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Abstract  

 

 

The aim of this project work is to study the boundary layer flow of an incompressible electrically 

conducting fluid over a stretching sheet under the effect of magnetic field and heat transfer. The 

governing boundary layer equation is converted into self-similar nonlinear ordinary differential 

equations, using similarity transformations and then solved numerically by using shooting 

method. The effect of magnetic parameter, porosity parameter and Prandtl number are studied 

with respect to similarity variable (  ). 

 

 

 

  



iii 
 

 

 

CONTENTS 

 

1. INTRODUCTION 

 

1.1  MAGNETO-HYDRODYNAMICS       …………………………….. 1-2 

 

1.2  BOUNDARY VALUE PROBLEM       …………………………….. 2-3 

 

1.3  FLUID DYNAMICS                              ………………………………. 4 

 

1.4  BASIC EQUATION OF FLUID DYNAMICS …………………….. 4-6 

 

1.5  STRETCHING SHEETS                        ……………………………. 6-7 

 

1.6  BOUNDARY LAYER THEORY         ………………………………. 7 

 

1.7  CONVECTIVE HEAT TRANSFER     …………………………….. 8-9 

 

2. LITERATURE REVIEW                         ……………………………..9-11 

 

3. FORMULATION OF THE PROBLEM    

 

3.1  BOUNDARY CONDITIONS              …………………………….13-14 

 

3.2  METHOD OF SOLUTION                 ……………………………. 14-15 

 

 

4. REFERENCES                                        …………………………….. 16-18 

 

 



1 
 

1. INTRODUCTION 

 

1.1 MAGNETO-HYDRODYNAMICS 

Magneto-hydrodynamics (MHD) deals with the process of change  of electrically conducting 

fluids, like plasmas (highly ionized gases), salt water, liquid metals, electrolytes etc. It is well 

known that magnetic field can cause current in a moving conducting fluid, which generates 

forces on the fluid and that can also change the magnetic field. As a result current experiences a 

mechanical force called Lorentz force because of the presence of magnetic field which tends to 

modify the original fluid motion. Therefore, the relation of electrically conducting fluids with 

magnetic fields is essential features of the physical situation in MHD fluid flow problems.  

 

Magneto-hydrodynamic (MHD)is the phenomena that occurs in  Earth’s interior naturally, 

establishing the dynamo which produces the Earth’s magnetic field, in magnetosphere which 

surrounds the earth and  in the Sun and in every part of the universe. Magneto-hydrodynamics 

principles are used in plasma accelerator for spacecraft propulsion and for Magneto-

hydrodynamic power generation.  

 

Faraday in 1832 thought that the motion of the sea might account for the observed disturbance of 

motion of Earth’s magnetic field. However, the use of such idea to natural events did not take 

place for the rest of the century and it received belated interest when astrophysicists came to 

realize the prevalence of conducting ionizes gases (plasmas) and significantly strong magnetic 

field in every part of universe. In 1889 Bigelow suggested from the resemblance of the coronal 

plum seen at the time of total solar eclipse that the Sun is a great magnet. Larmor in 1918 made 

an attractive suggestion that the Sun’s magnetic field and magnetic field of other heavenly bodies 

is due to dynamo action, where by the conducting material of the stars act as a frame and stator 

of a self-exciting dynamo. Subsequently geophysicists considered the similar problem explaining 

the earth’s magnetic field by the motion of assumed core of conducting liquid. These suggestions 

led to many different investigations of magneto-hydrodynamic phenomena in astrophysical and 

geophysical problems .The existence of the general magnetic field which is of order 1 Gauss on 

the Sun’s surface, the yielding of high magnetic fields of order of few thousand Gauss in Sun 

spots. The interstellar clouds which produce polarization by orienting the charged particle during 



2 
 

the presence of the magnetic field which is of order of 105 Gauss and the energy particles in 

cosmic rays are some of the phenomena which have given boost of different types of studies. 

Between the periods of World wars I & II, the astrophysicists, Cowling and Ferraro began to 

explore the theory of MHD and its possible future effects and results. However, the engineer-

astrophysicist in 1942 Alfven published his classical paper which helps in emerging MHD. He 

discovered MHD wave which is also known as Alfven’s wave and which in turn made many 

applications of MHD to astrophysical problems. He has received Nobel Prize in 1970 in physics 

for these earliest works. However, the experimental exploration of the modern MHD flow in 

laboratory was carried out by Hartmann and Luzarus who designed a magnetic pump to put 

mercury in motion where transverse magnetic field is present. After this famous work a series of 

experiments were performed by engineers and applied physicists to study the basic features of 

MHD flow and to find its applications in fluid engineering, namely, power generation, 

electromagnetic flow meters, electromagnetic pumps, accelerators, plasma jet engines, shock 

tubes and wind tunnels, controlled thermonuclear reactors and the control of hyper velocity 

vehicles. 

 

 

1.2 BOUNDARY VALUE PROBLEM 

Anything that has bound or limit or a boundary line is known as boundary. In differential 

equations, the differential equation that contains a set of restrains or limitations is known as 

boundary conditions. Let there exist a solution of boundary value problem then it should also be 

a solution of differential equation satisfying boundary conditions. These constraints are indeed 

boundary condition of the equation. 

 

The boundary conditions given in mathematics are: 

 

1.2.1 Dirichlet Boundary Conditions 

 

Dirichlet boundary conditions in Laplace equation impose the restriction on the potential in some 

value at some location. For example, a common case of Dirichlet boundary conditions are 

surfaces of perfectly conductive electrodes. Free charges in such a condition will rearrange 
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themselves over conductive surfaces so that the potential will be uniform aver entire conductive 

conductor. The condition is known but the conducting surfaces may alternately be floating. 

 

1.2.2 Neumann Boundary Condition 

 

This boundary condition specifies the value of normal derivative or some combination of 

derivatives along the boundary surface. This arises when a flux has been specified on the 

boundary for instance, a heat transfer, sugar traction in solid mechanics. In homogenous 

boundary condition, the boundary flux is zero like in insulating surface in heat transfer and free 

surfaces in solid mechanics. Hence the Neumann boundary conditions are referred to as natural 

boundary conditions for finite elements. 

 

Neumann boundary condition in Laplace or poison equation imposes the constraint that the 

directional derivative of ϕ is some value at some location. The directional derivative normal to 

some boundary surface known as normal derivative is zero. These boundary conditions occur in 

two dimensional cylindrically symmetric systems. The axis of rotation has infinitely many mirror 

planes confident with the axis, so the cylindrical axis is also a Neumann boundary condition. 

They also occur in a repeating element such as modeling a small section of a large grid wire 

mesh in which case all sides of that element to the right have Neumann boundary condition. 

 

1.2.3 Robin Boundary Condition 

 

This is a linear combination of a field value and its normal derivative. It occurs on a surface from 

which heat is carried by convection. Robin boundary conditions are handled similarity to 

Neumann’s boundary condition. 

 

1.2.4 Cauchy Boundary Condition 

 

When the boundary condition is applied to either an ordinary differential equation or a partial 

differential equation, a complete solution is determined where both function value and normal 

derivatives are specified on the boundary of the domain. 
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1.3 FLUID DYNAMICS 

 

Fluid dynamics is the study of fluids which are in motion. The term fluid is a substance that 

deforms continuously when subjected to shear stress no matter how that shear stress may be. 

Fluids are classified as ideal and real fluids. Ideal fluids are incapable of sustaining any 

tangential force or shearing stress but the normal force acts between the adjoining layers of the 

fluid and offers no internal resistance to change its shape. These have low viscosity such as air 

and water. On the other hand, real fluids are also known as viscous fluids. A fluid is viscous 

when normal as well as shearing stress exist. Due to shearing stress, viscous fluid offers 

resistance to the body moving through it as well as between its particles of fluid itself. An 

example of a real ideal is heavy oils and syrup which are termed as viscous fluids. 

 

Water and most liquids are incompressible which means that the density in independent of 

pressure but can vary with the distance. Normal stress produces deformation associated with 

volume change and shear stress is just the ratio of tangential force to area. Therefore, Newtonian 

fluids are fluids for which shear stress is directly proportional to the rate of strain. If the viscosity 

is a constant, independent of flow speed, then the fluid is called Newtonian fluid and water is 

considered to be example of Newtonian fluid. If the fluid viscosity varies with the rate of 

deformation, then it is said to be non-Newtonian fluids. 

 

 

1.4 BASIC EQUATION OF FLUID DYNAMICS 

 

1.4.1 Continuity Equation 

In fluid dynamics, the continuity equation states that, in any steady state process, the rate at 

which mass enters a system is equal to the rate at which mass leaves the system. In Fluid 

dynamics, the continuity equation for compressible fluid is given by 

 

                                                            
.( . ) 0q

t





 

                                                             (1.1) 
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where, ρ is fluid density, t is time, q is the flow velocity vector field. 

The continuity equation for incompressible fluid is given by 

 

                                                                     . 0q                                                                 (1.2) 

 

Physically, the local volume dilation rate is zero 

 

1.4.2 Momentum Equation 

 

The rate of momentum accumulation is equivalent to the difference of the rate of momentum in 

and the rate of momentum out along with the sum of forces acting on the system 

The basic equations of Hydrodynamics for the flow of a homogenous, isotropic, viscous 

incompressible fluid is given by 

 

                                               

21
( . )

q
q q p q

t
 




       

                                          (1.3) 

 

where, ρ is fluid density q is the flow velocity vector field. 

 

 

 

1.4.3 Maxwell’s Equation 

 

Maxwell’s equations are the set of four complicated equations that describe the world of 

electromagnetic. These equations describe how electric and magnetic field propagate, interact 

and how they are influenced by objects. Maxwell's Equations shows that separated charge 

(positive and negative) gives rise to an electric field and if this is varying in time will give rise to 

a propagating electric field, further giving rise to a propagating magnetic field. 
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1) Gauss’s Law 

                                                 0

.E



 

                                                         (1.4)

 

 

2) No Magnetic Monopole Law 

                                                  . 0B                                                            (1.5) 

 

 

3) Faraday’s Law 

                                           

B
E

t


  

                                                           (1.6)
 

4) Ampere’s Law with displacement current 

                                      
0 0 0

E
B J

t
  


  

                                                  (1.7)
 

These four equations are called Maxwell's equations. Maxwell brought these four equations 

together along with the Lorentz force to summarize the theoretical content of electrodynamics. 

Maxwell's equations tells how charges produce fields and the Lorentz force how fields affect 

charges. In this section, E=Electric field, B=Magnetic field,
 0 =permittivity, 0 =Permeability, 

J=current density respectively. 

 

 

1.5 STRETCHING SHEETS 

 

The stretching flow is the flow produced due to the stretching of an elastic sheet which moves in 

its plane varying with some distance from a fixed point due to stress. Manufacturing of the both 

metal and polymer sheets in industrial manufacturing process, the material is in molten phase 

when thrust through an extrusion die and then the material cools and solidified and some 

distance away from the die before arriving at the cooling stage. The tangential velocity imported 

by the sheet induces motion in the surrounding fluid, which alters the convection of the sheet. 
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Similar situation prevails during the manufacture of plastic and rubber sheet where it is often 

necessary to blow a gaseous medium through material yet to be solidified where the stretching 

force depends upon time. Another example that belongs to this class of problem where the fluid 

flow is induced due to shrinking of the plate is the cooling of a large metallic plate in a bath, 

known as electrolyte.  

 

 Due to very high viscosity of the fluid near the sheet, one can assume that the fluid is affected 

by the sheet only. Thus the fluid problem can be idealized to the case of fluid disturbed by a 

tangential moving boundary 

 

1.6 BOUNDARY LAYER THEORY 

 

When a viscous fluid (real fluid) flows on a stationary solid boundary, a layer of fluid that comes 

in contact with the boundary surface stick firmly to it and no slip condition occurs. No slip 

conditions means that the velocity of fluid at a solid boundary must be same as that of boundary 

itself. Hence the layer of fluid that cannot slip away from the boundary surface undergoes 

retardation. This retarded layer further causes retardation for the adjacent layers of the fluid. This 

results in the development of small regions in the immediate surroundings of the boundary 

surface in which the flowing fluid velocity increases rapidly from zero at the boundary surface 

and reaches the velocity of the main stream. The layer near to the boundary is called as boundary 

layer. 

 

 

         y u, free stream 

 

 u(x,y) 

 

    

                                                                                                                                              x 

                                                            1.6(a) Boundary layer 
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1.7 CONVECTIVE HEAT TRANSFER 

Heat transfer has a variety of applications in the problems of natural events and technology. 

These heat transfer problems include designing of power stations, chemical and food plants, 

aerodynamic heating, cooling of high powered motors, extraction of energy from atomic piles 

and heat exchanges utilizing liquid metal coolant. The heat transfer in fluids in which moving 

fluid particles carry heat in the form of energy is called convection and depends upon how the 

fluid motion is initiated. In forced convection and free or natural convection and depends on how 

the fluid motion is initiated. In forced convection, incompressible fluids are characterized by the 

distribution of velocity which is not affected by temperature field. Heat diffusion in such flows 

occurs and is simultaneously swept by the fluid motions without any way of affecting the local 

density of the fluid. The velocities in the forces convection are exact such that there is no 

temperature variation in the motion arising from the differences caused by natural means in 

which the distribution of velocity and temperature field coupled together is referred to as free or 

natural convection. Taking a fluid in consideration, the effect of free convection causes the rise 

of warm fluid and fall of the cooler fluid. In such flows the distribution of velocity and 

temperature are interconnected and can be considered together. If the fluid is incompressible, 

then the density variations due to changes in pressure are negligible. These changes are 

responsible for imitating free convection because of density changes due to non-uniform heating 

of the fluids which cannot be neglected. Hence free convection occurs in the field of gravity and 

in the rotating fluid. It can be set up by the action of centrifugal force which is proportional to the 

density of the fluid. This is evident in the flow and heat transfer in gas turbines. 

 

Free convection and forced convection occur interchangeably and this is understood further if a 

common practical example is taken into account such as convection in ovens. Here, convectional 

ovens use natural convection to heat food while baking. Ovens typically contain two heating 

elements that is, on top and bottom of the oven. During baking, the bottom heats up which heats 

the air inside the oven. The hot air rises and creates a current which helps distribute throughout 

the oven. Natural convection currents are blocked by large pans and create non-uniform 

temperatures in oven. Again the convection oven improves the temperature distribution by using 

a fan which is located within the oven and thereby creating forced convection. The forced 

convection currents efficiently run the air inside the oven and creating uniform temperatures 
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even in the presence of large fans. The practical example generally demonstrates convective heat 

transfer of both free and forced convection. 

 

 

2. LITERATURE REVIEW 

                                 

This section is devoted to the review of the earlier investigations made on the flow and the heat 

transfer over the stretching sheet. During the last decades the problem of flow of incompressible 

viscous fluid and heat transfer phenomena over stretching sheets gets the great attention. This 

problem owns plenty of practical applications in chemical and manufacturing processes like 

Aerodynamics, continuous casting of metals, glass fibers and paper production, extrusion of 

plastic. 

 

Study of Hydro magnetic flow of an electrically conducting fluid, due to its extensive industrial 

applications has attracted the interest of many researchers. The cause of the study of 

hydrodynamic flow of an electrically conducting fluid is the deformation of the wall of a vessel 

containing a fluid which is of considerable interest in a modern metal-working process and 

modern metallurgical. The boundary layer flow which is passing a Stretching Plane Surface in 

the presence of a uniform magnetic field has practical relevance in Polymer Processes. 

The study of boundary layer flow over a continuous solid surface moving with constant speed is 

initiated by Sakiadis (1961). The steady two-dimensional boundary layer flow caused by the 

stretching of an elastic flat surface which moves in its plane with velocity varying linearly with 

distance from a fixed point was extended to analyze by Crane (1970). 

 

Carragher and Crane (1982) investigated the heat transfer aspect of this problem, under the 

conditions when the temperature difference between the surface and the ambient fluid is 

proportional to a power of the distance from a fixed point. The steady boundary layers on an 

exponentially stretching continuous surface with an exponential temperature distribution were 

investigated by Magyari and Keller (1999). The unsteady magneto hydrodynamic flow due to the 

impulsive motion of a stretching sheet was investigated by Takher et al. (2001) and reported that 

the surface heat transfer increase upto a certain portion of time, beyond that it decreases. 
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At high operating temperature, radiation effect can be quite significant. Many processes in 

engineering areas occur at high temperatures and knowledge of radiation heat transfer becomes 

very important for the design of pertinent equipment Seddeek[2002]. 

 

The study of magneto-hydrodynamic has important applications, and may be used to deal with 

problems such as cooling of nuclear reactors by liquid sodium and induction flow meter, which 

depends on the potential difference in the fluid in the direction perpendicular to the motion and 

to the magnetic field, Ganesan & Palani [2004]. Ali et al. [2007] have studied the problem of 

unsteady fluid and heat induced by submerged stretching surface.  

 

Nazar et al.(2009) considered an unsteady boundary layer flow in the region of the stagnation 

point on a stretching sheet. Some other important properties of flow due to an unsteady 

stretching sheet were discussed by Ishak et al.(2009), Mukhopadhyay (2010) and Zheng et 

al.(2011). 

 

In fluid flow process porous medium play an important role. The problem of viscoelastic fluid 

flow and warmth transfer in a porous medium over a stretching sheet has solved by subhas and 

Veena (1998). Vajravelu (1994) has obtained the solution for the flow problem and heat transfer 

in a saturated porous medium. Eldabe and Mohamed (2002) have studied both heat and mass 

transfer in hydro magnetic flow of a non Newtonian fluid with a warmth source over an 

accelerating surface through porous medium. Recently Venkateswalu et al. (2011) have 

discussed finite difference analysis on convective heat transfer flow through a porous medium in 

a vertical channel with magnetic field. 

 

Flow in porous medium has been the subject of numerous investigations during the past several 

decades. The concentration in this subject has been stimulated, to a large extent, by the fact that 

thermally driven flows in porous media have more applications in chemical and mechanical 

engineering, e.g. food processing and storage space, geophysical system, electro- chemistry, 

fibrous filling metallurgy, the design of pebble bed nuclear reactors, underground removal of 

nuclear or non-nuclear waste, microelectronics cooling, etc. Detailed literature review can be 

found in the books by Pop and Ingham (2001), Ingham and Pop (2005), Nield and Bejan (2006), 
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Vafai (2005) and Vadasz (2008). One of the basic problems in porous media is the flow and heat 

transfer determined by a linearly stretching surface through a porous material. It seems that the 

initial study of the steady flows of a viscous incompressible fluid (nonporous media) driven by a 

linearly stretching plane through a quiescent fluid has been reported by Crane (1970). Further, 

Elbashbeshy and Bazid (2004) considered flow in a porous medium over a stretching surface 

with internal heat production and suction/ blowing when the surface is held at a constant 

temperature. 
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3. FORMULATION OF THE PROBLEM 

 

We consider the time dependent (unsteady) two dimensional mixed convective boundary layer 

flow and heat transfer of a viscous, incompressible, electrically conducting fluid over a porous 

stretching sheet in presence of transverse magnetic field. The x-axis is directed along the 

continuous stretching surface and points in the direction of motion while the y-axis is 

perpendicular to the surface. The flow is confined to y> 0. Two equal and opposite forces are 

applied along the x-axis so that the wall is stretched keeping the origin fixed. The flow is 

assumed to be generated by stretching of the elastic boundary sheet from a slit with a large force. 

The stretching sheet has the time dependent surface velocity 
1

w

bx
U

t



and the time dependent 

wall temperature 2

0 ( / )(1 )wT T T bx t  

   , where b  is the initial stretching rate,  
1

b

t
 is the 

effecting stretching rate which is increasing with time, 
0 0(0 )wT T T  is the reference temperature 

and T
is the fluid temperature far away from the stretching sheet.  

 In order to get the effect of temperature difference between the sheet and the ambient fluid, we 

consider temperature dependent heat source/sink in the flow region. It is considered that the rate 

of heat generation is equal to 
0 ( )Q T T for T T  and equal to zero forT T , where 0 ( 0)Q   is the 

heat generation and 0 ( 0)Q  is the heat absorption (Vajravelu and Hadjinicolaou). 

A uniform magnetic field of strength 0B  is applied normal to the stretching surface. We have 

neglected the induced magnetic field since the magnetic Reynolds number for the flow is 

considered to be very small. No external electric field is applied so the effect of polarization of 

fluid is neglected. Under the usual boundary layer approximations, the flow and heat transfer 

with the radiation effects (Bansal, 1977; Schlichting et al., 1999.) are written by the following 

continuity, momentum and energy equations governing such type of flow as
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y

 

 

 

                  0B
 

 

                                                                                                                  x  

wv
 

                                                               0
u v

x y

 
 

 
                                                         (2.1) 

                                   
22

0

2
( )

Bu u u u
u v g T T u

t x y y


 




   
     

   
                             (2.2) 

                                          
2

0

2
( )

p p

QT T T T
u v T T

t x y c y c



 


   
    

              

                 (2.3) 

where u  and v  are velocity component in x and y direction respectively,  is the time,   is the 

kinematic viscosity,  is the temperature inside the boundary layer,   is the volumetric 

coefficient of thermal expansion, g  is the gravity field.  is the electrical conductivity,  K  is the 

permeability of porous medium,   is the thermal conductivity,    is the density, c  is the 

specific heat at constant pressure , rq  is the radiation heat flux, Q is the heat source when 0Q   

and/or heat sink when 0Q  , wT  is the surface temperature,  T   is the temperature at infinity. 

 

2.1 BOUNDARY CONDITIONS 

 

The appropriate boundary conditions for the problem are  

 

               1( , ) ,w

u
u u x t N

y



 


 ( , )wv v x t   1( , ) ,w

T
T T x t D

y


 


     at 0y                  (2.4)          

                                
0,u T T 

        
at y                                                        (2.5)  
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Here 1 1N N t    and  11D D t   are the velocity and thermal slip factors. The slip factor 1N  

and 1D   have dimension of (velocity)
-1 

and length. N and D are initial values of velocity and 

thermal slip factors.  The no slip case considered by Anderson et.al [2002] is recovered for 

0N  and 0D  . 1/ 2

0( , ) (1 )wv x t v t    where 
0 0v  is the velocity of suction. 

 

2.2 METHOD OF SOLUTION: 

The continuity equation (2.1) is satisfied by the Cauchy- Riemann equation  

 

                                           u
y





  and  v
x


 


                                                           (2.6)   

     

where ( , )x y  is the steam function. 

 

In order to transform equation (2.2) and (2.3) into a set of ordinary differential equations, the 

following similarity transformation and dimensionless variables are introduced  

  
( )

1

c
xf

t


 




 ,
( )

(1 )

c
xf

t
 

 


 , 

2

0

( )(1 ) ( )
( )

T T t
T

cx
T

  
 



 


 
 
 

                        (2.7)                   

    0

2Re

x

x

g T Gr

b





    ,  

  3

2
,

L w

x

g T T x
Gr






 Rex Ux


      ,   Pr ,




                              (2.8)

 

       0
0 0f

b




  ,    

/

D

b



 ,     b  ,     

b
A


 ,    0B

M
b




                     (2.9) 

 

where, ( )f   is the dimensionless stream function,  -dimensionless temperature,  -similarity 

variables,  M -magnetic parameter,    and b are constant, A is the unsteadiness parameter,   is 

the mixed convection parameter, xGr is the Grashof number, Rex
is the local Reynolds number, 

Pr   is the Prandlt number, 0f is the suction parameter, S is the velocity slip parameter and   is 

the dimensionless temperature slip parameter.  
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In view of equations (2.6) to (2.9), the above momentum and energy equations transform into 

 

 

                          2 1
0

2
f f ff A f f Mf Nf 

 
              

 
                                                (2.10) 

                        
Pr 1

2 0
1 2

f f A
R

     
  

          
   

                                             (2.11) 

 

The corresponding boundary conditions are, 

 

 

  0 , 1 , 1f f f Sf                         at 0                                               (2.12) 

  0,f         0                                                       at                                                (2.13) 

 

 

where, the prime denote differentiation with respect to . 

The physical quantity of interest are the skin friction co-efficient 
fc  and the Nusselt number 

xNu which are defined as

       
                    

                                                

 

                                              

1/ 22 (0)
x xf e ec R R f  

                                                             (2.14) 

 

                                               

(0)

x

x

e

N
Nu

R
 

                                                                   (2.15) 

 

To assess the accuracy of the present method, comparison with previously reported data 

available in the literature has been made. It is clear from that the numerical values of (0)  in 

the present paper are in agreement with results obtained by Magyari and Keller (1999).  
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