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Abstract 
 

Master of Science (Hons) in Mathematics 

MHD Boundary Layer Flow and Heat Transfer over a Stretching Sheet in a Porous 

Medium 

By Mwiya Mpishi. 

 

The main aim of this work is to study MHD boundary layer flow and heat transfer of a fluids over 

a stretching   sheet in a porous medium in presence of heat transfer. The similarity solutions of the 

governing equation have been obtained and the reduced equation have been solved by using 

numerical method. Numerical solutions of these equations are obtained by Runge-Kutta fourth 

order with shooting method. Numerical results obtained for different parameters such as magnetic 

parameter M , porosity parameter N and Prandtl number ( Pr ) on velocity and temperature have 

been analyzed and discussed. 
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CHAPTER 1 

 

Introduction 

 

1.1 Magneto–hydrodynamics (MHD) 

They science of dynamics of matter moving in an electromagnetic field is known as MHD. In 

MHD or Magneto–hydrodynamics, the currents in matter are established by induction, and 

modified in the field so that the field and dynamics equations are coupled. The set of equations 

that which describe MHD are a combination of Navier−Stoke equations of fluid dynamics and 

Maxwell’s equations of electromagnetism. The interactions of moving conducting fluids with 

electric and magnetic fields provides a rich variety of phenomena associated with 

electric−fluid−mechanical energy conversion which can be observed in liquids, gases, two−phase 

mixtures or plasma. Originally, MHD was applied to astrophysical and geophysical problems and 

is still very important particularly to the problem of fusion power, where the application is the 

creation and containment of hot plasma by electromagnetic forces and further prevents the material 

walls from being destroyed. Astrophysical problems include solar wind bathing the earth and other 

planets, and interstellar magnetic fields. The primary geophysical problem is planetary magnetism, 

produced by currents deep in the planet, a problem that has not been solved to any degree of 

satisfaction.  

 

However, the boundary layer flow on a stretching sheet has gained significant attention due to 

many practical applications in the industrial manufacturing process. These include the polymer 

industry where the production of plastic sheets are dealt with, the aerodynamics extrusion of plastic 

sheet, glass blowing and metal spinning. The sheeting materials production arises in a number of 

industrial manufacturing processes and it includes both metal and polymer sheets. The quality of 

the production depends on the rate of heat transfer at the stretching surface. Therefore, the heat 

transfer in porous fibrous medium is very complex and a thorough understanding is essential of 

such materials. The heat transfer and transportation phenomena in porous media are also important 

process in many engineering application. Examples include heat exchange, pack sphere−bed, 

electronic cooling, chemical catalytic reactors and heat pipe technology. The objective of thermal 

management is to ensure that the temperature of each component in an electronic system remains 
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within specified operating limits, or to ensure the enhancement of forced convection heat transfer 

in many engineering applications such as nuclear cooling, heat exchangers and solar collectors. 

 

1.2 Boundary Value Problem 

In relation to mathematics, a boundary value problem is basically a differential equation together 

with a set of additional constraints. These constrains are known as the boundary conditions of the 

equation. A solution to a boundary value problem is a solution to the differential equation and 

satisfies the boundary conditions. 

The boundary conditions that govern mathematics are as follows: 

 

1.2.1 Dirichlet Boundary Condition 

Dirichlet boundary condition in the Laplace equation imposes the restriction on the potential in 

some value at some location. For example, a common case of Dirichelt boundary conditions are 

surfaces of perfectly conductive electrodes. Free charges in such a conduction will rearrange 

themselves over the conductive surfaces so that the potential will be uniform over the entire 

conductor. The condition is known but the conducting surfaces may alternately be floating. 

 

1.2.2 Neumann Boundary Condition 

These boundary conditions specify the value of a normal derivative, or some combination of 

derivatives, along a boundary surface. These arise when a flux has been specified on the boundary, 

for instance, a heat transfer, or a surface traction in solid mechanics. In homogenous boundary 

condition, the boundary flux is zero like in insulating surfaces in heat transfer and free surfaces in 

solid mechanics. Hence the Neumann boundary conditions are referred to as natural boundary 

conditions in finite elements. 

 

Neumann boundary condition in Laplace or poison equation imposes the constraint that the 

directional derivative of  is some value at some location. The directional derivative normal to 

some boundary surface known as normal derivative is zero. These boundary conditions occur in 

2D cylindrically symmetric systems. The axis of rotation has infinitely many mirror planes 

confident with the axis, so the cylindrical axis is also a Neumann boundary condition. They also 
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occur in a repeating element such as modeling a small section of a large grid wire mesh in which 

case all sides of that element to the right have a Neumann boundary condition. 

 

1.2.3 Robin Boundary Condition 

This is a linear combination of a field value and its normal derivative. It occurs on a surface from 

which heat is carried by convection. Robin boundary conditions are handled similarly to 

Neumann’s boundary conditions. 

 

1.2.4 Cauchy Boundary Condition 

When the boundary condition is applied to either an ordinary differential equation or a partial 

differential equation, a complete solution is determined where both function value and normal 

derivatives are specified on the boundary of the domain. 

 

1.3 Fluid Dynamics 

This is the study of fluids in motion. The term fluid is a substance that deforms continuously when 

subjected to shear stress no matter how that shear stress may be. Fluids are classified as ideal and 

real fluids. Ideal fluids are incapable of sustaining any tangential force or shearing stress but the 

normal force acts between the adjoining layers of the fluid and offers no internal resistance to 

change in its shape. These have low viscosity such as air and water. On the other hand, real fluids 

are also known as viscous fluids. A fluid is viscous when the normal as well as shearing stress 

exist. Due to shearing stress, viscous fluid offers resistance to the body moving through it as well 

as between its particles of the fluid itself. An example of a real ideal is heavy oils and syrup which 

are termed as viscous fluids.  

 

Water and most liquids most liquids are assumed to be incompressible. Incompressible means that 

the density is independent of pressure but can vary with temperature. Viscosity is a measure of a 

fluid resistance to relative motion within the fluid. It influences energy, drag force or flow 

separation and further cause the velocity of a flowing fluid to vary with the distance. Normal stress 

produces deformation associated with volume change and shear stress is just the ratio of tangential 

force to area. Therefore, Newtonian fluids are fluids for which shear stress is directly proportional 
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to the rate of strain. If the viscosity is a constant, independent of flow speed, then the fluid is called 

Newtonian fluid and water is consider to be an example of Newtonian fluid. If the fluid viscosity 

varies with the rate of deformation, then it is said to be non−Newtonian fluid. The viscosity of 

polymeric liquids with shear rate is known as non−Newtonian fluids.  

 

1.4 Convective Heat Transfer 

Heat transfer has a variety of applications in the problems of natural events and technology. These 

heat transfer problems include designing of power stations, chemical and food plants, aerodynamic 

heating, cooling of high powered motors, extraction of energy form atomic piles and heat 

exchanges utilizing liquid metal coolant. The heat transfer in fluids in which moving fluid particles 

carry heat in the form of energy is called convection. This is classified as force convection and 

free or natural convection, and depends on how the fluid motion is initiated. In forced convection, 

incompressible fluids are characterized by the distribution of velocity which is not affected by 

temperature field. Heat diffusion in such flows occurs, and is simultaneously swept by the fluid 

motions without any way of affecting the local density of the fluid. The velocities in the forced 

convection are exact such that there is no temperature variations in the motion arising from the 

differences caused by thermal expansion, which is ignored. The motion on the other hand in which 

heat caused by natural means in which the distribution of velocity and temperature field coupled 

together is referred to as free or natural convection. Taking a fluid in consideration, the buoyancy 

effect of free convection causes the rise of warm fluid and fall of the cooler fluid. In such flows 

the distribution of velocity and temperature are interconnected and can be considered together. If 

the fluid is incompressible, then the density variations due to changes in pressure are negligible. 

The changes are responsible for imitating free convection because of density changes due to 

non−uniform heating of the fluid which cannot be neglected. Hence free convection occurs in the 

field of gravity and in the rotating fluid. It can be set up by the action of centrifugal force which is 

proportional to the density of the fluid.This is evident in the flow and heat transfer in gas turbines.  

 

Free convection and forced convection occur interchangeably and this is understood further if a 

common practical example is taken into account such as convection in ovens. Here, convectional 

ovens use natural convection to heat food while baking. Ovens typically contain two heating 

elements, that is, on top and bottom of the oven. During baking, the bottom heats up which heats 
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the air inside the oven. The hot air rises and creates a current which helps distribute throughout the 

oven. Natural convection currents are easily blocked by large pans, creating non−uniform 

temperatures within the oven. Again the convection oven improve the temperature distribution by 

using a fan which is located within the oven and thereby creating forced convection. The forced 

convection currents efficiently run the air inside the oven and creating uniform temperatures, even 

in the presence of large fans. The practical example generally demonstrates convective heat 

transfer of both free and forced convection. 

 

1.5 Basic Equation of MHD 

MHD is described by a set of equations of Navier−Stoke equations of the fluid dynamics and 

Maxwell’s equation of electromagnetism. The Navierr−Stoke equations are equations which 

describe the motion of fluid substances which can flow. The equations arise from applying Newton 

Second Law to fluids, together with the assumption that the fluid stress is the sum of a diffusing 

viscous term proportional to the gradient of velocity and pressure. Navier−Stoke have applications 

in the modeling of the weather, ocean currents, water flow in pipes, the air flow around a wing and 

motion of stars inside a galaxy. They also help with the design of cars and aircraft, the study of 

blood flow, the design of power stations and analysis of pollution. When Navier−Stoke equations 

are coupled with Maxwell equations, they can be used to model and study MHD. 

 

1.5.1 Continuity Equation 

The continuity equation states that in any steady state process, the rate at which mass enters a 

system is equal to the rate at which mass leaves the system. The differential form . 0
p

q
t


  

  
  

where  is the fluid density, t is time and q


is the flow velocity vector field. If  is a constant as 

in the case of incompressible flow where the density does not change then the mass continuity 

equation simplifies to a volume continuity equation of the form . 0q


  . This means that the 

divergence of the velocity field is zero everywhere. The volume of any fluid cannot be changes 

resulting to incompressible flows. Some examples where the application of continuity is useful 

can be in pipes with cross section which changes along their length. A liquid flowing from left to 

right in a pipe which is narrowing in the direction then by continuity principle, the mass flow rate 
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must be same at each section of which the mass going into the pipe is equal to the mass going out 

of the pipe. Another example of application of continuity principle is when determining the 

velocities in pipes coming from a junction, then the total mass flow into a junction is equal to the 

total mass flowing out of the junction. 

 

1.5.2 Momentum Equation 

Moving fluid exert forces. The lifting force on an aircraft is exerted by the air moving over the 

wing and a jet of water from a horse exerts a force on whatever it hits. The analysis of motion in 

fluid mechanics is performed in the same way as in solid mechanics by the use of newton’s law of 

motion. Special properties of fluids are also taken into account when in motion. The momentum 

equation is a statement of newton’s second law, which states that “the rate of change of momentum 

of a body is equal to the sum of the forces acting on an element of fluid to its acceleration or rate 

of change of momentum. A different form of equation is used rather than the basic F ma because 

the mass of the fluid is unknown. Therefore, the equation for momentum has a dimension of force. 

The analysis of forces on a fluid element consisting of two kinds of forces of which forces such as 

gravity or electromagnetic forces are called body forces because they act over the entire volume 

of the body and secondly, forces such as pressure and viscous stress act on the surface of a fluid 

element. 

 

The body force which is mainly considered in fluid dynamics is gravity and it has three directional 

components of , ,x y z . Surface forces consist of normal or shear stress forces on a face of the fluid. 

This is resolved into component in each coordinate direction of, say i and j . For example, the 

force denoted by 
yx is a force or stress is considered positive when it is exerted by the fluid above 

an element on the fluid below an element. The force that results from stress is the area, by definition 

of stress, which is force per unit area on the same fluid or on which the force acts on. The equation 

21
.

q
q q q

t
 



    
       

  
 is the basic equation of hydrodynamics and also for the path of a 

homogeneous isotopic and incompressible fluid of constant density  and constant coefficient 

of viscosity. 
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1.5.3 Maxwell’s Equation 

Maxwell equations represent ways to state the fundamental for an electric field,  ,E r t and a 

magnetic field  ,B r t . They both depend on the position r and t . 

 

The following are a summary of the Maxwell’s equations; 

i. Gauss’s Law 

 
0

.E



    

It states that the divergence of the electric filed is proportional to the density of the electric 

charge, that is, the electric field diverges away from the point where a source of electric 

charge is situated. The constant 0  of proportionality is called the electric permittivity of 

the vacuum. Its value depends on the system of units chosen. 

ii. No Magnetic Monopole Law, 

 . 0B    

The equation above implies that there are no free magnetic charges. An isolated magnetic 

charge is impossible to see under laboratory conditions. The simplest source for the 

magnetic field is a magnetic dipole which is viewed as a pair of magnetic charges close to 

one another and of opposite sign, so the total magnetic charge is zero. 

iii. Faraday’s Law, 

 
B

E
t


  


  

This is the law of electromagnetic induction and it refers to the form of the electric field 

generated by a time−varying magnetic field. The minus sign on the right side represents 

Lenz’s Law. It states that the electric current generated by E will always be in the direction 

such as to oppose the change in B . 

iv. Ampere’s Law with Displacement Current 
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0 0 0

E
B J

t
  


  


  

The equation describes how an electric current density J acts as a source for the magnetic 

field and a time varying electric filed 0 is the permeability of the vacuum. 

 

1.6 Stretching Sheets 

Consider an elastic flat sheet in which the flow is produced due to stretching in it and this flow 

moves in its plane. Its velocity varies with the distance from a fixed point due to the application of 

stress. Then this is referred to as stretching flow. It has application in industrial manufacturing 

processes which includes both metal and polymer sheets. Motion is create by tangential velocity 

introduced by the sheets of the surrounding fluid, thereby altering the convection of the sheet. This 

is evident form the manufacturing of plastics and rubber sheets with a necessary condition of 

blowing a gaseous medium through a not yet solidified material where the stretching force is 

dependent upon time. It is also evident in the situation involving the cooling of a large metallic 

plate in a bath which may be an electrolyte. The fluid flow here is induced on the plate by 

shrinkage. The stretching surface also occurs in glass blowing, continuous casting and spinning of 

fibers. Hence the fluid is affected by the sheet because of high viscosity of the fluid near the sheet. 

Therefore, tangential moving boundary idealizes the case of fluid disturbances of fluid problem. 

 

1.7 Boundary Layer Theory 

Boundary layer is a layer which arises when a viscous incompressible electrically conducting fluid 

which is bounded by a rigid surface is rotated rapidly and produces a thin layer near the boundary 

surface based on the balance between Coriolis and viscous forces. It was first noticed by Ekman 

(1905) in his study of the wind stress on the surface of oceans. It plays an important role in 

determining the flow features of various problems of astrophysical and geophysical interest and 

engineering Greenspan (1963). In a non−rotating system, a thin boundary layer appears when a 

viscous incompressible electrically conducting fluid flows past a rigid surface in the presence of 

an applied magnetic field and magnetic force which is stronger than the viscous force. Hartmann 

(1937) observed this boundary layer while studying the flow of a uniform transverse magnetic 

field. A thin boundary layer is formed adjacent to the rigid boundary when combined effects of 
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rotating and magnetic field in the flow of an electrically conducting viscous incompressible fluid 

bounded by a rigid surface are considered and if the Coriolis forces are stronger than the magnetic 

and viscous forces. 

 

1.8 Porous Medium 

A material congaing pores or voids is a porous medium and its pores are filled with a fluid. A 

porous medium of volume is a fixed solid matrix with a connected void space through which a 

fluid can flow or consist of solid particles so that fluids can flow through the voids and passages. 

Thus, the definition of porosity and permeability is essential. Porosity is the percentage of a volume 

medium that is empty space and contributes to the fluid flow while permeability measures 

quantitatively the ability of the porous medium to permit fluid flow. Porous medium has several 

applications some of which are in the flow through packed beds, extraction of energy from the 

geothermal regions, filtration of solids form liquids, flow of liquid ion−exchange beds, the 

evaluation of the capability of heat removal from articular nuclear fuel debris and in chemical 

reactors for economical separation of purification of mixtures. 
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CHAPTER 2 

 

The literature review 

 

2.1 Literature 

Flow in porous media has been the subject of numerous investigations during the past several 

decades. The interest in this subject has been stimulated, to a large extent, by the fact that thermally 

driven flows in porous media have several applications in chemical and mechanical engineering. 

For example, food processing and storage, geophysical systems, electro−chemistry, fibrous 

insulation, metallurgy, the design of pebble bed nuclear reactors, underground disposal of nuclear 

or non−nuclear waste, microelectronics cooling, etc. detailed literature review can be found in the 

books by Pop and Ingham (2001), Ingham and Pop (2005), Nield and Bejan (2006). One of the 

fundamental problems in porous media is the flow and heat transfer driven by a linearly stretching 

surface through a porous medium. It seems that the first study of the steady flows of a viscous 

incompressible fluid (non−porous media) driven by a linearly stretching surface through a 

quiescent fluid has been reported by Crane (1970). Further, Elbashbeshy and Bazid (2004) studied 

flow and heat transfer in a porous medium over a stretching surface with internal heat generation 

and suction or blowing when the surface is held at a constant temperature. The problem of flow 

and heat transfer of an incompressible fluid over a stretching surface placed in a porous medium 

has received considerable attention in recent years because it is an important type of flow occurring 

in the polymer industry. A class of flow problems with obvious relevance to polymer extrusion is 

the flow induced by the stretching motion of a flat elastic sheet. For instance, in a melt−spinning 

process, the extradite from the die is generally drawn and simultaneously stretched into a filament 

or sheet, which is thereafter solidified through rapid quenching or gradual cooling by direct contact 

with water or chilled metal rolls. In fact, stretching impart a unidirectional orientation to extradite, 

thereby improving its mechanical properties and the quality of the product which greatly depends 

on the rate of cooling.   

 

Recent books by Nield and Benjan (2006), Ingham and Pop (1998) excellently described the extent 

of the research information in this area. Sakiadis (1961) initiated the study of boundary layer flow 

over a continuous solid surface moving with constant speed. Crane (1970) extended it to analyze 
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the steady two−dimensional boundary layer flow caused by the stretching of an elastic flat surface 

90 which moves in its plane with velocity varying linearly with distance from a fixed point. Dutta 

et al. (1985) determined the temperature distribution in the flow over a stretching surface subject 

to uniform heat flux. Chen and Char (1988) investigated the heat transfer characteristics over a 

continuous stretching sheet with variable surface temperature. Gupta and Gupta (1977) have 

analyzed the stretching problem with constant surface temperature, while Soundalgekar and 

Ramana (1980) investigated the constant surface velocity. Grubka and Bobba (1985) have 

analyzed the stretching problem for a surface moving with linear velocity and with a variable 

surface temperature. In all the previous investigations, the effects of internal heat source or sink 

on heat transfer were not studied. When there is an appreciable difference between the surface and 

the ambient fluid, one need to consider the temperature dependent heat source or sink which may 

exert strong influence on the natural convection boundary layer induced by a heated vertical plate 

embedded in a saturated porous medium with internal heat generation. The unsteady heat transfer 

problem over a stretching surface, which is stretched with a velocity that depends on time, is 

considered by Anderson et al. (2000), Elbashbeshy and Bazid (2004) and Ishak et al. (2008). 

 

All the above mentioned studies continued their discussion by assuming the no−slip boundary 

conditions. The no−slip boundary condition is the assumption that a liquid adheres to a solid 

boundary, is one of the central tenets of the Navier−Stoke theory. However, there are situations 

where this condition does not hold. Partial velocity slip may occur on the stretching boundary 

when the fluid is particulate such as emulsions, suspensions, foams and polymer solutions. The 

non−adherence of the fluid to a solid boundary, also known as velocity slip, is a phenomenon that 

has been observed under certain circumstances. Recently, many researchers investigated the flow 

problem taking slip flow condition at the boundary. The fluids that exhibit boundary slip have 

important technological applications such as in the polishing of artificial heart valves and internal 

cavities. Beavers and Joseph (1967) studied the fluid flow past a permeable wall using the slip 

condition at the boundary. Effects of the slip boundary condition on the flow of Newtonian fluid 

over a stretching sheet were considered by Anderson (2002) and Wang (2009) Ariel et al. (2006) 

studied the flow of an elastic−viscous fluid over a stretching sheet with partial slip. Analytical 

solutions of the flow of a second grade fluid and the heat transfer over a stretching sheet under the 

slip condition were obtained by Hayat et al. (2009) using HAM. Very significant aspects of the 
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slip flow were discussed by Bhattacharyya et al. (2011). All of the above mentioned studies were 

carried out under a steady−state condition. 

 

However, in certain aspects, flow becomes time dependent and, consequently, it becomes 

necessary to consider unsteady flow conditions. Surma Devi et al. (1986) investigated the heat and 

mass transfer in an unsteady three−dimensional flow due to stretching of a flat surface. Takhar et 

al. (1993) and Pop and N (1996) also explored some important aspects of unsteady flow. Heat 

transfer past an unsteady stretching sheet under different physical conditions was analyzed by Tsai 

et al. (2008). Nazar et al. (2009) considered an unsteady boundary layer flow in the region of the 

stagnation point on a stretching sheet. Some other important properties of flow due to an unsteady 

stretching sheet were discussed by Ishak et al. (2009), Mukhopadhyay (2010) and Zheng et al. 

(2011). Suction or injection (blowing) of a fluid through the bounding surface can significantly 

change the flow field. The process of suction and blowing has also its importance in many 

engineering activities such as in design of thrust bearing and radial diffusers, and thermal oil 

recovery. Suction is applied to chemical processes to remove reactants. Blowing is used to add 

reactants, cool the surface, prevent corrosion or scaling and reduce the drag. The radiative effects 

have important applications in physics and engineering. The radiation heat transfer effects on 

different flows are very important in space technology and high temperature processes. But very 

little is known about the effects of radiation on the boundary layer. Thermal radiation effects may 

play an important role in controlling heat transfer in polymer processing industries where the 

quality of the final product depends on the heat controlling factors to some extent. High 

temperature plasmas, cooling of nuclear reactors, liquid metal fluids, magneto−hydrodynamics 

(MHD) accelerators and power generation systems are some of the important applications of 

radiative heat transfer from a vertical wall to conductive fluids. 
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CHAPTER 3 

 

Formulation of the problem 

 

3.1 Formulation 

A steady two dimensional MHD boundary layer flow of incompressible, viscous and electrical 

conducting fluid in porous medium with heat transfer is considered. The x − axis has been taken 

along the stretching sheet and y − axis is taken perpendicular to the surface. The flow is confined 

to 0y  , 

 

A uniform magnetic field strength 0B is applied normal to the stretching surface which produce a 

magnetic effect. It is also assumed that fluid is weakly electrically conducting so that induced 

magnetic field is negligible, which is justified for MHD flow at a small magnetic Reynolds 

number. 

                                            

  

                                   y   

   

                                              0B   

                           

                                                                       Boundary layer  

   

                                      0                at 0wu cx, T T y                      x  

Fig.  3.1    Sketch of the physical problem. 
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Under the usual boundary layer approximations, the flow and heat transfer with radiation effect 

(Bansal, 1997; Schlichting el al. 1999) are governed by the following equations: 

 

                                                                     0
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                                                                              (3.1) 
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                                                                (3.3) 

   

where u and v are components of velocity respectively in x and y directions, 0B is the uniform 

magnetic field along the y – axis, 





 is the kinetic coefficient of viscosity, T is the temperature, 

 is the coefficient of thermal diffusivity, 
pc is specific heat capacity and k is the permeability of 

the porous medium. 

 

3.2 Boundary Condition 

The boundary conditions for the velocity filed are given by: 

 

                                             0               at    0     0wu cx, v , T T y , c                                           (3.4) 

                                                  0        0    as    
u

T T , u , y
y




   


                                           (3.5) 

 

From the above  0c  is considered as the stretching rate, wT is the uniform wall temperature and 

T is the temperature far away from the sheet. 

 
 
 



15 
 

3.3 Method of Solution 

Let u and v be defined as the new variables. Then similar transformation and dimensionless 

variables are used to transform equation (3.2) and (3.3) into a set of ordinary differential equation. 

The new variables introduced are as follows: 

                                                        
1 2

       u cxf , c.v f                                                         (3.6) 

                                                          

1 2

       =
w

T T c
, y

T T v
 



  
  

  
                                                          (3.7) 

By using these new variables, that is, equation (3.6) and equation (3.7) in equation (3.2) and (3.3), 

then these variables are satisfied in equation (3.2) and in equation (3.3) by substitution and so 

giving the following result: 

                                                        
2 0f f ff Mf Nf                                                                  (3.8) 

                                                                Pr 0f f                                                                      (3.9) 

   
The boundary conditions are: 

                                                         1,             at    0f f R                                                            (3.10) 

                                         0,        0,        0     as    f f                                                (3.11) 

The prime in the above equations denotes differentiation with respect to , R is the Radiation 

parameter, N is equal to the Porosity parameter, 
2

0 0B
M

c




 is the Magnetic parameter and Pr

v

k


is the Prandtl number.  

 

To assess the accuracy of the present method, comparison with previously reported data available 

in the literature has been made. It is clear from that the numerical values of (0)  in the present 

paper are in agreement with results obtained by Magyari and Keller (1999).  
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3.4 Numerical Simulation 

The Runger−Kutta fourth order technique is used to solve the non−linear boundary layer equation 

(3.8) and equation (3.9) together with the boundary conditions (3.10) and (3.11), along with the 

shooting method. Firstly, the higher order non−differential equations (3.8) and (3.9) are converted 

into simultaneous linear differential equations of first order and they are further transformed into 

initial value problem (IVP) by applying the shooting method technique (Jain et al). Therefore, by 

applying Runge−Kutta fourth order technique, the resultant initial value is solved. The 

semi−infinite integration domain 0   is replaced by a finite domain 0    where  is 

the numerical infinity which is sufficient. Thus the numerical solution closely approximates the 

boundary conditions. A finite value is taken for  to ensure that the solution is not affected by 

imposing the asymptotic condition at a finite distance. The computation in this study are carried 

out by taking  5  and the numerical procedure is started by guessing the value of  0f  . This 

is done in order to initiate the shooting technique and improve the guess until the end boundary 

condition are satisfied. The step size 0.001 is employed and the solution is assumed to converge 

when the difference reaches 610  between the current and previous iterations used. In terms of first 

order differential equations, the higher order equations mentioned above are as follows: 

                                                                              f w                                                                             (3.12) 

                                                                             f p                                                                              (3.13) 

                                                                             p q                                                                               (3.14) 

                                                              2q p wq M N p                                                               (3.15) 

                                                                              h                                                                               (3.16) 

                                                                  Prh p fh                                                                       (3.17) 

The transformation boundary conditions are: 

        0 0,        0 1,        0 0,        0 1f f f       
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The value for  0f  and  0  is required to solve the equation as an initial value problem (IVP) 

but no such value is given in the boundary condition. The fourth order Runger−Kutta method is 

applied to obtain the solution form the chosen guess of   0f 
  and   0   . The estimated 

value of  0f  and  0  are adjusted and so this gives a better approximation for the solution. 

The secant method is used with step size 0.001h  and the result corrects up to the desired 

accuracy of 610 . 

3.5 Results and discussion 

 

The effect of different parameter like magnetic parameter M , porosity parameter N and Prandtl 

number Pr on velocity and temperature are investigated and analyzed with the help of their 

graphical representation. 

 
 

Fig. 3.5 (a)   Velocity profiles for different values of magnetic parameter M  
 

 
Fig.  3.5 (b)   Temperature profiles for different values of magnetic parameter M  
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 Fig. 3.5 (a) illustrates the effect of magnetic parameter M on the behavior of velocity filed. The 

velocity decreases with an increase in the magnetic parameter because both primary and secondary 

velocities u and v decrease on increasing magnetic parameter M . Furthermore, the application of 

transverse magnetic field that result in a resistive type of force (Lorentz force) which is similar to 

the drag force. This tends to resist the fluid flow and thus reducing its velocity. 

 

Fig. 3.5 (b) illustrates the effect of magnetic parameter with temperature. Clearly, as the velocity 

profiles decrease, the temperature profiles increase. The increase in temperature is due to the 

application of transverse magnetic field in an electrically conducting fluid. This produces a 

resistive force similar to drag force which is the Lorentz force. As a result, the force slow down 

the fluid motion and results in the increase of temperature. Hence the thermal boundary layer 

increases in the presence of a magnetic field. 

   

 

 

Fig. 3.6 Velocity profiles for different values of porosity parameter N  
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The fig. 3.6 show that the velocity  f   decrease with the increase in the porosity parameter with 

respect to the horizontal velocity in porous medium. It is found that for different values of porosity 

parameter N , the velocity decreases because the porosity parameter resists the flow and thus 

restricts the motion of the fluid along the surface. The thickness of the velocity boundary layer 

increases as the value of N increases. This results in a decrease in velocity due to an increase in 

porosity parameter N with opposes the flow. 

   

 

Fig 3.7 Temperature profiles for different values of Prandtl number Pr  

Fig 3.7 depicts the temperature profiles to the effect of Prandtl number. An increase in the Prandtl 

number Pr reduces the thermal boundary layer thickness. Prandtl number Pr  signifies the ratio of 

the momentum diffusivity to thermal diffusivity. It can be noticed that as Pr decreases, the 

thickness of the boundary layer becomes greater than the thickness of the velocity boundary layer 

according to the well−known relation 1 PrT   where T the thickness of the velocity thermal 

boundary layer is and  is the thickness of the velocity boundary layer. So the thickness of the 

thermal boundary layer increases as Prandtl number decreases. Hence the temperature decreases 

as the Prandtl number Pr increases. 
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3.6 Conclusion 

The present study gives the similarity solution for MHD boundary layer flow and heat transfer 

over a stretching sheet in porous medium. The results obtained show that the velocity and 

temperature field are significantly influenced by the magnetic parameter M , porosity parameter 

N and Prandtl number Pr . 

   

The following findings of this investigation can be summarized as follows. 

 

i. The effect of transverse magnetic field on a viscous incompressible conducing fluid flow 

is to suppress the velocity fluid which in turn causes the enhancement of the temperature 

field. An increase in magnetic parameter results in decrease of dimensionless velocity 

profiles and increase in temperature profiles. 

ii. By increasing the porosity parameter N , velocity profiles decreases. 

iii. Due to the thermal boundary layer thickness, it is found that as Prandtl number Pr  

increases, the temperature decreases. 
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OBJECTIVE OF THE PROPOSED WORK 

 

The objectives of the proposed work are following: 

1) To solve real world problem by using analytical and computational method. 

2) To develop a model that reflects the real world problem. 

3) To determine what insight the mathematical model has provided to the original problem   
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