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The main aim of this work  is to study MHD boundary  layers flow and heat transfer of a 

fluids over  a stretching sheet in the presence of  heat transfer and thermal radiation The 

similarity solution of the governing equation have been obtained and the reduced equation 

have been solved by using Numerical method .Numerical solutions of these equations are 

obtained by Runge- Kutta fourth order with shooting method .Numerical results obtained for 

different parameters such as magnetic parameter M ,Prandtl number(Pr),Radiation parameter 

(R)on velocity and temperature have been analyzed and discussed. 
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 Chapter 1                         

 1.1     INTRODUCTION 
MAGNETOHYDRODYNAMICS (MHD) & ITS APPPLICATIONS 
Magneto hydrodynamics (magneto fluid dynamics or hydro magnetic) is the study of 
the magnetic properties of electrically conducting fluids. Examples of such magneto 
fluids include plasmas, liquid metals, and salt water or electrolytes. MHD is the 
physical-mathematical framework that concerns the dynamics of magnetic field in 
electrically conducting fluid, e.g. in plasma and liquid metals. The word magneto 
hydrodynamics is comprised of the words magneto-meaning magnetic, hydro-
meaning water (or liquid) and dynamics referring to the movement of an object by 
forces. Synonyms of MHD that are less frequently used are the terms magnetofluid 
dynamics and hydro magnetic. The set of equations that describe MHD are a 
combination of the Navier-Stokes equation of fluid dynamics and Maxwell’s 

equations of electromagnetism. These differential equations must be solve 
simultaneously, either analytically or numerically. For fundamental work and 
discovers in magneto hydrodynamics with fruitful application in different parts of 
plasma physics. The central point of MHD theory is that conductive fluid can support 
magnetic fields. The presence of magnetic field leads to forces that in turn act on the 
fluid(typically a plasma),thereby potentially altering the geometry(or topology) and 
strength of magnetic fields themselves for a particular conducting fluid is the relative 
strength of the advancing motions in the fluid, compared to the diffusive effects 
caused by the electrical resistivity. These are two basic effects of MHD. The essential 
features of the physical situation is the common relation between velocity field and 
electromagnetic field.MHD covers phenomena in electrically conducting 
fluids, where the velocity field V, and the magnetic field B are couple  

 
 
 

 

 

 

      Hannes Alfven (1908-1995) 
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1.2    MHD APPLICATIONS 

 Astrophysics(planetary magnetic field) 
 MHD  pumps (1907) 
 MHD generators (1923) 
 MHD  flow meters (1935) 
 Dispersion of metals 
 Ship propulsion 
 Crystal growth 
 Magnetic filtration and separation 
 Jet printers 
 Fusion reactors 
 Accelerator 
 Plasma get engines 
 Controlled thermonuclear reactor 
 In some MHD applications, the electric current is applied to create MHD propulsion 

force. 

 
1.3 BOUNDARY VALUE PROBLEM 

In mathematics, something that indicates bound or limit or a boundary line is known as 
boundary. A Boundary value problem is a system of ordinary differential equations with 
solution  and derivative values specified at more than one point. Most commonly, the solution 
and derivative are specified at just two points (the boundaries) defining a two-point boundary 
value problem. 
A Boundary value problem is a problem, typically an ordinary differential equation or a 
partial differential equation, which has values assigned on the physical boundary of the 
domain in which the problem is specified. In differential equations, the differential equation 
that contains a set of restrains or limitations is  known as boundary  conditions. 
  These are following types of boundary conditions 

 
1.3.1 DIRICHLET BOUNDARY CONDITION: 

In mathematics, the dirichlet boundary condition is a type of boundary condition, named after 
Peter Gustav Lejeune Dirichlet(1805-1859) when imposed on an ordinary or a partially 
differential equation, it specifies the values that a solution needs to take on along  the 
boundary of the domain. It specify the value of function on the surface T=f(r, t) 
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1.3.2 NEUMANN BOUNDARY CONDITIONS 
In mathematics, the Neumann boundary condition is a type of boundary condition, 
named after Carl Neumann when imposed on an  ordinary or a partial differential 
equation, it specifies the values that the derivative of a solution is to take on the 
boundary of the domain .Neumann Boundary condition is also known as second type 
boundary  condition 

 1.3.3 CAUCHY BOUNDARY CONDITION 
In mathematics a Cauchy boundary condition an ordinary differential equation or a 
partial differential equation with conditions that the solution must satisfy on the 
boundary, ideally so to ensure that a unique solution exits A Cauchy boundary 
condition specifies both the function values and normal derivative on the boundary of 
the domain .This corresponds to imposing both a Dirichlet and Neumann boundary 
condition 
 

  1.3.4 ROBIN BOUNDARY CONDITION 
Robin boundary conditions are weighted combination of Dirichlet boundary 
conditions and Neumann boundary conditions. Robin boundary conditions are also 
called impedance boundary condition, from their application in electromagnetic 
problems, or in convective boundary conditions 
 
 

1.4        HEAT TRANSFER 
 Heat always moves from a warmer place to a cooler place Hot objects in a cooler 

room will cool to room temperature. 

 Cold objects in a warmer room will heat up to room temperature. 

          1.4.1       HEAT TRANSFER METHODS 

       -conduction 

        -Convection 

       CONDUCTION: 

When we heat a metal strip at one end, the heat travels to the other end 
As we heat the metals, the particles vibrate, and so on ,the vibrations are passed along 
the metal and so is the heat. We call this Conduction 
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Convective Heat Transfer: 

 Heat transfer between a solid and a moving fluid is called Convection. 
 Heat energy transferred between a surface and a moving fluid at different temperature 

is known as Convection. 

In reality this is a combination of diffusion and bulk motion of molecules. Near the 
surface the fluid velocity is low, and diffusion dominates. Away from the surface, bulk 
motion increases the influence and dominates. The particles in a liquid or a gas when we 
heat them the particles spread out and become less dense. 

Convective heat transfer may take the form of either 

 Forced or assisted convection 
 Natural or free convection 

Forced or Assisted convection 

Forced convection occurs when a fluid flow is induced by an external force, such as a pump, 
fan, or mixer 

 

Natural or Free convection 

 Natural convection is caused by buoyancy forces due to density differences caused by 
temperature variations in the fluid.  At heating the density change in the boundary layer will 
cause the fluid to rise and be replaced by cooler fluid that also will heat and rise. This 
continues phenomena is called free or natural convection. 

Boiling or condensing processes are also referred as a convective heat transfer processes. 

The heat transfer per unit surface through convection was first described by Newton and the 
relation is known as the Newton’s Law of cooling. 

The particles in a liquid or a gas when we heat them the particles spread out asnd become less 
dense. 

The study of heat transfer problems is of general interest due to its varied and wide 
applications in the problems of natural events and technology such as designing of power 
stations, chemical and food plants, aerodynamic heating, cooling of high power motors, 
extraction of energy from atomic piles, high speeds aircraft, atmospheric re-entry of vehicles, 
utilization of heat stored in subterranean layer of the Earth, heat exchangers utilizing liquid 
metal coolant etc. 

The mode of heat transfer in fluids, wherein the moving fluid particles carry heat in the form 
of internal energy is called convection. Heat transfer by convection is of two types, namely, 
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(i) forced convection and (ii) free convection. A convection process when the motion are 
created by external influences such as pressure drop or an agitator is known as forced 
convection. In incompressible fluids such flows are characterized by the fact that the 
distribution of velocity is not affected by temperature field but the [converse is not true. In 
such flows, heat diffuses and at the same time is swept by the fluid motion without in any 
way affecting the local density of the fluid. Hence in forced convection flow velocities are 
exactly as they would be if there were no temperature variations so that the parts of motion 
arising from the differences caused by thermal expansion can be ignored. On the other hand 
the essential feature of a free convection flow is that the distributions of velocity and 
temperature field are coupled. The motion here is caused entirely by the buoyancy forces 
arising from the density variations in a field of gravity and this same distribution of density 
changes as soon as motion starts. Thus we find that in such flows the distribution of velocity 
and temperature are interconnected and must be considered together. If the fluid is 
incompressible then the density variation due to change in pressure are negligible. However, 
density changes due to non-uniform heating of the fluid cannot be neglected since such 
changes are responsible for imitating free convection. It is widely accepted that the free 
convection takes place in field of gravity. In a rotating fluid it can be also set up by the action 
of centrifugal force which is proportional to the density of the fluid. Flow and heat transfer in 
gas turbines 

is an example of such situation. The subject designated as MHD heat transfer can be roughly 
divided into two parts viz. one in which heating is an incidental by-product of the 
electromagnetic fields. This part includes devices like MHD generators or accelerators and to 
a lesser degree pumps and flow meters. These are broadly characterized as channel and duct 
flows.  The other one in which the primary use of electromagnetic fields is to control heat 
transfer. This part includes free or natural convection flow and aerodynamic heating where 
geometric configurations are varied. A comprehensive review of these basic areas are well 
documented by Romig and Moffatt. It is interesting to mention that in the MHD heat transfer 
problems the usual Reynolds analogy between skin friction and heat transfer, as in non-
conducting fluids, does not hold in general. This is because, in addition to viscous dissipation, 
there is a Joule dissipation of heat due to the flow of electric current in the field. 

1.5    FLUID DYNAMICS 

 Fluid is a substance that deforms continuously under the application of a shear stress. 
 Shear stress is a stress that is applied parallel or tangential to the face of material. 
 Fluid  comprise the liquid or gas. 
 Fluid mechanics assumes every fluid obeys conservation of energy. 

Conservation of energy 
For incompressible, non-viscous fluid, the sum of the pressure, potential and kinetic 
energies per unit volume is constant. 
It is the branch of Physics that studies fluid (liquids, gases and plasmas) and the forces 
on them. It can be divided into three following  parts 
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i) Fluid statics that is the study of fluids at rest 
ii) Fluid kinematics that is the study of fluids in motion and 
iii) Fluid dynamics that is the study of the effect of forces on fluid motion. It is also a 

branch of Continuum Mechanics 

              

       1.5.1 Classification of Fluid Flows 

 Viscous vs. Inviscid Region of flow 
Viscous flow region-flows in which the frictional effect is significant 
Inviscid flow region-viscous forces are negligibly small compared to inertial or 
pressure forces 

 Internal vs. external flow 
Internal flow-flows in which the fluid is completely bounded by solid surface 
E.g. flow in a pipe or duct 
External flow-flows in which the fluid is unbounded over solid surface 
E.g. flow over a plate, wire, sphere object 

 Compressible Vs. Incompressible Flow 
Compressible Flow-density changes of fluid is significant 
Gases at high speeds 
Incompressible Flow-density of fluid remains nearly constant throughout 
Liquid, gases at low speeds 

 Natural Vs. Forced Flow 
Forced Flow-fluid is forced to flow over a surface or in a pipe by external means 
such as pump or a fan 
Natural Flow-any fluid motion is due to natural means such as buoyancy effect, 
where warmer (and thus lighter) fluid rises and cooler (and thus denser) fluid falls 

 Steady Vs. Unsteady Flow 
Steady Flow-no change of fluid properties at a point with time 
Devices that are intended for continuous operation 
E.g. turbines, pumps, boilers, condenser 
Unsteady Flow-fluid properties change at a point with time 

 Steady  uniform flow 
Condition do not change with position and with time e.g flow of water in a pipe of 
constant diameter at constant velocity 

 Steady non-uniform flow 
Conditions change from point to point in the stream but do not change with time e.g. 
flow in tapering pipe with constant velocity at inlet, but velocity change along the 
length of the pipe toward the exit 

 Unsteady uniform flow 
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At a given instant of time ,the conditions at every point are the same, but will change 
with time e.g. pipe of constant diameter connected to a pump pumping at a constant 
rate which is then switched off 

 Unsteady non-uniform flow 
Every condition of the flow may change from point to point and with time at every 
point e.g. waves in channel 

It is the branch of Physics that studies fluid (liquids, gases and plasmas) and the forces on 

them. It is a Fluid Mechanics which deals with the fluid flow — the ordinary science of fluids 

(liquids and gases) in movement. It has some sub-disciplines itself, including Aerodynamics 

(the study of air and other gases in movement) and Hydrodynamics (the study of liquids in 

proposition). Fluid dynamics has a wide range of applications, including manipulative forces 

and moments on aircraft, influential the mass flow rate of petroleum through pipelines, 

predicting weather conditions, thoughtful nebulae in interstellar space and modeling fission 

weapon detonation. Some of its values are even used in interchange engineering, where 

interchange is treated as a continuous fluid, and crowd dynamics 

Fluid dynamics offers a regular structure— which underlies these useful disciplines— that 

embraces empirical and semi-empirical laws resulting from flow quantity and used to solve 

practical problems. The solution to a fluid dynamics problem naturally involves calculating 

various properties of the fluid, for example velocity, pressure, density, and temperature, as 

functions of space and time. 

1.5.2     APPLICATIONS OF FLUID DYNAMICS 

 Building 

Water supply system 

Sewerage System 

 Aircraft 

Aero foil design 

Gas turbine 

 Industry 

Cooling of electronics 

Automation system 

 Ship , submarines ,hovercraft 

Hydrodynamics design 

Buoyancy and stability 
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1.6      BASIC EQUATIONS 
The Navier–Stokes equations (named after Claude-Louis Navier and George Gabriel Stokes) 

are the set of equations that express the motion of fluid substances such as liquids and gases. 

These equations state that changes in momentum (force) of flowing particles depend only on 

the external pressure and internal viscous forces (similar to friction) acting on the fluid. The 

Navier-Stokes equations describe the balance of forces acting at any given region of the 

solution. The Navier–Stokes equastions are differential equations which describe the motion 

of a fluid. Such equations establish relation among the rate of change of the variable of 

interest. For example, the Navier–Stokes equation for an ideal fluid with zero thickness states 

that acceleration (the rate of change of velocity) is proportional to the derivative of internal 

pressure. Solutions of the Navier–Stokes equations for a given physical problem must be 

sought with the help of calculus. In convenient terms only the simplest cases can be solved 

exactly in this way. These cases generally involve non-turbulent, steady flow (flow that does 

not change with time) in which the Reynolds number is small. For more composite situation, 

involving turbulence, such as global weather systems, aerodynamics, hydrodynamics 

 

1.6.1    CONTINUITY EQUATION 
“In fluid dynamics, the continuity equation states that, in any stable state process, the rate at 

which mass enters a system is equal to the rate at which mass leaves the system.” The 

equation of continuity is developed simply by applying the law of conservation of mass to a 

small volume element within a flowing fluid. 

Equation of continuity (conservation of mass) 

Mass flowing in =mass flowing out 

𝑚𝑎𝑠𝑠𝑓𝑙𝑜𝑤𝑖𝑛𝑔𝑖𝑛 = 𝑚𝑎𝑠𝑠𝑓𝑙𝑜𝑤𝑖𝑛𝑔𝑜𝑢𝑡 

                            𝑚1  =   𝑚2  𝜌𝑉1   =   𝜌𝑉2 

𝜌𝐴1𝑉1𝛥𝑡   =   𝜌𝐴2𝑉2𝛥𝑡 

           𝐴1𝑉1 = 𝐴2𝑉2=𝑄 = 𝑉/𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

the continuity equation for compressible fluid is given by 

                        
.( . ) 0p p q

t


 
  
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Where, ρ is fluid density, t is time, q is the flow velocity vector field.
 

The continuity equation for incompressible fluid is given by 

                             . 0q   

Physically, the local volume dilation rate is zero. 

 

1.6.2     MOMENTUM EQUATION 

The rate of momentum accumulation is equivalent to the difference of the rate of momentum 

in and the rate of momentum out along with the sum of forces acting on the system. It is a 

declaration of Newton's Second Law and relates the sum of the forces acting on an element of 

fluid to its rate of change of momentum. Newton’s Second law when applied to the moving 

fluid element says that the net force of the fluid is equals to its mass then the acceleration of 

the element. This is a vector relation and it can be split into three scalar parts along the x, y 

and z-axes. The moving fluid elements experience a force in the x-direction. 

What is the cause of this force? 

There are two cases: 

1) Body forces, which act straight on the volumetric mass of the fluid element. These forces 

‘act at a detachment’; examples are gravitational, electric and attractive forces. 

2) Surface forces, which take steps directly on the surface of the fluid element. They are due 

to only two sources: 

(a) The pressure distribution acting on the surface, forced by the outside fluid neighboring the 

fluid element 

(b) The shear and normal stress distributions substitute the surface also forced by the outside 

fluid ‘tugging’ or ‘pushing’ on the surface by means of friction. The shear and normal 

stresses in a fluid are related to the time-rate-of-change of the deformation of the fluid 

element. 

The basic equations of Hydrodynamics for the path of a homogenous, isotropic, thick 

incompressible fluid of constant density r and constant coefficient of viscosity u is given by
 

21( . )q q q p q
t

 



      


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1.6.3     MAXWELL EQUATION 
It is a set of four complicated equations that describe the world of electromagnetic. These 

equations describe how electric and magnetic fields propagate act together and how they are 

influenced by objects and all four of Maxwell’s equation are as follow 

 

1. Gauss's Law 

                                                 0

.E 


 

 

2. No Magnetic Monopole Law 

                                                 . 0B   

3. Faraday's Law 

                                              

BE
t


  



 4. Ampere’s Law with displacement current 

                                              
0 0 0

EB J
t

  


  
  

 

These four equations is called Maxwell’s Equation. 

Where E = Electric field, B = Magnetic field, 0 = permittivity, 

0 = permeability, J= current density respectively. 

 

1.7    STRETCHING SHEETS 
Stretching flow: 
The flow, produced due to stretching of elastic sheet which moves in its plane with velocity 

varying with the distance from fixed point due to application of a stress, is known as 

stretching flow 

Stretch forming: 

 Forming by using tensile forces to stretch the material over a tool or a block. 

 Used most extensively in the aircraft industry 

Manufacturing of both metals and polymer sheets in industrial manufacturing process, 

the material is in molten phase when thrust through an extrusion die  and then the 

material cools and solidified and some distance away from the die before arriving at 
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the cooling stage. Tangential velocity imported by the sheets induces motion in the 

surrounding fluid, which alters the convection of the sheets. 

Similar situation during the manufacture of plastic  and rubber sheet where it is often 

to blow  a gaseous medium through material yet to be solidified where the stretching 

force depends upon time .due to high viscosity of the fluid close to the sheet only. 

Thus the fluid problems can be idealized to the case of fluid distributed by a 

tangential moving boundary. 

 

1.8    BOUNDARY LAYER 

 
The concept of boundary layer was first introduced by L. Prandtl in 1904 and since then it has 
been applied to several fluid flow problems. 

The layer adjacent to the boundary is known as boundary layer When a real fluid (viscous 
fluid) flows a stationary solid boundary ,a layer of fluid which comes in contact  with the 
boundary surface, adheres to it  and condition of no-slip occurs(the no-slip condition)implies 
that the velocity of fluid at a solid boundary must be same as that of boundary itself).Thus 
layer of fluid which cannot slip away from the boundary surface undergoes retardation, this 
retarded layer further causes retardation for the adjacent layer of the fluid, thereby developing 
a small region in the immediate vicinity of boundary surface in which  the velocity of flowing 
fluid increases rapidly from zero at the boundary surface and approaches the velocity of 
stream. 

Boundary layer is formed whenever there is a relative motion between the boundary and the 
fluid. 

Shear resistance: the fluid exerts a shear stress on the boundary and boundary exerts an 
equal and opposite force on the fluid known as the shear resistance. 

According to boundary layer theory, the extensive fluid medium around bodies moving in 
fluids can be divided into following two regions: 

 A thin layer adjoining to the boundary called as the boundary layer where the viscous 
shear takes place 

 A region outside the boundary layer where the flow behavior is quite like that of an 
ideal fluid and the potential flow theory is applicable. 
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 Laminar flow: The  highly ordered fluid motion characterized by smooth layer of 
fluid the flow of high viscosity fluids such as oils at low velocities is typically 
Laminar 

 Turbulent flow: The highly disordered fluid motion characterized by velocity 
fluctuations the flow of low viscosity fluids such as air at high velocities is typically 
turbulent. 

 Transitional flow: A flow that alternates between being Laminar and Turbulent. 
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CHAPTER 2 

LITERATURE REVIEW 

This section is devoted to the review of the earlier investigations made on the flow and the 

heat transfer over the stretching sheet. During the last decades the problem of flow of 

incompressible viscous fluid and heat transfer phenomena over stretching sheets gets the 

great attention. This problem owns plenty of practical applications in chemical and 

manufacturing processes like Aerodynamics, continuous casting of metals, glass fibers and 

paper production, extrusion of plastic. 

Study of Hydro magnetic flow of an electrically conducting fluid, due to its extensive 

industrial applications has attracted the interest of many researchers. The cause of the study 

of hydrodynamic flow of an electrically conducting fluid is the deformation of the wall of a 

vessel containing a fluid which is of considerable interest in a modern metal-working process 

and modern metallurgical. The boundary layer flow which is passing a Stretching Plane 

Surface in the presence of a uniform magnetic field has practical relevance in Polymer 

Processes. 

The study of boundary layer flow over a continuous solid surface moving with constant speed 

is initiated by Sakelaris (1961). The steady two-dimensional boundary layer flow caused by 

the stretching of an elastic flat surface which moves in its plane with velocity varying linearly 

with distance from a fixed point was extended to analyze by Crane (1970). 

Carrageen and Crane (1982) investigated the heat transfer aspect of this problem, under the 

conditions when the temperature difference between the surface and the ambient fluid is 

proportional to a power of the distance from a fixed point. The steady boundary layers on an 

exponentially stretching continuous surface with an exponential temperature distribution 

were investigated by Magyari and Keller (1999). The unsteady magneto hydrodynamic flow 

due to the impulsive motion of a stretching sheet was investigated by Takers et al. (2001) and 

reported that the surface heat transfer increase up to a certain portion of time, beyond that it 

decreases. In fluid flow process porous medium play an important role. The problem of 

viscoelastic fluid flow and warmth transfer in a porous medium over a stretching sheet has 

solved by sub has and Veena (1998). Vajravelu (1994) has obtained the solution for the flow 

problem and heat transfer in a saturated porous medium. Eldabe and Mohamed (2002) have 

studied both heat and mass transfer in hydro magnetic flow of a non-Newtonian fluid with a 

warmth source over an accelerating surface through porous medium. Recently Venkateswalu 
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et al. (2011) have discussed finite difference analysis on convective heat transfer flow 

through a porous medium in a vertical channel with magnetic field. 
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OBJECTIVE OF THE PROPOSED WORK 

 

The objectives of the proposed work are following: 

1) To solve real world problem by using analytical and computational method. 

2) To develop a model that reflects the real world problem. 

3) To determine what insight the mathematical model has provided to the original problem. 
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 CHAPTER 3         

                 FORMULATION OF THE PROBLEM 

Consider the   steady two dimensional flow of viscous incompressible electrically conducting 
fluid over a stretching sheet in a presence of uniform heat transfer in the region y˃0. Keep the 
origin is fixed two equal and opposite forces are applied along the x-axis which result in sheet 
is stretched with a speed is proportional to the distance from the origin .x-axis is taken along 
the stretching sheet and y  axis is taken perpendicular to x-axis. A magnetic field of strength 

0B  is applied normally to the stretching sheet   which produces a magnetic field It is also 
assumed that the fluid is weakly electrically conducting so that the induced magnetic field is 
negligible, which is justified for MHD The continuity, momentum and energy equations are 
written as follows .The steady two dimensional boundary layer equations for this flow in 
usual notations are 
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Where u  and v  are velocity components in x and y  directions respectively,   is  the density 
of fluid,   is the kinematic viscosity of the fluid , axxU )(  is the straining velocity of the 
stagnation – point  flow , a is the straining rate, T is the temperature ,   is the thermal 
conductivity , 0  is the electric conductivity, c is stretching rate, pc is specific heat, rq is 
radiative heat flux, 0B   is the uniform magnetic field along the y axis. 
The boundary conditions for the velocity field are given by:  
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BOUNDARY CONDITIONS: 

0,0,  yatTTvcxu w                                                                                            (3.4)

,TT 0,    0    as .uu y
y


  


                                                                     (3.5) 

Employing the Rosseland approximation for radiation [Chen. et al (2008)] expressed as, 
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where 𝑎 is mean absorption co-efficient and 𝜎 is the Stefen Boltzman constant. It is assumed 

that the temperature difference within the flow sufficiently small such that   𝑇4  can be 

expressed as a linear function of temperature which after expanding  using Taylor’s series 

about  𝑇∞ and neglecting the higher order term, reduces to  

 

                                                         4 3 44 3T T T T                                                                                                                                                  

Hence the change in radiative flux with respect to y  has been obtained as, 
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and equation (3.3) reduces to 
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METHOD OF SOLUTION
 

Let u and v be defined as the new variables. Then, similar transformations and dimensionless 
variables are used to transform equation (3.2) into a set of ordinary differential equations. The 
new variables introduced are as follows: 

                                   
1 2( ),      ( . ) ( )u cxf c v f                                                            (3.6) 
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Where   is dimensionless temperature,T  is temperature of the fluid, wT  is temperature of the 

sheet,T is  free stream temperature, f  is  dimensionless stream function ,  is similarity 
variable. 

 By using these new variables, i.e. equation (3.6) and equation (3.7) in equation (3.2), then 
these variables are satisfied in equation (3.2) by substitution, thereby giving the following 
result 
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       The corresponding boundary conditions are: 

            0, 1, 1f f    at   0                                                                                  (3.10) 

0 0,      0   as  f f                                                                        (3.11) 

Here f  denotes first order derivative with respect to   and f denotes second order 

derivative with respect  to  ,
2

0 0BM
c




 is the magnetic parameter and Pr  Prandtl number 

and R = radiation parameter. 

 

NUMERICAL SIMULATION 

Runge – Kutta fourth order technique is used to solve the non-linear boundary layer equation 
(3.8) and (3.9) together with the boundary conditions (3.10) and (3.11), along with the  
shooting method. Firstly, the higher order non- differential equation (3.8) and (3.9) are 
converted into simultaneous linear differential equations of first order and they are further 
transformed into initial value problem (IVP) by applying the shooting technique (Jain et al). 
Thereafter, by applying Runge- Kutta fourth order technique, the resultant initial value is 
solved. The semi- infinite integration domain 0    is replaced by a finite domain
0    where  is the numerically infinity, which is sufficient large and hence the 
numerical solution closely approximates the boundary conditions. A finite value is taken for 
to ensure that the solution is not affected by imposing the asymptotic condition at a finite 
distance. The computation in   this   study is carried out by taking ( 5)   and the numerical 

procedure is started by guessing the value of  0f   This is done in order to initiate the 

shooting technique and improve the guess until the end boundary conditions is satisfied. 
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0.001 is the step size that is employed and the solution is assumed to converge when the 
difference reaches  610  between the current and previous iterations that are used. 

f w
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Where ,p q  are variables. 

With the transform boundary conditions 

                                  0, 1, 1f f    at   0   

                                0 0,      0   as  f f                                                   (3.13) 

In order to solve (3.12) as an initial value problem we must need values for (0)q  i.e. (0)   but 
no such values are given in the boundary. The initial guess values for (0)f   and (0)   are 
chosen  and fourth order Runge-Kutta method is applied to obtain the solution. we compare 
the computed values of ( )f   and ( )   at ( 5)   with the given boundary conditions 

( ) 0f 
   and ( ) 0    then we adjust the values of (0)f   and (0)   using Secant method 

to get better approximation for the solution. The step- size is taken as 0.01.h    The process 
is repeated until we get the results correct up to the desired accuracy of  610  level. 

 

 

 

 

4.  RESULTS AND DISCUSSION 

The effect of   Magnetic  parameter  M ,  Prandtl  number  Pr , and Radiation parameter R  

on velocity and temperature are investigated and analyzed with the help of their graphical 
representation as below 
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                     Fig.4.1. velocity profile ( )f   for different values of M  for fixed value of   
                                                                .72.0Pr1.0  andR  
 

 

                       Fig.4.2. temperature  profile ( )   for different values of M  for fixed value of   
                                                                .72.0Pr1.0  andR  
 

Fig. shows that the nature of velocity field for the variation of magnetic parameter M .When  
the value of  M  increases  , then value of velocity is decrease.  
From Fig. It clears that as the value of M  increases then temperature is also increases and the 
motion of the fluid is opposed by the transverse magnetic field. Considerably the rate of 
transport is reduced. Lorentz force increases and it produces more resistance to flow due to 
the increasing in M. thickness of thermal boundary layer increases due to increase in M. 
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           Fig.4.3. velocity profile ( )f   for different values of Pr   for fixed value of   
                                                                .1.01.0  MandR  
Fig. shows the effect of Prandtl number Pr on temperature profile. Prandtl number  Pr  
defines the ratio of momentum diffusivity to thermal diffusivity. The temperature decreases 
due to increase in Pr . Hence, The thermal diffusivity decreases when we increase the Pr . So 
this phenomenon elaborates that the energy ability is decreasing which reduce the thermal 
boundary layer thickness.  

             

  Fig.4.4. velocity profile ( )f   for different values of Pr   for fixed value of   

                                                                .1.01.0  PMandR  

 

                     Fig.4.5. velocity profile ( )f   for different values of Pr   for fixed value of   
                                                                .1.01.0  PMandR  
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 Figure 4.4 shows the effect of  the thermal radiation , we shows that there is a tendency to 
increase the velocity and temperature boundary layers as velocity of R increases .Figure 4.5 
gives the effects of parameter R increased  due to increase in temperature  of boundary layer 
From here ,we observe that mean absorption coefficient k decreases and divergence of 
radioactive heat flux increases with the increase in thermal radiation parameter therefore , we 
can say that rate of irradiative heat transferred to fluid will be increased .so that the fluid 
temperature will be increased. 
 

 
                        

CONCLUSION 
The present study gives the similarity solution of unsteady two dimensional boundary layer 
flows and heat transfer of viscous , incompressible , electrically conducting fluid along a 
stretching sheet in presence of transfer magnetic field .The results pertaining to the present 
study indicate that the flow and temperature field are significantly influenced by the 
unsteadiness parameter , Magnetic parameter , Radiation parameter .Based on the present 
investigation ,the following observation are made  

i) With increasing M, velocity is decreases but the temperature increases.  
ii) As Pr increase , temperature is decreases .the thermal diffusivity decreases due to Pr 

increases So this phenomena elaborates that the energy ability is decreasing which 
reduce the thermal boundary layer thickness.  

iii) Velocity  f   and temperature     along the sheet increases with increase of 

Radiation parameter. 
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	 Cold objects in a warmer room will heat up to room temperature.
	1.4.1       HEAT TRANSFER METHODS
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