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ABSTRACT

This paper presents production lot size inventory models for deteriorating items with
time dependent demand rate. It is assumed that the deterioration rate is constant and
the holding cost is a linear function in time. Inventory models are developed without
considering shortages. The salvage value is used while calculating the optimal
policies that maximize the revenue of the system. Numerical examples and the
sensitivity of these models will be discussed in the next semester.
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Chapterl:

INTRODUCTION [1]

Inventory is defined as the money, capital or labor that is being used in an enterprise.
It is important to maintain inventories for smooth functioning of an enterprise. The
objective is to minimize total i.e. actual or expected cost.

Types of inventories [3]:
There are basically five types of inventories.

1) Fluctuation inventories: These are inventories to meet uncertainties of demand
and supply.

2) Anticipation inventories: These inventories keep men and machine ready in
advance for future use. Like storing crackers well before Diwali.

3) Cycle inventories: In these inventories items are purchased in large amount
rather than the exact quantities required.

4) Decoupling inventories: The inventories used to minimize the
interdependence of various stages of the production system are called
decoupling inventories.

5) Transportation inventories: This is also known as process inventory in which
the significant amount  of time is used in the shipment of items from
production center to various distribution centers and customers.

Inventory costs [2]:

1) Purchased cost: It is the amount of money paid to produce an item.

2) Holding cost: These include carrying or holding goods in stock. various
components of holding costs are:
a) Cost of capital tied up in inventories.



b) Cost of storage space.

c) Depreciation and deterioration costs.

d) Pilferage cost.

e) Obsolescence cost.

f) Handling cost.

g) Record-keeping and administrative cost.
h) Taxes and insurance.

3) Set-up cost: These costs include the fixed cost associated with placing of
an order. They include costs of purchase, follow up, receiving the goods,
cost of mailing etc.

4) Shortage costs: These costs are associated with delay in fulfilling demands.

Inventory control problem [5]:
The inventory control problem is to determine three basic factors:

1) When to order?
2) How much to order?
3) And How much safety stock should be kept?



Chapter2:

Literature review

1.)Fuzzy inventory model for two parameter Weibull deteriorating

items [1]: This paper, present the development of a fuzzy inventory model
with linear demand two parameter Weibull deterioration and shortage under
fully backlogged. The deterioration cost, holding cost and shortages are taken
as hexagonal fuzzy members. Signed distance method was used to defuzzify
the total cost function.

2.)Time dependent quadratic demand inventory models when

delay in payments is acceptable [2]: This paper constructs an EOQ
model for deteriorating items with time dependent quadratic demand rate. An
assumption is made that the deterioration rate is constant and the supplier
offers his retailer the credit period to settle the account of the procurement
units. It is assumed that shortages are not allowed and the replenishment rate
Is instantaneous, to solve the model. The objective of this paper is to minimize
the retailers total inventory cost.

3.)Considering lost sale in inventory routing problems for

perishable goods [3]: This paper presents a mathematical model for an
inventory routing problem. This model is especially designed for allocating
the stock of perishable goods. It is assumed that the age of perishable
inventory has a negative impact on the demand of end customers and a
percentage of the demand is considered as lost sale. The proposed model
balances the transportation cost, the cost of inventory holding and lost sale. In
this paper, the cost of lost sale is considered as linear or exponential function
of inventory age.



4.)Optimal pricing and marketing planning for deteriorating items

[4]: optimal pricing and marketing planning plays an essential role in
production decisions on deteriorating items. This paper presents a
mathematical model for a three-level supply chain, which includes one
producer, one distributor and one retailer. The proposed study considers the
production of a deteriorating item where demand is influenced by price,
marketing expenditure, quality of product and after-sales service
expenditures.

5.) An optimal replenishment policy for non-instantaneous
deteriorating items with stock-dependent demand and partial
backlogging [5]: In this study, we consider a problem of determining the
optimal replenishment policy for non-instantaneous deteriorating items with
stock-dependent demand. In this model, shortages are allowed and the
backlogging rate is variable and dependent on the waiting time for the next
replenishment. The necessary and sufficient conditions of the existence and
uniqueness of the optimal solution are shown.

6.) An order-level inventory model for a deteriorating item with
Weibull distribution deterioration, time-quadratic demand and
shortages [8]: In this paper, an inventory model is developed for a
deteriorating item which have an instantaneous supply, a quadratic time-
varying demand and shortages in inventory. The time to deterioration is
represented by two-parameter Weibull distribution. The optimal solution of
the problem is obtained by solving the model analytically.
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Chapter 3:

Assumptions and Notations [1]:

The demand rate is assumed to be R(x) = a + bx + cx?, where a, b and c are
constants.

y(x) is the inventory level at timex.

The lead-time is zero and shortages are allowed.

The production rateK = yR(x), where y>1.

The fraction of the on-hand inventory deterioration per unit time is fixed,
6(x) = 0.

There is no production during the time x;to T and demand dominates so the
inventory level slowly decreases to zero.

Holding cost is linear function of timeh(x) = a, + a,x,a, = 0,a, = 0.

b is the deteriorating cost per unit time.

y; IS the salvage value, associated with deteriorated units during a cycle time.

10. s,- is the selling price per unit.

Formulation of Mathematical Model [1]:

The objective of the model is to determine the optimum profit for items having
time dependent quadratic demand and the rate of deterioration is constant. We
assumed that the production dominates demand during tome 0 to x; and there is no
production during the time x; to T and demand dominates, so that the inventory level
slowly decreases to zero at the end.

If y(x)be the inventory level at time x, the differential equations describing the
inventory level at time x are given by

dy 0 =K—-R 0<x< 1
—+0.y() =K —R(x) <x<x (D
dy

—+6.y(x) = —R(x) X <x<T (2)

dx

11



Where K = yR(x),R(x) = a + bx + cx?2.
According to the assumptions

y(0) =0, y(x;) =S, y(T) =0 3)
The solution of the equation (1) with condition y(0) = 0 is

—x6

2ce™®  2cy  2ce¥0y be™*  2cx

_ _ 2 b by . be *°y  2cxy
YO =Gt e T T te e te et e e
a ae X px cx2  ay ae X%y  bxy  cx?y
- -t —— 4
6 T 6 6 6 t 6 6 T 7] T 7] ( )

Now, the solution of equation (2) is

_ 2c  2ce X104T6  p  pe=x10+TO ooy 2ce *¥10+TOT
y(x) =e x19+T95 __ 4t

a
63 o T ez T e 8
ae—X19+T9 bx, Cx12 be—x19+T9T Ce—X19+T9T2
o 8 0 0 + 0 ()
The total cost (TC) is given by
TC =0C+IHC+DC—-SV (6)

Where OC is the ordering cost, IHC is the holding cost, DC is the deterioration
cost and SV is the salvage cost.
Now

1. The ordering cost = A (7)
2. Inventory holding cost per unit is given by

T
IHCzj h.y(x) dx
0

= [ hy()dx + fxi h.y(x)dx (8)
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Using eg. (8.a) and (8.b) in eq. (8), we get

2cefT—x1)qg 2ce %*1q 2cya
IHC — 1 1 _ 14431

2ce”%1yq,  pe®T—x1q,  pe~¥1q,
04 L 04 ot 63 o3
2ce9(T_x1)Ta1 bya, be‘exlyal aee(T_xl)al ae_axlal bee(T_xl)Tal
FE o T e T gz TR 62
ce®T-x1)12q.  qgya, ae 1ya; Sa;  e?T*Usa, aTa; bT%a,
62 62 62 6 6 6 260
cT3a; . 2ce®T*q, 2ce %%1q, 2cya, . 2ce 1ya, pe?T-X1gq,
360 63 65 65 65 64
be~%%1q, 2ce®T*UTq, bya, be 1ya, ae®T*g, ge 9*1q,
ot 64 gr T e T g ICE
be®T-xUrq, ce®T-XUT2q, aya, ae ®1ya, Sa, e?T*Vsq, aTa,
FE + 63 T T e g o2 9z
bT?a, cT3a, STa, aT?a, bT3a, cT*a, n 2cya;x,  bya;x; n aya;x, n
262 362 ) 26 36 40 03 62 6
2cePT*Vq,x;,  2ce %1q,x;  2ce ™ 1ya,x; be?T*Vg,x;  be 1g,x,
o4 B o o B 63 E
2ce?T*UTq,x;  be ya,x; . ae®T*Va,x; ae %1a,x; . be®T*VTa,x,
63 B FE 62 Tz T 62
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62 62 7] 62 260 63
bya,x? n aya,x? n cya;xi  2cyapxi " bya,x3 n cyaxt (9)
262 26 36 362 36 40

3. The deterioration cost is given by
X1
DC = j (yab, + ybb,x + ycbx* — ab, — bb;x — cbh;x?) dx +
0
fle(—abl — bbyx; — chyx,?) dr
DC = —aTh, — %szb1 — §CT3b1 + ayb;x; + %byblxlz + gcyble

(10)
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4. Salvage value is given by
SV =y,DC

SV = —aTbyy: — %szblh - §CT3b1y1 + aybix,y; + %byb1x12]/1 + §CYb1xi7’Y1
(11)
Using eq. (7), (8), (9), (10), (11) in eq. (6), the Total Cost is

2ce9T*Vq.  2ce~%%1q, 2cya; . 2ce 1ya, beT*q, pe~9¥1q,

TC=A+ 94 - 94 Y, + 94 - 93 + 93 -
2ce?T*UTq,  bya, _ be *1yq, ae?T-XDgq, _ ae %*1q, n be®T—x1UTq,
63 63 63 62 62 62
ce®T-x)T2q.  qya, N ae 1yq, sa;  e?T-XUsq, aTa, bT?2a; cT3a4 n
62 62 62 6 6 7] 20 30
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65 I EE LY. gt
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64 64 64 63 g3 63
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63 63 63 62 62 62 2062 362
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) 26 36 46 L 1 3 1 63
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62 6 64 64 64 63
be~%%1q,x, _ 2ceT=XUTq,x, _ be~1ya,x;  ae®T*Vg,x, _ ae %1g,x,
63 63 63 62 62
be®T=xUTqa,x,  ce®T=*UT2q,x;,  ae 1ya,x;  e?T*Usq,x, b
62 E E 0 T aybyx, =
2 2 2 2 3 3
cyaix? . bya.x? | cyayx?  bya,x? ayale 4 Craax 2cyayxs
+ — + + - b b,x? — +
62 26 63 262 YP1xi 36 362
bya2x1 cya2x1
30 + C]/bl + Tblyl + bT blyl + CT blyl - ayblxl)/l
5b7b1x1 Vi~ ECVb1x1 41 (12)
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The Sales Revenue of the system is

SR = s, (f;cl(ya + ybx + ycx? —a — bx — cx?)dx + fx:(a + bx; + cx;?) dxl)

~

SR = aTs, + %szsr + %CTE‘ST — 2as,x; + ays,x; — bs,x? + %bysrxlz —

%csrxl3 + écysrxf (13)
Thus, the Total Profit of the system is
1
P(xy,T) = Z(SR—TC)

p ) = A 2ce9TxVq,  2ce~%%1q,  2cya; 2ce 1ya; = pe?T—x1qg,
ey, T) = t to* T T e T e
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The optimum value of x; and T are obtained by solving
d d
a—le(xl,T) = 0 and EP(xl,T) = 0, we get
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