
i

SCRUTINIZE SOURCE CODE WITH THE INTENT

TO TARGET AND UNMASKING THE CODE

CLONES USING AUTOMATED TECHNIQUE.

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

MANJIT KAUR

11502632

Supervisor

BHAVNEESH SOHAL

School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

April 2017

ii

iii

ABSTRACT

Today in this modern era of science, technology has developed its roots deep into the

world, where most of the things are done with the help of automated tools and techniques

to do more work in less time and with great efficiency. This is the case with software

industry also. In software industries, a technique called software cloning has come into

existence. Software cloning has various broad aspects, out of them; the shadow of light is

thrown on one of the aspect called code cloning. In code cloning, some significant

quantity of code as desired by the user is taken from some pre-existing code and copied

into some another code. In short, it is a kind of copying or pasting of code where some

desired code is copied from one source and pasted into another source. The code in which

pasting is done is called the replica of original code. In other words, the code which

contains the replicated code is called the clone. It leads to the fast development of the

software systems. But despite of having so many boons like time saving technique, fast

development of software systems, reuse, etc.; it also has some drawbacks as well like bug

propagation, effect on maintenance, lack of originality ,plagiarism, effects software

evolution, etc. [25]

So to overcome the problems related to cloning, now a day’s clone detection has been an

active research area. Lot of researches based of this has already been conducted till date

to come up with efficient and effective clone detection techniques and tools to target code

clones. To enhance code detection, various clone removal techniques are also there on

which a parallel research work is going on along with clone detection. But the emphasis

of this proposal in purely based on clone detection and its techniques and tools.[25]

iv

DECLARATION STATEMENT

I hereby declare that the research work reported in the dissertation entitled "

SCRUTINIZE SOURCE CODE WITH THE INTENT TO TARGET AND

UNMASKING THE CODE CLONES USING AUTOMATED TECHNIQUE” in partial

fulfilment of the requirement for the award of Degree for Master of Technology in

Computer Science and Engineering at Lovely Professional University, Phagwara, Punjab

is an authentic work carried out under supervision of my research supervisor Mr.

Bhavneesh Sohal. I have not submitted this work elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with Lovely

Professional University’s Policy on plagiarism, intellectual property rights, and highest

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the

content of this dissertation represents authentic and honest research effort conducted, in

its entirety, by me. I am fully responsible for the contents of my dissertation work.

 Signature of Candidate

 Manjit Kaur

 R.No 11502632

v

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled

“SCRUTINIZE SOURCE CODE WITH THE INTENT TO TARGET AND

UNMASKING THE CODE CLONES USING AUTOMATED TECHNIQUE”,

submitted by Manjit Kaur at Lovely Professional University, Phagwara, India is a

bonafide record of her original work carried out under my supervision. This work has not

been submitted elsewhere for any other degree.

 Signature of Supervisor

 Bhavneesh Sohal

 Date:

Counter Signed by:

1) Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

2) Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: __________________

Date: ___________________

vi

ACKNOWLEDGEMENT

 I find myself highly blessed to get this opportunity to acknowledge all those

people who are directly or indirectly help me in my dissertation work. I would like to

extend my warm thanks towards all of them. With their help, cooperation and guidance

only, that today I am successfully able to come up with my proposal.

To start with, I would first like to thanks the almighty for his endless grace and

mercy upon me that always show me the way or ray of hope in my dark or tough times

during my dissertation work when I found it hard and facing difficulties, finding the best

proposal to be work upon. I am highly thankful to God for that entire he did for in the

past, doing in the present and will also does in the future.

I am highly grateful to Mr. Dalwinder Singh, Head of Department, School of

Computer Science and Engineering for giving me all the facilities that are needed for

successful completion of the thesis. I am also thankful to all other faculty members and

staff for their kind support.

Next I would like to thanks my guide Mr. Bhavneesh Sohal for giving me such an

interesting topic to be worked upon. My research journey in this field till date is really

knowledgeable and enjoyable.

Then I would like to extend my great thanks towards Ms. Sandeep Kaur for giving

me direction and advices on regular basis that how I should conduct my study in this

field. I would like to thanks her again for giving me her precious time.

Last but not the least,I would like to thanks my parents for all the hard work, they

did for me to make me to reach at this level.

vii

TABLE OF CONTENTS

CONTENTS PAGE NO.

Inner first page – Same as cover i

PAC form ii

Abstract iii

Declaration by the Scholar iv

Supervisor’s Certificate v

Acknowledgement vi

Table of Contents vii

List of Figures ix

List of Tables xi

CHAPTER 1 INTRODUCTION 1

 1.1 CLONING AND SOFTWARE CLONING 2

 1.2 CLONE TERMINOLOGIES 2

 1.3 REASON OF CLONING 3

 1.4 ADVANTAGES OF CLONING 3

 1.5 DISADVANTAGES OF CLONING 3

 1.6 TYPES OF CLONES 4

 1.7 CLONE DETECTION 5

 1.8 ADVANTAGES OF CLONE DETECTION 5

 1.9 STEPS IN CLONE DETECTION 5

 1.10 TECHNIQUES IN CLONE DETECTION 8

 1.11 CLONE DETECTION TOOLS 10

CHAPTER 2 LITERATURE SURVEY 12

 2.1 SURVEY ON METRIC BASED APPROACH 12

viii

 2.2 SURVEY ON TOKEN BASED APPROACH 16

 2.3 SURVEY ON HYBRID APPROACH 18

 2.4 SURVEY ON MULTIPLE LANGUAGE 21

CHAPTER 3 SCOPE OF STUDY 23

CHAPTER 4 PRESENT WORK 25

 4.1 PROBLEM FORMULATION 25

 4.2 OBJECTIVES OF STUDY 26

 4.3 RESEARCH METHODOLOGY 27

 4.3.1 METRIC APPROACH 28

 4.3.2 TOKEN APPROACH 30

CHAPTER 5 RESULTS & DISCUSSION 36

 5. 1 IMPLEMENTATION 36

 5.1.1 FOR JAVA LANGUAGE (TYPE 1 CLONE) 36

 5.1.2 FOR JAVA LANGUAGE (TYPE 2 CLONE) 41

 5.1.3 FOR JAVA LANGUAGE (TYPE 3 CLONE) 45

 5.1.4 FOR ASP.NET LANGUAGE (TYPE1 CLONES) 49

 5.1.5 FOR ASP.NET LANGUAGE (TYPE2 CLONES) 54

 5.1.6 FOR ASP.NET LANGUAGE (TYPE3 CLONES) 58

 5.2 RESULTS & DISCUSSIONS 62

 5.2.1 RESULTS BY METRIC BASED APPROACH 62

 5.2.2 RESULTS BY TOKEN BASED APPROACH 65

 5.2.3 EXISTING TECHNIQUE vs PROPOSED TECHNIQUE 66

CHAPTER 6 CONCLUSION & FUTURE SCOPE 67

REFERENCES 68

PAPER PUBLICATION 72

APPENDIX 73

ix

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 5.1 Clone Detector Tool 36

Figure 5.2 Input File chooser 37

Figure 5.3 Metric calculation for Java –Type1 clones 37

Figure 5.4 Metrics stored in excel 38

Figure 5.5 Matched parameters for Type1 clones 38

Figure 5.6 Potential clones 39

Figure 5.7 Token calculation 39

Figure 5.8 Suffix array execution 40

Figure 5.9 Type1 clones detected for Java 40

Figure 5.10 Clone detector Tool 41

Figure5.11 Input File Chooser 41

Figure 5.12 Metric calculation for Java –Type2 clones 42

Figure 5.13 Metrics stored in excel 42

Figure 5.14 Potential clones found for Matched parameters 43

Figure 5.15 Token calculation 43

Figure 5.16 Suffix Array execution 44

Figure 5.17 Type2 clones detected for Java 44

Figure 5.18 Input File chooser 45

Figure 5.19 Metric calculation for Java –Type3 clones 45

Figure 5.20 Metrics stored in excel 46

Figure 5.21 Matched parameters for Type 3 clones 46

Figure 5.22 Potential clones 47

Figure 5.23 Token calculation 47

Figure 5.24 Suffix array execution 48

Figure 5.25 Type3 clones detected for Java 48

Figure 5.26 Clone Detector Tool 49

Figure 5.27 Input File chooser 49

Figure 5.28 Metric calculation for Asp.net –Type1 clones 50

Figure 5.29 Metrics stored in excel 50

Figure 5.30 Matched parameters for Type 1 clones 51

Figure 5.31 Potential clones 51

x

Figure 5.32 Token calculation window 52

Figure 5.33 Token calculation 52

Figure 5.34 Suffix array execution 53

Figure 5.35 Type1 clones detected for Asp.net 53

Figure 5.36 Input File chooser 54

Figure 5.37 Metric calculation for Asp.net –Type2 clones 54

Figure 5.38 Metrics stored in excel 55

Figure 5.39 Matched parameters for Type 2 clones 55

Figure 5.40 Potential clones 56

Figure 5.41 Token calculation 56

Figure 5.42 Suffix array execution 57

Figure 5.43 Type2 clones detected for Asp.net 57

Figure 5.44 Input File chooser 58

Figure 5.45 Metric calculation for Asp.net –Type3 clones 58

Figure 5.46 Metrics stored in excel 59

Figure 5.47 Matched parameters for Type 3 clones 59

Figure 5.48 Potential clones 60

Figure 5.49 Token calculation 60

Figure 5.50 Suffix array execution 61

Figure 5.51 Type3 clones detected for Asp.net 61

xi

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 Textual Approaches 10

Table 1.2 Lexical Approaches 10

Table 1.3 Semantic Approaches 11

Table 1.4 Syntactical Approaches 11

Table 2.1 Summary of Metric based Approaches 15

Table 2.2 Summary of Token based Approaches 17

Table 2.3 Summary of Hybrid based Approaches 20

Table 4.1 Token ID Assignment 31

Table 4.2 Example of Tokenization 32

Table 4.3 Example of Manually computed clones 33

Table 4.4 Example of automated computation of clones using Suffix array 33

Table 5.1 Class level Metrics for tested programs 62

Table 5.2 Function level Metrics of tested programs 63

Table 5.3 Results by Token based Approach 65

Table 5.4 Existing technique versus proposed enhanced technique 66

xii

Checklist for Dissertation-III Supervisor

Name: ___________________________ UID: ________ Domain: _____

Registration No: ____________Name of student:__________________

Title of Dissertation:

 Front pages are as per the format.

 Topic on the PAC form and title page are same.

 Front page numbers are in roman and for report, it is like 1, 2, 3…….

 TOC, List of Figures, etc. are matching with the actual page numbers in

the report.

 Font, Font Size, Margins, line Spacing, Alignment, etc. are as per the

guidelines.

 Color prints are used for images and implementation snapshots.

 Captions and citations are provided for all the figures, tables etc. and are

numbered and center aligned.

 All the equations used in the report are numbered.

 Citations are provided for all the references.

 Objectives are clearly defined.

 Minimum total number of pages of report is 50.

 Minimum references in report are 30.

Here by, I declare that I had verified the above mentioned points in the final

dissertation report.

Signature of Supervisor with UID

1

 CHAPTER 1

 INTRODUCTION

Modern world is the era of science and technology due to which many new technologies

have been introduced at different times. Internet is one of the results of this. Today lot of

things are managed online via internet with the help of automated tools, programs,

techniques; which surprised people that how things were carried on, when there was no

internet. Before this invent, people focused more on reading books, magazines,

newspaper, etc to gain knowledge. But now people shift their focus towards the internet to

fetch any kind of knowledge. Now wikipedia’s, journals and websites are available on

internet which provides good and rich amount of knowledge to the people [25]. In a

nutshell, internet provides the people with ample of opportunities to do work in more

sophisticated manner. It can be said to be an ocean of new technologies, knowledge and

many more, to learn many new things out of it. But these all are the one side of coin that

how the introduction of internet and advancements related to it, opens new opportunities

for people. Now looking at the other side of the coin, these new advancements of internet

make people tedious and weary. People now are too much dependent on internet that they

start copying and pasting the things to accomplish their tasks instead of learning or

grasping them in mind. They are not brainstorming their minds. According to software

and technology terms, this duplicity achieved by making copying or pasting of things

which could lead to lack of originality is referred to as “cloning”. This copying of codes

will lead to copyright infringements of original work of the authorized persons. This has

been a question from many years in the mind of researchers who dedicated their research

in this field of cloning that whether cloning is a legal or an illegal exercise. Then the

answer to this is cloning is not illegal if it is done with the permission of authorized

person. For instance, reusing the code in the software development is an efficient method

to reuse the design or requirements; which will save lot of time and cut costs in

developing large software products. So to reuse the required things, the owner must be

asked about copying his code. In another case also, cloning can’t be illegal if content

present on some website or on some journal is for free, but that too leads to the absence of

2

one’s originality and creativity. Cloning imparts many cons despite of having many pros,

which can be easily justifiable to the fact that “Every rose has its thorns”.[25]

1.1 CLONING AND SOFTWARE CLONING

When we think about the cloning, the concept or idea that comes to our mind is

duplication of something. It creates the picture of two things in which one thing is same or

similar with respect to the other thing in the one way or the other, which we can said to

this process as a “cloning”[25]. According to software and technology terms, this

duplicity or similarity can be achieved by making copying or pasting of things which

could lead to lack of originality and introduction of duplicity is referred to as “software

cloning”. In software engineering terms, this cloning can be achieved in two ways: Model

Cloning and Code Cloning. Model cloning deals with cloning of design, structure or

model whereas Code cloning deals with the cloning of part or whole of the source code of

the software. Our main aim or emphasis lies fully on code cloning.[25]

1.2 CLONE TERMINOLOGIES

Clone terminologies give the concise explanation of the meaning of some clone

definitions or phrases. [39][25]

1. Code Fragment- A simple code snippet that comprises of some lines of code is

referred to as code fragment. It can be acknowledged through name of file and line

number.

2. Code Clones- These are the unit of source code as a part or as a whole which are the

copied or duplicate form of other code.

3. Clone Pairs- The two parts of the code are said to be form the clone pairs if on the

basis of some parameters of similarity, they are found to be same. Both the pieces of code

should have something in common or similar in order to form the clone pairs.

4. Clone Class-When multiple code parts other than just two parts, are similar with each

other, then that forms a block of clones known as clone class.

5. Clone class Family-It groups all clone classes bearing same or similar area .It is

referred to as clone class family.

3

1.3 REASON OF CLONING

There are various reasons of cloning such as: - [10][39][25]

1. Reuse- It is an efficient method to reuse the design code and its requirements. Hence,

it saves time and reduces cost.

2. Templates- Some programming paradigms have encouraged the use of templates.

3. Coincidence- Sometimes different developers unintentionally write the same piece of

codes without knowing other’s code.

4. Large codes- Fear of writing large codes also encourage programmers to copy the

code.

5. Complexity of the system- Difficulty in understanding large systems also promotes

copying the existing functionality and logic.

1.4 ADVANTAGES OF CLONING

Cloning has certain advantages which motivate the people to follow this process.

[10][39][25]

 Lack of Knowledge about language- Some programmers doing well at one language

while not so good in others. This is due to the lack of knowledge of the programming

language.

 On-time software development- In software development, scheduling of tasks to each

developer has been assigned to complete the work on time or to meet the deadlines.

 Fast method- It is considered as a fast method for developing software systems.

1.5 DISADVANTAGES OF CLONING

Cloning has certain disadvantages also which refrains the people to follow this process.

[10][39] [25]

 Effect on maintainability- Cloning has an adverse effect on maintainability as it invites

more maintenance cost.

 Bug -propagation- It also leads to bug propagation from original code to the copied one.

 Effect software evolution- It becomes hurdle for better evolution of software systems as

it has bad impact on designing and many other areas of software.

4

 Lack of originality- Often developers copy some part of code from some websites and

paste them in their source code. This process of copying and pasting results in loss of

originality.

1.6 TYPES OF CLONES

There are four types of clones related to code cloning namely exact clone, parameterized

or syntax clone, near-miss clone and semantic clone.[3][39][25]

1. Exact clone- Type1 clone

2. Parameterized clone- Type2 clone

3. Near-miss clone-Type3 clone

4. Semantic clone-Type4 clone

 TYPE 1 clone (Exact clone) - Exact clones are the clones which look like an original

code. These clones can be easily detected with the help of simplest clone detection

technique like text based, token based, etc. The difference comes only in the blank

spaces or in the comments. These can be easily detected by text based techniques and

tools like SDD[3][39], LCS [3] , Dup for string matching[3], etc.

 TYPE 2 clone (Renamed/parameterized clone) - Renamed clones are the clones

where variations come in the name of literals, keywords, variables, etc. These clones

can be detected by techniques called token based, metric based, etc. Various tools are

also implemented by developers to detect these types of clones. These tools are CLAN

[29], MCD-Finder [23][24], etc.

 TYPE 3 clone (Near-miss clone) - In these types of clones, changes persist in code

in the form of addition, deletion and modification of statements. These clones can be

detected by the techniques called tree based and tools called Deckard [21], CloneDr

[3][10], etc. These clones can be easily detected by tree based techniques, where sub

trees of AST are being compared with each other.

 TYPE 4 clone (Semantic clone) - In these clones, function or behavior of the clone

remains same but syntax or coding of program is different. These types of clones are

detected by using graph based techniques and tools like Scorpio [3][10],

Duplix[3][10], etc.

5

1.7 CLONE DETECTION

It is the process of finding or detecting clones in code. It is used to find clone pairs in

programs based on similarity. There are various advantages of finding clones so as to

detect the bugs at the earlier stage. There are various steps that are involved in clone

detection like preprocessing, transformation, match detection, formatting, etc. In addition

to this, many techniques are used which are applied to detect the clones efficiently with

the help of tools [3][10] such as cloneDr, Nicad, Deckard, CC-Finder [10], etc. [25]

1.8 ADVANTAGES OF CLONE DETECTION

Clone detection plays an important role in detecting code clones. [10][39] [25]

 Software analysis- It is very useful for software analysis and understanding of software

evolution.

 Bug Detection- It finds bugs in the program so that they are not propagated from one

program to another.

 Understand ability- It enhances program understand ability and reduces program size.

 Plagiarism Detection- It is having biggest advantage in detecting plagiarism in order to

protect copyrighted content from being copied.

1.9 STEPS IN CLONE DETECTION

Clone Detection process is a series of steps that are taken in order to unmask or detect

code clones. These series of steps comprises of [10] [25]:-

1. Pre-processing

2. Transform

3. Match Detection

4. Formatting

5. Post Processing

6. Aggregation

6

1 . Pre-processing

1.1 Remove unnecessary parts- All the source code which seems to be irrelevant

should be discarded in the comparison phase. For e.g., if the tool is not language

independent, then different languages needed to be separated from code like

separating sql from java code [10] [25].

1.2 Determine source units- The remaining code obtained after removing the

uninteresting code will be bifurcated into a set of disjoint fragments and these

fragments are known by the name “source units”. [10] [25]

1.3 Determine comparison units/granularity-Based on the comparison technique used

by the tool, these source units are further divided into much smaller units. [10]

[25]

2 . Transform

It converts source units which are needed for comparison, into some intermediate state.

All the techniques, except text based, require a transformation of the source units. This

transformation is also referred to as ‘extraction’ according reverse engineering

community. This transformation can be achieved in two ways: extraction and

normalization. [10] [25]

2.1 Extraction [10]- It is further bifurcated into 3 sub-categories namely tokenization,

parsing, control and data flow analysis.

2.1.1 Tokenization[10] [25]- In this approach, source units are converted into

tokens based on lexical protocols or procedures and these tokens are

arranged in token sequences, after the removal of blank spaces and

comments, for comparison.

2.1.2 Parsing[10] [25]- Here, entire source code is parsed to generate an AST

(Abstract Syntax Tree) and then source units from AST’s which are

needed are shown in the form of sub trees. To figure out clones, these sub

trees need to be compared.

2.1.3 Control and data flow analysis[10] [25]- In this approach, PDG (Program

Dependency Graph) generated tools create PDG graphs in which nodes

7

represent statements whereas edges represent data and control

dependency. To lay out a comparison, sub graphs of PDG’s are compared.

2.2 Normalization [10] [25] - This is an optional step to eliminate differences based

on comments, whitespaces, etc. This can be achieved in many ways like by

normalizing the identifiers where all identifiers in source code are replaced by

the single identifier, pretty-printing, etc.

3. Match Detection

In this phase, transformed units obtained from the transformation phase are passed into

some comparison algorithm and then compared to find a proper match. The output

contains a list of matches in the transformed code which represents the clone relations in

the form of clone pairs, clone classes and clone family. Certain comparison approaches

include hashing, suffix trees, etc. [10] [25]

4. Formatting

In match detection, clone pair list is obtained for transformed code but in this phase, the

list is further converted into another pair of list that matches with the original code base.

[10] [25]

5. Post Processing

In this phase, clones are filtered or ranked using manual analysis or automated heuristics.

In manual analysis, false positive clones are filtered out by a human expert. Automated

heuristics is based on length, diversity,

Frequency and other characteristics of clones in order to rank or filter out clone

candidates automatically.[10] [25]

6. Aggregation

This is the last step of the clone detection process. It refers to proper analysis and data

contraction. The detected clone pairs are combined to form clone classes and clone

family.[10] [25]

8

1.10 TECHNIQUES IN CLONE DETECTION

Following are the techniques available for clone detection. [10][39] [25]

1. Text Based

2. Graph Based

3. Metric Based

4. Token Based

5. Tree Based

6. Hybrid

1. Text Based [10] [25]- This technique compares two code fragments line by line. This

technique is only for Type 1 clones. It doesn’t consider any renaming of variables and

any syntactical or semantically changes. It provides high accuracy. But it is not highly

efficient to detect any other kinds of clones. Many researchers come up with new tools

and technologies like Johnson et al. proposed a fingerprinting technique for detecting text

based clone fragments. Another tool is DUPLOC [10] which is devised by Ducasse et al.

It is a language independent tool which requires no parsing of source code i.e. it is

directly imposed on source code to detect clones. Similar Data Detection (SDD)[3] tool

detects clones in systems of large size.

2. Graph Based [8][10] [25]- This technique uses program dependency graph (PDG). It

is good for detecting semantically similar clones. Semantically similar clones are those

clones which are syntactically different but show similar behavior or perform same

function. In other words, it can detect type 3 and type 4 clones efficiently. PDG are

directed graph which determines two types of dependencies namely data dependency and

control dependency which exists between statements of the source code. Tools under this

technique are Duplix, Scorpio [3], etc. Duplix tool is proposed by Krinke et al. It finds

maximum similar sub graphs from the transformed source code. Scorpio is stated by

Higo and Kusumoto et al [3]. In this tool, two way slicing is introduced i.e. forward

slicing and backward slicing. If clone is not detected in the forward slicing, it can be

detected in backward slicing. There is another tool GPLAG [3]which is proposed by Liu

et al. It is a PDG based plagiarism detection tool and algorithm on the basis of program

dependence.

9

3. Metric Based [25] - It is a straight forward technique. There are various types of

metrics namely class, object-oriented, layout, method, control, etc.[8][10][24]. All these

types follow a different metrics. Metric based approach is more scalable technique and

gives accurate results for large software systems. It contains structural information only.

So it is good for finding syntactic clones i.e. Type 1, Type 2 and Type 3 clones. CLAN

[20] is a tool advocated by Mayrand et al. In this technique, AST of a source code can be

collected to compare metrics based on it. There is another similar technique introduced

by Kontogiannis et al. that applies dynamic programming on metrics. MCD-FINDER

[23][24] is proposed by perumal et al. In this technique, Fingerprinting approach is used

for clone detection in source code.

4. Token Based [25]- In this technique, there is a formation of lexical tokens

[8][10][24]. It is good for detecting type 1 and type 2 clones. It gives fast response and is

considered to be more efficient as compared to text based but also gives many false

positives. It extracts tokens out of the source code with the help of lexical analysis and

based on this token sequence is formed. There is a method called “functor” that maintains

the order of tokens. Tool called CP-Miner [15] is based on data mining approach. It

makes use of frequent item set mining which is helpful in bugs and structural clone

detection. Likewise, CC-Finder [43][35] tool devised by Kamiya et al. is used to find

identical subsequences with suffix matching algorithm. It detects clones in languages like

C, C++, Java, COBOL, etc. Similarly, a tool which is known as LSC-Miner [37] detects

clones in large source codes. Basically, it is a multilinguistic tool that is used to detect

clones in more than one language. It is implemented in VisualBasic.Net.

5. Tree Based [8][10] [25]- This technique is based on Abstract Syntax Tree (AST)

which is obtained after converting the source fragments into some intermediate form. It is

efficient for detecting type 1, type 2 and type 3. It is a heavy weight technique and

requires a sub tree comparison. Under this technique, various tools and methods are

proposed by the researchers to detect clones that fall under type 1, 2 and 3 categories. A

popular tool called CLONEDR [3] is used to fetch near miss clones. A tool called

DECKARD [21] is more scalable and accurate tool than any other tool. It is a language

independent tool which is proposed by Ling Xiao Jiang.

10

6. Hybrid [25]- This technique is the combination of various other techniques like tree,

text, token, metric, graph [8][10][23]. A tool named HCDETECTOR merges PDG

based technique and metrics based technique. It only works for java language and does its

execution on java byte code (.class) which is the intermediate stage of java source code

(.java), rather than on original code itself. Another hybrid technique [23] uses the

combination of metrics and token based approach. The tool used in the technique MCD-

Finder and CC-Finder.

1.11 CLONE DETECTION TOOLS

Given below are the clone detection tools. Although there lot many tools available for

this purpose; out of those few are discussed below [3] [25]:-

Table 1.1: Textual Approaches

Tool Comparison Method Complexity Clone Type

Dup Suffix-tree O(n+m) Type1,Type2

Duploc Dynamic Pattern Matching O(n2) Type1,Type2

Nicad LCS

O(n2)

Type1,Type2, Type3

SDD N-neighbor distance O(n) Type1,Type2, Type3

Table 1.2: Lexical Approaches

Tool Comparison

Method

Complexity Clone Type

CCFinder Suffix-tree based

On token matching

O(n) where n is

size
Type1,Type2

CP-Miner Frequent

subsequence

mining

O(n2) where n is

number of code

lines

Type1,Type2

FRISC Suffix array N/A Type1,Type2,Type3

11

Table1. 3: Semantic Approaches

Tool Comparison Method Complexity Clone Type

Gplag Isomorphic PDG

Subgraph matching

Algorithm

NP-Complete Type1,Type2,Type3

Funaro et.al Texual comparison N/A Type1,Type2,Type3

Table 1.4: Syntactical Approaches

Tool Comparison Method Complexity Clone Type

CloneDr Tree matching

Technique

O(n) where n is number

of AST nodes

Type1,Type2

Mayrand et.al 21 function metrics Polynomial complexity Type1,Type2,Type3

Kodhai et.al Metrics Textual comparison Type1,Type2

Abdul-El-

Hafiz, et.al

Metrics Data mining clustering

algorithm

Type1,Type2,Type3

12

 CHAPTER 2

 LITERATURE SURVEY

In this chapter literature review related to clone detection techniques which is given by

different researchers in this field of study has been discussed. Many of them started

theirjourney in this field of research by just giving review or survey related to discussions

based on cloning or clone detection, impact of cloning practices on software, clone

detection techniques and tools, their comparison, etc. While others come up with their

proposals along with their implementations, which could make this field more interesting

and active field for research .In this chapter, literature review based on different

approaches of clone detection such as token based, metric based, hybrid and research

based on multi-language clone detection have been discussed. [25]

 In one of the survey or review given by Dhavleesh Rattan et.al [10] in theyear 2013,

they have made a systematic review in this field of clone detection. Their systematic

review helps many researchers who want to go for research in this field, to learn more

about cloning in software projects, its pros and cons, types of clones found in source

codes, clone detection process, its advantages, techniques used in clone detection, tools,

etc. This paper acts as a base for further study in this area of cloning and clone detection.

 Another survey is given by Abdullah Sheneamer [3] in the year 2016. This survey is

based on clone detection techniques where a tool, techniques and their comparison with

each other has been discussed. A proper survey has been given about each tool and

technique. Moreover, all the related techniques which are already proposed by the

researchers in this field have also discussed. Clone detection process and categories are

also discussed in detail.

2.1 SURVEY ON METRIC BASED APPROACH

 Metric based approach is more scalable technique and gives accurate results for large

software systems[3][10]. It contains structural information only. So it is good for finding

syntactic clones i.e. Type 1, Type 2 and Type 3 clones. Moreover, it is a straight forward

13

technique. There are various types of metrics namely class, object-oriented, layout,

method, control, etc. Many proposals related with this, have been proposed by different

researchers at different times.

 Sushma et.al [42] in the year 2016 gives another proposal based on this technique.

They try to impose the metric based approach to detect module or method level clones

only. They implemented their tool named JSCCD (JS Code Clone Detector) in java

language and this tool could detect the code clones in java language only. They used 7

metrics in their proposed technique. Their technique can found the type1 and type2 clones.

 Sukhpreet Kaur et.al [41] has given a proposal in the year 2015. In their proposal

Object-oriented metrics have been taken for carrying out the experiment on clone

detection. In that metrics like DIT, NOC, WMC, LCOM, etc are taken.

 Kanika Raheja [24] proposed a metric based technique in the year 2014 where a tool

named MCD-Finder has been taken to calculate the metrics in java program. In this,

instead of applying metrics on direct java code or any other transformed code, it uses

java byte code for a metrics to be applied on. Moreover, java byte code is platform

independent and represents the unified structure of the code. This technique was also

able to detect some semantic clones. In the proposed methodology, this technique was

used independently without any combination with other techniques. In this, a class level

metric and a function level metric has been taken out.

 K. Vidhya et.al [22] gives a proposal in 2014 where they detected the higher level

clones such as file clones, directory clones, etc. between two object oriented languages

C++ and Java. For implementing their technique they have used metric based technique.

In this approach Metric based technique has been used twice. They first applied metrics

on methods and then later on a file.

 Geetika et.al [13] proposed a Metric based technique in year 2014 which can detects

15 Metrics in all. The implementation of the tool was formulated in PHP language. The

tool accepts only .csv (comma separated values) files. In their proposed technique, a File

level Metrics and Method level Metrics have been computed.

14

 Salwa K. Abd-El-Hafiz [2] gives another proposal in 2012 regarding the Metric

based approach. He uses this technique of metrics with data mining concept. In this

approach first the metrics were calculated for all the functions and then on the basis of

that, a popular data mining clustering algorithm called fractal clustering has been used to

make small sized clusters. These small sized clusters were built or implemented on the

basis of similar metric values i.e. all the similar or same metrics were put together into

the one cluster. These clusters were thereafter used to formulate clone classes.

 Zhu o LI et.al [46] advocated a proposal in 2010 in which detection of clones can be

found with the help of metric space based technique. Metric space is a set where definition

of distance between elements is defined within the set. For similarity measures, this

technique uses distance within metric space. This technique is an advanced version of

metric based technique. It uses the parameters of scalability, accuracy and flexibility to

judge the performance of the system.

 Doaa M. Shawky et.al [11] gives another proposal in 2010. In their proposal, they

used all possible permutations and combinations of metrics in a sequential order to form

the clusters having the highest similarity measure within them. They concluded that using

the optimal sequence of metrics, they got 100% precision. They also concluded that if

there is a ranking function that can assign weights to the metrics then it can increase the

precision of clone detection in metric based technique.

 Ettore Merlo [29] advocated other proposal in 2007 based on metric technique, detects

plagiarism in university projects. In his technique, he uses CLAN tool which is used to

calculate metrics and then creates the clusters to measure the cloning ratio and cloning

percentage. He concluded that CLAN is a small memory, fast, accurate but conservative

tool. Also it is a robust tool in terms of parsing and analyzing the code. It has good

performance in relation to the speed.

 Jean Mayrand et.al[20] in theyear 1996 gives a proposal where 21 metrics are used

for automatically detecting duplicate and near-duplicate function clones in large software

systems. The tool used in this technique to fetch metrics is popularly named as Datrix.

This tool was considered useful in improving the maintainability of the system by

15

removing and managing the source code of the system by removing the functional

clones. They carried out the comparison for detecting functional clones on the basis of 4

metrics or parameters namely name of the functions, Layout, Expression and control

flow. They had taken 5 layout metrics, 5 expression metrics and 11 control flow metrics.

 With the proposed techniques discussed above, the use and application of the metric

based technique has not come to an end. Apart from the above discussed metrics such as

method, layout, control, class and object oriented level metrics, the various other metrics

such as product metrics and process level metrics can also be taken into consideration.

Table 2.1: Summary of Metric based Approaches

Year Name of Author Type of Metrics/scope No of Metric

Used/Language

Tool

2016 Sushma et.al Method level Metrics 7Metrics /java JSCCD

2015 Sukhpreet Kaur Object-oriented Metrics

2014 Geetika File level & Method level 15 PHP

2014 Kanika Raheja Metrics from

Transformed code

14Metrics/ java MCD-Finder

2012 Abd-El-Hafiz Function level Metrics Data mining

2010 Zhu o LI et.al Metric space

 Algorithm

2007 Ettore Merlo Detects Plagiarism in

 university projects.

 CLAN tool

1996 Jean Mayrand Detect functional clones 21 Datrix

16

2.2 SURVEY ON TOKEN BASED APPROACH

This is a technique where source code needs to be converted into sequence of tokens

with the help of lexical analysis as detection of clones with this method cannot be

possible without the transformation of source code into lexical tokens[3][10]. These

tokens represent the transformed state of source code on which matching algorithm has

been applied. Different proposals are proposed by many researchers with novel or

enhanced techniques.

 Rajnish Kumar [33] proposed a technique in 2014 in which he detects the clones with

the help of program slicing. In that they get the program slices from the source code and

then retrieve the tokens corresponding to that program slices. In the end they compare

these tokens to get the cloned code in the source code. In their technique, they also

worked for the detection of non-contiguous clones. The aim of their proposal is to detect

the type1, type2 and type3 clones.

 Qing Qing Shi et.al [32] proposed a technique in the year 2013.They implemented a

tool named SaCD which has efficiently detects clones in the languages named C, C++ and

java. In the proposed technique, a suffix array algorithm has been used in order to detect

clones.

 Saif Ur Rehman and Kamran Khan [37] proposes a technique in 2012 where they take

some source code whose clone detection they want to found and then transformed that

source code into tokens which would be stored in some two dimensional array. For

comparison they assign some hash value to these tokens and compare the hash values to

detect clones. They implemented their technique in prototype tool called LSC-Miner

which detects code clone in large source code written in multiple languages.

 Yang Yuan et.al [44] proposes another technique based on this approach in 2012. This

technique makes use of Boreas tool. This tool uses a novel counting based characteristic-

matrix for pattern representation. In the proposal this technique has compared with other

tool named Deckard. They concluded that Boreas can detect the clone at a faster rate

because of the fact that it uses two similarity functions i.e. Cosine similarity function and

Proportional similarity function.

17

 Khurram Zeeshan Haider et.al [26] gives a proposal in 2010. They main aim of their

proposal was to detect Plagiarism in source code. To accomplish this, they use a greedy

string tiling algorithm for finding Plagiarism. They conduct their implementation in two

phases. In first phase, parsing of source code and pre-tokenization has been conducted to

get tokens and then in the second phase greedy string tiling algorithm has been composed.

 Hamid Abdul Basit [15] gives a technique in 2009. They use the concept of Data

Mining to accomplish their implementation. Their aim was to detect higher level clones in

software. They used the tool named clone Miner that implements their technique. They

have conducted certain case studies to assess the scalability and usefulness of their

proposed technique. The tool has written in c++ and has its own token based simple

comparison algorithm. This tool uses the concept of FIM (Frequent itemset mining).

 Harjot Kaur and Manpreet Kaur [16] proposed a technique in 2014. In their technique,

They tried to detect clones in class diagrams. For that they first converted the class

diagrams into XML format.After obtaining XML format, tokens are applied on XML

format.Then these tokens are compared with the help of suffix array algorithm.

 Hiroaki Murakami [18] proposed a new methodology in 2012 in order to improve the

existing token based techniques.For that Folding repeated instructions mechanism is use at

the preprocessing step to standardized the repeated instructions in the source code. Then

suffix array based algorithm is used to compare the tokens in order to achieve code clones.

Table 2.2: Summary of Token based Approaches

Year Author Tool/Technique/Language

2014 Rajnish Kumar Program Slicing

2014 Harjot Kaur Suffix array

2013 Qing Qing Shi Suffix array

2012 Saif Ur Rehman LSC-Miner/ Multiple Language

18

2012 Yang Yuan et.al Boreas

2010 Khurram-Zeeshan Haider Greedy String Tiling Algorithm

2010 Hamid Abdul Basit Data Mining(FIM)/Clone Miner

2.3 SURVEY ON HYBRID APPROACH

Hybrid approaches are the combinations of techniques such as metric, token, graph, etc.

Various researchers come up with the proposals where this approach has been satisfied.

 Aritra Ghosh et.al[5] proposed a technique in 2017 with hybrid combination of Graph

and Metric based techniques. The size of the metrics in the proposed technique is 13 and

the types of Metrics included are control flow metrics, class metrics and Function Metrics.

In the proposed technique the Metric based technique has been applied at the secondary

step whereas this technique has been applied even at the preliminary step also by most of

the proposed techniques. This technique is able to found the clones in the java language

only.

 Jai Bhagwan et.al[19] comes up with the proposed technique in the year 2016 which

comprises of the combination of Metric based and text based technique. A total of 11

Metrics have been computed in the technique. The technique in order to improve the

results uses the Levenshtein Distance. In this technique a Metric based technique has been

implemented at the first step and then Textual based comparison has been laid on. The

implementation was carried on the tool called Netbeans.

 Deepali et.al[9] in the year 2016 comes up with the proposal which consists of the

hybrid combination of Metric and Token based technique. The no of metrics the proposed

technique has computed are 15 and these metrics were calculated with the help of the tool

called Source Monitor. The Token technique uses the Hash algorithm to compute the

tokens efficiently.

19

 Muneer Ahmad et.al [30] proposed a technique in 2016 in which they used the

combination of Metric and text based techniques. They have used 10 metrics for detecting

potential clones and then applied text based string matching algorithm to verify that

whether the detected potential clones are the actual clones or not. The platform they have

used to carry out their implementation was Netbeans and the implementation was carried

in java language.

 Manpreet Kaur et.al [28] uses this hybrid technique in the year 2015 with the

combination of metrics and Text based. In their proposal they have detected type1, type2

and type3 clones efficiently. In their proposed technique they have applied metric based

approach on the functions or methods which they obtained from source code. Their

proposed technique could detect clones in C++ language only. To conduct their

experiment they have used Visual Studio 2010 and .Net framework version 4.0.

 Egambaram Kodhai[12] proposes a technique in 2014 where the tool called Clone

Manager is used to detect clones in languages written in c and java. The implementation

of tool has itself done in java language. To make it a light weight hybrid, this technique

was a combination of metric and text based technique. A total of 16 metrics have been

used in their proposed technique. To check the results, the tool is checked against Bellon’s

dataset.

 Surbhi Sonika[39] in the year 2014 proposes a technique comprises of the

combination of graph based and metrics based. The tool named HCDetector has been used

here for graph based technique. This proposed technique detects clones only for java

language and the matching algorithm works only on java byte code. Moreover, java byte

code is platform independent and represents the unified structure of the code. Here graph

based technique has implemented as a preliminary step to detect the potential clones and

then metric based technique has been applied to found out the actual clones.

 Himanshu et.al [17] gives the technique in 2014 which was a combined weighted

approach bearing combinations of text analysis, token analysis and statistical analysis. The

distinguishing ground that makes this hybrid technique different from other hybrid

20

techniques is that it assigns a weight to every approach while in other approaches no

weight mechanisms are used with the approaches.

 Akshat Agrawal [4] gives another hybrid approach in the year 2013 which was be

formed by the combination of token based and text based approaches. This approach was

given by. Their main aim behind this proposal was to overcome the problem encountered in

the Boreas tool which was not able to detect type 3 clones. Generally code clones of type3

are not detected by token approach and only type1 and type2 clones are detected by this

approach so they used text based approach in combination with token approach so as to

detect type 3 clones as well. Their proposed technique was able to detect clones in C

language only.

 Kanika Raheja [23] has given a technique in 2013 which is composed of metric based

and token based approach. The proposed technique is used to detect clones only in java

language. The comparison has been performed directly on java byte code rather than on any

other transformed code because java bytecode represents the unified state and moreover it is

a platform independent. In this proposed technique a total of 14 metrics have been used. For

calculating the metrics a tool named MCD-Finder has used and for a token based approach a

tool named CC-Finder has been used. The metric based approach has been used as a

preliminary step to detect the potential clones and later on token based approach has been

applied to calculate the actual clones.

 Yogita Sharma[38] in the year 2011 has given a proposal where hybrid technique with

the combination of metric and text based approach has been proposed. In that 34 metric

values are counted and then text based approach has been applied to obtain actual results.

Table 2.3: Summary of Hybrid Approaches

Year Author First Approach/

Tool/Technique

Second Approach

/Tool/Technique

Language/tool

2017 Aritra Ghosh Graph Metric(13) Java

2016 Jai Bhagwan Metric(size-11) Text Netbeans

21

2016 Deepali Metric(size-15) Token HashAlgorithm

2016 Muneer Ahmad et.al Metric(size-10) Text

2015 Manpreet Kaur et.al Metric Text C++

2014 Egambaram Kodhai Metric(size-16) Text C, Java

2014 Surbhi Sonika Graph/HCDetector Metric Java

2013 Akshat Agrawal Token Text C

2011 Kanika Raheja Metric(MCDFinder) Token(CCFinder) Java

2.4 SURVEY ON MULTIPLE LANGUAGE

There are so many studies which show that many researchers come up with the proposals

where clone detection can be initiated or performed on multiple languages. Detection of

clones on multiple languages makes it language independent.

 Muneer Ahmad et.al [30] proposed a technique which was able to detect clones in

object oriented and platform independent language java along with web based language

such as JSP (Java Server Pages), asp.net, PHP and html. Moreover this is a hybrid

technique based on the combination of metric based and text based approaches.

 K. Vidhyaet.al [22] gives a technique in 2014 to detect the higher level clones such as

file clones, directory clones, etc. between two object oriented languages C++ and Java.

For implementing their technique they have used metric based technique. In this approach

Metric based technique has been used twice. They first applied metrics on methods and

then later on a file.

 S.Mythili et.al [36] proposes another language independent approach in 2012. They

tried to detect method level clones in source code with the help of Robin Karp

fingerprinting algorithm. The system used in this proposal for carrying out the

implementation was WordNet.

22

 Saif Ur Rehman and Kamran Khan [37] gives a technique in 2012 where they take

some source code whose clone detection they want to found and then transformed that

source code into tokens which would be stored in some two dimensional array. For

comparison they assign some hash value to these tokens and compare the hash values to

detect clones. They implemented their technique in prototype tool called LSC-Miner

which detects code clone in large source code written in multiple languages.

 Muhammad Younas et.al[45] proposes another technique in 2011.They has used the

tool named Clone Analyzer which is a token based tool to detect structural and simple

clones. It detects clones in languages written in Java and C.

23

 CHAPTER 3

 SCOPE OF STUDY

People now are too much dependent on internet that they start copying and pasting the

things from one place to another to accomplish their tasks. They are not grasping or

brainstorming the things in mind. According to software and technology terms this

duplicity which is the resultant of copying and pasting of things can lead to many

consequences such as the introduction of code clones. [25]

Recently, code clones have received much attention from many researchers in the field of

software engineering and clone detection is an active research area and work has been

carried out on a larger scale in detection of clones. Clones are code fragments that are

identical or similar to other code fragments in the source code, and they are generated for

various reasons, such as copy-and-paste operations, to reduce the time and effort of the

software developer, etc. As it has been said that “Each coin has two sides”, so this is the

one side of the coin. [25]

On the other side, cloning can lead to copyright infringements of original work of the

authorized persons. It also affects software evolution as it become hurdle for better

evolution of the software systems and has bad effect on designing and many other areas

of software. It has been said that the presence of clones makes software maintenance

more difficult as it invites more maintenance cost because cloning unnecessarily

increases program size and complexity. Moreover it invites more maintenance effort

because if bug fixing has been made on one code, it needs to be made on other codes as

well where the codes are copied. It also decreases the quality of the software like

readability and other problems due to bugs’ propagation. [25]

Therefore, code cloning is the major issue in the industrial point of view. As the number

of projects is increasing in this digital world; there is major challenge to verify the

contents and identify the line of codes. So to overcome such problems a scalable and

efficient clone detection tool and technique is needed that will unmask as much number

of clones as possible so as to find the bugs at the earliest which prevent the bugs from

24

being travel from one source to other, detecting plagiarism that will prevent the

copyrighted content from being copied, to increase program understandability and for

better evolution of the software products. [25]

25

 CHAPTER 4

 PRESENT WORK

4.1 PROBLEM FORMULATION

People today are so much dependent on Internet that they start copying and pasting the

things to accomplish their tasks instead of learning or grasping them in mind. They are

not brainstorming their minds. According to software and technology terms, this duplicity

achieved by making copying or pasting of things which could lead to lack of originality is

referred to as “cloning”. This process leads to the generation of code clones. This copying

of codes will lead to lack of copyright infringements of the original of original work of

the authorized persons. [25]

There are many other problems which are associated with cloning such as it can impose

bad effect on maintainability due to which sometimes it invites more maintenance cost.

Other problems associated with this are it can lead to bug propagation from one software

system to another. It also affects better software evolution. [25]

All these factors give invitation to the need of some clone detection tools and techniques

which gives assistance in detecting the clones with high efficiency and accuracy.

26

4.2 OBJECTIVES OF STUDY

The main objectives of this thesis are:-

1. To propose a refined hybrid technique for efficient code clone detection using

Metric analysis and Tokenization.

a. To calculate Class level metrics and Function level metrics for input files.

b. To compare calculated metrics to find potential clones.

c. To perform Tokenization on pre-processed code.

d. To implement Suffix array matching algorithm to find actual clones.

2. To implement proposed technique for multiple languages like Java (Object

oriented language) and Asp.net (Web based language).

27

4.3 RESEARCH METHODOLOGY

Recently, code clones have received much attention from many researchers in the field of

software engineering and clone detection is an active research area and work has been

carried out on a larger scale in detection of clones. The detailed study of literature survey

helps to understand that there are various approaches which provide a great help in

detecting or unmasking code clones in source codes. These techniques can be text based,

token based, metric based, tree based, graph based, etc. But there are certain advantages

and disadvantages that are associated with these techniques.

Text based techniques do not require any transformation of source code and can be

applied directly to the source code. Hence they can detect only type1 clones but with

great accuracy and precision. Token based technique requires lexical analysis and

transformation of source code to be applied on. This is a fast technique and can detect

type 2 clones also. Metric based approach is an accurate and straightforward approach

and can detect type 3clones as well. PDG and tree based approaches can detect type3 and

type4 clones but these are complex and expensive techniques.

This thesis comes up with the proposal where hybrid technique is proposed which is the

combination of metric based and token based technique. To implement a hybrid

technique three alternatives are there which gives an idea that in what way the

combination of two different approaches has been used.

1) Metric technique at a preliminary stage and Token technique at a secondary stage.

2) Token technique at a preliminary stage and Metric technique at a secondary stage.

3) Metric technique and Token technique are applied together.

In the proposed methodology, these approaches are work in the sequential manner. The

Metric based technique has been applied at a preliminary stage to detect the potential

clones and then Token based approach has been applied. The motivation behind using the

Metric approach at the preliminary stage is as following:

28

 Metric based technique is good and useful if clone detection has been applied

in large software projects. In these cases, rather than working on source code

directly, metrics are used to detect clones.

 There might be the cases that no clone exists in the source code while

detecting the clones with token based approach. This can lead to wastage of

memory, time and effort on converting source code into tokens. So this is

another factor that supports the use of metric based technique at the

preliminary stage.

 Metric based approach decreases the complexity and simple to use.

So in the proposed methodology the metrics based approach can be refined by increasing

the size of metrics and type of metrics to detect more efficient and précised clones that

will more accurately describe clones so that further a token based technique can be

applied on it.

Given below is the step by step explanation of the proposed technique that how it works

as a hybrid technique using Metric and Token based approach.

4.3.1 METRIC APPROACH

a) Take two source code files with the help of the proposed tool.

b) Calculate the values of some predefined metrics of these two files and display

these values in the tool itself. These metrics are also stored in excel file.

c) Compare the metric values calculated from the source files to detect potential

clones.

d) To detecting the potential clones, threshold value has been set in the tool which is

3. If threshold value less than 3, then no potential clones exists in the code.

e) If the threshold value comes out to be 3 or greater than 3, then only the potential

clones exists in the code and the tool will work further for Token approach.

f) Apply second approach [Token approach] to calculate actual clones.

In the existing hybrid technique of Metric and Token based technique, a total of fourteen

metrics have been computed. In the proposed technique, a total of twenty metrics will be

calculated. These metrics will include two types of metrics namely Function level

Metrics and Class level metrics. Function level metrics are fetched from the functions

29

included in the source code and class level metrics computed metrics from the classes

included in the source code.

Given below is the list of the metrics which proposed technique will compute.

1. Lines of Code(LOC)

2. No of private variable

3. No of public variable

4. No of protected variable

5. Total no of variables

6. No of loop controls

7. Redirect statements

8. No of conditional statements

9. Total no of assignment

10. No of Private functions

11. No of Public function

12. No of Protected function

13. Total no of functions

14. Function name

15. No of local variables

16. No of function calls in function

17. No of arguments passed in function

18. No of loop controls in function

19. No of return statements

20. No of conditional statements in function

30

4.3.2 TOKEN APPROACH

After obtaining a Potential clones from Metrics approach, the tool will further executed

for token approach. In Token approach following steps has been followed out.

a) Apply Tokenization approach on pre-processed code so as to fetch a transformed

code(Token string) from the pre-processed code.[6][14]

 For Tokenization, no external lexical analyser or Tokenizer has been used to

transforms the source code into the token string.

 A unique numeric ID is manually assigned against each Token class.

 From all the source files, a single large token string is generated or obtained.

 Blank spaces, comments and blank lines are ignored during Tokenization.

 All the repeated token segments in the token string represent a code clones, code

clone classes of various types.

 The end product obtained after this step is Tokenized code.

Given below is the way that how token formulation will take place by assigning unique

numeric ID’s.[6][14]

31

Table 4.1: Token Id Assignment

CLASS OF TOKEN ID

Operators

+ 1

/ 2

… …

Identifiers 9

Keywords

Private 11

Public 12

Protected 13

… …

Punctuation symbols

[18

] 19

(20

… …

Data types

int 31

Float 32

double 33

32

 Table 4.2: Example of Tokenization

Eg:- public int division (int c, int d) {

 int a; return c / d;

}

Token string of above code is given below:-

12 31 9 20 31 9 25 31 9 21 27 31 9 26 14 9 1 9 26 28

b) To find the repeated token segments or clones within the files, a space efficient Suffix

array algorithm has been put in use to find or locate the non-extendible repeats in the

token string. Non extendible token repeats are those repeats which are not always

followed or preceded by same symbols.

 Suffix array computes repeated token sequences with the time complexity of O

(N)[32]. Moreover it is a simpler algorithm. The space consumption while constructing

the suffix array is five times lesser than other algorithms such as Suffix tree, etc. [32]

 In order to calculate the repeated clones or repeating token strings in two source

code files, these files need to be integrated together in order to get the single file. Then

after obtaining the single source code file, suffix array algorithm has been applied on it.

Suffix array provides a complete set of repeats. These repeats are mapped with the

original two source files to trace the locations of these repeated clones.

c) As suffix array returns full sets of non-extendible repeats along with location, hence

the proposed tool directly aggregated clone classes based on that .This was not possible

in the already existing techniques as in those there is a requirement of some additional

post processing step.[6][14]

Given below is the example of how non extendible repeats or clones are computed

manually:-[6][14]

33

Table 4.3: Example of manually computed clones

P I G H L H J Y U O H L G H Y U K

So, a complete set of non-repeating substrings are:-

GH- 3, 13

HL- 4 , 11

U- 9, 16

In this example, as G is always followed by H .In the same way L is also always

proceeded by a same symbol H. So it is an extendible repeat. But they are not extendible

in the pairs of GH and HL. Therefore, GH and HL are no-extendible repeats or clones.

These clones are computed automatically by making the use of suffix array algorithm.[1]

 Table 4.4: Example of automated computation of clones using suffix array

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S W O R K K W O R K K X R R K W O

S.A 4 0 5 8 9 3 13 11 3 4 2 12 2 7 11 1

LCP -1 1 4 2 2 0 2 3 1 1 0 3 4 2 1 0

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In this demonstration, i -> index

S->String of characters

S.A-> Array of suffixes arranged in a lexicographical order.

LCP->Array contains longest common prefix Length.

34

It can be denoted as LCP[i] = LCP (S.A [i-1], S.A[i]) where 0 < i≤ p-1 .

Now, the repeating sequences or subsequences from the source code can be calculated

out by following procedure:-

1.) If LCP[i]<LCP[i+1], then repeats or clones may occur at the corresponding

positions denoted by S.A[i] and S.A[i+1] and these repeats act as a clone pair in

the source code. For example, LCP[2]<LCP[2], which means that repeats may

occur at positions given by S.A[2] and S.A[2] i.e. repeats occurs at 0
th

 and 5
th

position.

2.) If LCP[i]=LCP[i+1],then repeats may sustained at positions given by S.A[i]

and S.A[i+1].

3.) If LCP[i]>LCP [i+1], then there are no clones found. For example,

LCP[2]>LCP[2], which means no repeats occur at positions given by S.A[2] and

S.A[2] i.e. no repeats occurs at 5
th

 and 8
th

 position.

35

Flowchart of Proposed Technology

 No

 Yes

 No

 Yes

 Yes No

Take 2 source codes

 Preprocessing Source code

Preprocessed code

Calculate Metrics

Compare Metric values

Match

exists?
No clones

Potential clones

Preprocessed code

 Tokenized code

Preprocessed code

Tokenization

Suffix array matching algorithm

Match

exists?
Actual clones No clones END

Store in

database

36

 CHAPTER 5

 RESULTS & DISCUSSION

5. 1 IMPLEMENTATION

The implementation of the tool for proposed technique has been carried out in Java

language. The software being used for carried out the implementation of tool is

Netbeans8.1. The tool detects the clones in Java language and Asp.net language. This

technique can detect Type1, Type2 and Type 3 clones.

Given below are the screenshots which shows how the detection of clones can take place

in :-

 Java language

 Asp.net language.

5.1.1 FOR JAVA LANGUAGE (TYPE 1 CLONE)

The clone of this type is also called exact clones. In this type of clone, the cloned code is

exactly same as that of the original code. The only change that makes difference is the

presence of comments in the cloned code. [25]

Figure 5.1 : Clone Detector Tool

37

 Figure 5.2 : Input File chooser

Figure 5.3: Metric calculation for Java -Type1 clones

Figure 5.3 shows the calculated Class level and Function level metrics for input files as

shown in Figure5.2

38

Figure 5.4: Metrics stored in excel

Figure 5.4 shows the storage of calculated Metrics in Database (excel)

 Figure 5.5: Matched parameters for Type1 clone.

39

Figure 5.6: Potential clones

Figure 5.7: Token calculation

40

Figure 5.8: Suffix Array execution

Figure 5.9: Type1 clones detected for Java

Figure 5.8 shows the execution of Suffix array for Token matching and Figure 5.9 shows

the detection of clones w.r.t the original files along with the cloning % and Time

taken(for computing clones) .

41

5.1.2 FOR JAVA LANGUAGE (TYPE 2 CLONE)

In this type of clone, the cloned code is not same but exactly similar to the original code

due to slight renaming in variables, literals, identifiers, etc. [25]

Figure 5.10: Clone detector Tool

Figure 5.11 : Input File chooser

42

Figure 5.12: Metric calculation for Java-Type2 clones

Figure 5.13: Metrics stored in Excel

Figure5.13 shows the storage of metrics in excel file.

43

Figure 5.14: Potential clones found for matched parameters

Figure 5.15: Token calculation

Once the Potential clones are found by Metrics Approach, then only the tool will work

further for Token based Approach to detect Actual clones in 2 source files.

44

Figure 5.16: Suffix array execution

Figure 5.17: Type 2 clones detected for Java

Figure5.16 shows that how Suffix array works and Figure5.17 shows the computation of

clones.

45

5.1.3 FOR JAVA LANGUAGE (TYPE 3 CLONE)

In this type of clones, there is addition, deletion and modification of the statements. [25]

Figure 5.18 :Input File chooser

 Figure 5.19: Metric Calculation for java-Type3 clones.

46

Figure 5.20 : Metrics stored in excel

Figure 5.21: Matched parameters for Type 3 clones

47

Figure 5.22 : Potential clones

Figure 5.23: Token calculation

48

 Figure 5.24 : Suffix Array execution

Figure 5.25: Type 3 clones detected for java

Above Figures shows the detection of clones for Java language. Figures given below

shows the detection of clones in Asp.net language.

49

5.1.4 FOR ASP.NET LANGUAGE (TYPE1 CLONES)

Figure 5.26 :Clone Detector tool

Figure 5.27 : Input File chooser

50

 Figure 5.28 :Metric calculation for Asp.net-Type1 clones.

Figure 5.29 :Metrics stored in excel

51

Figure 5.30 :Matched Parameters for Type1 clones.

Figure 5.31:Potential clones

52

 Figure 5.32: Token calculator window

Figure 5.33: Token calculation

53

 Figure 5.34: Suffix array execution

Figure 5.35 :Type1 clones detected for Asp.net

54

5.1.5 FOR ASP.NET LANGUAGE (TYPE2 CLONES)

Figure 5.36 : Input File chooser

 Figure 5.37:Metric calculation for Asp.net-Type2 clones.

55

 Figure 5.38 :Metrics stored in excel

 Figure 5.39 :Matched parameters forType2

56

Figure 5.40:Potential clones

Figure 5.41:Token calculation

57

 Figure 5.42: Suffix array execution

Figure 5.43 :Type2 clones detected forAsp.net

58

5.1.6 FOR ASP.NET LANGUAGE (TYPE3 CLONES)

Figure 5.44 : Input File chooser

Figure 5.45 :Metrics calculation for Asp.net-Type3 clones

59

Figure 5.46 :Metrics stored in excel

Figure 5.47 :Matched parameters for Type3 clones.

60

Figure 5.48 :Potential clones.

Figure 5.49: Token calculation

Figure5.49 displays the Tokenization of each character of source files by assigning Token

ID’s.

61

 Figure 5.50:Suffix array execution

 Figure 5.51 :Type3 clones detected for Asp.net

62

5.2 RESULTS & DISCUSSIONS

 5.2.1 RESULTS BY METRIC BASED APPROACH

Table 5.1: Class level metrics for tested programs

 a b c d e f G h i J k L M

Fact-for.java 13 0 1 0 1 0 1 0 0 0 0 0 1

Fact-exact.java 13 0 1 0 1 0 1 0 0 0 0 0 1

Fact-renamed.java 13 0 1 0 1 0 1 0 0 0 0 0 1

Fact-type3.java 16 0 1 0 1 0 1 0 0 0 0 0 1

Fact.aspx.cs 28 0 2 0 2 0 1 0 0 0 0 0 0

Fact-exact.aspx.cs 28 0 2 0 2 0 1 0 0 0 0 0 0

Fact-renamed.aspx.cs 28 0 2 0 2 0 1 0 0 0 0 0 0

Fact-type3.aspx.cs 29 0 2 0 2 0 0 0 0 0 0 0 0

BinarysearchcharArray.java 54 0 0 0 0 3 5 0 0 0 0 0 0

BinarysearchByteArray.java 54 0 0 0 0 3 5 0 0 0 0 0 0

CRC32-ExtractZip.java 90 0 2 0 2 0 1 0 0 0 0 0 1

Deflater-compressarray.java 113 0 1 0 1 0 3 0 0 0 0 0 2

Adler32.java 36 0 2 0 2 0 1 0 0 0 0 0 2

Insertion.java 30 0 2 0 2 0 5 0 0 0 0 0 3

Selection.java 32 0 2 0 2 1 6 0 0 0 0 0 2

Insertion_sort.aspx.cs 48 0 3 0 3 1 5 0 0 0 0 0 2

Selection_sort.aspx.cs 42 0 3 0 3 1 6 0 0 0 0 0 1

Prime-renamed.aspx.cs 35 0 1 0 1 3 2 0 0 0 0 0 0

Exam-mgt.java 59 0 2 0 2 1 4 0 0 0 2 2 0

Exam-mgt-modified.java 76 0 2 0 2 1 4 0 0 0 2 2 0

63

a- LOC

b- Public variable

c- Private Variable

d- Protected Variable

e- Total no of variables

f- If statements

g- Loop control statements

h- Redirect statements

i- Private functions

j- Protected functions

k- Public functions

l- Total no of functions

m- Total no of Assignment

 Table 5.2: Function level Metrics for tested program

 n o` p q r S T

Fact-for.java 0 0 0 0 0 0 0

Fact-exact.java 0 0 0 0 0 0 0

Fact-renamed.java 0 0 0 0 0 0 0

Fact.aspx.cs 0 0 0 0 0 0 0

Fact-exact.aspx.cs 0 0 0 0 0 0 0

Fact-renamed.aspx.cs 0 0 0 0 0 0 0

BinarysearchcharArray.java 0 0 0 0 0 0 0

BinarysearchByteArray.java 0 0 0 0 0 0 0

CRC32-ExtractZip.java 0 0 0 0 0 0 0

Deflater-

compressbytearray.java

0 0 0 0 0 0 0

Adler32.java 0 0 0 0 0 0 0

Insertion.java 0 0 0 0 0 0 0

64

Selection.java 0 0 0 0 0 0 0

Insertion_sort.aspx.cs 0 0 0 0 0 0 0

Selection_sort.aspx.cs 0 0 0 0 0 0 0

Prime.aspx.cs 0 0 0 0 0 0 0

Prime-renamed.aspx.cs 0 0 0 0 0 0 0

Exam-mgt.java 0 6 12 3 0 0 0

Exam-mgt-modified.java 0 3 12 3 0 0 0

n- Total no of variables in function

o- No of Function calls

p- No of arguments

q- No of loop controls

r- No of conditional controls

s- No of return statements

t- Function name

65

5.2.2 RESULTS BY TOKEN BASED APPROACH

 Table 5.3: Results byToken based Approach

Sno File1 File2 Cloning %

in file1

Cloning

% in

file 2

Time

Taken

(in ms)

1 Fact-for.java Fact-exact.java 69.23 69.23 4134

2 Fact-for.java Fact-renamed.java 84.61 76.92 6365

3 Fact.aspx.cs Fact-exact.aspx.cs 30.76 30.76 2949

4 Fact.aspx.cs Fact-renamed.aspx.cs 34.61 34.61 3884

5 BinarysearchcharArr

ay.java

BinarysearchByteArray

.java

29.03 32.25 1223

6 Insertion_sort.aspx.cs Selection_sort.aspx.cs 34.78 47.5 6208

7 Exam-mgt.java Exam-mgt-mdified.java 71.18 64.47 40997

8 Prime.aspx.cs Prime-renamed.aspx.cs 41.75 43.75 8050

9 Fact-for.aspx.cs Fact-type3.aspx.cs 33.33 40.74 3354

10 Fact-for.java Fact-type3.java 76.92 81.25 8143

66

5.2.3 EXISTING TECHNIQUE vs PROPOSED TECHNIQUE

Table 5.4: Existing technique vs proposed enhanced technique

Parameters
Existing Technique Proposed Technique

Language
Java Java + Asp.net

Size of Metrics taken
14 20

Tool used in Token

Approach

CC-Finder Tool created in NetBeans

8.1 using Java language.

Data Structure used in

Token Approach Tool

Suffix Tree Suffix array

Memory Space Utilization
Suffix Tree consumes more

memory. Hence less

Memory efficient.

Suffix array is more

memory or space efficient.

(Consumes 5 times less

memory than that of suffix

tree)[1]

Time complexity
O(n) [1] O(n) [1]

Type of clones detected
Type1 and Type2 Type1,Type2 and Type3

Output
Require extra preprocessing

step to form clone pair and

clone classes.[6][14]

Directly form clone pairs

based on the output.[6][14]

67

 CHAPTER 6

 CONCLUSION & FUTURE SCOPE

It can be concluded that cloning is in great demand today apart from its various

shortcomings. It has proven to be an advantageous process in fast development of the

Software systems to meet the deadlines or to complete the work on time, etc. It is

considered as a great boon to industries. Also, on the other side various tools and

techniques have been proposed to detect the clones, wherever required, to overcome the

various pitfalls released by cloning like bug propagation, maintenance costs, etc. Further

detection process comprises of various levels such as preprocessing, transformation,

match detection and so on. These techniques and tools can detect various types of clones

according to their efficiency and ability. [25]

 The proposed enhanced technique is a hybrid technique which is the combination

of Metric based and token based technique. This technique is able to detect clones in

multiple languages instead of just one. This technique can detect clones in object oriented

language (Java) and web oriented language (Asp.net). This technique is efficient in

detecting Type1, Type2 and Type3 clones. Furthermore, this is a fast and precise

technique.

 For future work, this technique will be further enhanced to detect Type4 clones. It

can also be enhanced in such a way that it can detect clones for languages such as C++,

C, PHP, etc. Clone removal techniques can also be added with this technique in order to

further enhance it.

68

 REFERENCES

[1] G. Y. Munina Yusufu, “Efficient Algorithm for Extracting Complete Repeats from

Biological Sequences,” International Journal of Computer Applications, vol. 128, pp. 33-

37, 2015.

[2] S. K. Abd-El-Hafiz, “A Metrics-Based Data Mining Approach for Software Clone

Detection,” 36th International Conference on Computer Software and Applications, pp.

35-41, 2012.

[3] J. K. Abdullah Sheneamer, “A Survey of Software Clone Detection Techniques,”

International Journal of Computer Applications, 2016.

[4] S. K. Y. Akshat Agrawal, “A Hybrid-Token and Textual Based Approach to Find Similar

Code Segments,” in 4th ICCCNT, Tiruchengode, 2013.

[5] Y. L. Aritra Ghosh, “An Empirical Study of a Hybrid Code Clone Detection Approach on

Java Byte Code,” GSTF Journal on Computing (JoC) Vol.5 No.2, pp. 34-45, 2017.

[6] H. A. Basit, “Efficient Token Based Clone Detection with Flexible Tokenization,” in

ACM, 2004.

[7] P. Bhatta, “Hybrid Technique for Software Code CloneDetection,” International Journal

of Computers and Technology, pp. 97-102, 2012.

[8] J. R. C. K. Chanchal K Roy, “Comparison and evaluation of clone detection techniques

and tools,” ELSEVIER, pp. 470-495, 2009.

[9] Deepali, “Hybrid approach for Detecting Code Clone by Metric and Token based

comparison,” International Journal of Advanced Research in Computer Science, pp. 297-

302, 2016.

[10] R. B. M. S. Dhavleesh Rattan, “Software clone detection: A systematic review,”

ELSEVIER, pp. 1165-1199, 2013.

[11] A. F. A. Doaa M. Shawky, “An Approach for Assessing Similarity Metrics Used in

Metric-based Clone,” 2010.

[12] S. K. Egambaram Kodhai, “Method-level code clone detection through LWH (Light

Weight Hybrid) approach,” Journal of Software Engineering Research, 2014.

[13] Geetika, “Detection of Potential Clones from Software using Metrics,” International

Journal of Advanced Research in Computer Science and Software Engineering, pp. 964-

69

969, 2014.

[14] S. J. P. F. S. T. J. Hamid Abdul Basit, “Efficient Token Based Clone Detection with

FlexibleTokenization.,” in ACM, 2004.

[15] S. J. Hamid Abdul Basit, “A Data Mining Approach for Detecting Higher-Level Clones in

Software,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,, vol. 35, pp. 497-

514, 2009.

[16] M. K. Harjot Kaur, “Detecting Clones in Class Diagrams Using Suffix Array,”

International Journal of Engineering and Advanced Technology (IJEAT), pp. 243-246,

2014.

[17] Himanshu, “Combined Weighted Approach to Detect Code Cloning,” International

Journal of Computer Science and Mobile Computing, pp. 297-302, 2014.

[18] K. H. Y. H. H. I. a. S. K. Hiroaki Murakami, “Folding Repeated Instructions for

Improving Token-based Code Clone Detection,” 2010 IEEE 12th International Working

Conference on Source Code Analysis and Manipulation, pp. 64-73, 2012.

[19] K. P. Jai Bhagwan, “Design and Analysis of a Hybrid Technique for Code Clone

Detection,” International Journal of Advanced Research in Computer and Communication

Engineering, pp. 380-385, 2016.

[20] C. L. M. M. Jean Mayrand, “Experiment on the Automatic Detection of Function Clones

in a Software System Using Metrics,” pp. 244-253, 1996.

[21] L. Jiang, “DECKARD: Scalable and Accurate Tree-based Detection of Code Clones∗”.

[22] N. S. D. R. K. Vidhya, “Cross Language Higher Level Clone Detection-Between Two

Different Object Oriented Programming Language Source Codes,” in ICIDRET, 2014.

[23] R. K. T. Kanika Raheja, “An Efficient Code Clone Detection Model on Java Byte Code

Using Hybrid Approach,” Patiala, 2013.

[24] R. T. Kanika Raheja, “An Emerging Approach towards Code Clone Detection:Metric

Based Approach on Byte Code,” International Journal of Advanced Research in

Computer Science and Software Engineering, pp. 881-888, 2013.

[25] M. Kaur, “Review on Software Cloning and Clone Detection,” in Interenational

Conference on Intelligent Circuits and Systems(ICICS 2016), Phagwara, 2016.

[26] T. N. S. u. D. A. J. Khurram Zeeshan Haider, “Efficient Source Code Plagiarism

Identification Based on GreedyString Tilling,” International Journal of Computer Science

70

and Network , pp. 204-210, 2010.

[27] P. Kodhai.E, “Clone Detection using Texual and Metric Analysis to figure out all Types of

clones,” in Proceedings of the International Joint Jounal Conference on Engineering and

Technology, 2010.

[28] M. L. Manpreet Kaur, “Code Clone Detection Using Function Based Similarities and

Metrics,” International Journal of Emerging Research in Management &Technology, pp.

156-159, 2015.

[29] E. Merlo, Detection of Plagiarism in University Projects Using Metrics-based Spectral

Similarity, Canada, 2007.

[30] M. D. Muneer Ahmad, “A Novel Approach for Code Clone DetectionUsing Hybrid

Technique,” International Journal of Advanced Engineering, Management and Science

(IJAEMS), pp. 1408-1411, 2016.

[31] T. T. Nguyen, “ClemanX:Incremental Clone Detection tool for evolving Software,” in

IEEE , Vancouver, 2009.

[32] L. P. Z. F. l. M. a. D. S. L. Qing Qing Shi, “A Novel Detection Approach for Statement

Clones,” IEEE, pp. 27-30, 2013.

[33] P. S. Rajnish Kumar, “Token based clone detection using program slicing,”

Int.J.Computer Technology & Applications, pp. 1537-1541, 2014.

[34] R. E. Roxas, “Automation generation of Plagiarism Detection among students programs,”

in IEEE Transactions on Software Engineering, 2006.

[35] H. K. K. Rupinder kaur, “Evaluation of Token Based Tools on the basis of Clone

Metrics,” International Journal of Advanced Research in Computer Science and

Electronics Engineering, pp. 145-150, 2012.

[36] D. S.Mythili, “A Language Independent Approach for Method Level Clone Detection

Using Fingerprinting,” International Journal of Advanced Research in Computer Science,

2012.

[37] K. K. Saif Ur Rehman, “An Efficient New Multi-Language Clone Detection Approach

from Large Source Code,” in International Conference on Systems, Man, and Cybernetics,

Korea, 2012.

[38] Y. Sharma, “Hybrid Technique for object oriented software clone detection,” 2011.

[39] S. Sonika, “HCDETECTOR: A HYBRID APPROACH TO DETECT CODE CLONES IN

71

JAVA PROGRAMS,” Patiala, 2014.

[40] R. K. A. K. Stefan Bellon, “Comparison and Evaluation of Clone Detection Tools,” in

IEEE Transcations on Software Engineering, 2007.

[41] S. S. Sukhpreet kaur, “CODE CLONE DETECTION AND ANALYSIS USING

SOFTWARE DESIGN OBJECT ORIENTED METRICS,” International Journal of

Computer Science and Communication Engineering, vol. 4, no. 3, 2015.

[42] J. B. Sushma, “A Novel Metrics Based Technique for Code Clone Detection,”

International Journal Of Engineering And Computer Science , pp. 18221-18224, 2016.

[43] S. K. I. Toshihiro Kamiya, “CCFinder: A Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code,” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, vol. 28, pp. 654-670, 2002.

[44] Y. G. Yang Yuan, “Boreas: An Accurate and Scalable Token-Based Approach to Code

Clone Detection,” ACM, pp. 286-289, 2012.

[45] M. Younas, “Evaluating Clone Detection Technique in Multiple Language Programs,”

International Journal of Science and Advanced Technology, pp. 107-112, 2011.

[46] J. S. Zhu o LI, “A Metric Space Based Software Clone Detection Approach,” 2010.

72

 PAPER PUBLICATION

 [1] M. Kaur, “Review on Software Cloning and Clone Detection,” in Interenational

Conference on Intelligent Circuits and Systems(ICICS 2016), Phagwara, 2016.

73

 APPENDIX

 Fact.java

package b;

import java.io.*;

class Factorial{

public static void main(String[] args) {

try{

BufferedReader object = new BufferedReader(new InputStreamReader(System.in));

System.out.println("enter the number");

int a= Integer.parseInt(object.readLine());

int fact= 1;

System.out.println("Factorial of " +a+ ":");

for (int i= 1; i<=a; i++){

fact=fact*i;

}

Fact-exact.java

package b;

import java.io.*;

class Factorial{

public static void main(String[] args) {

try{

BufferedReader object = new BufferedReader(new InputStreamReader(System.in));

System.out.println("enter the number");

74

int a= Integer.parseInt(object.readLine());

int fact= 1; // Initialize value of factorial with1

System.out.println("Factorial of " +a+ ":");

for (int i= 1; i<=a; i++){

fact=fact*i; //Factorial function

}

Fact-renamed.java

package b;

import java.io.*;

class Factorial1{

public static void main(String[] args) {

try{

BufferedReader object = new BufferedReader(new InputStreamReader(System.in));

System.out.println("enter no");

int h= Integer.parseInt(object.readLine());

int factorial= 1;

System.out.println("Factorial of " +h+ ":");

for (int j= 1; j<=h; j++){

factorial=factorial*i;

}

Fact-type3.java

package b;

import java.io.*;

class Factorial{

75

public static void main(String[] args) {

try{

BufferedReader object = new BufferedReader(new InputStreamReader(System.in));

System.out.println("enter the number");

System.out.println("Number should be positive ");

int a= Integer.parseInt(object.readLine());

int fact= 1;

System.out.println("Result is here ");

System.out.println("Factorial of " +a+ ":");

for (int i= 1; i<=a; i++){

fact=fact*i;

System.out.println(fact);

}

fact.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace factorial

{

 class Program

 {

 static void Main(string[] args)

76

 {

 int i, number, fact;

 Console.WriteLine("Enter the Number");

 number = int.Parse(Console.ReadLine());

 {

 fact = fact * i;

 }

 Console.WriteLine("\nFactorial of Given Number is: "+fact);

 Console.ReadLine();

 }

 }

}

Fact-exact.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace factorial

{

 class Program

77

 {

 static void Main(string[] args)

 {

 int i, number, fact;

 Console.WriteLine("Enter the Number");

 number = int.Parse(Console.ReadLine());

 fact = number;

 for (i = number - 1; i >= 1; i--)

 {

 fact = fact * i;//Factorial of no is counted here is counted here

 }

 Console.WriteLine("\nFactorial of Given Number is: "+fact);

 Console.ReadLine();

 }

 }

}

Fact-renamed.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace factorial1

78

{

 class Program1

 {

 static void Main(string[] args)

 {

 int l, no, fact1;

 Console.WriteLine("Enter no");

 number = int.Parse(Console.ReadLine());

 fact1 = no;

 for (l = no - 1; l >= 1; l--)

 {

 fact1= fact1 * l;//Factorial of no is counted here is counted here

 }

 Console.WriteLine("\nFactorial of No is: "+fact1);

 Console.ReadLine();

 }

 }

}

Fact-type3.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

79

namespace factorial

{

 class Program

 {

 static void Main(string[] args)

 {

 int i, number, fact;

 Console.WriteLine("Enter the Number");

 Console.WriteLine(" Number should positive");

 number = int.Parse(Console.ReadLine());

 fact = number;

 /*Factorial works like this*/

 {

 fact = fact * i;

 }

 Console.WriteLine("\nFactorial of Given Number is: "+fact);

 Console.ReadLine();

 }

 }

}

80

81

