

known to be stable.

1.13 Perturbation Method

Most of the physical problems facing engineers,applied mathematicians and

physicists today exhibit certain essential features which preclude exact analytical

solutions. Some of these features are nonlinearities, variable coefficients, complex

boundary shapes, and nonlinear boundary conditions at known or unknown boundaries.

Thus in order to obtain information about solutions of equations, we forced to resort to

approximations, numerical solutions or both. Perturbation method is one of those

approximation techniques. According to this technique some parameters of the initial

state of the system are perturbed, and by substituting all these perturbed variables in

the flow governing equations to obtain the perturbed or linearized equations.

Perturbation methods are also used in the study of dynamic stability of aircraft.

Let the equilibrium conditions of flight are given by u = u0, v = v0 and w = w0,

non-zero velocity in forward direction only and other conditions are p0, q0, r0 = 0,

φ0 = 0 and θ = θ0. Non linear equation of motion of aircraft is

m

(
∂u

∂t
+ qw − rv

)
= X −mg sin θ.

Now, perturb the equilibrium condition as

u = u0 + δu,

v = v0 + δv,

w = w0 + δw,

p = p0 + δp,

q = q0 + δq,
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φ = φ0 + δφ

and θ = θ0 + δθ

where δu, δv, δw, δp, δq, δφ, δθ are all perturbation in variables.

The above equations of motion are true for both the states, equilibrium and perturbed

state. Thus linearize the equations of motion of aircraft and then study the dynamics of

perturbed variables if all perturbed variables decaying in time then aircrafts stable in

that particular equilibrium condition.
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2.1 Introduction

The formulation and derivation of the basic equations of a layer of a fluid heated

from below in a porous medium, using the Boussinesq approximation, has been given

in treatise by Joseph [24]. When a fluid permeates an isotropic and homogeneous

porous medium, the gross effect is represented by Darcy’s law. The study of a layer of

a fluid heated from below in a porous medium is motivated both theoretically and by its

practical applications in engineering. Among the applications in engineering

disciplines one can find the food process industry, chemical process industry,

solidification and centrifugal casting of metals. The development of geothermal power

resources has increased general interest in the properties of convection in porous

media, Singh and Gupta [25].

A comprehensive account of the effect of a uniform magnetic field on the layer of a

Newtonian fluid heated from below was given by Chandrasekhar [26]. The effect of a

magnetic field on the stability of the fluid flow is of interest in geophysics, particularly

in the study of earth core where the earth’s mantle, which consists of a conducting

fluid, behaves like a porous medium which can become convectively unstable as a

result of differential diffusion. The results of flow through a porous medium in the

presence of a magnetic field are applied in the study of the stability of a convective flow

in the geothermal region. Lapwood [27] studied the stability of a convective flow in

hydrodynamics using Rayleigh’s procedure. Wooding [28] considered the Rayleigh

instability of a thermal boundary layer in the flow through a porous medium.

The fluid may not be absolutely pure but may, instead, be permeated with

suspended (or dust) particles. The effect of particle mass and heat capacity on the onset

of Bénard convection was considered by Scanlon and Segel [23]. The effect of

suspended particles was found to destabilize the layer. In another context,

Palaniswamy and Purushotham [29] studied the stability of a shear flow of stratified

fluids with fine dust and found the effect of fine dust to increase the region of

instability. The thermal instability of fluids in a porous medium in the presence of

suspended particles was studied by Sharma and Sharma [30]. The suspended particles

and the permeability of the medium were found to destabilize the layer. Sharma and

Kumar [31] studied the Rayleigh-Taylor instability of fluids in porous media in the
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presence of suspended particles and variable magnetic field. In all the above studies,

the fluid has been considered to be Newtonian. One such class of elastico- viscous

fluids is the Rivlin-Ericksen fluid [32]. Srivastava and Singh [33] studied the unsteady

flow of the dusty elastico-viscous Rivlin-Ericksen fluid through channels of different

cross sections in the presence of a time-dependent pressure gradient. In other study,

Garg et al. [34] studied the rectilinear oscillations of a sphere along its diameter in a

conducting dusty Rivilin-Ericksen fluid in the presence of a uniform magnetic field.

Sharma and Kumar [35] studied the thermal instability of a layer of a Rivlin-Ericksen

elastico-viscous fluid in the presence of suspended particles. In another study, Kumar

[36] considered the stability of suspended Rivlin-Ericksen elastico-viscous fluids

permeated with suspended particles in a porous medium. It is this class of

elastico-viscous fluids we are particularly interested in studying the effect of suspended

or dust particles on the Rivlin-Ericksen elastico-viscous fluid heated from below in a

porous medium in the presence of a uniform horizontal magnetic field.

2.2 Formulation of the Problem

Let us consider the following physical quantities for the formulation of the problem.

Tensor quantities like stress, rate of strain, shear stress , Kronecker delta be represented

by Tkl, ekl, τkl and δkl respectively. Vector quantities like velocity and position vector

be represented by ~v and ~x respectively. p denotes the isotropic pressure and material

properties viscosity and viscoelasticity be denoted by µ and µ′. Constitutive relations

between the stress and rate of strain for the Rivlin-Ericksen fluid are

Tkl = −pδkl + τkl,

τkl = ρ

(
ν + ν ′

∂

∂t

)
ekl,

ekl =
1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
. (2.1)

In porous medium, an infinite horizontal layer of depth d of an electrically

conducting viscoelastic Rivlin-Ericksen fluid which is acted on by gravity force
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~g(0, 0,−g) and a uniform horizontal magnetic field ~H(0, 0, H) is considered. For the

study of thermal instability, layer is heated from underside and steady adverse

temperature gradient β is maintained , where β = |dT
dz
|.

Let the fluid properties like pressure, temperature, density , velocity of pure fluid,

kinematic viscosity and kinematic viscoelasticity be denoted by p, T, ρ, ~v(u, v, w), ν and

ν ′ respectively. Properties of suspended particle like velocity and number density be

represented by u(x, t) andN(x, t). ~g is the gravitational acceleration, epsilon represents

the medium porosity and k1 represents the medium permeability. K = 6πµη′ is the

Stokes’ drag coefficient for the particle having the radius η′.

Then the flow governing equations of conservation of mass and momentum in a

porous medium for the considered fluid in the presence of magnetic field and suspended

particles are

1

ε

[
∂~v

∂t
+

1

ε
(~v.∇)~v

]
= − 1

ρ0
∇p− g

(
1 +

δρ

ρ0

)
~λ

− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN

ρ0ε
(~u− ~v) +

µe
4πρ0

[(
∇× ~H

)
× ~H

]
(2.2)

and ∇.~v = 0. (2.3)

In the above equations of conservation of momentum (2.2), some assumptions

regarding the shape and velocity of the suspended particles are taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• Relative velocities between the fluid and particles is small.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Gravity, pressure, Darcian force and magnetic field effect on the suspended

particles are negligibly small, so ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.
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So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~u

∂t
+

1

ε
(~u.∇)~u

]
= KN(~v − ~u) and (2.4)

ε
∂N

∂t
+∇.(N~u) = 0. (2.5)

Let at constant volume, Cv is the heat capacity of the fluid, Cpt denote the heat

capacity of the particles, T is the temperature and q is effective thermal conductivity of

the pure fluid. If the fluid and the particles are in thermal equilibrium, then equation of

heat conduction is

[ρ0Cvε+ ρsCs(1− ε)]
∂T

∂t
+ ρ0Cv(~v.∇)T +mNCpt

(
ε
∂

∂t
+ ~u.∇

)
T = q∇2T

(2.6)

where ρs is the density and Cs is the heat capacity of the solid matrix. Maxwell’s

equations yield:

ε
∂ ~H

∂t
= ( ~H.∇)~v + εη∇2 ~H and (2.7)

∇. ~H = 0 (2.8)

where η → The electrical resistivity. Equation of state for fluid is

ρ = ρ0 (1− αδT ) = ρ0 [1− α(T − T0)] (2.9)

where α → co-efficient of thermal expansion, ρ0 → density of the fluid at the bottom

surface z = 0 and T0 → at temperature of the fluid at z = 0. Initially the system is taken

as quiescent layer (no settling) with a uniform particle distribution N0. Initial values of

the variables are

~u = (0, 0, 0), ~v = (0, 0, 0), N0 = Constant, T = −βz.

which is an exact solution to the governing equations.
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2.2.1 Perturbation of Equations

Let δp denote the perturbation in pressure p, δρ denote the perturbation in density

ρ, θ denote the perturbation in temperature T , ~v(u, v, w) denote the perturbation in

fluid velocity (zero initially), ~u(l, r, s) denote the perturbation in particle velocity (zero

initially), N denote perturbations in suspended particles number density N0 and

~h(hx, hy, hz) denote perturbations in magnetic field ~H(0, 0, H). Since density is

depends upon the temperature, so perturbation in temperature will bring change is

density defined by the relation δρ = −αρ0θ.

Governing equations of flow hold true for both the initial and perturbed state.

Therefore, linearized perturbed equations of the problem are

1

ε

∂~v

∂t
= − 1

ρ0
∇δp− gαθλ− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN

ρ0ε
(~u− ~v) +

µe
4πρ0

[(
∇× ~h

)
× ~H

]
,

(2.10)

∇.~v = 0, (2.11)

mN0
∂~u

∂t
= KN0(~v − ~u), (2.12)

(E + hε)
∂θ

∂t
= β(w + hs) + κ∇2θ, (2.13)

ε
∂~h

∂t
= ( ~H.∇)~v + εη∇2~h (2.14)

and ∇.~h = 0 (2.15)

where E = ε+ (1− ε)ρsCs
ρ0Cv

, h =
mN0Cpt
ρ0Cv

and κ =
q

ρ0Cv
.

Eliminating u in equation (2.10) by using equation (2.12), write the resulting

equation in scalar components eliminate u, v, δp, hx, hy between them, with the help of

equations (2.11) and (2.15), we obtain

n′∇2w +
ε

k1

(
ν + ν ′

∂

∂t

)
∇2w − εgα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
− µeH

4πρ0

∂

∂x
∇2hz = 0, (2.16)
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(
m

K

∂

∂t
+ 1

)[
(E + hε)

∂

∂t
− κ∇2

]
θ = β

[(
m

K

∂

∂t
+ 1

)
+ h

]
w and (2.17)

ε

[
∂

∂t
− η∇2

]
hz = H

∂w

∂x
(2.18)

where n′ =
∂

∂t

[
1 +

mN0K
ρ0

m ∂
∂t

+K

]

2.3 Dispersion relation

Perturbed quantities are assumed to be of the following form for the analysis of

disturbances into normal modes

[w, θ, hz] = [W (z),Θ(z), X(z)] exp (ikxx+ ikyy + nt) (2.19)

where kx is the wave number along x-direction, and ky is wave number along

y-direction. k =
√
k2x + k2y = resultant wave number and n = growth rate = complex

constant in general. Using expression (2.19), equations (2.16)-(2.18) in a non

dimensional form become[
σ′

ε
+

1

p1
(1 + Fσ)

] (
D2 − a2

)
W +

gαd2a2Θ

ν
− ikxµeHd

2

4πρ0ν

(
D2 − a2

)
X = 0,

(2.20)[τνσ
d2

+ 1
] [(

D2 − a2
)
− (E + hε)p3σ

]
Θ = −βd

2

κ

[
H ′ +

τνσ

d2

]
W (2.21)

and
[(
D2 − a2

)
− p2σ

]
χ = −ikxHd

2

εη
W (2.22)

where the co-ordinates x, y, z have expressed in the new unit of length d, time t in the

new unit of length d2

κ
and put a = kd, σ = nd2

ν
, p3 = ν

κ
→ Prandtl number, p2 = ν

η
→

magnetic Prandtl number, p1 = k1
d2
→ dimensionless medium permeability, F = ν

d2
→

dimensionless kinematic viscoelasticity, σ′ = n′d2

ν
, H ′ = h+ 1, τ = mκ

Kd2
and D = d

dz
.
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By eliminating X and Θ between equations (2.20)-(2.22), we obtain

[
1 +

τνσ

d2

] [(
D2 − a2

)
− (E + hε)p3σ

] [{σ′
ε

+
1

p1
(1 + Fσ)

}[(
D2 − a2

)
− p2σ

]
− k2xQ

ε

] (
D2 − a2

)
W = Ra2

[
H ′ +

τνσ

d2

] [(
D2 − a2

)
− p2σ

]
W (2.23)

where R = gαβd4

νκ
= Rayleigh number and Q = µeH2d2

4πρ0νη
= Chandrasekhar number.

The boundary conditions, suitable for the problem, are Chandrasekhar [26]. For the

solution to the problem, free boundaries are considered which is little artificial in nature.

Also Temperatures at the boundaries are kept fixed and the medium adjoining the fluid

is perfectly conducting.

W = 0, D2W = 0, Θ = 0, X = 0 at z = 0 and z = 1. (2.24)

Obviously that the even order derivatives of W vanish on the boundaries and hence

the proper solution of W characterizing the lowest mode is

W = W0sin(πz) (2.25)

whereW0 = Constant. By putting the solution (2.25) in equation (2.23), the dispersion

relation can be written as

R1 =

(1 + x) [(1 + x) + (E + hε)iσ1p1]
(

1 + iντπ2σ1
d2

)
∗[{

iσ′1
ε

+ 1
P

(1 + iπ2Fσ1)
}
{(1 + x) + iσ1p2}+ Q1xcos2θ

ε

]
x
[
H ′ + iνπ2τσ1

d2

]
{(1 + x) + iσ1p2}

(2.26)

where x =
a2

π2
, iσ1 =

σ

π2
, P = π2p1 and R1 =

R

π4
,

iσ′1 =
σ′

π2
, Q1 =

Q

π2
, and kx = kcosθ.

2.4 Stationary convection

Put σ = 0, for stationary convection, and the dispersion relation (2.26) becomes

R1 =
(1 + x)

[
1+x
P

+ Q1xcos2θ
ε

]
xH ′

. (2.27)
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Thus, it is found that for stationary convection the viscoelastic parameter F

vanishes with σ and the Rivlin-Ericksen elastico-viscous fluid behaves like an ordinary

Newtonian fluid. To study the effects of the magnetic field, suspended particles and

medium permeability, we examine the nature of dR1

dQ1
, dR1

dH′
, and dR1

dP
, Equation (2.27)

yields:

dR1

dQ1

=
(1 + x)cos2θ

H ′ε
, (2.28)

dR1

dH ′
= −

(1 + x)
[
1+x
P

+ Q1xcos2θ
ε

]
xH ′2

(2.29)

and
dR1

dP
= −(1 + x)2

xH ′P 2
. (2.30)

Which shows that the magnetic field has a stabilizing effect whereas the suspended

particles and medium permeability have a destabilizing effect on thermal convection in

the Rivlin-Ericksen fluid permeated with suspended particles in a porous medium in

hydrodynamics for stationary convection. Graphically, we analyse the magnetic field,

suspended particles and medium permeability as follows:
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Figure 2.1: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for H ′ = 10, P = 2, θ = 450, ε = 0.5 and Q1 = 25, 50, 75.
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Figure 2.2: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for P = 2, Q1 = 25, θ = 450, ε = 0.5 and H ′ = 5, 10, 15.
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Figure 2.3: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for Q1 = 25, H ′ = 10, θ = 450, ε = 0.5 and P = 0.1, 0.2, 0.6.

In Figure2.1 (refer table 1), we have x = 1, 2, 3, 4, 5, 6 andH ′ = 10, P = 2, ε = 0.5,

θ = 450 and Q1 = 25, 50, 75, found that, if magnetic field is increased growth rate is

also increased, shows the effect of stabilization on the system.

Whereas in Figure2.2 (refer table 2), x = 1, 2, 3, 4, 5, 6, H ′ = 5, 10, 15, P = 2 and

ε = 0.5, θ = 450, Q1 = 25, shows that, if suspended particles are increased growth rate

is decreased, gives the effect of destabilizing effect on the system.

In Figure2.3 (refer table 3), by using values of H ′ = 10, ε = 0.5, θ = 450, Q1 = 25,

P = 0.1, 0.2, 0.6 and x = 1, 2, 3, 4, 5, 6, found that, when medium permeability is

increased, growth rate is decreased, gives the destabilizing effect on the system.
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2.5 Stability of the system of oscillatory modes

Multiplying equation (2.20) by the complex conjugate of W i.e W ∗, integrating over

the range of z from z = 0 to z = 1 and making use of equations (2.21) and (2.22)

together with the given physical boundary conditions (2.24), we obtain

[
σ′

ε
+

1

p1
(1 + Fσ)

]
I1 −

gακa2

νβ

[
d2 + ντσ∗

H ′d2 + ντσ∗

]
[I2 + (E + hε)p3σ

∗I3]

+
µeηε

4πρ0ν
[I4 + p2σ

∗I5] = 0 (2.31)

where I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 ==

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz,

I3 =

∫ 1

0

|Θ|dz, I4 =

∫ 1

0

(
|D2X|2 + 2a2|DX|2 + a4|X|2

)
dz,

I5 =

∫ 1

0

(
|DX|2 + a2|X|2

)
dz

and σ∗ → complex conjugate of σ. The integrals I1, I2, I3, I4, I5 are all positive definite.

Putting σ = iσ, f = mN0

ρ0
, and by equating the imaginary parts of equation (2.31), we

obtain

σi

[{
1

ε

(
1 +

f

1 + p23τ
2σ2

i

)
+
F

p1

}
I1 +

gακa2

νβ (H ′2d4 + ν2τ 2σ2
i ){

d2ντhI2 + p3(E + hε)(H ′d4 + ν2τ 2σ2
i )I3

}
+
µeηεp2
4πρ0ν

I5

]
= 0. (2.32)

Equation (2.32) yields that σi = 0 or σi 6= 0, which means that modes may be

non-oscillatory or oscillatory. In the absence of the magnetic field, equation (2.32) is

reduced to

σi

[{
1

ε

(
1 +

f

1 + p21τ
2σ2

i

)
+
F

p1

}
I1 +

gακa2

νβ (H ′2d4 + ν2τ 2σ2
i ){

d2ντhI2 + p1(E + hε)(H ′d4 + ν2τ 2σ2
i )I3

}]
= 0. (2.33)

Thus, σi = 0 ⇒ the principle of exchange of stabilities is valid but oscillatory

modes are not allowed. Whereas the quantity inside the brackets is positive definite.

The presence of the magnetic field introduces oscillatory modes.
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2.6 Conclusion

Presence of Magnetic field showed the stabilizing effect whereas presence of

suspended particles and medium permeability showed the destabilizing effect in the

study of Rivlin-Ericksen fluid.
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Chapter 3

Hall Effect on Thermal Instability of

Viscoelastic Dusty Fluid in Porous

Medium

Published in International Journal of Applied Mechanics and Engineering, 2013,

vol.18, No.3, pp.871-886, DOI: 10.2478/ijame-2013-0052.

Inculded in the Astrophysics Database System maintaind by NASA (USA).
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3.1 Introduction

The theoretical and experimental results of the onset of thermal instability (Bénard

convection), under varying assumptions of hydrodynamics and hydromagnetics, have

been discussed by Chandrasekhar [26] in his celebrated monograph. If an electric field

is applied at right angles to the magnetic field, the whole current will not flow along the

electric field. This tendency of the electric current is called the Hall current effect. The

Hall effect is likely to be important in many geophysical and astrophysical situations

as well as in flows of laboratory plasma, Singh and Gupta [37]. Sherman and Sutton

[38] considered the effect of Hall currents on the efficiency of a magneto-fluid-dynamic

generator. Gupta [39] studied the problem of thermal instability in the presence of Hall

currents and found that Hall currents have a destabilizing effect on the thermal instability

of a horizontal layer of a conducting fluid in the presence of a uniform vertical magnetic

field. The use of the Boussinesq approximation has been made throughout, which states

that the variations of density in the equations of motion can safely be ignored everywhere

except in association with the external force. The approximation is well justified in the

case of incompressible fluids.

When the fluids are compressible, the equations governing the system become quite

complicated. To simplify them, Boussinesq tried to justify the approximation for

compressible fluids when the density variations arise principally from thermal effects.

Spiegel and Veronis [40] simplified the set of equations governing the flow of

compressible fluids under the following assumptions:

• The depth of the fluid layer is much less than the scale height, as defined by them.

• The fluctuations in temperature, density and pressure, introduced due to motion,

do not exceed their total static variations.

Under the above approximations, the flow equations are the same as those for

incompressible fluids, except that the static temperature gradient is replaced by its

excess over the adiabatic one and Cv is replaced by Cp. In geophysical situations, the

fluid is often not pure but contains suspended particles. Scanlon and Segel [23]

considered the effects of suspended particles on the onset of Bénard convection and

found that the critical Rayleigh number is reduced because of the heat capacity of the

particles. The suspended particles were thus found to destabilize the layer.
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Palaniswamy and Purushotham [29] studied the stability of shear flow of stratified

fluids with fine dust and found the fine dust to increase the region of instability. The

fluids were considered to be Newtonian and the medium was considered to be

non-porous in all the above studies.

There is growing importance of non-Newtonian fluids in geophysical fluid

dynamics, chemical technology and petroleum industry. Bhatia and Steiner [41]

studied the problem of thermal instability of a Maxwellian viscoelastic fluid in the

presence of rotation and found that rotation has a destabilizing influence in contrast to

the stabilizing effect on an ordinary viscous (Newtonian) fluid. The thermal instability

of an Oldroydian viscoelastic fluid acted on by a uniform rotation was studied by

Sharma [42]. There are many elastico-viscous fluids that cannot be characterized by

Maxwell’s or Oldroyd’s constitutive relations. The Rivlin-Ericksen elastico-viscous

fluid is one such fluid. Rivlin and Ericksen [32] studied the stress, deformation,

relaxations for isotropic materials. Thermal instability in viscoelastic Rivlin-Ericksen

fluids in the presence of rotation and magnetic field, separately, was investigated by

Sharma and Kumar [43] and [44]. Sharma and Kumar [45] studied the hydromagnetic

stability of two Rivlin-Ericksen elasticoviscous superposed conducting fluids. Kumar

and Singh [46] studied the stability of two superposed Rivlin-Ericksen viscoelastic

fluids in the presence of suspended particles. In another study, Kumar et al. [47]

studied the hydrodynamic and hydromagnetic stability of two stratified Rivlin-Ericksen

elasticoviscous superposed fluids.

The flow through porous media is of considerable interest for petroleum engineers

and geophysical fluid dynamicists. A great number of applications in geophysics may

be found in the books by Phillips [48], Ingham and Pop [49], and Nield and Bejan [50].

When the fluid slowly percolates through the pores of a macroscopically homogeneous

and isotropic porous medium, the gross effect is represented by Darcy’s law. As a

result of this macroscopic law, the usual viscous term in the equations of fluid motion

is replaced by the resistance term − 1
k1

(
µ+ µ′ ∂

∂t

)
q, where µ and µ′ are the viscosity

and viscoelasticity of the Rivlin-Ericksen fluid, k1 is the medium permeability and q is

the Darcian (filter) velocity of the fluid. Lapwood [27] studied the stability of a

convective flow in hydromagnetics in a porous medium using Rayleigh’s procedure.

The Rayleigh instability of a thermal boundary layer in flow through a porous medium
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was considered by Wooding [28]. The stability of superposed Rivlin-Ericksen

elastico-viscous fluids permeated with suspended particles in a porous medium was

considered by Kumar [36]. Kumar et al. [51] studied the instability of two rotating

viscoelastic (Rivlin-Ericksen) superposed fluids with suspended particles in a porous

medium. In another study, Kumar et al. [52] considered the MHD instability of rotating

superposed Rivlin-Ericksen viscoelastic fluids through a porous medium.

Here our interest is to bring out the suspended particles effect on thermal instability

of a compressible viscoelastic (Rivlin-Ericksen) fluid in a porous medium including the

effect of Hall currents.

3.2 Formulation of the Problem

In porous medium, an infinite horizontal layer of thickness d confined between

two planes z = 0 and z = d of an compressible viscoelastic Rivlin-Ericksen fluid in

the presence of uniform horizontal magnetic field ~H(0, 0, H) is considered. For the

study thermal instability, layer is heated from underside and steady adverse temperature

gradient β is maintained, where β = |dT
dz
|. The equations of motion and continuity for

the fluid are:

ρ

ε

[
∂~v

∂t
+

1

ε
(~v.∇)~v

]
= −∇p− ρg~λ− 1

k 1

(
µ+ µ′

∂

∂t

)
~v +

KN

ε
(~u− ~v) + µe

4π

(
∇× ~H

)
× ~H

(3.1)

and ε
∂ρ

∂t
+∇.(ρ~v) = 0 (3.2)

where ρ → density, µ → viscosity, µ′ → viscoelasticity, p → pressure and

~v(u, v, w) → velocity of the pure fluid. Here ~u(l, r, s) → velocity of the suspended

particles, N(x, t) → number density of the suspended particles, ε → medium porosity,

k1 → medium permeability, µe → magnetic permeability, g → acceleration due to

gravity, x = (x, y, z), ~λ(0, 0, 1) and K = 6πµη′, η′ being the particle radius, is the

Stokes’ drag coefficient.
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In the above equations of conservation of momentum (3.1), Some assumptions

regarding the shape and velocity of the suspended particles are taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• Relative velocities between the fluid and particles is small.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Gravity, pressure, Darcian force and magnetic field effect on the suspended

particles are negligibly small, so ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.

So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~u

∂t
+

1

ε
(~u.∇) ~u

]
= KN(~v − ~u) (3.3)

and ε
∂N

∂t
+∇.(N~u) = 0. (3.4)

Let at constant volume, Cv is the heat capacity of the fluid, at constant pressure, Cp

is the heat capacity of the fluid, Cpt denote the heat capacity of the particles T is the

temperature and q is effective thermal conductivity of the pure fluid. Assuming, fluid

particles are in thermal equilibrium, then equation of heat conduction is given by

[ρCvε+ ρsCs(1− ε)]
∂T

∂t
+ ρCv(~v.∇)T +mNCpt

(
ε
∂

∂t
+ ~u.∇

)
T = q∇2T (3.5)

where ρs is the density and Cs is the heat capacity of the solid matrix, R.C.Sharma and

U.Gupta [53] had used the same parameters for their study.
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Maxwell’s equations in the presence of hall currents give

∇. ~H = 0 (3.6)

and ε
∂H

∂t
= ∇× (~v × ~H) + εη∇2 ~H − cε

4πN ′e
∇×

[
(∇× ~H)× ~H

]
(3.7)

where η → resistivity, c→ speed of light,N ′ → electron number density and e is charge

of an electron. The initial state of the system is taken to be a quiescent layer (no settling)

with a uniform particle distribution N0 and is given by

~u = (0, 0, 0), ~v = (0, 0, 0), ~H = (0, 0, H),

T = T (z), p = p(z) ρ = ρ(z) and N = N0 = constant. (3.8)

Following the Spiegel and Veronis’ [40] we have

T (z) = −βz + T0, p(z) = pm − g
∫ z

0

(ρm + ρ0) dz,

ρ(z) = ρm [1− αm(T − Tm) +Km(p− pm)] ,

αm = −
(

1

ρ

∂ρ

∂T

)
m

and Km =

(
1

ρ

∂ρ

∂p

)
m

. (3.9)

Spiegel and Veronis’ [40] expressed any state variable say X , in the form

X = Xm +X0(z) +X ′(x, y, z, t) (3.10)

where Xm → constant space distribution of X,X0 → variation of X in the absence

of motion and X ′(x, y, z, t) → fluctuations in X due to motion of the fluid. Also, ρm

is constant space distribution of ρ and pm → constant space distribution of p and ρ0 is

density at the lower boundary z = 0 and T0 → temperature of the fluid at z = 0. Again

following Spiegel and Veronis[40] assumptions and results for compressible fluids, the

flow equations are found to be the same as those of incompressible fluids except that the

static temperature gradient β is replaced by its excess over the adiabatic (β − g/Cp) .
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3.2.1 Perturbation of Equations

Let δp denote the perturbation in pressure p, δρ denote the perturbation in density

ρ, θ denote the perturbation in temperature T , ~v(u, v, w) denote the perturbation in

fluid velocity (zero initially), ~u(l, r, s) denote the perturbation in particle velocity (zero

initially), N denote perturbations in suspended particles number density N0 and
~h(hx, hy, hz) denote perturbations in magnetic field ~H(0, 0, H). Linearized perturbed

equations of the viscoelastic fluid-particle layer are:

1

ε

∂~v

∂t
= − 1

ρm
∇δp− g

(
δρ

ρm

)
~λ− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN0

ερm
(~u− ~v) + µe

4πρm
(∇× ~h)× ~H,

(3.11)

∇.~v = 0, (3.12)

mN0
∂u

∂t
= KN0(~v − ~u), (3.13)

ε
∂N

∂t
+∇.(N0~u) = 0, (3.14)

(E + hε)
∂θ

∂t
= (β − g/Cp) (w + hs) + κ∇2θ, (3.15)

∇.~h = 0 and (3.16)

ε
∂~h

∂t
= ∇× (~v × ~H) + εη∇2~h− cε

4πN ′e
∇×

[
(∇× ~h)× ~H

]
(3.17)

where αm = 1
Tm

= α (say), ν = µ
ρm
, κ = q

ρmCv
and g

Cp
→ adiabatic gradient, ν is

kinematic viscosity and κ is thermal diffusivity. Also,

h =
fCpt
Cv

, f =
mN0

ρm
and E = ε+

(1− ε)ρsCs
ρmCv

.

The linearized dimensionless perturbation equations relevant to the problem are

N−1p1
∂u

∂t
= − ∂

∂x
δp− 1

p

(
1 + A

∂

∂t

)
u+ ω (l − u) +NQ

(
∂hx
∂z
− ∂hz

∂x

)
, (3.18)
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N−1p1
∂v

∂t
= − ∂

∂y
δp− 1

p

(
1 + A

∂

∂t

)
v + ω (r − v) +NQ

(
∂hy
∂z
− ∂hz

∂y

)
, (3.19)

N−1p1
∂w

∂t
= − ∂

∂z
δp− 1

p

(
1 + A

∂

∂t

)
w + ω (s− w) +NRθ, (3.20)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.21)

(
τ
∂

∂t
+ 1

)
l = u,

(
τ
∂

∂t
+ 1

)
r = v,

(
τ
∂

∂t
+ 1

)
s = w, (3.22)

∂M

∂t
+
∂l

∂x
+
∂r

∂y
+
∂s

∂z
= 0, (3.23)

∂hx
∂x

+
∂hy
∂y

+
∂hz
∂z

= 0, (3.24)

Np2N
−1
p1

∂hx
∂t

= ε−1
∂u

∂z
+∇2hx −M1

∂

∂z

(
∂hz
∂y
− ∂hy

∂z

)
, (3.25)

Np2N
−1
p1

∂hy
∂t

= ε−1
∂v

∂z
+∇2hy −M1

∂

∂z

(
∂hx
∂z
− ∂hz

∂x

)
, (3.26)

Np2N
−1
p1

∂hz
∂t

= ε−1
∂w

∂z
+∇2hz −M1

∂

∂z

(
∂hy
∂x
− ∂hx

∂y

)
and (3.27)

(E + hε)
∂θ

∂t
=

(
G− 1

G

)
(w + hs) +∇2θ (3.28)

where

Np1 = εν
κ

is modified Prandtl number, Np2 = εν
η

is modified magnetic Prandtl number,

NR = gαβd4

νκ
is Rayleigh number, NQ = µeH2d2

4πρmνη
is Chandrasekhar number, M = εN

N0
,

M1 = cH
4πN ′eη

is Hall parameter, ω = KN0d2

ρmνε
, τ = mκ

Kd2
, A =

(
ν
ν
′) κ

d2
, f = mN0

ρm
= τω,Np1

is mass fraction, G = Cpβ

g
and P = k1

d2
.
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Here physical variables have been scaled using d, d
2

κ
, κ
d
, ρνκ
d2
, βd and Hκ

η
as the

length, time, velocity, pressure, temperature and magnetic field scale factors,

respectively. The boundary conditions suitable to the problem, two free boundaries and

the medium adjoining the fluid as non conducting, are considered as

w =
∂2w

∂z2
= θ = 0, ξ =

∂ζ

∂z
= 0, at z = 0 and z = 1. (3.29)

and hx, hy, hz are continuous with an external vacuum field.
(3.30)

Here ζ = ∂v
∂x
− ∂u

∂y
and ξ = ∂hy

∂x
− ∂hx

∂y
are the z-components of vorticity and current

density, respectively. Equations (3.18)-(3.28), after eliminating u, v and δp can be

expressed as

[
L1 +

L2

P

(
1 + A

∂

∂t

)]
∇2w = L2NQ∇2∂hz

∂z
+ L2NR∇2

1θ, (3.31)

[
L1 +

L2

P

(
1 + A

∂

∂t

)]
ζ = L2NQ

∂ξ

∂z
, (3.32)

[
Np2N

−1
p1

∂

∂t
−∇2

]
ξ = ε−1

∂ζ

∂z
+M1

∂

∂z

(
∇2hz

)
, (3.33)

[
Np2N

−1
p1

∂

∂t
−∇2

]
hz = ε−1

∂w

∂z
−M1

∂ξ

∂z
and (3.34)

L2

[
(E + hε)

∂

∂t
−∇2

]
θ =

(
G− 1

G

)(
τ
∂

∂t
+H

)
w (3.35)

where

L1 = N−1p1

(
τ
∂2

∂t2
+ F

∂

∂t

)
, F = f + 1, L2 = τ

∂

∂t
+ 1, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

∇2
1 =

∂2

∂x2
+

∂2

∂y2
, H = h+ 1.
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3.3 The Dispersion Relation

Perturbed quantities are assumed to be of the following form and for the analysis of

disturbances into normal modes by seeking solutions whose dependence on x, y and t is

given by

[w, θ, hz, ζ, ξ] = [W (z),Θ(z), K(z), Z(z), X(z)] exp(ikxx+ ikyy + nt) (3.36)

where kx is the wave number along x-direction, and ky is wave number along

y-direction. k =
√
k2x + k2y = resultant wave number and n = growth rate. Equations

(3.31)-(3.35), with the help of expression (3.36), become

[
L1 +

L2

P
(1 + An)

] (
D2 − α2

)
W = L2NQ

(
D2 − α2

)
DK − L2NRα

2Θ, (3.37)

[
L1 +

L2

P
(1 + An)

]
Z = L2NQDX, (3.38)

[
Np2N

−1
p1 n−

(
D2 − α2

)]
X = ε−1DZ +M1

(
D2 − α2

)
DK, (3.39)

[
Np2N

−1
p1 n−

(
D2 − α2

)]
K = ε−1DW −M1DX and (3.40)

L2

[
(E + hε)n−

(
D2 − α2

)]
Θ =

(
G− 1

G

)(
τn+H

)
W (3.41)

where D =
d

dz
, L1 = N−1p1 (τn2 + Fn) and L2 = τn+ 1.

By eliminating X,Z,K, and Θ from the equations (3.37)-(3.41), we obtain[
L1 +

L2

P
(1 +An)

] [
(D2 − α2)− (E + hε)n

] (
D2 − α2

)
W

+


L2NQ

[
(D2 − α2)− (E + hε)n

] [ (D2−α2)−Np2N
−1
p1
n

M1ε
+

L2NQD
2[

L1+
L2
P

(1+An)
]
M1ε2

]
D2

M1(D2 − α2)D2 +
{(D2−α2)−Np2N

−1
p1
n}2

M1
+ L2NQ

(D2−α2)−Np2N
−1
p1
n{

L1+
L2
P

(1+An)
}
M1ε

D2

(D2 − α2
)
W

=

(
G− 1

G

)
NRα

2)(τn+H)W. (3.42)
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Using the boundary conditions and equations (3.29) and (3.30), obviously that the

even order derivatives of W vanish on the boundaries and hence the proper solution of

equation (3.42) characterizing the lowest mode is

W = W0sin(πz), where W0 = Constant. (3.43)

On substituting the solution (3.43) in equation (3.42), we get the dispersion relation as

NR =

(
G

G− 1

) (
π2 + α2

) [(
π2 + α2

)
+ (E + hε)n

]
α2
(
τn+H

) [{
L1 +

L2

P
(1 +An)

}
+

L2NQπ
2

[
(π2+α2)+Np2N

−1
p1 n

M1ε
+

L2NQπ
2{

L1+
L2
P

(1+An)
}
M1ε2

]
[
M1π2 (π2 + α2) +

{(π2+α2)+Np2N
−1
p1 n}

2

M1
+

L2NQ{(π2+α2)+Np2N
−1
p1 n}π2{

L1+
L2
P

(1+An)
}
M1ε

]]. (3.44)

3.4 Stationary Convection

When the instability sets in as stationary convection, the marginal state will be

characterized by n = 0 and the dispersion relation equation (3.44) reduces to

NR =

(
G

G− 1

)
(π2 + α2)

2

α2H

[
1

P
+

NQε
−1π2 {(π2 + α2) +NQPε

−1π2}
(π2 + α2) {M2

1π
2 + (π2 + α2) +NQPε−1π2}

]
.

(3.45)

Thus for stationary convection, the viscoelastic parameter vanishes with n, and stress

and strain rate showed linear realtion for Rivlin- Ericksen viscoelastic fluid. Also, for

fixed values of P , NQ, M1 and H , let the non-dimensional number G accounting for the

compressibility effects be also kept as fixed, then we have

NC
R =

(
G

G− 1

)
NC
R (3.46)

where NC
R is critical Rayleigh number in the absence compressibility and NC

R is critical

Rayleigh number in the presence of compressibility. Since the critical Rayleigh

number > 0 and finite which implies G > 1, which means stabilizing effect due to

compressibility.
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Now we study, the effect of suspended particles which depends upon the nature of
dNR

dH
, the effect of medium permeability which depends upon the nature of dNR

dP
, the

effect of magnetic field which depends upon the nature of dNR

dNQ
, the effect of hall current

which depends upon the nature of dNR

dM1
. From equation (3.45) we have

dNR

dH
= −

(
G

G− 1

)
(π2 + α2)

2

α2H
2

[
1

P
+

NQε
−1π2 {(π2 + α2) +NQPε

−1π2}
(π2 + α2) {M2

1π
2 + (π2 + α2) +NQPε−1π2}

]
.

(3.47)

which is < 0 ⇒ destabilizing effect of suspended particles on the thermal instability

of the compressible fluid-particle layer in the presence of and hall currents through a

porous medium. It is obvious from equation (3.45) that

dNR

dP
=

(
G

G− 1

)
(π2 + α2)

2

α2H

[
− 1

P 2
+

(NQπ
2ε−1)M2

1π
2

(π2 + α2) {M2
1π

2 + (π2 + α2) +NQPε−1π2}2

]
.

(3.48)

which is > 0 if P
[
M1π −

√
π2 + α2

]
>

√
π2+α2[M2

1π
2+(π2+α2)]

NQε−1π2 .

which is < 0 if P
[
M1π −

√
π2 + α2

]
<

√
π2+α2[M2

1π
2+(π2+α2)]

NQε−1π2 .

Thus, for the different values of parameter, medium permeability has both

destabilizing and stabilizing effect. Presence and absence of magnetic field plays an

important role in stabilizing effect of permeability. Its absence destabilize the effect.

Since for the case

dNR

dP
= −

(
G

G− 1

)
(π2 + α2)

2

α2HP 2
. (3.49)

which is always < 0. Thus, in the presence of magnetic field, medium permeability

succeeds in stabilizing the thermal instability of the compressible fluid-particle layer for

certain wave numbers. Now from equation (3.45), we get

dNR

dNQ

=

(
G

G− 1

)
(π2 + α2) π2ε−1

α2H {M2
1π

2 + (π2 + α2) +NQPε−1π2}

[{(
π2 + α2

)
+NQPε

−1π2
}

+
M2

1π
4NQPε

−1

M2
1π

2 + (π2 + α2) +NQPε−1π2

]
. (3.50)
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which is always > 0 which implies that magnetic field has a stabilizing effect. To find

the effect of hall currents, from equation (3.45), we have

dNR

dM1

= −2

(
G

G− 1

)
(π2 + α2)

α2H

[
NQε

−1M1π
4 {(π2 + α2) +NQPε

−1π2}
{M2

1π
2 + (π2 + α2) +NQPε−1π2}2

]
.

(3.51)

which is always < 0 which means that, in porous medium, hall current destabilize the

thermal convection in the compressible fluid-particle layer. We analyze graphically all

the four effects as
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Figure 3.1: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, NQ =
20,M1 = 10, ε = 0.5 and for different values of P (2, 4, 6).
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Figure 3.2: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, P =
4,M1 = 10, ε = 0.5 and for different values of NQ = (10, 20, 30).
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Figure 3.3: Variation of NR with α for a different value of H = (500, 1000, 1500) for
fixed values of G = 9.8, π = 3.14, P = 2,M1 = 10, ε = 0.5.
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Figure 3.4: Variation of NR with α for a fixed values H = 1000, G = 9.8, π =
3.14, P = 2, NQ = 20, ε = 0.5 for different values of M1 = (10, 20, 30).

We find from Figure3.1 (refer table 4), when the value of the medium

permeability(P), increased then the value of NR is increased which shows the

stabilizing effect. Similarly from Figure3.2 (refer table 5), when the value of magnetic

field NQ is increased, and the value of NR is increased which again shows the case of

stabilizing effect. In Figure3.3 (refer table 6), as the value of suspended particle H

increased, the value of NR decreased, which shows the destabilizing effect. Also

Figure3.4 (refer table 7) shows as the value of hall currents M1 through the porous

medium increased, the value of NR decreased, which is again the case of destabilizing

effect on the system.
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3.5 Oscillatory Modes

Multiplying equation (3.37) by he complex conjugate ofW i.e. W ∗, integrating over

the range of z from z = 0 to z = d and using equations (3.38)-(3.47) together with the

boundary conditions (3.29) and (3.30)[
L1 +

L2

P
(1 + An)

]
I1+A1 (nI2 + n∗I5)+L2NQε (I3 + I6)+

L2

L∗2

[
L∗1 +

L∗2
P

(1 + An∗)

]
I4

= L2L
∗
2NRα

2

(
G− 1

G

)(
1

τn∗ +H

)
[I7 + (E + hε)n∗I8]. (3.52)

where A1 = L2NQNP2N
−1
P1 and

I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 =

∫ 1

0

|X|2dz,

I3 =

∫ 1

0

(
|DX|2 + a2|X|2

)
dz , I4 =

∫ 1

0

|Z|2dz

I5 =

∫ 1

0

(
|DK|2 + a2|K|2

)
dz , I6 =

∫ 1

0

(
|D2K|2 + 2a2|DK|2 + a4|K|2

)
dz,

I7 =

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz , I8 =

∫ 1

0

|Θ|2dz. (3.53)

all I1, I2, I3, I4, I5, I6, I7, I8 all are positive definite, take n = in0 in equation (3.52),

where n0 is real, and equate imaginary parts on both sides, we get

n0 = 0 or n2
0 = −τ−2 A−B

C −D + E
(3.54)

where

A =
(
N−1p1 HF −

τ

P
− τ

P
A
)
I1 +NQεNP2N

−1
P1
H(I2 − I5)−NQετ(I3 + I6),

B =
(
N−1p1 HF +

τ

P
+
τ

P
A
)
I4 −NRα

2

(
G

G− 1

)
{τI7 + (E + hε)I8},

C =
(
N−1p1

(
H + 1− F

)
− τ

P
− τ

P
A
)
I1 +NQεNP2N

−1
P1
H(I2 − I5),

D = NQετ(I3 + I6)−
(
N−1p

(
1−H − F

)
− τ

P
− τ

P
A
)
I4 and

E = NRα
2

(
G

G− 1

)
{τI7 + (E + hε)I8}. Whereas in the absence of magnetic field,

n2
0 =

−τ−2
[(
N−1p1 HF −

τ
P
− τ

P
A
)
I1 +NRα

2
(

G
G−1

)
{τI7 + (E + hε)I8}

]
(
N−1p1

(
H + 1− F

)
− τ

P
− τ

P
A
)
I1+NRα2

(
G
G−1

)
{τI7 + (E + hε)I8}

. (3.55)

56



3.6 Conclusion

Problem was formulated to discuss the combined effect of compressibility, hall

current, magnetic field, medium permeability and suspended particles on thermal

instability of a Rivlin-Ericksen fluid and the results obtained as :

(I) Constitutive relation of Rivlin-Ericksen fluid becomes linear i.e. the relation

between stress and strain becomes linear for stationary convection due to the

vanishing of the viscoelastic parameter.

(II) Magnetic field, suspended particles and medium permeability introduce oscillatory

modes in the system otherwise effects the principle of exchange of stabilities is

hold good.

(III) When magnetic field is not present, n2
0 < 0 if

Cpt > Cv

[
1 +

εm

fk1Kd2
{
νd2 + ν ′

}]
(3.56)

For all NR > 0, since n0 is real and n2
0 < 0 which implies n0 = 0. This shows

that n is real when NR > 0 in the absence of the magnetic field. If equation (3.55)

holds true and that the principle of exchange of stabilities is valid for this case,

however, if equation (3.55) is violated, then the oscillatory modes may come into

play even in the absence of the magnetic field, Singh and Gupta [37].

(IV) Equation (3.46) indicates compressibility effect is to postpone the onset of

instability.

(V) To study the various effects of suspended particles, medium permeability,

magnetic filed and Hall currents in a compressible Rivlin-Ericksen viscoelastic

fluid, we examined the expressions dNR

dH
, dNR

dP
, dNR

dNQ
and dNR

dM1
analytically. The

magnetic field postpones the onset of instability, suspended particles and Hall

currents both hasten the onset of convection, which is in contrast with the result

of Gupta et al. [54].
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Presence of Compressible

Rivlin-Ericksen Fluid with Fine Dust

Published in Hindawi Publishing Corporation , Journal of Fluids , Volume 2014,
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4.1 Introduction

A layer of Newtonian fluid heated from below, under varying assumptions of

hydrodynamics, has been treated in detail by Chandrasekhar [26]. Chandra [22]

performed careful experiments in an air layer and found contradiction between the

theory and the experiment. He found that the instability depended on the depth of the

layer. A Bénard type cellular convection with fluid descending at the cell centre was

observed when predicted gradients were imposed, if the layer depth was more than 10

mm. But if the layer of depth was less than 7 mm, convection occurred at much lower

gradients than predicted and appeared as irregular strips of elongated cells with fluid

rising at the centre. Chandra called this motion columnar instability. The effect of

particle mass and heat capacity on the onset of Bénard convection has been considered

by Scanlon and Segel [23]. They found that the critical Rayleigh number was reduced

solely because the heat capacity of the clean gas was supplemented by that of the

particles. The effect of suspended particles was found to destabilize the layer.

Palniswamy and Purushotham [29] have considered the stability of shear flow of

stratified fluids with fine dust and have found the effect of fine dust to increase the

region of instability. A study of double-diffusive convection with fine dust has been

made by Sharma and Rani [55]. Kumar et al. [56] have studied effect of magnetic field

on thermal instability of rotating Rivlin-Ericksen viscoelastic fluid, in which effect of

magnetic field has stabilizing as well as destabilizing effect on the system. Also,

Rayleigh-Taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous

medium has been considered by Sharma et al. [57]. They have studied the stability

aspects of the system. The effects of a uniform horizontal magnetic field and a uniform

rotation on the problem have also been considered separately. Kumar [58] has also

studied the stability of superposed viscoelastic Rivlin-Ericksen fluids in presence of

suspended particles through a porous medium. In one other study, Kumar and Singh

[59] have studied the stability of superposed viscoelastic fluids through porous

medium, in which effects of uniform horizontal magnetic field and a uniform rotation

are considered. Kumar et al.[47] have also studied hyderodynamic and hyderomagnetic

stability of Rivlin-Ericksen fluid and found that the growth rates decrease as well as

increase with the increase in kinematic viscosity and kinematic viscoelasticity in
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absence and presence of magnetic field. Singh et. al. [25] has studied thermal

instability of Rivlin-Ericksen elastico viscous fluid permeated with suspended particles

in hydrodynamics in a porous medium and found that magnetic field have only

stabilizing effect whereas medium permeability have a destabilizing effect on the

system. M.F.EI-Sayed et. al [60], have studied non-linear Kelvin-Helmholtz instability

of Rivlin-Ericksen viscoelastic electrified fluid particle mixtures saturating porous

medium and in one another study Kumar et al. [61], have also studied double-diffusive

convection in compressible viscoelastic fluid through Brinkman porous media.

Presently, the study of stability of double-diffusive convection of Rivlin-Ericksen

elastico-viscous fluids permeated with suspended particles is considered. Viscosity is a

function of space and time in a large variety of fluid flows and its variation can have a

dramatic effect on flow stability. Here instability due to double-diffusive effects in

viscosity, permeated with suspended particles flow have been discussed.

Double-diffusive systems are known to display a rich variety of instability behavior in

density permeated with suspended particles fluid flow system. In viscosity permeated

systems, it was found that stable flow in the context of single component systems

become unstable due to double-diffusive effect. Many interesting flow patterns arise

due to this instability, these aspects form the motivation for the present study, Singh

and Gupta[62].

4.2 Formulation of The Problem

Infinite and horizontal layer of Rivlin-Ericksen fluid of depth d i.e. from z = 0 to

z = d is considered for an compressible electrically conducting viscoelastic

Rivlin-Ericksen with suspended particles. This layer is given the heat from below, let

the temperature at z = 0 is T0 and at the upper layer, z = d, is Td, and that a steady

adverse temperature gradient |dT
dz
| = β and solute gradient |dC

dz
| = β′ are maintained.

Here, ~g (0, 0,−g) is acceleration due to gravity. The effect of fluid compressibility,

even small in magnitude, is also considered.

Let the fluid properties like pressure, density, velocity of pure fluid, kinematic

viscosity and kinematic viscoelasticity be denoted by p, ρ, ~u(u, v, w), ν and ν ′

respectively. Properties of suspended particle like velocity and number density be
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represented by v(x, t) and N(x, t). ~x(x, y, z), ~λ(0, 0, 1) and K = 6πµη′ is the Stokes’

drag coefficient for the particle having the radius η′.

Then the flow governing equations i.e. equations of motion and continuity are

ρ

[
∂~u

∂t
+ (~u.∇)~u)

]
= −∇p+ ρ~g +KN (~v − ~u) +

(
µ+ µ′

∂

∂t

)
∇2~u (4.1)

and ∇.~u = 0. (4.2)

Some assumptions regarding the shape and velocity of the suspended particles are

taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• The buoyancy forces on the particle are neglected.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.

So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~v

∂t
+ (~v.∇)~v)

]
= KN (~u− ~v) and (4.3)

∂N

∂t
+∇. (N~v) = 0. (4.4)

Let Cv is heat capacity of fluid at constant volume, Cpt is heat capacity of particles,

Cp is heat capacity of fluid at constant pressure, T is temperature and q is effective

thermal conductivity of the pure fluid. Volume fractions of the particles are assumed to

be small; the effective properties of the suspension are considered as same as of clean

fluid.
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If we assume that the fluid and particles are in the thermal equilibrium, the equation

of heat conduction is

ρCv

[
∂

∂t
+ ~u.∇

]
T +mNCpt

[
∂

∂t
+ ~v.∇

]
T = q∇2T, (4.5)

If C denotes the solute concentration, then equation of solute conduction gives

ρC ′v

[
∂

∂t
+ ~u.∇

]
C +mNC ′pt

[
∂

∂t
+ ~v.∇

]
C = q′∇2C (4.6)

where C ′v, C
′
pt and q′ denote the analogous solute quantities. Spiegel and Veronis [40]

defined f as any one of the state variables ( p, ρ, or T ) and expressed in the form

f(x, y, z, t) = fm + f0 (z) + f ′(x, y, z, t) (4.7)

where fm → constant space average of f , f0 → variation in the absence of motion and

f ′ → fluctuation resulting from motion. The initial state of the system is taken to be

quiescent layer with a uniform particle distribution N0, therefore initial state in which

velocity, temperature T, solute concentration C is given by ~v = (0, 0, 0), ~u = (0, 0, 0)

and T = T (z) = T0 − βz, C = C(z) = C0 + β′z,

p = p(z) = pm − g
∫ z

0

(ρm − ρ0) dz ,

ρ = ρ(z) = ρm [1− αm (T − Tm) + α′m (C − Cm) +Km (p− pm)] ,

αm = −
[

1

ρ

∂ρ

∂T

]
m

(= α(say)) ,

α′m = −
[

1

ρ

∂ρ

∂C

]
m

(= α′(say)) ,

Km = −
[

1

ρ

∂ρ

∂p

]
m

(4.8)

N0 = Constant.

Perturb the initial state of the system. Let δp denote the perturbation in pressure p, δρ

denote the perturbation in density ρ, θ denote the perturbation in temperature T , γ denote

the perturbation in solute concentration C, ~v(u, v, w) denote the perturbation in fluid

velocity, ~u(l, r, s) denote the perturbation in particle velocity, N denote perturbations in
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suspended particles number density N0. The quantity δρ, depend on θ and γ and is

given by δρ = −ρm (αθ − α′γ) . (4.9)

Then the linearized perturbation equations of the problem, Spiegel and Veronis [40],

Scanlon and Segel [23], and Rivlin -Ericksen [32], become

∂~u

∂t
= − 1

ρm
∇δp+ g (αθ − α′γ)λ+

KN

ρm
(~v − ~u) +

(
ν + ν ′

∂

∂t

)
∇2~u, (4.10)

∇.~u = 0, (4.11)[
m

K

∂

∂t
+ 1

]
~v = ~u, (4.12)

∂N

∂t
+∇. (N0~v) = 0, (4.13)

(1 + h)
∂θ

∂t
= β

(
G− 1

G

)
(w + hs) + κ∇2θ and (4.14)

(1 + h′)
∂θ

∂t
= β′

(
G− 1

G

)
(w + h′s) + κ′∇2γ (4.15)

where µ, µ′, ν = µ
ρm
, ν ′ = µ′

ρm
, κ = q

ρmCv
and κ′ = q′

ρmC′v
stand for viscosity,

viscoelasticity, kinematic viscosity, kinematic viscoelasticity, thermal diffusivity and

analogous solute diffusivity, respectively. Also, h = f(Cpt/Cv), h
′ = f(C ′pt/C

′
v),

f = mN0/ρm, and G = Cpβ

g
. Initially, ~v = (0, 0, 0) , ~u = (0, 0, 0) , T = T (z), and

N = N0 which implies (4.5) yields 0 = 0, identically. After perturbation, (4.5)

becomes

(ρm + δρ)Cv

[
∂

∂t
+ ~u.∇

]
(T + θ) + (mN0 +mN)Cpt

[
∂

∂t
+ ~v.∇

]
(T + θ)

= q∇2 (T + θ) . (4.16)

Follow Speigal and Veronis [40] where the flow equations are found to be the same

as those for incompressible fluids except β is replaced by
(
β − g

Cp

)
i.e. the static

temperature gradient is replaced by its excess over the adiabatic and Cv is replaced by

Cp.
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So linearization of (4.5) gives

∂θ

∂t
+
mN0

ρm

Cpt
Cv

∂θ

∂t
=

(
β − g

Cp

)
(w + hs) +

q

ρmCv
∇2θ. (4.17)

that is, (4.14). However, β′ remains unaltered and, as above, (4.6) yields (4.15).

4.3 The Dispersion Relation

Perturbed quantities are assumed to be of the following form for the analysis of

disturbances into normal modes

[w, θ, γ] = [W (z),Θ(z),Γ(z)] exp (ikxx+ ikyy + nt) (4.18)

where kx is the wave number along x-direction and ky is wave number along y-direction.

k =
√
k2x + k2y = resultant wave number and n = growth rate = complex constant in

general. Non dimensional form of equations (4.16), (4.10) - (4.15) become[
σ

(
1 +

M

1 + τ1σ

)
− (1 + Fσ)

(
D2 − a2

)] (
D2 − a2

)
W +

ga2d2

ν
(αΘ− α′Γ) = 0,

(4.19)(
D2 − a2 −Hp1σ

)
Θ = −β

(
G− 1

G

)
d2

κ

(H + τ1σ)

(1 + τ1σ)
W (4.20)

and
(
D2 − a2 −H ′qσ

)
Γ = −β′d

2

κ′
(H ′ + τ1σ)

(1 + τ1σ)
W (4.21)

where we have put a = kd, σ = nd2

ν
, τ = m

κ
, τ1 = τν

d2
, M = mN

ρm
, p1 = ν

κ
, q = ν

κ′
,

H = 1 + h,H ′ = 1 + h′, F = ν′

d2
and D = d

dz
.

Eliminate Γ and Θ from equations (4.19) and (4.21), then

[
σ

(
1 +

M

1 + τ1σ

)
− (1 + Fσ)

(
D2 − a2

)] (
D2 − a2 −Hp1σ

) (
D2 − a2 −H ′qσ

) (
D2 − a2

)
W

−R
(
G− 1

G

)
a2

(H + τ1σ)

(1 + τ1σ)

(
D2 − a2 −H ′qσ

)
W+Sa2

(H ′ + τ1σ)

(1 + τ1σ)

(
D2 − a2 −Hp1σ

)
W = 0.

(4.22)
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where R =
gαβd4

νκ
→ thermal Rayleigh number

S =
gα′β′d4

νκ′
→ analogous solute Rayleigh number

p1 =
ν

κ
→ thermal Prandtl number

q =
ν

κ

′
→ analogous Schmidt number.

For the solution of the problem boundaries considered are perfect conductors of heat

and solute and free. Surrounding medium is assumed to be electrically nonconducting.

So boundary conditions taken as

Θ = 0,W = 0,Γ = 0, D2W = 0, DZ = 0 at z = 0 and z = 1. (4.23)

For the solution to the problem, free boundaries are considered which is little

artificial in nature but most suitable for stellar atmospheres. Using (4.23), even order

derivatives of W vanish on the boundaries and so the proper solution of W

characterizing the lowest mode is

W = W0 sin πz (4.24)

where W0 = Constant. Substituting (4.24) in (4.22), the relation reduces to

R1x =

(
G

G− 1

)[{
iσ1

(
1 +

M

1 + iτ1σπ2

)
+
(
1 + iFσπ2

)
(1 + x)

}
{(

1 + iτ1σπ
2
)
(1 + x) (1 + x+ iHp1σ)

(H + iτ1σπ2)

}
+ S1x

(
H ′ + iτ1σπ

2
)
(1 + x+ iHp1σ)

(H + iτ1σπ2) (1 + x+ iH ′qσ)

]
.

(4.25)

where R1 =
R

π4
, x =

a2

π2
, iσ1 =

σ

π2
and S =

a2

π4
.

Dispersion relation (4.25) studying the effects of suspended particles and

compressibility on the double-diffusive convection in Rivlin-Ericksen elastico- viscous

fluid.
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4.4 The Stability and Oscillatory Modes

Here, we examine instability, if any, which can occur as oscillatory modes in the

system defined. Multiplying (4.19) by the complex conjugate of W i.e W ∗, integrating

over z = 0 to z = 1 and making use of (4.20) and (4.21) with the help of boundary

conditions (4.23), we obtain

σ

(
1 +

M

1 + τ1σ

)
I1 + (1 + Fσ) I2 −

gαa2κ

νβ

(
G

G− 1

)(
1 + τ1σ

∗

H + τ1σ∗

)
(I3 +Hp1σ

∗I4)

+
gα′a2κ′

νβ′

(
1 + τ1σ

∗

H ′ + τ1σ∗

)
(I5 +H ′qσ∗I6) = 0 (4.26)

where I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 =

∫ 1

0

(
|D2W |2 + 2a2|Dw|2 + a4|W |2

)
dz

I3 =

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz , I4 =

∫ 1

0

|Θ|2dz

I5 =

∫ 1

0

(
|DΓ|2 + a2|Γ|2

)
dz , I6 =

∫ 1

0

|Γ|2dz

All the integrals I1, I2, I3, I4, I5, I6 are positive definite. Substituting σ = iσi and

equate the imaginary parts,where σi is real, we get small

σi

[(
1 +

M

1 + τ1σi

)
I1+FI2+

gαa2κ

νβ

(
G

G− 1

)(
τ1(H − 1)

H2 + τ 21σ
2
i

I3 +
H + τ 21σ

2
i

H2 + τ 21σ
2
i

Hp1σ
∗I4

)
−gα

′a2κ′

νβ′

(
τ1(H

′ − 1)

H ′2 + τ 21σ
2
i

I5 +
H ′ + τ 21σ

2
i

H ′2 + τ 21σ
2
i

H ′qσ∗I6

)]
= 0

(4.27)

Here σi = 0 implies that modes may be non-oscillatory or σi 6= 0 implies that modes

may be oscillatory. Presence of stable solute gradient introduces oscillatory modes.

4.5 Stationary Convection

σ = 0 characterized the marginal state When instability sets in as stationary

convection, Put σ = 0 in dispersion relation (4.25) which reduces to

R1 =

(
G

G− 1

)[
(1 + x)3

xH
+ S1

H ′

H

]
. (4.28)
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and constitutive relation becomes linear for Rivlin-Ericksen elastico-viscous fluid.

Behavior of dR1

dS1
explains the effect of stable solute gradient and behavior of dR1

dH

explains the effect of suspended particles analytically. Equation (4.28) yields

dR1

dS1

=

(
G

G− 1

)
H ′

H
. (4.29)

which is positive, thereby Rayleigh number and solute parameter increases

simultaneously. So, stable solute gradient shows stabilizing effect.

dR1

dH
= −

(
G

G− 1

)[
(1 + x)3

x
+ S1H

′
]

1

H2
. (4.30)

which is negative, which means suspended particles destabilize the system as the

dimensionless Rayleigh number decreases with increase in the suspended particles

number density. Therefore, We studied here, these effects graphically as below

1 2 3 4 5

60

80

100

120

140

160

180

200

 S
1
=10

 S
1
=20

 S
1
=30

R
1

X

Figure 4.1: The variation of dimensionless Rayleigh number (R1) with wave number
x(= 1, 2, 3, 4, 5), for G = 9.8, H = 2, H ′ = 10 and S1(= 10, 20, 30).

In Figure4.1 (refer table 8), as the value of stable solute gradient parameter

increased, so the value of Rayleigh number is increased for fixed values

G = 9.8, H = 2, H ′ = 10 and S1(= 10, 20, 30) when taking values of wave number

x(= 1,2,3,4,5) respectively. Therefore as value of Rayleigh number increased with

increase in wave number showing the stabilizing effect.
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Figure 4.2: The variation of dimensionless Rayleigh number (R1) with wave number
x(= 1, 2, 3, 4, 5), for G = 9.8, S1 = 10, H ′ = 5 and H(= 2, 4, 6).

In Figure4.2 (refer table 9), Rayleigh number decreased with increase in the

suspended particles by taking values of wave number x(= 1,2 3,4,5), for fixed values

G = 9.8, S1 = 10, H ′ = 5 and H(= 2, 4, 6), respectively. Therefore as values of

Rayleigh number has increased with decrease suspended particles parameter, showing

the destabilizing effect.

Let G (accounting for the compressibility effects) be kept fixed for fixed S1, H and

H ′. Then we have

Rc =

(
G

G− 1

)
Rc (4.31)

where Rc is Critical Rayleigh number in the presence compressibility and Rc is Critical

Rayleigh number in the absence of compressibility.In the presence of compressibility,

G < 1 and G = 1 ⇒ negative and infinite values of the critical Rayleigh number,

which is irrelevant to the given system. G > 1 is relevant to the given system, thus

compressibility postpone the onset of double-diffusive convection.

4.6 Conclusion

Effect of compressibility, stable solute gradient and suspended particles and has

been investigated on thermosolutal convection of a Rivlin-Ericksen fluid. The study

may be relevant to the stability of some polymer solutions and the problem finds its

applications in chemical technology and in Geophysical situations . Hence a study has
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been made on thermosolutal convection in presence of compressible fluid with fine

dust. Due to the vanishing of the viscoelastic parameter the constitutive relation for

Rivlin-Ericksen fluid become linear for the case of stationary convection. It is obvious

from the equation (4.31)that compressibility had postponed the onset of instability. The

expressions dR1

dS1
explains the effects of stable solute gradient and dR1

dH
explains the effect

of suspended particles analytically. Stable solute gradient delay the onset of instability

whereas suspended particles are found to hasten the onset of instability. Figure1 and

Figure2, shows the same results as obtained. The presence of viscoelasticity,

suspended particles and stable solute gradient introduce the oscillatory modes. In the

absence of viscoelasticity, suspended particles and stable solute gradient, the principle

of exchange of stabilities holds good.
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Chapter 5

Programming Codes

Programming codes to find Rayleigh number obtained in the chapters 2 ,3 and 4 by

assigning numerical values to all other parameters .
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5.1 Chapter 2 : Variations of Rayleigh number

Consider the equation (2.27) to find the variations in Rayleigh number R1

5.1.1 When Q1 = 25,50,75

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P =2;

7 H dash =10;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=[25 50 7 5 ] ;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15 A2=A1 / P ;

16

17 A31=Q1 ( 1 , 1 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

18 A32=Q1 ( 1 , 2 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

19 A33=Q1 ( 1 , 3 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

20

21 A41=A2+A31 ;

22 A42=A2+A32 ;

23 A43=A2+A33 ;

24

25 A51=A1 .∗A41

71



26 A52=A1 .∗A42

27 A53=A1 .∗A43

28

29 B1=x∗H dash ;

30

31 % V a r i a t i o n o f R a y l e i g h number

32

33 Rayle igh Number1 =A51 . / B1 % when Q1 = 25

34 Rayle igh Number2 =A52 . / B1 % when Q1 = 50

35 Rayle igh Number3 =A53 . / B1 % when Q1 = 75

36

37 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x

38

39 p l o t ( x , Rayle igh Number1 )

40 ho ld on

41 p l o t ( x , Rayle igh Number2 )

42 ho ld on

43 p l o t ( x , Rayle igh Number3 )
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5.1.2 When H-dash = 5,10,15

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P =2;

7 H dash =[5 10 15 ] ;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=25;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15 A2=A1 / P ;

16 A3=Q1∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

17 A4=A2+A3 ;

18 A5=A1 . ∗A4

19

20 B11=x∗H dash ( 1 , 1 ) ;

21 B12=x∗H dash ( 1 , 2 ) ;

22 B13=x∗H dash ( 1 , 3 ) ;

23

24 % V a r i a t i o n o f R a y l e i g h number

25

26 Rayle igh Number1 =A5 . / B11

27 Rayle igh Number2 =A5 . / B12

28 Rayle igh Number3 =A5 . / B13

29

30 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x
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31

32 p l o t ( x , Rayle igh Number1 )

33 ho ld on

34 p l o t ( x , Rayle igh Number2 )

35 ho ld on

36 p l o t ( x , Rayle igh Number3 )
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5.1.3 When P = 0.1 ,0.2,0.6

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P = [ 0 . 1 0 . 2 0 . 6 ] ;

7 H dash =10;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=25 ;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15

16 A21=A1 / P ( 1 , 1 ) ;

17 A22=A1 / P ( 1 , 2 ) ;

18 A23=A1 / P ( 1 , 3 ) ;

19

20 A3=Q1∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

21

22 A41=A21+A3 ;

23 A42=A22+A3 ;

24 A43=A23+A3 ;

25

26

27 A51=A1 .∗A41 ;

28 A52=A1 .∗A42 ;

29 A53=A1 .∗A43 ;

30
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31 B1=x∗H dash ;

32

33 % V a r i a t i o n o f R a y l e i g h number

34

35 Rayle igh Number1 =A51 . / B1 % when P =0 .1

36 Rayle igh Number2 =A52 . / B1 % when P =0 .2

37 Rayle igh Number3 =A53 . / B1 % when P =0 .6

38

39 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x

40

41 p l o t ( x , Rayle igh Number1 )

42 ho ld on

43 p l o t ( x , Rayle igh Number2 )

44 ho ld on

45 p l o t ( x , Rayle igh Number3 )
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5.2 Chapter 3 : Variations of Rayleigh number

Consider the equation (3.45) to find the variations in Rayleigh number NR

5.2.1 When P = 2 , 4 , 6

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000;

10 P=[2 4 6 ] ;

11 NQ=20;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23 B11 =1/ P ( 1 , 1 ) ;

24 B12 =1/ P ( 1 , 2 ) ;

25 B13 =1/ P ( 1 , 3 ) ;
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26

27 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

28

29 C21=P ( 1 , 1 ) ∗C1 ;

30 C22=P ( 1 , 2 ) ∗C1 ;

31 C23=P ( 1 , 3 ) ∗C1 ;

32

33 C31=C21+A3 ;

34 C32=C22+A3 ;

35 C33=C23+A3 ;

36

37 C41=C1∗C31 ;

38 C42=C1∗C32 ;

39 C43=C1∗C33 ;

40

41 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

42 D21=C31+D1 ;

43 D22=C32+D1 ;

44 D23=C33+D1 ;

45

46 D31=A3 .∗D21 ;

47 D32=A3 .∗D22 ;

48 D33=A3 .∗D23 ;

49

50 D41=C41 / D31 ;

51 D42=C42 / D32 ;

52 D43=C43 / D33 ;

53

54 E11=B11+D41 ;

55 E12=B12+D42 ;

56 E13=B13+D43 ;
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57

58 % Values o f R a y l e i g h number NR

59

60 NR1=A6∗E11 % When P=2

61 NR2=A6∗E12 % When P=4

62 NR3=A6∗E13 % When P=6

63

64 % Graphs o f NR Vs Alpha

65

66 p l o t ( Alpha , NR1)

67 ho ld on

68 p l o t ( Alpha , NR2)

69 ho ld on

70 p l o t ( Alpha , NR3)
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5.2.2 When NQ = 10,20,30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000;

10 P=4 ;

11 NQ=[10 20 3 0 ] ;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23 B1=1/ P ;

24

25 C11=NQ( 1 , 1 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

26 C12=NQ( 1 , 2 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

27 C13=NQ( 1 , 3 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

28

29 C21=P∗C11 ;

30 C22=P∗C12 ;
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31 C23=P∗C13 ;

32

33 C31=C21+A3 ;

34 C32=C22+A3 ;

35 C33=C23+A3 ;

36

37 C41=C11∗C31 ;

38 C42=C12∗C32 ;

39 C43=C13∗C33 ;

40

41 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

42 D21=C31+D1 ;

43 D22=C32+D1 ;

44 D23=C33+D1 ;

45

46 D31=A3 .∗D21 ;

47 D32=A3 .∗D22 ;

48 D33=A3 .∗D23 ;

49

50 D41=C41 / D31 ;

51 D42=C42 / D32 ;

52 D43=C43 / D33 ;

53

54 E11=B1+D41 ;

55 E12=B1+D42 ;

56 E13=B1+D43 ;

57

58 % Values o f R a y l e i g h number NR

59

60 NR1=A6∗E11 % When P=2

61 NR2=A6∗E12 % When P=4
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62 NR3=A6∗E13 % When P=6

63

64 % Graphs o f NR Vs Alpha

65

66 p l o t ( Alpha , NR1)

67 ho ld on

68 p l o t ( Alpha , NR2)

69 ho ld on

70 p l o t ( Alpha , NR3)
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5.2.3 When H-Bar = 500,1000,1500

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =[500 1000 1500 ] ;

10 P=2 ;

11 NQ=20;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19

20 A41=power ( Alpha , 2 ) ∗H Bar ( 1 , 1 ) ;

21 A42=power ( Alpha , 2 ) ∗H Bar ( 1 , 2 ) ;

22 A43=power ( Alpha , 2 ) ∗H Bar ( 1 , 3 ) ;

23

24 A51=A3 . / A41 ;

25 A52=A3 . / A42 ;

26 A53=A3 . / A43 ;

27

28 A61=A1∗A51 ;

29 A62=A1∗A52 ;

30 A63=A1∗A53 ;
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31

32 B1=1/ P ;

33

34 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

35 C2=P∗C1 ;

36 C3=C2+A3 ;

37 C4=C1∗C3 ;

38

39

40 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

41 D2=C3+D1 ;

42 D3=A3 . ∗D2 ;

43 D4=C4 / D3 ;

44

45 E1=B1+D4 ;

46

47

48 % Values o f R a y l e i g h number NR

49

50 NR1=A61∗E1 % When P=2

51 NR2=A62∗E1 % When P=4

52 NR3=A63∗E1 % When P=6

53

54 % Graphs o f NR Vs Alpha

55

56 p l o t ( Alpha , NR1)

57 ho ld on

58 p l o t ( Alpha , NR2)

59 ho ld on

60 p l o t ( Alpha , NR3)
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5.2.4 When M1= 10,20,30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000 ;

10 P=2 ;

11 NQ=20;

12 M1=[10 20 3 0 ] ;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23

24 B1=1/ P ;

25

26 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

27 C2=P∗C1 ;

28 C3=C2+A3 ;

29 C4=C1∗C3 ;

30
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31

32 D11=power (M1( 1 , 1 ) , 2 ) ∗power ( Pi , 2 ) ;

33 D12=power (M1( 1 , 2 ) , 2 ) ∗power ( Pi , 2 ) ;

34 D13=power (M1( 1 , 3 ) , 2 ) ∗power ( Pi , 2 ) ;

35

36 D21=C3+D11 ;

37 D22=C3+D12 ;

38 D23=C3+D13 ;

39

40 D31=A3 .∗D21 ;

41 D32=A3 .∗D22 ;

42 D33=A3 .∗D23 ;

43

44 D41=C4 / D31 ;

45 D42=C4 / D32 ;

46 D43=C4 / D33 ;

47

48 E11=B1+D41 ;

49 E12=B1+D42 ;

50 E13=B1+D43 ;

51

52

53

54 % Values o f R a y l e i g h number NR

55

56 NR1=A6∗E11 % When P=2

57 NR2=A6∗E12 % When P=4

58 NR3=A6∗E13 % When P=6

59

60 % Graphs o f NR Vs Alpha

61

86



62 p l o t ( Alpha , NR1)

63 ho ld on

64 p l o t ( Alpha , NR2)

65 ho ld on

66 p l o t ( Alpha , NR3)

87



5.3 Chapter 4 : Variations of Rayleigh number

Consider the equation (4.28) to find the variations in Rayleigh number R1

5.3.1 When S1 = 10 , 20 , 30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Wave Number =[1 2 3 4 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 H dash =10;

8 H=2;

9 S 1 =[10 20 30 ] ;

10

11 % I n t e r m e d i a t e c a l c u l a t i o n s

12

13 A2=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1)

14

15 F2=power (1+ Wave Number , 3 ) . / ( Wave Number∗H)

16

17 C21=S 1 ( 1 , 1 ) ∗ ( H dash /H)

18 C22=S 1 ( 1 , 2 ) ∗ ( H dash /H)

19 C23=S 1 ( 1 , 3 ) ∗ ( H dash /H)

20

21 % Values o f R a y l e i g h number

22

23 Rayle igh Number1 =A2∗ ( F2+C21 )

24 Rayle igh Number2 =A2∗ ( F2+C22 )

25 Rayle igh Number3 =A2∗ ( F2+C23 )
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26

27 % Graphs o f R a y l e i g h number Vs wave number

28

29 p l o t ( Wave Number , Rayle igh Number1 )

30 ho ld on

31 p l o t ( Wave Number , Rayle igh Number2 )

32 ho ld on

33 p l o t ( Wave Number , Rayle igh Number3 )
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5.3.2 When H = 2 , 4 , 6

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Wave Number =[1 2 3 4 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 H dash =5;

8 H=[2 4 6 ] ;

9 S 1 =10 ;

10

11 % I n t e r m e d i a t e c a l c u l a t i o n s

12

13 A2=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1)

14

15 F21=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 1 ) )

16 F22=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 2 ) )

17 F23=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 3 ) )

18

19 C21=S 1 ∗ ( H dash /H( 1 , 1 ) )

20 C22=S 1 ∗ ( H dash /H( 1 , 2 ) )

21 C23=S 1 ∗ ( H dash /H( 1 , 3 ) )

22

23 % Values o f R a y l e i g h number

24

25 Rayle igh Number1 =A2∗ ( F21+C21 )

26 Rayle igh Number2 =A2∗ ( F22+C22 )

27 Rayle igh Number3 =A2∗ ( F23+C23 )

28

29 % Graphs o f R a y l e i g h number Vs wave number

30
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31 p l o t ( Wave Number , Rayle igh Number1 )

32 ho ld on

33 p l o t ( Wave Number , Rayle igh Number2 )

34 ho ld on

35 p l o t ( Wave Number , Rayle igh Number3 )
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Chapter 6

Conclusion and Future Scope

Concluding Remarks of the Thesis and Future Scope of the research work.

92



6.1 Concluding Remarks

The whole thesis is devided into four chapters. Chapter 1, is introductory/review of

literature. In chapter 2, we have studied “Thermal instability of Rivlin-Ericksen

elastico-viscous fluid with suspended particles through porous medium”, in chapter 3

we have studied, “Hall effect on thermal instability of visco-elastic dusty fluid through

porous medium” and in chapter 4, “Double-diffusive convection in presence of

compressible Rivlin-Ericksen fluid with fine dust”. In chapter 2, we found that

magnetic field has stabilizing effect whereas suspended particles and medium

permeability have destabilizing effect on the system. In chapter 3, we found that

medium permeability have stabilizing as well as destabilizing effect only in presence of

magnetic field, but in absence of magnetic field it holds the same result as in presence

of suspended particles in chapter 2. As in the absence of suspended particles and

presence of compressibility in chapter 3, magnetic field has stabilizing effect on the

system. Also hall current is studied at here and found that hall current have

destabilizing effect on the system. In chapter 4, we found that stable solute gradient

have stabilizing effect, where has suspended particles have destabilizing effect on the

system in the presence of compressibility.

From the observation of all these three chapters, we found that magnetic field has

stabilizing effect, in presence of compressibility as well as incompressibility. Medium

permeability have stabilizing as well as destabilizing effects on the system, Hall current

have destabilizing effect whereas stable solute gradient have stabilizing effect on the

system.

All these results are verified graphically and by computer programming, self created

programming codes is the beauty of the thesis.

6.2 Future Scope

Fluid dynamics has many applications in all the branches of engineering like

mechanical, aeronautical and chemical etc. In medical discipline it plays an important

role. Observed problems of nature can be medelled by using fluid dynamics and can be

solved by using appropriate analytical method or numerical method which gives
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approximate solution. Presently technology is driven by physics, one must know the

physics of the problem only then solutions can be interpreted and useful in real life.

Mathematical equations tells a lot about the problem and physics behind it. The biggest

challenge is always to convert the real life fluid flow problem into mathematical

equations . The questions that always arise :

a) What is appropriate element ( 1 D, 2 D or 3D).

b) What are appropriate initial or boundary conditions.

c) Which technique or method is well suited for the problem.

Sometime experiments can not be performed because it is time consuming and

expensive, moreover resources are limited. Also it is not possible to done on all the

scales. All numerical methods convert continuum problem into discrete problem and

give the solution at nodal points not at all the points of domain. So simulations

techniques can be useful.

Simulation : Here, Firstly the problem is observed from the real life situation, then

problem is defined and converted into mathematical model which is the set of differential

equations (ordinary or partial). Afterwards problem is solved by using the mathematical

techniques or tools and results obtained.

Numerical Simulation : If solution to the problem is approximated by using one

of the numerical methods like finite difference method, Finite element method, finite

volume method, runge-Kutta method, Galerkian method or any other method which is

well suited to given problem is called numerical simulation. Finite element method is

numerical tool for simulation. It can be used upto micro and continuum scale but cannot

be used for nano scale. Numerical techniques are those which can be programmed.

Simulation through software: For this purpose various softwares of computational

fluid dynamics like ANSYS ( FLUENT ), COMSOL Multiphysics, ABAQUS, MARK,

PAFEC, ADINA are available in the market. The processing of these softwares is based

on the numerical methods.

One can pursue the research in the area of fluid structure interaction (FSI) and further

simulate the results by using computational software.
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Appendices

Appendix A : Table for Graphs

x Q1 = 25 Q1 = 50 Q1 = 75

1 5.2 10.2 15.2
2 7.725 15.225 22.725
3 10.267 20.267 30.267
4 12.813 25.313 37.813
5 15.36 30.36 45.36
6 17.908 35.408 52.908

Table 1: The variation of Rayleigh number R1 with wave number x,
for H ′ = 10, P = 2, θ = 450, ε = 0.5 and Q1 = 25, 50, 75 .

x H = 5 H = 10 H = 15

1 10.4 5.2 3.467
2 15.45 7.725 5.15
3 20.533 10.267 6.844
4 25.625 12.813 8.542
5 30.72 15.36 10.24
6 35.817 17.908 11.939

Table 2: The variation of Rayleigh number R1 with wave number x,
for P = 2, Q1 = 25, θ = 450, ε = 0.5 and H ′ = 5, 10, 15 .

x P = 0.1 P = 0.2 P = 0.6

1 9 7 5.667
2 12 9.75 8.25
3 15.333 12.667 10.889
4 18.75 15.625 13.542
5 22.2 18.6 16.2
6 25.667 21.583 18.861

Table 3: The variation of Rayleigh number R1 with wave number x,
for Q1 = 25, H ′ = 10, θ = 450, ε = 0.5 and P = 0.1, 0.2, 0.6 .

α P = 2 P = 4 P = 6

0.01 2620.019 3035.142 3317.077
0.02 655.015 758.791 829.273
0.03 291.125 337.244 368.568
0.04 163.764 189.703 207.321
0.05 104.814 121.412 132.687

Table 4: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14,
NQ = 20,M1 = 10, ε = 0.5 and for different values of P = 2, 4, 6.
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α NQ = 10 NQ = 20 NQ = 30

0.01 1310.01 3035.142 4975.616
0.02 327.507 758.791 1243.909
0.03 145.563 337.244 552.852
0.04 81.882 189.703 310.982
0.05 52.407 121.412 199.031

Table 5: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, P = 4,
M1 = 10, ε = 0.5 and for different values of NQ = 10, 20, 30.

α H = 500 H = 1000 H = 1500

0.01 5240.039 2620.019 1746.68
0.02 1310.03 655.015 436.677
0.03 582.25 291.125 194.083
0.04 327.528 163.764 109.176
0.05 209.627 104.814 69.876

Table 6: Variation of NR with α for a different value of H = (500, 1000, 1500)
for fixed values of G = 9.8, π = 3.14, P = 2,M1 = 10, ε = 0.5.

α M1 = 10 M1 = 20 M1 = 30

0.01 2620.019 1346.972 940.011
0.02 655.015 336.752 235.012
0.03 291.125 149.675 104.456
0.04 163.764 84.197 58.762
0.05 104.814 53.891 37.612

Table 7: Variation of NR with α for a fixed values H = 1000, G = 9.8, π = 3.14,
P = 2, NQ = 20, ε = 0.5 for different values of M1 = 10, 20, 30.

α S1 = 10 S1 = 20 S1 = 30

1 60.136 115.818 171.5
2 63.199 118.881 174.563
3 67.561 123.242 178.924
4 73.082 128.764 184.446
5 79.736 135.418 191.1

Table 8: The variation of Rayleigh number R1 with wave number x,
for G = 9.8, H = 2, H ′ = 10 and S1 = 10, 20, 30 .
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α H = 2 H = 4 H = 6

1 32.295 16.148 10.765
2 35.358 17.679 11.786
3 39.72 19.86 13.24
4 45.241 22.621 15.08
5 51.895 25.948 17.298

Table 9: The variation of Rayleigh number R1 with wave number x,
for G = 9.8, S1 = 10, H ′ = 5 and H = 2, 4, 6.
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Appendix B : List of Symbols

6πµη′ Stoke’s drag coefficient

β Temperature Gradient

β′ Solute Gradient

δρ Perturbations in Density

δp Perturbations in Pressure

δij Kronecker Delta

ε Medium Porosity

µeH2d2

4πρ0νη
Chandrasekhar Number

ν
η

Magnetic Prandtl Number

ν
κ

Prandtl Number

cH
4πN ′eη

Hall parameter

gαβd4

νκ
Rayleigh Number

κ Thermal Diffusivity

µ Viscosity

µ′ Viscoelasticity

µe Magnetic Permeability

ν Kinematic Viscosity
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ν ′ Kinematic Viscoelasticity

ρ Density

τij Shear Stress Tensor

θ Perturbations in Temperature

~g Gravity Force

~H Magnetic Field

~h Perturbations in Magnetic Field

eij Rate-of-Strain Tensor

k Resultant Wave Number

k1 Medium Permeability

kx Wave Number along x- direction

ky Wave Number along y- direction

n Growth Rate

N ′ Electron Number Density

p Pressure

T Temperature

T0 Temperature at Bottom layer

Td Temperature at Upper layer

Tij Stress Tensor
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1. Introduction 

 
 The formulation and derivation of the basic equations of a layer of a fluid heated from below in a 

porous medium, using the Boussinesq approximation, has been given in treatise by Joseph (1976). When a 

fluid permeates an isotropic and homogeneous porous medium, the gross effect is represented by Darcy’s 

law. The study of a layer of a fluid heated from below in a porous medium is motivated both theoretically 

and by its practical applications in engineering. Among the applications in engineering disciplines one can 

find the food process industry, chemical process industry, solidification and centrifugal casting of metals. 

The development of geothermal power resources has increased general interest in the properties of 

convection in porous media.  

 A comprehensive account of the effect of a uniform magnetic field on the layer of a Newtonian fluid 

heated from below was given by Chandrasekhar (1981). The effect of a magnetic field on the stability of the 

fluid flow is of interest in geophysics, particularly in the study of Earth core where the Earth’s mantle, which 

consists of a conducting fluid, behaves like a porous medium which can become convectively unstable as a 

result of differential diffusion. The results of flow through a porous medium in the presence of a magnetic 

field are applied in the study of the stability of a convective flow in the geothermal region. Lapwood (1948) 

studied the stability of a convective flow in hydrodynamics using Rayleigh’s procedure. Wooding (1960) 

considered the Rayleigh instability of a thermal boundary layer in the flow through a porous medium. 
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and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and 
destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic 
field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of 
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1. Introduction 
 
 The theoretical and experimental results of the onset of thermal instability (Benard convection), 
under varying assumptions of hydrodynamics and hydromagnetics, have been discussed by Chandrasekhar 
(1981) in his celebrated monograph. If an electric field is applied at right angles to the magnetic field, the 
whole current will not flow along the electric field. This tendency of the electric current is called the Hall 
current effect. The Hall effect is likely to be important in many geophysical and astrophysical situations as 
well as in flows of laboratory plasma.  Sherman and Sutton (1962) considered the effect of Hall currents on 
the efficiency of a magneto-fluid-dynamic generator. Gupta (1967) studied the problem of thermal instability 
in the presence of Hall currents and found that Hall currents have a destabilizing effect on the thermal 
instability of a horizontal layer of a conducting fluid in the presence of a uniform vertical magnetic field. The 
use of the Boussinesq approximation has been made throughout, which states that the variations of density in 
the equations of motion can safely be ignored everywhere except in association with the external force. The 
approximation is well justified in the case of incompressible fluids. 
 When the fluids are compressible, the equations governing the system become quite complicated. To 
simplify them, Boussinesq tried to justify the approximation for compressible fluids when the density 
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An investigation is made on the effect of suspended particles (fine dust) on double-diffusive convection of a compressible Rivlin-
Ericksen elastico-viscous fluid.The perturbation equations are analyzed in terms of normal modes after linearizing the relevant set
of equations. A dispersion relation governing the effects of viscoelasticity, compressibility, stable solute gradient, and suspended
particles is derived. For stationary convection, Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due to the vanishing
of the viscoelastic parameter. The stable solute gradient compressibility has a stabilizing effect on the system whereas suspended
particles hasten the onset of thermosolutal instability. The Rayleigh numbers and the wave numbers of the associated disturbances
for the onset of instability as stationary convection are obtained and the behaviour of various parameters on Rayleigh numbers
has been depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity,
suspended particles, and stable solute gradient which were not existing in the absence of these parameters.

1. Introduction

A layer of Newtonian fluid heated from below, under varying
assumptions of hydrodynamics, has been treated in detail by
Chandrasekhar [1]. Chandra [2] performed careful experi-
ments in an air layer and found contradiction between the
theory and the experiment. He found that the instability
depended on the depth of the layer. A Bénard-type cellular
convection with fluid descending at the cell centre was
observed when predicted gradients were imposed, if the layer
depth was more than 10mm. But if the layer of depth was
less than 7mm, convection occurred at much lower gradients
than predicted and appeared as irregular strips of elongated
cells with fluid rising at the centre. Chandra called this
motion columnar instability. The effect of particle mass and
heat capacity on the onset of Bénard convection has been con-
sidered by Scanlon and Segel [3]. They found that the critical
Rayleigh number was reduced solely because the heat capac-
ity of the clean gas was supplemented by that of the particles.
The effect of suspended particles was found to destabilize
the layer. Palniswamy and purushotham [4] have considered

the stability of shear flow of stratified fluids with fine dust and
have found the effect of fine dust to increase the region of
instability. A study of double-diffusive convection with fine
dust has been made by Sharma and Rani [5]. Kumar et al.
[6] have studied effect of magnetic field on thermal instability
of rotating Rivlin-Ericksen viscoelastic fluid, in which effect
of magnetic field has stabilizing as well as destabilizing effect
on the system. Also, Rayleigh-Taylor instability of Rivlin-
Ericksen elastico-viscous fluid through porous medium has
been considered by Sharma et al. [7]. They have studied
the stability aspects of the system. The effects of a uniform
horizontal magnetic field and a uniform rotation on the
problem have also been considered separately. Kumar [8] has
also studied the stability of superposed viscous-viscoelastic
Rivlin-Ericksen fluids in presence of suspended particles
through a porous medium. In one other study, Kumar and
Singh [9] have studied the stability of superposed viscous-
viscoelastic fluids through porous medium, in which effects
of uniform horizontal magnetic field and a uniform rotation
are considered. Kumar et al. [10] have also studied hydero-
dynamic and hyderomagnetic stability of Rivlin-Ericksen
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ABSTRACT

My research aims to analyze hall current effects and double diffusive effects in the

presence of suspended particles on the thermal instability of the non-Newtonian

viscoelastic fluid whose non linear relation between the stress and strain rate (which

includes deformation, rotation and extension) is given by Rivlin-Ericksen in 1955.

To understand the applied problem of real life, one must know the physics of the

problem and able to interpret the results obtained. In the introductory chapter, all the

basics which are essential for the understanding of the problems discussed in thesis are

well explained. Basic terms explained with the help of examples and real life

applications. No problem can be solved without assumptions, so fundamental

assumptions are also explained. In this chapter all the terms used in the thesis are

explained for the understanding of general investigations in the subsequent chapters 2,

3 and 4. Flow governing equations based on the various principles of conservation like

mass, momentum and energy are discussed in detail. Fluid properties, fluid types like

Newtonian and non-Newtonian fluid with their specific applications and uses are

explained in this introductory chapter. Concept of hydrodynamic stability of the system

in terms of various parameters is also explained. Also light is thrown on the procedure

of the problems formulated in the subsequent chapters.

Problem is formulated for non-Newtonian and viscoelastic fluid named

Rivlin-Ericksen in porous medium in chapter 2. Fluid is permeated with suspended

particles and uniform magnetic field is also considered. Governing equations for the

problem were obtained and the initial state of the system described in terms of various

parameters like velocity field, Pressure, magnetic field etc. is perturbed or disturbed.

All the disturbances analyzed and it is found that relation between strain rate and stress

become linear in case of stationary convection. Perturbations due to the magnetic field

were decaying while the perturbations due to the suspended particles and medium

permeability were growing. Oscillatory modes exist only due to the presence of

magnetic field.

Study devoted to the effect of magnetic field which change the direction of flow of

electric current when applied at right angle to electric field on the thermal instability in

porous medium of dusty viscoelastic fluid in chapter 3. Problem related to the effect of

iii



hall current on the thermal instability of viscoelastic fluid with dust in porous medium

was modeled in terms of mathematical equations, initial state of the system is perturbed

as in previous chapter by giving small perturbations to the physical quantities like

pressure, velocity, temperature, density and magnetic field etc. Linearize the system by

neglecting all the non linear terms. Dispersion relation is obtained after the normal

mode analysis. It is observed that perturbations due to suspended particles and hall

current were growing while the perturbations due to the magnetic field and

compressibility were decaying in the system for the case of stationary convection.

Magnetic field stabilize the effect of permeability on thermal instability. Oscillatory

modes were introduced by viscoelastic parameter, magnetic field and hall current.

Behavior of hall current, permeability, magnetic field and suspended particles on the

critical thermal Rayleigh number were shown graphically.

Double diffusive or thermosolutal convection i.e. the presence of more than one

component with different diffusivities like heat and salt in the fluid layer, explained in

chapter 4. Now temperature and salt field are two destabilizing sources for the density

difference whereas in standard Bénard problem, temperature field is the only

destabilizing source. This situation is similar to ocean where both salt and heat are

present simultaneously and chemical engineering with two or more components of

different molecular diffusivities. Also in case of stellar helium acts like salt in raising

the density and diffusing more slowly than heat. Mathematical model for the problem

of double-diffusive convection in presence of compressible fluid with fine dust was

designed in terms of equation. Using the same procedure and techniques or methods as

in previous chapters to find the solution. It is observed that relation between strain rate

and stress become linear in case of stationary convection due to vanishing of

viscoelastic parameter. Presence of stable solute gradient, suspended particles and

viscoelasticity introduced oscillatory modes. The stable solute gradient and

compressibility has a stabilizing effect and suspended particles hasten the onset of

thermosolutal instability.

Programming codes were written for the variations of Rayleigh numbers obtained

in the chapters 2, 3 and 4 by assigning numerical values to all other parameters, these

codes will calculate the Rayleigh number and will also plot the graph.
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Appendices

Appendix A : Table for Graphs

x Q1 = 25 Q1 = 50 Q1 = 75

1 5.2 10.2 15.2
2 7.725 15.225 22.725
3 10.267 20.267 30.267
4 12.813 25.313 37.813
5 15.36 30.36 45.36
6 17.908 35.408 52.908

Table 1: The variation of Rayleigh number R1 with wave number x,
for H ′ = 10, P = 2, θ = 450, ε = 0.5 and Q1 = 25, 50, 75 .

x H = 5 H = 10 H = 15

1 10.4 5.2 3.467
2 15.45 7.725 5.15
3 20.533 10.267 6.844
4 25.625 12.813 8.542
5 30.72 15.36 10.24
6 35.817 17.908 11.939

Table 2: The variation of Rayleigh number R1 with wave number x,
for P = 2, Q1 = 25, θ = 450, ε = 0.5 and H ′ = 5, 10, 15 .

x P = 0.1 P = 0.2 P = 0.6

1 9 7 5.667
2 12 9.75 8.25
3 15.333 12.667 10.889
4 18.75 15.625 13.542
5 22.2 18.6 16.2
6 25.667 21.583 18.861

Table 3: The variation of Rayleigh number R1 with wave number x,
for Q1 = 25, H ′ = 10, θ = 450, ε = 0.5 and P = 0.1, 0.2, 0.6 .

α P = 2 P = 4 P = 6

0.01 2620.019 3035.142 3317.077
0.02 655.015 758.791 829.273
0.03 291.125 337.244 368.568
0.04 163.764 189.703 207.321
0.05 104.814 121.412 132.687

Table 4: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14,
NQ = 20,M1 = 10, ε = 0.5 and for different values of P = 2, 4, 6.
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α NQ = 10 NQ = 20 NQ = 30

0.01 1310.01 3035.142 4975.616
0.02 327.507 758.791 1243.909
0.03 145.563 337.244 552.852
0.04 81.882 189.703 310.982
0.05 52.407 121.412 199.031

Table 5: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, P = 4,
M1 = 10, ε = 0.5 and for different values of NQ = 10, 20, 30.

α H = 500 H = 1000 H = 1500

0.01 5240.039 2620.019 1746.68
0.02 1310.03 655.015 436.677
0.03 582.25 291.125 194.083
0.04 327.528 163.764 109.176
0.05 209.627 104.814 69.876

Table 6: Variation of NR with α for a different value of H = (500, 1000, 1500)
for fixed values of G = 9.8, π = 3.14, P = 2,M1 = 10, ε = 0.5.

α M1 = 10 M1 = 20 M1 = 30

0.01 2620.019 1346.972 940.011
0.02 655.015 336.752 235.012
0.03 291.125 149.675 104.456
0.04 163.764 84.197 58.762
0.05 104.814 53.891 37.612

Table 7: Variation of NR with α for a fixed values H = 1000, G = 9.8, π = 3.14,
P = 2, NQ = 20, ε = 0.5 for different values of M1 = 10, 20, 30.

α S1 = 10 S1 = 20 S1 = 30

1 60.136 115.818 171.5
2 63.199 118.881 174.563
3 67.561 123.242 178.924
4 73.082 128.764 184.446
5 79.736 135.418 191.1

Table 8: The variation of Rayleigh number R1 with wave number x,
for G = 9.8, H = 2, H ′ = 10 and S1 = 10, 20, 30 .
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α H = 2 H = 4 H = 6

1 32.295 16.148 10.765
2 35.358 17.679 11.786
3 39.72 19.86 13.24
4 45.241 22.621 15.08
5 51.895 25.948 17.298

Table 9: The variation of Rayleigh number R1 with wave number x,
for G = 9.8, S1 = 10, H ′ = 5 and H = 2, 4, 6.

107



Appendix B : List of Symbols

6πµη′ Stoke’s drag coefficient

β Temperature Gradient

β′ Solute Gradient

δρ Perturbations in Density

δp Perturbations in Pressure

δij Kronecker Delta

ε Medium Porosity

µeH2d2

4πρ0νη
Chandrasekhar Number

ν
η

Magnetic Prandtl Number

ν
κ

Prandtl Number

cH
4πN ′eη

Hall parameter

gαβd4

νκ
Rayleigh Number

κ Thermal Diffusivity

µ Viscosity

µ′ Viscoelasticity

µe Magnetic Permeability

ν Kinematic Viscosity
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ν ′ Kinematic Viscoelasticity

ρ Density

τij Shear Stress Tensor

θ Perturbations in Temperature

~g Gravity Force

~H Magnetic Field

~h Perturbations in Magnetic Field

eij Rate-of-Strain Tensor

k Resultant Wave Number

k1 Medium Permeability

kx Wave Number along x- direction

ky Wave Number along y- direction

n Growth Rate

N ′ Electron Number Density

p Pressure

T Temperature

T0 Temperature at Bottom layer

Td Temperature at Upper layer

Tij Stress Tensor
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1. Introduction 

 
 The formulation and derivation of the basic equations of a layer of a fluid heated from below in a 

porous medium, using the Boussinesq approximation, has been given in treatise by Joseph (1976). When a 

fluid permeates an isotropic and homogeneous porous medium, the gross effect is represented by Darcy’s 

law. The study of a layer of a fluid heated from below in a porous medium is motivated both theoretically 

and by its practical applications in engineering. Among the applications in engineering disciplines one can 

find the food process industry, chemical process industry, solidification and centrifugal casting of metals. 

The development of geothermal power resources has increased general interest in the properties of 

convection in porous media.  

 A comprehensive account of the effect of a uniform magnetic field on the layer of a Newtonian fluid 

heated from below was given by Chandrasekhar (1981). The effect of a magnetic field on the stability of the 

fluid flow is of interest in geophysics, particularly in the study of Earth core where the Earth’s mantle, which 

consists of a conducting fluid, behaves like a porous medium which can become convectively unstable as a 

result of differential diffusion. The results of flow through a porous medium in the presence of a magnetic 

field are applied in the study of the stability of a convective flow in the geothermal region. Lapwood (1948) 

studied the stability of a convective flow in hydrodynamics using Rayleigh’s procedure. Wooding (1960) 

considered the Rayleigh instability of a thermal boundary layer in the flow through a porous medium. 
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1. Introduction 
 
 The theoretical and experimental results of the onset of thermal instability (Benard convection), 
under varying assumptions of hydrodynamics and hydromagnetics, have been discussed by Chandrasekhar 
(1981) in his celebrated monograph. If an electric field is applied at right angles to the magnetic field, the 
whole current will not flow along the electric field. This tendency of the electric current is called the Hall 
current effect. The Hall effect is likely to be important in many geophysical and astrophysical situations as 
well as in flows of laboratory plasma.  Sherman and Sutton (1962) considered the effect of Hall currents on 
the efficiency of a magneto-fluid-dynamic generator. Gupta (1967) studied the problem of thermal instability 
in the presence of Hall currents and found that Hall currents have a destabilizing effect on the thermal 
instability of a horizontal layer of a conducting fluid in the presence of a uniform vertical magnetic field. The 
use of the Boussinesq approximation has been made throughout, which states that the variations of density in 
the equations of motion can safely be ignored everywhere except in association with the external force. The 
approximation is well justified in the case of incompressible fluids. 
 When the fluids are compressible, the equations governing the system become quite complicated. To 
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An investigation is made on the effect of suspended particles (fine dust) on double-diffusive convection of a compressible Rivlin-
Ericksen elastico-viscous fluid.The perturbation equations are analyzed in terms of normal modes after linearizing the relevant set
of equations. A dispersion relation governing the effects of viscoelasticity, compressibility, stable solute gradient, and suspended
particles is derived. For stationary convection, Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due to the vanishing
of the viscoelastic parameter. The stable solute gradient compressibility has a stabilizing effect on the system whereas suspended
particles hasten the onset of thermosolutal instability. The Rayleigh numbers and the wave numbers of the associated disturbances
for the onset of instability as stationary convection are obtained and the behaviour of various parameters on Rayleigh numbers
has been depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity,
suspended particles, and stable solute gradient which were not existing in the absence of these parameters.

1. Introduction

A layer of Newtonian fluid heated from below, under varying
assumptions of hydrodynamics, has been treated in detail by
Chandrasekhar [1]. Chandra [2] performed careful experi-
ments in an air layer and found contradiction between the
theory and the experiment. He found that the instability
depended on the depth of the layer. A Bénard-type cellular
convection with fluid descending at the cell centre was
observed when predicted gradients were imposed, if the layer
depth was more than 10mm. But if the layer of depth was
less than 7mm, convection occurred at much lower gradients
than predicted and appeared as irregular strips of elongated
cells with fluid rising at the centre. Chandra called this
motion columnar instability. The effect of particle mass and
heat capacity on the onset of Bénard convection has been con-
sidered by Scanlon and Segel [3]. They found that the critical
Rayleigh number was reduced solely because the heat capac-
ity of the clean gas was supplemented by that of the particles.
The effect of suspended particles was found to destabilize
the layer. Palniswamy and purushotham [4] have considered

the stability of shear flow of stratified fluids with fine dust and
have found the effect of fine dust to increase the region of
instability. A study of double-diffusive convection with fine
dust has been made by Sharma and Rani [5]. Kumar et al.
[6] have studied effect of magnetic field on thermal instability
of rotating Rivlin-Ericksen viscoelastic fluid, in which effect
of magnetic field has stabilizing as well as destabilizing effect
on the system. Also, Rayleigh-Taylor instability of Rivlin-
Ericksen elastico-viscous fluid through porous medium has
been considered by Sharma et al. [7]. They have studied
the stability aspects of the system. The effects of a uniform
horizontal magnetic field and a uniform rotation on the
problem have also been considered separately. Kumar [8] has
also studied the stability of superposed viscous-viscoelastic
Rivlin-Ericksen fluids in presence of suspended particles
through a porous medium. In one other study, Kumar and
Singh [9] have studied the stability of superposed viscous-
viscoelastic fluids through porous medium, in which effects
of uniform horizontal magnetic field and a uniform rotation
are considered. Kumar et al. [10] have also studied hydero-
dynamic and hyderomagnetic stability of Rivlin-Ericksen
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Chapter 1

Introduction

In the introductory chapter, all the basic terms and procedures have been explained for

the understanding of general investigation in the subsequent chapters.
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1.1 Introduction

Fluid dynamics is subject of my research in which continuous movement of a

non-Newtonian viscoelastic Rivlin-Ericksen fluid is modelled. This subject is

challenging as the fluid is in motion. Fluid dynamics and Electromagnetic theory were

being developed independently of each other almost upto the first half of the 20th

century. A systematic study of the hydrodynamics of a conducting fluid immersed in a

magnetic field was started in 1942 by Alfvn. This study known as Hydromagnetics or

Magnetohydrodynamics(MHD).

Magnetohydrodynamics is the science where in the presence of magnetic field, the

motion of electrically conducting fluid is considered. The study of the interaction

between magnetic field and electrically conducting fluids is currently receiving

considerable interest. This interest has been spurred primarily by astrophysical

problems and by problems associated with the fusion reactor. Thus in a very lucid

manner, hydromagnetics or MHD is the union of fluid dynamics and electromagnetic

theory. It is concerned with physical systems specified by the equations that result from

the fusion of those of hydrodynamcis and electromagnetic theory. It is a well known

fact that when a conductor moves in a magnetic field, electric currents are induced in

it. These currents experience a mechanical force called the ‘Lorentz force’, due to

magnetic field. This force tends to modify the initial motion of the conductor.

Moreover, a magnetic field which is generated by the induced currents is added on to

the applied magnetic field. Thus there is a coupling between the motion of the

conductor and electromagnetic field, which is exhibited in a more pronounced form in

liquid and gaseous conductors. This is due to the fact that the molecules composing the

liquids and gases enjoy more freedom of movement than those of solid conductors.

The Lorentz force is usually small unless inordinately high magnetic fields are applied.

Therefore, this force is too small to alter the motion as a whole considerably but if it

acts for a sufficiently long period, the molecules of gases and liquids may get

accelerated considerably to change the initial state of motion of these types of

conductors. Therefore, the coupling between the electromagnetic fields and the motion

of a conductor could only be judged appreciably by confining attention to liquid and

gaseous conductors.
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1.2 Fluid

Fluid is something which can flow it can be gas or liquid. The study of

characteristic of fluid in motion is hydrodynamics and the study of characteristic of

fluid at rest is hydrostatic. Pressure difference applies force, which can create motion.

It is substance that flows or deforms continuously under the action of forces applied

may pressure difference or shearing (acting tangentially). Fluid has no ability to resist

the force of deformation. If there is no pressure difference or shearing force, it implies

that fluid is at rest and all other forces are perpendicular to the plane in which these

force acting.

1.2.1 Properties of Fluid

Temperature, density and pressure describe the thermodynamic state of the fluid

along with other properties like internal energy or entropy. Viscosity is unique property

of fluid by which we can differentiate between two fluids. Fluid has also other properties

like kinematic viscosity, velocity and surface tension.

Density

Density = Mass
Volume = Mass per unit volume.

It is the distribution of mass and denoted by ρ. Its dimension is M
L3 = ML−3. Density

is different for different liquids as :

• Density of water = 1000 kg/m3.

• Density of blood = 1060 kg/m3.

• Density of salty water = 1027 kg/m3.

• Density of air = 1.29 kg/m3.

Relative Density

Relative density is the dimensionless or unit less number which is used to compare

the heaviness of different fluids. It is defined as, Relative Density = Density of Material
Density of water .
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Relative density of Mercury = 13.6, which means that mass of mercury in the volume

of 1 m3 is 13600 kg which is 13.6 times the mass of water.

Pressure

Pressure is proportionate to force and inversely proportionate to area. It is defined

as, Pressure = Force
Area = Force per unit area. It is denoted by p and its unit is Pascal,

dimension of pressure is given by, 1 Pascal = 1 Newton
m2 = MLT−2

L2 = ML−1T−2.

Stress has also the same units. A physical quantity with no direction is scalar and

quantity having one direction is vector and quantity having more than one or many

directions is tensor. So pressure is the tensor as it has direction in all the directions.

For instance, fill air in the balloon, now pressure is inside the balloon, puncture the

balloon at the top and flow of air will be in upward direction so pressure will also have

an upward direction, similarly repeat it in any direction and you will find the pressure in

all the directions.

Pascal’s Law says that pressure inside a fluid is same throughout. Its direction is

always normal (at right angle) to the surface in contact. This law is for the case where

gravity is not included but pressure varies with depth inside fluid because of gravity

i.e. pressure will be different at different heights inside the fluid. Above the surface

of earth, atmosphere consists of molecules (having mass) so gravity will be in effect.

Atmosphere presses the earth. Molecules apply force on the surface of earth. Effect of

this force is F/A i.e. the pressure created by atmosphere called atmospheric pressure. It

is maximum on the earth and decreases gradually as we move up. Barometer is used to

measure atmospheric pressure.

Viscosity

Viscosity is the Property of fluid when it is in motion. In flowing liquid there is a

force which resist or opposes the motion is called viscosity or viscous drag. It is assumed

that fluid flow in layers and all the layers move with different velocity. The layer near

the lower fixed surface has zero velocity and the layers away from it have larger velocity

that is change in velocity as the height increases. When tangential force is applied

on surface of upper layer, stress is created which is called tangential stress. As we
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move down from the upper layer, the velocity decreases. More the tangential stress will

increase the velocity of all layers of fluid. It is denoted by τ and is directly proportional

to velocity gradient because during flow of liquid when tangential stress is increased the

velocity gradient also increases and τ = µdu
dy

, where µ is constant of proportionality,

known as the coefficient of viscosity. So, µ = Tangential stress
Velocity gradient = Force/area

Velocity/length .

For fixed tangential stress, liquid with greater value of constant µ will have less

velocity i.e. fluid is more viscous and vice versa. Viscous drag is opposite to the

direction of the tangential stress and it is between the two consecutive layers of fluid.

Viscosity is characteristic of liquid which is fixed. It will not change by increasing the

stress. Variables are force and velocity gradient .

Dimension of µ = Dimension of
[

Force/area
Velocity/length

]
= MLT−2/L2

(L/T )/L
= M

LT
= ML−1T−1.

Kinematic Viscosity

The ratio of coefficient of viscosity µ to the density ρ determines the effect of

viscosity on the motion of fluid is called kinematic viscosity. It is denoted by ν and

defined as ν = µ
ρ
. Its dimension is ML−1T−1

ML−3 = L2

T
= L2T−1.

Stokes’ Drag

It is the quantity of force due to viscous drag.

F = 6π ∗ coefficient of viscosity ∗ radius r of body ∗ velocity of body = 6πµrv.

Surface Tension

Surface tension is characteristic of the surface of liquid due to which it tries to

decrease its area and for this purpose applies a force of attraction between molecules in

the surface. For this reason surface of liquid behaves like stretched membrane.

Surface tension is the force that acts at each point of the surface of a fluid due to

interaction of the neighbouring molecules on the molecule situated at this point. It

expressed as the force per unit length of the surface in the tangential direction. It is

property of static liquid and it does not depend on the quantity. Surface tension is

calculated as force per unit length across an imaginary line drawn on the surface. Its

unit is Newton per meter which is different from the unit of force.
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Blade of steel does not sink in the water whenever its density is more than water

because of surface tension.

1.3 Buoyancy Force

When a solid is dip in a liquid and displaces its molecules, those displaced molecules

apply a force on the solid and trying to eject it out. This force is called buoyancy force

and phenomenon is buoyancy. It is the Natural force and solid dip inside the water

because of gravity i.e. thrust applied by solid in downward direction. Liquid molecule

apply the force in upward direction i.e. upthurst by the liquid.

1.4 Fluid Types

• Newtonian fluid.

• Non-Newtonian fluid.

Newtonian fluid

The fluid in which stresses are the linear composite function of the instantaneous

velocity gradients are called Newtonian fluids. In other words stresses are the linear

function of strain rate and strain rate are expressible in velocity gradients. Graph of

this relation of stress and strain rate is a straight line. Flow governing equations for

the Newtonian fluid are Navier-Stokes’ equations. Moreover Newtonian fluid cannot

explain every type of phenomenon.

Non-Newtonian fluid

The fluid in which stresses are the non linear composite function of the

instantaneous velocity gradients are called non-Newtonian fluids. In other words

stresses are the non linear function of strain rate and strain rate are expressible in

velocity gradients. Graph of this relation of stress and strain rate is a curve not a

straight line. Equations which govern fluid flow are obtained by using the principle of

conservation of mass and momentum.
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Rivlin-Ericksen Fluid

Several Models have been proposed for non-Newtonian fluids (having non linear

relation between the shearing stress and strain rate) like :

• Ostwaldde Waele power law model (1925, Ball point pen ink, molten chocolate).

• Carreau Yasuda model (1972, Properties of polystyrene fluids).

• Newtonian fluid Cross model (1965, Pseudoplastic systems).

• Sisko model (1958, Lubricating greases).

• Bingham Herschel-Bulkley model (1922, Paints, toothpaste, mango jam etc.)

• Rivlin-Ericksen model (1955), Known as Rivlin-Ericksen fluids proposed by

Ronald Samuel Rivlin and Jerald LaVerne Ericksen. This fluid model is known

as order fluid model: 2nd order, 3rd order or nth order. And many more models.

I focused my study on the Rivlin-Ericksen model for non-Newtonian fluid because

it can be used in various shear damping fluid devices, modeling of blood and in many

other safety equipments which can be helpful to the society.

In 1955, Rivlin-Ericksen proposed a theory of non-linear viscoelasticity based on the

assumption that the stress can be expresses in terms of velocity gradients. The resulting

constitutive equations for an isotropic incompressible viscoelastic liquid were shown in

the form :

Tkl = −pδkl + τkl, (1.1)

τkl = ρ

(
ν + ν ′

∂

∂t

)
ekl, (1.2)

ekl =
1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
(1.3)

where Tji → stress tensor, τji → shear stress tensor, eji → strain rate tensor, δji →

Kronecker delta, vi → velocity vector, xi → position vector, p → isotropic pressure,

µ→ viscosity and µ′ → viscoelasticity.

The flow of a conducting viscoelastic Rivlin-Ericksen fluid through Porous medium

in a long uniform straight tube of rectangular cross-section under the influence of

transverse uniform MF (magnetic field) has been studied by Gaurav Mishra et al. [1].

The upper limits to the complex growth rate of arbitrary oscillatory motions of growing
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amplitude in the Rivlin-Ericksen fluid heated from below in the presence of uniform

vertical magnetic field was studied by Ajaib S.Banyal1 et al. [2]. The problem of

thermal convection of a Rivlin-Ericksen fluid permeated with suspended particles in

porous medium heated from below with variable gravity is analyzed by the method of

positive operator by Pushap Lata [3]. An analysis is presented with MHD free

convective viscoelastic flow of a fluid through a porous medium bounded by an

oscillating porous plate in the slip flow regime in presence of heat source by

R.Choudhury and B.Das [4]. Study of Instability of Streaming Rivlin-Ericksen Fluid in

Porous Medium is made by B.Jana and J.Sarkar [5]. The effect of suspended particles

on thermal convection of incompressible Rivlin-Ericksen elastico-viscous fluid in a

porous medium is considered G.C.Rana and R.C.Thakur [6]. A theoretical study is

made to investigate the influences of relaxation and retardation times of viscoelastic

fluid on the onset of convection in a horizontal fluid layer heated underneath by Rajib

Basu1 and G.C.Layek [7]. The thermal instability of a layer of Rivlin-Ericksen

elastico-viscous rotating fluid in a porous medium in hydromagnetics is considered by

S.K.Kango and Vikram Singh [8]. An investigation is made on the effect of Hall

currents and suspended particles on the hydromagnetic stability of a compressible,

electrically conducting Rivlin-Ericksen elastico-viscous fluid by U.Gupta et al [9]. The

unsteady Hele-Shaw flow of a viscoelastic Rivlin-Ericksen conducting fluid between

two parallel walls by S.Sreekanth et al. [10]. Bertrand Rollin and Malcolm J.Andrews

extended the Goncharov model for nonlinear Rayleigh-Taylor instability of perfect

fluids to the case of Rivlin-Ericksen viscoelastic fluids with surface tension [11].

Oscillatory onset of convection is studied numerically for Rivlin-Ericksen, Maxwell

and Jeffreys liquids by considering free-free and rigid-free isothermal/adiabatic

boundaries by P.G. Siddheshwar et al. [12]. An analysis for the steady two-dimensional

boundary-layer stagnation-point flow of Rivlin-Ericksen fluid of second grade with a

uniform suction is carried out via symmetry analysis by M.B.Abd-el-Malek and

H.S.Hassan [13]. P.Riesen, K.Hutter and M.Funk present a viscoelastic constitutive

relation which describes transient creep of a modified second grade fluid enhanced with

elastic properties of a solid. The material law describes a Rivlin-Ericksen material and

is a generalization of existing material laws applied to study the viscoelastic properties

of ice [14]. The thermosolutal convection in Rivlin-Ericksen elastico-viscous fluid in
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porous medium is considered to include the effect of suspended particles and rotation.

The sufficient conditions for the validity of principle of exchange of stabilities are

obtained by A.K.Aggarwal [15]. Hyam Abbouda and Toni Sayah propose a

finite-element scheme for solving numerically the equations of a transient

two-dimensional grade-two non-Newtonian Rivlin-Ericksen fluid model [16].

Motivated by the aim of modelling the behavior of swirling flow motion, F.Carapau

present a 1D hierarchical model for an Rivlin-Ericksen fluid with complexity n = 2,

flowing in a circular straight tube with constant and no constant radius [17]. Ronald

Rivlin was an outstanding figure in the development of modern nonlinear continuum

mechanics in the second half of the 20th century. Much of his research is characterized

by the innovative, systematic and effective use of methods based on invariant theory.

A.J.M.Spencer had summarize his work in this area, and show that it continues to be

effective in applications to recent research in the mechanics of fibre-reinforced elastic

materials[18]. The flow of an unsteady third-grade Rivlin-Ericksen fluid on an

oscillating plate is discussed by Muhammad R.Mohyyuddin et al [19]. The stability of

the plane interface separating two viscoelastic (Rivlin-Ericksen) superposed fluids in

the presence of suspended particles is studied by P.Kumar and G.J.Singh [20].

Applications of non-Newtonian fluid

It is used in many safety equipments and some mathematical models had developed

on the basis of non -Newtonian fluid. Some useful applications are :

• It is used in the formation of various materials like rope, seatbelt and safety

harness.

• Some shear damping fluid devices are based on the shear thickening property of

the non-Newtonian fluid which can reduce the injuries in road accidents or sports.

• Blood behaves as a non-Newtonian fluid in the core. Thus, it is modeled as a

non-Newtonian fluid.

• Magma fluid is non-Newtonian fluid because it does not obey the Newton’s law

of viscosity. The study of these fluids is an important area of research.

• It can be used in military suit which would change to solid state when the bullet

hits.
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• Because of shear thickening characteristics of non-Newtonian, it is used in of

shoes. it remain in liquid state while running, walking, standing and change to

solid state while fast running. it can prevent injuries.

1.5 Basic Hydrodynamic Terms

1.5.1 Temperature and Heat

Temperature of an object is the degree of its hotness. It is the physical quantity

which decides the direction of flow of heat energy. Heat is a type of energy contents in

an object. Heat flow from an object of higher temperature to object of lower temperature.

For example, if we touch an ice, the heat will flow from our body to ice because our body

is at higher temperature. If we touch a hot water then heat will flow from hot water to

our body because our body is at lower temperature.

Convection

In Convection, heat energy is transferred from higher temperature region to lower

temperature region through the displacement of the particles of the medium. Thus

convective heat transfer is associated with displacement of fluid element.

In natural convection, fluid element is displaced due to density difference arising out

of temperature difference. In forced convection, fluid element is forced to change its

position by applied external energy. Heat transfer takes place due to the presence of

temperature difference. The driving force is the temperature difference.

Thermal Expansion

Whenever we give heat energy to molecules of an object, the activity /vibrations of

molecules increases and need a larger space to exist and what we get finally expansion

called thermal expansion.

In other words, when an object is heated, the distance between molecules increases

and therefore its volume increase. If any one dimension is negligible then we say that

area has increased, if depth and width both are negligible, then we consider only

longitudinal expansion.
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Let us consider the volume of one cubic meter and raise the temperature by one

degree by giving heat, change in volume is called the volumetric thermal expansion.

Coefficient of volumetric thermal expansion is denoted by α, where

α = Coefficient of expansion = Change in Volume
Original volume ∗ Change in temperature = V−V0

V0∗(T−T0)

⇒ New volume, V = V0[1 + α(T − T0)].

With the increase in volume the density will decrease and it will be given by the

relation ρ = ρ0[1 + α(T − T0)].

Specific Heat

Specific heat of an material is the heat required to raise the temperature of 1kg of that

material by 1 degree Celsius. Its unit is joule per kg pre degree Celsius and represented

by c. It is a property of material.

Specific heat at the constant volume is the heat required to raise the temperature of

one mole of gas by one degree Celsius by keeping volume constant. It is denoted by Cv.

Specific heat at the constant pressure is the heat required to raise the temperature of

one mole of gas by one degree Celsius by keeping the pressure constant whereas Volume

may change. It is denoted by Cp.

Specific heat at the constant pressure, Cp, is always greater than specific heat at the

constant volume, Cv.

Heat Capacity

Heat capacity of an object is the heat required to raise its temperature by one degree

Celsius. Its unit is joule. It is a property of an object and defined as,

Heat capacity of an object = Mass of an object ∗ Specific heat of the an object .

An object with more heat capacity can store more heat.

1.5.2 Laminar and Turbulent Flow

Fluid flow can happen in two ways, Laminar/Streamline or Turbulent/Random.

Suppose all the fluid molecules moving in row with certain velocity, if there is no

change in the sequence and velocity throughout, motion is laminar/streamline. In other

words, in laminar flow, fluid particles maintain its order and cross any particular point
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with same velocity. There will be no extra pressure on the walls of pipe in pipe flow

during laminar flow.

In turbulent flow, fluid particles do not maintain their serial order and overtake each

other. There will be an extra pressure on the walls of pipe in pipe flow during turbulent

flow and pipe can burst out. Fluid flows in lines and different lines can have different

velocity. All the particles have the same velocity with respect to line in laminar flow.

These lines are called streamline. Numerical value of Dimensionless Reynold’s number

decides the pattern of flow which depends on the velocity of fluid. If a liquid flows in

pipe then it is defined as Rn = ρvd
µ

where d→ is the diameter,

v → is the velocity,

ρ→ is the density,

µ→ is coefficient of viscosity.

For Rn < 1000, flow is laminar.

For Rn > 1000, flow is turbulent.

For Rn ≥ 1000 and Rn ≤ 2000, flow is mixed.

Engineers use this number to optimize the flows in pipe.

1.5.3 Compressible and Incompressible

Gases are highly compressible as compare to liquids. In case of gases, small change

in pressure may bring large change in specific volume
(

1
ρ

)
or in volume per unit mass.

In case of liquids, effect of pressure on density is neglected and we assume

ρ = Constant.

Dimensionless, Mach number decides whether the fluid flow is compressible or

incompressible which depends upon the velocity of fluid. It is denoted by M and

defined as, M = Fluid velocity
Speed of sound = v

a
= v

332m/s
. If fluid velocity, v > 99m/s, then

compressibility effects are to be considered.

1.5.4 Prandtl Number

During convection, conduction also take place in fluid. Both processes reduce the

temperature difference due to heat transfer. Rates of convection and conduction are
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different for different fluids. The dimensionless Parndtl number decides the which

process will dominate and defined as

Pr = Kinematic viscosity
Thermal diffusivity = ν

α
= cpµ

κ
, where

ν = µ
ρ
, kinematic viscosity

α = κ
ρcp

, thermal diffusivity

κ = thermal conductivity and

ρ = density, If fluid is more viscous or stickier, then Pr is greater and the heat transfer

will be less convective.

1.5.5 Porous Medium

Porous media defined as solid bodies that contain pores. Pores are void or the

empty spaces which must be distributed more or less frequently through the porous

material. Extremely small voids in a solid are called molecular interstices and very

large voids are called caverns. Pores are the void spaces intermediate in size between

caverns and molecular interstices. The pores in a porous system may be interconnected

or non interconnected. The interconnected part of the pore system is called the

effective pore space of the porous medium. Pore spaces can be ordered or disordered.

Porosity

A porous media can be characterized by a variety of geometrical properties. The ratio

of void to the total volume is called porosity and denoted by ε, where ε = Ratio of V oid
Total V olume

.

If the calculation of porosity is based upon the interconnected pore space interval of

the total pore space, the resulting quantity is termed as effective porosity. Porosity can

be measured by a variety of methods:

• Direct Method: Porosity is determined by measuring bulk volume of a piece of

porous material and then compact the body so as to destroy all the voids, and to

measure the difference between the volumes. This method is applicable only if

material is very soft like bread.

• Optical Method: In this method porosity is determined by looking at a section

of the porous medium under microscope. Numerical value of porosity obtained in

this manner of the random section must be the same as that of the porous material.
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• Density Method: If the density ρG of the material making up the porous medium

is known, then the bulk density ρB of the medium, which can be calculated, is

related to the fractional porosity ε, where ε = 1− ρG
ρB

.

• Gas Expansion Method: The basic principle of this method is the direct

measurement of the volume of air or gas contained in the pore space. This can be

achieved either by continuously evacuating the air out of the specimen.

Permeability

It is the measure of ease with which a fluid can move through a porous rock.

1.6 Fundamental Assumptions

We now discuss two fundamental assumptions.

• Continuum Hypothesis.

• Newtonian Mechanics.

Continuum Hypothesis

Fluid is appeared to smooth and continuous but in reality it has discrete structure

of molecules and atoms. A detailed molecular approach for understanding fluid flow is

very difficult. Concept of property at a point has no meaning if a point is located in the

void between the atoms or at the center of an atom. Let density ρ at a point P is defined

as ρP = lim
∇V→0

∆m

∆V

where ∇V → volume element surrounding a point P in a fluid containing total mass

∆m. If P lies at the center of the atom, then ∆V = 0 and ρP →∞. If P lies between in

the void between two atoms then ∆m = 0 and ρP → 0.

Thus at some points the density is infinite and at some points the density is zero.

In order to overcome these inconsistencies we shall assume that masses are uniformly

distributed over the whole volume and consider matter as continuous. By assuming

continuum hypothesis, we can give meaning to pressure, momentum, density at a point

and treat them as a continuous function of space and time variables.
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Newtonian Mechanics

Newtonian mechanics is one which follows the three law of motion of Newton. Thus

it is assumed that fluid velocity is very small as compared to the speed of light otherwise

the theory of relativity has to be considered.

1.7 Basic Hydrodynamical Equations

Fundamental equations governing fluid flow are :

• Mass Conservation (Continuity) equation.

• Momentum Conservation (Fluid Motion) equations.

• Energy equation.

• Equation of state.

1.7.1 Equation of Continuity - Conservation of Mass

Mass conservation on the fluid in the control volume states that

Rate of accumulation of mass in the control volume

= Rate of inflow of mass in control volume

− Rate of outflow of mass from control volume

+ Any source.

Let u, v, w be the components of the velocity ~v, ρ be the density at the point (x, y, z)

in a fluid domain, the mathematical equivalence of the verbal statement of conservation

of mass for every point in the fluid domain is

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

⇒ ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0

⇒ Dρ

Dt
+ ρ(∇.~v) = 0. (1.4)
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Case 1 : If ρ is homogeneous and incompressible i.e. ρ is same at all the points and

constant in the fluid domain i.e density of an element does not alter as that element

moves about, then equation of continuity becomes

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.5)

Case 2 : If ρ is heterogeneous and incompressible i.e. ρ is different at different points

and constant in the fluid domain then equation of continuity becomes

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.6)

Case 3 : For compressible steady fluid
(
∂
∂t

= 0
)
, equation of continuity becomes

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0. (1.7)

1.7.2 Equations of Motion - Conservation of Momentum

Momentum conservation on the fluid in the control volume states that

Rate of accumulation of momentum

= Rate of inflow of momentum

− Rate of outflow of momentum

+ Net external forces acting on the control volume.

Since momentum is a vector quantity, so there are 3 equations of momentum as:

Rate of accumulation of momentum in x-direction

= Rate of inflow of momentum in x-direction

− Rate of outflow of momentum in x-direction

+ External forces acting on control volume in x-direction.

Rate of accumulation of momentum in y-direction

= Rate of inflow of momentum in y-direction

− Rate of outflow of momentum in y-direction

+ External forces acting on control volume in y-direction.
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Rate of accumulation of momentum in z-direction

= Rate of inflow of momentum in z-direction

− Rate of outflow of momentum in z-direction

+ External forces acting on the control volume in z-direction.

Let u,v,w be the components of the velocity ~v, ρ be the density and p be the pressure

at the point (x, y, z) in a fluid domain or mass of fluid, and let X,Y,Z be the components

of external force ~F per unit mass at the same point. Mathematical equivalence of the

above verbal statement for every point in the fluid domain in x-direction is :

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρX.

Forces present everywhere in the fluid domain like pressure force, gravitational

force, viscous force, magnetic force and electric force etc. Mainly two types of forces

considered are body force (gravitational force) and stress (normal and shear stress).

Therefore X = ρgx + Σ (stress component in x-direction x area of the surface

perpendicular to stress component). There will be six such stress components if we

consider cuboid as the control volume, three in positive direction and three in negative

direction. So momentum balance equation at a point (x, y, z) in x-direction is

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρgx +

∂

∂x
Txx +

∂

∂y
Tyx +

∂

∂z
Tzx

where Tij = −pδij + τij , δij is the kronecker delta, and τij is shear stress component in

j direction and i is the axis to which the plane face is perpendicular and above equation

reduces to

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρgx −

∂p

∂x
+

∂

∂x
τxx +

∂

∂y
τyx +

∂

∂z
τzx.

(1.8)

Similarly other two equations in y-direction and z-direction are

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) +

∂

∂z
(ρvw) = ρgy −

∂p

∂y
+

∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy.

(1.9)
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∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂y
(ρvw) +

∂

∂z
(ρw2) = ρgz −

∂p

∂z
+

∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz.

(1.10)

There are four equations (three momentum balance equations and one continuity

equation) in 12 variables (u, v, w, τxx, τyx, τzx, τxy, τyy, τzy, τxz, τyz, τzz). So more

equations are required. Energy equation will generate the new variable, it will not

resolve the problem. More information is required to resolve the situation in the

formulation of model. Constitutive model/expression is required,one of such model is

τ = µdu
dy

, where µ is coefficient of viscosity that can be measured, τ is the

tangential/shearing stress and velocity gradient du
dy

is not a new variable. It means stress

τ can be expressed in the known variables, only need to identify the τ with one of the

nine shear stress components. It is specific for one-dimensional flow and further need

of constitutive law i.e the relation between stress and rate of strain which describes the

stresses within fluid.

As the fluid will continue to deform when stress is applied and does not take

original shape as the stress removed but deformation stops. So rate of strain is

considered not strain (considered in solid mechanics). Various combinations of

velocity gradients describe the strain rates as :

Rotational strain rate =
1

2

(
∂v

∂x
− ∂u

∂y

)
Shear strain rate =

1

2

(
∂v

∂x
+
∂u

∂y

)
Extensional strain rate in x-direction =

∂u

∂x

General isotropic (invariant to the orientation of co-ordinate axes) and linear relation

between stress and strain rate is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

(
∂uk
∂xk

)
δij

where µ is kinematic viscosity and λ is second coefficient of viscosity which is important

only in case of compressible fluids and disappears for incompressible fluid.
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Thus, for compressible fluids

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
+ λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
δij

and for incompressible fluids

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
.

Similarly other stress components can be expressed in terms of velocity gradients.

Substitute the values of all stress components in the equations (1.8) - (1.10) and we get

all the equations in the variables u, v, w, p and material property constants ρ, µ, λ.

Momentum balance equations (1.8)-(1.10) are called Navier-Stokes’ equations for

motion of viscous compressible fluid. These equations are valid only for the Newtonian

fluid which obeys isotropic condition and linear relation between stress and stress rate.

For non-Newtonian fluids different constitutive relations between stress (arises out of

fluid motion) and strain rate are required.

Navier-Stokes’ equation for viscous incompressible fluid are, in x-direction is

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.11)

Similarly other two equations in y-direction and z-direction are

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρgy −

∂p

∂y
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.12)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρgz −

∂p

∂z
+ µ

(
∂2u

∂x2
+
∂2v

∂y2
+
∂2w

∂z2

)
. (1.13)

Now we have closed system of equations i.e four equations in four variables u, v, w, p.
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1.7.3 Equation of Energy - Conservation of Energy

It is required in case of heat transfer. Principle of the conservation of energy in the

control volume states that

Rate of change of energy in the control volume

= Rate of inflow of energy− Rate of outflow of energy

+ Rate of heat addition to the fluid contained in control volume

+ Rate of work done by the forces acting on control volume

+ Generation of energy from sources within control volume.

The Mathematical equivalence of the above verbal statement for viscous

compressible fluids is

∂

∂t
(ρCvT ) +

∂

∂xj
(ρCvTuj) =

∂

∂xi

(
q
∂T

∂xj

)
− p∂uj

∂xj
+ Φ (1.14)

where Φ = 2µe2ij −
2

3
µ (eij)

2

is the ‘rate of viscous dissipation’ and gives the heat generated because of frictional

forces and

eij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]

is the ‘rate-of-strain tensor’, Cv is the specific heat when volume is constant and q is

the coefficient of heat conduction. For an incompressible fluid, eij = 0 and the

corresponding expression for Φ is given by Φ = 2µe2ij . Thus, for an incompressible

fluid, the equation of energy (1.14) takes the form

ρ
∂

∂t
(CvT ) + ρuj

∂

∂xj
(CvT ) =

∂

∂xj

(
q
∂T

∂xj

)
+ 2µe2ij. (1.15)

1.7.4 Equation of State

When the motion of compressible fluid is considered, a relation is required between

the state variable, pressure→ p, density→ ρ or volume→ V and temperature→ T , in
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order to obtain sufficient number of equations to determine the physical and dynamical

variables involved in the problem. Such a relation is called the equation of state and has

the general form g(p, V, T ) = 0 or g(p, ρ, T ) = 0.

If we neglect the compressibility of a fluid, its density remains constant. Thus for an

incompressible fluid the equation of state is ρ = Constant.

In viscous compressible flow: Equations of energy and motions are coupled. Energy

equation involves viscous dissipation function and temperature which are functions of

velocity. Thus temperature and velocity are coupled. Similarly equations of motion

involves velocity components u,v,w and pressure p which are function of temperature.

So velocity and temperature are coupled.

In viscous incompressible flow: Density, thermal conductivity and coefficient of

viscosity are fluid properties constants and equations of energy and motions are

uncoupled. Therefore four equations of continuity and motion can be solved for four

variables u, v, w and p. Using the values of velocity components we can solve the

energy equation and find temperature. When initial and boundary conditions are

specified, we can find the solution of above equations physically.

1.8 Initial and Boundary Conditions

Equations describing the motion are partial differential (not algebraic) equations

which are valid at all the points in flow domain so it is necessary to have boundary and

initial conditions in order to have a solution. Initial conditions may be of the form

u(x, y, z, t0) = f1 (x, y, z),

v(x, y, z, t0) = f2 (x, y, z),

w(x, y, z, t0) = f3 (x, y, z)

and p(x, y, z, t0) = f4 (x, y, z).

There are three types of boundary conditions :

• Dirichlet’s Boundary Conditions of the type u = Constant.

• Neumann’s Boundary conditions of the type ∂u
∂x

= Constant.

• Robin’s Boundary Condition of the mixed type au+ ∂u
∂x

= Constant.

For fluid flow situation we need more realistic or physical boundary conditions. At

inlet, flow entering the boundary so apply dirichlet’s boundary conditions. At outlet,
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flow is leaving the boundary , so apply the Robin’s boundary conditions and for free

shear boundary apply Neumann’s boundary conditions. For fully developed flow apply

same boundary conditions as at the outlet.

1.8.1 Implication of Boundary conditions:

Any kind of boundary condition for any problem is not justified. For unique

solution, solution continuously depend on initial and boundary conditions, with the

change of these conditions solution will change. This type of sensitivity is exhibited by

the boundary conditions. Type of conditions depend upon the physics of the problem.

So the mathematical problem must be well posed for the solution.

1.9 Hydrodynamic Stability - Basic Concepts

Let the system be defined by parameters as

Y1 → dimensions of the system ,

Y2 → velocity field,

Y3 → temperature gradients ,

Y4 → pressure gradients ,

Y5 → magnetic fields ,

Y6 → magnitude of forces ,

Y7 → density ,

and Y8...Yn → denotes other parameters.

The above system is stable with respect to any disturbance, if the initial state of

parameter is disturbed/perturbed and disturbance gradually decay in amplitude. Thus

system considered as stable, If it is stable with respect to all disturbances in all the

parameters. Otherwise the system is unstable. In other words, stability means there

exist no disturbance by which system is unstable and no disturbance grow in amplitude.
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1.10 Flow Instabilities

Flow instability occur everywhere and effect every fluid phenomenon, there are

several examples of fluid instability like smoke rises because it is lighter than

surrounding air. Instability is the first step in events which generate turbulence. Some

flow instabilities are:

• KH (Kelvin- Helmholtz) Instability/Double-Diffusive Convection.

• RT (Rayleigh-Taylor) Instability.

• Thermal (Bénard) Instability.

• Shock Wave Instability.

1.10.1 Thermal Instability - Bénard Convection

A layer of fluid heated from underside or below may becomes unstable because of

heavier fluid at the top and lighter one at the bottom. The heating element is at the

bottom. As heat is turn on, fluid become unstable and hot buoyant fluid get away before

it loses heat and buoyancy to its surroundings.

The critical parameter is the Rayleigh number which involves gravity(g), thermal

expansion coefficient(α), the vertical temperature gradient
(
dT
dz

)
, the effects which tends

to prevent instability i.e. kinematic viscosity(ν) and thermometric conductivity(κ) and

finally a length parameter or thickness of fluid layer (h) and it is given byRa = gαh4

κν
|dT
dz
|.

Rayleigh number can be increased by heating the bottom, As this dimensionless

number goes beyond critical value, instability sets in the form of Bénard cells. Below

the critical value the flow is stable. The earliest experiments to demonstrate the onset

of thermal instability are those of Bénard in 1900, though the phenomenon of thermal

convection itself had been recognized earlier by James Thomson(1882) and Count

Rumfort (1797).

Bénard’s Experiment

He carried out experiments on a very thin layers of fluid, about one mm in depth, or

less, standing on a leveled metallic plate maintained at constant temperature. He did

experiments on many liquids with different physical constants. He was particularly

interested in the role of viscosity. He observed when the temperature of the lower
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surface was gradually increased, at a certain instant, the layer became reticulated and

revealed its dissection into cells. There were motions inside the cells and two phases in

the succeeding development of the cellular pattern in which the cells are hexagonal,

equal and properly aligned. R.K.Zeytounian [21] had used the results of this

experiment during his research on convection in fluids.

Figure 1.1: Bénard cells

Schmidt-Milverton Principle for detecting the onset of thermal instability

Schmidt and Milverton incorporated a principle for the detection of the onset of

thermal instability which is so direct and simple that it served as the basis for all later

experiments in this area. They applied their principle to determine the critical Rayleigh

number for the onset of thermal instability in horizontal layers of water confined

between two rigid planes. The critical value RC = 1770± 140, they derived from their

experimental results and is satisfactory agreement with the theoretical value 1708.

The Precision experiments of Silveston

The experiments of Schmidt and Milverton have been repeated by Saunders,

Malku, Silveston and others to achieve greater range and precision. Siveston used

water, Heptane, Silicon AK-3, ethylene glycol and silicon oil AK-350 in his

experiments. From an experimentation of results obtained for the Rayleigh numbers in

the range 1000-10,000. Silveston derives for the critical Rayleigh number for the onset

of instability the value RC = 1700 ± 51. It is very good accord with the theoretical

value 1708.
24



Figure 1.2: Visualization of onset of thermal convection by Silveston. The photograph
on the left was obtained for the Rayleigh number 1,500 while the photograph on the right
was obtained for a Rayleigh number 1,800. The depth of the layer in these experiments
was 7 mm.

Figure 1.3: Visualization of onset of thermal convection by Silveston. Photographs for
different depths and increasing Rayleigh numbers.
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1.10.2 Double Diffusive Convection(or Thermosolutal Instability)

In the standard Bénard problem, the instability is driven by the density difference

which is caused by a temperature difference between the upper and the lower planes

bounding the fluid. If the fluid layer additionally has salt dissolved in it, then there are

potentially two destabilizing sources for the density difference i.e. the temperature field

and the salt field. When the simultaneous presence of two or more components with

different diffusivities is considered, the phenomenon of convection which arises is

called thermosolutal or double diffusive convection. For the specific case involving a

temperature field and sodium chloride it is frequently referred as thermohaline

convection. Double-diffusive convection has been proved, when we think about ocean

where both heat and salt (or some dissolved substances) are important. In

thermosolutal convection, when the thermal and solutal effect are aiding each other, the

convective flow behaviour remains qualitatively similar to that of pure thermal

convection. In these problems, the solute is commonly, but not necessarily, as salt.

Related effects have now been observed in other contexts and the name

double-diffusive convection has been used to cover this wide range of phenomena.

1.11 Suspended Particles

The effect of suspended particles on the stability of superposed fluids might be of

industrial and chemical engineering importance. Further motivation for this study is the

fact that knowledge concerning fluid-particle mixtures is not commensurate with their

industrial and scientific importance. Also we are motivated to the study because of the

decades old contradiction between the theory for onset of convection and experiement.

A contradiction between the theory and his experiments for the onset of convection in

fluids heated from below was observed by Chandra [22]. He performed the experiments

in an air layer and found that the instability depended on the depth of the layer. A

Bénard-type cellular convection with fluid descending at the cell centre was observed

when the predicted gradients were imposed, for layers deeper than 10 mm. However, if

the layer depth was less than 7 mm, convection, which was different in character from

that in deeper layers, occurred at much lower gradients than predicted.
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Chandra called this motion “Columnar instability.” A complete survey of

subsequent experimental studies, which confirm Chandra’s result, can be found in

report by Jones (1962) on the effect of different aerosols on stability. According to him

the effects, which may be important, are thermal forces, electrostatic charges,

evaporation, condensation and buoyancy forces. Jones concluded that columnar

instability is not an example of single-phase natural convection and that it is most

likely due to the unique properties of aerosol suspensions. Theoretical discussions of

columnar instability, have been given by Sutton (1950) and Segel and Stuart (1962).

Motivated by interest in fluid-particle mixtures generally and columnar instability

in particular, Scanlon and Segel [23] investigated the effect of suspended particles on

the onset of Bénard convection and found that the critical Rayleigh number was

reduced solely because the heat capacity of the pure gas was supplemented by that of

the particles.

The effect of suspended particles was found to destabilize the layer i.e. to lower the

critical temperature gradient. Sharma, Prakash and Dube (1976) have studied the effect

of suspended particles on the onset of Bénard convection in the presence of magnetic

field and rotation separately. They have found that the magnetic field and rotation have

stabilizing effects whereas the effect of suspended particles is to destabilize the layer.

1.12 Effect of Magnetic Field

Consider a fluid to be electrically conducting and be under the influence of a

magnetic field. The electrical conductivity of the fluid and the prevalence of magnetic

field contribute to effects of two kinds. First, by the motion of the electrically

conducting fluid across the magnetic lines of force, electric currents are generated and

the associated magnetic fields contribute to changes in the existing fields, and second,

the fact that the fluid elements carrying currents transverse magnetic lines of forces

contributes to additional forces acting on the fluid elements. It is this two-fold

interaction between the motions and the fields that is responsible for patterns of

behaviour which are often striking and unexpected. The interaction between the fluid

motions and magnetic fields are contained in Maxwell’s equations. As a consequence

of Maxwell’s equations, equations of hdyrodynamics are modified suitably.
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In the outer layers of stars like the Sun, thermal convection is affected by the

presence of magnetic fields. In stellar interiors and atmospheres, the magnetic field

may be variable and may altogether alter the nature of the instability. For example,

Kent (1966) studied the effect of a horizontal magnetic field, which varies in the

vertical direction, on the stability of parallel flows and showed that the system is

unstable under certain conditions, while in the absence of magnetic field, the system is

known to be stable.

1.13 Perturbation Method

Most of the physical problems facing engineers,applied mathematicians and

physicists today exhibit certain essential features which preclude exact analytical

solutions. Some of these features are nonlinearities, variable coefficients, complex

boundary shapes, and nonlinear boundary conditions at known or unknown boundaries.

Thus in order to obtain information about solutions of equations, we forced to resort to

approximations, numerical solutions or both. Perturbation method is one of those

approximation techniques. According to this technique some parameters of the initial

state of the system are perturbed, and by substituting all these perturbed variables in

the flow governing equations to obtain the perturbed or linearized equations.

Perturbation methods are also used in the study of dynamic stability of aircraft.

Let the equilibrium conditions of flight are given by u = u0, v = v0 and w = w0,

non-zero velocity in forward direction only and other conditions are p0, q0, r0 = 0,

φ0 = 0 and θ = θ0. Non linear equation of motion of aircraft is

m

(
∂u

∂t
+ qw − rv

)
= X −mg sin θ.

Now, perturb the equilibrium condition as

u = u0 + δu,

v = v0 + δv,

w = w0 + δw,

p = p0 + δp,

q = q0 + δq,
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φ = φ0 + δφ

and θ = θ0 + δθ

where δu, δv, δw, δp, δq, δφ, δθ are all perturbation in variables.

The above equations of motion are true for both the states, equilibrium and perturbed

state. Thus linearize the equations of motion of aircraft and then study the dynamics of

perturbed variables if all perturbed variables decaying in time then aircrafts stable in

that particular equilibrium condition.
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2.1 Introduction

The formulation and derivation of the basic equations of a layer of a fluid heated

from below in a porous medium, using the Boussinesq approximation, has been given

in treatise by Joseph [24]. When a fluid permeates an isotropic and homogeneous

porous medium, the gross effect is represented by Darcy’s law. The study of a layer of

a fluid heated from below in a porous medium is motivated both theoretically and by its

practical applications in engineering. Among the applications in engineering

disciplines one can find the food process industry, chemical process industry,

solidification and centrifugal casting of metals. The development of geothermal power

resources has increased general interest in the properties of convection in porous

media, Singh and Gupta [25].

A comprehensive account of the effect of a uniform magnetic field on the layer of a

Newtonian fluid heated from below was given by Chandrasekhar [26]. The effect of a

magnetic field on the stability of the fluid flow is of interest in geophysics, particularly

in the study of earth core where the earth’s mantle, which consists of a conducting

fluid, behaves like a porous medium which can become convectively unstable as a

result of differential diffusion. The results of flow through a porous medium in the

presence of a magnetic field are applied in the study of the stability of a convective flow

in the geothermal region. Lapwood [27] studied the stability of a convective flow in

hydrodynamics using Rayleigh’s procedure. Wooding [28] considered the Rayleigh

instability of a thermal boundary layer in the flow through a porous medium.

The fluid may not be absolutely pure but may, instead, be permeated with

suspended (or dust) particles. The effect of particle mass and heat capacity on the onset

of Bénard convection was considered by Scanlon and Segel [23]. The effect of

suspended particles was found to destabilize the layer. In another context,

Palaniswamy and Purushotham [29] studied the stability of a shear flow of stratified

fluids with fine dust and found the effect of fine dust to increase the region of

instability. The thermal instability of fluids in a porous medium in the presence of

suspended particles was studied by Sharma and Sharma [30]. The suspended particles

and the permeability of the medium were found to destabilize the layer. Sharma and

Kumar [31] studied the Rayleigh-Taylor instability of fluids in porous media in the
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presence of suspended particles and variable magnetic field. In all the above studies,

the fluid has been considered to be Newtonian. One such class of elastico- viscous

fluids is the Rivlin-Ericksen fluid [32]. Srivastava and Singh [33] studied the unsteady

flow of the dusty elastico-viscous Rivlin-Ericksen fluid through channels of different

cross sections in the presence of a time-dependent pressure gradient. In other study,

Garg et al. [34] studied the rectilinear oscillations of a sphere along its diameter in a

conducting dusty Rivilin-Ericksen fluid in the presence of a uniform magnetic field.

Sharma and Kumar [35] studied the thermal instability of a layer of a Rivlin-Ericksen

elastico-viscous fluid in the presence of suspended particles. In another study, Kumar

[36] considered the stability of suspended Rivlin-Ericksen elastico-viscous fluids

permeated with suspended particles in a porous medium. It is this class of

elastico-viscous fluids we are particularly interested in studying the effect of suspended

or dust particles on the Rivlin-Ericksen elastico-viscous fluid heated from below in a

porous medium in the presence of a uniform horizontal magnetic field.

2.2 Formulation of the Problem

Let us consider the following physical quantities for the formulation of the problem.

Tensor quantities like stress, rate of strain, shear stress , Kronecker delta be represented

by Tkl, ekl, τkl and δkl respectively. Vector quantities like velocity and position vector

be represented by ~v and ~x respectively. p denotes the isotropic pressure and material

properties viscosity and viscoelasticity be denoted by µ and µ′. Constitutive relations

between the stress and rate of strain for the Rivlin-Ericksen fluid are

Tkl = −pδkl + τkl,

τkl = ρ

(
ν + ν ′

∂

∂t

)
ekl,

ekl =
1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
. (2.1)

In porous medium, an infinite horizontal layer of depth d of an electrically

conducting viscoelastic Rivlin-Ericksen fluid which is acted on by gravity force
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~g(0, 0,−g) and a uniform horizontal magnetic field ~H(0, 0, H) is considered. For the

study of thermal instability, layer is heated from underside and steady adverse

temperature gradient β is maintained , where β = |dT
dz
|.

Let the fluid properties like pressure, temperature, density , velocity of pure fluid,

kinematic viscosity and kinematic viscoelasticity be denoted by p, T, ρ, ~v(u, v, w), ν and

ν ′ respectively. Properties of suspended particle like velocity and number density be

represented by u(x, t) andN(x, t). ~g is the gravitational acceleration, epsilon represents

the medium porosity and k1 represents the medium permeability. K = 6πµη′ is the

Stokes’ drag coefficient for the particle having the radius η′.

Then the flow governing equations of conservation of mass and momentum in a

porous medium for the considered fluid in the presence of magnetic field and suspended

particles are

1

ε

[
∂~v

∂t
+

1

ε
(~v.∇)~v

]
= − 1

ρ0
∇p− g

(
1 +

δρ

ρ0

)
~λ

− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN

ρ0ε
(~u− ~v) +

µe
4πρ0

[(
∇× ~H

)
× ~H

]
(2.2)

and ∇.~v = 0. (2.3)

In the above equations of conservation of momentum (2.2), some assumptions

regarding the shape and velocity of the suspended particles are taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• Relative velocities between the fluid and particles is small.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Gravity, pressure, Darcian force and magnetic field effect on the suspended

particles are negligibly small, so ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.
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So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~u

∂t
+

1

ε
(~u.∇)~u

]
= KN(~v − ~u) and (2.4)

ε
∂N

∂t
+∇.(N~u) = 0. (2.5)

Let at constant volume, Cv is the heat capacity of the fluid, Cpt denote the heat

capacity of the particles, T is the temperature and q is effective thermal conductivity of

the pure fluid. If the fluid and the particles are in thermal equilibrium, then equation of

heat conduction is

[ρ0Cvε+ ρsCs(1− ε)]
∂T

∂t
+ ρ0Cv(~v.∇)T +mNCpt

(
ε
∂

∂t
+ ~u.∇

)
T = q∇2T

(2.6)

where ρs is the density and Cs is the heat capacity of the solid matrix. Maxwell’s

equations yield:

ε
∂ ~H

∂t
= ( ~H.∇)~v + εη∇2 ~H and (2.7)

∇. ~H = 0 (2.8)

where η → The electrical resistivity. Equation of state for fluid is

ρ = ρ0 (1− αδT ) = ρ0 [1− α(T − T0)] (2.9)

where α → co-efficient of thermal expansion, ρ0 → density of the fluid at the bottom

surface z = 0 and T0 → at temperature of the fluid at z = 0. Initially the system is taken

as quiescent layer (no settling) with a uniform particle distribution N0. Initial values of

the variables are

~u = (0, 0, 0), ~v = (0, 0, 0), N0 = Constant, T = −βz.

which is an exact solution to the governing equations.
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2.2.1 Perturbation of Equations

Let δp denote the perturbation in pressure p, δρ denote the perturbation in density

ρ, θ denote the perturbation in temperature T , ~v(u, v, w) denote the perturbation in

fluid velocity (zero initially), ~u(l, r, s) denote the perturbation in particle velocity (zero

initially), N denote perturbations in suspended particles number density N0 and

~h(hx, hy, hz) denote perturbations in magnetic field ~H(0, 0, H). Since density is

depends upon the temperature, so perturbation in temperature will bring change is

density defined by the relation δρ = −αρ0θ.

Governing equations of flow hold true for both the initial and perturbed state.

Therefore, linearized perturbed equations of the problem are

1

ε

∂~v

∂t
= − 1

ρ0
∇δp− gαθλ− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN

ρ0ε
(~u− ~v) +

µe
4πρ0

[(
∇× ~h

)
× ~H

]
,

(2.10)

∇.~v = 0, (2.11)

mN0
∂~u

∂t
= KN0(~v − ~u), (2.12)

(E + hε)
∂θ

∂t
= β(w + hs) + κ∇2θ, (2.13)

ε
∂~h

∂t
= ( ~H.∇)~v + εη∇2~h (2.14)

and ∇.~h = 0 (2.15)

where E = ε+ (1− ε)ρsCs
ρ0Cv

, h =
mN0Cpt
ρ0Cv

and κ =
q

ρ0Cv
.

Eliminating u in equation (2.10) by using equation (2.12), write the resulting

equation in scalar components eliminate u, v, δp, hx, hy between them, with the help of

equations (2.11) and (2.15), we obtain

n′∇2w +
ε

k1

(
ν + ν ′

∂

∂t

)
∇2w − εgα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
− µeH

4πρ0

∂

∂x
∇2hz = 0, (2.16)
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(
m

K

∂

∂t
+ 1

)[
(E + hε)

∂

∂t
− κ∇2

]
θ = β

[(
m

K

∂

∂t
+ 1

)
+ h

]
w and (2.17)

ε

[
∂

∂t
− η∇2

]
hz = H

∂w

∂x
(2.18)

where n′ =
∂

∂t

[
1 +

mN0K
ρ0

m ∂
∂t

+K

]

2.3 Dispersion relation

Perturbed quantities are assumed to be of the following form for the analysis of

disturbances into normal modes

[w, θ, hz] = [W (z),Θ(z), X(z)] exp (ikxx+ ikyy + nt) (2.19)

where kx is the wave number along x-direction, and ky is wave number along

y-direction. k =
√
k2x + k2y = resultant wave number and n = growth rate = complex

constant in general. Using expression (2.19), equations (2.16)-(2.18) in a non

dimensional form become[
σ′

ε
+

1

p1
(1 + Fσ)

] (
D2 − a2

)
W +

gαd2a2Θ

ν
− ikxµeHd

2

4πρ0ν

(
D2 − a2

)
X = 0,

(2.20)[τνσ
d2

+ 1
] [(

D2 − a2
)
− (E + hε)p3σ

]
Θ = −βd

2

κ

[
H ′ +

τνσ

d2

]
W (2.21)

and
[(
D2 − a2

)
− p2σ

]
χ = −ikxHd

2

εη
W (2.22)

where the co-ordinates x, y, z have expressed in the new unit of length d, time t in the

new unit of length d2

κ
and put a = kd, σ = nd2

ν
, p3 = ν

κ
→ Prandtl number, p2 = ν

η
→

magnetic Prandtl number, p1 = k1
d2
→ dimensionless medium permeability, F = ν

d2
→

dimensionless kinematic viscoelasticity, σ′ = n′d2

ν
, H ′ = h+ 1, τ = mκ

Kd2
and D = d

dz
.
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By eliminating X and Θ between equations (2.20)-(2.22), we obtain

[
1 +

τνσ

d2

] [(
D2 − a2

)
− (E + hε)p3σ

] [{σ′
ε

+
1

p1
(1 + Fσ)

}[(
D2 − a2

)
− p2σ

]
− k2xQ

ε

] (
D2 − a2

)
W = Ra2

[
H ′ +

τνσ

d2

] [(
D2 − a2

)
− p2σ

]
W (2.23)

where R = gαβd4

νκ
= Rayleigh number and Q = µeH2d2

4πρ0νη
= Chandrasekhar number.

The boundary conditions, suitable for the problem, are Chandrasekhar [26]. For the

solution to the problem, free boundaries are considered which is little artificial in nature.

Also Temperatures at the boundaries are kept fixed and the medium adjoining the fluid

is perfectly conducting.

W = 0, D2W = 0, Θ = 0, X = 0 at z = 0 and z = 1. (2.24)

Obviously that the even order derivatives of W vanish on the boundaries and hence

the proper solution of W characterizing the lowest mode is

W = W0sin(πz) (2.25)

whereW0 = Constant. By putting the solution (2.25) in equation (2.23), the dispersion

relation can be written as

R1 =

(1 + x) [(1 + x) + (E + hε)iσ1p1]
(

1 + iντπ2σ1
d2

)
∗[{

iσ′1
ε

+ 1
P

(1 + iπ2Fσ1)
}
{(1 + x) + iσ1p2}+ Q1xcos2θ

ε

]
x
[
H ′ + iνπ2τσ1

d2

]
{(1 + x) + iσ1p2}

(2.26)

where x =
a2

π2
, iσ1 =

σ

π2
, P = π2p1 and R1 =

R

π4
,

iσ′1 =
σ′

π2
, Q1 =

Q

π2
, and kx = kcosθ.

2.4 Stationary convection

Put σ = 0, for stationary convection, and the dispersion relation (2.26) becomes

R1 =
(1 + x)

[
1+x
P

+ Q1xcos2θ
ε

]
xH ′

. (2.27)
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Thus, it is found that for stationary convection the viscoelastic parameter F

vanishes with σ and the Rivlin-Ericksen elastico-viscous fluid behaves like an ordinary

Newtonian fluid. To study the effects of the magnetic field, suspended particles and

medium permeability, we examine the nature of dR1

dQ1
, dR1

dH′
, and dR1

dP
, Equation (2.27)

yields:

dR1

dQ1

=
(1 + x)cos2θ

H ′ε
, (2.28)

dR1

dH ′
= −

(1 + x)
[
1+x
P

+ Q1xcos2θ
ε

]
xH ′2

(2.29)

and
dR1

dP
= −(1 + x)2

xH ′P 2
. (2.30)

Which shows that the magnetic field has a stabilizing effect whereas the suspended

particles and medium permeability have a destabilizing effect on thermal convection in

the Rivlin-Ericksen fluid permeated with suspended particles in a porous medium in

hydrodynamics for stationary convection. Graphically, we analyse the magnetic field,

suspended particles and medium permeability as follows:
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Figure 2.1: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for H ′ = 10, P = 2, θ = 450, ε = 0.5 and Q1 = 25, 50, 75.

38



1 2 3 4 5 6
0

5

10

15

20

25

30

35

  H/=5
  H/=10
  H/=15

R1

X

Figure 2.2: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for P = 2, Q1 = 25, θ = 450, ε = 0.5 and H ′ = 5, 10, 15.
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Figure 2.3: The variation of dimensionless Rayleigh number (R1) with wave number
(x), for Q1 = 25, H ′ = 10, θ = 450, ε = 0.5 and P = 0.1, 0.2, 0.6.

In Figure2.1 (refer table 1), we have x = 1, 2, 3, 4, 5, 6 andH ′ = 10, P = 2, ε = 0.5,

θ = 450 and Q1 = 25, 50, 75, found that, if magnetic field is increased growth rate is

also increased, shows the effect of stabilization on the system.

Whereas in Figure2.2 (refer table 2), x = 1, 2, 3, 4, 5, 6, H ′ = 5, 10, 15, P = 2 and

ε = 0.5, θ = 450, Q1 = 25, shows that, if suspended particles are increased growth rate

is decreased, gives the effect of destabilizing effect on the system.

In Figure2.3 (refer table 3), by using values of H ′ = 10, ε = 0.5, θ = 450, Q1 = 25,

P = 0.1, 0.2, 0.6 and x = 1, 2, 3, 4, 5, 6, found that, when medium permeability is

increased, growth rate is decreased, gives the destabilizing effect on the system.
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2.5 Stability of the system of oscillatory modes

Multiplying equation (2.20) by the complex conjugate of W i.e W ∗, integrating over

the range of z from z = 0 to z = 1 and making use of equations (2.21) and (2.22)

together with the given physical boundary conditions (2.24), we obtain

[
σ′

ε
+

1

p1
(1 + Fσ)

]
I1 −

gακa2

νβ

[
d2 + ντσ∗

H ′d2 + ντσ∗

]
[I2 + (E + hε)p3σ

∗I3]

+
µeηε

4πρ0ν
[I4 + p2σ

∗I5] = 0 (2.31)

where I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 ==

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz,

I3 =

∫ 1

0

|Θ|dz, I4 =

∫ 1

0

(
|D2X|2 + 2a2|DX|2 + a4|X|2

)
dz,

I5 =

∫ 1

0

(
|DX|2 + a2|X|2

)
dz

and σ∗ → complex conjugate of σ. The integrals I1, I2, I3, I4, I5 are all positive definite.

Putting σ = iσ, f = mN0

ρ0
, and by equating the imaginary parts of equation (2.31), we

obtain

σi

[{
1

ε

(
1 +

f

1 + p23τ
2σ2

i

)
+
F

p1

}
I1 +

gακa2

νβ (H ′2d4 + ν2τ 2σ2
i ){

d2ντhI2 + p3(E + hε)(H ′d4 + ν2τ 2σ2
i )I3

}
+
µeηεp2
4πρ0ν

I5

]
= 0. (2.32)

Equation (2.32) yields that σi = 0 or σi 6= 0, which means that modes may be

non-oscillatory or oscillatory. In the absence of the magnetic field, equation (2.32) is

reduced to

σi

[{
1

ε

(
1 +

f

1 + p21τ
2σ2

i

)
+
F

p1

}
I1 +

gακa2

νβ (H ′2d4 + ν2τ 2σ2
i ){

d2ντhI2 + p1(E + hε)(H ′d4 + ν2τ 2σ2
i )I3

}]
= 0. (2.33)

Thus, σi = 0 ⇒ the principle of exchange of stabilities is valid but oscillatory

modes are not allowed. Whereas the quantity inside the brackets is positive definite.

The presence of the magnetic field introduces oscillatory modes.

40



2.6 Conclusion

Presence of Magnetic field showed the stabilizing effect whereas presence of

suspended particles and medium permeability showed the destabilizing effect in the

study of Rivlin-Ericksen fluid.
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Chapter 3

Hall Effect on Thermal Instability of

Viscoelastic Dusty Fluid in Porous

Medium

Published in International Journal of Applied Mechanics and Engineering, 2013,

vol.18, No.3, pp.871-886, DOI: 10.2478/ijame-2013-0052.

Inculded in the Astrophysics Database System maintaind by NASA (USA).
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3.1 Introduction

The theoretical and experimental results of the onset of thermal instability (Bénard

convection), under varying assumptions of hydrodynamics and hydromagnetics, have

been discussed by Chandrasekhar [26] in his celebrated monograph. If an electric field

is applied at right angles to the magnetic field, the whole current will not flow along the

electric field. This tendency of the electric current is called the Hall current effect. The

Hall effect is likely to be important in many geophysical and astrophysical situations

as well as in flows of laboratory plasma, Singh and Gupta [37]. Sherman and Sutton

[38] considered the effect of Hall currents on the efficiency of a magneto-fluid-dynamic

generator. Gupta [39] studied the problem of thermal instability in the presence of Hall

currents and found that Hall currents have a destabilizing effect on the thermal instability

of a horizontal layer of a conducting fluid in the presence of a uniform vertical magnetic

field. The use of the Boussinesq approximation has been made throughout, which states

that the variations of density in the equations of motion can safely be ignored everywhere

except in association with the external force. The approximation is well justified in the

case of incompressible fluids.

When the fluids are compressible, the equations governing the system become quite

complicated. To simplify them, Boussinesq tried to justify the approximation for

compressible fluids when the density variations arise principally from thermal effects.

Spiegel and Veronis [40] simplified the set of equations governing the flow of

compressible fluids under the following assumptions:

• The depth of the fluid layer is much less than the scale height, as defined by them.

• The fluctuations in temperature, density and pressure, introduced due to motion,

do not exceed their total static variations.

Under the above approximations, the flow equations are the same as those for

incompressible fluids, except that the static temperature gradient is replaced by its

excess over the adiabatic one and Cv is replaced by Cp. In geophysical situations, the

fluid is often not pure but contains suspended particles. Scanlon and Segel [23]

considered the effects of suspended particles on the onset of Bénard convection and

found that the critical Rayleigh number is reduced because of the heat capacity of the

particles. The suspended particles were thus found to destabilize the layer.
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Palaniswamy and Purushotham [29] studied the stability of shear flow of stratified

fluids with fine dust and found the fine dust to increase the region of instability. The

fluids were considered to be Newtonian and the medium was considered to be

non-porous in all the above studies.

There is growing importance of non-Newtonian fluids in geophysical fluid

dynamics, chemical technology and petroleum industry. Bhatia and Steiner [41]

studied the problem of thermal instability of a Maxwellian viscoelastic fluid in the

presence of rotation and found that rotation has a destabilizing influence in contrast to

the stabilizing effect on an ordinary viscous (Newtonian) fluid. The thermal instability

of an Oldroydian viscoelastic fluid acted on by a uniform rotation was studied by

Sharma [42]. There are many elastico-viscous fluids that cannot be characterized by

Maxwell’s or Oldroyd’s constitutive relations. The Rivlin-Ericksen elastico-viscous

fluid is one such fluid. Rivlin and Ericksen [32] studied the stress, deformation,

relaxations for isotropic materials. Thermal instability in viscoelastic Rivlin-Ericksen

fluids in the presence of rotation and magnetic field, separately, was investigated by

Sharma and Kumar [43] and [44]. Sharma and Kumar [45] studied the hydromagnetic

stability of two Rivlin-Ericksen elasticoviscous superposed conducting fluids. Kumar

and Singh [46] studied the stability of two superposed Rivlin-Ericksen viscoelastic

fluids in the presence of suspended particles. In another study, Kumar et al. [47]

studied the hydrodynamic and hydromagnetic stability of two stratified Rivlin-Ericksen

elasticoviscous superposed fluids.

The flow through porous media is of considerable interest for petroleum engineers

and geophysical fluid dynamicists. A great number of applications in geophysics may

be found in the books by Phillips [48], Ingham and Pop [49], and Nield and Bejan [50].

When the fluid slowly percolates through the pores of a macroscopically homogeneous

and isotropic porous medium, the gross effect is represented by Darcy’s law. As a

result of this macroscopic law, the usual viscous term in the equations of fluid motion

is replaced by the resistance term − 1
k1

(
µ+ µ′ ∂

∂t

)
q, where µ and µ′ are the viscosity

and viscoelasticity of the Rivlin-Ericksen fluid, k1 is the medium permeability and q is

the Darcian (filter) velocity of the fluid. Lapwood [27] studied the stability of a

convective flow in hydromagnetics in a porous medium using Rayleigh’s procedure.

The Rayleigh instability of a thermal boundary layer in flow through a porous medium
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was considered by Wooding [28]. The stability of superposed Rivlin-Ericksen

elastico-viscous fluids permeated with suspended particles in a porous medium was

considered by Kumar [36]. Kumar et al. [51] studied the instability of two rotating

viscoelastic (Rivlin-Ericksen) superposed fluids with suspended particles in a porous

medium. In another study, Kumar et al. [52] considered the MHD instability of rotating

superposed Rivlin-Ericksen viscoelastic fluids through a porous medium.

Here our interest is to bring out the suspended particles effect on thermal instability

of a compressible viscoelastic (Rivlin-Ericksen) fluid in a porous medium including the

effect of Hall currents.

3.2 Formulation of the Problem

In porous medium, an infinite horizontal layer of thickness d confined between

two planes z = 0 and z = d of an compressible viscoelastic Rivlin-Ericksen fluid in

the presence of uniform horizontal magnetic field ~H(0, 0, H) is considered. For the

study thermal instability, layer is heated from underside and steady adverse temperature

gradient β is maintained, where β = |dT
dz
|. The equations of motion and continuity for

the fluid are:

ρ

ε

[
∂~v

∂t
+

1

ε
(~v.∇)~v

]
= −∇p− ρg~λ− 1

k 1

(
µ+ µ′

∂

∂t

)
~v +

KN

ε
(~u− ~v) + µe

4π

(
∇× ~H

)
× ~H

(3.1)

and ε
∂ρ

∂t
+∇.(ρ~v) = 0 (3.2)

where ρ → density, µ → viscosity, µ′ → viscoelasticity, p → pressure and

~v(u, v, w) → velocity of the pure fluid. Here ~u(l, r, s) → velocity of the suspended

particles, N(x, t) → number density of the suspended particles, ε → medium porosity,

k1 → medium permeability, µe → magnetic permeability, g → acceleration due to

gravity, x = (x, y, z), ~λ(0, 0, 1) and K = 6πµη′, η′ being the particle radius, is the

Stokes’ drag coefficient.
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In the above equations of conservation of momentum (3.1), Some assumptions

regarding the shape and velocity of the suspended particles are taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• Relative velocities between the fluid and particles is small.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Gravity, pressure, Darcian force and magnetic field effect on the suspended

particles are negligibly small, so ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.

So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~u

∂t
+

1

ε
(~u.∇) ~u

]
= KN(~v − ~u) (3.3)

and ε
∂N

∂t
+∇.(N~u) = 0. (3.4)

Let at constant volume, Cv is the heat capacity of the fluid, at constant pressure, Cp

is the heat capacity of the fluid, Cpt denote the heat capacity of the particles T is the

temperature and q is effective thermal conductivity of the pure fluid. Assuming, fluid

particles are in thermal equilibrium, then equation of heat conduction is given by

[ρCvε+ ρsCs(1− ε)]
∂T

∂t
+ ρCv(~v.∇)T +mNCpt

(
ε
∂

∂t
+ ~u.∇

)
T = q∇2T (3.5)

where ρs is the density and Cs is the heat capacity of the solid matrix, R.C.Sharma and

U.Gupta [53] had used the same parameters for their study.
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Maxwell’s equations in the presence of hall currents give

∇. ~H = 0 (3.6)

and ε
∂H

∂t
= ∇× (~v × ~H) + εη∇2 ~H − cε

4πN ′e
∇×

[
(∇× ~H)× ~H

]
(3.7)

where η → resistivity, c→ speed of light,N ′ → electron number density and e is charge

of an electron. The initial state of the system is taken to be a quiescent layer (no settling)

with a uniform particle distribution N0 and is given by

~u = (0, 0, 0), ~v = (0, 0, 0), ~H = (0, 0, H),

T = T (z), p = p(z) ρ = ρ(z) and N = N0 = constant. (3.8)

Following the Spiegel and Veronis’ [40] we have

T (z) = −βz + T0, p(z) = pm − g
∫ z

0

(ρm + ρ0) dz,

ρ(z) = ρm [1− αm(T − Tm) +Km(p− pm)] ,

αm = −
(

1

ρ

∂ρ

∂T

)
m

and Km =

(
1

ρ

∂ρ

∂p

)
m

. (3.9)

Spiegel and Veronis’ [40] expressed any state variable say X , in the form

X = Xm +X0(z) +X ′(x, y, z, t) (3.10)

where Xm → constant space distribution of X,X0 → variation of X in the absence

of motion and X ′(x, y, z, t) → fluctuations in X due to motion of the fluid. Also, ρm

is constant space distribution of ρ and pm → constant space distribution of p and ρ0 is

density at the lower boundary z = 0 and T0 → temperature of the fluid at z = 0. Again

following Spiegel and Veronis[40] assumptions and results for compressible fluids, the

flow equations are found to be the same as those of incompressible fluids except that the

static temperature gradient β is replaced by its excess over the adiabatic (β − g/Cp) .
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3.2.1 Perturbation of Equations

Let δp denote the perturbation in pressure p, δρ denote the perturbation in density

ρ, θ denote the perturbation in temperature T , ~v(u, v, w) denote the perturbation in

fluid velocity (zero initially), ~u(l, r, s) denote the perturbation in particle velocity (zero

initially), N denote perturbations in suspended particles number density N0 and
~h(hx, hy, hz) denote perturbations in magnetic field ~H(0, 0, H). Linearized perturbed

equations of the viscoelastic fluid-particle layer are:

1

ε

∂~v

∂t
= − 1

ρm
∇δp− g

(
δρ

ρm

)
~λ− 1

k1

(
ν + ν ′

∂

∂t

)
~v +

KN0

ερm
(~u− ~v) + µe

4πρm
(∇× ~h)× ~H,

(3.11)

∇.~v = 0, (3.12)

mN0
∂u

∂t
= KN0(~v − ~u), (3.13)

ε
∂N

∂t
+∇.(N0~u) = 0, (3.14)

(E + hε)
∂θ

∂t
= (β − g/Cp) (w + hs) + κ∇2θ, (3.15)

∇.~h = 0 and (3.16)

ε
∂~h

∂t
= ∇× (~v × ~H) + εη∇2~h− cε

4πN ′e
∇×

[
(∇× ~h)× ~H

]
(3.17)

where αm = 1
Tm

= α (say), ν = µ
ρm
, κ = q

ρmCv
and g

Cp
→ adiabatic gradient, ν is

kinematic viscosity and κ is thermal diffusivity. Also,

h =
fCpt
Cv

, f =
mN0

ρm
and E = ε+

(1− ε)ρsCs
ρmCv

.

The linearized dimensionless perturbation equations relevant to the problem are

N−1p1
∂u

∂t
= − ∂

∂x
δp− 1

p

(
1 + A

∂

∂t

)
u+ ω (l − u) +NQ

(
∂hx
∂z
− ∂hz

∂x

)
, (3.18)
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N−1p1
∂v

∂t
= − ∂

∂y
δp− 1

p

(
1 + A

∂

∂t

)
v + ω (r − v) +NQ

(
∂hy
∂z
− ∂hz

∂y

)
, (3.19)

N−1p1
∂w

∂t
= − ∂

∂z
δp− 1

p

(
1 + A

∂

∂t

)
w + ω (s− w) +NRθ, (3.20)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.21)

(
τ
∂

∂t
+ 1

)
l = u,

(
τ
∂

∂t
+ 1

)
r = v,

(
τ
∂

∂t
+ 1

)
s = w, (3.22)

∂M

∂t
+
∂l

∂x
+
∂r

∂y
+
∂s

∂z
= 0, (3.23)

∂hx
∂x

+
∂hy
∂y

+
∂hz
∂z

= 0, (3.24)

Np2N
−1
p1

∂hx
∂t

= ε−1
∂u

∂z
+∇2hx −M1

∂

∂z

(
∂hz
∂y
− ∂hy

∂z

)
, (3.25)

Np2N
−1
p1

∂hy
∂t

= ε−1
∂v

∂z
+∇2hy −M1

∂

∂z

(
∂hx
∂z
− ∂hz

∂x

)
, (3.26)

Np2N
−1
p1

∂hz
∂t

= ε−1
∂w

∂z
+∇2hz −M1

∂

∂z

(
∂hy
∂x
− ∂hx

∂y

)
and (3.27)

(E + hε)
∂θ

∂t
=

(
G− 1

G

)
(w + hs) +∇2θ (3.28)

where

Np1 = εν
κ

is modified Prandtl number, Np2 = εν
η

is modified magnetic Prandtl number,

NR = gαβd4

νκ
is Rayleigh number, NQ = µeH2d2

4πρmνη
is Chandrasekhar number, M = εN

N0
,

M1 = cH
4πN ′eη

is Hall parameter, ω = KN0d2

ρmνε
, τ = mκ

Kd2
, A =

(
ν
ν
′) κ

d2
, f = mN0

ρm
= τω,Np1

is mass fraction, G = Cpβ

g
and P = k1

d2
.
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Here physical variables have been scaled using d, d
2

κ
, κ
d
, ρνκ
d2
, βd and Hκ

η
as the

length, time, velocity, pressure, temperature and magnetic field scale factors,

respectively. The boundary conditions suitable to the problem, two free boundaries and

the medium adjoining the fluid as non conducting, are considered as

w =
∂2w

∂z2
= θ = 0, ξ =

∂ζ

∂z
= 0, at z = 0 and z = 1. (3.29)

and hx, hy, hz are continuous with an external vacuum field.
(3.30)

Here ζ = ∂v
∂x
− ∂u

∂y
and ξ = ∂hy

∂x
− ∂hx

∂y
are the z-components of vorticity and current

density, respectively. Equations (3.18)-(3.28), after eliminating u, v and δp can be

expressed as

[
L1 +

L2

P

(
1 + A

∂

∂t

)]
∇2w = L2NQ∇2∂hz

∂z
+ L2NR∇2

1θ, (3.31)

[
L1 +

L2

P

(
1 + A

∂

∂t

)]
ζ = L2NQ

∂ξ

∂z
, (3.32)

[
Np2N

−1
p1

∂

∂t
−∇2

]
ξ = ε−1

∂ζ

∂z
+M1

∂

∂z

(
∇2hz

)
, (3.33)

[
Np2N

−1
p1

∂

∂t
−∇2

]
hz = ε−1

∂w

∂z
−M1

∂ξ

∂z
and (3.34)

L2

[
(E + hε)

∂

∂t
−∇2

]
θ =

(
G− 1

G

)(
τ
∂

∂t
+H

)
w (3.35)

where

L1 = N−1p1

(
τ
∂2

∂t2
+ F

∂

∂t

)
, F = f + 1, L2 = τ

∂

∂t
+ 1, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

∇2
1 =

∂2

∂x2
+

∂2

∂y2
, H = h+ 1.
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3.3 The Dispersion Relation

Perturbed quantities are assumed to be of the following form and for the analysis of

disturbances into normal modes by seeking solutions whose dependence on x, y and t is

given by

[w, θ, hz, ζ, ξ] = [W (z),Θ(z), K(z), Z(z), X(z)] exp(ikxx+ ikyy + nt) (3.36)

where kx is the wave number along x-direction, and ky is wave number along

y-direction. k =
√
k2x + k2y = resultant wave number and n = growth rate. Equations

(3.31)-(3.35), with the help of expression (3.36), become

[
L1 +

L2

P
(1 + An)

] (
D2 − α2

)
W = L2NQ

(
D2 − α2

)
DK − L2NRα

2Θ, (3.37)

[
L1 +

L2

P
(1 + An)

]
Z = L2NQDX, (3.38)

[
Np2N

−1
p1 n−

(
D2 − α2

)]
X = ε−1DZ +M1

(
D2 − α2

)
DK, (3.39)

[
Np2N

−1
p1 n−

(
D2 − α2

)]
K = ε−1DW −M1DX and (3.40)

L2

[
(E + hε)n−

(
D2 − α2

)]
Θ =

(
G− 1

G

)(
τn+H

)
W (3.41)

where D =
d

dz
, L1 = N−1p1 (τn2 + Fn) and L2 = τn+ 1.

By eliminating X,Z,K, and Θ from the equations (3.37)-(3.41), we obtain[
L1 +

L2

P
(1 +An)

] [
(D2 − α2)− (E + hε)n

] (
D2 − α2

)
W

+


L2NQ

[
(D2 − α2)− (E + hε)n

] [ (D2−α2)−Np2N
−1
p1
n

M1ε
+

L2NQD
2[

L1+
L2
P

(1+An)
]
M1ε2

]
D2

M1(D2 − α2)D2 +
{(D2−α2)−Np2N

−1
p1
n}2

M1
+ L2NQ

(D2−α2)−Np2N
−1
p1
n{

L1+
L2
P

(1+An)
}
M1ε

D2

(D2 − α2
)
W

=

(
G− 1

G

)
NRα

2)(τn+H)W. (3.42)
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Using the boundary conditions and equations (3.29) and (3.30), obviously that the

even order derivatives of W vanish on the boundaries and hence the proper solution of

equation (3.42) characterizing the lowest mode is

W = W0sin(πz), where W0 = Constant. (3.43)

On substituting the solution (3.43) in equation (3.42), we get the dispersion relation as

NR =

(
G

G− 1

) (
π2 + α2

) [(
π2 + α2

)
+ (E + hε)n

]
α2
(
τn+H

) [{
L1 +

L2

P
(1 +An)

}
+

L2NQπ
2

[
(π2+α2)+Np2N

−1
p1 n

M1ε
+

L2NQπ
2{

L1+
L2
P

(1+An)
}
M1ε2

]
[
M1π2 (π2 + α2) +

{(π2+α2)+Np2N
−1
p1 n}

2

M1
+

L2NQ{(π2+α2)+Np2N
−1
p1 n}π2{

L1+
L2
P

(1+An)
}
M1ε

]]. (3.44)

3.4 Stationary Convection

When the instability sets in as stationary convection, the marginal state will be

characterized by n = 0 and the dispersion relation equation (3.44) reduces to

NR =

(
G

G− 1

)
(π2 + α2)

2

α2H

[
1

P
+

NQε
−1π2 {(π2 + α2) +NQPε

−1π2}
(π2 + α2) {M2

1π
2 + (π2 + α2) +NQPε−1π2}

]
.

(3.45)

Thus for stationary convection, the viscoelastic parameter vanishes with n, and stress

and strain rate showed linear realtion for Rivlin- Ericksen viscoelastic fluid. Also, for

fixed values of P , NQ, M1 and H , let the non-dimensional number G accounting for the

compressibility effects be also kept as fixed, then we have

NC
R =

(
G

G− 1

)
NC
R (3.46)

where NC
R is critical Rayleigh number in the absence compressibility and NC

R is critical

Rayleigh number in the presence of compressibility. Since the critical Rayleigh

number > 0 and finite which implies G > 1, which means stabilizing effect due to

compressibility.
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Now we study, the effect of suspended particles which depends upon the nature of
dNR

dH
, the effect of medium permeability which depends upon the nature of dNR

dP
, the

effect of magnetic field which depends upon the nature of dNR

dNQ
, the effect of hall current

which depends upon the nature of dNR

dM1
. From equation (3.45) we have

dNR

dH
= −

(
G

G− 1

)
(π2 + α2)

2

α2H
2

[
1

P
+

NQε
−1π2 {(π2 + α2) +NQPε

−1π2}
(π2 + α2) {M2

1π
2 + (π2 + α2) +NQPε−1π2}

]
.

(3.47)

which is < 0 ⇒ destabilizing effect of suspended particles on the thermal instability

of the compressible fluid-particle layer in the presence of and hall currents through a

porous medium. It is obvious from equation (3.45) that

dNR

dP
=

(
G

G− 1

)
(π2 + α2)

2

α2H

[
− 1

P 2
+

(NQπ
2ε−1)M2

1π
2

(π2 + α2) {M2
1π

2 + (π2 + α2) +NQPε−1π2}2

]
.

(3.48)

which is > 0 if P
[
M1π −

√
π2 + α2

]
>

√
π2+α2[M2

1π
2+(π2+α2)]

NQε−1π2 .

which is < 0 if P
[
M1π −

√
π2 + α2

]
<

√
π2+α2[M2

1π
2+(π2+α2)]

NQε−1π2 .

Thus, for the different values of parameter, medium permeability has both

destabilizing and stabilizing effect. Presence and absence of magnetic field plays an

important role in stabilizing effect of permeability. Its absence destabilize the effect.

Since for the case

dNR

dP
= −

(
G

G− 1

)
(π2 + α2)

2

α2HP 2
. (3.49)

which is always < 0. Thus, in the presence of magnetic field, medium permeability

succeeds in stabilizing the thermal instability of the compressible fluid-particle layer for

certain wave numbers. Now from equation (3.45), we get

dNR

dNQ

=

(
G

G− 1

)
(π2 + α2) π2ε−1

α2H {M2
1π

2 + (π2 + α2) +NQPε−1π2}

[{(
π2 + α2

)
+NQPε

−1π2
}

+
M2

1π
4NQPε

−1

M2
1π

2 + (π2 + α2) +NQPε−1π2

]
. (3.50)
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which is always > 0 which implies that magnetic field has a stabilizing effect. To find

the effect of hall currents, from equation (3.45), we have

dNR

dM1

= −2

(
G

G− 1

)
(π2 + α2)

α2H

[
NQε

−1M1π
4 {(π2 + α2) +NQPε

−1π2}
{M2

1π
2 + (π2 + α2) +NQPε−1π2}2

]
.

(3.51)

which is always < 0 which means that, in porous medium, hall current destabilize the

thermal convection in the compressible fluid-particle layer. We analyze graphically all

the four effects as
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Figure 3.1: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, NQ =
20,M1 = 10, ε = 0.5 and for different values of P (2, 4, 6).
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Figure 3.2: Variation of NR with α for a fixed H = 1000, G = 9.8, π = 3.14, P =
4,M1 = 10, ε = 0.5 and for different values of NQ = (10, 20, 30).
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Figure 3.3: Variation of NR with α for a different value of H = (500, 1000, 1500) for
fixed values of G = 9.8, π = 3.14, P = 2,M1 = 10, ε = 0.5.
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Figure 3.4: Variation of NR with α for a fixed values H = 1000, G = 9.8, π =
3.14, P = 2, NQ = 20, ε = 0.5 for different values of M1 = (10, 20, 30).

We find from Figure3.1 (refer table 4), when the value of the medium

permeability(P), increased then the value of NR is increased which shows the

stabilizing effect. Similarly from Figure3.2 (refer table 5), when the value of magnetic

field NQ is increased, and the value of NR is increased which again shows the case of

stabilizing effect. In Figure3.3 (refer table 6), as the value of suspended particle H

increased, the value of NR decreased, which shows the destabilizing effect. Also

Figure3.4 (refer table 7) shows as the value of hall currents M1 through the porous

medium increased, the value of NR decreased, which is again the case of destabilizing

effect on the system.
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3.5 Oscillatory Modes

Multiplying equation (3.37) by he complex conjugate ofW i.e. W ∗, integrating over

the range of z from z = 0 to z = d and using equations (3.38)-(3.47) together with the

boundary conditions (3.29) and (3.30)[
L1 +

L2

P
(1 + An)

]
I1+A1 (nI2 + n∗I5)+L2NQε (I3 + I6)+

L2

L∗2

[
L∗1 +

L∗2
P

(1 + An∗)

]
I4

= L2L
∗
2NRα

2

(
G− 1

G

)(
1

τn∗ +H

)
[I7 + (E + hε)n∗I8]. (3.52)

where A1 = L2NQNP2N
−1
P1 and

I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 =

∫ 1

0

|X|2dz,

I3 =

∫ 1

0

(
|DX|2 + a2|X|2

)
dz , I4 =

∫ 1

0

|Z|2dz

I5 =

∫ 1

0

(
|DK|2 + a2|K|2

)
dz , I6 =

∫ 1

0

(
|D2K|2 + 2a2|DK|2 + a4|K|2

)
dz,

I7 =

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz , I8 =

∫ 1

0

|Θ|2dz. (3.53)

all I1, I2, I3, I4, I5, I6, I7, I8 all are positive definite, take n = in0 in equation (3.52),

where n0 is real, and equate imaginary parts on both sides, we get

n0 = 0 or n2
0 = −τ−2 A−B

C −D + E
(3.54)

where

A =
(
N−1p1 HF −

τ

P
− τ

P
A
)
I1 +NQεNP2N

−1
P1
H(I2 − I5)−NQετ(I3 + I6),

B =
(
N−1p1 HF +

τ

P
+
τ

P
A
)
I4 −NRα

2

(
G

G− 1

)
{τI7 + (E + hε)I8},

C =
(
N−1p1

(
H + 1− F

)
− τ

P
− τ

P
A
)
I1 +NQεNP2N

−1
P1
H(I2 − I5),

D = NQετ(I3 + I6)−
(
N−1p

(
1−H − F

)
− τ

P
− τ

P
A
)
I4 and

E = NRα
2

(
G

G− 1

)
{τI7 + (E + hε)I8}. Whereas in the absence of magnetic field,

n2
0 =

−τ−2
[(
N−1p1 HF −

τ
P
− τ

P
A
)
I1 +NRα

2
(

G
G−1

)
{τI7 + (E + hε)I8}

]
(
N−1p1

(
H + 1− F

)
− τ

P
− τ

P
A
)
I1+NRα2

(
G
G−1

)
{τI7 + (E + hε)I8}

. (3.55)
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3.6 Conclusion

Problem was formulated to discuss the combined effect of compressibility, hall

current, magnetic field, medium permeability and suspended particles on thermal

instability of a Rivlin-Ericksen fluid and the results obtained as :

(I) Constitutive relation of Rivlin-Ericksen fluid becomes linear i.e. the relation

between stress and strain becomes linear for stationary convection due to the

vanishing of the viscoelastic parameter.

(II) Magnetic field, suspended particles and medium permeability introduce oscillatory

modes in the system otherwise effects the principle of exchange of stabilities is

hold good.

(III) When magnetic field is not present, n2
0 < 0 if

Cpt > Cv

[
1 +

εm

fk1Kd2
{
νd2 + ν ′

}]
(3.56)

For all NR > 0, since n0 is real and n2
0 < 0 which implies n0 = 0. This shows

that n is real when NR > 0 in the absence of the magnetic field. If equation (3.55)

holds true and that the principle of exchange of stabilities is valid for this case,

however, if equation (3.55) is violated, then the oscillatory modes may come into

play even in the absence of the magnetic field, Singh and Gupta [37].

(IV) Equation (3.46) indicates compressibility effect is to postpone the onset of

instability.

(V) To study the various effects of suspended particles, medium permeability,

magnetic filed and Hall currents in a compressible Rivlin-Ericksen viscoelastic

fluid, we examined the expressions dNR

dH
, dNR

dP
, dNR

dNQ
and dNR

dM1
analytically. The

magnetic field postpones the onset of instability, suspended particles and Hall

currents both hasten the onset of convection, which is in contrast with the result

of Gupta et al. [54].
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Double - Diffusive Convection in

Presence of Compressible

Rivlin-Ericksen Fluid with Fine Dust
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4.1 Introduction

A layer of Newtonian fluid heated from below, under varying assumptions of

hydrodynamics, has been treated in detail by Chandrasekhar [26]. Chandra [22]

performed careful experiments in an air layer and found contradiction between the

theory and the experiment. He found that the instability depended on the depth of the

layer. A Bénard type cellular convection with fluid descending at the cell centre was

observed when predicted gradients were imposed, if the layer depth was more than 10

mm. But if the layer of depth was less than 7 mm, convection occurred at much lower

gradients than predicted and appeared as irregular strips of elongated cells with fluid

rising at the centre. Chandra called this motion columnar instability. The effect of

particle mass and heat capacity on the onset of Bénard convection has been considered

by Scanlon and Segel [23]. They found that the critical Rayleigh number was reduced

solely because the heat capacity of the clean gas was supplemented by that of the

particles. The effect of suspended particles was found to destabilize the layer.

Palniswamy and Purushotham [29] have considered the stability of shear flow of

stratified fluids with fine dust and have found the effect of fine dust to increase the

region of instability. A study of double-diffusive convection with fine dust has been

made by Sharma and Rani [55]. Kumar et al. [56] have studied effect of magnetic field

on thermal instability of rotating Rivlin-Ericksen viscoelastic fluid, in which effect of

magnetic field has stabilizing as well as destabilizing effect on the system. Also,

Rayleigh-Taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous

medium has been considered by Sharma et al. [57]. They have studied the stability

aspects of the system. The effects of a uniform horizontal magnetic field and a uniform

rotation on the problem have also been considered separately. Kumar [58] has also

studied the stability of superposed viscoelastic Rivlin-Ericksen fluids in presence of

suspended particles through a porous medium. In one other study, Kumar and Singh

[59] have studied the stability of superposed viscoelastic fluids through porous

medium, in which effects of uniform horizontal magnetic field and a uniform rotation

are considered. Kumar et al.[47] have also studied hyderodynamic and hyderomagnetic

stability of Rivlin-Ericksen fluid and found that the growth rates decrease as well as

increase with the increase in kinematic viscosity and kinematic viscoelasticity in
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absence and presence of magnetic field. Singh et. al. [25] has studied thermal

instability of Rivlin-Ericksen elastico viscous fluid permeated with suspended particles

in hydrodynamics in a porous medium and found that magnetic field have only

stabilizing effect whereas medium permeability have a destabilizing effect on the

system. M.F.EI-Sayed et. al [60], have studied non-linear Kelvin-Helmholtz instability

of Rivlin-Ericksen viscoelastic electrified fluid particle mixtures saturating porous

medium and in one another study Kumar et al. [61], have also studied double-diffusive

convection in compressible viscoelastic fluid through Brinkman porous media.

Presently, the study of stability of double-diffusive convection of Rivlin-Ericksen

elastico-viscous fluids permeated with suspended particles is considered. Viscosity is a

function of space and time in a large variety of fluid flows and its variation can have a

dramatic effect on flow stability. Here instability due to double-diffusive effects in

viscosity, permeated with suspended particles flow have been discussed.

Double-diffusive systems are known to display a rich variety of instability behavior in

density permeated with suspended particles fluid flow system. In viscosity permeated

systems, it was found that stable flow in the context of single component systems

become unstable due to double-diffusive effect. Many interesting flow patterns arise

due to this instability, these aspects form the motivation for the present study, Singh

and Gupta[62].

4.2 Formulation of The Problem

Infinite and horizontal layer of Rivlin-Ericksen fluid of depth d i.e. from z = 0 to

z = d is considered for an compressible electrically conducting viscoelastic

Rivlin-Ericksen with suspended particles. This layer is given the heat from below, let

the temperature at z = 0 is T0 and at the upper layer, z = d, is Td, and that a steady

adverse temperature gradient |dT
dz
| = β and solute gradient |dC

dz
| = β′ are maintained.

Here, ~g (0, 0,−g) is acceleration due to gravity. The effect of fluid compressibility,

even small in magnitude, is also considered.

Let the fluid properties like pressure, density, velocity of pure fluid, kinematic

viscosity and kinematic viscoelasticity be denoted by p, ρ, ~u(u, v, w), ν and ν ′

respectively. Properties of suspended particle like velocity and number density be
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represented by v(x, t) and N(x, t). ~x(x, y, z), ~λ(0, 0, 1) and K = 6πµη′ is the Stokes’

drag coefficient for the particle having the radius η′.

Then the flow governing equations i.e. equations of motion and continuity are

ρ

[
∂~u

∂t
+ (~u.∇)~u)

]
= −∇p+ ρ~g +KN (~v − ~u) +

(
µ+ µ′

∂

∂t

)
∇2~u (4.1)

and ∇.~u = 0. (4.2)

Some assumptions regarding the shape and velocity of the suspended particles are

taken as

• Shape of the suspended particles in the fluid is uniform spherical.

• The buoyancy forces on the particle are neglected.

• Large distance between the particles as compare to their diameter. So Interparticle

reactions are ignored.

• Extra force due to the presence of particles is proportional to velocity difference

between the particles and the fluid.

• Force exserted by fluid on particles and force exerted by particles on fluid balance

each other.

So there must be an extra force equal in magnitude but opposite in sign in the

equations of conservation of momentum or motion for the particles. If mN is the mass

of particles per unit volume, then under the above assumptions, equations of

conservation of momentum and mass for the particles are

mN

[
∂~v

∂t
+ (~v.∇)~v)

]
= KN (~u− ~v) and (4.3)

∂N

∂t
+∇. (N~v) = 0. (4.4)

Let Cv is heat capacity of fluid at constant volume, Cpt is heat capacity of particles,

Cp is heat capacity of fluid at constant pressure, T is temperature and q is effective

thermal conductivity of the pure fluid. Volume fractions of the particles are assumed to

be small; the effective properties of the suspension are considered as same as of clean

fluid.
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If we assume that the fluid and particles are in the thermal equilibrium, the equation

of heat conduction is

ρCv

[
∂

∂t
+ ~u.∇

]
T +mNCpt

[
∂

∂t
+ ~v.∇

]
T = q∇2T, (4.5)

If C denotes the solute concentration, then equation of solute conduction gives

ρC ′v

[
∂

∂t
+ ~u.∇

]
C +mNC ′pt

[
∂

∂t
+ ~v.∇

]
C = q′∇2C (4.6)

where C ′v, C
′
pt and q′ denote the analogous solute quantities. Spiegel and Veronis [40]

defined f as any one of the state variables ( p, ρ, or T ) and expressed in the form

f(x, y, z, t) = fm + f0 (z) + f ′(x, y, z, t) (4.7)

where fm → constant space average of f , f0 → variation in the absence of motion and

f ′ → fluctuation resulting from motion. The initial state of the system is taken to be

quiescent layer with a uniform particle distribution N0, therefore initial state in which

velocity, temperature T, solute concentration C is given by ~v = (0, 0, 0), ~u = (0, 0, 0)

and T = T (z) = T0 − βz, C = C(z) = C0 + β′z,

p = p(z) = pm − g
∫ z

0

(ρm − ρ0) dz ,

ρ = ρ(z) = ρm [1− αm (T − Tm) + α′m (C − Cm) +Km (p− pm)] ,

αm = −
[

1

ρ

∂ρ

∂T

]
m

(= α(say)) ,

α′m = −
[

1

ρ

∂ρ

∂C

]
m

(= α′(say)) ,

Km = −
[

1

ρ

∂ρ

∂p

]
m

(4.8)

N0 = Constant.

Perturb the initial state of the system. Let δp denote the perturbation in pressure p, δρ

denote the perturbation in density ρ, θ denote the perturbation in temperature T , γ denote

the perturbation in solute concentration C, ~v(u, v, w) denote the perturbation in fluid

velocity, ~u(l, r, s) denote the perturbation in particle velocity, N denote perturbations in
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suspended particles number density N0. The quantity δρ, depend on θ and γ and is

given by δρ = −ρm (αθ − α′γ) . (4.9)

Then the linearized perturbation equations of the problem, Spiegel and Veronis [40],

Scanlon and Segel [23], and Rivlin -Ericksen [32], become

∂~u

∂t
= − 1

ρm
∇δp+ g (αθ − α′γ)λ+

KN

ρm
(~v − ~u) +

(
ν + ν ′

∂

∂t

)
∇2~u, (4.10)

∇.~u = 0, (4.11)[
m

K

∂

∂t
+ 1

]
~v = ~u, (4.12)

∂N

∂t
+∇. (N0~v) = 0, (4.13)

(1 + h)
∂θ

∂t
= β

(
G− 1

G

)
(w + hs) + κ∇2θ and (4.14)

(1 + h′)
∂θ

∂t
= β′

(
G− 1

G

)
(w + h′s) + κ′∇2γ (4.15)

where µ, µ′, ν = µ
ρm
, ν ′ = µ′

ρm
, κ = q

ρmCv
and κ′ = q′

ρmC′v
stand for viscosity,

viscoelasticity, kinematic viscosity, kinematic viscoelasticity, thermal diffusivity and

analogous solute diffusivity, respectively. Also, h = f(Cpt/Cv), h
′ = f(C ′pt/C

′
v),

f = mN0/ρm, and G = Cpβ

g
. Initially, ~v = (0, 0, 0) , ~u = (0, 0, 0) , T = T (z), and

N = N0 which implies (4.5) yields 0 = 0, identically. After perturbation, (4.5)

becomes

(ρm + δρ)Cv

[
∂

∂t
+ ~u.∇

]
(T + θ) + (mN0 +mN)Cpt

[
∂

∂t
+ ~v.∇

]
(T + θ)

= q∇2 (T + θ) . (4.16)

Follow Speigal and Veronis [40] where the flow equations are found to be the same

as those for incompressible fluids except β is replaced by
(
β − g

Cp

)
i.e. the static

temperature gradient is replaced by its excess over the adiabatic and Cv is replaced by

Cp.
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So linearization of (4.5) gives

∂θ

∂t
+
mN0

ρm

Cpt
Cv

∂θ

∂t
=

(
β − g

Cp

)
(w + hs) +

q

ρmCv
∇2θ. (4.17)

that is, (4.14). However, β′ remains unaltered and, as above, (4.6) yields (4.15).

4.3 The Dispersion Relation

Perturbed quantities are assumed to be of the following form for the analysis of

disturbances into normal modes

[w, θ, γ] = [W (z),Θ(z),Γ(z)] exp (ikxx+ ikyy + nt) (4.18)

where kx is the wave number along x-direction and ky is wave number along y-direction.

k =
√
k2x + k2y = resultant wave number and n = growth rate = complex constant in

general. Non dimensional form of equations (4.16), (4.10) - (4.15) become[
σ

(
1 +

M

1 + τ1σ

)
− (1 + Fσ)

(
D2 − a2

)] (
D2 − a2

)
W +

ga2d2

ν
(αΘ− α′Γ) = 0,

(4.19)(
D2 − a2 −Hp1σ

)
Θ = −β

(
G− 1

G

)
d2

κ

(H + τ1σ)

(1 + τ1σ)
W (4.20)

and
(
D2 − a2 −H ′qσ

)
Γ = −β′d

2

κ′
(H ′ + τ1σ)

(1 + τ1σ)
W (4.21)

where we have put a = kd, σ = nd2

ν
, τ = m

κ
, τ1 = τν

d2
, M = mN

ρm
, p1 = ν

κ
, q = ν

κ′
,

H = 1 + h,H ′ = 1 + h′, F = ν′

d2
and D = d

dz
.

Eliminate Γ and Θ from equations (4.19) and (4.21), then

[
σ

(
1 +

M

1 + τ1σ

)
− (1 + Fσ)

(
D2 − a2

)] (
D2 − a2 −Hp1σ

) (
D2 − a2 −H ′qσ

) (
D2 − a2

)
W

−R
(
G− 1

G

)
a2

(H + τ1σ)

(1 + τ1σ)

(
D2 − a2 −H ′qσ

)
W+Sa2

(H ′ + τ1σ)

(1 + τ1σ)

(
D2 − a2 −Hp1σ

)
W = 0.

(4.22)
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where R =
gαβd4

νκ
→ thermal Rayleigh number

S =
gα′β′d4

νκ′
→ analogous solute Rayleigh number

p1 =
ν

κ
→ thermal Prandtl number

q =
ν

κ

′
→ analogous Schmidt number.

For the solution of the problem boundaries considered are perfect conductors of heat

and solute and free. Surrounding medium is assumed to be electrically nonconducting.

So boundary conditions taken as

Θ = 0,W = 0,Γ = 0, D2W = 0, DZ = 0 at z = 0 and z = 1. (4.23)

For the solution to the problem, free boundaries are considered which is little

artificial in nature but most suitable for stellar atmospheres. Using (4.23), even order

derivatives of W vanish on the boundaries and so the proper solution of W

characterizing the lowest mode is

W = W0 sin πz (4.24)

where W0 = Constant. Substituting (4.24) in (4.22), the relation reduces to

R1x =

(
G

G− 1

)[{
iσ1

(
1 +

M

1 + iτ1σπ2

)
+
(
1 + iFσπ2

)
(1 + x)

}
{(

1 + iτ1σπ
2
)
(1 + x) (1 + x+ iHp1σ)

(H + iτ1σπ2)

}
+ S1x

(
H ′ + iτ1σπ

2
)
(1 + x+ iHp1σ)

(H + iτ1σπ2) (1 + x+ iH ′qσ)

]
.

(4.25)

where R1 =
R

π4
, x =

a2

π2
, iσ1 =

σ

π2
and S =

a2

π4
.

Dispersion relation (4.25) studying the effects of suspended particles and

compressibility on the double-diffusive convection in Rivlin-Ericksen elastico- viscous

fluid.

65



4.4 The Stability and Oscillatory Modes

Here, we examine instability, if any, which can occur as oscillatory modes in the

system defined. Multiplying (4.19) by the complex conjugate of W i.e W ∗, integrating

over z = 0 to z = 1 and making use of (4.20) and (4.21) with the help of boundary

conditions (4.23), we obtain

σ

(
1 +

M

1 + τ1σ

)
I1 + (1 + Fσ) I2 −

gαa2κ

νβ

(
G

G− 1

)(
1 + τ1σ

∗

H + τ1σ∗

)
(I3 +Hp1σ

∗I4)

+
gα′a2κ′

νβ′

(
1 + τ1σ

∗

H ′ + τ1σ∗

)
(I5 +H ′qσ∗I6) = 0 (4.26)

where I1 =

∫ 1

0

(
|DW |2 + a2|w|2

)
dz , I2 =

∫ 1

0

(
|D2W |2 + 2a2|Dw|2 + a4|W |2

)
dz

I3 =

∫ 1

0

(
|DΘ|2 + a2|Θ|2

)
dz , I4 =

∫ 1

0

|Θ|2dz

I5 =

∫ 1

0

(
|DΓ|2 + a2|Γ|2

)
dz , I6 =

∫ 1

0

|Γ|2dz

All the integrals I1, I2, I3, I4, I5, I6 are positive definite. Substituting σ = iσi and

equate the imaginary parts,where σi is real, we get small

σi

[(
1 +

M

1 + τ1σi

)
I1+FI2+

gαa2κ

νβ

(
G

G− 1

)(
τ1(H − 1)

H2 + τ 21σ
2
i

I3 +
H + τ 21σ

2
i

H2 + τ 21σ
2
i

Hp1σ
∗I4

)
−gα

′a2κ′

νβ′

(
τ1(H

′ − 1)

H ′2 + τ 21σ
2
i

I5 +
H ′ + τ 21σ

2
i

H ′2 + τ 21σ
2
i

H ′qσ∗I6

)]
= 0

(4.27)

Here σi = 0 implies that modes may be non-oscillatory or σi 6= 0 implies that modes

may be oscillatory. Presence of stable solute gradient introduces oscillatory modes.

4.5 Stationary Convection

σ = 0 characterized the marginal state When instability sets in as stationary

convection, Put σ = 0 in dispersion relation (4.25) which reduces to

R1 =

(
G

G− 1

)[
(1 + x)3

xH
+ S1

H ′

H

]
. (4.28)
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and constitutive relation becomes linear for Rivlin-Ericksen elastico-viscous fluid.

Behavior of dR1

dS1
explains the effect of stable solute gradient and behavior of dR1

dH

explains the effect of suspended particles analytically. Equation (4.28) yields

dR1

dS1

=

(
G

G− 1

)
H ′

H
. (4.29)

which is positive, thereby Rayleigh number and solute parameter increases

simultaneously. So, stable solute gradient shows stabilizing effect.

dR1

dH
= −

(
G

G− 1

)[
(1 + x)3

x
+ S1H

′
]

1

H2
. (4.30)

which is negative, which means suspended particles destabilize the system as the

dimensionless Rayleigh number decreases with increase in the suspended particles

number density. Therefore, We studied here, these effects graphically as below
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Figure 4.1: The variation of dimensionless Rayleigh number (R1) with wave number
x(= 1, 2, 3, 4, 5), for G = 9.8, H = 2, H ′ = 10 and S1(= 10, 20, 30).

In Figure4.1 (refer table 8), as the value of stable solute gradient parameter

increased, so the value of Rayleigh number is increased for fixed values

G = 9.8, H = 2, H ′ = 10 and S1(= 10, 20, 30) when taking values of wave number

x(= 1,2,3,4,5) respectively. Therefore as value of Rayleigh number increased with

increase in wave number showing the stabilizing effect.
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Figure 4.2: The variation of dimensionless Rayleigh number (R1) with wave number
x(= 1, 2, 3, 4, 5), for G = 9.8, S1 = 10, H ′ = 5 and H(= 2, 4, 6).

In Figure4.2 (refer table 9), Rayleigh number decreased with increase in the

suspended particles by taking values of wave number x(= 1,2 3,4,5), for fixed values

G = 9.8, S1 = 10, H ′ = 5 and H(= 2, 4, 6), respectively. Therefore as values of

Rayleigh number has increased with decrease suspended particles parameter, showing

the destabilizing effect.

Let G (accounting for the compressibility effects) be kept fixed for fixed S1, H and

H ′. Then we have

Rc =

(
G

G− 1

)
Rc (4.31)

where Rc is Critical Rayleigh number in the presence compressibility and Rc is Critical

Rayleigh number in the absence of compressibility.In the presence of compressibility,

G < 1 and G = 1 ⇒ negative and infinite values of the critical Rayleigh number,

which is irrelevant to the given system. G > 1 is relevant to the given system, thus

compressibility postpone the onset of double-diffusive convection.

4.6 Conclusion

Effect of compressibility, stable solute gradient and suspended particles and has

been investigated on thermosolutal convection of a Rivlin-Ericksen fluid. The study

may be relevant to the stability of some polymer solutions and the problem finds its

applications in chemical technology and in Geophysical situations . Hence a study has
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been made on thermosolutal convection in presence of compressible fluid with fine

dust. Due to the vanishing of the viscoelastic parameter the constitutive relation for

Rivlin-Ericksen fluid become linear for the case of stationary convection. It is obvious

from the equation (4.31)that compressibility had postponed the onset of instability. The

expressions dR1

dS1
explains the effects of stable solute gradient and dR1

dH
explains the effect

of suspended particles analytically. Stable solute gradient delay the onset of instability

whereas suspended particles are found to hasten the onset of instability. Figure1 and

Figure2, shows the same results as obtained. The presence of viscoelasticity,

suspended particles and stable solute gradient introduce the oscillatory modes. In the

absence of viscoelasticity, suspended particles and stable solute gradient, the principle

of exchange of stabilities holds good.
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Chapter 5

Programming Codes

Programming codes to find Rayleigh number obtained in the chapters 2 ,3 and 4 by

assigning numerical values to all other parameters .
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5.1 Chapter 2 : Variations of Rayleigh number

Consider the equation (2.27) to find the variations in Rayleigh number R1

5.1.1 When Q1 = 25,50,75

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P =2;

7 H dash =10;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=[25 50 7 5 ] ;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15 A2=A1 / P ;

16

17 A31=Q1 ( 1 , 1 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

18 A32=Q1 ( 1 , 2 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

19 A33=Q1 ( 1 , 3 ) ∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

20

21 A41=A2+A31 ;

22 A42=A2+A32 ;

23 A43=A2+A33 ;

24

25 A51=A1 .∗A41
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26 A52=A1 .∗A42

27 A53=A1 .∗A43

28

29 B1=x∗H dash ;

30

31 % V a r i a t i o n o f R a y l e i g h number

32

33 Rayle igh Number1 =A51 . / B1 % when Q1 = 25

34 Rayle igh Number2 =A52 . / B1 % when Q1 = 50

35 Rayle igh Number3 =A53 . / B1 % when Q1 = 75

36

37 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x

38

39 p l o t ( x , Rayle igh Number1 )

40 ho ld on

41 p l o t ( x , Rayle igh Number2 )

42 ho ld on

43 p l o t ( x , Rayle igh Number3 )
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5.1.2 When H-dash = 5,10,15

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P =2;

7 H dash =[5 10 15 ] ;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=25;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15 A2=A1 / P ;

16 A3=Q1∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

17 A4=A2+A3 ;

18 A5=A1 . ∗A4

19

20 B11=x∗H dash ( 1 , 1 ) ;

21 B12=x∗H dash ( 1 , 2 ) ;

22 B13=x∗H dash ( 1 , 3 ) ;

23

24 % V a r i a t i o n o f R a y l e i g h number

25

26 Rayle igh Number1 =A5 . / B11

27 Rayle igh Number2 =A5 . / B12

28 Rayle igh Number3 =A5 . / B13

29

30 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x
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31

32 p l o t ( x , Rayle igh Number1 )

33 ho ld on

34 p l o t ( x , Rayle igh Number2 )

35 ho ld on

36 p l o t ( x , Rayle igh Number3 )
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5.1.3 When P = 0.1 ,0.2,0.6

1 c l e a r a l l

2

3 % Values a s s i g n e d t o v a r i o u s p a r a m e t e r s

4

5 x =[1 2 3 4 5 6 ] ;

6 P = [ 0 . 1 0 . 2 0 . 6 ] ;

7 H dash =10;

8 The tha = p i / 4 ;

9 E p s i l o n = 0 . 5 ;

10 Q1=25 ;

11

12 % I n t e r m e d i a t e c a l c u l a t i o n s

13

14 A1=(1+ x ) ;

15

16 A21=A1 / P ( 1 , 1 ) ;

17 A22=A1 / P ( 1 , 2 ) ;

18 A23=A1 / P ( 1 , 3 ) ;

19

20 A3=Q1∗power ( cos ( The tha ) , 2 ) ∗power ( E p s i l o n ,−1)∗x ;

21

22 A41=A21+A3 ;

23 A42=A22+A3 ;

24 A43=A23+A3 ;

25

26

27 A51=A1 .∗A41 ;

28 A52=A1 .∗A42 ;

29 A53=A1 .∗A43 ;

30
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31 B1=x∗H dash ;

32

33 % V a r i a t i o n o f R a y l e i g h number

34

35 Rayle igh Number1 =A51 . / B1 % when P =0 .1

36 Rayle igh Number2 =A52 . / B1 % when P =0 .2

37 Rayle igh Number3 =A53 . / B1 % when P =0 .6

38

39 % P l o t o f a l l R a y l e i g h numbers Vs . Wave number x

40

41 p l o t ( x , Rayle igh Number1 )

42 ho ld on

43 p l o t ( x , Rayle igh Number2 )

44 ho ld on

45 p l o t ( x , Rayle igh Number3 )
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5.2 Chapter 3 : Variations of Rayleigh number

Consider the equation (3.45) to find the variations in Rayleigh number NR

5.2.1 When P = 2 , 4 , 6

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000;

10 P=[2 4 6 ] ;

11 NQ=20;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23 B11 =1/ P ( 1 , 1 ) ;

24 B12 =1/ P ( 1 , 2 ) ;

25 B13 =1/ P ( 1 , 3 ) ;
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26

27 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

28

29 C21=P ( 1 , 1 ) ∗C1 ;

30 C22=P ( 1 , 2 ) ∗C1 ;

31 C23=P ( 1 , 3 ) ∗C1 ;

32

33 C31=C21+A3 ;

34 C32=C22+A3 ;

35 C33=C23+A3 ;

36

37 C41=C1∗C31 ;

38 C42=C1∗C32 ;

39 C43=C1∗C33 ;

40

41 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

42 D21=C31+D1 ;

43 D22=C32+D1 ;

44 D23=C33+D1 ;

45

46 D31=A3 .∗D21 ;

47 D32=A3 .∗D22 ;

48 D33=A3 .∗D23 ;

49

50 D41=C41 / D31 ;

51 D42=C42 / D32 ;

52 D43=C43 / D33 ;

53

54 E11=B11+D41 ;

55 E12=B12+D42 ;

56 E13=B13+D43 ;
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57

58 % Values o f R a y l e i g h number NR

59

60 NR1=A6∗E11 % When P=2

61 NR2=A6∗E12 % When P=4

62 NR3=A6∗E13 % When P=6

63

64 % Graphs o f NR Vs Alpha

65

66 p l o t ( Alpha , NR1)

67 ho ld on

68 p l o t ( Alpha , NR2)

69 ho ld on

70 p l o t ( Alpha , NR3)
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5.2.2 When NQ = 10,20,30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000;

10 P=4 ;

11 NQ=[10 20 3 0 ] ;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23 B1=1/ P ;

24

25 C11=NQ( 1 , 1 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

26 C12=NQ( 1 , 2 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

27 C13=NQ( 1 , 3 ) ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

28

29 C21=P∗C11 ;

30 C22=P∗C12 ;
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31 C23=P∗C13 ;

32

33 C31=C21+A3 ;

34 C32=C22+A3 ;

35 C33=C23+A3 ;

36

37 C41=C11∗C31 ;

38 C42=C12∗C32 ;

39 C43=C13∗C33 ;

40

41 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

42 D21=C31+D1 ;

43 D22=C32+D1 ;

44 D23=C33+D1 ;

45

46 D31=A3 .∗D21 ;

47 D32=A3 .∗D22 ;

48 D33=A3 .∗D23 ;

49

50 D41=C41 / D31 ;

51 D42=C42 / D32 ;

52 D43=C43 / D33 ;

53

54 E11=B1+D41 ;

55 E12=B1+D42 ;

56 E13=B1+D43 ;

57

58 % Values o f R a y l e i g h number NR

59

60 NR1=A6∗E11 % When P=2

61 NR2=A6∗E12 % When P=4
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62 NR3=A6∗E13 % When P=6

63

64 % Graphs o f NR Vs Alpha

65

66 p l o t ( Alpha , NR1)

67 ho ld on

68 p l o t ( Alpha , NR2)

69 ho ld on

70 p l o t ( Alpha , NR3)
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5.2.3 When H-Bar = 500,1000,1500

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =[500 1000 1500 ] ;

10 P=2 ;

11 NQ=20;

12 M1=10;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19

20 A41=power ( Alpha , 2 ) ∗H Bar ( 1 , 1 ) ;

21 A42=power ( Alpha , 2 ) ∗H Bar ( 1 , 2 ) ;

22 A43=power ( Alpha , 2 ) ∗H Bar ( 1 , 3 ) ;

23

24 A51=A3 . / A41 ;

25 A52=A3 . / A42 ;

26 A53=A3 . / A43 ;

27

28 A61=A1∗A51 ;

29 A62=A1∗A52 ;

30 A63=A1∗A53 ;
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31

32 B1=1/ P ;

33

34 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

35 C2=P∗C1 ;

36 C3=C2+A3 ;

37 C4=C1∗C3 ;

38

39

40 D1=power (M1, 2 ) ∗power ( Pi , 2 ) ;

41 D2=C3+D1 ;

42 D3=A3 . ∗D2 ;

43 D4=C4 / D3 ;

44

45 E1=B1+D4 ;

46

47

48 % Values o f R a y l e i g h number NR

49

50 NR1=A61∗E1 % When P=2

51 NR2=A62∗E1 % When P=4

52 NR3=A63∗E1 % When P=6

53

54 % Graphs o f NR Vs Alpha

55

56 p l o t ( Alpha , NR1)

57 ho ld on

58 p l o t ( Alpha , NR2)

59 ho ld on

60 p l o t ( Alpha , NR3)
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5.2.4 When M1= 10,20,30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Alpha = [ 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 Pi = 3 . 1 4 ;

8 E p s i l o n = 0 . 5 ;

9 H Bar =1000 ;

10 P=2 ;

11 NQ=20;

12 M1=[10 20 3 0 ] ;

13

14 % I n t e r m e d i a t e c a l c u l a t i o n s

15

16 A1=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1) ;

17 A2=power ( Pi , 2 ) +power ( Alpha , 2 ) ;

18 A3=power ( A2 , 2 ) ;

19 A4=power ( Alpha , 2 ) ∗H Bar ;

20 A5=A3 . / A4 ;

21 A6=A1∗A5 ;

22

23

24 B1=1/ P ;

25

26 C1=NQ∗power ( Pi , 2 ) ∗power ( E p s i l o n ,−1) ;

27 C2=P∗C1 ;

28 C3=C2+A3 ;

29 C4=C1∗C3 ;

30
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31

32 D11=power (M1( 1 , 1 ) , 2 ) ∗power ( Pi , 2 ) ;

33 D12=power (M1( 1 , 2 ) , 2 ) ∗power ( Pi , 2 ) ;

34 D13=power (M1( 1 , 3 ) , 2 ) ∗power ( Pi , 2 ) ;

35

36 D21=C3+D11 ;

37 D22=C3+D12 ;

38 D23=C3+D13 ;

39

40 D31=A3 .∗D21 ;

41 D32=A3 .∗D22 ;

42 D33=A3 .∗D23 ;

43

44 D41=C4 / D31 ;

45 D42=C4 / D32 ;

46 D43=C4 / D33 ;

47

48 E11=B1+D41 ;

49 E12=B1+D42 ;

50 E13=B1+D43 ;

51

52

53

54 % Values o f R a y l e i g h number NR

55

56 NR1=A6∗E11 % When P=2

57 NR2=A6∗E12 % When P=4

58 NR3=A6∗E13 % When P=6

59

60 % Graphs o f NR Vs Alpha

61
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62 p l o t ( Alpha , NR1)

63 ho ld on

64 p l o t ( Alpha , NR2)

65 ho ld on

66 p l o t ( Alpha , NR3)
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5.3 Chapter 4 : Variations of Rayleigh number

Consider the equation (4.28) to find the variations in Rayleigh number R1

5.3.1 When S1 = 10 , 20 , 30

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Wave Number =[1 2 3 4 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 H dash =10;

8 H=2;

9 S 1 =[10 20 30 ] ;

10

11 % I n t e r m e d i a t e c a l c u l a t i o n s

12

13 A2=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1)

14

15 F2=power (1+ Wave Number , 3 ) . / ( Wave Number∗H)

16

17 C21=S 1 ( 1 , 1 ) ∗ ( H dash /H)

18 C22=S 1 ( 1 , 2 ) ∗ ( H dash /H)

19 C23=S 1 ( 1 , 3 ) ∗ ( H dash /H)

20

21 % Values o f R a y l e i g h number

22

23 Rayle igh Number1 =A2∗ ( F2+C21 )

24 Rayle igh Number2 =A2∗ ( F2+C22 )

25 Rayle igh Number3 =A2∗ ( F2+C23 )
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26

27 % Graphs o f R a y l e i g h number Vs wave number

28

29 p l o t ( Wave Number , Rayle igh Number1 )

30 ho ld on

31 p l o t ( Wave Number , Rayle igh Number2 )

32 ho ld on

33 p l o t ( Wave Number , Rayle igh Number3 )
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5.3.2 When H = 2 , 4 , 6

1 c l e a r a l l

2

3 % A s s i g n i n g n u m e r t i c a l v a l u e s t o v a r i o u s p a r a m e t e r s

4

5 Wave Number =[1 2 3 4 5 ] ;

6 G r a v i t a t i o n a l A c c G = 9 . 8 ;

7 H dash =5;

8 H=[2 4 6 ] ;

9 S 1 =10 ;

10

11 % I n t e r m e d i a t e c a l c u l a t i o n s

12

13 A2=( G r a v i t a t i o n a l A c c G ) / ( G r a v i t a t i o n a l A c c G −1)

14

15 F21=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 1 ) )

16 F22=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 2 ) )

17 F23=power (1+ Wave Number , 3 ) . / ( Wave Number∗H( 1 , 3 ) )

18

19 C21=S 1 ∗ ( H dash /H( 1 , 1 ) )

20 C22=S 1 ∗ ( H dash /H( 1 , 2 ) )

21 C23=S 1 ∗ ( H dash /H( 1 , 3 ) )

22

23 % Values o f R a y l e i g h number

24

25 Rayle igh Number1 =A2∗ ( F21+C21 )

26 Rayle igh Number2 =A2∗ ( F22+C22 )

27 Rayle igh Number3 =A2∗ ( F23+C23 )

28

29 % Graphs o f R a y l e i g h number Vs wave number

30
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31 p l o t ( Wave Number , Rayle igh Number1 )

32 ho ld on

33 p l o t ( Wave Number , Rayle igh Number2 )

34 ho ld on

35 p l o t ( Wave Number , Rayle igh Number3 )
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Chapter 6

Conclusion and Future Scope

Concluding Remarks of the Thesis and Future Scope of the research work.
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6.1 Concluding Remarks

The whole thesis is devided into four chapters. Chapter 1, is introductory/review of

literature. In chapter 2, we have studied “Thermal instability of Rivlin-Ericksen

elastico-viscous fluid with suspended particles through porous medium”, in chapter 3

we have studied, “Hall effect on thermal instability of visco-elastic dusty fluid through

porous medium” and in chapter 4, “Double-diffusive convection in presence of

compressible Rivlin-Ericksen fluid with fine dust”. In chapter 2, we found that

magnetic field has stabilizing effect whereas suspended particles and medium

permeability have destabilizing effect on the system. In chapter 3, we found that

medium permeability have stabilizing as well as destabilizing effect only in presence of

magnetic field, but in absence of magnetic field it holds the same result as in presence

of suspended particles in chapter 2. As in the absence of suspended particles and

presence of compressibility in chapter 3, magnetic field has stabilizing effect on the

system. Also hall current is studied at here and found that hall current have

destabilizing effect on the system. In chapter 4, we found that stable solute gradient

have stabilizing effect, where has suspended particles have destabilizing effect on the

system in the presence of compressibility.

From the observation of all these three chapters, we found that magnetic field has

stabilizing effect, in presence of compressibility as well as incompressibility. Medium

permeability have stabilizing as well as destabilizing effects on the system, Hall current

have destabilizing effect whereas stable solute gradient have stabilizing effect on the

system.

All these results are verified graphically and by computer programming, self created

programming codes is the beauty of the thesis.

6.2 Future Scope

Fluid dynamics has many applications in all the branches of engineering like

mechanical, aeronautical and chemical etc. In medical discipline it plays an important

role. Observed problems of nature can be medelled by using fluid dynamics and can be

solved by using appropriate analytical method or numerical method which gives
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approximate solution. Presently technology is driven by physics, one must know the

physics of the problem only then solutions can be interpreted and useful in real life.

Mathematical equations tells a lot about the problem and physics behind it. The biggest

challenge is always to convert the real life fluid flow problem into mathematical

equations . The questions that always arise :

a) What is appropriate element ( 1 D, 2 D or 3D).

b) What are appropriate initial or boundary conditions.

c) Which technique or method is well suited for the problem.

Sometime experiments can not be performed because it is time consuming and

expensive, moreover resources are limited. Also it is not possible to done on all the

scales. All numerical methods convert continuum problem into discrete problem and

give the solution at nodal points not at all the points of domain. So simulations

techniques can be useful.

Simulation : Here, Firstly the problem is observed from the real life situation, then

problem is defined and converted into mathematical model which is the set of differential

equations (ordinary or partial). Afterwards problem is solved by using the mathematical

techniques or tools and results obtained.

Numerical Simulation : If solution to the problem is approximated by using one

of the numerical methods like finite difference method, Finite element method, finite

volume method, runge-Kutta method, Galerkian method or any other method which is

well suited to given problem is called numerical simulation. Finite element method is

numerical tool for simulation. It can be used upto micro and continuum scale but cannot

be used for nano scale. Numerical techniques are those which can be programmed.

Simulation through software: For this purpose various softwares of computational

fluid dynamics like ANSYS ( FLUENT ), COMSOL Multiphysics, ABAQUS, MARK,

PAFEC, ADINA are available in the market. The processing of these softwares is based

on the numerical methods.

One can pursue the research in the area of fluid structure interaction (FSI) and further

simulate the results by using computational software.
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