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We referred to [2], [3], [4], [5], [6], and [7] for understanding of compactness and its
related concepts in topology.

1. Introduction

Topology emerged as a step towards abstraction of well known properties of the Real or
Euclidean Line (R) to develop new classes of spaces. In the beginning, the burning ques-
tion was which property(s) of R would prove useful in this quest of defining new classes
of spaces that would pave the way for useful applications and interesting problems. The
answer was compactness (which was refereed to as bicompactness in the early years).
Topologists spent the next years formulating the fertile definition of compactness in topo-
logical spaces. Two important theorems of real analysis; Bolzano-Weierstrass Theorem
and Borel-Lebesgue Lemma became the primary sources of putting together the modern
definition of compactness in topological spaces.

2. Preliminaries

A topological space is a pair (X, τ) which consists of an arbitrary set X and a
collection τ of subsets of X which satisfies the three axioms:

(1) The empty set φ and X belong to the collection τ .
(2) All arbitrary union of elements of τ belong to the collection τ .
(3) All finite intersection of elements of τ belong to the collection τ .
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This collection τ is called a topology for X and each set in the collection τ is called an
open set. The pair Rn together with the standard topology is an example of a topological
space that is studied exclusively in real analysis. We define a subset of X to be a closed
set if its complement is an open set of X. Hence, given a topological space X, the
following holds:

(1) φ and X are closed in X.
(2) All arbitrary intersection of closed sets in X are also closed in X.
(3) All finite unions of closed sets in X are also closed in X.

We may redefine a topology on a set X by starting with a collection of closed sets that
satisfy the three properties as stated above and then defining an open set as the comple-
ment of a closed set.There are many possibilities for a topology on an arbitrary set M .
Therefore we compare the sizes of these topologies. If τ ⊂ τ

′
then we say τ

′
is finer than

τ or τ is coarser than τ
′
. Therefore, indiscrete topology is the coarsest topology we know

and the discrete topology is the finest topology we know.
Another important concept of an open set is the neighbourhood. We say that a

neighbourhood of a point of X is an open set of X to which the point belongs. A
neighbourhood of a subset Y of X is an open set of X that contains Y . A point p of
the set X is called an accumulation point or limit point of a subset Y of X when
every neighbourhood of p intersects Y at some point of Y distinct from p. A specific
kind of the accumulation point is the ω-accumulation point for which every open set
containing p must contain infinitely many points of Y . A limit point of a sequence
xnn∈Z+ of points xn of a space X is defined such that every open set containing p contains
all but finite number of points of the sequence. The sequence is then said to converge
to the point p. A weaker condition on p is that every open set containing p contains
infinitely many points of the sequence. Then p is called the accumulation point of the
sequence. An accumulation point p of Y is called a complete accumulation point if
for each neighbourhood U of p, |U ∩ Y | = |Y |. The set of all accumulation points of a
subset Y of X is called the derived set of Y , denoted usually by Y ′. The set Y with
its derived set Y ′ is called its closure, denoted by Ȳ or Cl(Y ). Equivalently, the closure
Ȳ is the intersection of all the closed sets (and therefore the smallest closed set) which
contain the set Y . Related to the closure of a set is the interior of a set A of space X,
which is defined as the largest open set contained in A. Therefore, the interior of A is the
union of all the open sets contained in A and we denote it by Int(A). A subset Y of X
is called a dense set if Ȳ = X. That is every point of X is an accumulation point of Y .
Two subsets A,B of a space X are separated sets if neither of the two sets contain the
accumulation points of the other or A ∩ B̄ = Ā ∩B = φ.

Metric Topology. For a nonempty set X, the function d : X×X → R is called a metric
on X if d satisfies the following three properties.

(1) d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X. We call the pair (X, d) a metric space with metric d. The third
property mentioned above is known as the triangle inequality of the metric. We refer
to the metric as the distance function too. We will now define the topology of a metric
space. In a metric space (X, d), a subset U of X is an open set if for every x ∈ U there
is an ε > 0 such that the ball B(x, ε) = {y ∈ X|d(x, y) > ε} is contained in U . The set
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of all such open sets of X is called the topology induced by metric or the topology
of a metric space. It is only appropriate that we discuss the importance of the triangular
inequality property of the metric here. It guarantees that around each point y such that
d(x, y) > ε, there is a smaller B(y, δ) ball entirely contained in the ball B(x, ε) around
M . Therefore, open ball is really open in X. Now if X is a topological space, X is said
to be metrizable if there exists a metric d on the set X that induces the topology of X
as explained previously.

Subbasis and Basis. We can generate a topology for a space X from a collection of
subsets of X. A collection of subsets S of X is called a subbasis if we construct the
collection of open sets (or topology on X) by taking unions of finite intersections of
elements of the subbasis along with φ and X. If the union of elements of S is X and
if every point belonging to the intersection of any two elements of S also belongs to
an element of S contained in the intersection, then that collection S is called a basis.
Hence, all the open sets of X can be taken as unions of elements of the basis. A local
basis at a point p of X is a collection of neighbourhoods of p such that every open set
that contains p contains at least one element of the collection.

Subspace Topology. There is a natural way to define a subspace of a given topological
space(X, τ). For a subset Y of X, we define the subspace topology τY as the collection
of intersections of every open sets of X with Y . Then (Y, τY ) is the required subspace of
a space X. Now consider a space X (by which, we mean a topological space from here
on) with a particular property. We then say that it is a hereditary property if every
subspace of the space X has the property. If only all the closed subspaces (these are closed
subsets of X together with the subspace topology) has the property, then it is called a
weakly hereditary property.

Functions. Functions (or maps defined from one space to another) are great tools for
studying properties of spaces and making new spaces from existing ones. We define a
function f from space X to space Y to be continuous if the inverse image of all open
sets of Y is an open set in X. This is equivalent to proving that the inverse image of
all closed sets should be closed or for each subset A of X, f(Ā) ⊂ f(A). A function
is an open map when the image of every open set is open and is a closed map f is
when the image of every closed set is closed. A function f from space X to space Y is
a homeomorphism when it is bijective and both f and f−1 are continuous. We then
say X is homeomorphic (or topologically equivalent) to Y or X ∼= Y . A property is
said to be a topological invariant if whenever one space has the given property, any
other space homeomorphic to it also has the same property. A Urysohn function for
disjoint subsets A,B of X, is a continuous function f : X → [0, 1] such that f(A) = 0 and
f(B) = 1.

3. Separation Axioms

Topological spaces without any additional restrictions (or axioms) imposed on the topol-
ogy behave rather too wildly and pondering over invariance of properties or any applica-
tions of these spaces becomes a very complicated and uninteresting mental activity. Here
we discuss more axioms a topology may satisfy so that we create the necessary grounds
for discussion of various forms of compactness that exist in topological spaces.
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These axioms, if imposed on a topology of a space, specify the extent to which distinct
points or closed sets of the space may be separated by open sets. They are listed below.
Let X be a topological space.

T0 axiom: For all distinct points x, y ∈ X, there exists a neighbourhood of one of the
two pints that does not contain the other. If X satisfies the T0 axiom, then
X is a Kolmogorov Space.

T1 axiom: For all distinct points x, y ∈ X, there exist a neighbourhood of each point
that does not contain the other. If X satisfies the T1 axiom, then X is called
a Fréchet Space.

T2 axiom: For all distinct points x, y ∈ X, there exist disjoint neighbourhoods of both
points. If X satisfies the T2 axiom, then X is a Hausdorff Space.

T3 axiom: For all points x ∈ X and each closed sets A of X that does not contain x,
there exists disjoint neighbourhoods of x and A.

T4 axiom: For every disjoint closed sets A,B of X, there exists disjoint neighbourhoods
of A and B.

T5 axiom: For all separated sets in X, there exists disjoint neighbourhoods of A and B.

Along with the above commonly used axioms we list two more useful axioms as follows.

T21
2

axiom: For all distinct points x, y ∈ X, there exist neighbourhoods of both points

such that the intersection of the closures of the neighbourhoods is empty. If
X satisfies the T2 axiom, then X is a completely Hausdorff Space.

T31
2

axiom: For all points x ∈ X and each closed sets A of X that does not contain x,

there is a Urysohn function for A and x.

We observe that in T0 space, no two distinct points in such a space can be limit points
of each other. In T1 space, all singleton sets are closed sets, and all points in T2 space
are intersection of their closed neighbourhoods. In T3 space,each open set contains a
closed neighbourhood around each of its points or each closed set is the intersection of
all of its closed neighbourhoods. A space that satisfies T4 axiom is characterized by the
fact that every open set in the space contains a closed neighbourhood of each closed set
contained in it and every subset of T5 space which contains an open set, also contains
its closure. It must be appreciated that each of these axioms stand independently of the
three axioms of a topology define on a set. But they are not really independent of each
other. For instance, observe that T2 implies T1 which in turn implies T0. However, the
converse is not true. Now T3 and T4 do not imply or implied by any other axiom in the
list. Also note that, though T5 imply T4, it does not imply any of the other axioms. In
addition, a completely Hausdorff space is a Hausdorff space and every T3 1

2
is T3 though

not necessarily T2.
Now we can employ the separation axioms to define stronger properties. We define a
space which is both T0 and T3 (hence, T2 as well) to be a regular space. Hence every
regular space is completely Hausdorff. A space which is T0 and T3 1

2
is called completely

regular. Thus completely regular spaces are regular. A space which is both T1 and T4

(consequently, T3 too) as a normal space. Hence, normal spaces are completley regular.
A space which is both T1 and T5 is a completely normal space.
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4. Compactness

Before we discuss the fundamental concept in point-set topology, we will first define a
cover.

Covers. By a cover A of a space X, we mean a collection {Aα|α ∈ J} of subsets Aα
of X such that the union of its elements is X. We say that the collection covers X. An
open cover is a cover which consists of only open sets Aα of X. By a subcover of the
cover A of X, we mean a subfamily {Aα|α ∈ K},K ⊂ J , that is a cover of X. A cover
Vβ of a space X is a refinement of a cover Uα if for each Vβ there exists a Uα such that
Vβ ⊂ Uα. A cover is point finite if each point belongs to only finitely many sets in the
cover, and it is locally finite if each point has some neighbourhood which intersects only
finitely many members of the cover.

Compactness. A topology τ defined for a set X determines the number of open sets
available in the space (X, τ). A space X will satisfy any of the separation axioms if the
topology has enough open sets to provide disjoint neighbourhoods for distinct points and
disjoint subsets of X. Now, compactness, is defined in the literature as,

”X is compact if every open cover of X contains a finite subcover”

or equivalently, X is compact if every collection of closed subsets whose intersection is
empty contains a finite subcollection whose intersection is empty. Further using the
definition of refinement, we can say that a space X is compact if every open cover A of X
has a finite open refinement B that covers X. This definition is equivalent to the earlier
one because given such a refinement B, we can find for each element of B an element
of A containing it. Hence, we will obtain a finite subcollection of A that covers X.
We can observe that compactness puts a limit to the number of open sets in a topology.
Therefore, separation axioms and compactness are two different notions that aids us in
understanding the abstract structure and behaviour of each topological space. Moreover,
in compact spaces, generalization from local to global properties is possible. If X is a
compact space such that open sets of X have a property P that X may not have, but also
such that if U and V have it, then so does their union. Then if X has this property locally
(which means that every point of X has a neighbourhood with property P), X itself has
the property too by assuming the property is inductively transferred to finite unions. So
if a function f is locally bounded, then f is bounded. or, if A is a locally finite cover,
then A is finite. And if A is a locally finite subset of X, then A is finite. Conversely,
this means that if A is an infinite subset of X, then there exists a point of X all of whose
neighbourhoods contain infinitely many points of A. This point is an ω-accumulation
point of A. Now from the definition of compactness, we can conclude that every closed
subspace of a compact space is compact. As a result, compactness is a weakly hereditary.
Moreover, in Hausdorff spaces, every compact subspace is closed. With further careful
analysis, we see that every closed interval in R is compact. In addition, the image of a
compact space under any continuous map is compact.

Now we can generalize the notion of compactness stated above in two ways. First, by
weakening the requirement that subcovers must be finite or only requiring that countable
open covers have finite subcovers instead of all open covers. Second, by the use of various
types of refinements of a cover.
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Weak Forms of Compactness. A Lindelöf space is a topological space where ev-
ery open cover has a countable subcover. A countably compact space is one where
every countable open cover has a finite subcover or equivalently, every sequence has an
accumulation point (in the space itself). A space is sequentially compact if every se-
quence has a convergent subsequence and limit point compact if every infinite subset
of the space has a limit point. Hence, compactness implies all of these weak forms and
sequential compactness implies countable compactness, which in turn imply limit point
compactness. However, the converses are not true. But, in a T1 space, limit point com-
pactness is equivalent to countable compactness. Also every countably compact Lindelöf
space is compact and every limit point compact space such that each infinite subset has
a complete accumulation point is compact. A space is locally compact, if each of its
points is contained in a compact subspace. Again, every compact space is locally compact
but the converse is not true. In Hausdorff spaces, there exists a stronger form of local
compactness because in such spaces, compact sets are closed. This definition makes the
concept of locally compact a more intuitively ’local’ property. A space X is strong local
compact if at each point x of X, given a neighbourhood U containing x, there exists a
neighbourhood of x whose closure is contained in U .

Countability Axioms and Separability. Compactness indirectly impose a limitation
on the number of open sets in a topology. But countability axioms restricts the number
of basis elements, thereby directly limiting the number of open sets. We define a space to
be separable if it has a dense subset. A second-countable (or completely separable, or
perfectly separable) space is the one that has a countable basis. A first-countable space
has a local countable basis at each of its points. We can see easily that most topological
spaces we know are first-countable and every second-countable space is first-countable.
In second-countable spaces, compactness is equivalent to countable compactness. By sim-
ilar argument, we see that in first-countable spaces, countable compactness is equivalent
to sequential compactness.

Paracompactness. This is another way of generalizing compactness. Several compact-
ness properties which have both local and global aspects rely on the concept of a refine-
ment of a cover. A space X is paracompact if every open cover has a locally finite open
refinement that covers X. Every compact space is paracompact. Paracompactness, like
compactness, is also a weakly hereditary property. A space X is metacompact if every
open cover has a point finite open refinement. Every paracompact Hausdorff space is
normal and every regular Lindelöf space is paracompact. Also every metrizable space is
paracompact.

5. Recent Developments in Weak and Strong Forms of Compactness

Here we discuss briefly discuss the concept of generalized preopen compactness and its
relation to other known types of compactness along with some new separation axioms as
presented in [1]. One of the main reasons for constructing such a concept is to look at
some modified forms of continuity, separation axioms etc.

Definitions. A subset A of a space X, is preopen if for every open set U that contains
A, A ⊂ Int(Cl(A)) and preclosed if Cl(Int(A)) ⊂ A. Space X is strongly compact if
every preopen cover has a finite subcover. A space that contains two disjoint dense subsets
are called resolvable and the space is strongly irresolvable if every open subspace of
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X is irresolvable (which means we cannot represent it as a disjoint union of two dense
subsets). X is said to be quasi-H-closed or QHC if every open cover of X has a finite
subfamily, the closures of whose members cover X.

Generalized Preopen Sets. A is a generalized preopen (or gpo-) set if for each
preclosed subset U of X that contains A, Cl(A) ⊂ U . Every open set is a gpo- set. The
complement of a gpo- set is generalized preclosed (or gpc-). Defined equivalently, a
subset A of a space X is a gpc- set if and only if for each preopen set U that is contained
in A, U ⊂ Int(A). For two gpo- compact sets A and B, A ∩ B is not generally gpo- but
arbitrary unions of gpo- sets are gpo- sets. A space is gpo- irresolvable if every preopen
set is a gpo- set.

Generalized Preopen Compactness. A space X is gpo- compact if every gpo- cover
(which is a cover consisting of gpo- set) of X contains a finite subcover. Every gpo-
compact space is a compact space. If a space is both gpo- irresolvable and gpo- compact,
then it is strongly compact. A space X is gpo- regular if for every gpo- cover Aα of X
and for every x ∈ Aα(x) ∈ A, there exists a preopen set Uα such that x ∈ Uα ⊂ Aα. Then
we see that if X is gpo- regular and a strongly compact space, then it is gpo- compact.

New Separation Axioms. Some new separation axioms were also introduced in [1].

• X is called a Tp0 space if for each pair of distinct points x, y ∈ X, there is either
a gpo- set containing x but not y or a gpo- set containing y but not x.
• X is called a Tp1 space if for each pair of distinct points x, y ∈ X, there exist a

gpo- set containing x but not y and a gpo- set containing y but not x.
• X is called a Tp2 space if for each pair of distinct points x, y ∈ X, there exist

disjoint gpo- sets U and V such that x ∈ U and y ∈ V .
• X is called a weak regular space if for each closed subset A and each point x of X

not belonging to A, there exist gpo- sets U and V such that x ∈ U , A ⊂ V and
U ∩ V = φ.
• X is called a weak normal space if for each pair of disjoint closed subsets A and
B of X there exist gpo- sets U and V such that A ⊂ U , B ⊂ V and U ∩ V = φ.

A weak regular Tp1 space is called a Tp3 space. A weak normal Tp1 space is called a Tp4

space.

6. Future Plan

We will extend our study of weak and strong forms of compactness for Dissertation II
by exploring further the following.

(1) Connections between classical compactness and gpo- compactness and study of
spaces that satisfy the new axioms introduced in [1].

(2) Product of gpo- compact spaces.
(3) Other possible ways of generalizing open sets and construction of new separation

axioms.
(4) Existence of any suitable application of generalized preopen compactness, hope-

fully in topology itself.
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