
1

IMPROVING THE QUALITY OF SOFTWARE BY

REFACTORING

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

 GURPREET KAUR

11506686

Supervisor

 Mr. BALRAJ SINGH

 School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

May, 2017

2

@ Copyright LOVELY PROFESSIONAL UNIVERSITY, Punjab (INDIA)

May, 2017

ALL RIGHTS RESERVED

3

4

ABSTRACT

Software code management has become another key skill required by software architects and

software developers. Size of software increases with increase in count of features in software.

Code refactoring is process of reducing code maintenance cost. It is achieved by many

different techniques like extract, move methods, fields or classes in code. In this research we

focused on improving the maintainability of the code by looking into the different refactoring

techniques and improving upon them.

 We proposed an algorithm to improve the refactoring process which results in higher

maintainability. To look into the validity of our proposed algorithm, we have used Junit and

ref-finder to analyze the code and generate the result metrics. We have observed the

effectiveness of our work by comparing the different code maintainability indexes generated

by the tool. In our research we have examined four releases of the software project for code

refactoring and maintainability. Adding some extra features and using enhanced refactoring

techniques measuring the code metrics and comparing the results of current releases with the

previous releases.

5

DECLARATION

I hereby declare that the research work reported in the dissertation entitled "

IMPROVING THE QUALITY OF SOFTWARE BY REFACTORING” in partial fulfillment

of the requirement for the award of Degree for Master of Technology in Computer Science

and Engineering at Lovely Professional University, Phagwara, and Punjab is an authentic

work carried out under supervision of my research supervisor Mr. Balraj Singh. I have not

submitted this work elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with Lovely

Professional University’s Policy on plagiarism, intellectual property rights, and highest

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the content

of this dissertation represents authentic and honest research effort conducted, in its entirety,

by me. I am fully responsible for the contents of my dissertation work.

 Signature of Candidate

 Gurpreet Kaur

 11506686

6

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled

“IMPROVING THE QUALITY OF SOFTWARE BY REFACTORING”, submitted by

Gurpreet Kaur at Lovely Professional University, Phagwara, India is a bonafide record

of his / her original work carried out under my supervision. This work has not been submitted

elsewhere for any other degree.

 Signature of Supervisor

 Balraj Singh

 Date:

Counter Signed by:

1) Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

2) Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: __________________

Date: ___________________

7

ACKNOWLDGEMENT

It is not until you undertake research like this one that you realize how massive the effort it

really is, or how much you must rely upon the selfless efforts and goodwill of others. I want

to thank them all from the core of my heart.

I owe special words of thanks to my supervisor Mr. Balraj Singh for his vision, thoughtful

counseling and encouragement for this research on “IMPROVING THE QUALITY OF

SOFTWARE BY REFACTORING”. I am also thankful to the teachers of the department

for giving me the best knowledge guidance throughout the study of this research.

And last but not the least, I find no words to acknowledge the financial assistance & moral

support rendered by my parents and moral support given by my friends in making the effort a

success. All this has become reality because of their blessings and above all by the grace of

almighty.

Gurpreet Kaur

8

TABLE OF CONTENTS

CONTENTS PAGE NO.

Title page i

PAC form ii

Abstract iii

Declaration iv

Supervisor’s Certificate v

Acknowledgement vi

Table of Contents vii

List of Tables ix

List of Figures x

CHAPTER1: INTRODUCTION 1

 1.1 REFACTORING 1

 1.2 REFACTORING PROCESS 2

 1.2.1 PLANNING 2

 1.2.2 VALIDATION 3

 1.2.3 EXECUTION 3

 1.3 BAD SMELLS IN CODE 4

 1.4 REASONS OF REFACTORING 5

 1.5 ADVANTAGES OF REFACTORING 6

 1.6 DISADVANTAGES OF REFACTORING 7

9

 TABLE OF CONTENTS

CONTENTS PAGE NO.

 1.5 ADVANTAGES OF REFACTORING 6

 1.6 DISADVANTAGES OF REFACTORING 7

 1.7 TECHNIQUES OF REFACTORING 7

 1.7.1 ORGANIZING DATA 7

 1.7.2 COMPOSING METHODS 8

 1.7.3 MOVING FEATURES BETWEEN OBJECTS 8

 1.7.4 SIMPLIFYING METHOD CALLS 9

 1.7.5 DEALING WITH GENERALIZATION 9

 1.8 SOFTWARE QUALITY ATTRIBUTES 9

 1.9 SOFTWARE METRICS 9

CHAPTER2: REVIEW OF LITERATURE 12

CHAPTER3: PRESENT WORK 25

 3.1PROBLEM FORMULATION 25

 3.2 OBJECTIVES OF THE STUDY 25

 3.3 RESEARCH METHADOLOGY 25

CHPTER4: RESULTS AND DISCUSSION 28

 4.1 DATA CONSTRUCTION 28

10

 4.2 EXPERIMENTAL RESULTS 29

 4.3 COMPARISION WITH EXISTING TECHNIQUE 30

CHAPTER5: CONCLUSION AND FUTURE SCOPE 36

 5.1 CONCLUSION 36

 5.2 FUTURE SCOPE 36

REFERENCES 37

11

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 Signs of code that might need refactoring 4

Table 1.2 Summary of refactoring techniques 21

Table 1.3 Total number of classes, methods and refactoring 29

Table 1.4 Comparison between the existing and refactored parameters 33

Table 1.5 Metrics improvement 34

12

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure1.1 Refactoring process 4

Figure1.2 An example: counting and reducing the steps from request 7

Figure1.3 Refactoring techniques 7

Figure3.1 Proposed Methodology 26

Figure4.1 List of Metrics for release Junit 30

Figure4.2 Individual matrices 30

Figure4.3 List of matrices after applying refactoring technique 31

Figure4.4 Individual matrices 31

Figure4.5 Metrics Change 32

Figure4.6 Nested block depth 33

Figure4.7 Standard deviation in Number of parameters 34

Figure4.8 Number of classes 34

Figure4.9 Number of Interfaces 35

13

Checklist for Dissertation-III Supervisor

Name: ___________________________ UID: ________ Domain: _____

Registration No: ____________Name of student:__________________

Title of Dissertation:

 Front pages are as per the format.

 Topic on the PAC form and title page are same.

 Front page numbers are in roman and for report; it is like 1, 2, 3…….

 TOC, List of Figures, etc. are matching with the actual page numbers in the

report.

 Font, Font Size, Margins, line Spacing, Alignment, etc. are as per the

guidelines.

 Color prints are used for images and implementation snapshots.

 Captions and citations are provided for all the figures, tables etc. and are

numbered and center aligned.

 All the equations used in the report are numbered.

 Citations are provided for all the references.

 Objectives are clearly defined.

 Minimum total number of pages of report is 50.

 Minimum references in report are 30.

Here by, I declare that I had verified the above mentioned points in the final

dissertation report.

Signature of Supervisor with UID

14

CHAPTER 1

INTRODUCTION

Software is used to manage to solve the real world problems and so that it makes changes in

generated problems. Software is developed using different phases of software life cycle

models. Different models are used to develop software’s. For example waterfall model,

iterative model, spiral model, evolutionary model, prototype model, incremental model and

agile model etc. software development include different phases like requirement gathering ,

design and code , implementation , testing and maintenance phase. At implementation and

maintenance phase we can change and improve the code. To change and improve the code

we add and remove some features and requirements.

1.1 REFACTORING

Refactoring approach is used to refine the internal structure (part) of code without damaging

the external activities of the software [21]. Refactoring approach is used to decreases the

complexity of the software by fixing errors or appending new features. Refactoring also

improves the performance of the software. Refactoring is also involved in reengineering

process to enhance the quality of the software. The aim of the refactoring approach is to

maintain the code of software and make it healthier.

The process of the transformation of the source code can be done by the refactoring. The

achieved transformation through refactoring makes the software easy to understand without

changing the observable behavior. The different refactoring methods that are used in the code

at right place can be beneficial for the incremental improvement in the software quality [20]

[21]. To remove or lower the defects for the improvement of the software quality, refactoring

is done manually. The main aim of the refactoring is alteration of the code safely to enhance

the quality. Refactoring techniques are utilized to refine the code. Different refactoring

techniques are created for implementing with suitable quality attributes and metrics. The cost

of software maintainability can be decreased for long time by using refactoring on the

software code. The existing software problems can be removed by enhancing the software

code with the help of refactoring. The software can be improved by manipulating the code.

15

The action of refactoring can modify the internal activities with the purpose of accepting its

processes. In the process of software development, the software system is implements first

and then the code for implementation purpose is written. Refactoring has both positive and

negative effects on the quality of the software. Factors such as high power consumption

extend execution time, additional memory used were also examined. The refactoring process

upgrades the software quality by adding new features to the code and by removing the bad

smells.

Bad smells is used to indicate the poor design [8]. Some bad smells like duplicate code, long

method, long class, long parameter list, switch statements, message changing, too much

communication between objects etc. Bad smells are mostly easy-to-spot signs in the code.

1.2 REFACTORING PROCESS

The refactoring process contains three major aspects: identification of refactoring candidates,

validation of refactoring effect, and application of refactoring. The three important roles in

the refactoring process are: the developer, the analyst, and the manager. To begin the process

of refactoring the code would be analyzed by the developer to check which part to be

refactored. Those refactoring candidates are to be examined by the analyst in terms of the

cost and effect [5]. After the developer identified the refactoring process, analyst selects the

relevant refactoring method to refactor the source code. And project manager settle on

choices producing the cost results.

1.2.1 Planning

i. "Bad–smell" is characterized as a program trademark which demonstrates to the need of

program refactoring. For instance, "copied code" is one sort of bad–smell in light of the

fact that there is an opportunity to improve the code by join those copied parts [15].

ii. "Bad–smell" Analysis "Bad–smell" does not really prompt to an individual specific

refactoring. As a rule, copied codes are to be bound together. It is ideal; in any case,

that such a brought together code is actualized in a super class instead of other

subjective spots if the duplication is just found among sibling sub classes [15]. By

breaking down bad–smells decisively, we can distinguish a superior arrangement.

iii. Refactoring Planning: After examining different bad–smells, various refactoring

candidate would be distinguished. Some will be simple to perform and some will be

16

difficult to figure it out [5]. Besides single applicant could be a partner of another so

those two refactoring can't applied at parallel time. For example, "Remove Method"

turns a code part which can be gathered together into a technique whose name clarifies

the reason for the strategy [5].

1.2.2 Validation

i. Plan Evaluation: A refactoring course of action ought to be surveyed as cost and effect.

As a rule, a software project can manage the cost of just a restricted measure of asset to

perform refactoring Meeting the delivery due date with involved requirements is

considered as the primary goal.

ii. Refactoring Validation: Bad–smell analysis produces a set of refactoring candidates.

Refactoring planning then sift out preferable refactoring candidates from the entire set.

It is reasonable to validate those sifted candidates in terms of Detected bad–smells

again to confirm.

iii. Functional Equivalence Validation: Essentially refactoring ought not to affect the

usefulness of the objective program. In this way functional equality approval may be

required after all the refactoring have been connected.

1.2.3 Execution

i. Refactoring Deployment: The refactoring arrangement has been developed; it must be

sent as program adjustments. The specialist is capable to this stage: He/she needs to

"shape" the refactoring undertaking.

ii. Refactoring Application: Every designer is able to the assigned refactoring. Frequently

designs need to examine their own particular assignment to each other to stay away

from inverse program changes.

17

Figure1.1. Refactoring process

1.3 BAD SMELLS: The bad smells in the code are defined as follows:

Table 1.1: signs of code that might need refactoring

Name Description Solutions

Duplicate

Code

At the point when same code

components exist in various places as

opposed to one place, it is a copy

code. Duplicate code is quite

common. Duplicate code become

incorrect because if you improve or

change individual instance of copied

code but not the others, you may have

introduced a flaw. E.g. having a

similar expression in two related

 Extract method, Extract class, pull up

method

18

subclasses.

 Long

Method

A method contains too many lines of

code.

Extract method, Replace temp with

query

Long class Understanding and keeping up classes

dependably costs time. So if a class

doesn't do what's necessary to win

your consideration, it should be

deleted.

Extract Class, Extract Subclass, Extract

Interface, Replace Data Value with

Object

Long

Parameter list

More than three or four parameters for

a method and make code harder to

understand.

Replace parameter with method,

Introduce parameter object

Feature Envy At the point when another class is

depending upon another to give a

particular functionality, another class

may need to complete that

functionality.

Move method, Extract method, Move

field

Switch

Statements

Number of switch statements shows

procedural statements.

Replace condition with Polymorphism,

Replace Code with Subclasses, ,

Replace Parameter with Explicit

methods, Introduce null objects

1.4 REASONS OF REFACTORING

i. Reuse mechanism

One can reuse requirement, code, design, and test case in any period of the software

development cycle.

19

ii. To meet the deadline

Time constraint leads to the software or code refactoring. Most of the programmers in

companies do copy and paste or make certain amendments in code in order to meet deadline

and to achieve desired functionality.

iii. Lack of Interpretation of requirements

It is hard to translate and make an orderly approach for every single prerequisite as a

outcome of the number of determinations in extensive frameworks.

iv. Tested code

As there is always risk associated with new code because programmer can develop the code

which might be more mind boggling or more inclined to bugs and errors. So to copy code is

always preferable choice.

v. Less knowledge of the new language

Sometimes programmer does not have the better command over the programming language.

1.5 ADVANTAGES OF REFACTORING

i. Improves the design of software

Refactoring is used for improving the code is directly measured the software metrics and

indirectly measured the software quality attributes.

ii. Makes software easier to understand

Refactoring makes software more readable form. It helps to understand unfamiliar code.

iii. Minimize code duplication

Modify the inner structure and make it simple to understand.

iv. From messy to clarity

Where your code might start off as messy code, before you start refactoring, the

Clarification process should slowly untangle that mess into clear steps that reflect what is

going on in clear steps.

20

Figure1.2. An example: counting and reducing the steps from request (A) to concrete

execution (B)

1.6 DISADVANTAGES OF REFACTORING

i. Refactoring on code support step-by-step activities over a relatively extra period of

time.

ii. It takes time and if it done incorrect, it produces unwanted tight couplings between

discrete modules of the system and makes things even more complex. If you don’t

create a healthy set of tests to back you up then you can break things too.

1.7 TECHNIQUES OF REFACTORING

Figure1.3. Refactoring techniques

1.7.1 Organizing data

In this technique replace the primitives of the class with the rich class which makes classes

more reusable and portable. Following are the methods to organize data [14]:

21

i. Replace methods with method objects: Remove a procedure from a set of selected

declaration to a new class; contain the removed statement as a new procedure and local

variable of the procedure as field of new class

ii. Replace constructor with factory method: Hide constructor and exchange it with static

technique which returns new instance of the class.

1.7.2 Composing methods

 In this technique the code inside these methods hide the method of execution and make the

code extremely hard to understand and change. Following are the methods to organize data:

i. Extract method: Extract a code into small pieces to create new methods. Extraction of

a bit of code into a different strategy. You have a code section that shows up in

numerous spots inside the code .You have a code part that can be assembled together.

Transform this part into a technique whose name clarifies the reason for this strategy.

ii. Split temp variable: Temporary variables is allocate to more than once and not a loop

variable. Sometimes a local variable can take on various identities, assuming

distinctive parts through the duration of a strategy. This makes code harder to

understand and read, on the grounds that the part of that variable relies on upon its

position in the code. This refactoring cleans up the chaos (mess), making another

local variable for the task.

1.7.3 Moving features between objects

This refactoring technique shows how to move functionality of the classes safely, create new

classes and hide the details of implementation from the public access. Following are the

methods used to move features between objects:

i. Extract class: Generate new classes and moves to it new method from obtained

classes. The Extract Class refactoring is connected when a class gets to be distinctly

overweight with an excessive number of strategies and its motivation gets to be

distinctly unclear. Extract Class refactoring includes making another class and

moving techniques as well as information to the new class.

22

ii. Move method: these refactoring permits moving a technique starting with one class

then onto the next. The need of transfer a procedure comes when the strategy is

utilized in different class than the class in which it is characterized.

1.7.4 Simplifying method calls

It makes method call simpler and easier to understand. It simplifies the interface for

interactions between classes.

i. Delete class: Remove the class and its references.

ii. Delete attribute: Remove an attribute that is not referred to any class.

iii. Delete method: Simply remove the procedure which is not belongs to any class.

iv. Rename method: Modify the name of a method and modify it from all the locations

where it is referred.

1.7.5 Dealing with generalization

Fundamentally connected with moving usefulness along the class legacy progressive system,

making new classes and interfaces.

i. Pull up attribute: Transfer an attribute to super class or parent class of the present

class.

ii. Push down method: Transfer a procedure to one or more sub class. The Push Members

down refactoring permits in moving the class individuals into subclass/sub interface

for cleaning the class hierarchy.

iii. Extract Subclass: A class has attributes that are utilized just in a few cases. Make a

subclass for that subset of elements. For example class A has fields that are used some

instance only. To solve this problem we simply create a class B, subclass of A. class

B will be used in the case an instance would need all fields from original class A, new

class A will be used otherwise.

iv. Extract Superclass: Having different classes with similar elements. Make a root class

what's more; transfer the regular components to the parent class.

1.8 SOFTWARE QUALITY ATTRIBUTES

Software quality is the standard to which software hold a required combination of attributes

(e.g., reliability, interoperability). Software quality attributes include scalability, security,

23

performance and reliability. Quality attribute requirements are unit of an application’s

nonfunctional requirements, which represent the many features of how the functional

requirements of an application are execute. The quality term defines different meanings.

Basically it depends upon the user, customer and developer of the system. The goal of the

developer collect those requirements and which satisfy the customer needs. Quality attributes

are register for both the product and the process. Product defined as which delivered to the

customer and process defines as which manufacture the software product.

1.9 SOFTWARE METRICS

Software metrics are also used as the internal quality attributes. Software metric is better

occurrence of measuring the quality of software. Software metrics provide a mode to extract

useful and quantifiable material about the construction of the software. The software program

has a list of metrics in order to assume the structure and the quality of the system. Measuring

the complexity of the system is the common procedure to estimate the maintainability of the

software. If the estimated result has the higher value the program is complex and not easy to

maintain.

Following are the quality metrics that we are going to use in our research:

Weighted methods per class (WMC), it is used to describe the number of methods that are

used in specific class. Normally, it is used to calculate the complexity of an individual class.

Response set for classes (RFC), Number of methods that can be complete in response to a

message being received by an object of that class. Number of outgoing invocations (NOI),

total comment line of code (TCLOC), Total logical lines of code (TLLOC), and total number

of statements (TNOS), clone instance (CI), metrics are used in our research. Maintainability

metrics that we are used: maintainability index, cyclomatic complexity, depth of inheritance

and line of code.

The metrics we investigate are the following:

i. Depth of Inheritance Tree (DIT): It defines the length of the extended path from a

node to the parent class in the inheritance hierarchy. Main purpose of DIT is

decomposition [1].

ii. Number of Children (NOC): defined as the no. of classes that inherit directly from a

given class [9].

24

iii. Response for a Class (RFC): defined as the number of procedures that can be

executed in response to a message accepted by an object of that class [1]. RFC is the

number of local methods plus the number of procedures called by local methods.

RFC = |RS|

Where, RS is the response set for the class

“Response set of an object ≡ {set of all methods that can be invoked in response to a

message to the object}”

iv. Weighted Methods per Class (WMC): WMC is the sum of the complexities of the

methods; complexity is measured by cyclomatic complexity [1].

WMC = ∑
n

i =1 Ci

Where, a class Ci has M1....Mn, methods with Ci.....Cn, complexity respectively.

v. Number of Methods (NOM): defined as the number of procedures perform or

execute in a specific class [14].

vi. Lines of Code (LOC): defined as the total no. of Lines of source code in a class and

exclude all empty and Comment lines [17].

25

CHAPTER 2

 REVIEW OF LITERATURE

Software or code refactoring has become a major area of research these days. Many

researchers diligently exploring this topic and so many approaches have been developed to

probe duplicate codes.

 Study from I. Kádár et.al in 2016 [1]. In this paper the author proposed the future

inspection of code refactoring in practice by producing a necessary open dataset of source

code metrics and utilized refactoring through various releases of 7 open source system. The

author explored the quality attribute of the refined source code classes and the effectiveness

of source code metric upgrade by refactoring techniques [1] [16]. The author evaluated the

correlation between maintainability and refactoring methods and also examined how source

code metric can be done by refactoring affect. The author proposed the dataset including

refactor data and more than 50 types of source code metrics for 37 releases of 7 open source

system at the class and procedure level.

 Study from Istvan Kadar et.al in 2016 [2]. In this paper the authors manually performed

the refinement of the code to obtain the dataset. They evaluated the dataset to find whether

the refactor code operations with refactoring activities and law maintainability used by the

authors relates to the internal quality or not. For this method, they studied the maintainability

values in the datasets by using Mann-Whitney U test on different set of data formed by the

particular item whether they were affected by the refactoring methods [2] [13]. The

investigation showed that the average maintainability of refactor data is much lower. The

manually formalized refactoring dataset included only the approved data which was obtained

from original dataset.

 Study from Gabriele Bavota et.al in 2015 [3]. In this paper the authors performed study on

three java open source software system to evaluate the connection between refactoring and

quality of the code. The research has organized three java system software with 63 releases

and involves the manual survey of 15,008 refactoring operations and 5478 smells. The

26

refactoring performed on those classes which were affected by the smells was analyzed to be

40% and only 7% smells were actually removed. In this paper the quantitative method was

used to perform refactoring techniques [3] [7]. To measure the effect of refactoring they used

coupling metrics and selected quantative method to choose relevant refactoring type. In this

paper they measured the complexity, clone metrics and size of the refactor data.

 Study from anshu rani et.al in 2012 [7]. In this paper the authors discussed some

refactoring techniques, tools and some features for code refactoring. Basically refactoring is

used to enhance the internal quality, maintainability and reliability without affecting external

structure. The author proposed some steps to perform refactoring on code like identifying the

code where refactoring should be applied or determining the refactoring methods which can

be used for particular place, assurance about maintaining behavior, applying refactoring

technique and accessing the results of refactoring code. The author used some refactoring

techniques like composing method which includes extract method, replace temp with query,

inline method refactoring methods, moving feature between object includes move method,

inline class, for organizing code uses replace code with class, change value to references, and

replace array with object for refactoring code[7] [13].

 Study from Anam shahjahan et.al in 2015 [5]. In this paper the researchers proposed a

new study to enhance the features of the code by using graph theory techniques. Refactoring

is a procedure of enhancing the quality of code without changing its internal structure and

external part. They used hypothesis techniques to correlate the results that produced.

Response time is also got improved in this study. Analyzability, changeability, time behavior

and resource utilization are main four qualities attributes that are used to improve code

quality.

 Study from Yoshio kataoka et.al in 2002 [15]. In this paper the authors proposed a

quantative assessment method to calculate the improved maintainability results of code

refactoring. The author concentrated on the coupling metrics to assess the effect of

refactoring on code. In this paper the author compared the coupling before using refactoring

methods and after using refactoring techniques to improve the quality and assess the

maintainability improvement. In this paper the author used three coupling metrics and

combined these three coupling metrics to evaluate the code using different code refactoring

27

methods [15] [25]. Basically in this paper they used refactoring methods to improve the

maintainability and software implementation of targeted software in order to choose a safe

process. For implementing this method they used refactoring tool name as Refactoring

Assistant.

 Study from Michael Wahler et.al in 2016[33]. In this paper the author defines a case study

in which magnetic researchers were discussed by software engineers in refactoring. The

shareholder of the research product considered the software to be un-maintainable as it had

reached to a size of 30 kilo line of code of Java. The study states that the procedure of

refactoring the product under the advice of a software engineer with supported results by

static analysis and software metrics. They propose a case study on refactoring a design tool

for increasing the maintainability of code using magnetic components. In order to prioritize

the maintenance tasks, they combined the results from automatic code analyses with the

individual assessment of the original developer. The number of future obstacles found by

Find Bugs was minimized by 23 % and around 82% of amount of replicated lines of code

was minimized.

 Study from Chaitanya Kulkarni et.al in 2016[34]. In this paper the author aims mainly

towards the chances of detecting a refactoring code and to find out whether the code clone

can be assured refactored or not. Three methods were tried: Nesting Structure Mapping,

Statement Mapping and Precondition Examination. They applied some techniques like Pull-

Up Method and Push-Down Method in order to refactor the code. In their approach, they

tried to find the refactorable code by using different procedures and also removes the

problem of code cloning through refactored the code.

 A comprehensive study of the different techniques of refactoring was also done which

made it easier for the programmers to get to know the code. Outcomes showed that

refactoring of code can remove the limitations which occur due to code clone.

 Study from Minas F. Zibran et.al in 2015[35]. In this paper author tells about

characteristics of clones can be understood by clone analysis and visualization. They indicate

potential clones as cost-effective candidates for refactoring. A number of studies have

analyzed clones and their evolution while a numerous techniques have also been proposed in

28

order to visualize the clones that aid in clone analysis. However, clone analyses and

visualizations with respect to inheritance hierarchy and call graphs have remained ignored so

far. In this research paper, the author argued that such analyses and visualizations with

respect to the inheritance hierarchy and call graphs are necessary to help in dealing with

clones for refactoring.

 Around 80% of the software costs are spent on maintenance. During a maintenance task,

maximum of the developer’s effort is invested in understanding the underlying program

structure and source code, while 62% of such effort is typically wasted in investigating

irrelevant parts (e.g., source files) of the program. With proper analogies, significant support

for clone investigation and representation with respect to the inheritance hierarchy and call

charts can help in settling on better plan choices amid clone refactoring and subsequently can

limit clone refactoring cost, which in turn can lessen the product maintenance cost all in all.

 Study from Anna Vasileva et.al in 2016[36]. They showed the effective combination of

calculation of code quality into a software development process. Concepts for removal of

inadequacy are significant pre-requisites for code quality besides selecting an appropriate

tool for code analysis. In this paper, they showed that implementation of measurement and

didactic procedures in several iteration cycles can ensure the long term integration of quality

aspects. Simple refactoring techniques are used for example rename were used successfully

by all teams. Their investigation showed that the deadline of work with tough refactoring

techniques is very complex for developers that are inexperienced. They concluded that good

internal quality of program code can be achieved without high efforts or achievements.

Quality of the code can be achieved in the starting of the project as early as in the designing

phase if the aim is set right. Therefore, the authors focus on the beginning phase in their

future research. They further planned to include calculations of model quality aspects and the

successful didactic methods in order to enhance the modeling outcomes.

 Study from S.H. Kannangara et.al in 2013[37]. The goal of this paper was to prove the

request that refactoring increases quality of the software. The objective was achieved by

utilizing the experimental research approach and for the analysis; selected refactoring

techniques were used. The effect of each refactoring was judged based on external

29

estimations, which were; analyzability, time behavior and resource deployment. After

analyzing the results of the experiment, “Replace Conditional with Polymorphism” ranked in

the highest among the tested 10 refactoring techniques as it showed a high percentage of

improvement in code quality. Whereas “Introduce Null Object” was categorized as worst as

it deteriorated the code quality in a huge amount. The hypothesis testing results indicated that

the analyzability of refactored code is less than non-refactored code for all the tested

refactoring techniques except for “Replace conditional with polymorphism”.

 From the analysis of four external estimations “Replace Conditional with Polymorphism”

was categorized highest as it had a high percentage of enhancements in code quality.

“Introduce Null Object” was ranked as worst as it is had the highest percentage of

deteriorated code quality.

 The review to discover impact of refactoring on the product quality properties has a wide

extension. Fowler has given 70 sorts of refactoring techniques and each refactoring strategy

can be connected to the different programming qualities property. Following are the quality

attributes used in the study:

i. Maintainability: It is characterized as the modifications with which change is made

on set of attributes. The change in the properties may contain from prerequisite to

plan. It might be about revision, preventive action and adaptation.

Formula to calculate maintenance:

M = (time spent to fix a bug/total development time)*100

ii. Reusability: It is defined as the reusable pieces of the software in the other elements

or in other software system with small adaptation.

iii. Testability: It is characterized as how much programming underpins or supports

testing process. High testability requires less exertion for testing.

T = (time spent to testing the functionality/development time)*100

iv. Understandability: It is characterized as the simplicity of understanding the

significance of programming parts to the client.

v. Fault proneness: Fault Proneness in the projects is more prone to the bugs and

breaking down of the module.

30

vi. Completeness: Completeness of the program refers for all the required components,

resources, programs and all the possible ways for execution of the program.

Completeness = (no. of requirement full filled/ total no. of requirements)*100

vii. Stability: Stability represents the capability of the program to bear the risk of all the

unexpected modification or alterations.

viii. Complexity: In an intuitive framework it is characterized as the trouble of performing

different undertaking like Coding, troubleshooting, actualizing and testing the

product.

ix. Adaptability: Adaptability of the software is taken in terms of its ability to consume

the changes in the system without any arbitration from any external resource.

Sa = ((Rp - Rt)/R1)*100 where,

Sa: software adaptability

Rp: code executed successfully

R1: part of code fails to execute

Rt: total lines of code

 Study from S.H. Kannangara et.al in 2013 [38] .In this research paper the author

presented a way for unifying and refactor the software clones that controls the short comes

of earlier approaches. More precisely, their technique was to be able to find and limitations

of the non-trivial differences among the clones. Moreover, it detects an optimal mapping

among the assertions of the clones that reduces the extent of dissimilarity. They differentiate

the given technique with a moderate clone refactoring tool and concluded that their

perspective was able to detect a notably greater no. of clones that were refactorable.

 Study from Tom Mens et.al in 2004[39].This research paper gives an overview of existing

researches in the domain of software restructuring and software refactoring. The authors

organized this research according to different criteria: the supported refactoring activities, the

formalisms and specific techniques that are used to support these activities, the types of

software artifacts that are being refactored, significant characteristics that needs to be taken

into account when refactoring tools are to be build, and the effects of refactoring on the

process of software development. In all of the respective categories, they pointed out the

necessary open issues that are still to be solved. In general, they found a need for processes,

31

formalisms, tools and methods that address refactoring in a more flexible, consistent,

scalable, generic and flexible way. Although proliferation of commercial refactoring tools

has begun, research into software refactoring and restructuring continues to be very active

and remains essential to finding and solving the limitations of these tools.

 Study from Diego Cedrim et.al in 2016[40].First longitudinal study was reported in

intention to address this variance. They decompose how often the frequently-used refactoring

types influence the density of 5 types of bad smells along the version of 25 projects. Their

discoveries are rooted upon the review upon 2,635 refactoring distributed in 11 different

types. Total count of 2,506 refactoring (95.1%) did not reduce or introduce code smells. As a

result, it came out that refactoring lead to smell reduction less often than what has been

reported previously. Data conveys that only 2.24% of refactoring changes removed code

smells and 2.66% introduced new ones. Several smells were induced by refactoring that

tended to live long, i.e., 146 days on average. When smelly elements started to exhibit poor

structural quality and, as a consequence, started to be more costly to get rid of, these smells

were only eventually removed. We also presented new findings not reported in their previous

study [4]: (i) the negative refactoring occur as frequent as the positive ones; (ii) code smells

tend to live long (146 days, on average); and (iii) while the software evolves, the existing

smells tend to become more complex, increasing the effort of removal.

 Think about from Debarshi Chatterji et.al in 2013[41].An broadened replication of a

controlled analysis (i.e. a strict replication with an extra tasks) that breaks down the impacts

of cloned bugs (i.e. bugs in cloned code) on the program comprehensive of software

engineers has been represented. The review members endeavored to disengage and settle two

sorts of bugs, cloned and non-cloned, in one of two little frameworks were separated and

settled by the members in the strict replication divide. Members are given a clone report

depicting the area of all cloned code in the other framework and asked them to again detach

and settle cloned and non-cloned bugs in the augmentation of unique review. The cloned

bugs were not fundamentally more hard to keep up than non-cloned bugs turned out therefore

of the first review. On the other hand, the consequences of the replication demonstrated that

it was essentially harder to accurately settle a cloned bug than a non-cloned bug. Be that as it

may, there was no critical contrast in the measure of time required to settle a cloned bug

32

versus a non-cloned bug. At last, the consequences of the review expansion demonstrated

that developers performed fundamentally preferable when given clone data over without

clone data.

 The extended replication consisted of two parts: (1) a sound replication of the last

research and (2) an addition to the previous study. The aim was to give a perception of the

questions present in the actual study by verifying its solutions by giving extra outcomes that

could help to understand the impact of the clones on maintenance of the software. The end

results of the authentic study showed some trends, but most of the results weren’t significant.

The results of the replicated study were also not able to verify (1).The results of the

replicated study did shoed that it was comparatively tougher to maintain cloned bugs

completely. In the Extended portion, the authors found that when creators were provided

with clone statics and trained how to use it, helped for maintenaning the bugs. They establish

that the participating developers establish better in fixing the bugs completely when they had

been provided with clone instructions than when they didn’t have the clone information. At

last, the evidence from the extended replicated study indicated that it was tougher to maintain

cloned code compared to a non-cloned code. However, by providing appropriate information

about the clone along with the proper training can reduce this difficulty.

 Study from Mesfin Abebe et.al in 2014[42].The main motive of this research study is to

enlarge a previous research by considering more literatures and using a well ordered method

to inspection of literature to improve the validity and accuracy of the research. The authors

studied a number of literatures from various databases which were publicizing since 1999 in

order to conclude and evolve the knowledge about software re-engineering. The research

pattern can be revealed by classification and summarization. The general involvements and

statistics of the published papers in the last years can also be considered. The researcher’s

time and effort can be saved by formulating better research topics with the help of the

extracted information. Those research papers then can be used to solve some crucial

problems.

 From the past fifteen years researcher’s have contributed an extensively to the topic of

software refactoring, but still there are a huge deal of obstacles that an unresolved till date,

33

which needs to be solved in the upcoming researches. Therefore, the detected gaps and the

important subscription can help the researcher’s by guiding them where their focus should

be. This can help the researchers save effort, time and services. Lastly, this survey can be

continued in the upcoming researches by using documented data apart from the literature

available in the electronic databases. Moreover, this research can be integrated with

practically in the industry of the technology and can be used in future to increase the

credibility and maintainability.

 Study from Ladan Tahvildari et.al in 2004[43].A re-constructing process model and a

modified framework was presented by this paper. Determination of delicate objective

prerequisites for the objective transient framework and a rundown of programming changes

that positively affect such necessities were basically engaged. The recognizable proof of

blunder inclined code utilizing measurements and the determination of the fitting changes

that can possibly improve the objective qualities and prerequisites for the new framework

were focused upon. This paper proposes a structure for consequently recognizing

circumstances for specific changes to be connected with a specific end goal to enhance

particular outline quality attributes, diverse protest arranged measurements can be utilized as

markers. In view of both on displaying the conditions between outline qualities and source

code highlights, and on analyzing the effect that different changes have on programming

measurements that evaluate the plan qualities being made strides. To anticipate loss of

practicality amid advancement by and large or reestablish it through reengineering, this

methodology can be utilized.

 To examine the utilization of measurements with setting and space particular data can be

coordinated to do in future. Refining the determination of suitable changes by killing those

that are not important or don't contribute towards the chose qualities being improved.

 Study from Eduardo Fernandes et.al in 2016[44].This review study depends on three

metrics - recall, agreement and precision and two software systems for comparison. The

author’s results show that tools provide superfluous detection results for same bad smell. it

established qualitative and quantitative data, the authors discussed appropriate obstacle

related to usability and proposed instructions for creators to detect tools. Considering 84

34

tools, they observed that the amount of plug-in and standalone tools are almost equal. In

addition to this, the observations tell that Java, C++, and are the top-three most layered

programming languages used to detecting bad smells. Greater amount of tools implemented

in Java relied on the technique of metric-based identification. Lastly, the survey paper

showed that Large Class, delicacy of Code and Long Method are the topmost smells. The

important donatives of this paper are as follows. The author’s presented a literature review of

tools that detect bad code. They found 84 dissimilar tools, and they organized them according

to similar attributes, such as detection techniques, detected bad smells. Programming

language for detection of smells. They also conducted a review of different tools to find the

mostly occurred bad smells that the goal of tool to detect the duplicate code. The comparative

study and documented survey, they discussed qualitative data (lessons learned) and

quantitative (recall, agreement and precision about the tools.

Table 1.2: Summary of refactoring techniques

Authors

Case Study

Internal

Measures

External

Measures

Refactoring

Kataoka et

al.[26]

 C++ program

Coupling

Maintainability

Extract Method

and Extract

Class

Stroulia and

Kapoor et al.

[24]

Academic

Size and

coupling

Design

extendibility

Extract Super

class, Extract

abstract class

35

Leitch and

Stroulia et al.

[29]

Academic and

commercial

Code size,

number of

procedures

Maintenance

effort and costs

Extract Method,

and Move

Method

Tahvildari and

Kontogiannis et

al.[28]

Four open-

source

applications

coupling,

cohesion,

inheritance and

complexity

Maintainability

Code

Transformations

Bois et al.[27]

open source

software

cohesion and

coupling

-

Extract Method,

Move Method,

Extract class

Replace Method

Object, Replace

Data Value

Object

Moser et al.

[32]

A project in

industrial

environment

Line of code,

Chidamber and

Kemerer

measures,

Effort (hour)

Productivity

(LOC)

36

Alshayeb et

al.[31]

Three Open-

source projects

Chidamber and

kemerer

measures,

LOC, FOUT

adaptability,

maintainability,

understandability,

reusability, and

testability

Extract Class,

Extract subclass,

Move class,

Extract method

Encapsulate

Field, Replace

Temp with

Query

Sahraoui et

al.[23]

A C++ program

Inheritance and

coupling

measures

Fault-proneness

Extract Super

class, Extract

Subclasses,

Extract

Aggregate

Classes

Tahvildari et

al.[29]

A project in

open source and

industrial

environment;

both written in

C.

Halstead

efforts, Line of

code, and

number of

Comment lines

per module

Maintainability

and performance

Design patterns

Yoshio

Kataoka[15]

Enhancement

effect of

program

refactoring

Coupling,

Cohesion, Size

and Complexity

Maintainability

enhancement

Move Method,

Replace Temp

with Query

Extract and

Inline Method

37

 CHAPTER 3

 PRESENT WORK

3.1 PROBLEM DEFINITION:

Maintainability of software code decreases with increase in features and increase in

complexity of code. As more and more features and conditions are added to the methods

code becomes more error prone. It is very difficult to keep the source code easily

maintainable due to non generic nature of the software products. There is a need to

understand and define practices that can help real world problem of code maintainability.

3.2 OBJECTIVE OF THE STUDY:

i. To prepare a code maintainability index using ref-finder’s proposed refactoring

enhancements and upgradations.

ii. To propose an improved refactoring technique.

iii. To evaluate the proposed code re-factoring technique using Junit open source system

and generate new code maintainability index.

iv. To evaluate the effectiveness of new proposed technique with existing technique by

comparing them.

3.3 RESEARCH METHODOLOGY

Refactoring is a procedure which is used to enhance the internal quality of the software

without changing the external behavior of the software. Internal quality attributes are used as

a software metrics and software metric is used to evaluating the software maintainability. In

our research we evaluated project for code refactoring and maintainability of code taking

four releases for the project. Ref-Finder tool is used to extract code refactoring differences

between releases of project

Following are the steps of proposed methodology:

i. Gather source code from previous dataset.

ii. Scan each release individually for code metrics

38

iii. Measure code metrics

iv. Apply the enhanced re-factoring techniques

v. Measure code metrics again

vi. Compare result with existing techniques

Here is flowchart depicting methodology to be followed for research:

Figure 3.1: Proposed Methodology

39

3.3.1 ALGORITHM:

Step 1.Scan Junit releases 4.10, 4.11, 4.12 and 5.0

Step 2.Find following in code scan:

a) Effect of refactoring on low maintenance code?

b) Which attributes of the code are affected most by refactoring?

c) Impact of code re-factoring on future releases like ease of adding new features and

removing a feature with minimal changes

Step 3.Create list of refactoring candidate classes

Step 4.For each candidate

d) Scan class to find:

i. Generate class flow for methods

ii. Variables have getter /setter methods

iii. Methods have flow which cannot be further divided

iv. Scan code fragments to find similar code

v. If similar code exists in different methods then

1. Flag class as refactoring

vi. Scan methods for variables used

e) Assign class score for refactored code in variables and methods

Step 5.For each class having score >8 generate list for suggestion of lists for missing

refactoring.

3.3.3.1HOW IT WORKS:

a) Initialize ClassName = ClassName, IsRefactoringCandidate = FALSE,

RefactoringType= LIST, LineNumber = LIST, MethodFlow, RefactorScore = 0

b) Scan class and list all code fragements

i. For each class answer 3 questions.

ii. Generate flow of code:

1. For each statement scanned, divide statement as:

a) Assignment: Independent variable assignment

40

b) Decision: If-else /switch/ternary operation

c) method call: call to method of class

d) Loop start: loop

e) Prepare flow of class

2. If variable assignment does not involve getter/setter methods then

a) IsRefactoringCandidate = TRUE

b) RefactorScore = RefactorScore +0.5

3. If flow contains more than 5 cases if-else-if OR switch contains 3 cases OR

Ternary operation has ladder

a) SET IsRefactoringCandidate = TRUE

b) Add Inheritance for decisions to Refactoring Type

c) Add Line Number to list

d) RefactorScore = RefactorScore +1

4. Save method flow in List

c) For each method:

i. Compare flow list with other methods

ii. If method flow have more than 10 statements common then

1. SET IsRefactoringCandidate = TRUE

2. Add method to refactoring list

3. RefactorScore = RefactorScore +3

41

CHAPTER 4

RESULTS AND DISCUSSIONS

To look into the source code refactoring practically, we worked on the source code

estimations and associated refactoring techniques. We assess the relationship between the

numbers of refactorings techniques impacting the product. We inspected the current

techniques of refactoring a source code through the quantified metric values and proposed an

enhanced algorithm which performs better in refactoring an existing code.

4.1 Data Construction

The dataset contains information release version of Junit open source java framework

accessible in GitHub which gives details about projects. This project was chosen for our

research reason due to the adequate number of releases adaptation and the measure of code

between two adjacent releases. We examine 3 to 4 arrival of Junit system. For each release

version of Junit system, class and methods level measurements and the number of refactoring

assembled by refactoring systems. Table 1.3 gives the aggregate number of classes, methods

and refactoring procedures.

 Table 1.3: Total number of classes, methods and refactoring

System No. of

classes

No. 0f Methods Refactoring

Junit existing 1,267 4,124 553

Junit refactored 1,267 4,124 200

We played out a relationship examination on the RMI estimations of the classes and the

amount of refactorings affecting these classes. We took the RMI values from releases, and

the amount of refactorings from releases. We assessed whether low quality classes got

refactored more truly than various classes or not.

42

 We figured the differences of the metric values between the resulting releases. A significant

part of the time negative differentiations mean a change, as lower metric qualities are better.

4.2 EXPERIMENTAL RESULTS:

Result before applying proposed algorithm:

Figure4.1 List of Metrics for release Junit

Individual metrics:

Figure 4.2 Individual metrics

43

Result after applying proposed algorithm

Figure4.3 List of matrices after applying refactoring technique

Individual Metrics:

Figure 4.4 Individual matrices

4.3 COMPARISION WITH EXISTING TECHNIQUE

In this section we evaluated results of the gathered refactoring dataset as for programming

maintainability. In first case, we define the consequences of the examination on the

44

practicality of refactored classes. A while later, we present the discoveries on the effect of

refactorings on source code estimations and upgrading the RMI index there by reducing

refactoring requirement on build on build basis in Junit dataset.

4.3.1 Metrics change: The graph below shows ratio of change in metrics after applying

refactoring. The refactoring techniques move method and mode, move field, extract class are

applied to Junit releases 4.10, 4.11, 4.12 and 5.0 releases to compare the effectiveness of our

approach for refactoring. Impact of method extraction on release based on logic breaking

helps in reducing WMC.

Figure4.5 Metrics Change

4.3.2 Nested block depth: Nested block depth helps in identifying that if a method or class is

serving more than one purpose that would keep on adding LOC to class/method release by

release ultimately making it unmanageable after some time. Lower the NBD is more

manageable class. Nested block depth increases complexity of code and thus adds to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Existing Refactored

W
ei

gh
te

d
 M

et
h

o
d

 c
o

m
p

le
xi

ty

Existing

Refactored

45

maintainability of the code. Simplifying nested blocks and replacing it with inherited classes

helps in maintaining simplifying it.

Figure4.6. Nested block depth

4.3.3 Number of parameters: NOP increase with increase in desired functions in a method.

The more parameters are added complexity of method would increase with NOP. Thus lower

NOP helps in maintaining code maintainability. NOP increases with increase in complexity

of methods, applying future release method helps in reducing method parameters and thus

reducing NOP.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Existing Refactored

%
ag

e
o

f
fa

ls
e

p
o

si
ti

ve
s

Techqniue

Nested block depth

Existing

Refactored

46

Figure4.7. Number of parameters

Table 1.4 Comparison between the existing and refactored parameters:

Parameters Refactored Existing

Weighted method as per

class (complexity)

0.2 0.4

Nested depth block 0.3 1.2

Number of parameters 0.1 0.8

The comparison table defines the values or results of refactored and existing is based on the

above mentioned graphs. The results shows that the proposed technique is better as compare

to existing techniques code maintainability index.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Existing Refactored

N
O

P

Code

NOP

Existing

Refactored

47

Table1.5. Metrics improvement

Enhanced

System name CI WMC NOI RFC TCLOC TLLOC TNOS

JUnit 4.10 0.728 0.042 0.17 N/A 0.012 0.101 0.113

JUnit 4.11 0.586 0.025 0.0987 N/A 0.0098 0.08654 0.0875

JUnit 4.12 0.5264 0.018 0.0654 N/A 0.0086 0.07754 0.0775

JUnit 5.0 0.444 0.008 0.0274 N/A 0.0076 0.07208 0.062

Existing

JUnit 4.10 0.8736 0.0504 0.204 N/A 0.0144 0.1212 0.1356

JUnit 4.11 0.7032 0.03 0.11844 N/A 0.01176 0.103848 0.105

JUnit 4.12 0.63168 0.0216 0.07848 N/A 0.01032 0.093048 0.093

JUnit 5.0 0.5328 0.0096 0.03288 N/A 0.00912 0.086496 0.0744

4.3.4 Number Of classes: No. of classes in a code management defined how separation of

function in classes. Number of classes increase as we implement refactoring. Applying

futuristic approach increase need of loose coupling in classes thus increasing number of

classes.

Figure4.8.Number of classes

0

10

20

30

40

50

60

70

80

90

100

JUnit 4.10 JUnit 4.11 JUnit 4.12 JUnit 5.0

No. of classes

Existing Enhanced

48

4.3.5 Number of Interfaces: Interfaces would increase with increase in inheritance.

Figure4.9.Number of Interfaces

0

10

20

30

40

50

60

70

80

90

100

JUnit 4.10 JUnit 4.11 JUnit 4.12 JUnit 5.0

No. of interfaces

Existing Enhanced

49

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION: The main goal of this research is to addresses the gaps in practical and

theoretical code re-factoring techniques. We release connections between re-factoring, code

metrics and bugs that are discovered during code reviews and analysis cycles.

 We evaluate the set of steps that can be followed to ensure low code maintenance and

enhanced reliability also, minimizing efforts required for re-factoring during development of

software. In our research we analyze software project for code refactoring and

maintainability of code taking releases for the project. Ref-Finder was used as tool to extract

code refactoring and use to compare the results of previous releases and new releases and

analyze the present releases. To measure the code parameters we use code maintainability

index. To measure code metrics in each release we use Hal-stead as plug-in that is easily

used to measure code metrics and refactoring problems in the code. Adding some extra

features and using enhanced refactoring techniques measuring the code metrics and

comparing the results of current releases with the previous releases.

 As per the result section proposed technique out performs the existing techniques in terms

of RMI. Maintainability index of software code provides a way to ensure that code is

manageable and addition/changes in features of software is less prone to risk as compared to

code that requires high refactoring. Proposed technique of refactoring has reduced build on

build requirement of refactoring thus making it a better approach for refactoring.

5.2 FUTURE SCOPE: The current proposed work is limited to medium scale projects and

maintainability index is also developed for medium scale maintainability. Further

applications easily propose work can be done on large scale project to take it into

effectiveness in the context of maintainability index.

50

REFRENCES

[1] I. Kádár and P. Heged, “A Code Refactoring Dataset and Its Assessment Regarding

Software Maintainability,” IEEE 23rd international conference on software Analysis ,

2016.

[2] I. Kádár and P. Heged, “A manually validated Code Refactoring Dataset and Its

Assessment Regarding Software Maintainability,” IEEE 23rd international

conference on software Analysis , 2016.

[3] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An experimental

investigation on the innate relationship between quality and refactoring ,”

J.syst.Softw., vol.107.pp.1-14, 2015.

[4] I. Verebi, “A model-based approach to software refactoring,” 2015 IEEE Int. Conf.

Softw. Maint. Evol., pp. 606–609, 2015.

[5] A. Shahjahan, “Impact of Refactoring on Code Quality by using Graph Theory : An

Empirical Evaluation,” pp. 595–600, 2015.

[6] K. O. Elish and M. Alshayeb, “Using software quality attributes to classify refactoring

to patterns”,J.Soft., vol. 7, no. 2, pp. 408–419, 2012.

[7] A. Rani and H. Kaur, “Refactoring Methods and Tools”, Int j.Adv. Res. Compt. Sci.

Soft.Eng. vol. 2, no. 12, pp. 117–128, 2012.

[8] K. O. Elish and M. Alshayeb, “Using software quality attributes to classify refactoring

to patterns”,J.Soft., vol. 7, no. 2, pp. 408–419, 2012.

[9] M.Fowler, K. Beck, J. Brant, W.Opdyke and D. Roberts, “Refactoring Improving The

Design of Existing Code”,Addison Wesley.

[10] A. Moeini, V. Rafe, and F. Mahdian, “An approach to refactoring legacy systems”,

ICACTE 2010-2013rd Int.Conf. Adv. Comput. Theory. Engg. Proc., vol. 5-8,2010.

51

[11] K. O. Elish and M. Alshayeb, “Investigating the effect of refactoring on software

testing effort”, Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, pp. 29–34, 2009.

[12] Bart D Bios and Jan Verelst, “Refactoring- improving coupling and cohesion of

existing code”, 11th working conference on reverse engineering, 2004.

[13] Tom Mens and Tom Tourwe, “A Survey of Software Refactoring”, ", IEEE transaction

on software engineering, VOL. 30, NO. 2, 2004.

[14] Noble kumari and Anju Saha, “Effect of refactoring on software quality”, Proc. Conf.

Softw. Maint., pp. 37–46, 2014

[15] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative evaluation of

maintainability enhancement by refactoring,” Softw. Maintenance, 2002. Proceedings.

Int. Conf., pp. 576–585, 2002.

[16] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s

maintainability,” Proc. Conf. Softw. Maint. 1992, pp. 337–344, 1992.

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design,” IEEE

Transactions on Software Engineering, 20(6):476–493, 1994.

[18] B. Beizer, “Software Testing Techniques,” Van Nostrand Reinhold, New York, NY,

1990

[19] H. Zuse, “Software Complexity Measures and Methods,” Walter de Gruyter & Co.,

New York, NY, 1991.

[20] Swarnendu Biswas and Rajiv Mal, “An approach to software engineering,” 2009.

[21] P. Jalote, “A Concise Introduction to Software Engineering,” Addison-Wesley,2002.

[22] M.Fowler, K. Beck, J. Brant, W.Opdyke and D. Roberts, “Refactoring: Improving the

Designof Existing Code,” Addison wesley,1999.

[23] H.A. Sahraoui, R. Godin, T. Miceli, “―Can Metrics Help To Bridge The Gap

52

Between The Improvement of OO Design Quality And its Automation?”, ‖ In: Proc.

International Conference on Software Maintenance, pp. 154–162, 2000.

[24] E. Stroulia, R.V. Kapoor, “Metrics of Refactoring-Based Development: an Experience

Report,” In The seventh International Conference on Object-Oriented Information

Systems, pp. 113–122, 2001.

 [25] S. Demeyer, “Maintainability versus Performance: What’s the Effect of Introducing

Polymorphism? technical report, Lab. On Reengineering,” Universiteit Antwerpen,

Belgium, 2002.

 [26] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, “A Quantitative Evaluation of

Maintainability Enhancement by Refactoring‖,” Proceedings of the International

Conference on Software Maintenance (ICSM.02), pp. 576–585, 2002.

 [27] B.D. Bois, T. Mens, “―Describing the Impact of Refactoring on Internal Program

Quality‖,” In Proceedings of the International Workshop on Evolution of Large-scale

Industrial Software Applications (ELISA), Amsterdam, The Netherlands, pp. 37–48,

2003.

 [28] R. Leitch, E. Stroulia, “―Assessing the Maintainability Benefits of Design

Restructuring Using Dependency Analysis‖,” Ninth International Software Metrics

Symposium (METRICS'03), pp. 309–322.

 [29] L. Tahvildari, K. Kontogiannis, “―Improving Design Quality Using Meta-Pattern

Transformations: A Metric-Based Approach‖,” J. Software Maintenance. Evolution:

Research and Practice, 16 (4-5), (2004) pp. 331–361.

 [30] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, “―Quality-Driven Software Re-

Engineering‖,” Journal of Systems and Software, Special Issue on: Software

Architecture - Engineering Quality Attributes, 66(3), (2003) pp. 225-239.

[31] M. Alshayeb, “―Empirical Investigation of Refactoring Effect on Software Quality‖,”

Information and Software Technology, 51 (9), (2009) pp. 1319–1326.

53

[32] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, “―A Case Study on the

Impact of Refactoring on Quality and Productivity in an Agile Team In Balancing

Agility and Formalism in Software Engineering, Bertrand Meyer, Jerzy R. Nawrocki,

and Bartosz Walter (Eds.). Lecture Notes In Computer Science, (5082). Springer-

Verlag, Berlin, Heidelberg, pp. 252-266, 2008.

[33] M. Wahler, U. Drofenik, and W. Snipes, “Improving Code Maintainability : A Case

Study on the Impact of Refactoring”, 2016.

[34] C. Kulkarni, A Qualitative Approach for Refactoring of Code Clone Opportunities

Using Graph and Tree methods, 2016.

[35] M. F. Zibran, “Analysis and Visualization for Clone Refactoring,” pp. 47–48, 2015.

[36] A. Vasileva and D. Schmedding, “How to Improve Code Quality by Measurement and

Refactoring,,” 2016.

[37] S. H. Kannangara and W. M. J. I. Wijayanayake, “Impact of Refactoring on External

Code Quality Improvement : An Empirical Evaluation,” pp. 60–67, 2013.

[38] G. P. Krishnan and N. Tsantalis, “Unification and Refactoring of Clones,” pp. 104–

113, 2014.

[39] T. Mens and T. Tourwe, “A Survey of Software Refactoring,” vol. 30, no. 2, pp. 126–

139, 2004.

[40] D. Cedrim and A. Garcia, “Does refactoring improve software structural quality ? A

longitudinal study of 25 projects,” no. i, pp. 73–82.

[41] D. Chatterji, J. C. Carver, N. A. Kraft, and J. Harder, “Effects of Cloned Code on

Software Maintainability : A Replicated Developer Study,” pp. 112–121, 2013.

[42] M. Abebe and C. Yoo, “Trends , Opportunities and Challenges of Software

Refactoring : A Systematic Literature Review,” vol. 8, no. 6, pp. 299–318, 2014.

[43] L. Tahvildari and K. Kontogiannis, “Improving design quality using meta-pattern

54

transformations : a metric-based approach,” vol. 361, no. October 2003, pp. 331–361,

2004.

[44] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A Review-based

Comparative Study of Bad Smell Detection Tools,” no. Dcc, 2016.

55

