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Abstract

MASTER OF SCIENCE

Modelling Effect of Increasing Temperature on Growth Dynamics of Two

Interacting Population

by Vikas Choudhary

It is well recognized that the greenhouse gas such as Chlorofluoro Carbon (CFC) is

responsible directly or indirectly for the increase in the average global temperature of

the Earth. The presence of CFC is responsible for the depletion of ozone concentration

in the atmosphere due to which the heat accompanied with the sun rays are less ab-

sorbed causing increase in the atmosphere temperature of the Earth. The increase in

the temperature level directly or indirectly affects the dynamics of interacting species

system. Therefore, mathematical model are purposed and analyzed using stability the-

ory to asses the effects of increasing temperature due to greenhouse gas CFC on the

survival or extinction of interactive population.
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Chapter 1

Introduction

1.1 Ecology and Ecosystem

The manner in which the organisms interact with other organisms and also with the

environment is being studied in ecology. Ecology is considered as a science, not any

movement (like environmentalism). The Ecologist involves himself in the hypothetic

method which is co-deductive so as to frame questions and generate hypotheses about

ecosystems which can be tested. Usually, mathematical models which are very complex

are to be generated to simulate ecosystems. The comparison of the real systems can

be done with these models which represent idealized systems and the predictive value

of these real systems can be found out. When a project on a huge scale is impossible

sometimes to perform, then the usage of computer model is done for predicting results.

An ecosystem consists of

• biotic components which are the living organisms.

• abiotic components which are the non-living factors like light, water, temperature,

nutrients, topography, etc.

Ecosystems are entities made of the biological community and the abiotic environment.

The state of the evironmental factors which are interrelated with each other is deter-

mined so as to know the structure and composition of ecosystem. The composition can

be both biotic and abiotic. Changes in these components (for example: supplement

availability, temperature, light constrain, touching force, and species masses thickness)

will realize exceptional changes to the method for these structures. For example, a fire in

the quiet deciduous timberland thoroughly changes the structure of that system. There

1
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are no longer any considerable trees, by far most of the herbs,greeneries and shrub beries

that have the timberland floor are gone, and the supplements that were secured in the

biomass are promptly released into the soil, environment and hydrologic structure. After

a short time of recovery, the gathering that was once developed trees now transforms

into a gathering of grasses, tree seedlings and herbaceous species.

1.2 Population and community

A population incorporates each one of the general population of a given creature bunches

in a specific district or zone at a particular time. Its centrality is more than that of

different individuals in light of the fact that not all individuals are indistinct. Populations

contain variety inside themselves and between various populations. In fact, even major

inherited characteristics, for instance, hair shading or size may fluctuate fairly from

individual to individual. More basically, not all people from the masses are equal in

their ability to survive and repeat.

Group alludes to every one of the population in a particular region or locale at a specific

time. Its structure includes many sorts of collaborations among species. Some of these

include the obtaining and utilization of sustenance, space, or other ecological assets.

Others include supplement pushing through all individuals from the group and shared

direction of populace sizes. In these cases, the organized cooperations of populations

prompt circumstances in which people are tossed into last chance battles.

By and large, scientists trust that a group that has a high differing qualities is more

intricate and stable than a group that has a low assorted qualities. This hypothe-

sis is established on the perception that the sustenance networks of groups of high

assorted qualities are more interconnected. More noteworthy interconnectivity makes

these frameworks be stronger to aggravation. On the off chance that an animal types is

evacuated, those species that depended on it for nourishment have the choice to change

to numerous different species that involve a comparative part in that biological commu-

nity. In a low differing qualities biological system, conceivable substitutes for sustenance

might be non-existent.
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Figure 1.1: Ecological System

1.3 Population Dynamics

Population dynamics is the investigation of the adjustments in population size and struc-

ture after some time. Population progression is the branch of life science that reviews

the size and age sythesis of population as elements frameworks, and the natural and eco-

logical procedures driving them, (for example, birth and passing rates, and by migration

and displacement), case situations are maturing populace development, or population

decay.

1.4 Habitats

Variety in population thickness = (Birth+Immigration) − (Deaths + Emigration) living

spaces have restricted measures of the assets required by living beings. Living beings

must rival others with a specific end goal to get enough of these assets to survive. In

the event that they are unsuccessful and can’t move to another environment.

Ot=1 = Ot +B + I −D − E
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Where:

• Ot = the number of organisms currently

• Ot+1 the number of organisms per year per generation in the next time step

• B = the number of births

• D = the number of deaths

• I = the number of immigrants

• E = the number of emigrants

1.5 Interaction between populations

Figure 1.2: Interaction between populations

1.5.1 Predation

An organism which eats another living being for their sustenance is called predator while

the living being that is being eaten upon is named as the prey. This sort of associa-

tion between the prey and predator is known as predation. Ordinarily a predator has
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a tendency to be bigger than that of the prey, and thus they expend many preys amid

their life cycle. Amid the demonstration of predation frequently the passing of prey will

happen because of the ingestion of the prey’s tissue by the predator. Common cases

of predation are bats eating the bugs, snakes eating mice, and the whales eating the krill.

1.5.2 Camouflage

This is a phenomenon of a organism with the foundation shade of its living space is

a typical strategy for keeping away from discovery by their predators in the biological

system. An illustration is grasshoppers which can mix splendidly with the materials on

which they sustain. The veins of leaves are frequently mirrored on the grasshopper’s

wings.

1.5.3 Mimicry

Other than camouflage, a few organisms mirror different creatures, for instance, some

hoverflies emulate wasps in the biological community. The similitudes between one ani-

mal varieties to another secure one or both the animal varieties required in the mimicking

procedure. The likenesses can be either in their appearance, practices, sound, develop-

ment or area and which helps them shield themselves from the predators.

1.5.4 Commensalism

Commensalism is an interspecific connection between two life forms in the ecosystem

where one animal groups benefits while alternate species stays unaffected. In this affil-

iation, for the most part a commensal can acquire supplements from the host species

for their living place, development, and movement. The host stays unaffected. The

host is bigger and unmodified, while the commensal is littler with some changed basic

adjustments with its natural surroundings.



Chapter:Introduction 6

1.5.5 Mutualism

Not at all like commensalism, mutualism is interspecific connection between two living

beings in the biological system with advantage to both the partner individuals in inter-

action with each other. Amid this connection, populations of each associating species

develop, survive and reproduce at a larger rate within the sight of the other interfacing

species. Fertilization is a decent case to clarify mutualism, where the plant gets advan-

tage from the dispersal of dust the pollinator acquiring a food of nectar from the bloom.

1.5.6 Parasitism

A parasite bolsters on the host, yet they for the most part don’t devastate it. Parasites

are normally littler then the host. Parasites may have more than one host amid its

life cycle. The host advanced some barrier components against the parasites; the most

essential is the invulnerable reactions, for example, cell protections. Likewise parasites

can generously diminish the host population sizes. The connection between the para-

sites and the hosts is known as Parasitism. Tapeworms and parasitic bloodsuckers are

commonplace cases of parasites.

1.6 A brief review of the work already done

Petchey et al. (2010) [1] explained the effect of temperature increase on properties of

food-web. It has been showed [2, 3] the effect of climatic warming on the living beings

metabolic rate. In both these papers, the metabolic hypothesis of nature(Brown et al.

(2004) [4] is considered to predict the changes in the rates of processes with increasing

temperature.

Chaturvedi et al.(2013) [5] explained how an equilbrium state which was originally un-

stable becomes stable with the process of diffusion and process of advection. Depending

on these results, the derivations of prey and predator populations are being done.

Srinivasan et al.(2016) [6] had proposed a method by which some unknown parameters

are used to solve the problem of handling chaos of three species models of prey predator.

Also the study of this three dimensional prey predator model is being proposed.

Kalra et al.(2012) [7] suggested that the ozone harming substance, for example, Chlo-

rofluoro Carbon (CFC) is capable specifically or in a roundabout way for the expansion
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in the normal worldwide Earth’s temperature. The existence of CFC is the reason of the

exhaustion of ozone in the surroundings bringing about increment in the environmental

temperature. The expansion in the level of temperature specifically or in a roundabout

way influences the dynamics of systems of interacting species.

Ray et al. (2016) [8]in light of hypothetical investigations of Lotka and Volterra, Gause

and his associates supplant the already utilized straight practical reaction by utilizing an

immersing useful reaction with a brokenness at an edge prey thickness. In the present

review, we reclassify and break down the model by utilizing Filippov regularization

technique. By this continuation technique, the framework turns out to be very much

acted and gives more outcomes like anticipated by Gause. Likewise predator completely

relies on option eating routine to get by from eradication hazard when prey is in refuge

patch and framework generally fluctuates with the accessibility of option eating routine

asset however in the later case predator again changes to its essential (fundamental)

sustenance. At the point when prey is in the region of the threshold density, then

predator may pick its deit specially from basic or option assets as indicated by its

benefit.

O.P.Mishra and Preety Kalra, et al (2012) [9]proposed the mathematical modeling of

impact of expanding temperature because of the consumption of ozone layer brought

about by CFC on the behaviour of two populations competing with each other. It is

mathematically survey that the ozone depleting substance, for example, chlorofluoro

carbon (CFC) is in charge of the expansion in the normal worldwide temperature. The

CFC is in charge of the consumption of ozone layer in the earth’s atmosphere because

of which the warmth in the sun rays is less retained bringing about increment in the air

temperature of the earth.

1.7 Objective of the Proposed Work

In this proposed work, the standard target is to learn about the connection between

the creatures in the ecosystem. In particular, we would focus on communication of

prey-predator where predator eats its prey. It is all around seen that the ozone hurting

substance, for instance, Chlorofluoro Carbon (CFC) leads to the development in the

overall temperature of the Earth. The CFC is accountable for the decrease of ozone

density in the earth’s atmosphere as a result of which the warmth in sun rays is less

absorbed achieving increase in the temperature of atmosphere around the earth. The

development in the temperature level clearly or by suggestion impacts the elements of

interacting species systems. Thus, in this work a numerical model has been proposed and

used the stability theory to study the effects of growing temperature due to the ozone
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draining substance CFC on the survival or disposal of populations in a prey-predator

framework. A threshold value will be obtained which chooses the eradication or survival

of populations in prey-predator system. objectives of the project are as follows:

1. To study about the relationship between the organisms in the ecosystem. Specially

prey-predator where predator depends on its prey. For example, polar bear is a

predator and fish is a prey.

2. To observe the basic concepts of prey-predator dynamics and to study the variation

in population pattern.

3. To find the solution of model by stability theory by using different methods. To

find the threshold level of growth parameters under the effect of rising temperature.



Chapter 2

Mathematical Preleminaries

2.1 Predator Functional Responses Holling type

Figure delineates the three general sorts of bends expected in different predator-prey

circumstances.

Type I is a linear relationship in which the predator eats the prey as much as the

abundance of prey in environment. If the predator eats 10% of the prey at low density,

the predator will eat 10% of prey at high densities. The dotted line illustrates a greatest

utilization rate that a few authors join to Type I scavenging.

Type II portrays a circumstance in which the quantity of prey devoured per predator

at first ascents rapidly as the thickness of prey increments however then levels off with

further increment in prey thickness.

Type III is similar as Type II in having a maximum farthest point to prey utilization,

however varies in that the reaction of predators to prey is discouraged at low prey

thickness.

9
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Figure 2.1: Three types of functional response connecting prey density (X) and the
number of prey eaten by one predator (pe).

2.2 Methodology for proposed work

2.2.1 Autonomous and non-autonomous system

Let x(t) be vector valued function defined by

x(t) =


x1

x2
...

xn

 = col(x1(t), x2(t) . . . xn(t))

and f be vector valued function given by

f(t, x) =


f1(t, x1, x2, . . . xn)

f2(t, x1, x2, . . . xn)
...

fn(t, x1, x2, . . . xn)

 = col(f1(t, x), f2(t, x) . . . fn(t, x)).

Where f1, f2 . . . fn are n given functions in some domain B of n+1 dimensional euclidean

space Rn+1and x1, x2 . . . xn are n unknown functions.

Then the system

dx

dt
= f(x, t) (2.1)

with initial condition x(t0) = x0 is a non-autonomous system.

A differential system of the form
dx

dt
= f(x) (2.2)
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with initial condition x(t0) = x0 in which right hand does not involve independent vari-

able t, is said to be autonomous system.

2.2.2 Solution of system of differential equations

A set of n-function φ1, φ2 . . . φn define on I = {t : t ∈ R, r1 < t < r2} , where r1 and r2

are any two fixed points in set of all real number R, is said to be solution of (2.1) on I

if for t ∈ I

1. φ′1, φ
′
2 . . . φ

′
n exits.

2. The point (t, φ1(t), φ2(t) . . . φn(t)) remain in B.

3. φ′i = fi(t, φ1(t), φ2(t) . . . φn(t)), i = 1, 2...n.

2.2.3 Periodic linear system

Consider a linear homogeneous system

dx

dt
= A(t)x (2.3)

whereA(t) is an n×n continuous matrix on the interval−∞ < t <∞ andA(t+ω) = A(t)

for some constant ω 6= 0, then (2.3)is called a periodic system and ω is period of A.

2.2.4 Equilibrium point

Consider a system
dxi
dt

= fi(x1, x2, . . . xn) (2.4)

A pointx∗ = (x∗1, x
∗
2, . . . x

∗
n), is called a equilibrium point of (2.4 if

1. x∗ > 0,

2. fi(x
∗
1, x
∗
2, . . . x

∗
n) = 0 hold for all i = 1, 2, . . . n.
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2.2.5 Community matrix or Variational matrix

linearize system (2.4) about the equilibrium x∗i to obtain.

dxi
dt

=
n∑
j=1

aijxj , i = 1, 2, . . . n. (2.5)

where

aij = (
∂fi
∂xi

)(x∗), i, j = 1, 2, . . . n. (2.6)

the matrix A = (aij)n×n is called the community matrix of the linearize system (2.5).

Definition 2.1. The solution x(t) of (2.1) is stable if, for each ε > 0 there exists a

δ = δ(ε) > 0 such that, for any solution x̄(t) = x(t, t0, x̄0) of (2.1), the inequality

‖x̄0 − x0‖ ≤ δ implies ‖x̄(t)− x(t)‖ < ε for all t ≥ t0.

Definition 2.2. The solution x(t) of (2.1) is asymptotically stable if it is stable and if

there exists a δ0 > 0 such that ‖x̄0 − x0‖ ≤ δ0 implies ‖x̄(t)− x(t)‖ → 0 as t→∞.

Definition 2.3. The solution x(t) of (2.1) is said to be unstable if it is not stable.

Definition 2.4. Let φ(t) be a fundamental matrix of (2.3) with φ(t0) = I. Then (2.3) is

1. stable if and only if there exist a positive constant M such that

‖φ(t)‖ ≤M for t ≥ t0.

2. Asymptotically stable if and only if

‖φ(t)‖ → 0 as t→∞.

Theorem 2.5. If all the characteristic roots of A have negative real parts, then every

solution of
dx

dt
= Ax (2.7)

where, A = [aij ] is a constant matrix, is asymptotically stable.

Theorem 2.6. If characteristic roots of A having multiplicity greater than one and with

negative real parts, then all its roots with multiplicity one will have non positive real

parts, then all the solution of (2.7) are bounded and hence stable.
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2.2.6 Hurwitzs Theorem

A necessary and sufficient condition for the negativity of real parts of all the roots of

polynomial P (λ) = λn+a1λ
n−1+a2λ

n−2+ . . .+an, with real coefficients is the positivity

of all the principle diagonals of the minors of the Hurwitz matrix

Hn =



a1 1 0 0 0 0 . . . 0

a3 a2 a1 1 0 0 . . . 0

a5 a4 a3 a2 a1 1 . . . 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . an


Principal diagonals of the Hurwitzs theorem Hn, for n = 1, 2, 3 . . . are given by

|a1|,

∣∣∣∣∣ a1 1

a3 a2

∣∣∣∣∣ , . . . |Hn|

In the case of second, third and forth degree polynomials, the Hurwitz conditions can

be written as follow:

1. For P (λ) = λ2 + a1λ+ a2, the hurwitz conditions are a1 > 0, a2 > 0.

2. For P (λ) = λ3 + a1λ
2 + a2λ+ a3, the hurwitz conditions are a1 > 0, a2 > 0, a3 > 0

and a1a2 − a3 > 0.

3. For P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4, the hurwitz conditions are a1 > 0, a2 >

0, a3 > 0, a4 > 0, and a1a2a3 − a23 − a21a4 > 0.

2.2.7 Stability by Liapunov’second method

Let
dx

dt
= f(x) (2.8)

where f ∈ C[Rn, Rn] is an autonomous differential equation system. Let f(0) = 0 and

f(x) 6= 0 for x 6= 0 in some neighborhood of origin so that (2.8) has the zero solution

and the origin is isolated critical point of (2.8). Let Ω be an open set in Rn containing

the origin, let V (x) is a scalar continuous function which is defined on Ω.

Definition 2.7. A scalar function V (x) is said to be positive definite on the set Ω if

and only if V (0) = 0 and V (x) > 0 for x 6= 0 and x ∈ Ω.
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Definition 2.8. A scalar function V (x) is negative definite on the set Ω if and only if

−V (x) is positive definite on the set Ω.

Let Sρ = x ∈ Rn : ‖x‖ < ρ and J [t0,∞), t0 ≥ 0. suppose x(t) = x(t, t0, x0) is any solution

of (2.8) with initial value x(t0) = x0, such that ‖x‖ < ρ for t ∈ J .

Let

V ∗(x) = gradV (x).f(x) =
d

dt
V (x(t))

Now following theorems describe the stability of zero solution of system (??).

Theorem 2.9. If there exist a positive definite scalar function V (x) such that V ∗(x) ≤ 0

on Sρ then the zero solution of (2.8) is stable.

Theorem 2.10. If there exist a positive definite scalar function V (x) such that V ∗(x)

is negative definite on Sρ, then the zero solution of (2.8) is asymptotically stable.

2.2.8 Theorem on periodic solution and its stability

Theorem:(1)

Consider a non autonomous system

dx

dt
= f(t, x, µ) (2.9)

If f is real and continuous function in (t, x, µ) when (t, x) is in some domain V of (t, x)

space containing the curve (t, p(t)) and when |µ| is small. f has first-order partial

derivative with respect to the component xi of x which are continuous in (t, x, µ). If first

variation of (2.9) for µ = 0 with respect to the solition p(t) has no solution of period T ,

then for small |µ| the equation (2.9) has a solution q = q(t, µ), periodic in t for period

T , continuous in (t, µ) and with q(t, 0) = p(t). there is only one such solution for each

µ.

Theorem:(2)

the first variation is the linear system with periodic coefficients

dy

dt
=

n∑
j=1

∂f

∂xi
(t, p(t), 0)yi = fx(t, p(t), 0)y (2.10)

where the matrix fx(t, p(t), 0) has the period T . if the real part of the characteristic

exponents of (2.10), the first variation of (2.9) for µ = 0 with respect to p are all negative,

then (2.10) can have no periodic solution, so that the conclusion of theorem(1) is valid.

Moreover, in this case the periodic solution q = q(t, µ) of (2.9) is asymptotically stable

providing |µ| is small.
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2.2.9 Floquet’s theorem

If φ is a fundamental matrix 0f (3), then so is ψ, where

ψ(t)φ(t+ ω),−∞ < t <∞

, corresponding to every such φ, there exist a periodic nonsingular matrix P with the

period ω and a constant R such that

φ(t)P (t)etR

2.2.10 Sylvester criterion

Let

V (x) = xTBx =

n∑
i,j=1

bijxixj

be a quadratic form with the system matrix B = [bij ], that is bij = bji. Necessary and

sufficient condition for V (x) in (11) to be positive definite is that the determinants of

all the successive principle minors of the symmetric matrix B = [bij ] be positive that is,

b11 > 0,

∣∣∣∣∣ b11 b12

b21 b22

∣∣∣∣∣ > 0, . . .

∣∣∣∣∣∣∣∣∣∣∣

b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
...

...

bn1 bn2 . . . bnn

∣∣∣∣∣∣∣∣∣∣∣
> 0

.



Chapter 3

Effect of Rising Temperature on

Prey Predator Population:A

Mathematical Model

3.1 Mathematical Model

Let X denotes logistically growing prey population density and Y is the predator popu-

lation density. C is concentration of CFC. Z denotes concentration of ozone.T is normal

expanded temperature of the environment where the species live.

let the searching capacity of predator per unit prey be δ1. Consequently, searching ca-

pacity of the predator population for prey density X is δ1X. The predator’s handling

capacity per unit prey is δ2, then the handling capacity with respect to prey density X

is δ2X.

It is accepted in the model development that the searching capacity is influenced by the

expanding temperature of nature and in this manner δ1 is taken to be δ1
1+µ(T−T0) .

So also, it is additionally accepted in the model detailing that the handling capacity is

likewise unfavorably influenced by the expanding temperature of nature and along these

lines, δ2 is thought to be equivalent to δ2
1+µ(T−T0) . Thus, the aggregate searching and

handling capacity of a predator for prey density X is given by

δ1X

1 + µ(T − T0)
+

δ2X

1 + µ(T − T0)
=

(δ1 + δ2)X

1 + µ(T − T0)
=

η1X

1 + µ(T − T0)
, (3.1)

where, η1 = δ1+δ2 From the expression (3.1), we take note of that when the environment

is at the ordinary temperature; T0, that is, at T = T0, the predator acts normally and

there is no adjustment in their handling and searching capacity. We additionally see

16
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from (3.1) that the predation rate may be influenced when temperature T surpasses T0

. With the above assumptions and notations, the mathematical model of the system

under thought is given by the arrangement of nonlinear differential conditions.

dX

dt
= r1(T )X − η1XY

1 + µ(T − T0)
− r10X

2

K10
, (3.2)

dY

dt
= −r20Y +

η2XY

1 + µ(T − T0)
, (3.3)

dC

dt
= P − C

τ
− βCZ, (3.4)

dZ

dt
= Q0 − α2Z − βZC, (3.5)

dT

dt
=

K1

K2 + Z
− α1(T − T0), (3.6)

with the initial condition as:

X(0) > 0, Y (0) > 0, C(0) > 0, Z(0) > 0, T (0) > 0.

In the present analysis we assume the following form of r1(T ):

r1(T ) =
r10

1 + r11(T − T0)
, r1(T ) > 0∀T, r1(T0) = r10 (3.7)

Also, η2 = γη1 where γ is transformation coefficient. It might be noted here that at

the ordinary temperature T0, the development rate of prey populace is r10 which is its

natural development rate. The system parameters are characterized as under: r20is

natural demise rate of predator population. µ is a constant which measures the ef-

fect of temperature on both handling and searching capacity. P is inpute rate of C.

τ is normal environmental residence time of CFC. βis the exhaustion rate of ozone

because of CFC. Q0 is the characteristic development rate of ozone density in the en-

vironment. T0 is normal ordinary temperature of earth surface of the zone involved

by the populations under review. r1(T ) is development rate of population X. K10 is

carrying capacity of prey population X. α1 is coefficient of surface warmth exchange

and α2 is regular consumption rate of ozone concentration. Here, each of the parameters

K1,K2, r10,K10, r11, µ, η1, η2, Q0, β, α1, α2 and r20 are all taken to be positive constants.

3.2 Boundedness and Dynamical Behaviour

Here, we prove that the solution of the model given by the set of equation (3.2) to (3.6)

with equation (3.7) are bounded in R5
+. The boundedness of solution is given by the

following lemma.
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3.2.1 Lemma

Every solution of the model will be in the region

V1 = {(X,Y,C, Z, T ) ∈ R5
+ : 0 < X ≤ K10, 0 < Y ≤ r10K10

η

= XM , 0 < C ≤ CM , 0 < Zm ≤ Z ≤ ZM , 0 < Tm ≤ T ≤ TM},

as t→∞, for all positive initial values (X(0), Y (0), C(0), Z(0), T (0)) ∈ R5
+, where,

CM = Pτ, TM =
K1

α1(K2 + Zm)
+T0, Tm =

K1

α1(K2 + ZM )
+T0, ZM =

Q0

α0
andZm =

Q0

α2 + βPτ
.

Proof:

From equation (3.2) and (3.3) we get,
d(X+Y )

dt ≤ r10X
1+r11(T ∗−T0) − r20Y −

r10X2

K10

≤ r10K10 − r20Y − r10K10X
K10

≤ r10K10 − (r20, r10)(X + Y )

≤ r10K10 − ξ(X + Y )

where,ξ = (r20, r10)

Using the usual comparison theorem, we get as t→∞ :

(X + Y ) ≤ r10K10
ξ .

From Equation (3.6) we get,
dT
dt ≤ A− α1T,

where

A = K1
K2+Zm

+ α1T0.

Again by the usual comparison theorem, we get as t→∞ :

T ≤ A
α1
,

i.e.,

T ≤ K1
α1(K2+Zm) + T0 = TM .

Again from Equation (3.6) we get,
dT
dt ≥

K1
(K2+Zm) + α1T0 − α1T

By the usual comparison theorem, we get as t→∞:

T ≥ K1
α1(K2+Zm) + T0 = Tm

Similarly from Equation. (3.4) and (3.5), we get as t→∞ :

C ≤ Pτ = Cm, Z ≤ Q0

α2
= ZM

again from equation (3.5), we get
dZ
dt ≥ Q0 − α1Z − βZPτ
Then by the usual comparison theorem, we get as t→∞ :

Z ≥ Q0

α2+βPτ
= Zm.

This completes the proof of the Lemma (3.2.1)
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All the feasible equilibria of the system (3.2)-(3.6) the system of equation (3.2)-(3.6) has

three feasible equilibria Ei(i = 1, 2, 3) as given below:

1. E1(X
∗, Y ∗, C∗, Z∗T ∗), where, X∗ = 0, Y ∗ = 0,

C∗ =
Pτ

1 + βτZ∗
, (3.8)

Z(∗) =
−b2 +

√
b22 − 4b1b3
2b

, (3.9)

b1 = α2βτ, b2 = α2 + βτ(P −Q0), b3 = −Q0,

T ∗ =
1

α1
(

K1

K2 + Z∗
+ α1T0), (3.10)

2. E2(X
(∗), Y ∗, C∗, Z∗, T ∗), where, X∗ = r1(T ∗)K10

r10
, Y ∗ = 0, and C∗, Z∗, T ∗ are given

by (3.8)-(3.10), respectively. The equilibrium E2 exists if r1(T
∗) > 0.

3. E3(X
(∗), Y ∗, C∗, Z∗, T ∗), where,X∗ = r20

γη1
[1 + µ(T ∗ − T0)],

Y ∗ = (1+µ(T ∗−T0))
γη21K10

[ r10
1+r11(T ∗−T0)γη1K10−r10r20(1+µ(T ∗−T0))] and C∗, Z∗, T ∗ are

given by (3.8)-(3.10) respectively.

The equilibrium E3 exists if T ∗ > T0 and r1(T
∗)K10γη1 > r10r20(1+µ(T ∗−T0)) or

K10

r20
>

(1 + r11(T
∗ − T0))(1 + µ(T ∗ − T0))

γη1
. (3.11)

3.3 Local Stability

The local stability of equilibrium E1 is observed by the nature of root of following

characteristic equation

(F1 − λ)(F2 − λ)(F7 − λ){(F3 − λ)(F6 − λ)− F4F5} = 0, (3.12)

where,

F1 = r1(T
∗);F2 = −r20;F3 = −1

τ
−βZ∗;F4 = −βC∗;F5 = −βZ∗;F6 = −α2−βC∗;F7 = −α1.

The equilibrium point E1 is locally unstable because of r1(T
∗) > 0.
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3.3.1 Remark

If r1(T
∗) < 0, then E1 is locally asymptotically stable and hence predator and prey

populations would die out in the long run.

The characteristic equation associated with the equilibrium point E2 is obtained as

(G1 − λ)(G2 − λ)(G7 − λ){(G3 − λ)(G6 − λ)−G4G5} = 0, (3.13)

where,

G1 = −r1(T ∗);G2 = −r20 + η2X∗

1+µ(T ∗−T0) ;G3 = − 1
τ − βZ

∗;G4 = −βC∗;
G5 = −βZ∗;G6 = −(α2 + βC∗);G7 = α1.

The condition for the linear asymptotical stability of equilbrium point given by E2 is as

under:

K10

r20
<

(1 + µ(T ∗ − T0))(1 + r11(T
∗ − T0))

γη1
, T ∗ > T0 (3.14)

The latent equation connected with equilibrium E3 is as under

(α1 + λ){(H1 − λ)(H4 − λ)−H2H3}{H6H7 − (H5 − λ)(H8 − λ)} (3.15)

where,

H1 = − r10r20
η1γK10

(1 + µ(T ∗ − T0));H2 = η1X∗

1+µ(T ∗−T0) ;H3 = η1γY ∗

1+µ(T ∗−T0) ;

H4 = −r20 + η1γX∗

1+µ(T ∗−T0) ;H5 = − 1
τ − βZ

∗;H6 = −βC∗;H7 = −βZ∗;H8 = −(α2 + βC∗).

The condition for the linear asymptotical stability of the equilbrium point E3 is T ∗ > T0.

E2 is linearly stable if E3 does not exist. The unstability of E2 leads to linear stability

of E3.

The stability conditions are dependent on the temperature level of equilbrium and also

average temperature.

3.4 Global Stability

The global stability of equilibrium point E3. is discussed below

3.4.1 Theorem

The equilibrium E3 is non-linearly asymptotically stable in comparison to solution in

the interior of V1 for if the following inequalities are true:



Chapter:Effect of Rising Temperature on Prey Predator Population:A Mathematical
Model 21

1

2

[
r10
K10

] [
r20 +

γη1X

1 + µ(T ∗ − T0)
(

µt1
1 + µ(T ∗ − T0)

− 1)

]
≥
[

η1
1 + µ(T ∗ − T0)

+
γη1Y

∗

1 + µ(T ∗ − T0)
(

µt1
1 + µ(T ∗ − T0)

− 1)

]2
,

(3.16)

1

2
α1

r10
K10

≥
[

r10r11
(1 + µ(T ∗ − T0))2

− η1Y
∗µ

(1 + µ(T ∗ − T0))2

]2
(3.17)

and

1

2
r10

[
γη1X

1 + µ(T ∗ − T0)
(

µt1
1 + µ(T ∗ − T0)

− 1) +
α1

2

]
≥
[

γη1X
∗Y ∗µ

(1 + µ(T ∗ − T0))2

]2
. (3.18)

[α2 + βC∗]

[
1

τ
+ βZm

]
≥ [βZm]2 (3.19)

proof: The perturbations are taken at equilibrium value as under:

X = X∗ + u1(t), Y = Y ∗ + u2(t), C = C∗ + v1(t), Z = Z∗ + x(t), T = T ∗ + t1(t).

The non-linearised equations from (3.2) to (3.6) at equilibrium point E3 is shown below

du1
dt

= (X∗ + u1)[
−r10r11t1

(1 + r11(T ∗ − T0))2
+

η1Y
∗µt1

(1 + µ(T ∗ − T0))2
− r10u1

K10
− η1u2

1 + µ(T ∗ − T0)
]

(3.20)
du2
dt

= [−r20u2−
γη1X

∗Y ∗µt1
(1 + µ(T ∗ − T0))2

+
γη1(Xu2 + Y ∗u1)

1 + µ(T ∗ − T0)
− γη1(Xu2 + Y ∗u1)µt1

(1 + µ(T ∗ − T0))2
] (3.21)

dv1
dt

= −v1
τ
− βC∗x− β(Z∗ + x)v1 (3.22)

dx

dt
= −α2x− βC∗x− β(Z∗ + x)v1 (3.23)

dt1
dt

=
−K1x

(K2 + Z∗)2
− α1t1 (3.24)

Consider,

G(t) = [u1 −X∗ log(1 + u1
X∗ )] + 1

2u
2
2 + 1

2v
2
1 + 1

2x
2 + 1

2 t
2
1,

where,Ai(i = 1to4) are arbitrary positive constants.

The derivative of G(t) with respect to time is as under
dG
dt = u1

X∗+u1
du1
dt + u2

du2
dt + v1

dv1
dt + xdxdt + t1

dt1
dt

now from the system of equations (3.20)to (3.24) in dG
dt in the region V1, we get

dG
dt ≤ −{t1u1(

r10r11
(1+r11(T ∗−T0))2 −

η1Y ∗µ
(1+µ(T ∗−T0))2 ) +

r10u21
K10

+ u1u2(
η1

1+µ(T ∗−T0) −
γη1Y ∗

1+µ(T ∗−T0) +

γη1µt1Y ∗

(1+µ(T ∗−T0))2 )+
u22
2 (r20− γη1X

1+µ(T ∗−T0)+ γη1Xµt1
(1+µ(T ∗−T0))2 )+ γη1X∗y∗µ

(1+µ(T ∗−T0))2u2t1+v21( 1τ +β(Zm))+

βv1C
∗x+ x2(α2 + βC∗) + β(Zm)v1x+ K1xt1

(K2+Z∗)2 + α1t
2
1}.

From Sylvester’s criteria in the above expression’s right hand side :
1
2

[
r10
K10

] [
r20 + γη1X

1+µ(T ∗−T0)(
µt1

1+µ(T ∗−T0) − 1)
]

≥
[

η1
1+µ(T ∗−T0) + γη1Y ∗

1+µ(T ∗−T0)(
µt1

1+µ(T ∗−T0) − 1)
]2
,
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1
2α1

r10
K10
≥
[

r10r11
(1+µ(T ∗−T0))2 −

η1Y ∗µ
(1+µ(T ∗−T0))2

]2
1
2r10

[
γη1X

1+µ(T ∗−T0)(
µt1

1+µ(T ∗−T0) − 1) + α1
2

]
≥
[

γη1X∗Y ∗µ
(1+µ(T ∗−T0))2

]2
.

[α2 + βC∗]
[
1
τ + βZm

]
≥ [βZm]2

It can be shown that dG
dt becomes negative definite if the equations (3.16) to (3.19) are

being satisfied. Thus, it is proved that E3 is globally (non-linearly) asymptotically stable

in the region V1.

3.5 Conclusion

By the linear analysis of stability of the equilbrium point E2, it is concluded that the

population with density Y would become extinct and population with density Y would

survive but at lower value of the equilibrium because of the abatement in its development

rate by virtue of raised temperature. The non trivial positive equilibrium point E3 exists

just when the equilibrium point E2 is not steady. Thus, from the linear and also non-

direct stability analysis of the non-trivial positive equilibrium E3 it is shown that the

prey and predator populations would exist together.



Chapter 4

Effect of Rising Temperature on

Competing Populations: A

Mathematical model

4.1 Introduction

Recently, [10] have anticipated that the greenhouse gases will significantly change world-

wide climate design in the following century and temperature of the Earth will ascend

in the years to come. A constant warming pattern, driven to a great extent by anthro-

pogenic generation of greenhouse gases, is anticipated to make the worldwide surface

temperature ascend amongst 1.40 and 5.80C before the finish of the 21st century (con-

trasted and 0.60C in the 20th century, IPCC 2001) [11]. The expansion in temperature

level may straightforwardly or in a roundabout way influence the progression of inter-

acting species systems. In this way, it is fundamental to evaluate mathematically the

impacts of expanding greenhouse gases incorporating CFC on populations keeping in

mind the end goal to take important measures to maintain a strategic distance from

any unfavorable effect of rising temperature on a biological system. In [12][13] models

depending on temperature were considered for prey-predator system yet for various tar-

gets, where as, in this paper, a numerical model is being proposed and investigated to

study the impacts of temperature variation from record of greenhouse gases, for exam-

ple, CFC on the survival or eradication of two contending populations. In the model it

is expected that the temperature increments indirectly because of the ozone depletion

in the atmosphere. In the model it is likewise expected that the ascent in temperature

contrarily impacts the development rates, carrying capacities and decidedly impacts the

23
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interspecific competition of the rates of two competing populations.

4.2 Mathematical Model

Let X and Y signify the densities of contending populations, which are growing under

the impact of variation in temperature. C indicates the concentration of CFC (Cloroflu-

oro carbon) and Z signifies concentration of ozone . We consider here that T is raised

temperature over the characteristic or normal increased temperature of the living space.

By the above notations, the numerical model of the system under thought is given by

the accompanying arrangement of nonlinear differential conditions.

dX

dt
= r1(T )X − r10X

2

KP (T )
− η1(T )XY, (4.1)

dY

dt
= r2(T )Y − r20Y

2

Kq(T )
− η2TXY, (4.2)

dC

dt
= P − C

τ
− βCZ, (4.3)

dZ

dt
= Q0 − α2Z − βZC, (4.4)

dT

dt
=

K1

K2 + Z
− α1(T − T0), (4.5)

with the initial condition as:

X(0) > 0, Y (0) > 0, C(0) > 0, Z(0) > 0, T (0) = δ > 0.

In the present analysis we assume the following form of r1(T ), r2(T ), η1(T ), η(2)(T ),KP (T ),

and KQ(T ):

r1(T ) = r10 − r11T, r1(T ) > 0∀T, r1(0) = r10 (4.6)

r2(T ) = r20 − r22T, r2(T ) > 0∀T, r2(0) = r20 (4.7)

η1(T ) = η10 − η11T, η1(T ) > 0∀T, η1(0) = η10 (4.8)

η2(T ) = η20 − η22T, η2(T ) > 0∀T, η2(0) = η20 (4.9)

KP (T ) =
K10

1 +K11(T )
, KP (T ) > 0∀T, KP (0) = K10 (4.10)

KQ(T ) =
K20

1 +K22(T )
, KQ(T ) > 0∀T, KQ(0) = K20 (4.11)

The system parameters are defined as follows: P is input rate of C. τ is average at-

mospheric residence time of CFC. β is depletion rate of ozone due to CFC. Q0 is
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the rate of natural formation of ozone concentration in the atmosphere. T0 is natu-

ral temperature of the habitat. r1(T ) and r2(T ) are growth rates of populations X

and Y respectively. KP and KQ(T ) denote the carrying capacities of populations X

and Y respectively. η1(T ) and η2(T ) are interspecific competition coefficients for X

and Y respectively. α1 is coefficient of surface heat transfer and α2 is natural deple-

tion rate of ozone concentration. Here all the parameters are taken to be real and

positive. K1,K2, r10, r11, r20, r22, η10, η11, η20, η22,K10,K11,K20 and K22 are all positive

constants. r10 and r20 are natural growth rates of the competing populations.

4.3 Boundedness and Dynamical Behaviour

Now we will demonstrate that the solutions of model given by (4.1) to (4.5) are bounded

in a positive orthant in R5
+. The boundedness of solutions is being given by the following

lemma.

4.3.1 Lemma

All the solutions of model will lie in the region V1 = {(X,Y,C, Z, T ) ∈ R5
+ : 0 ≤ X ≤

K10, 0 ≤ Y ≤ K20, 0 ≤ C ≤ CM , 0 < ZM ≤ Z ≤ ZM , 0 < Tm ≤ T ≤ TM}, as t → ∞,

for all positive initial values (X(0), Y (0), C(0), Z(0), T (0)) ∈ R5
+ where, CM = Pτ,

TM = K1
α1(K2+Zm) + T0, Tm = T0, ZM = Q0

α2
and Zm = Q0

α2+βPτ
.

Proof:

From (4.5) we get,

dT

dt
≤ A− α1T

where A = K1
K2+Zm

+ α0.

Then by the usual comparison theorem we get as t→∞ :

T ≤ A

α1

i.e.

T ≤ K1

α1(K2 + Zm)
+ T0 = TM

Again from (4.5) we get,

dT

dt
≥ α1T0 − α1T
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Then by the usual comparison theorem we get as t→∞ :

T ≥ T0 = Tm

Similarly from (4.3) and (4.4), we get as t→∞ :

C ≤ Pτ = CM , Z ≤ Q0

α2
= ZM

Again from (4.4) we get

dZ

dt
≥ Q0 − α2Z − βZPτ

By the usual comparison theorem we get as t→∞ :

Z ≥ Q0

α2 + βPτ
= Zm

This completes the proof of the lemma.

4.3.2 Equilibrium Points

The system of (4.1)-(4.5) has four feasible equilibrium as follows:

1. E1(X
∗, Y ∗, C∗, Z∗, T ∗) : where, X∗ = 0, Y ∗ = 0,

C∗ =
Pτ

1 + βτZ∗
, (4.12)

Z(∗) =
−b2 +

√
b22 − 4b1b3
2b

, (4.13)

b1 = α2βτ, b2 = α2 + βτ(P −Q0), b3 = −Q0,

T ∗ =
1

α1
[

K1

K2 + Z∗
+ α1T0], (4.14)

2. E2(X
∗, Y ∗, C∗, Z∗, T ∗): where,X∗ = r1(T ∗)KP (T ∗)

r10
; Y ∗ = 0 and C∗, Z∗, T ∗

are given by (4.12)-(4.14) respectively. The equilibrium E2 exists if r1(T
∗) > 0

and KP (T ∗) > 0.

3. E3(X
∗, Y ∗, C∗, Z∗, T ∗): where, X∗ = 0, Y ∗ =

r2(T ∗)KQ(T ∗)
r20

and C∗, Z∗, T ∗

are given by (4.12)-(4.14) respectivel. The equilibrium E3 exists if r2(T
∗) > 0 and

KQ(T ∗) >)
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4. E4(X
∗, Y ∗, C∗, Z∗, T ∗): where,

X∗ =
KP (T ∗)[η1(T

∗)r2(T
∗)KQ(T ∗)− r20r1(T ∗)]

[η1(T ∗)η2(T ∗)KP (T ∗)KQ(T ∗)− r10r20]
,

Y ∗ =
KQ(T ∗)[η2(T

∗)r1(T
∗)KP (T ∗)− r10r2(T ∗)]

[η1(T ∗)η2(T ∗)KP (T ∗)KQ(T ∗)− r10r20]
.

Here C∗, Z∗, T ∗ are same as given in (4.12)-(4.14). The equilibrium E4 exists if either

η1(T
∗)KQ(T ∗)

r20
>
r1(T

∗)

r2(T ∗)
>

r10
η2(T ∗)

KP (T ∗) (4.15)

η1(T
∗)KQ(T ∗)

r20
<
r1(T

∗)

r2(T ∗)
<

r10
η2(T ∗)

KP (T ∗) (4.16)

is satisfied.

4.4 Local Stability

The characteristic equation associated with the variational matrix about equilibrium E1

is given by

(F1 − λ)(F2 − λ)(F7 − λ){(F3 − λ)(F6 − λ)− F4F5} = 0, (4.17)

where,

F1 = r1(T
∗);F2 = r2(T

∗);F3 = −1

τ
−βZ∗;F4 = −βC∗;F5 = −βZ∗;F6 = −α2−βC∗;F7 = −α1.

Form the nature of the root of the characteristic equation (4.17) we observe that the

equilibrium point E1 is locally unstable provided r1(T
∗) > 0.

The characteristic equation related to the equilibrium point E2 is obtained as

(G1 − λ)(G2 − λ)(G7 − λ){(G3 − λ)(G6 − λ)−G4G5} = 0, (4.18)

where,

G1 = −r1(T ∗);G2 = r2(T
∗)− η2(T ∗)X∗;G3 = − 1

τ − βZ
∗;G4 = −βC∗;

G5 = −βZ∗;G6 = −(α2 + βC∗);G7 = −α1.

From the characteristic equation (3.13) we find that the equilibrium point E2 is linearly

asymptotically stable under the condition given by:

r1(T
∗)

r2(T ∗)
>

r10
η2(T ∗)KP (T ∗)

(4.19)
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The characteristic equation for the variational matrix about equilibrium E3 is given by

(A1 − λ)(A2 − λ)(A7 − λ){(A6 − λ)(A3 − λ)−A4A5} = 0, (4.20)

where, A1 = r1(T
∗) − η1(T

∗)Y ∗;A2 = −r2(T ∗);A3 = − 1
τ − βZ∗;A4 = −βC∗;A5 =

−βZ∗;A6 = −(α2 + βC∗);A7 = −α1.

We find from the values of the root Ai; i = 1to7 that all the roots Ai are negative

if
r1(T

∗)

r2(T ∗)
<
η1(T

∗)KQ(T ∗)

r20
(4.21)

Hence, from the roots of the characteristic equation (4.20) we observe that the equilib-

rium point E3 is linearly asymptotically stable under the condition given by (4.21).

The characteristic equation with the variational matrix about equilibrium point E4 is

(α1 + λ){(H1 − λ)(H4 − λ)−H2H3}{H6H7 − (H5 − λ)(H8 − λ)} (4.22)

where,

H1 = − r10X∗

KP (T ∗) ;H2 = −η1(T ∗)X∗;H3 = −η2(T ∗)Y ∗;H4 = − r20Y ∗

KQ(T ∗) ;

H5 = − 1
τ − βZ

∗;H6 = −βC∗;H7 = −βZ∗;H8 = −(α2 + βC∗).

From the nature of the roots of characteristic equation (4.22) we find that the equilib-

rium point E4 is linearly asymptotically stable under the following condition:

η1(T
∗)KQ(T ∗)

r20
<
r1(T

∗)

r2(T ∗)
<

r10
η2(T ∗)KP (T ∗)

(4.23)

Moreover, from the above investigation it is noticed that E2 and E3 are linearly asymp-

totically stable, just when E4 is unstable and E4 is linearly asymptotically stable just

when E2 and E3 are unstable. It is seen from the investigation that the stability condi-

tions for the four equilbriums points now rely on the temperature however are like the

aftereffects of two species competing systems with no temperature effects alluded to as

invalid.

4.5 Conclusion

From the stability investigation of the equilibrium point E2 it might be said that the

number of inhabitants in Y species would not tend to extinction and population of X

species would survive and correspondingly, from the linear stability of the equilibrium

point E3 it might be inferred that the number of inhabitants in X species would not

tend towards extinction and the number of inhabitants in Y species would survive yet at

lower balance an incentive because of the decline in its development rate and carrying
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capacity by virtue of hoisted temperature, demonstrating the competition principle.

The non-inconsequential positive equilibrium point E4 would exist just when both the

equilibrium point E2 and E3 are not stable. Thus, from the direct and in addition non-

straight dependability of non-trivial positive equilibrium point E4 it might be inferred

that both the contending populations would co-exist.
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