

THE PREDICTION OF CODE CLONE QUALITY BY

EXTRACTING FAST AND PRECISE CLONE

GENEALOGIES IN COMPLEX CODE BASES

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

GEETIKA

11501877

Supervisor

SANDEEP KAUR

School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

Month-April Year- 2017

@ Copyright LOVELY PROFESSIONAL UNIVERSITY,Punjab (INDIA)

Month-April Year-2017

ALL RIGHTS RESERVED

iii

ABSTRACT

Programming cloning is the present issue in ventures, making an affirmation of clones

a key piece of programming examination. Existing written work on the theme of

programming or software clones is assembled completely into different characterizations. Use

of existing code either by duplication and paste strategies or by performing minor

modifications in the present code is known as programming cloning. Programming clones

may provoke the bug inducing and genuine support issues.

 Duplication is distinguished by taking a gander at highlight film of source parts. The

briny occupation for the spotting is that source code is every so often imitated precisely. The

area methodology must have the ability to ignore the shallow remaining segment and to

dressed metal on the essential law of likeness remembering the true objective to find material

duplication. While higher layer information yielded by syntactic and semantic code

examination can be put another option to convincing use, the detriments of these trench

examination methods are over all the reduced adaptability to different programming related

process. Since duplication is an inescapable issue, in any case, support for duplication area

and organization is required for each programming language being utilized.

 Clone types/sorts, techniques for clones and assorted procedures are joined into this paper.

In like manner this paper will fill as a manual for a potential client of clone recognizing

evidence philosophies, to help them in picking the benefit devices or systems for their interest.

iv

DECLARATION

I hereby declare that the research work reported in the dissertation entitled "THE

PREDICTION OFCODE CLONE QUALITY BYEXTRACTING FAST AND PRECISE

CLONE GENEALOGIES IN COMPLEX CODE BASES” in partial fulfilment of the

requirement for the award of Degree for Master of Technology in Computer Science and

Engineering at Lovely Professional University, Phagwara, Punjab is an authentic work

carried out under supervision of my research supervisor Ms.Sandeep Kaur. I have not

submitted this work elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with Lovely

Professional University’s Policy on plagiarism, intellectual property rights, and highest

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the

content of this dissertation represents authentic and honest research effort conducted, in

its entirety, by me. I am fully responsible for the contents of my dissertation work.

Geetika

11501877

v

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled “THE

PREDICTION OF CODE CLONE QUALITY BY EXTRACTING FAST AND

PRECISE CLONE GENEALOGIES IN COMPLEX CODE BASES”, submitted by

Geetikaat Lovely Professional University,Phagwara,Indiais a bonafide record of her

original work carried out under my supervision. This work has not been submitted

elsewhere for any other degree.

 Signature of Supervisor

 Sandeep Kaur

 Date:

Counter Signed by:

Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: _________________

Date: ___________________

vi

ACKNOWLDGEMENT

It is not until you undertake research like this one that you realize how massive the effort

it really is, or how much you must rely upon the selfless efforts and goodwill of others. I

want to thank them all from the core of my heart.

I owe special words of thanks to my supervisor Ms. Sandeep kaur for her vision,

thoughtful counselling and encouragement for this research on “ THE PREDICTION

OF CODE CLONE QUALITY BY EXTRACTING FAST AND PRECISE CLONE

GENEALOGIES IN COMPLEX CODE BASES”. I am also thankful to the teachers of

the department for giving me the best knowledge, guidance throughout the study of this

research.

And last but not the least, I find no words to acknowledge the financial assistance &

moral support rendered by my parents and moral support given by my friends in making

the effort a success. All this has become reality because of their blessings and above all

by the grace of almighty.

vii

TABLE OF CONTENTS

CONTENTS PAGE NO.

PAC Form ii

Abstract iii

Declaration iv

Supervisor’s Certificate v

Acknowledgements vi

Table of Contents vii

List of Tables ix

List of Figures x

Keywords xi

Supervisor Checklist for Desertation-II xii

CHAPTER 1 INTRODUCTION 1

1.1 CLONE TERMINOLOGIES 2

1.2 TYPES OF CLONES 2

1.3 REASONS OF CLONING 4

1.4 ADVANTAGES OF CLONING 4

1.5 DISADVANTAGES OF CLONING 5

1.6 TECHNIQUES OF CLONE DETECTION 5

1.7 GENERIC CLONE DETECTION PROCESS 6

CHAPTER 2 REVIEW OF LITERATURE 10

2.1 SURVEY ON CLONES 10

2.2 TEXT-BASED APPROACH 11

2.3 METRIC-BASED APPROACH 11

2.4 TOKEN BASED APPROACH 12

2.5 GRAPH-BASED APPROACH 12

2.6 ABSTRACT-SYNTAX BASED APPROACH 12

2.7 HYBRID APPROACH 13

CHAPTER 3 PRESENT WORK 20

 3.1 PROBLEM FORMULATION 20

viii

3.2 OBJECTIVES OF THE STUDY 22

3.3 RESEARCH METHODOLOGY 23

3.3.1 TOKEN-BASED APPROACH 23

3.3.2 PROGRAM DEPENDENCY GRAPH 25

3.3.3 SMITH-WATERMAN ALGORITHM 27

3.3.4 STEPS OF PROPOSED METHODOLOGY 28

3.3.5 ALGORITHM OF PROPOSED METHODOLOGY29

3.3.6 ROADMAP TO OUR PROPOSAL 31

CHAPTER 4 RESULTS AND DISCUSSION 42

4.1 RESULTS OF TRIALS 42

4.2 EXECUTION MEASURES 43

CHAPTER 5 CONCLUSION AND FUTURE SCOPE 45

5.1 CONCLUSION 45

5.2 FUTURE SCOPE 45

REFERENCES

APPENDIX

ix

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 Exact clone 2

Table 1.2 Syntactic clone 3

Table 1.3 Near-Miss clone 3

Table 1.4 Semantic clone 4

Table 2.1 Generic survey on clones 14

Table 2.2 Textual survey on clones 15

Table 2.3 Metric based survey on clone 16

Table 2.4 Token based survey on clone 16

Table 2.5 Graph based survey on clone 17

Table 2.6 AST based survey clones 18

Table 3.1 Source Files 24

Table 3.2 List Of Token 25

Table 4.1 Results of existing technique 43

Table 4.2 Results of proposed technique 43

Table 4.3 Results comparison 44

x

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 1.1 Clone Detection Techniques 6

Figure 1.2 Generic clone detection process 8

Figure 3.1 Control Dependency 26

Figure 3.2 Data Dependency 26

Figure 3.3 Clone detection by tokenization 31

Figure 3.4 Clone detection by PDG approach 32

Figure 3.5 Phases involved in code clone detector tool 33

Figure 4.1 Netbeans IDE 34

Figure 4.2 Start-up page 35

Figure 4.3 Browse files 35

Figure 4.4 Select files 36

Figure 4.5 Displaying Source Files 36

Figure 4.6 Preprocessing window 37

Figure 4.7 Preprocessed files 37

Figure 4.8 Tokenization window 38

Figure 4.9 Caulate Tokens 38

Figure 4.10 Potential clones 39

Figure 4.11 Preprocessed files for PDG 39

Figure 4.12 PDG Window 40

Figure 4.13 Generated PDG 40

Figure 4.14 Actual Clones 41

Figure 4.15 Results 41

xi

KEYWORDS

1. Code clone

2. Plagiarism

3. Reuse

4. Semantic

5. Syntactic

6. Similarity

 1

CHAPTER 1

INTRODUCTION

Programming code cloning is comprehensively utilized by designers to make code

in which they have conviction and which lessens headway expenses and upgrades the

item quality. Programming clone investigation in the early years was by and large fixated

on the recognition.Some normal practices of the programming change like Copy and

paste, reusing the code; it is assessed in the programming field, the codes which are

fundamentally similar or semantically tantamount present wherever. The path toward

replicating a code is known as code clone and examination of code clones, though an

investigation of has late extends to the whole scope of clone organization[1].

Reusing programming through replicating and pasting is a constant pain in

programming change paying little heed to the way that it incites sincere maintenance

scrapes. The way toward copying a code is known as code clone. A few software

engineers perform code cloning purposefully or unexpectedly amid the advancement of

an application or programming. It has been studied that 30% of the code in the majority

of the product organizations is replicated code. So it is basic to realize that why the code

has been copied, why there is a need to copy the code, how the duplicated or cloned code

negatively affects the maintenance and advancement.

For support and advancement reason, a few stages like clone discovery,

investigation and upkeep have turned into a noteworthy territory of research for some

specialists. In spite of the fact that cloning has many focal points in programming

ventures. It spares the software engineer's chance, reuse of code is simple for an

apprentice in the business. Be that as it may, as we reuse the code, the overhead

additionally increments. So cloning has a dull side also.

The immense matter of concern is the maintenance of the created software. Some of

the time the cost for maintenance surpasses more than the cost of the improvement. The

 2

bug location, infection acknowledgment may likewise require the extraction of organized

or semantically near clones. Each perspective has two confronts like a coin has two sides

so as the code cloning.

1.1 CLONE TERMINOLOGIES

1. Code fragment: Code area (some part of a code) is any progression of code lines

with or without remarks. It is distinguished by code piece filename, code part start

line, code section end line.

2. Code clone: At the moment that a code some portion of document two is a clone of

another code segment of record one.

3. Clone pair: One course of action of a code segment is indistinguishable to other

whether in a same document or in another record, they are said to be a clone pair.

4. Clone class: When many pieces are like each other or on the other hand, there exists

a clone-relationship between them then they make a clone class

1.2 TYPES OF CLONES

Type 1: These types of clones are otherwise called as exact clones. In this type of

clone, there is a little bit more chance of variation in whitespaces and comments, but as

the name suggests they are exact or identical clones.

Table 1.1 Exact clone

ntfooadd(intnum[],int v){

int z=0;//fooadd

for(int p=0;p<v;p++){

z=z+num[p];

}

return z;

}

intfooadd(intnum[],int v){

int z=0;

for(int p=0;p<v;p++){

z=z+num[p];

}

return z;

}

intfooadd(intnum[],int v){

int z=0;//fooadd

for(int p=0;p<v;p++){

z=z+num[p];

}

return z;

}

 3

Type 2: These types of clones are known as renamed orparameterized clones. The

structure or the syntax of this type of clone is same but there can be exceptions of layouts,

variables, literals and in comments.

Table 1.2 Syntactic clone

intfooadd(intnum[], int v){

int z=0;//fooadd

for(int p=0;p<v;p++){

 z=z+num[p];

 }

 return z;

 }

intdofooadd(int no[], int v){

int z=0;

for(int p=0;p<x;p++){

fooadd=fooadd+no[p];

}

return fooadd;

}

intfooadd(int s[], int v){

int z=0;//fooadd

for(int p=0;p<v;p++){

z=z+s[p];

}

return z;

}

 Type 3: These types of clones are known as Near- Miss Clones. Some amendments

are done in the code like adding or removing new statements, modification in layouts,

modification in literals, changing the name of the variables. If there is deletion of a

statement in another code fragment, then they are termed as Near-Miss clones.

Table 1.3 Near-Miss clone

intfooaddition(intnum[], int n){

intfooadd=0;//fooadd

for(inti=0;i<n;i++){

fooadd=fooadd+num[i];

 }

 return fooadd;

 }

Intd.fooadd(int no[], int n){

int a=0;

for(inti=0;i<n;i++){

a+=no[i];

}

return a;

}

intfooadd(int a[],int n){

int x=0;//fooadd

for(inti=0;i<n;){

x=x+a[i];

i++;

}

return x;

}

 Type 4: These sorts of clones are called as semantic clones. If two code pieces have

similarity in their function or their behavior is similar, then they would be considered as

semantic clones. Textual similarity is not the necessity. But it is not necessary in every

case that code fragment is copied from the native code.

 4

Table 1.4 Semantic clone

intfooadd(int no[],int n){

intfooadd=0;

for(int q=0;q<n;q++){

fooadd=fooadd+no[i];

}

return fooadd;

}

intfooadd(int no[],int z){

if(z==1)

return no[z-1];

else

return no[z-1]+fooadd[no,z-1];

}

1.3 REASONS OF CLONING

 Lack of Interpretation of requirements: Here and there, it is hard to translate

and make an orderly approach for every single prerequisite as a result of the high

number of determinations in extensive frameworks.

 Tested code: As there is always risk associated with new code because

programmer can develop the code which might be more mind boggling or more

inclined to bugs and errors. So to copy code is always preferable choice.

 A Matter of chance: By co-incidence, codes can be similar.

 Preferring Developer’s Credibility:In most of the company’s developer’s

performance is measured by checking how much number of lines he is producing

in one hour.

 Little knowledge of the new language:Sometimes programmer does not have

the better command over the programming language; at that moment they prefer

copy and paste technique.

1.4 ADVANTAGES OF CLONING

 Quick process: When a programmer starts a code from the scratch, it takes lots of

time and effort. So, copy and paste mechanisms are easier to develop a system.

 Foundation for templates: Template building is supported by code cloning. For

example: same types of design are followed in all pages of many websites.

 5

 Encouraging reuse: To achieve already existing Functionality of the tested code,

reusing is done by copy and paste technique.

1.5 DISADVANTAGES OF CLONING

 Rise in the need of resources: Program becomes bigger and complex with the

cloning. The number of hardware and software are needed to meet the

requirements.

 Likelihood of poor design increases: Modular and structural programming

approach is not being followed. When a clone is used in the program, it leads to

poor design and ultimately it hampers the quality.

 Maintenance becomes a tedious task: To maintain the cloned code which

complicates the understanding of the code, becomes a difficult work for the

maintenance team.

 Rise in cost and time: If a bug is detected, then to remove it in the entire code

takes a huge amount of time and effort as well as the cost increases for

modification.

1.6 TECHNIQUES OF CLONE DETECTION

 Text based clone detection technique: Detection is not performed on the

premise of syntactic and semantic similarity. Line by line comparison will be

done on the two code fragments.If textual similarity exists between them, then

they are counted as clones.

 Abstract-syntax tree based clone detection technique: Codes are parsed into a

tree based algorithm [21] or tree based matching, if a match is detected then the

result would be a clone. Generally, near- miss clones are represented in the

abstract syntax tree and then on the result, pattern matching is applied.

 Token-based clone detection technique: By using the concept of lexical analysis

or study, source code is converted into the tokens. Exact clones and syntactic

clones are traced out with this technique.

 6

 Graph-based clone detection technique: From the source code, the program

dependency graph is acquired which includes control flow and data flow. It

contains behavior or semantic information of a two codes.

 Metric-based code clone detection technique: Distinctive measurements of

codes are computed. Measurements contain data about the name of strategies,

formats, literals and control of the project. The parts of code which will

demonstrate comparable metric qualities are considered as clones.

 Hybrid clone detection technique: By mixing an using two or more above

mentioned stechniques clones can be detected. This technique holds better value

than normal technique. For example: graph and metrics technique can be used in a

combination for best results.

Figure 1.1 Clone Detection Techniques

1.7 GENERIC CLONE DETECTION PROCESS

There are the generic steps involved in detecting clones whether they are actual clones

or not. This process is quite expensive, requires fast computation speed. On the basis of

similarity, clones are detected from the clone pairs.

 7

1) Pre-processing: This phase follows two steps: one is divided, the source code into

the sections also known as segmentation. Secondly, figure out the area of

comparison. There are certain objectives of this phase:

 Elimination of unwanted parts:Source code is segmented and uninterested parts

are removed, which may generate false positive values. Reckoning of further

steps would be easy.

 Figure out source units:Once the removal of unwanted code is completed, then

the rest of the source code is partitioned in such a way so that common portion

can be obtained. For an instance: in a program; files, classes, functions/methods,

start finish blocks, or source line sequence.

 Figure out comparison units: Segmentation of the source units to further obtain

smaller units for the comparison purpose.

2) Transformation: For the comparison purpose, the main motive of this phase is to

convert the source code units into peculiar intermediate representations. This

process is called as extraction. This step is further subdivided into following:

 Extraction: To make source code appropriate as input to the real algorithm,

conversion of source code has done.

 Tokenization: Every line of source code is isolated into tokens.

 Parsing: To indicate the clones in syntactic approach, abstract syntax tree is used

to compare algorithms for the same sub-trees.The Metric-based approach can

also be used.

3) Match detection: Transformed code which is obtained from the above steps is put

into comparison algorithm where all the transformed comparison units are

evaluated on the basis of similarity to determine the matches. A set of candidate

clone pairs will be obtained. The algorithms used in this phase are: suffix tree

dynamic pattern matching and hash esteem examination.

4) Formatting: The clone pair list for the changed code obtained by the comparison

algorithm is transformed over to a relating clone pair list for the first code base.

5) Post processing/filtering: This step is further subdivided into two parts:

 Manual analysis: Here false positives are filtered out by human experts.

 8

 Automated heuristic: Few parameters are already set according to filtering

purposes. For example: length, frequency, diversity etc.

6) Aggregation: With a specific end goal to expel the information, perform ensuing

examination or accumulate outline measurements, clones might be collected into

clone classes.

Figure1. 1.2 Generic clone detection process

 9

SUMMARY

This chapter is to present the field of programming, building in which

programming cloning and its discovery. The part started with the essential wordings of

imperative terms. To comprehend the pertinence of discovery of clones, the nonexclusive

clone recognition prepares to exhibit. The inspiration for this postulation happens to be

of clones to decrease the upkeep procedure at the later phase of the advancement of

programming or any venture.

 10

 CHAPTER 2

REVIEW OF LITERATURE

Software or code cloninghas become a major area of research these days. Many

researchers diligently exploring this topic and so many approaches have been developed

to probe duplicate codes. These approaches are syntax-based[2], text- based[3], graph

based [4] and metric based [5].

2.1Survey on clones

Chanchal K. Roy et al.[6]have performed the comparison and evaluations of

different techniques and tools. First of all the reorganizations and then evaluations of

different approaches are being performed on the basis of some restrictions and on the

basis of types of clones. This paper aids to detect different clone detectors.

Robert Tairas,JeffyGray[7]shows the expanding clone up support by

consolidating clone identification and rewriting an existing source to improve its

readability, reusability (refactoring) activities simply by modifying the structure of the

code yet without changing the conduct of code. They have proposed CeDAR (clone

recognition, investigation and refactoring) code yet without changing the conduct of

code. This tool focuses only on Type1 and Type 2 clones. The results of clone detection

techniques and refactoring activities for eliminating duplicate code and for maintenance

of code clones have been accumulated.

Ripon K. Sahaet al[8] have shown automaticdetection of evolution pattern of

both exact and near-miss clones by constructing their groups and they have developed a

prototype “gCad” which is scalable to various clone detection tools. For detecting the

change in pattern some of the key similarity factors have been used. They have built up a

prototype clone genealogy (bunch) extractor, which is further connected on three open

source ventures including the Linux kernel.

Dhavleesh Rattan et al.[9] have reviewed the programming clones. In

theirliterature review, near about 100 studies from literatures were based on software

clone detection. The result of these studies is also categorized as types of clones, internal

 11

representation of clones, semantic clones, model clones, code clone management,

different approaches of clone detection.

Yaowenchenet.al.[10]havepresented an experimental study on code cloning in

more than twenty open source games by applying abest in class clone locator, NiCad.

They additionally utilized VisCadtool for perception and investigation of clones. This

exploration has demonstrated that cloning happens at between inter-project level, as well

as at an intra-project. On the premise of various measurements, for example, language

category, clone density and the clone area, they broke down an arrangement of

measurements and prerequisite of embracing clone management frameworks for game

improvement..

Balazinska et al. [11] brought out a more refined course of action for limit clones

as delineated in Table 1. This request looks good to choose a sensible framework for

clone ejection. For instance, the arrangement plan Template Method may be used to

compute out complexities the sorts used as a piece of different code segments or the

arrangement outline scheme can be used to make sense of algorithmic complexities.

2.2 Text-based approach

Rieger et al. [3] looked at entire lines to each other literarily . To expand

execution, lines are apportioned utilizing a hash work for strings. Just lines in a similar

parcel are thought about. The outcome is visualized as a dotplot, where every spot

demonstrates a couple of cloned lines. Clones might be found as specific examples in

those dotplots outwardly. Continuous lines can be outlined to bigger cloned arrangements

consequently as continuous diagonals or dislodged diagonals in the dotplot.

Marcuset al.[12] looked at specific bits of content, in particular, identifiers

utilizing idle semantic ordering, a strategy from data recovery. The thought here was to

distinguish sections in which comparative names happen as potential clones.

2.3 Metric-based approach

Madhulina Sarkaret al.[13]used clone detection technique to forecast the

resource requirements, feedback guided by automatic jobmodelingmethodology which

has been founded on the metric based clone discovery. When the job is entered in a

system, its execution is bolstered and assets are included or evacuated on the premise of a

 12

versatile execution plan displayed in. A tool called PRAGMA is used to implement this

scheme.

2.4 Token Based approach

Baker et al.[14]has presented in his paper about Dup is mix of content based and

token based technique which partition program in parameterized and non-parameterized

tokens to find Type I and Type II clones. It uses hashing limit as a piece of demand to

find Type I clone and position file forType II clones.

Toshihiro Kamiyaet al. [15] has suggested about CCFinder is one of the

effective token based instruments which can distinguish code clones from Java, C, C++,

COBOL and numerous other source program records. This apparatus change over source

record into arrangement of tokens and afterward correlation of these tokens areformed

with the assistance of addition tree calculation. It likewise gives clone measurements to

discover clone combines and clone class. In addition for more correct perception

disperse chart and plot outlines are utilized.

2.5 Graph-based approach

Jens krinkeet al.[16] has identified similar codes with fine-grained program

dependence graphs and this approach works not only on the syntax of a program but also

on the semantics. Prototype model is used with the non-polynomial complexities which

yields high precision and recall. This approach has not worked well with a polynomial

time limit.

Mark Gabel et al. [17] have performed scalable detection of clones on the basis

of semantic clones. Millions of lines of code have been evaluated using their algorithm.

The program dependence graphs (PDG) [18] problem which has been used to implement

program slicing [19], have been reduced to a simple tree similarity problem. Some of the

productive clone recognition methods which are utilised to discover fundamentally

comparative clones are DECKARD [20], CP-Miner [21], and CCFinder[15] .

2.6Abstract-syntax based approach

Ira D.Baxteret al.[2]havepresented a realistic strategy for recognizing near-miss

and arrangement clones on scale has been introduced. The approach has been depended

 13

on varieties of strategies for compiler regular sub expression disposal utilizing hashing.

The strategy was direct to actualize, utilizing standard parsing innovation, recognized

clones in discretionary dialect builds, what's more, registers macros that permit expulsion

of the clones without influencing the operation of the program. They have connected the

strategy to a genuine use of direct scale, and affirmed past appraisals of clone thickness

of 7-15%, proposing there was a "manual" programming building prepare "repetition"

steady.

2.7 Hybrid approach

Chanchal K. Roy[22]has performed discovery and examination of near-miss

software clones. They have executed their task in four steps. They have developed a

hybrid clone discovery technique, proposed a Meta model of clone sorts, furthermore,

they have given a situation based examination of clone recognition procedures and

instruments. They have used NICAD tool which was not able to detect Type 4 semantic

clone.

Gehan M.K. Selim et al.[23] represented an enhancement in clone detection,

which are based on source-based by using intermediate representation. They have used a

hybrid approach for detection of Type 3 clones. In clone genealogies, their technique has

higher accuracy on the correlation with standalone string based and token based clone

detector.

Abdullah Sheneameret al.[24] have introduced a hybrid clone recognition

strategy that first uses a coarse-grained method to break down clones adequately to

enhance exactness. Subsequently,they have utilized a fine-grained indicator to get extra

data about the clones and to enhance review. Their strategy has distinguished Type-I and

Type-2 clones utilizing hash values for pieces, and gapped code clones (Type-3) utilizing

piece recognition and ensuing correlation between them utilizing Levenshtein separation

and Cosine measures with shifting edges.

Madhulina Sarkar et al[25].have been augmented the scientific classification of

clones proposed by different analysts keeping in mind the end goal to make asset

necessity expectation more compelling. It additionally shows a hybrid clone-location

 14

system, compri sing of measurements based, PDG-based and AST-based clone

location, to make the clone recognition prepare more solid furthermore, hearty.

Bhagwanet al.[26]have shown a hybrid technique that recognizes programming

code clones for Java programs on the preface of estimations and substance based

methodologies. Their proposed approach scans for clones in the code at the file level,

class level, and methodology level. Their approach has recognized potential clones on

metric-based match. Potential clones are furthermore analyzed line by line using a text

based approach to manage check whether the potential clones perceived using metric

based examination are truly clones or not.

Table 2.1 Generic survey on clones

S.

No

.

Title Of Paper Authors Contribution Of Paper

1. Comparison and

evaluation of code clone

detection techniques and

tools: A qualitative

approach

Roy, Chanchal K.

Cordy, James R.

Koschke, Rainer

First of all the reorganizations and then

evaluations of different approaches are being

performed on the basis of some restrictions and

on the basis of types of clones. This paper aids,

to detect different clone detectors.

2. Increasing clone

maintenance support by

unifying clone detection

and refactoring activities

Tairas, Robert

Gray, Jeff

CeDAR (clone recognition, investigation and

refactoring) code yet without changing the

conduct of code. This tool focuses only on

Type1 and Type 2 clones. The results ofclone

detection techniques and refactoring activities

for eliminating duplicate code and for

maintenance of code clones have been

accumulated

3. Software clone detection

: A systematic review

Rattan, Dhavleesh

Bhatia, Rajesh

Singh, Maninder

In theirliterature review, near about 100 studies

from literatures were based on software clone

detection. The result of these studies is also

categorized as types of clones, internal

representation of clones, semantic clones, model

 15

clones, code clone management.

4. Near-miss Software

Clones in Open Source

Games : An Empirical

Study

Chen, Yaowen

Roy, Chanchal K

This research has showed that cloning happens

not only at inter-project level, but also at an

intra-project. On the basis of different

dimensions, such as language category, clone

density and the clone location, theyanalyzed a set

of metrics and requirement of adopting clone

management systems for game development

5. Advanced clone-analysis

to support object-

oriented system

refactoring

Balazinska,

Magdalena

Merlo, Ettore

Dagenais, Michel

Lagiie, Bruno

Kontogiannis,

Kostas

This paper has introduced a more refined course

of action for limit clones This request looks good

to choose a sensible framework for clone

ejection. For instance, the arrangement plan

TemplateMethod may be used to compute out

complexities the sorts used as a piece of different

code segments or the arrangement outline

Strategy can be used to make sense of

algorithmic complexities

Table 2.2 Textual survey on clones

S.

No

.

Title Of Paper Authors Contribution Of Paper

1. A language

independent approach

for detecting

duplicated code

Ducasse, S.

Rieger, M.

Demeyer, S.

The outcome is visualized as a dotplot, where every

spot demonstrates a couple of cloned lines. The clones

might be found as specific examples in those dotplots

outwardly.

2. Identification of high-

level concept clones

in source code

Marcus, A.

Maletic, J.I.

This paper looked at specific bits of content, in

particular, identifiers utilizing idle semantic ordering, a

strategy from data recovery. The thought here was to

distinguish sections in which comparative names

happen as potential clones

 16

Table 2.3 Metric based survey on clone

Table 2.4 Token based survey on clone

S.

No.

Title Of Paper Authors Contribution Of Paper

1. A Program for

Identifying Duplicated

Code

Baker, Brenda S It utilizes hashing capacity as a part of request to

discover Type I clone and position file for sort II

clones.

2. CCFinder: A

multilinguistic token-

based code clone

detection system for

large scale source code

Kamiya,

Toshihiro

Kusumoto,

Shinji

Inoue, Katsuro

This apparatus change over the source record in the

arrangement of tokens and afterward correlation of

these tokens are made with the assistance of

addition tree calculation. It likewise gives clone

measurements to discover clone combines and

clone class. In addition,for better perception

disperse chart and plot outlines are utilized.

S.

No.

Title Of Paper Authors Contribution Of Paper

1. A hybrid clone detection

technique for estimation

of resource requirements

of a job

Sarkar,

Madhulina

Chudamani,

Sameeta

This paper has used clone detection technique

to forecast the resource requirements, feedback

guided by automatic job modelling

methodology which has been founded on the

metric based clone discovery.

 17

Table 2.5 Graph based survey on clone

S.

No.

Title Of Paper Authors Contribution Of Paper

1. Identifying Similar

Code with Program

Dependence Graphs

Krinke, Jens This paper has identified similar codes with fine-

grained program dependence graphs and this

approach works not only on the syntax of a

program but also on the semantics. Prototype

model is used with the non polynomial

complexities which yields high precision and

recall.

2. Scalable Detection of

Semantic Clones

Gabel, Mark This paper has contributed in performing

scalable detection of clones on the basis of

semantic clones. Millions of lines of code have

been evaluated using their algorithm. The

program dependence graphs (PDG) problem

which has been used to implement program

slicing , have been reduced to a simple tree

similarity problem

3. Code clone detection

using coarse and fine-

grained hybrid

approaches

heneamer,

Abdullah

Kalita, Jugal

This paper has introduced a hybrid clone

recognition strategy that first uses a coarse-

grained method to break down clones adequately

to enhance exactness. Subsequently,they have

utilized a fine-grained indicator to get extra data

about the clones and to enhance the review

4. Software clone

detection : A systematic

review

Rattan,

Dhavleesh

Bhatia, Rajesh

Singh, Maninder

In theirliterature review, near about 100 studies

from literatures were based on software clone

detection. The result of these studies is also

categorized astypes of clones, internal

representation of clones, semantic clones, model

clones, code clone management, different

approaches of clone detection.

 18

Table 2.6 AST based survey clones

5. A hybrid clone

detection technique for

estimation of resource

requirements of a job

Sarkar,

Madhulina

Chudamani,

Sameeta

Roy, Sarbani

Mukherjee,

Nandini

It has showed a hybrid clone-location system,

comprising of measurements based, PDG-based

and AST-based clone location, to make the clone

recognition prepare more solid furthermore,

hearty.

6. Design and Analysis of

a Hybrid Technique for

Code Clone Detection

Bhagwan, Jai

Pramila, Kumari

They have displayed a hybrid method that

distinguishes programming code clones for Java

programs on the premise of measurements and

content based methodologies. Their approach has

distinguished potential clones on metric-based

match.

S.

No

.

Title Of Paper Authors Contribution Of Paper

1. Detection and

Analysis of Near-

Miss Software

Clones

Roy, Chanchal K They have developed a hybrid clone

discovery technique, proposed a Meta

model of clone sorts.They have used

NICAD tool which was not able to detect

Type 4 semantic clone.

2. Enhancing source-

based clone

detection using

intermediate

representation

Selim, Gehan M K

Foo, King Chun

Zou, Ying

They have used a hybrid approach for

detection of Type 3 clones. In clone

genealogies, their technique has higher

accuracy.

 19

SUMMARY

This part exhibits the detail of all the writing overviewed and evaluated for the

comprehension of subject. Papers identified with code clone recognition and the sorts of

clones distinguished have been given in this part. For getting a handle on the information

about hybrid approach, different papers exhibiting distinctive advances developed.It has

been found amid the writing, review that there is still more work to do on crossover way

to deal with get fast,precise clones. Part 3 represents to the extent of hybrid approach to

deal with show signs of improvement results with high recall value.

 20

CHAPTER 3

PRESENT WORK

3.1 PROBLEM FORMULATION

Clone Detection is to inconceivable stress for finer support and the nature of the

programming system. Systems comprising code clones are significantly unprotected to

bugs and inconsistencies and move toward getting to be a hindrance for finer

improvement of programming structure.Subsequently, it is an open territory of research

for many years and results into different clone detection procedures and devices in light

of them. Yet, as talked about in writing, study certain impediments are related with each

clone discovery technique and device.

Tools in light of text based methods are connected specifically with respect to

source code can ready to recognize just Type I clones though devices in view of tokens

have done lexical examination of the source code and ready to distinguish Type II clones

moreover. In any case, both these systems can recognize just syntactic comparative codes

and comes up short if any alteration is done inside the statements. Even so, a few tools

utilize the idea of abstract syntax tree all together discover Type III clones yet this

approach necessitates complex calculations and parser to discover comparable sub trees.

Metrics based tools are somewhat straightforward and reasonable for the vast

programming framework, however it is not effective if connected straightforwardly in

source code.

Program Dependence Graph based system is the main strategy which can identify

code clones both grammatically and in addition semantically.

So taking after issues are distinguished in existing work:

1) A novel advancement is expected to identify code clones effectively. Both

syntactic to semantic clones ought to be distinguished by a device.

 21

2) Numerous false positive clones are identified by tools which ought to be

evacuated to get high accuracy values.

3) As the clone recognition process has many stages, so tools ought to be automatic

and weightless so that each stage is executed with no extra computational assets.

4) There is a requirement of hybrid approach which utilizes diverse procedures other

than tree based clone detection strategy.

This proposal displays a hybrid way to deal with identifying actual code clones. It

consolidates token based method with program dependency graph based technique to

discover code clones for Java and C++ programs. Initially tokens are produced utilizing

pre-processed documents in which remarks and void areas are expelled. The created

tokens by documents experiences, Smith-Waterman calculation for comparison purpose

and are contrasted with discover potential clones.

In the wake of getting potential clones, PDG is gotten utilizing pre-processed code,

which conveys semantic data of programs and with PDGtechnique we get control and

data dependencies which are computed to confirm potential clones as actual clones.

A clone detector tool is proposed to discover genuine clones for Java and C++

programs by utilizing hybrid approach. This is a mechanized tool with easy to understand

interface which shows acquire token and PDG and gives results, whether tried projects

are actual clones or not.

 22

3.2 OBJECTIVES OF THE STUDY

1. To propose and enhanced hybrid technique for software code clone detection using

tokenization and program dependency graph based techniques.

1.1. To perform preprocessing of input files

1.2. To perform lexical analysis on preprocessed files for generating token sequence.

1.3. To execute Smith-Waterman algorithm for comparison of generated token

sequence and to check potential clones in the files.

1.4. To extract number of control dependent nodes and data dependent nodes from

preprocessed files using program dependency graph based technique.

1.5. To use Smith-Waterman algorithm for validating potential clones.

2. To implement a tool using the proposed technique for object-oriented languages like

Java and C++.

3. To compare precision, recall and accuracy of the proposed approach with the existing

base paper approach.

 23

3.3 RESEARCH METHODOLOGY

Code clones are considered as risky to the maintenance and rightness of

programming systems if they are not dependably managed. It is evaluated that 85% of

total programming cost spent on the support issues. Refactoring and other re-designing

activities are used to empty them, however , not beneficial for an extensive variety of

clones and it requires high cost. From now on various clone detection techniques and

devices are proposed in writing are remembering the ultimate objective to recognize

clones yet certain limitations are identified with them. Furthermore, it's not useful to track

code clones physically. So clone detection is an open research area and there is a

requirement of a mechanized tool which can identify clones successfully.

The proposed work demonstrates a robotized clone detection tool for Java and

c++ programs. This tool is a hybrid approach based tool which solidifies token based

method and program dependency graph based framework to recognize code clones

beneficially.

3.3.1 Token-Based Approach

Token based [27]code portrayal gives a reasonable deliberation to clone

recognition. It has both simplicity of flexibility to various languages, and awareness and

control of the fundamental language tokens. Near reviews, including diverse clone

identification methods have demonstrated that token based clone recognition tools

perform well as far as accuracy and recall of the detected clones.

A token arrangement of the input code through a lexical analyzer (similar table

representation is given below), and applies the rule-based changes to the succession. The

design is to change code divides in a custom frame, to distinguish cloned code portions

that have diverse linguistic structure however have similar importance. Another reason

for existing is to sift through code portions with determined structure designs.

 24

The tokens of all source files are connected into a solitary token arrangement to

consistently recognize clones inside a document and crosswise over files. A few changes

are additionally connected to this token string, contingent on the language, to limit the

contrasts between comparative code pieces. For instance, evacuating the namespace

attribution, introduction lists,stamping of function definition limits, expulsion of

availability keywords and so forth for the C++ and Java code.

Here the sample code of C++ is used to explain the working of Token-based approach.

Table 3.1 Source Files

File 1 contains factorial code using for loop whereas file 2 contains the same code using

while loop.

 25

Table 3.2 List Of Token

List of tokens for file 1 and file 2 including their line number. It tells on a particular line

how many numbers of token exist and this is done by the lexical analyzer. By comparing

the token sequence further clones can be calculated.

Token-based approach is good to detect Type-1 i.e. exact clones and Type-2 i.e.

parametrized or renamed clones.

3.3.2 Program dependency Graph

Program dependency Graph: It is a coordinated diagram which decides two sorts

of dependency that exists between the statements of the source code. These two

conditions are Control Dependency and Data dependency.

Control Dependency: It exists between two statements exactly when first

articulation is restrictive phrase and execution of the second statement depend on upon

the aftereffect of the main statement.

 26

Figure 3.1 Control Dependency

In the above code execution, statement 2 and statement 3 depends upon the

outcome of the predicate expression at statement 1. Subsequently, control dependency

exists between them.

Data Dependency: It holds between two statements just when the first statement

incorporates the meaning of the variable and the second statement utilizes the variable

without redefinition of the variable. This can be clarified with the assistance of taking

after the code:

Figure 3.2 Data Dependency

Data dependent while statement 3 is not on the grounds that it contains the

redefinition of the variable and statement 4 is dependent on statement 3 only.

 27

3.3.3 Smith-Waterman algorithm

The Smith-Waterman calculation [28] is a calculation for recognizing

comparative arrangements between two base groupings. This calculation has leverage

that it can recognize comparative arrangements regardless of the possibility that they

incorporate a few gaps. The Smith-Waterman algorithm comprises of the accompanying

five stages[29].

Stage 1 Making a table: The (X+2)×(Y+2) table is made, where X is the length of one

grouping(c1, c2, ・・・, cX)and Y is the length of the other arrangement (d1, d2,

・・・, dY).

Stage 2 Introducing the table: The top line and furthest left section of the table made in

Step 1 are loaded with two base arrangements as headers. The second line and segment

are introduced to zero.

Stage 3 Computing scores of each and every cells in the table: Scores of each and

every the rest of the cells are figured by utilizing the accompanying equation.

Px,y(2 ≤ x, 2 ≤ y) = maximum (1)

px−1,y−1 + z(ci, dj), (2)

pi−1,y+ gap, (3)

px,y−1 + gap, (4)

0

z(cx, dy) =

match (cx= dy), (5)

mismach(cx!=dy) (6)

 28

where Px,y is the estimation of sx,y; sx,y is the cell situated at thexth row and the yth

column; z(cx,dy) is a closeness of coordinating cx with dy ; cx is the xth estimation of

one arrangement anddy is the yth estimation of the other arrangement.

Stage 4 Follow back of the table: Follow back means the moving operation from sx,y to

sx−1,y , sx,y−1 or sx−1,y−1 utilizing the pointer made in Step 3. Following the pointer

contrarily speaks to follow back. Follow back starts at the cell whose score is greatest in

the table. This proceeds until cell values diminished to zero.

Stage 5 Distinguishing comparative arrangements: The exhibit components pointed

by the follow back way are recognized as similar local arrangements.

3.3.4 Steps of proposed methodology:-

1. Create a database to store source files.

2. Loading source files into clone detector tool.

3. Lexical analysis is performed at this step, tokens will be calculated on the predefined

length of statements. This phase is a tokenization phase.

4. Smith-Waterman algorithm works on the backend for comparing two files, potential

clones are being detected at this stage, if any exist.

5. Formation of the clone group is done and we are extracting out potential clones from

this round.

6. Up to this step, we can find the Type-1, Type -2 clones with high recall and precision

value.

7. Further source files in a preprocessed form have again loaded to generate program

dependency graph for getting semantic information of the files. This phase is also known

as normalization phase, control and data dependencies are generated.

8. For comparison purpose, Smith-Waterman algorithm is again used to validate the

potential clones obtained from tokenization phase.

9. Potential clones will be detected and extracted out and clone groups will be formed at

this round.

10. Clone groups from both the rounds will be compared, potential clones will be

checked whether they are actual clones or not.

 29

11. We obtain final results and fine quality clones are being calculated.

12. Cloning percentage for each file is obtained and the cloned lines of the respective

files are displayed on the results screen.

13. The addition and subtraction in the second clone fragment are compared with first

cloned fragment, and results are displayed in percentage.

14.PDG approach is good for calculating type-3 and type-4 clones.

3.3.5 Algorithm of proposed methodology

Algorithm1 :Preprocessing and generate Tokens (file1, file 2)

Input: Either two java .class files or two c++ files

Output: Tokens

1.if(comments, whitespaces)

2.do

3.preprocessing of files

4.display(file1)

5.display(file2)

6.use preprocessed files.getTokensbyMethodSignature to create tokens

7.int b= SvToken.countTotalNumberOfTokens()

8.if tokens exist

9. print->line number with their token number

10.else

11.print ->there is no tokens in a file.

12.End

Algorithm 2. Smith –Waterman algorithm for Comparison(file 1.tokens , file

2.tokens)

Input: Two generated token files with token sequence (sequence of 4 tokens is used)

Output: Finds the potential clones exist or not

1. if (file 1.token= file 2.token)

2. Compare each local assignment of the files

3. if match found then print->potential clone

4. else if (file1.token != file 2.token)

 30

5.print-> no potential clones exist

6.End

Smith-Waterman algorithm is used for comparison purpose and hereto recognize

potential clones. In this token to token comparison is made as for clones programs;textual

and syntactic similarity should exist between programs.

Algorithm 3: Generate_PDG (file1, file2)

Input: Either two Java .class files or two c++ files

Output: PDG

1. Use preprocessed files.getPDGByMethodSignatureto create PDG

2. int b = SvPDG.countTotalNumberOfNode()

3. Count all control and data dependency modes.

4. Print all control and data dependency on the GUI.

5. End

The program dependency graph is used to calculate Type-3 and Type-4 clones. Control

and data dependent nodes are being calculated for the source files. PDG checks the

behavioral similarity between the files.

Algorithm 4. Smith –Waterman algorithm for Comparison(file 1, file 2)

Input: Two generated PDG files with data and control nodes

Output: Finds the actual clones exist or not

1. if (file 1= file 2)

2. Compare each local assignment of the files

3. if match found then print->actual clone

4. else if (file1 != file 2)

5. print-> no actual clones exist

6 .End

Here, Smith-Waterman algorithm is used for comparison purpose and to detect actual

clones by comparing generated PDG with potential clones.

 31

Figure 3.3 Clone detection by tokenization

3.3.6 Roadmap To Our Proposal

 32

Figure 3.4 Clone detection by PDG approach

 33

Figure 3.5 Phases involved in code clone detector tool

Two source files are fed as
input i.e. Adaption Phase

Preprocessing of file is
performed; Tokens and PDG is
generated for the source files

i.e. Transformation Phase

Smith waterman algorithm is
used for comparison i.e.

Comparison Phase

Generated PDG is compared
with potential clones to

validate them as actual clone
to calculate the final results

i.e. Calculation Phase

 34

CHAPTER 4

RESULTS AND DISCUSSION

The functioning of the proposed tool begins with Adaption Phase, i.e. by giving

either two Java or c++ code records as contribution with the assistance of the client. For

this reason the startup page of code clone Detector is made by utilizing Java frames. To

pick records with the help of client, Java FileChooser capacity is included which permit

choosing just .class documents for Java programs and for c++programs;it chooses .cpp

records. Figure 11 demonstrates the primary page which is the Netbeans IDE to run the

project. Then the next page, displays our cone detector tool, files are selected there and

then the event which pass the source document names to the function which produces

token which are utilized for recognition of potential clones and afterward Program

Dependence Graph for both the projects which are utilized for approval of potential

clones in a program.

Figure 4.1 Netbeans IDE

 35

This is the Netbeans IDE 7.4 version to open the project,first of all goto files,

create a new project and give the desired name and select Java, a new Java application

will be created; under the source packages we can open the projects to run the files.

Figure 4.2 Start-up page

This is the initial window of our clone detector tool where browses, language

selection, selected files and next buttons are given.

Figure 4.3 Browse files

 36

Bowse the files location which are to be detected and choose the language,files

will be shown below the window.

Figure 4.4 Select files

Select the files, which are displayed on Clone Detector Tool window.

Figure 4.5 Displaying Source Files

 37

By pressing the selected file button, source files will display in the same window,

click the next button for the further process.

Figure 4.6 Preprocessing window

This is the preprocessing window view.

Figure 4.7 Preprocessed files

 38

By clicking on preprocessing button; white-spaces, comments will be removed

and after that press tokenization button to start tokenization technique.

Figure 4.8 Tokenization window

 This is the Tokenization window view.

Figure 4.9 Caulate Tokens

Click on the calculate tokens button; token of file 1 and file 2 along with their line

numbers will generate,after that click on check potential clones button.

 39

Figure 4.10 Potential clones

File 1 and file 2 potential clones are generated using tokenization approach, after

that click on PDG approach for validating the potential clones.

Figure 4.11 Preprocessed files for PDG

In this window pain again preprocessed files are fetched to generate PDG

 40

Figure 4.12 PDG Window

This view of the window is for Program dependency graph technique.

Figure 4.13 Generated PDG

This window panel will display data nodes and control nodes generated by the

PDG technique for file 1 and file 2 and it will check whether logical similarity exist

between two files,and then press check actual clone button.

 41

Figure 4.14 Actual Clones

This window panel display result of actual clones of validating potential clones

which are generated by tokenization technique, Smith Waterman algorithm is working for

comparison.

Figure 4.15 Results

On result window, original files and clones of respective files are displayed with

the cloning percentage of the respective files and add, subtract percentage of lines are

also displayed of clone groups.

 42

4.1 RESULTS OF TRIALS

We have done trials with the existing and proposed system to recognize the

clones. The aftereffects of both methodologies have been tried on two Java source code

records and furthermore on the C++ code documents and their resultants are appearing in

table 9 and table 10.

The outcomes demonstrate that our proposed approach is superior to anything the

current one as far as parameters precision rate, recall, and accuracy rate values which are

gotten by utilizing the equation (7), (8) and (9) examined in the next segment. In Table 9

and Table 10:

 (TP)is a contraction for genuine positive, i.e. these are the real clones which are

distinguished by the device.

 (TN) is a contraction for genuine negative, i.e. these are the genuine clones which

are not distinguished by the apparatus.

 (FP)is a truncation for false positive, i.e. these are not the genuine clones, but

rather are recognized as clones by the instrument.

 (FN) is a shortened form for false negative, i.e. these are not the real clones and

furthermore the instrument didn't recognize these.

 (P) is the entirety of TP and FN.

 (N) is the total of FP and TN.

We have done trials on sixty files from which forty files are actual cloned files and

twenty are non cloned files.Some files are taken from Bellon’s data set which is for Java

files and others are sample files for testing the results of existing and proposed

techniques.

 43

Table 4.1 Results of existing technique

Existing technique Predicted Negative Predicted Positive

Negative Cases TN:16 FP: 4

Positive Cases FN: 10 TP: 30

Table 4.2 Results of proposed technique

Proposed technique Predicted Negative Predicted Positive

Negative Cases TN: 16 FP: 4

Positive Cases FN: 6 TP: 34

4.2 Execution Measures

For clone identification, the parameter precision, recall and accuracy are gotten

utilizing the conditions given beneath[26]:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 7

Recall = 𝑇𝑃
𝑃 (8)

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑃 + 𝑁 (9)

Utilizing the over four conditions we have looked at the execution of our

proposed approach and existing methodology in view of table 9 and table 10. The got

results are appearing in table 11.

 44

Table 4.3 Results comparison

Parameters to

compare

Existing Approach Proposed

Approach

Precision 0.88 0.89

Recall 0.75 0.85

Accuracy 0.76 0.83

Summary

We have done trials withbellon data set and on some sample files to calculate the

precision, recall and accuracy values. We haveseen that our tool is detecting morenumber

of clones as compared to the existing technique, so cloning percentage calculated by our

clone detector tool is more. Also addition i.e., no less than one clone section in new

Group is recently included and subtraction i.e.,no less than one clone section in old group

has changed or expelled, in this manner it doesn't show up in new group percentage from

one clone group [30]than the other clone group is also being detected by our tool.

 45

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION

This thesis report puts a light on all the types of clones and various techniques for

the detection of clones. We have also presented the reasons of cloning along with its pros

and cons and the process involved in detection of clones.We have presented a hybrid

technique that recognizes software code clones for Java and c++ codes on the basis of

token and program dependency graph based approaches.

The Program dependency graph procedure is utilized to discover potential clones

in the framework while measurements based strategy is utilized to check them as genuine

clones. As PDG conveys semantic data of framework, thus proposed device can

distinguish both syntactic and semantic comparative code clones. The proposed device

has discovered code clones just for projects written in object oriented languages. This

device experiences five stages amid its clone discovery life cycle.

The proposed approach distinguishes potential clones on the token-based match.

Potential clones are additionally contrasted utilizing a PDG-based approach with check

whether the potential clones identified utilizing token based examinations are really

clones or not. We have actualized the current and proposed systems as an instrument

written in Java. In light of the outcomes from this apparatus, we have watched that our

proposed technique is superior to existing one as far as parameters, for example,

precision, recall, accuracy„0.88, 0.89, „0.75, 0.85, „0.76, 0.83 individually to exist and

proposed strategy.

 46

5.2 FUTURE SCOPE

Since the last decade, there has been a wonderful contribution of numerous

researchers in the field of software cloning. This field has still a lot of scope for new

researchers to work upon code clone genealogies, investigating potential clones from the

actual clones, detecting type 4(Semantic) clones with more accuracy and precision,

refactoring of clones and of course the maintenance of a project which is the most costly

phase of SDLC.

Our method is fit for all types of clones, and the programming language is only fit

for ava and c++. However, the method is extended to another programming language and

detector types.Productivity of tool can be enhanced for type IV clones where the

rearrangement of control and data dependent proclamation is related. This tool can be

additionally upgraded by utilizing clones evacuation strategies subsequent to recognizing

real clones.

REFERENCES

[1] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic

review,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1165–1199, 2013.

[2] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, L. Bier, and S. Drive, “Clone

Detection Using Abstract Syntax Trees,” 1998.

[3] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach for

detecting duplicated code,” Proc. IEEE Int. Conf. Softw. Maint. - 1999 (ICSM’99).

'Software Maint. Bus. Chang. (Cat. No.99CB36360), no. c, pp. 109–118, 1999.

[4] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication in Source

Code,” SAS ’01 Proc. 8th Int. Symp. Static Anal., vol. 2126, pp. 40–56, 2001.

[5] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic detection

of function clones in a\nsoftware system using metrics,” Softw. Maint. 1996,

Proceedings., Int. Conf., pp. 244–253, 1996.

[6] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach,” Sci. Comput.

Program., vol. 74, no. 7, pp. 470–495, 2009.

[7] R. Tairas and J. Gray, “Increasing clone maintenance support by unifying clone

detection and refactoring activities,” Inf. Softw. Technol., vol. 54, no. 12, pp.

1297–1307, 2012.

[8] R. K.Saha, C. K. Roy, and K. A. Schneider, “Department of Computer

Sience,University of Saskatchewan,Canada{ ripon.saha, chanchal.roy,

kevin.schneider}@usask.ca,” in An automatic Framework for Extracting and

Classifying Near-Miss Clone Genealogies, 2011, pp. 293–302.

[9] D. Rattan, R. Bhatia, and M. Singh, Software clone detection : A systematic

review, vol. 55, no. 7. Elsevier B.V., 2013.

[10] Y. Chen and C. K. Roy, “Near-miss Software Clones in Open Source Games : An

Empirical Study,” pp. 1–7, 2014.

[11] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and K. Kontogiannis,

“Advanced clone-analysis to support object-oriented system refact oring,” pp. 98–

107, 2000.

[12] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source

code,” Proc. 16th Annu. Int. Conf. Autom. Softw. Eng. (ASE 2001), no. 0, pp. 107–

114, 2001.

[13] M. Sarkar, T. Mondal, S. Roy, and N. Mukherjee, “Resource requirement

prediction using clone detection technique,” Futur. Gener. Comput. Syst., vol. 29,

no. 4, pp. 936–952, 2013.

[14] B. S. Baker, “A Program for Identifying Duplicated Code,” Comput. Sci. Stat., vol.

24, pp. 49–57, 1992.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based

code clone detection system for large scale source code,” IEEE Trans. Softw. Eng.,

vol. 28, no. 7, pp. 654–670, 2002.

[16] J. Krinke, “Identifying Similar Code with Program Dependence Graphs,” 2001.

[17] M. Gabel, “Scalable Detection of Semantic Clones,” pp. 321–330, 2008.

[18] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software plagiarism

by program dependence graph analysis,” Proc. 12th ACM SIGKDD Int. Conf.

Knowl. Discov. data Min., pp. 872–881, 2006.

[19] M. Weiser, “Program slicing,” Proc. 5th Int. Conf. Softw. Eng., pp. 439–449, 1981.

[20] L. Jiang, G. Misherghi, and Z. Su, “D ECKARD : Scalable and Accurate Tree-

based Detection of Code Clones ∗,” no. 0520320, 2007.

[21] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench: Benchmarks for

Evaluating Bug Detection Tools,” Proc Work. Eval. Softw. Defect Detect. Tools,

no. 3, pp. 1–5, 2005.

[22] C. K. Roy, “Detection and Analysis of Near-Miss Software Clones,” pp. 447–450,

2009.

[23] G. M. K. Selim, K. C. Foo, and Y. Zou, “Enhancing source-based clone detection

using intermediate representation,” Proc. - Work. Conf. Reverse Eng. WCRE, pp.

227–236, 2010.

[24] A. Sheneamer and J. Kalita, “Code clone detection using coarse and fine-grained

hybrid approaches,” 2015 IEEE 7th Int. Conf. Intell. Comput. Inf. Syst. ICICIS

2015, pp. 472–480, 2016.

[25] M. Sarkar, S. Chudamani, S. Roy, and N. Mukherjee, “A hybrid clone detection

technique for estimation of resource requirements of a job,” Int. Conf. Adv.

Comput. Commun. Technol. ACCT, pp. 174–181, 2013.

[26] J. Bhagwan and K. Pramila, “Design and Analysis of a Hybrid Technique for Code

Clone Detection,” vol. 5, no. 11, pp. 380–385, 2016.

[27] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek, “Efficient

token based clone detection with flexible tokenization,” 6th Jt. Meet. Eur. Softw.

Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng. companion Pap. - ESEC-

FSE companion ’07, p. 513, 2007.

[28] M. S. Waterman, T. F. Smith, and W. A. Beyer, “Some biological sequence

metrics,” Adv. Math. (N. Y)., vol. 20, no. 3, pp. 367–387, 1976.

[29] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped code clone

detection with lightweight source code analysis,” IEEE Int. Conf. Progr. Compr.,

pp. 93–102, 2013.

[30] C. H. Wang, Y. Tu, L. P. Zhang, and D. S. Liu, “Extracting clone genealogies for

tracking code clone changes,” Int. J. Secur. its Appl., vol. 10, no. 3, pp. 21–30,

2016.

APPENDIX

Abbreviations

AST : Abstract Syntax Tree

FP: False Positive

FN: False Negative

PDG: Program Dependency Graph

SDLC: Software Development Lifecycle

TP: True Positive

TN: True Negative

