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ABSTRACT 

 

The objective of this chapter is to introduce and to illustrate the 

frequent and wide occurrence of non-Newtonian fluid behaviour in 

a diverse range of applications, both in nature and in technology. 

Starting with the definition of a non- Newtonian fluid, different 

types of non-Newtonian characteristics are briefly described. 

Representative examples of materials .We will also discuss some 

applications of non Newtonian fluids and the various types of  fluid 

instabilities. 
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1. Introduction: 

 

1.1 Fluid Dynamics and Basic Concepts 

 

Fluid dynamics is the science, which deals with the properties of fluids in motion. 

Before dealing with fluid dynamics in a deep manner, let us first make clear the terms of 

fluid and dynamics. Dynamics is nothing but the science of motion and force. Now the 

question arises that what is meant by "Fluid"? It is a hard fact that all materials undergo 

deformation under the action of forces. If the deformation in the material increases 

continually without limit under the action of shearing forces, however small, the material 

is called fluid. This continuous deformation under the action of forces compels the fluid 

to flow and this tendency is called "fluidity". 

As we know that the matter exists in four forms namely i) solid, ii) liquid, iii) gas, 

iv) plasma. Liquids and gases taken together are classified as fluids. It has been believed 

by the physicists for a long time that there is no clear dividing line between solids and 

fluids, since there are many materials which in some respect behave like a solid and in 

other respect like a fluid. For example, jelly, paint and pitch have dual character. 

However, a loose distinction can be made between solid and fluids. A solid mass has a 

definite shape, while a mass of fluid has no preferred shape and assumes the shape of the 

container more or less instantaneously. The deformation in the piece of solid is small 

even under the action of large external forces, whereas in the case of fluids the 

deformation may be large under the suitably chosen forces, however small in magnitude. 

Fluids are classified as liquids and gases. As a result the distinction between 

liquids and gases is much less fundamental so far the dynamical studies are concerned. 

The most important difference between the mechanical properties of liquids and gases lies 

in their compressibility. Liquids have strong intermolecular forces whereas the gases 

experience weak intermolecular forces. As a result of these, the liquids are incompressible 

fluids and the gases are highly compressible fluids. It should be mentioned that for 

velocities which are not comparable with the velocity of sound, the effect of 

compressibility on atmospheric air can be neglected and it may be considered to be a 

liquid and in this sense it is called incompressible air. 

The fourth state of matter is called plasma. Plasma is essentially a highly ionized 

matter. Therefore, in plasma we have to take into account the charges on its particles and 
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associated electromagnetic phenomena. We go to plasma state when we deal with Earth's 

molten core, ionosphere, stellar interiors and atmospheres.  

The study of water flowing in rivers, waves in ocean and the motion of aeroplane 

in the lower parts of Earth's atmosphere are the best examples of classical fluid dynamics. 

As the fluid molecules are considered electrically neutral here, the gross properties of 

various states of matter are directly related to the molecular structure and the nature of 

intermolecular forces that operate between the constituent molecules. In solids, the 

arrangement of molecules is virtually permanent and under normal conditions may have a 

simple periodic structure as in case of crystals, and molecules are acted upon by strong 

intermolecular forces. Our knowledge of the liquid state is incomplete, but it appears that 

the arrangement of molecules is partially ordered and are acted upon by medium 

intermolecular forces. In case of gases and plasmas the particles are acted upon by weak 

short-range intermolecular forces and molecular arrangements are disordered.  

The history of the science of fluid dynamics is very difficult to describe because 

the excavation of the Indus Valley Civilization and Egyptian ruins show that even as long 

as four thousand years ago, the principles of flow and resistance to flow were known. The 

drainage and irrigation systems of Mohan-jo-daro, Egypt and China; the use of siphons 

and bellows and the construction of wind mills and paddle wheels dates back from 

ancient times. However, the systematic study of the fluid dynamics started only after 

Euler's discovery of the equations of motion of an inviscid fluid. Earlier attempt to 

describe the effect of fluid motion is due to Newton, who conceived the idea that the fluid 

consisted of a granulated structure of discrete particles. The range of validity of the 

method, as defined by the agreement of the results with experiment was limited. 

Later, some other significant contributions to this subject were given by 

following. Lagrange gave the concept of velocity potential and stream function. The 

principle of resistance to flow in capillary tubes was given by Poiseuille. The credit for 

the equations of motion of viscous fluids goes to Navier and Stokes'. Reynolds discovered 

the equations of turbulent motion. Prandtl put forward the boundary layer theory. G.I. 

Taylor and Lord Rayleigh gave the theories of turbulence and stabilities. Later on, many 

more contributions were given by many famous scientists, which include Bénard, Kutta, 

Prandtl, Lord Kelvin, Orr, Sommerfeld, Rayleigh, Zhukovskii and Karmán etc. 

Practically, fluid dynamics bears a lot of importance. Some practical situations 

where fluid dynamics plays a significant role are lubrication, flight of aeroplanes, ship 

science, meteorology, the influence of wind upon building structures, ground water 
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seepage, the extraction of oils from underground reservoirs, the use of pipelines, pumps 

and turbines. Even the swinging of cricket ball is an example of the fluid forces used by 

the bowler, to deceive the batsman. The flow of fluids affects each one of us throughout 

our lives. The flow of blood in veins and pumping action of heart are familiar examples. 

These days fluid dynamics has became a very vast subject and has given birth to many 

other subjects like meteorology, gas dynamics, aerodynamics, non-Newtonian flows, 

megnetohydrodynamics etc.  

 

1.2 The Basic Hydrodynamical Equations 

 

The fundamental equations of the flow of viscous compressible fluids are: 

i) Equation of state, (one) 

ii) Equation of continuity, (one) 

iii) Equations of motion, (three) and 

iv) Equation of energy, (one). 

These equations are mathematical expressions of basic physical laws. These are 

six in number and therefore, determine the six unknowns of the fluid motion viz., the 

three components of velocity ui (u, v, w), the temperature T, the pressure p, and the 

density ρ, which are functions of both space coordinates and time. 

 

Equation of State 

 

Variables that depend only upon the state of a system are called variables of state. 

The variables of state are the pressure p, the density ρ and the temperature T. It is an 

experimental fact that a relationship between these three thermodynamic variables exist 

and can be written as 

F (p, ρ, T) = 0, (1.1) 

which is commonly called the 'Equation of state'. For substances with which we shall be 

principally concerned, we can write the equation of state as  

 ρ = ρo [1 + α (To – T)], (1.2) 

where α is the coefficient of volume expansion and To is the temperature at which ρ = ρo. 
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Equation of Continuity – Conservation of Mass 

 

 This equation expresses that the rate of generation of mass within a given volume 

is entirely due to the net inflow of mass through the surface enclosing the given volume 

(assuming that there are no internal sources). It amounts to the basic physical law that the 

mass is conserved; it is neither being created nor destroyed. For viscous compressible 

fluids, the equation of continuity is 

j

j

j

j
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t 
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
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 , (1.3) 

where uj is the jth component of velocity. 

For an incompressible fluid 
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so that equation (1.3) reduces to 

0
x

u

j

j





 . 

 (1.5) 

Equations of Motion (Navier-Stokes' Equations)-Conservation of Momentum 

 

 The equations of motion are derived from Newton's second law of motion, which 

states that 

 Rate of change of linear momentum = Total force. 

For viscous compressible fluids, Navier-Stokes' equations can be expressed as  
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where Xi (0, 0, -g) is the external force, μ is the coefficient of viscosity and ij  is the 

Kronecker delta. 

 In case of incompressible fluid flow, the equation of continuity is 

0
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and if μ is also regarded as constant, the equations (1.6) can be simplified to
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Equation of Energy – Conservation of Energy 

 

 To obtain the energy equation we have to apply the law of conservation of energy 

which requires that, the difference in the rate of supply of energy to a controlled surface S 

enclosing a volume V in the region occupied by a moving fluid and the rate at which the 

energy goes out through S must be equal to the net rate of increase of energy in the 

enclosed volume V. 

 For viscous compressible fluids, the equation of energy is 
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is the 'rate of viscous dissipation' (which gives the rate at which energy is dissipated 

irreversibly by the viscosity in each element of volume of the fluid). 
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is the 'rate-of-strain tensor', Cv is the specific heat at constant volume and q is the 

coefficient of heat conduction. 

 For an incompressible fluid, ejj = o and the corresponding expression for   is 

given by 

2
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Thus, for an incompressible fluid, the equation of energy (1.8) takes the form 
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1.3 STABILITY CONCEPT  

Due to the paramount importance in the quest for thermonuclear fusion, the 

subject of hydromagnetic stability is a large one and much has been written about it. Even 

in the case of turbulence, the importance of stability arises because a motion which is 

definitely unstable for small perturbations cannot remain steady for speeds higher than 

that at which instability sets in. On the other hand, a motion, which is definitely stable for 

small disturbances, may become turbulent when finite disturbances are imposed on it. 

Thus 'stability' may be defined as the quality of being immune to small disturbances. 

Thus, by stability we mean permanent type of equilibrium state. An equilibrium state or 

steady flow, to be of permanent type, should not only satisfy the mechanical equation, but 

must be stable against arbitrary perturbations.  

As every system in nature is subject to many small perturbations, the investigation 

of stability of a physical system is of great importance. To check the stability of a 

hydrodynamical system, the system is given some arbitrary perturbations. If the system is 

disturbed and the disturbances gradually die down or if the system never departs 

appreciably from this stationary state, the system is said to be stable with respect to that 

particular disturbance. If the disturbance that grows in amplitude in such a way that the 

system progressively departs from the initial state and never reverts to it, the system is 

called unstable with respect to that particular disturbance. A system must be considered as 

unstable even if there is only one special mode of disturbance with respect to which it is 

unstable. And a system cannot be considered as stable unless it is stable with respect to 

every possible disturbance to which it can be subject. The state of 'neutral stability' is 

called the marginal state.  

Although the solutions of the equations of hydrodynamics as well as 

magnetohydrodynamics are somewhat complex, still they allow some simple patterns of 
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flow (such as between parallel planes or rotating cylinders) as stationary solutions. These 

patterns of flow can, however, be realised only for certain ranges of the parameters 

characterizing them. They cannot be realised outside these ranges. The reason for this lies 

in their inherent instability, i.e. in their inability to sustain themselves against small 

perturbations to which any physical system is subjected. Problems of hydrodynamic 

instability thus originated from the differentiation of the unstable flow from the stable 

patterns of permissible flows.  

Now-a-days, to investigate the stability problems deeply, the interest in 

hydrodynamic flow of electrically conducting fluids in the presence of magnetic fields 

has been considered. This is the domain of hydromagnetics, as we have discussed earlier; 

and there are problems of hydromagnetic stability. Let us make it clear here that if at the 

onset of instability stationary patterns of motion prevails, then one says that the 

'Principle of exchange of stabilities' is valid and that instability sets in as stationary 

cellular convection or secondary flow. On the other hand, if at the onset of instability 

oscillatory motions prevail, then it is called the case of 'overstability'.  

Let us consider a stationary state, in which a hydromagnetic system is in 

accordance with the equations governing it. Let R1, R2, ---, Rj be a set of parameters 

which define the system. While considering the stability of such a system, we seek to 

determine the reaction of the system to small disturbances.  

According to the criteria stated above, if all the initial states are classified as stable 

or unstable, then in space of parameters; R1, R2, ---, Rj, the  locus which separates the two 

classes of states defines the state of 'marginal stability' of the system. The locus of the 

marginal states in the (R1, R2, ---, Rj) space will be defined by an equation of the form  

  .0Rj,,R,R 21     (1.16)
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The determination of this locus is one of the prime objects of an investigation on 

hydrodynamic stability. If the amplitude of a small disturbance can grow or be damped 

aperiodically, the transition from stability to instability takes place via a marginal state 

exhibiting a stationary pattern of motions. If the amplitude of a small disturbance can 

grow or be damped by oscillations of increasing or decreasing amplitude, the transition 

takes place via a marginal state exhibiting oscillatory motions with a certain definite 

characteristic frequency.  

 

2.     Review of Literature  

 

The first major contribution to the study of hydrodynamic stability can be found in 

theoretical papers of Helmholtz (1868). Even earlier, many scholars had certainly 

become aware of the question but their efforts did not progress beyond the stage 

of description. For example, the drawings of vorticities by the Lenardo-da-Vinci 

(fifteenth century) and the experimental observations of Hagan (1855) deserve 

mention. Lord Rayleigh (1880) developed a general linear stability theory for 

inviscid plane-parallel shear flows, which was mathematically tractable and had 

intuitively sensible results. The combined efforts of Reynolds (1883), Kelvin 

(1880, 1887) and Rayleigh [1879, 1880, 1892(a), 1892(b), 1913, 1914, 1916(a), 

1916(b)] produced a rich harvest of knowledge. Reynolds (1883) predicted that 

Reynolds number was a crude measure of the relative importance of inertial (non-

linear) effects relative to viscous processes in determining the evolution of a flow. 

He discovered the first experimental evidence of 'sinuous' motions in water and is 

generally credited for a first description of random or 'turbulent' flow.  He 

pointed out that disorder begins when Reynolds number exceeds a critical value 

and that special stresses must be taken into account. The founder of 
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hydrodynamical stability is Lord Rayleigh, who published a great number of 

papers (as cited above) regarding the importance of inflection points in the 

velocity profile and the instability of rotating flows between cylinders. Thus, 

hydrodynamic stability is concerned with when and how laminar flows break 

down, their subsequent development and their eventual transition to turbulence. It 

has many applications in engineering, in meteorology and oceanography and in 

astrophysics and geophysics.  

The best-known contribution and principle was that of Taylor (1923) on vorticities 

between concentric rotating cylinders. Indeed this was a dual effort where theory 

and experiment were matched simultaneously. The analysis of Heisenberg (1924) 

was more abstract and points towards the possibility of resistive instability. 

Jeffreys demonstrated in 1928, the mathematical equivalence of the two stability 

problems of convection and flow between rotating cylinders. In fact, it was the 

application of newer mathematical techniques that brought the initial success to 

Tollmein. Soon, following the same track, Schlichting [1932(a), 1932(b), 1933(a), 

1933(b), 1933(c), 1934, 1935] made further evaluations of the critical Reynolds 

number and amplification rates of disturbances.  

A large body of theoretical work by Lin (1955), Joseph (1976) and Drazin and 

Reid (1981), has been developed in an attempt to understand and predict the 

phenomena of stability or instability. Early in this century, studies on 

hydrodynamic stability were connected with the Bénard experiments on thermal 

convection in thin liquid layers. Around 1907, it became apparent that the 

existence of a critical Reynolds number could not be explained easily and that the 

problem involved both the effects of the second derivative of the mean flow and 

of the viscous forces. The key equation was arrived at independently by Orr 
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(1907) and by Sommerfeld (1908). This Orr-Sommerfeld equation remained 

unsolved for twenty two years, until Tollmein (1929) calculated the first neutral 

eigen values and obtained a critical Reynolds number.  

The improved mathematical procedure used by Lin (1944, 1945) not only removed the 

controversial issue of stability of Poiseuille flows but also laid the basis for the general 

expansion of the stability analysis. Any additional doubts with respect to this system 

were finally settled down by the first use of a digital computer in hydrodynamical 

stabilities. This success and the experimental results of Schubauer and Skramstad (1943) 

made perfectly clear that the critical Reynolds number marked only the threshold of 

'sinuous' motion and not that of turbulence. And the turbulent transition still remains an 

engima.  

Magnetic, gravitational and convective effects were examined by Bénard (1901) and 

further elaborated by Chandrasekhar (1981). The monograph of Lin (1955) settled many 

controversial questions that had been built over the years. The study of compressible 

flow was started with the work of Landau (1944) and Lees (1947) and continued by 

Dunn and Lin (1955). Finally, the theory of non-linear processes was set up by Meksyn 

and Stuart (1951). Later, some simple non-linear problems have been successfully 

treated by Fromm and Harlow (1963). This work used a totally numerical method and 

demonstrated the sources of modern computers. Soon other good works in non-linear 

theory, which need mention, are by Coles (1965), Segel (1966), Reynolds and Potter 

(1967). Büsse (1969), Kirchgessner and Sorger (1969), Stewartson and Stuart (1971) and 

Weissman (1979) etc.  

In the present work, we have worked on various hydrodynamic and 

hydromagnetic    instability problems. Therefore, for the clear and better understanding of 

he work, we feel it necessary to explain and also review, in brief, some fundamental 

contributions relating to these instabilities. We take them one by one below:
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2.1  Thermal Instability (or Bénard Problem) 

 

Stability of a physical system is its ability to sustain itself against small 

perturbations to which the system can be subjected, while the instability of the system is 

its inability to sustain itself against the above small perturbations. 

Consider a horizontal layer of fluid of uniform density in which an adverse 

temperature gradient is maintained by heating from below. Due to the thermal expansion, 

the liquid at the bottom becomes lighter than that at the top; and this is a top-heavy 

arrangement which is potentially unstable. Because of this unstable arrangement, there 

will be natural tendency on the part of the fluid to redistribute itself and make up the 

weakness in its arrangement. Therefore, the liquid at the bottom goes up and the cooler 

heavy liquid from the top layer comes down giving rise to thermal instability. But, this 

thermal motion in the fluid is prevented to certain extent by its own viscosity and 

therefore, instability can set in only when the adverse temperature gradient exceeds a 

certain limit. The temperature gradient, thus, maintained is qualified as adverse because 

on account of thermal expansion, the fluid at the bottom becomes lighter than the fluid at 

the top and thus, making an unstable arrangement. 

 

2.2 Rayleigh-Taylor Instability 

 

Rayleigh-Taylor instability arises from the character of equilibrium of an 

incompressible heavy fluid of variable density (i.e. of a heterogeneous fluid). The 

simplest, nevertheless important example demonstrating the Rayleigh-Taylor instability is 

when we consider two fluids of different densities superposed one over the other (or 

accelerated towards each other), the instability of the plane interface between the two 

fluids, if it occurs, is known as Rayleigh-Taylor instability. Rayleigh (1900) was first to 

investigate the character of equilibrium of an inviscid, non-heat conducting as well as 

incompressible heavy fluid of variable density which is continuously stratified in the 

vertical direction. The cases of (i) two uniform fluids of different densities superposed 

one over the other and (ii) an exponentially varying density distribution, were also treated 

by him. The main result in all such cases is that the configuration is stable or unstable 

with respect to infinitesimal small perturbation according as the higher density fluid 

underlies or overlies the lower density fluid. 
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3.     Various Effects on Instability Problems 

 

3.1   Effect of Uniform/Variable Magnetic Field 

 

Consider a fluid to be electrically conducting and be under the influence of a 

magnetic field. The electrical conductivity of the fluid and the prevalence of magnetic 

field contribute to effects of two kinds. First, by the motion of the electrically conducting 

fluid across the magnetic lines of force, electric currents are generated and the associated 

magnetic fields contribute to changes in the existing fields; and second, the fact that the 

fluid elements carrying currents transverse magnetic lines of forces contributes to 

additional forces acting on the fluid elements. It is this two-fold interaction between the 

motions and the fields that is responsible for patterns of behaviour which are often 

striking and unexpected. The interaction between the fluid motions and magnetic fields 

are contained in Maxwell's equations. As a consequence of Maxwell's equations, 

equations of hdyrodynamics are modified suitably. 

In the outer layers of stars like the Sun, thermal convection is affected by the 

presence of magnetic fields. In stellar interiors and atmospheres, the magnetic field may 

be variable and may altogether alter the nature of the instability. For example, Kent 

(1966) studied the effect of a horizontal magnetic field, which varies in the vertical 

direction, on the stability of parallel flows and showed that the system is unstable under 

certain conditions, while in the absence of magnetic field, the system is known to be 

stable. 

 

3.2   Effect of Rotation 

 

Rotation introduces a number of new elements in fluid dynamics, for example, 

under certain circumstances the role of viscosity is inverted. In fact, the consequences of 

rotation are the results of certain general theorems relating to vorticities, in the dynamics 

of rotating fluids. 

When a fluid spreads under gravity in a rotating system, motions normal to the 

rotation vector induce Coriolis forces that tend to oppose the spreading. In the absence of 

boundaries intersecting isopotential surfaces and of instability or viscous dissipation, the 

flow approaches a state of geostropic equilibrium in which buoyancy and Coriolis forces 

are in balance. The rotation with an angular velocity introduces two new terms, in the 
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Navier-Stokes' equations; )ux2(


  represents the Coriolis acceleration and the term 
2

1
  

grad 
2

rx


  represents the centrifugal force. In the case of an inviscid fluid in which 

external forces are derived from a potential function V'', the Taylor-Proudman theorem 

states that "All steady, slow motions in a rotating inviscid fluid are necessarily two 

dimensional". That is to say, the motion transverse to 


 can not vary in the direction of 




 means that any two fluid elements which are initially on a line parallel to 


 will 

always remain on that line, and the fact that motions in the direction of 


 cannot also 

vary along this direction means that two fluid elements which are initially a certain 

distance apart will always remain at the same distance apart. 

 

3.3 Effect of Rotation and Magnetic Field 

 

Generally, the effects of rotation and magnetic field, on the onset of thermal 

instability in layers of fluid heated from below, are remarkably alike, when acting 

separately, they both inhibit the onset of instability and they both elongate the cells which 

appear at marginal stability. On the contrary, acting together they do not reinforce each 

other, but tend to oppose each other. The viscosity facilitates the onset of instability when 

rotation is present, and a magnetic field imparts to the fluid certain aspect of viscosity. 

Hence, even though the two acting separately inhibit the onset of instability; they will 

have conflicting tendencies when acting together. Rotation induces a component of 

vorticity in the direction of 


, and for large Taylor number it results in the streamlines 

becoming closely wound spiral with motions principally confined to planes transverse to 




. Instead, magnetic field does not induce similar component of vorticity and there are 

no comparable effects: for large Chandrasekhar numbers, the motions transverse to H


 are 

much reduced and the motions along the magnetic lines of force become predominant. 

Instability sets in mostly as overstability when rotation is present, in liquid metals 

like mercury; but in the presence of magnetic field, it sets in as stationary convection. For 

all these reasons, the study of thermal    instability in the presence of both rotation and 

magnetic field is an instructive work. 
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3.4  Porous Medium 

Media which are solid bodies containing pores are called "porous media". Extremely 

small void spaces in a solid are 'molecular interstices' and very large ones are called 

'caverns'. Pores are void spaces intermediate in size between caverns and molecular 

interstices. Flow of fluid is possible only if at least part of the pore space is 

interconnected. The interconnected part of the pore system is called effective pore space 

of the porous medium. 

The oil recovery from within the Earth has made the flow of a fluid in porous 

medium of great interest and importance. There has been considerable interest especially 

among geophysical fluid dynamicists to study the breakdown of stability of a layer of 

fluid subject to a vertical temperature gradient in a porous medium and to study the 

possibility of convective flow. The effect of geomagnetic field on the stability of such 

flows is of interest in the physics of the Earth, particularly in the study of Earth's core 

where the molten fluid is electrically conducting, which can become convectively 

unstable as a result of differential diffusion. 

 

 

4. Methods to Investigate Stability 

 

4.1 Perturbation Method 

 

To establish the instability of any hydrodynamic system, the system is imagined to 

undergo a specific, small trial displacement. If the additional forces thus produced tend to 

increase the displacement, thereby enhancing the deformation of the system still further, 

the system is unstable. This is the most suitable method for establishing instability of a 

system. 

 

4.2 Energy Method 

 

The energy principle technique, is another method for the investigation of stability 

which depends upon a variational formulation of the equations of motion. This method 

leads to a variational problem for the first critical of energy theory and to definite 

criterion viscosity which is sufficient for the global stability of the basic flow. It is 

sometimes possible to find positive definite functionals of the disturbances of basic flow, 
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other than the energy, which decrease on solutions when the viscosity is larger than a 

critical value. Such functionals, which may be called generalized energy functionals of 

the Liapounov type, are of interest because they can lead to a larger interval of viscosities 

on which the global stability of the basic flow can be guaranteed.  

This principle was first used by Rayleigh (1877) in calculation of the frequencies 

of vibrating systems. Reynolds (1895) and Orr (1907) used this method in their early 

works. In this method we make use of energy principle. In a mechanical system for which 

there exists a potential energy function V', a stationary state of system will be unstable or 

stable according as V' is strictly maximum or minimum. In such a system, when 

dissipation forces are neglected,  

Tʹ + Vʹ = constant,  

where Tʹ denotes the kinetic energy of the system. 

Suppose that V  attains a strict minimum 0V  for a stationary configuration. When 

the system is disturbed, V  > 0V  in a neighbouring configuration if 0T   is the initial 

kinetic energy of the system generated by the small disturbance, then we have  

 T  + V  = 0T   + 0V , 

which gives  

 T  = 0T   – ( V  - 0V ), 

i.e. T  < 0T      (  V  - 0V  > 0) 

Thus, the system does not tend to deviate further from the   stationary 

configuration, but remains in its proximity. The system is therefore stable. 

If 0V  is strict maximum, then T  > 0T   and the system will tend to depart further 

from its initial state. The system is thus unstable. So we calculate the change V  - 0V  in 

the potential energy of the system, when it is given a small displacement satisfying the 

boundary conditions. The system is stable if this change is positive for all possible 

infinitesimal displacements and is unstable if V  - 0V  can be shown negative for any one 

particular trial displacement. 
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4.3 Normal Mode Analysis 

 

The normal mode analysis method is quite general and has found extensive 

applications. It is preferred because it gives complete information about the instability 

including the rate of growth of any unstable perturbation.Chandrasekhar has used 

throughout this method in his book "Hydrodynamic and Hydromagnetic Stability" 

(Dover Publication, New York, 1981) while discussing the various instability problems of 

flow under varying assumptions of hydrodynamics and hydromagnetics.  

If the value of n determined by the dispersion relation is: 

1) real and negative, the system is stable; 

2) real and positive, the system is unstable; 

3) complex, say n = nr + ini, where nr and ni are real and 

a) nr < 0, the system is stable; 

b) nr > 0, the system is unstable; 

c) nr = 0, the modes are oscillatory;  

4) further, if nr = 0 implies that ni = 0, then the stationary (cellular) pattern of 

flow prevails on the onset of instability. In other words, "principle of exchange 

of stabilities" is valid. 

5) If nr = 0, does not imply that ni = 0, then overstability occurs.  

From this it follows that if n is real, then n = 0 will separate the stable and 

unstable modes and we will always have exchange of stabilities.  

the magnetic field and decreases with the increase in kinematic 

viscoelasticity.                    

     

5. Nomenclature 

 

 

T Temperature 

 

p Pressure 

 

ρ Density  

 

α Coefficient of volume expansion 

 

To Temperature at ρ = ρo 
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μ Coefficient of viscosity 

 

ij  Kronecker delta 

 

eij Rate-of-strain tensor 

 

q Coefficient of heat conduction 
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