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1. Abstract

In this report we shall study about b-metric spaces and prove some fixed point
theorems in these spaces.

2. Introduction

In 1993, Czerwik introduced the notion of b-metric spaces and observed a char-
acterization of Banach contraction principle in the context of complete b-metric
space.
The Fixed Point Theory is one of the most powerful and productive tools from the
nonlinear analysis and it can be considered the kernel of the nonlinear analysis. The
best known result from the Fixed Point Theory is Banach’s Contraction Principle,
which can be considered the beginning of this theory.
Following Petrusel and Rus, we say that S is a Picard operator if S has a unique
fixed point u∗ and limn−→∞ Sny = u∗ for all y ∈ Y and is weakly Picard operator
if the sequence (Sny)n∈N converges, for all y ∈ Y and the limit is a fixed point of
S. One of the ways to generalize and extend the Banach’s Principle Contraction is
to substitute the condition with a weaker condition or independent one. Because
any contraction is a continous operator, it is natural to ask:Are there contraction
conditions which do not imply the continuity of the operator?
The first answer of this question was given by R.Kannan in 1968 who proved a
fixed point theorem for operators which don’t have to be continous and replace the
condition with: there exists m ∈ [0, 12 ) such that
Following Kannan, Chatterjea proved a fixed point theorem for operators which
satisfies the condition: there exists n ∈ [0, 12 ) such that
It’s well know, see Rhoades, that these conditions are independent.Using these con-
ditions, L.Ciric , S.Reich and I.A. Rus proved a fixed point theorem using a very
general condition: there is a nonnegative numbers h, i, j with h + i + j < 1 such
that
By combining these conditions in an inspired manner, T.Zamrfescu considered the
following class of operators: there is h ∈ [0, 1) and i, j ∈ [0, 12 ) such that for any
x, y ∈ Y atleast one of the following holds:
(z1)σ(Sx, Sy) ≤ hσ(x, y);
(z2)σ(Sx, Sy) ≤ i[σ(x, Sx) + σ(y, Sy)];
(z3)σ(Sx, Sy) ≤ j[σ(x, Sy)+σ(y, Sx)]. Using the comparison function in 1983, I.A.
Rus gave another generalizatin of Banach Contraction Principle replacing the first
condition with the condition: there is a comparison function. α : R+ −→ R+ such
that
σ(Sx, Sy) ≤ α(σ(x, y)),∀x, y ∈ Y .

3. The background of metrical fixed point theory

The fixed point theory is concerned with finding conditions on the structure that
the set Y must be endowed as well as on the properties of the operator S : Y −→ Y ,
in order to obtain results on:
(1) the existence and uniqueness of fixed points;
(2) the data dependence of fixed points;
(3) the construction of fixed points.
The ambient spaces Y involved in fixed point theory cover a variety of spaces:
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lattice, metric space, normed linear space, generalized metric space,uniform space,
linear topological space etc., while the conditions imposed on the operator S are
generally metrical or compactness type conditions.
In order to prove several convergence theorems, we shall use various elementary
results concerning recurrent inequalities, as the following lemmas: Let hn, in be
sequences of non negative numbers and a constant l,0 ≤ l < 1, so that
hn+1 ≤ lhn + in, n ≥ 0
(1) If limn−→∞ in = 0, then limn−→∞ hn = 0.
(2) If

∑
in < ∞, then

∑
hn < ∞. Let yn be a sequence of nonnegative real

numbers. Then,
limn−→∞ yn = 0⇐⇒ limn−→∞

∑
kn−iyi = 0, k ∈ [0, 1)

Definition 3.1. Let (Y, σ) be a metric space and A,B : Y −→ Y be two mappings.
We say that A and B are commuting if
ABy = BAy, ∀y∀ ∈ Y.
As a generalization of this notion, Sessa defined A and B to be weakly commuting
if
σ(ABy,BAy) ≤ σ(Ay,By), ∀y ∈ Y .

Definition 3.2. Let (Y, σ) be a metric space and A,B : Y −→ Y be two mappings.
We say that A and B are compatible, as a generalization of weakly commuting, if
limn−→∞ σ(AByn, BAyn) = 0,
whenever yn is a sequence in Y such that
limn−→∞Ayn = limn−→∞Byn = b, b ∈ Y .

Definition 3.3. A and B mappings satisfy (E.A.) property if there exists a sequence
{yn} ∈ Y such that
limn−→∞Ayn = limn−→∞Byn = b, forsome b ∈ Y .

4. Review of Literature

In 1906, M.Frechet generalized the notion of distance and extended it to arbitrary
sets which includes the real line R as a particular case.

Definition 4.1. (Metric Spaces) Let X be any non-empty set. A metric for X
is a function d with domain X ×X and range [0,∞[ such that

(i) d(x, y) ≥ 0 ∀ x, y ∈ X (Non-negative property)
(ii) d(x, y) = 0 ⇐⇒ x = y

(iii) d(x, y) = d(y, x) ∀ x, y ∈ X (Symmetry)
(iv) d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X (Triangle Inequality)

The set X with the metric d is called a metric space and it is denoted by (X,d).
When there is no confusion about the metric d on X, we shall say that X is a
metric space in place of saying that (X, d) is metric space.

Definition 4.2. (Pseudo-metric space) A mapping d of X × X into [0,∞[
is called a pseudometric for X iff d satisfies the axioms (i),(iii),(iv) of the above
definition of metric space on X and the axiom (ii)′d(x, x) = 0 ∀ x ∈ X Clearly
every metric space is a pseudometric but every pseudometric need not be metric
space.

Ex.1 : Let R be the set of real numbers. Then the function d : R×R→ R defined
by d(x, y) = |x − y|, ∀x, y ∈ R is a metric on R.The metric d is known as
the usual metric space on R.
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Ex.2 : Let X be a non-empty set and define a mapping d : X ×X → R as follows
d(x, y) =

(
0,whenx=y
1,whenx6=y

)
, ∀0x, y ∈ X. The metric d is known as discrete

metric space on R.
Ex.3 : Let R2 be the set of all ordered pairs of real numbers and let d : R2×R2 → R

be defined by d(x, y) = {(x1 − y1)2 + (x2 − y2)2} 1
2 where x = (x1, x2) and

y = (y1, y2). The metric d is known as euclidean plane on R2.

Definition 4.3. b-metric spaces Let Y be a nonempty set and q ≥ 1 be a given
real number. A function σ : Y × Y −→ [0,∞) is a b-metric if, for all x, y, z ∈ Y ,
the following conditions are satisfied:

(i) σ(x, y) = 0 if and only if x = y,
(ii) σ(x, y) = σ(y, x),

(iii) σ(x, z) ≤ q[σ(x, y) + σ(y, z)].

The pair (Y, σ) is called a b-metric space.
A metric space is evidently a b-metric space but a b-metric space need not be a
metric space.

Example 4.1. Let Y = 1, 2, 3 and d(1, 3) = d(4, 3) = s ≥ 4, d(3, 2) = d(2, 1) =
d(2, 3) = d(3, 2) = 5, and d(1, 1) = d(2, 2)d(3, 3) = 0,Then d(p, q) ≤ s2[d(p, r) +
d(r, q)] for all p, q, r ∈ Y . If s > 4, then the ordinary triangle inequality does not
hold.

Definition 4.4. Let {yn} be a sequence in a b-metric space (Y, σ).
a. {yn} is called a b-convergent if and only if there is y ∈ Y such that σ(yn, y) −→ 0
as n −→∞.
b. {yn} is a b-Cauchy sequence if and only if σ(yn, ym) −→ 0 as n,m −→∞.
c. A b-metric space is said to be complete if and only if each b-cauchy sequence in
this space is b-convergent.

Definition 4.5. Convergent sequence
A sequence < xn > in a metric space (X, d) is said to converge to x ∈ X, if given
ε > 0 ,we can find a positive integer m (depending on ε) such that d(xn, x) < ε,
whenever n ≥ m.
Equivalently, the sequence < xn > is said to converge to ,x ∈ X if for given ε > 0
there exists a positive integer m (depending on ε) such thatxn ∈ S(x, ε) for all
n ≥ m.
If < xn > converges to x, we say that x is a limit of the sequence and we write

lim
x→∞

xn = n or xn → x as n→∞ or d(xn, x)→ 0 as n→∞(4.1)

Theorem 4.2. Limit of a sequence , if it exists is unique.

Definition 4.6. Cauchy sequence A sequence < xn > in a metric space (X, d)
is said to be Cauchy sequence iff for each ε > 0 there exists a positive integer p such
that

d(xn, xm) < ε ∀ n,m ≥ p.(4.2)

Theorem 4.3. Every convergent sequence is a Cauchy sequence but the converse
is not necessarily true .

Definition 4.7. Complete metric space
A metric space is said to be complete if every Cauchy sequence in X converges.
A metric space which is not complete is called incomplete.
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Definition 4.8. Contraction Mapping Principle
(Fixed point of mapping:) Let X be a non-empty set and let T : X → X be a
mapping on X itself. A point x ∈ X is called a fixed point of T if T (x) = x.
(Contraction mapping:) A mapping T from a metric space (X, d) to itself is
said to be a contraction mapping if for some real number α such that 0 < α < 1,

d(Tx, Ty) ≤ αd(x, y) ∀ x, y ∈ X(4.3)

Theorem 4.4. Banach’s Fixed Point Theorem
Every contraction mapping S on a complete metric space (Y, σ) has a unique fixed
point.
OR
Let (Y, σ) be a complete metric space and S a contraction mapping of Y into it-
self.Then there exist a unique fixed point of S, say u, and limn−→∞ Sny = u for
each y ∈ Y .

Proof. Let y0 ∈ Y be arbitrary.Put y1 = Sy0, y2 = Sy1 = S2y0, ..., yn = Syn−1 =
Sny0. We will show that yn is a cauchy sequence. We have

σ(yk, yk+1) = σ(Syk−1, Syk) ≤ λΣσ(Syk−2, Syk−1) ≤ ... ≤ λkσ(y0, y1).(4.4)

Using the triangle inequality, for any n and p we get

σ(yn, yn+p) ≤ Σ(yk, yk+1) ≤ Σλkσ(y0, y1) ≤ λn

1− λ
σ(y0, y1).(4.5)

Since for an arbitrary ε > 0 there exists n0 such that

λn0

1− λ
σ(y0, y1) < ε,(4.6)

we have for each n ≥ n0 and all p ≥ 1,

σ(yn, yn+p) < ε(4.7)

Therefore yn is a cauchy sequence. Since Y is complete , it converges to some point
in X, say u.

lim
n−→∞

yn = u(4.8)

Since S is continuous, we have

Su = S( lim
n−→∞

yn) = lim
n−→∞

(Syn) = lim
n−→∞

yn+1 = u,(4.9)

i.e., u is a fixed point of S. Suppose now that there exist u1 ∈ Y , u1 6= u, such that
Su1 = u1. Then we have

σ(u1, u) = σ(Su1, Su) ≤ λσ(u1, u) < σ(u1, u)(4.10)

a contradiction. Therefore u is a unique fixed point of S. �

——————————————————-
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