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ABSTRACT 

 

 

Kinematics modeling of a robot manipulator is the outcome of geometry of motions of a 

robot arm with respect to the coordinate system which is considered as a fixed frame. There 

exists always a challenge while solving the problem of inverse kinematics because many 

solutions are available for the same problem. This work focused on obstacle and singularity 

avoidance of robot manipulator using task priority method. 

Task priority relating to the inverse kinematic model of the redundant robot manipulator. 

The task is partitioned into number of subtasks as per order of priority. Various 

mathematical simulation is performed for various compound condition consisting of 

obstacles with an offered direction to demonstrate the adequacy of the redundancy control 

structure for obstacle and singularity avoidance. In this thesis a snake comparable behavior 

of redundant manipulators, which track the trajectory in narrow “L” shape tube channel. 

The redundant manipulators are significant in numerous challenging applications like, to 

check the jam of sewerage pipes, welding of pipe lines, under water welding in a narrow 

tubes or tanks, to perform laparoscopy operation inside a human body etc.
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1. INTRODUCTION 

The origin of the robot word is came from Robota, which means work in Czech. A robot is 

a reprogrammable multi-functional controller intended to move materials, parts, tools, or 

specialized devices, through variable programmed motions for execution of a tasks. 

1.1 Robotics 

Robotics is the interdisciplinary branch of engineering and science that incorporates 

mechanical designing, electrical building, software engineering, and others. Robotics 

manages the design, development, operation, and utilization of robots, as well as computer 

systems for their control, sensory feedback, and data processing. In 1942, The three laws 

for Robotics are given a scientist Isaac Asimov. Which are the following, 1] The human 

being should not be injure or allow a human being into harm through inaction by Robot. 2] 

The commands which are given by human being, a robot should obey them unless they are 

conflict with the first law .3] A robot should protect its own existence if such protection 

does not conflict with the First or Second Laws. A robot manipulator can be considered as 

an open loop articulated chain by means of numerous linkages associated in arrangement 

by either revolute or prismatic joints driven by various actuators. One of the end serial chain 

manipulator is linked to a fixed base whereas the other end is unrestricted and attached 

through an end-effector to operate entities or execute given operations. 

1.2  Robot Kinematics  

The kinematics is branch of mechanics which examines the motion of objects without 

considering to the forces that causes the motion. The analytical study of the geometry of 

movement of a robot arm is dealt by Robot arm kinematics against a fixed reference 

coordinate system as a function of time with no regard to the force/moment that is the 

reason behind the motion. Robotic manipulator is described by its kinematic equation 

which relates the joint configuration of the manipulator to the position and orientation of 

the end effector in the workspace. To solve foundational kinematics problems the robotics 

community has focused on proficiently applying different representation of position and 

direction and their derivatives with respect to time. Kinematic problems are of two different 

forms, they can be definite as forward kinematics and inverse kinematics.  
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1.2.1 Forward kinematics  

By using forward kinematics for a given joint Parameters and the geometric link constraints 

of a manipulator, the position and alignment of the end effector of the robot arm with 

respect to a reference coordinate frame can be find.  

1.2.2 Inverse kinematics  

Inverse kinematics is for a given position and alignment of the end effector of the 

manipulator, finding the geometric link and joint factors with respect to a reference 

coordinate frame, so that the manipulator can reach the wanted position and orientation.  

                  

Figure 1.1 schematic representing of forward kinematics and inverse kinematics 

1.3 Redundant Manipulator 

Kinematic redundancy happens when a robot arm has a greater number of degrees of 

freedom than those entirely essential to accomplish a given task. A manipulator with at 

least seven joints is a distinctive example of an intrinsically redundant manipulator. Still, 

some robot manipulator with lesser degrees of freedom may become kinematically 

redundant for particular tasks, like conventional six-joint industrial robotic arms, which is 

simple end-effector positioning with no constraints on the direction. While avoiding 

obstacles in the workspace, a larger number of degrees of freedom are needed when a 

robotic arm is required to trace a given path of the end effector, than in a free working 

space. Redundancy is a positive feature particularly when trying to overcome difficulties 

related to an overfilled workspace or limitations due to mechanical constraints. With the 

help of kinematic redundancy size of the workspace could be increase and the manipulator 

could reach at every point without being in a singular arrangement for obtaining general 

motion path tracking tasks. The method of solving kinematics of non-redundant robots is 

by obtaining analytical solutions for a number of manipulator configurations. It is predicted 

that the inverse kinematics has infinite solutions in case when a manipulator is having 

redundant link. The kinematic redundancy resolution can be determined in two-way 

redundancy resolution via optimization and redundancy resolution via task-priority. In 
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redundancy resolution via optimization there are two basic approaches one is local 

optimization approaches and the other is global optimization. The pseudoinverse solution 

is the simplest form of local optimization, which provides the joint velocity with the 

minimum standard among those that realize the task constraint. Global optimization has a 

benefit which is its simplicity because of the redundancy resolution scheme. By including 

a quadratic form in the joint accelerations or velocities inside the integral, problem can be 

solved but this can be done more easily at the second-order kinematic level. Augmenting 

the task vector is another approach for resolving redundancy to undertake additional 

objectives conveyed as constraints. A redundant robotic arm having more degrees of 

freedom is much appropriate to a multiple criteria problem, for example singularity 

avoidance and obstacle avoidance. 

1.4   Importance of Redundancy Resolution 

Past the manipulator are designed, which are categorized by designing the manipulator with 

the minimum number of joints and links required to perform the given task that give rise to 

a serious restriction in real worlds application. These restrictions are due to some 

difficulties as joint limits, singularity problem and obstacles in workspace. There 

restrictions lead in increasing the regions to be avoided in the joint and task workspace 

during the operation, therefore these manipulators requires a sensibly planned task space.  

When a manipulator is designed with large degrees of freedom brings the flexibility to 

avoid the restrictions as specified above. This flexibility is expected to have infinite joint 

designs for the same manipulator posture since there are an infinite number of possible 

solutions for the reverse kinematics problem of the redundant manipulator. Thus, there 

exists joint motion which can be circulated in the null space of the Jacobian matrix of 

manipulator without influencing the end effector posture. 

In this way, redundancy can be advantageously exploited to accomplish more dexterous 

robot motion. Formally, a functional complex task is obliged to be fulfilled along the end-

effector task. Such typical limitations include obstacle avoidance, singularity avoidance, 

manipulability measures and limited joint range. In practice, if the increased dexterity of 

kinematically redundant manipulator may permit the manipulator to avoid singularities, 

obstacles and joint limits but also to minimize torque over a specified task, eventually 

significance that the robot arm can achieve more degree of freedom. 
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1.4.1 Obstacle Avoidance using Task Priority 

The indirect kinematic problem is quote compelling in case of redundant manipulator since 

it concedes infinite solutions. The indirect kinematic procedures have been properly 

extended to redundant manipulators by accepting a task space augmentation technique. A 

task priority plan has been applied to avoid the problem of obstacle restraint task 

specification rendering to which the task which is having lower importance is implemented 

only if it is not struggling with the task which is having higher importance. This can be 

achieved by projecting the limitation Jacobian against the null space of the end effector 

Jacobian. The method has been implemented to redundancy on a free-floating spacecraft 

for space robotic arm. 

1.4.2 Singularity Avoidance using Task Priority 

Singularity regions correspond to robot configurations that are close to a singular 

configuration, and in which the joint velocities essential to accomplish the end effector 

movement in specific ways are to a great degree high. Therefore, it becomes significant for 

a general-purpose robot arm to have at least six DOFs. At the point when the robot is in 

singular configuration, there is no less than one direction in which the end effector velocity 

is can’t move. The joint velocities essential to attain the end effector velocity component 

in this direction. Thus, random directional change of the end effector becomes more 

problematic. Numerically, this happens in case when the number of Jacobian matrix rows 

is more than the rank of the Jacobian matrix. There are two sorts of singularities, 

1. The end effector loses all its mobility at its singular configurations these are 

kinematic singularities 

2. Algorithmic singularities are those singularities at which the end effector task and 

the limitation task contrast despite the redundant DOFs. 

1.4.3 Torque Minimization 

Because of infinite solution of indirect kinematic problem, the solution should be picked 

with the goal that the torque requires to move the actuator is minimum. The following 

solution is chosen about the pervious one and in this way, goes for limiting the torque of 

the actuator.  
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1.4.4 Minimum Movement 

To achieve the chosen position the solution is taken in such that there is minimum 

movement of the manipulator. It additionally points in choosing those solutions which 

involve minor axis movements than major axis since the mobility of a robot depends on the 

direction of the end effector motion desired which is signified by the manipulator velocity 

ratio ellipsoid. The minor axis of the manipulator velocity ratio ellipsoid signifies the 

minimum value of manipulator velocity ratio and the upper limit on the joint velocities 

necessary for the end effector to move in all direction. Therefore, for singular configuration 

a small minor axis indicates low flexibility and proximity. 

1.4.5 Flexibility and Versatility 

The redundancy of robot manipulator assumes a vital part in increasing the flexibility and 

versatility. Flexibility is essential with the goal that the robot can move toward any path 

unreservedly. It is the capacity of the manipulator to alter the direction of end effector 

motion. Thus, at a singular configuration or when it is close, the robot manipulator will 

have less flexible. 

 

1.5    Applications of Redundant Manipulators 

➢ Redundant Manipulators are used in inspection inside nuclear plants. 

➢ Redundant robots are used in industries for automation. 

➢ Used to perform complicated tasks like welding operation, handling, assembly, 

spray painting. 

➢ Snake link redundant manipulator used in performing tasks in complicated areas 
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Figure 1.2 Robots used for welding operation 

Figure 1.3 Robots used for handling operation 
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Figure 1.4 Robots used in assembly 

 

Figure 1.5 Snake arm robots performing its task 

  



8 
 

1.6 Research Methodology   

This thesis work has been organized as stated. In chapter 2 it has been discussed about the 

work/study done by researches through literature survey. Authors started using 

generalized inverse of Jacobian matrix to calculate the answer of joint velocity when the 

idea of active utilization of redundancy came in their considerations. Different algorithms 

have been developed to utilize the redundancy and incorporating it for task priority, 

obstacle avoidance, singularity avoidance, torque minimization, etc. Finally, a systematic 

framework of the problems of redundancy resolution is proposed. 

In chapter 3, Euler-Langrange model has been used for explaining the dynamic model for 

the equation of motion for robot arm manipulator. Then, to find the symmetric, positive-

definite mass inertia matrices, and the cariolis and centrifugal force vector for each 

manipulator, this approach is analytically applied to the multiple links of manipulator. 

The kinematic control related to redundancy resolution as well as task priority is to be 

explained. To calculate the motion rate-control, the problem is to be formulated in a 

framework. This task will also show the value of Jacobian matrix, concept of task priority 

and manipulable together with the formation of equations related to it. 

The efficiency of the formulation and Potential function is to be numerically simulated. 

Potential function is to be incorporated to develop the algorithm for obstacle avoidance 

and singularity avoidance using task priority. Different results for obstacle and singularity 

avoidance of redundant manipulator is to be coded in MATLAB using these algorithms 

for an 8-link manipulator which tracks ‘L’ shape trajectory. 

1.7 Objectives of This Work 

 The objectives of this work are following: - 

• Development of equation of motion to an 8-link manipulator which tracks ‘L’ 

shape trajectory. 

•  Mainly focused on obstacle avoidance and singularity avoidance, by creating a 

‘L’ shaped narrow tube obstacles. 

• This type of manipulators is used in Bio-Medical operations, underwater welding 

in narrow tube, welding of joint in narrow channel sections, etc.  
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2.  LITERATURE SURVEY 

2.1 Review of methods used in Kinematic Modeling 

2.1.1 Forward Kinematics Problems 

The forward kinematics problems are explained with the transformation matrices calculated 

between a coordinate frame fixed in the end effector and another coordinate frame fixed in 

the base (reference frame). The position vector is signified by the homogeneous 

transformation matrix in a 3-D space along with the rotation matrix of the body. The overall 

homogeneous transformation matrix is derived by simply multiplying transformations of 

different frames fixed in contiguous links of the chain. Denavit and Hartenberg [1] were 

the first to introduce this determination for the spatial geometric representation of a 

manipulator, and its benefit is in the universal algorithm to solve the kinematics of a 

manipulator. 

2.1.2 Inverse Kinematics Problems 

Indirect kinematics problems can be resolved by using two types of approaches first one is 

closed form solutions and second is numerical approach. Closed form solutions are robot 

dependent and faster than the numerical approach. This approach classified into two type 

of methods Analytical method [2] and Geometric method [3]. Analytical method it is also 

called as algebraic method, analytically invert the direct kinematics equations. The problem 

of inverse kinematics can be summarized by solving a system of algebraic equations. The 

robot kinematics leads to an algebraic system or a set of equations, when the trigonometric 

functions are evaded by fixed replacements. Geometric method identifies the point on the 

manipulator comparative to either position or both position and orientation can be defined 

as a function of the joint variables. This Geometric method changes spatial problem into 

separate planar problems. Then algebraic method is used to solve these equations that are 

obtained. The numerical approach method can be applied to any kinematic arrangement 

because it is not robot dependent. It is slower and in some case, it is not possible to compute 

the solution. In this approach, there are different methods like symbolic elimination method 

[4], continuation method [5] and iterative method. Symbolic elimination method gives a 

set of nonlinear equations by eliminating variables to shorten it into a smaller set of 

equations. Different number of iterative methods are using now a day to resolve the inverse 

kinematics problems. Like Newton-Raphson method [6], Optimization approach [7,8], 



10 
 

Cyclic coordinate descent method [9], Pseudoinverse method [10], Jacobine transpose 

methods [11], the Levenberg-Marquardt damped least squares method [12], Quasi newton 

and conjugate gradient methods [13,14] and Neural net and artificial intelligence methods 

[15,16,17,18]. 

2.2 Redundancy Resolution 

In the addition of more degree of freedom to form a redundant arm that overcomes the 

restrictions founded in non-redundant robotic arm manipulator is the outcome of 

researchers and development since seventies in the area of robotics. By minimizing the 

kinetic energy of the manipulator Whitney [19] resolved the redundancy at the velocity 

level and he was one of the first researchers. The pseudo inverse control finds a minimum 

average solution but has the disadvantage of not being conservative for repetitive motions. 

Sung-Woo Kim [20] proposed an approach of optimal kinematic control. By using the 

necessary conditions of optimal control to obtain the globally optimal resolutions resolution 

of redundancy, this global optimal solution is obtained when the redundancy resolution 

problem to an optimal control problem. The main ideas are those that the kinematic 

resolution problem is considered as an optimal control problem, and from the necessary 

conditions of the optimal control the redundancy is resolved. 

 Joseph Wunderlich [21] presented a method of designing redundant and hyper-redundant 

manipulators for enclosed workspace, these manipulators dedicated to work within 

enclosed workspaces like welding, grinding, and spray-painting in assembly-line tasks. A 

variation on task-priority based redundancy control is also presented which allows many 

secondary-priority obstacle avoidance tasks to be satisfied simultaneously, therefore 

permitting easier movement through complex enclosures. 

2.2.1 Task-Priority Method 

Sometimes in each task for an end effector one thing, the position and orientation are more 

important than the other. In some operations the orientation of the end effector is less 

important than the position in tasks like cutting operations, welding operation, and 

dimension tools. But, in some operation like directing a camera to objects, spray painting, 

position is less important than the orientation. When a redundant manipulator is requested 

to avoid obstacle on its path and trace, a given trajectory for an end effector. Therefore, is 

trajectory tracing is the first priority and obstacle avoidance is the second priority and also 
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for the avoiding singularity of the robot arm manipulator, trajectory tracing is given first 

priority and singularity is given second priority. The idea of task priority is stated by a 

famous robotic researcher Yoshihiko Nakamura [22] in relative to the indirect kinematic 

problem of redundant robot manipulators. In task priority the required task is split into 

subtasks based on their order of priority as discussed above. Fabrizio Flacco [23] given a 

new approach which is based on separating the redundancy resolution form tasks state 

resolution. In this the first part, all the tasks are considered with an equal priority, and the 

contribution of each one is computed. And used a task priority matrix for enforcing the 

correct task priority order.  

Bruno Siciliano [24] A new method of closed loop schemes for solving the indirect 

kinematics of constrained redundant manipulator. The author presented that how the end 

effector task can be properly improved with the constraint task, and a solution based on 

Jacobian transpose can be developed. Priority is given to the end effector and the 

convergence of the constraint error have been proved via a Lya-punov argument. Hsien-I 

Lin [25] stated that by using a robot having same degree of freedom or device like haptics 

device to achieve the goal of an end effector to track a specified trajectory in inverse 

kinematic control of a redundant robot arm. To improve this kinematic control author 

proposed a novel method by which the control of manipulator, directly by computer 

simulations and human motion. A kinematic-control method is proposed to validate the 

redundant robot arm.  

2.3 Obstacle Avoidance 

An iterative solution method is presented by Andreas Muller [26] for the reverse 

kinematics of redundant serial manipulators that avoids collision of obstacles. A predictor-

perturbation-corrector algorithm accomplished with inverse kinematics while the 

manipulator end effector is tracking a described trajectory. This predictor achieves 

geometric tracking of described end effector position, Perturbation adjusts the manipulator 

posture away from obstacles and the corrector emends the perturbed configuration in 

accordance with the target end effector position. Author showed results for planar 5R and 

spatial 10R manipulator.  

In many actual situations the kinematic boundaries that lead to very low navigation 

performance. Jose-Luis Blanco [27] Author proposed an outline of controlling the 

manipulator kinematically and a free-flying point in new workspace is transformed for any 
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shape robots. Most of the present available transformational methods is covered by a 

generalized space transformation, and a reactive navigation system to optimize the robot 

arm motion by multiple transformation processed simultaneously, the present available 

obstacle avoidance process is performed better detection by these above transformations. 

Jose-Luis Blanco [27] give an experimental result that reveals the advantages of this 

method. 

O. Khatib [28] Used a powerful principle and simple method that has a fixed obstacle 

avoidance capability and the method is potential fields method. In this potential field 

method, a manipulator is considered to be as a particle that moves in a potential field is 

generated for the trajectory and for the obstacle with is present in the workspace. An 

attractive potential is generated for the trajectory in filed and a repulsive potential is 

generated for each obstacle in the work filed. Obstacles are either a priori known or an on- 

board sensor used for on-line detected and hence the repulsive potential generated in filed 

is on-line estimated. This potential field method is not only useful for the obstacle 

avoidance, this also defines the velocity vector for the manipulator for driving it to the 

trajectory while avoiding obstacles by a potential field planning method. 

The dual neural network is proposed by Yunong Zhang and Jun Wang [29] for the online 

solution of kinematically redundant manipulator to impact free indirect kinematics 

problem. An improved problem design is proposed in such a way that the obstacle 

avoidance necessity is signified by dynamically updated physical constraints and inequality 

constraints can be formulated directly such as joint physical limits. Yunong Zhang and 

Jun Wang [29] explained this method using PA10 robot arm with a motion control 

simulation in the presence of point and window shaped obstacle. Mihai Duguleana [30] 

also worked in a solution that is based this process that uses Q-learning reinforcement 

technique this means for attaining computing trajectory planning problems or obstacle free 

navigation manipulator. Yunong Zhang and Jun Wang [29] use neural networks process 

for solving indirect kinematics with less obstacles like only one or two are present in the 

manipulator workspace, and next focused in calculating indirect kinematics for obstacle 

avoidance of complex manipulators in an unknown environment workspace with multiple 

obstacles in workspace. 
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2.4 Singularities Avoidance 

For the avoidance of singularity in selective compliance assembly robot arm (SCARA) 

robot is used by Leon Beiner [31] to present a method to avoid singularities by using 

optimal work position. selective compliance assembly robot arm robot in several specified 

distinct locations on the manipulator workspace that performs the given task. To minimize 

a Jacobian related a graphical suboptimal solution, a numerical solution for workpieces of 

arbitrary from, an analytical solution for symmetrical workpieces, and cost function 

subjected to workspace boundary conditions, and are presented and explained by SCARA 

robots. 

Samer Yahya [32] designed a singularity avoiding three-dimensional planar manipulator, 

without increasing the control of motors but by increasing the degrees of freedom. The 

PUMA arm robot manipulability ellipsoids are related with the proposed manipulator have 

been obtained. The manipulability measure values of both PUMA and proposed 

manipulators have been analyzed and calculated. Author concluded that form both of 

manipulator the proposed manipulator is more ability to be used for singularity avoidance 

as that of PUMA.  

Giacomo Marani [33] Described a solution for kinematic controlled manipulator based on 

task priority for avoiding the presence of both kinematic singularities and algorithmic 

singularities. In task priority method, the Algorithmic singularities avoidance uses a 

successive task projection and a secondary task correction. Author concluded that in this 

procedure the exact pseudo-inversion is used and also stated that the measure of 

manipulability is never zero. 

Stefano Chiaverini [34] developed a new task priority method that reduces the properties 

of the algorithmic singularities by reviewing the application of presently available 

singularity avoiding methods to the case of kinematically redundant arms. For a seven 

degree of freedom robotic arm this method is applied in numerical case studied to establish 

its usefulness. 
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3. DYNAMIC MODELING OF MANIPULATOR. 

3.1 Introduction. 

The set of numerical equations relating the dynamic behaviour are the dynamic equations 

of motion of a robot arm. A manipulator move at consistent speed, must accelerate, and 

decelerate amid the work cycle. The time varying torques are connected by the ten actuators 

to adjust the internal forces and external forces. The forces influenced by the environment 

are the external forces which include load and gravitational forces. The internal forces are 

caused by motion i.e. velocity and acceleration, of links e.g. Inertial, Coriolis, and 

Frictional forces. Links and joints have to resist stresses resulted by forces/torques balance. 

In this chapter, the numerical model and properties of the dynamic equations of motion for 

the dynamic behaviour of robot arm is developed. Relationship between motion of links for 

simulation, joint actuator torques, and design of control algorithms are given by the 

dynamic behaviour of the manipulator. This dynamic equation of motion is considered for 

control purposes. 

The dynamic model for a manipulator can be formulated by using known physical law such 

as law of Newtonian mechanics and Lagrangian mechanics. Following two approaches are 

used to develop a set of equation of motion for a manipulator which are Lagrange-Euler 

approach and Newton-Euler approach. Lagrange-Euler approach is based on the energy 

approach while Newton-Euler approach is based on forced balancing. Lagrange-Euler 

approach considers each term as scalar quantity e.g. kinetic energy, potential energy etc, 

while Newton-Euler approach consider each term as vector quantity e.g. displacement, 

velocity, acceleration etc. The Lagrange-Euler and Newton-Euler formulations of the 

dynamic model give a closed-form solution. These solutions are computationally intensive, 

making real time control based on such a dynamic model. There might be some variations 

in the structure of these equations as they are found for various explanations and purposes. 

Some are formulated to ease the control analysis, some are formulated to achieve better 

computation time and other are formulated to enhance computer simulation.  

For the formulation of equation of motion for robot arm Lagrange-Euler approach is more 

simple, general and systematic as comparted to Newton-Euler approach. Thus, Lagrange-

Euler approach is preferred for the formulation of dynamic model of manipulator in future 

work. 
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3.2 Lagrange-Euler Mechanics. 

In physics Lagrangian mechanics is widely used to solve mechanical problems. In 

optimisation problems of dynamic systems Lagrange's equations are applied. The Lagrange 

function  ′𝐿′ which is a scaler function is given by the difference between the total kinetic 

energy ′𝐾′ and the total potential energy ′𝑃′ of mechanical system. 

𝐿 = 𝐾 − 𝑃 (3.1) 

To define the manipulator variables based on a set of generalized coordinates dynamic 

model formulation utilising Lagrange-Euler approach is used. In the generalized 

coordinates the joint variables are described as displacement ‘𝑞’. For prismatic joint which 

is defined as linear displacement ′𝑑′ and while for rotary joint defined as angular 

displacement ′𝜃′. The velocity for prismatic joint ′𝑞′̇  describes linear velocity ′𝑑′̇  and 

velocity for rotary joint ′𝑞′̇  describes angular velocity ‘𝜃′̇ . 

To obtain the dynamic model for robot arm based on Lagrange-Euler approach is given by 

the Lagrangian, as a set of equations, 

𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝑞𝑖̇
) −

𝑑𝐿

𝑑𝑞𝑖
= 𝜏𝑖

 (3.2) 

Here,  

L = Lagrangian function. 

𝑞𝑖 = Generalized coordinates of the manipulator. 

𝑞𝑖̇ = Generalized coordinates of the joint velocity. 

𝜏𝑖 = Generalized force applied to the system at joint 𝑖. 

The left-hand side of dynamic equations gives sum of the torques/forces produced because 

of kinetic and potential energy available in the system. While the right-hand side 𝜏𝑖 

represent the joint torque for joint 𝑖 that is produced by actuator 𝑖. 
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3.3 Lagrange-Euler Formulation 

The Lagrange-Euler formulation is a systemic practice for deriving the dynamic model of 

an 𝑛 degree of freedom (DOF) manipulator. The equation (3.2) creates the relation between 

the joint accelerations, positions, velocities and the generalized torques applied to the 

manipulator. The 𝑛 degree of freedom open kinematic chain serial link manipulator has 𝑛 

joint position, 

𝑞 = [𝑞1, … … 𝑞𝑖]
𝑇. (3.3) 

Lagrange-Euler formulation which is discussed in equation (3.2) has the following features: 

• It defines motion in real physical terms and is systematic. 

• The equation of motion attained are analytical and compact. 

• The matrix vector form of equations is alluring for calculations and control systems 

design.  

• The control problem can be simplified by designing the structure of the manipulator 

with minimum joint connection that is coefficients and might be reduced or 

eliminated. 

• The model is computationally intensive and is not acquiescent to online control. 

The derivation of equation of motion utilizing Lagrange-Euler formulation is done in the 

accompanying subtopics. It makes use of link homogenous transformation matrices T, 

which are derived from the kinematic modeling. Initially, the link velocity is calculated and 

next the link inertia tensor is attained. These are employed to compute kinetic energy. Then 

potential energy is calculated and next the lagrangian is formed which is substituted in 

equation (3.2) to obtain dynamic model. 

3.3.1 JOINT VELOCITY OF A POINT ON THE MANIPULATOR 

For computing the kinetic energy of a link of an 𝑛- degree of freedom manipulator, link 

velocity is required. 

In this subsection, the velocity of a point fixed in link 𝑖 is derived and the effects of the 

motion of other joint on all the points in this link is discovered. Let’s consider a point 𝑝 on 

the link 𝑖 of an 𝑛-degree of freedom manipulator as shown in fig (3.1). The coordinate 
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frames, frame {0}, frame {𝑖-1}, frame {𝑖} are chosen as per convention. The position vector 

𝑟𝑖
𝑖 describes the point 𝑝 on the link with respect to frame {𝑖}. 

 Ti

ir 1zyx iii  (3.4) 

The position of point 𝑝 with respect to frame {0} is given by  

i

iii rTr 00 
 

(3.5) 

).......( 11

2

0

1

0  i

ii TTTT
 (3.6) 

𝑇𝑖
0 is the coordinate homogeneous transformation matrix which relates the 𝑖𝑡ℎ coordinate 

frame to the base coordinate frame, and 𝑇𝑖
𝑖−1 is the homogeneous transformation matrix 

which relates the 𝑖𝑡ℎ coordinate frame with the (𝑖 − 1)𝑡ℎ coordinate frame. 

Fig 3.1 Joint velocity of a point on the manipulator 

If joint 𝑖 is prismatic, the homogeneous transformation matrix is given as  

















 



1000

cossin0

0cossincoscossin

0sinsincossincos

1

iii

iiiii

iiiii

i

i
d

T






 
(3.7) 

If joint 𝑖 is rotary, the homogeneous transformation matrix is given as  
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















 



1000

cossin0

coscossincoscossin

cossinsincossincos

1

iii

iiiiiii

iiiiiii

i

i
d

a

a

T






 
(3.8) 

Where 𝑎𝑖, 𝛼𝑖 are link parameters of robot arm and 𝑑𝑖, 𝜃𝑖 are joint parameters of joint 𝑖. The 

partial derivate of above rotary homogeneous transformation matrix with respect to 𝜃𝑖 

gives, 


























 

0000

0000

cossinsincossincos

sincossincossin
1

iiiiiii

iiiiiCii

i

i

i
a

aos

T 




 

(3.9) 

The velocity of i

ir expressed in the base coordinate frame can be expressed as 

𝑣𝑖
0 ≡ 𝑣𝑖 =

𝑑

𝑑𝑡
(𝑟𝑖

0) =
𝑑

𝑑𝑡
( 𝑇𝑖

0 𝑟𝑖
𝑖) (3.10) 

𝑑

𝑑𝑡
(𝑟𝑖

0) = (∑
𝜕 𝑇𝑖

0

𝜕𝑞𝑗

𝑖

𝑗=1
𝑞𝑗̇) 𝑟𝑖

𝑖 
(3.11) 

When equation number (3.8) and (3.9) are compared they gives a pattern, that equation (3.9) can be 

obtained from equation (3.8) by using some matrix operations, 

• Interchanging row 1 with row 2, 

• Changing the sign of row 1, and 

• Making row 3 and row 4 zero. 

Hence by using above matrix operation can obtain the partial derivation of homogeneous 

transformation matrix  𝑇𝑖
𝑖−1 with respect to 𝜃𝑖. Numerically these steps can be given by a 

4 × 4 matrix 𝑄𝑖. For revolute joint  𝑄𝑖 is defined as 
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















 



0000

0000

0001

0010

iQ  (3.12) 

For prismatic joint  𝑄𝑖 is defined as 





















0000

1000

0000

0000

iQ  (3.13) 

and by premultiplying 1i

iT  with 𝑄𝑖, 

















 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

0000

0000

0001

0010

1

iii

iiijiii

iiiiiii

i

ii
d

a

a

TQ






 (3.14) 

























0000

0000

cossinsincossincos

sincossincossin

1 iiiiiii

iiiiiCii

i

ii

a

aos

TQ




 (3.15) 

It is observed that equation (3.9) and (3.13) are same, 

1
1







 i

ii

i

i

i TQ
T


 (3.16) 

Since  𝑇𝑖
0 = 𝑇1

0𝑇2
1 … 𝑇𝑖

𝑖−1, therefore the partial derivative 𝑇𝑖
0 with respect to 𝑞𝑗, 

1

1

1

11

2

0

1

0

........... 














 i

i

j

j

j

j

jj

j

j

i TT
q

T
TTT

q

T
 (3.17) 

After simplifying equation (3.17), the result is valid for 𝑗 ≤ 𝑖. Hence, for 𝑖 = 1,2,3 … . , 𝑛. 
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

 









ijfor

ijforTQT

q

T
j

ijj

j

i

0

10

1

0

 (3.18) 

The link velocity 𝑣𝑖 as given in equation (3.11), is simplified using equation (3.18), 

𝑣𝑖  = (∑ 𝑇𝑗−1
0 𝑄𝑗𝑇𝑖

𝑗−𝑖
𝑖

𝑗=1
𝑞𝑗̇) 𝑟𝑖

𝑖 (3.19) 

3.3.2 THE INERTIA TENSOR OF THE MANIPULATOR 

During the motion of links, the mass of links contributes inertia forces. All the inertial loads 

are reflected with respect to rotations about the origin of frame of interest, are represented 

by a motion of inertia tensor, which is one mass properties. It is a 4 × 4 symmetric matrix, 

which characterizes the distributions of mass of a rigid body. The moment of inertia tensor 

is given as 



































iiiiiii

iiiiiiiiii

iiiiiiiiii

iiiiiiiiii

i

mdmdzmdymdx

mdzmdzmdzymdzx

mdymdzymdymdyx

mdxmdzxmdyxmdx

I
2

2

2

 (3.20) 

Where 𝑑𝑚𝑖 is the mass of the element on link 𝑖 located at  Tiii

i

i zyxr 1 . 





























iiiiiii

iizzyyxxyzxz

iiyzzzyyxxxy

iixzxyzzyyxx

i

mzmymxm

zmIIIII

ymIIIII

xmIIIII

I
)(5.0

)(5.0

)(5.0

 

   

(3.21) 

Where 𝑚𝑖is the mass of the 𝑖𝑡ℎ link and    1iii

i

i zyxr   is the center of mass. The 

moment of inertia tensor 𝐼𝑖 for 𝑖𝑡ℎ link depends on the mass distribution of the link. 
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3.3.3 THE KINETIC ENERGY OF THE MANIPULATOR 

The kinetic energy of the differential mass 𝑑𝑚𝑖 on link 𝑖,for 𝑖 = 1,2,3 … … , 𝑛 located at 𝑟𝑖
0 

and moving with velocity 𝑣𝑖
0with respect to the base frame {0} is, 

𝑑𝑘𝑖 =
1

2
 𝑑𝑚𝑖(𝑣𝑖)2 (3.22) 

(𝑣𝑖)
2 = 𝑣𝑖 . 𝑣𝑖 = 𝑟𝑖

0̇𝑟𝑖
0̇ = 𝑇𝑟𝑎𝑐𝑒 (𝑟𝑖

0̇𝑟𝑖
0̇

𝑇
) = 𝑇𝑟𝑎𝑐𝑒(𝑣𝑖 . 𝑣𝑖

𝑇) (3.23) 

By substituting equation (3.19) in equation (3.22), 

𝑑𝑘𝑖

=
1

2
𝑇𝑟𝑎𝑐𝑒 [(∑ 𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

𝑖

𝑗=1
𝑞𝑗̇ 𝑟𝑖

𝑖) (∑ 𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖
𝑖

𝑘=1
𝑞𝑘̇ 𝑟𝑖

𝑖)

𝑇

]  𝑑𝑚𝑖 
(3.24) 

The total kinetic energy can be given by integration of equation (3.24), 

𝑘𝑖 = ∫ 𝑑𝑘𝑖 (3.25) 

𝑘𝑖 =
1

2
𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) ∫ 𝑟𝑖
𝑖𝑟𝑖

𝑖𝑇
𝑑𝑚𝑖(𝑇𝑘−1

0 𝑄𝑘𝑇𝑖
𝑘−𝑖)

𝑇
𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
] (3.26) 

Form equation (3.21), the term ∫ 𝑟𝑖
𝑖𝑟𝑖

𝑖𝑇
𝑑𝑚𝑖 of equation (3.26) is the moment of inertia 

tensor 𝐼𝑖, therefore the above equation (3.26) is , 

𝑘𝑖 =
1

2
𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖 (𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
] (3.27) 

The total kinetic energy of manipulator for 𝑛- degree of freedom is, 
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𝐾 = ∑ 𝑘𝑖

𝑛

𝑖=1
   

=
1

2
∑ 𝑇𝑟𝑎𝑐𝑒 [∑ ∑ (𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖 (𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

𝑞𝑗̇𝑞𝑘̇

𝑖

𝑘=1

𝑖

𝑗=1
]

𝑛

𝑖=1
 

 

(3.28) 

By simplifying equation (3.28), 

𝐾 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑇𝑗−1

0 𝑄𝑗𝑇𝑖
𝑗−𝑖

) 𝐼𝑖 (𝑇𝑘−1
0 𝑄𝑘𝑇𝑖

𝑘−𝑖)
𝑇

] 𝑞𝑗̇𝑞𝑘̇ (3.29) 

𝐾 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑈𝑖𝑗) 𝐼𝑖  (𝑈𝑖𝑘)𝑇]𝑞𝑗̇𝑞𝑘̇ 

(3.30) 

3.3.4 THE POTENTIAL ENERGY OF THE MANIPULATOR 

The potential energy for 𝑖𝑡ℎ link is 𝑝𝑖 in gravity field 𝑔, 

𝑝𝑖 = −𝑚𝑖𝑔(𝑟𝑖
0̅̅ ̅) = −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅) (3.31) 

Here the negative sign represents the work is done on the system to raise link 𝑖 against 

gravity.  𝑟𝑖
𝑖̅ represents the center of mass of 𝑖𝑡ℎ link with respect to the frame {𝑖}, and 𝑟𝑖

0̅̅ ̅ 

represents the center of mass of 𝑖𝑡ℎ link with respect to base frame {0}. And the acceleration 

due to gravity  Tzyx gggg 0  is the gravity vector with respect to base frame {0}. 

The total potential energy is given as, 

𝑝 = ∑ 𝑝𝑖

𝑛

𝑖=1
= ∑ −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅)

𝑛

𝑖=1
 (3.32) 

3.3.5 EQUATION OF MOTION OF THE MANIPULATOR 

The equation of motion of the manipulator is formulated as following. After substituting 

kinetic energy equation (3.30) and potential energy equation (3.32) in Lagrange-Euler 

equation (3.1), 𝐿 = 𝐾 − 𝑃 , 
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𝐿 =
1

2
∑ ∑ ∑ 𝑇𝑟𝑎𝑐𝑒

𝑖

𝑘=1

𝑖

𝑗=1

𝑛

𝑖=1
[(𝑈𝑖𝑗) 𝐼𝑖  (𝑈𝑖𝑘)𝑇]𝑞𝑗̇𝑞𝑘̇ − (∑ −𝑚𝑖𝑔𝑇𝑖

0(𝑟𝑖
𝑖̅)

𝑛

𝑖=1
) (3.33) 

The generalized torque 𝜏𝑖 of actuator at joint 𝑖, as described in equation (3.2). by 

substituting above Lagrange-Euler equation (3.33) in equation (3.2), the final equation of 

motion is, 

𝜏𝑖 = ∑ 𝑀𝑖𝑗

𝑛

𝑗=1
(𝑞)𝑞𝑗̈ +  ∑ ∑ ℎ𝑖𝑗𝑘

𝑛

𝑘=1

𝑛

𝑗=1
𝑞𝑗̇𝑞𝑘̇ + 𝐺𝑖 (3.34) 

Where, 

𝑀𝑖𝑗 = ∑ 𝑇𝑟𝑎𝑐𝑒 [(𝑈𝑝𝑗) 𝐼𝑖 (𝑈𝑝𝑘)
𝑇

]
𝑛

𝑝=max (𝑖,𝑗)
 

(3.35) 

ℎ𝑖𝑗𝑘 = ∑ 𝑇𝑟𝑎𝑐𝑒
𝑛

𝑝=max (𝑖,𝑗,𝑘)
[
𝜕(𝑑𝑝𝑘)

𝜕𝑞𝑝
𝐼𝑝𝑈𝑝𝑖

𝑇 ] 
(3.36) 

𝐺𝑖 = − ∑ 𝑚𝑝𝑔𝑈𝑝𝑖(𝑟𝑝
𝑝̅̅ ̅)

𝑛

𝑝=𝑖
 

(3.37) 



 






ijfor

ijforTQT
U

j

ijj

ij
0

10

1  (3.38) 

𝜕𝑈𝑖𝑗

𝜕𝑞𝑘
= {

𝑇𝑗−1
0 𝑄𝑗𝑇𝑘−1

𝑗−1
𝑄𝑘𝑇𝑖

𝑘−1                𝑓𝑜𝑟 𝑖 ≥ 𝑘 ≥ 𝑗

𝑇𝑘−1
0 𝑄𝑘𝑇𝑗−1

𝑘−1𝑄𝑗𝑇𝑖
𝑗−1

               𝑓𝑜𝑟 𝑖 ≥ 𝑗 ≥ 𝑘

0                                                 𝑓𝑜𝑟 𝑖 < 𝑗 𝑜𝑟 𝑖 < 𝑘

 (3.39) 

The dynamic model for a manipulator is given in equation (3.34) which is a set of 𝑛 

nonlinear, coupled, second order ordinary differential equation for 𝑛 degree of freedom 

manipulator. 
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3.4 DEVELOPMENT OF THE DYNAMIC MODEL FOR MULTIPLE 

DEGREES OF FREEDOM MANIPULATOR. 

The following is the example to develop dynamic model using Lagrange-Euler equation 

for multiple link manipulator. 

3.4.1 8-Link Manipulator 

Let’s consider an 8-link manipulator which is having all revolute joint. The physical 

dimensions of the links of the manipulator and the link parameter are given in table 3.1. 

No. of 

links 

(𝑖) 

Link 

Masses 

(𝑚)(𝑘𝑔) 

Link Parameters 

Initial Joint 

Angle 

(𝜃𝑖)(𝑑𝑒𝑔) 

Link Length 

(𝑎𝑖)(𝑚) 

Joint Offset 

Distance 

(𝑑𝑖)(𝑚) 

Twist Angle 

 (𝛼𝑖)(𝑑𝑒𝑔) 

Initial Joint 

Angle 

Velocity 

(𝜃̇𝑖)(𝑑𝑒𝑔/

𝑚𝑖𝑛) 

1 20 75 0.6 0 0 1 

2 17 35 0.5 0 0 1 

3 20 -98 0.6 0 0 1 

4 26 -26 0.5 0 0 1 

5 20 13 0.5 0 0 1 

6 15 -30 0.5 0 0 1 

7 15 -75 0.5 0 0 1 

8 15 43 0.5 0 0 1 

 

Table no 3.1:- Physical dimensions and parameters of 8-link manipulator 

 

To formulate dynamic model for 8 link manipulator as discussed in above section 3.3, 

now calculate the homogeneous transformation matrices using equation (3.8). 
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The homogeneous transformation matrix can be given by, 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

1

iii

iiiiiii

iiiiiii

i

i
d

a

a

T






 
(3.40) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

111

1111111

1111111

0

1
d

a

a

T






 
(3.41) 






















0000.1000

00000.100

2327.009218.03878.0

5531.003878.09218.0

0

1T  
(3.42) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

222

2222222

2222222

1

2
d

a

a

T






 (3.43) 

























0000.1000

00000.100

2141.009037.04282.0

4518.004282.09037.0

1

2T  (3.44) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

333

3333333

3333333

2

3
d

a

a

T






 (3.45) 

























0000.1000

00000.100

3440.008193.05734.0

4916.005734.08193.0

2

3T  (3.46) 

 



26 
 

 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

444

4444444

4444444

3

4
d

a

a

T






 (3.47) 






















0000.1000

00000.100

3813.006469.07626.0

3235.007626.06469.0

3

4T  (3.48) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

555

5555555

5555555

4

5
d

a

a

T






 (3.49) 

















 



0000.1000

00000.100

2101.009074.04202.0

4537.004202.09074.0

4

5T  (3.50) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

666

6666666

6666666

5

6
d

a

a

T






 (3.51) 

















 



0000.1000

00000.100

4940.001543.09880.0

0771.009880.01543.0

5

6T  (3.52) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

777

7777777

7777777

6

7
d

a

a

T






 (3.53) 
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















 



0000.1000

00000.100

1939.009218.03878.0

4609.003878.09218.0

6

7T  (3.54) 

















 



1000

cossin0

coscossincoscossin

cossinsincossincos

888

8888888

8888888

7

8
d

a

a

T






 (3.55) 






















0000.1000

00000.100

2911.005551.08318.0

1943.008318.05551.0

7

8T  (3.56) 

  

The final homogeneous transformation matrices with respect to base frame {0} is, 






















0000.1000

00000.100

9858.009859.01674.0

0441.201674.09859.0

0

8T  (3.57) 

Form equation (3.12) the 𝑄𝑖 matrix, for a rotary joint, 

















 



0000

0000

0001

0010

iQ  (3.58) 

The first derivative of the coordinate homogeneous transformation matrices 𝑇8
0 is given by 

equation (3.17). Assuming all the products of inertia are zero, the pseudo-inertia matrix 𝐼𝑖is 

given by equation (3.20), 
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

























iii

iiii

i

mlm

lmlm

I

00)(2/1

0000

0000

)(2/100)(3/1 2

 (3.59) 



















































0000.20000000.6

0000

0000

0000.6004000.2

00)(2/1

0000

0000

)(2/100)(3/1

111

11

2

11

1

mlm

lmlm

I  (3.60) 



















































0000.17002500.4

0000

0000

2500.4004167.1

00)(2/1

0000

0000

)(2/100)(3/1

222

22

2

22

2

mlm

lmlm

I  (3.61) 



















































0000.20000000.6

0000

0000

0000.6004000.2

00)(2/1

0000

0000

)(2/100)(3/1

333

33

2

33

3

mlm

lmlm

I  (3.62) 



















































0000.26005000.6

0000

0000

5000.6001667.2

00)(2/1

0000

0000

)(2/100)(3/1

444

44

2

44

4

mlm

lmlm

I  (3.63) 



















































0000.20000000.5

0000

0000

0000.5006667.1

00)(2/1

0000

0000

)(2/100)(3/1

555

55

2

55

5

mlm

lmlm

I  (3.64) 



















































0000.15007500.3

0000

0000

7500.3002500.1

00)(2/1

0000

0000

)(2/100)(3/1

666

66

2

66

6

mlm

lmlm

I  (3.65) 
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

















































0000.15007500.3

0000

0000

7500.3002500.1

00)(2/1

0000

0000

)(2/100)(3/1

777

77

2

77

7

mlm

lmlm

I  (3.66) 



















































0000.15006250.2

0000

0000

6250.2006125.0

00)(2/1

0000

0000

)(2/100)(3/1

888

88

2

88

8

mlm

lmlm

I  (3.67) 

Using equation (3.35), 

𝑀11 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈11) 𝐼1 (𝑈11)𝑇]8
𝑝=max (1,1) =323.4558 (3.68) 

𝑀12 ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈12) 𝐼1 (𝑈12)𝑇]8
𝑝=max (1,2) =235.7224 (3.69) 

𝑀13 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈13) 𝐼1 (𝑈13)𝑇] =8
𝑝=max (1,3) 210.3771 (3.70) 

𝑀14 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈14) 𝐼1 (𝑈14)𝑇]8
𝑝=max (1,4) =120.3516 (3.71) 

𝑀15 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈15) 𝐼1 (𝑈15)𝑇] =8
𝑝=max (1,5) 68.3713 (3.72) 

𝑀16 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈16) 𝐼1 (𝑈16)𝑇]8
𝑝=max (1,6) =19.6365 (3.73) 

𝑀17 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈17) 𝐼1 (𝑈17)𝑇]8
𝑝=max (1,7) =-6.6078 (3.74) 

𝑀18 = ∑ 𝑇𝑟𝑎𝑐𝑒[(𝑈18) 𝐼1 (𝑈18)𝑇]8
𝑝=max (1,8) =2.9072 (3.75) 
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Similarly, solving from 𝑀21 to 𝑀88 the final obtained matrix be as follows, 

  

 

(3.76) 







































6125.05724.16855.23016.31627.45704.42676.30972.2

5724.15323.71012.102615.99263.91650.73116.16078.6

6855.21012.104201.216995.283296.387960.436568.306365.19

3016.32615.96995.288954.489231.714667.934000.753713.68

1627.49263.93296.389231.713675.1139429.1559718.1263516.120

5704.41650.77960.434667.939429.1556782.2334902.2003771.210

2676.33116.16568.304000.759718.1264902.2004689.1967224.235

9072.26078.66365.193713.683516.1203771.2107224.2354558.323

M
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4. MATHEMATICAL ALGORITHM USING MATLAB 

%% Task Priority of 8 Link Robot Tracks ‘L’ Shape Trajectory in a ‘L’ 

Shape Tube Using Potential Function Approach 

  
%%settings 
clc; 
clear all; 
close all; 
format short; 

  

  
% Plot Settings 
% figure 
grid on 

  
% Weights 
g11 =0; 
g12 = 0; 
g21 = 110000; 
g22 = 0; 

  
%Obstacles 
X1= [0.3 2.65 2.65 0.3]; 
Y1= [1.79 1.79 2.04 2.04]; 
X2= [2.40 2.65 2.65 2.40]; 
Y2= [0 0 1.79 1.79]; 
X3= [1.35 1.60 1.60 1.35]; 
Y3= [0 0 0.74 0.74]; 
X4= [0.3 1.60 1.60 0.3]; 
Y4= [0.74 0.74 0.99 0.99];  

  
% Parameters 
t = 0;                                      % time 
n = 8;                                      % No of Links 
l = [0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.35];     % Link Lenghts 
m = [20 17 20 26 20 15 15 15];              % Link Masses 

  
% Initial Values in Joint Space 
th   = [75 35 -98 -26 13 -30 -75 43]'*pi/180; 
thd  = [0 0 0 0 0 0 0 0]'; 
thdd = [0 0 0 0 0 0 0 0]'; 

  
%Position of end-effector r = [x y] 
y   = inline('1.39*(2*t^3 - 3*t^2 + 1)'); 
yd  = inline('(t^2-t)*7.34'); 
ydd = inline('(2*t-1)*7.34'); 
x   = 2; 
xd  = 0; 
xdd = 0; 

  
step = -0.005; 
for t=1:step:0 

     
    r1   = [x; y(t)];  
    rd1  = [xd; yd(t)]; 
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    rdd1 = [xdd; ydd(t)]; 

  
    [J,DJ,X,Y] = jacobian(n,th,thd,l); 
    ard1 = J*thd; 
    ar1 = [X(n);Y(n)];   

  
    h1 = rdd1 - DJ*thd+g11*(rd1-ard1) + g21*(r1-ar1); 

     
    if(t~=0)  
        [M,C] = DynamicMassCoriolis(th,thd,m,n,l); 
        [dp,dd] = PotenFunc2(n,l,th,thd); 
        INVM=inv(M); 

                         

INVM1=[INVM(1,1),INVM(1,2),0,0,0,0,0,0;INVM(2,1),INVM(2,2),0,0,0,0

,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0

,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0]; 
 

thdd = (pinv(J)*h1)-((eye(n,n)-(pinv(J)*J))*(INVM1)*(dp+dd) + 

([C,0,0,0, 0,0,0]')); 
         

thd = thd + thdd*step; 
th  = th + thd*step   

         
    end 

     
   cla 
    axis square 
    axis tight 
    hold on 
    plot([2,2],[1.39,0],'LineWidth',2,'Color',[0.5,0,0]); 
    plot([0,2],[1.39,1.39],'LineWidth',2,'Color',[0.5,0,0]); 
    plot([-2,3],[-2,-2],'LineWidth',0.2,'Color',[0.5,0,0]); 
    plot([3,3],[-2,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
    plot([-2,3],[3,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
    plot([-2,-2],[-2,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
    fill(X1,Y1,[0.7969,0.7969,0.7969]); 
    fill(X2,Y2,[0.7969,0.7969,0.7969]); 
    fill(X3,Y3,[0.7969,0.7969,0.7969]); 
    fill(X4,Y4,[0.7969,0.7969,0.7969]); 

     
    x1=[0 X]; 
    y1=[0 Y];     

     
    if rem(t,.05)==0 
        plot(x1,y1,'o-','LineWidth',2,'Color','b'); 
        pause(1e-10); 
        plot(x1,y1,'o-','LineWidth',2,'Color','b');     
    end 

    
end 
plot(x1,y1,'o-','LineWidth',2,'Color','b'); 

  
%HorizontalTrackFollowing 

  

  
% Weights 
g11 =0; 
g12 = 0; 
g21 = 25000; 
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g22 = 0; 

  
%Obstacles 
X1=[0.3 2.65 2.65 0.3]; 
Y1=[1.79 1.79 2.04 2.04]; 
X2=[2.40 2.65 2.65 2.40]; 
Y2=[0 0 1.79 1.79]; 
X3=[1.35 1.60 1.60 1.35]; 
Y3=[0 0 0.74 0.74]; 
X4=[0.3 1.60 1.60 0.3]; 
Y4=[0.74 0.74 0.99 0.99];   

  
% Parameters 
t = 0;                                      % time 
n = 8;                                      % No of Links 
l = [0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.35];     % Link Lenghts 
m = [20 17 20 26 20 15 15 15];              % Link Masses 

  
% Initial Values in Joint Space 
th   = [82.4428 99.0644 -129.2478 -37.8896 23.4740 -15.4813 -68.1877 

58.4588]'*pi/180; 
thd  = [0 0 0 0 0 0 0 0]'; 
thdd = [0 0 0 0 0 0 0 0]'; 

  
%Position of end-effector r = [x y] 
y   = 1.39; 
yd  = 0; 
ydd = 0; 
x   = inline('2*(2*t^3 - 3*t^2 + 1)'); 
xd  = inline('(t^2-t)*7.34'); 
xdd = inline('(2*t-1)*7.34'); 

  

  
step = 0.005; 
for t=0:step:1 

     
    r1   = [x(t); y];  
    rd1  = [xd(t); yd]; 
    rdd1 = [xdd(t); ydd]; 

  
    [J,DJ,X,Y] = jacobian(n,th,thd,l); 
    ard1 = J*thd; 
    ar1 = [X(n);Y(n)];   

  
    h1 = rdd1 - DJ*thd+g11*(rd1-ard1) + g21*(r1-ar1); 

     
    if(t~=0)  
        [M,C] = DynamicMassCoriolis(th,thd,m,n,l); 
        [dp,dd] = PotenFunc2(n,l,th,thd); 
        INVM=inv(M); 

INVM1=[INVM(1,1),INVM(1,2),0,0,0,0,0,0;INVM(2,1),INVM(2,2),0,0,0,0

,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0

,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0]; 
thdd = (pinv(J)*h1)-((eye(n,n)-(pinv(J)*J))*(INVM1)*(dp+dd)+ 

([C,0,0,0,0,0,0]')); 
      thd = thd + thdd*step; 
      th  = th + thd*step;       
    end 
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   cla 
    axis square 
    axis tight 
    hold on 
     plot([2,2],[1.39,0],'LineWidth',2,'Color',[0.5,0,0]); 
     plot([0,2],[1.39,1.39],'LineWidth',2,'Color',[0.5,0,0]); 
     plot([-2,3],[-2,-2],'LineWidth',0.2,'Color',[0.5,0,0]); 
     plot([3,3],[-2,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
     plot([-2,3],[3,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
     plot([-2,-2],[-2,3],'LineWidth',0.2,'Color',[0.5,0,0]); 
     fill(X1,Y1,[0.7969,0.7969,0.7969]); 
     fill(X2,Y2,[0.7969,0.7969,0.7969]); 
     fill(X3,Y3,[0.7969,0.7969,0.7969]); 
     fill(X4,Y4,[0.7969,0.7969,0.7969]); 

     
    x1=[0 X]; 
    y1=[0 Y];     

     
    if rem(t,.05)==0 
        plot(x1,y1,'o-','LineWidth',2,'Color','b'); 
        pause(1e-10); 
        plot(x1,y1,'o-','LineWidth',2,'Color','b');     
    end 

    
end 
plot(x1,y1,'o-','LineWidth',2,'Color','b'); 
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5.  CONCULSION 

In this thesis, the idea of task priority technique is utilized, which splits the offered task to 

numerous subtasks based on order of priority. The primary two subtasks are, one is tasking 

the given trajectory and the second one is avoiding the obstacles in the complex workspace.  

Various mathematical simulation is performed for various compound environment 

consisting of obstacles with an offered trajectory to show the adequacy of the redundancy 

control structure for obstacle and singularity avoidance. 

The dynamic model development for redundant manipulator is modelled. Equation of 

motion for a redundant manipulator which track the trajectory in narrow “L” shape tube 

channel by using Lagrange-Euler approach is formulated and the dynamic model is 

developed. MATLAB software is used for development of numerical simulation. 

 

5.1.  FUTURE WORK FOR RESEARCH 

1 These methods can be applied for high DOF redundant manipulators for achieving 

task prioritization, obstacle avoidance, singularity avoidance, path planning etc. 

2 Future research can be on high DOF redundant manipulator which are in the field of 

medicinal  
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Fig 1.1 Robots used in welding opertion Source from roboticsandautomationnews.com  

Fig 1.2 Robots used in handling opertion Source from roboticsandautomationnews.com 

Fig 1.3 Robotos used in assmbly opertion source from roboticsandautomationnews.com 

Fig 1.4 Sanke like arm robot Screenshot for youtube video-https://www.youtube.com/ 

watch?v=qeXFx_npFuw. 

Fig 3.1 Joint velocity of a point on the manipulator Source from text book Robotics and 

Control by R K Mittal. 


