
1

ATO ENHANCE THE CODE CLONE DETECTION

ALGORTHIM BY USING HYBRID APPROACH FOR

DETECTION OF CODE CLONES.

Dissertation submitted in fulfilment of the requirements for the Degree of

 MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

ROOPAM

11506892

Supervisor

MR. GUPREET SINGH

School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

May, 2017

2

@ Copyright LOVELY PROFESSIONAL UNIVERSITY, Punjab (INDIA)

May, 2017

ALL RIGHTS RESERVED

3

4

ABSTRACT

Code clones are easy and quick way to add some existing logic from one section to another

section. Code clones are different fragments of code that are very similar. Clone is a

persistent form of software reuse that effects on maintenance of large software. In previous

research, the researchers emphasize on detecting type 1, type 2, and type 3 and type 4 types

of clones. The existing code clone detection techniques like text based, token based, abstract

syntax tree, program dependency graph and metric based are used to detect clone in source

code. In this research, the enhancement in code clone detection algorithm has been proposed

which detects code clones by HYBRID algorithm that is combination of program

dependency graph and Metric based clone detection techniques. In this work, firstly

implementation of code clone detection will be done by hybrid approach on various datasets.

Then, comparison of existing technique will be done with the hybrid technique in terms of

achieving enhancement in performance, efficiency and accuracy in results. This method is

considered to be the least complex and is to provide a most accurate and efficient way of

Clone Detection. The results obtained have been compared with an existing tool on various

datasets.

5

DECLARATION

I am Roopam hereby declare that the research work reported in the dissertation

entitled "TO ENHANCE THE CODE CLONE DETECTION ALGORTHIM BY USING

HYBRID APPROACH FOR DETECTION OF CODE CLONES” in partial fulfilment of the

requirement for the award of Degree for Master of Technology in Computer Science and

Engineering at Lovely Professional University, Phagwara, Punjab is an authentic work

carried out under supervision of my research supervisor Mr. Gurpreet Singh I have not

submitted this work elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with Lovely

Professional University’s Policy on plagiarism, intellectual property rights, and highest

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the content

of this dissertation represents authentic and honest research effort conducted, in its entirety,

by me. I am fully responsible for the contents of my dissertation work.

 Signature of Candidate

 Roopam

 11506892

6

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation entitled “TO

ENHANCE THE CODE CLONE DETECTION ALGORTHIM BY USING HYBRID

APPROACH FOR DETECTION OF CODE CLONES”, submitted by Roopam at

Lovely Professional University, Phagwara, India is a bonafide record of her original work

carried out under my supervision. This work has not been submitted elsewhere for any other

degree.

 Signature of Supervisor

 Mr. Gurpreet Singh

 Date:

Counter Signed by:

1) Concerned HOD:

HoD’s Signature: ________________

HoD Name: ____________________

 Date: ___________________

2) Neutral Examiners:

External Examiner

Signature: _______________

Name: __________________

Affiliation: ______________

Date: ___________________

Internal Examiner

Signature: _______________

Name: __________________

Date: ___________________

7

ACKNOWLEDGEMENT

I would like to express my special thanks to God to give me this opportunity of writing this

thesis and providing such nice peoples who was there always to help me in my dissertation.

Secondly, big thanks goes to my mentor “Gurpreet Singh” who gave me this topic “To

Enhance Code Clone detection using Hybrid approach for detection of code clones” for

my dissertation work, I am heartily thankful to Gurpreet Sir for being my mentor and helped

me in doing a lot of Research and I came to know about so many new things. Very special

thanks to all the authors whose paper I referred for this dissertation. Their effort made me to

think about new ideas and due to what I am able to implement them in my research. “Source:

Internet” gave me so many short definitions that’s included here.

At last, I would also like to thank my parents and friends who helped me a lot in my

research within the limited time frame. This is just 40% completion of my work, I hope my

mentor, parents and friends will help me till my thesis is under working.

Roopam

8

TABLE OF CONTENTS

CONTENTS PAGE NO.

Title Page i

PAC form ii

Abstract iii

Declaration iv

Supervisor’s Certificate v

Acknowledgement vi

Table of Contents vii

List of Tables ix

List of Figures x

CHAPTER1: INTRODUCTION 1

 1.1 SOFTWARE TESTING 1

 1.1.1 TYPES OF TESTING 1

 1.2 TYPES OF CODE 2

 1.3 TECHNIQUES FOR CODE CLONES 5

 1.4 CODE CLONE PROCESS 5

 1.4.1 PROCESSING PHASE 5

 1.4.2 TRANSFORMATION PHASE 6

 1.4.3COORDINATE RECOGNITION 7

9

 1.4.4 FORMATTING 7

 1.4.5 FILTERING PROCESS PHASE 7

 1.4.6 MANUAL ANALYSIS 7

 1.4.7 AUTOMATED HEURISTIC 7

 1.4.8 AGGREGATION 7

 1.5 CODE CLONE DETECTION TECHNIQUES 7

 1.6 MERITS OF CODE CLONING 13

 1.7 DMERITS OF CODE CLONING 14

 1.8 APPLICATIONS OF CODE CLONING 14

 1.9 COMPARISONS OF CLONE CODE DETECTION 15

CHAPTER2: REVIEW OF LITERATURE 16

CHAPTER3: PRESENT WORK 26

 3.1PROBLEM FORMULATION 26

 3.2 OBJECTIVES OF THE STUDY 26

 3.3 RESEARCH METHADOLOGY 26

CHPTER4: RESULTS AND DISCUSSION 29

 4.1 EXPERIMENTAL RESULTS 29

 4.2 COMPARISION WITH EXISTING TECHNIQUE 36

CHAPTER5: CONCLUSION AND FUTURE SCOPE 42

 5.1 CONCLUSION 42

 5.2 FUTURE SCOPE 42

REFERENCES 43

10

 LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 Type 1 clones 3

Table 1.2 Type 2 clones 4

Table 1.3 Type 3 clones 4

Table 1.4 Type 4 clones 4

Table 1.5 Comparison of techniques 5

Table 4.1 Clones found 36

Table 4.2 False positive 37

Table 4.3 True negatives 38

Table 4.4 Performance time 39

Table 4.5 Metrics 40

Table 4.6 Comparison on different releases 41

11

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 1.1 Code clone process 6

Figure 1.2 Code clone detection techniques 7

Figure 1.3 Text based techniques 8

Figure 1.4 Token based techniques 9

Figure 1.5 Abstract syntax tree techniques 10

Figure 1.6 Metric based techniques 11

Figure 1.7 Program dependency graph techniques 12

Figure 1.8 Hybrid based techniques 13

Figure 3.1 Proposed algorithm 28

Figure 4.1 Eclipse view 29

Figure 4.2 Initiate code clone detection 30

Figure 4.3 Calculation progress for MTB 30

Figure 4.4 Metrics calculation for PDG 31

Figure 4.5 Metrics calculation for Hybrid 31

Figure 4.6 comparer windows for MTB 32

Figure 4.7 comparer windows for PDG 33

Figure 4.8 compare window for HYBRID 33

Figure 4.9 Accuracy for metric based 34

Figure 4.10 Accuracy for PDG 35

Figure 4.11 Accuracy for hybrid 35

Figure 4.12 Clones found 36

Figure 4.13 False Positives 37

Figure 4.14 True Negatives 38

Figure 4.15 Performance Time 39

Figure 4.16 Metrics combination 40

Figure 4.17 Comparison on different releases 41

12

Checklist for Dissertation-III Supervisor

Name: ___________________________ UID: ________ Domain: _____

Registration No: ____________Name of student:__________________

Title of Dissertation:

 Front pages are as per the format.

 Topic on the PAC form and title page are same.

 Front page numbers are in roman and for report, it is like 1, 2, 3…….

 TOC, List of Figures, etc. are matching with the actual page numbers in the

report.

 Font, Font Size, Margins, line Spacing, Alignment, etc. are as per the

guidelines.

 Color prints are used for images and implementation snapshots.

 Captions and citations are provided for all the figures, tables etc. and are

numbered and center aligned.

 All the equations used in the report are numbered.

 Citations are provided for all the references.

 Objectives are clearly defined.

 Minimum total number of pages of report is 50.

 Minimum references in report are 30.

Here by, I declare that I had verified the above mentioned points in the final

dissertation report.

Signature of Supervisor with UID

13

CHAPTER 1

INTRODUCTION

Software engineering is all about building, evolving and maintaining software systems. It is a

set of problem solving skills, techniques, technology and methods applied upon a variety of

domains to evolve and create useful systems that solve many problems like practical

problems. Software Engineering is the practice of computer science which applies

engineering fundamentals to build, accomplish, customize and maintain of software

components. Software engineer is required to handle software engineering projects which

discover, create, build software and tells its behavior. System engineering is different from

software engineering. System engineering is concern with deployment, architectural design

and integration where as software engineering is concern with development, quality and

testing and control of the system.

The main goals of software engineering are as follows.

 To produce high quality software with less cost.

 To achieve higher accuracy.

 To achieve reliability.

 To improve efficiency.

1.1 SOFTWARE TESTING:

This technique is to find out error or faults in a system to make it correctness, completeness

and to identify the quality of existing software. It is an internal part of software development

and closely related to software quality. The main aim of software testing is to fulfill user’s

requirements and make the system error free. So software testing is mainly to find outs the

error or bugs to raise the quality of the system. This technique is used to catch the bugs and

uncover it. Software testing is a process and discipline also. It is different from software

development. It should be considered that is part of software development.

1.1.1 Types of Testing:

These testing are as follow:-

14

 Black-Box Testing: It is also known as functional testing. It is a testing which is based

on the output and does not require any knowledge of internal structure of a program. This

testing ignores the internal mechanism of the system. It is a testing in which it’s working

or process is not understood by its user. It has no knowledge of processing or working of

code but only concentrate upon the output. It is used in the validation process. It is based

on the functionality and specification. Sometimes it is also known behavioral testing. It

has two techniques.

 Equivalence class portioning

 Boundary value analysis.

 White-Box Testing: This testing also called as open box testing or clear box testing and

structural testing. In this, testing code is visible. It has knowledge of the internal

mechanism of the components. It is opposite to black box testing. White-box testers are

aware about the internal structure and also know how code is looks like. It is used in the

validation process. It is a clear box testing because code can be easily visible in this type

of testing. It has many techniques.

 Branch coverage.

 Statement testing.

 Path coverage.

 Condition coverage.

 Clone Testing: To assure the quality of the product is the main target of software

engineering. It detects the faults and prevents the system from faults by analysis or

testing. At the time of developing any software for saving effort and time, software

developer might copy paste program code again and again in different places. So if one

section has fault, it will be reproduced in every section. There are many copies of code

present but no record of such copies is present. This will make hard to prevent such faults

and maintenance of existing software. By concluded that the clone result comes from

adding some extra functionality, which is same but not identical to existing logic. Code

cloning is close to a process in which some parts of code traced and then pasting it with

or without some slight modifications in other section of the code so that we can reuse the

section of the code. The fixed or pasted code segment is known as code clone. During the

development phase of software code cloning is very common. As per present research

15

study 8% to 22% of code in a software system is cloned code. For the maintenance stage

of the software it is tricky because if the cloned data consists of faults, then it should need

to identify and correct the same fault from the clones of that code. It will increase the cost

of development software and lead to poor quality of software system as it results in

maximizing in software size [10]. If more than two code sections in a software system’s

code-base are closely similar or exactly similar to each other then we call them as code

clones [7]. As far as removal of duplicated code is concerned, the art proposes refactoring

technique which is a method to gradually raise the structure of programs while preserving

their external behavior [11].

1.2 TYPES OF CODE CLONES:

 Code clones are of four types:

 Type 1: It is also called exact or same copy code clone. These code clones can be

detect by every technique and they are easy to detect. These code clones are identical

in nature. Type 1 clones deals with white spaces and comments.[6]

Table 1.1: Type 1

 Type-2: These are code clones which are symmetrically and syntactically very same.

Literals are changed. E.g. Name of variables and functions. It is difficult to detect

from type1.these code clones can be detected by token based, abstract syntax tree,

program dependency graph, metric based and hybrid approach. they can not be

detect by text based approach.[6]

int addn(int num[],int x){
 int A=0;//addn
 for(int m=0;m<x;m++){
 A=A+num[m];
 }
 return A;
 }

int addn(int num[], int x){
int A=0;
for(int m=0;m<x;m++){
A=A+num[m];
}
return A;
}

int addn(int num[],int x){

int A=0;//addn

for(int m=0;m<x;m++){

A=A+num[m];

}

return A;

}

16

Table 1.2: Type 2

 Type-3: These code clones are copied fragment by deleting or adding and

interchanged lines. Type 3 code clones are detected by PDG, AST, MTB and Hybrid

approach [1].

Table 1.3: Type 3

 Type-4- These code clones are different in syntax but functionality and logical is

same. This code clones are very difficult to detect. It is code clone which is not

created intentionally .they are only detected by PDG and Hybrid approach. [9]

Table 1.4: Type 4

int addn(int no[],int n){

int sumx=0;

for(int p=0;p<n;p++){

sumx=sumx+no[i];

}

return sumx;

}

int addn(int no[],int n){

if(n==1)

return no[n-1];

else

return no[n-1]+addn[no,n-1];

}

int additionn (int num[], int

n){

 int sumx=0;//sumx

 for(int i=0;i<n;i++){

 sumx=sumx+num[i];

 }

 return sumx;

 }

int doaddn(int no[], int n){

int S=0;

for(int i=0;i<n;i++){

S+=no[i];

}

return S;

}

int sumX(int a[],int n){

int P=0;//sumX

for(int i=0;i<n;){

P=P+a[i];

i++;

}

return P;

}

int addn(int num[],int x){

int A=0;//addn

for(int m=0;m<x;m++){

 A=A+num[m]; }

 return A;

}

int addn(int num[], int x){
int A=0;
for(int m=0;m<x;m++){
A=A+num[m];
}
return A;
}

int addn(int num[],int x){
int A=0;//addn
for(int m=0;m<x;m++){
A=A+num[m];
}
return A;
}

17

1.3 TECHNIQUES FOR CODE CLONES:

Code clone techniques are basically of four types:

 Textual approach- In this line to line measure is done, it is based on two types one is

simple line matching and other is parameterized line matching. [7] This technique is

string based.

 Lexical approach: - In this we modify source code into tokens using lexical rules.

These tokens are matched with each other.

 Syntactic approach: - In this an abstract tree is developed. Using parser source code is

change into parse tree.

 Semantic approach: - In this approach, source code is served as program dependency

graph. Nodes define the statements and expressions and, edges define control and data

dependencies.

1.4 CODE CLONE PROCESS:

 1.4.1 PROCESSING PHASE:

This phase follows two steps- one is dividing the source code into the sections also known as

segmentation. Secondly, figure out the area of comparison. There are certain objectives of

this phase [7]:

 Elimination of unwanted parts: Source code is segmented and uninterested parts are

removed, which may generate false positive values. Reckoning of further steps would

be easy.

 Figure out source units: Once the removal of unwanted code is completed, then the

rest of the source code is partitioned in such a way so that common portion can be

obtained. For an instance in a program, classes, functions/methods, files, start finish

blocks, or source line sequence.

 Figure out comparison units: Segmentation of the source units to further obtain

smaller units for the comparison purpose.

18

Figure 1.1: Code Clone process

1.4.2 TRANSFORMATION PHASE: For the comparison purpose, the main motive of this

phase is to convert the source code units into peculiar intermediate representations. This

process is called as extraction. This step is further subdivided into following:-

 Extraction: To make source code appropriate as input to the real algorithm,

conversion of source code has done.

 Tokenization: Every line of source code is isolated in tokens.

19

 Parsing: To indicate clones in syntactic approach, abstract syntax tree is used to

compare algorithms for same sub-trees. Metric-based approach can also be used.

1.4.3 COORDINATE RECOGNITION: Transformed code which is obtained from the

above steps is put into comparison algorithm where all the transformed comparison units are

evaluated on the basis of similarity to determine the matches. A set of candidate clone pairs

will be obtained. The algorithms used in this phase are: suffix tree dynamic pattern matching

and hash esteem examination.

1.4.4 FORMATTING: The clone pair list for the changed code acquired by the comparison

algorithm is transformed over to a relating clone pair list for the original code base.

1.4.5 FILTERING PROCESS PHASE: This step is further subdivided into two parts.

1.4.6 MANUAL ANALYSIS: Here false positives are filtered out by human experts.

1.4.7 AUTOMATED HEURISTIC: Few parameters are already set according to filtering

purposes. For example: length, frequency, diversity etc.

1.4.8 AGGREGATION: With an end goal to expel the information, perform ensuing

examination or accumulate outline measurements, clones might be collected into clone

classes.

1.5 VARIOUS CODE CLONE DETECTION TECHNIQUES:

The code clone detection techniques in software cloning are [8]:

Figure 1.2: Code clone detection techniques

20

 Text based- it needs minimum transformation. In this portion of code is considered as

sequences of strings and then these are co-related with each other in order to find the

same string. It is also called as string based approach. Line by line comparison will be

performed on the two code fragments. [6] If textual similarity exists between them, then

they are counted as clones.

Figure 1.3: Text based

21

 Token based- it is also known as lexical approach. This approach uses parser or lexer

for the transformation of source code into a sequence of tokens. This approach is more

efficient than text based approach. Parameterized matching with suffix tress one of the

technique of token based approach.[10]

 Figure 1.4: Token based

22

 Abstract syntax tree based approach- in this, code clones are searched by searching

for same or similar sub trees which denotes presence of code clone. The level of

accuracy [7] is best but it results in unstable scalability as it depends on the algorithm

that is being used to make (build) and correlate of the trees.

Figure 1.5: Abstract syntax tree

23

 Metric based- metric are used to measure clones in software after the calculations of

metrics from source code. [3] For the calculations of metric this approach parses source

code to its AST/PDG representation. This approach provides high accuracy and

scalability level. It helps us to detect type 3 code clones.

 Figure 1.6: Metric based

24

 Program dependency graph- this approach emphasis on data dependency and

control flow. After execute PDG algorithm is used to retrieve code clones. This helps

in the finding of the clones. The dependency graphs needed to be make for this

approach and the accuracy of these graphs have to be extremely taken care, PDG

based detection approach is very effective as it can detect non-contiguous code

clones. [4] But it is costly process to obtain PDG for large software’s.

 Figure 1.7: Program dependency graph

25

 Hybrid based- this technique is basically combination of two techniques by

merging two or more techniques hybrid can be formed and then clones can be

detected by this technique. This technique holds better value than normal technique. It

provides better results in term of accuracy, efficiency, performance, etc. For example:

program dependency graph and metric based technique can be used in a combination

for best resultsin term of various parameters.

Figure 1.8: Hybrid based

1.6 MERITS OF CODE CLONING:

 The various advantages for software cloning are [7]:

 Help software growth research: In software growth analysis Software code clone

detection techniques are successfully used. as it helps in looking at the dynamic

nature of different clones in different forms of a system.

26

 Helps in Code Compression: Code clone detection techniques can be used to

outline the device by reducing the source code size.

 Helps in Program learning- As all files have a copy so they must implement a

data structure with dynamically allocated space. Thus a code piece is used to

regulate it.

 1.7 DEMERITS OF CODE CLONING:

 The various disadvantages for software cloning are:

 Bug Propagation May Increase -If a code segment holding a bug and that is reused

by coping and pasting without or with minor transformation, the fault of the original

section may remain in all the pasted sections in the system and accordingly the

probability of bug propagation may increase.

 Maximization in Probability of Bad Design -Software code Cloning may lead to

introduction of bad design, which may cause lack of good inheritance structure or

abstraction.

 Maximize the Maintenance Cost -Due to presence of copied code, if a bug is found

in one segment of code, there will be requirement to find similar bug in all cloned

segments which is a difficult task. It becomes time consuming task.

 Resource Requirement Maximization- Code cloning proposes higher growth rate of

the size of system. System size may not be a big problem In some domains.

1.8 APPLICATIONS OF CODE CLONING:

 The various applications for software cloning are:

 Detection of hold Fragments and Plagiarism- Finding similar code is also useful in

tracking down plagiarism and copyright infringement.

 Discover Usage Patterns- If the copied fragments of a same source fragment have

been detected, the functional usage patterns of that fragment can be determined.

 Detects mischievous software- By correlating one malignant (malicious) software

family to another evidences can be found where parts of one software system match

part of another.

27

1.9 COMPARISONS OF CLONE CODE DETECTION TECHNIQUES [9]:

Table 1.5: Comparisons of clone code detection

Properties Text Based Token Based Tree Based PDG Based Metrics

Based

Hybrid

Transforma

tion

Ignores white

spaces and

comments

Token

generated

from source

AST

generated

from source

PDG

generated

from source

To find

metrics

values AST

is generate

from the

source

code

Uses AST

and PDG

generated

from source

Representati

on

normalized

source code

In the form of

tokens

Represent in

the form of

abstract

syntax tree

Set of

program

dependency

graph

Set of

program

dependenc

y graph

Set of

program

dependency

graphs

Comparison

based

tokens of line Token Node of tree Node of

program

dependency

graph

Metrics

value

Metrics

value and

Node

program

Computatio

nal

complexity

Depends on

algorithm

Linear Quadratic Quadratic Linear Quadratic

Refactoring

opportunitie

s

Good for

exact matches

Some Post

processing

needed

It is good for

refactoring

because Find

syntactic

clones

Good for

refactoring

Manual

inspection

is required

Good for

refactoring

Language in

dependency

Easily

adaptable

It needs a

lexer but there

is no syntactic

knowledge

required

Parser is

required

syntactic

knowledge

of edge and

PDG is

required

Parser is

required

Parser and

syntactic

knowledge

of edge and

PDG is

required

Clone Types Can find only

Type I clones

Can detect

type I & II

clones

Can detect

type I, II,III

Can detect

type I, II,III

& IV clones

Can detect

type I, II,III

Can detect

type I, II,III

Suffix tree

comparison

No No Yes Yes No Yes

AST No No Yes Yes No Yes

28

CHAPTER 2

REVIEW OF LITERATURE

Ritesh v. patilet.al in 2015 [8] proposed significantly detection of duplicate code and

accomplish address type-3 and various other clones that has challenging condition in

the research, the aim of this approach is to abate comparison and rectify precision, the

decentralizes system, with multiple smart move smoothly executes the task. The Faster

detection of clones has been designated by code reduction method.

Geetika bansal et.al in 2014 [3] proposed the uses set of metrics in metric based clone

detection. On the basis of precision and recall values group of matrices are estimated.

“Count Path” is used in proposed approach because it increases the precision value. It

works on type-1, type-2 errors and from large set of matrices some matrices are

selected which are having less correlation.

Sonam gupta et.al in 2014 [10] proposed that there are many code clone detection

technique like text based and token based or abstract syntax tree or PDG and metric

based. Many algorithms are developed on the basis of detection technique to detect

type1, 2, 3, 4 clones, some are clone, but still none is able to find the clone with

accuracy and efficiency. So this paper proposed “clone chunk algorithm” which will

find all types of clones with accuracy and efficiency.

Judith F. Islam et.al in 2016 [5] proposed that the main focus is on finding the bug-

replication tendencies of diverse clone types. The real impact of cloning on software

maintenance and evolution cannot be understood without this as 55% bugs are

replicated bugs. Method calls and if conditions are having higher tendency of

containing replicated bugs, type 2 and type 3 clones have higher tendencies of

replicated bugs then type 1 clone

Mena bharti et.al in 2014 [7] proposed about suited code clone detection techniques,

merits, demerits, application of code clones due to the presence of code clone

maintenance of software has become extremely difficult.

Bayu priyambadha et.al in 2014 [4] proposed that the main concern is how to

evaluate input and output and their effects on void and method without parameters as

29

it is performed using PDG (program dependency graph). The semantic clone detection

method is used to increase accuration of detection by 89% as trail is performed on

each method.

Serge demeyer et.al in 2014 [11] proposed the correlation of three techniques that are

parameterized matching, simple line matching, and metric finger prints. Simple line

matching is best suited or overviewed for the duplicate code and metric fingerprint is

best suited for combination with refactoring tool i.e. Able to remove duplication

subroutines. Parameterizes matching works in fine-grained refactoring tool that works

on the statement level.

Robin Sharmaet.al in 2013 [1] proposed that this paper contends detection of

functional clone from the source code using object oriented paradigm concept. This

paper describe the hybrid approach which uses two techniques:-textual approach and

metric based approach for detecting code clone in open source system. At the end of

the paper, this approach is compared with the existing tool to detect the clone in the

software and give accurate result which is being less complex.

Rubal sivakumaret.al in 2012 [6] proposed that this paper detects all types of clone in

web application by using hybrid approach by the combination of textual and metric

analysis. This method is least complex and provides efficient way of clone detection.

The conclusion of this paper is to find functional clone and eliminate the duplicate

code in web application and improve the poorly designed web applications.

Kuldeep Kaur et.al in 2015 [2] proposed that while making any software for

preserving time and effort, program code is copied and pasted again and again. So if

one module has bug, it is reproduced in every copy. Code cloning is a process in

which some part of code is traced and then fixed with or without some minor

modifications into another part of the code so that the part of the code can be reused.

The pasted code segment is called a code clone. It has been observed that text based

technique can detect only Type 1 clone. Token based technique detects Type1, Type II

clone. Tree based approach detect Type1, Type II, Type III clone, program

dependency graph approach is used for detecting Type IV clones but it is difficult to

develop a syntax tree because its complexity is very high. It has been observed that on

30

the basis of precision, recall, robustness and scalability no technique is found

optimum.

Prajila Prem et.al in 2013 [9] proposed that Code cloning means a process in which

some part of code is traced and then fixed with or without some minor modifications

into another part of the code so that it can be reused for the code. The fixed code

section is known as code clone. In this paper various code clone detection methods,

tools for detection approaches and technique used for that and the code analysis will

be discussed. The textual approach gives a rough overview of the duplicated code that

is quite easy to obtain, the token-based approach provides a precise picture of a given

piece of duplicated code and is robust against rename operations. Syntactic techniques

are very good at revealing duplicated subroutines and irrespective of small differences,

as it works best with refactoring tools which works on the method level.

Fang-Hsiang Su, Jonathan Bell et.al in 2016 [19] reviewed in this research many

software engineering tasks like program understanding and software refactoring which

can be assisted by Identifying similar code in software system. Whereas most of the

approaches focus on identifying code which looks alike and some aims at detecting

code which functions in similar way. A novel method, In-Vivo Clone identification

has been proposed that by detecting functional clones in arbitrary programs and

mining their Inputs and outputs. The major concern is to use current workloads to

execute programs and to measure amount of functional similarities between programs

HitoshiIO, an open source and widely available. The pilot’s results show that

HitoshiIO can identify more than 800 practical clones over a corpus of 118 programs.

In-Vivo Clone technique can effectively detect functional clones so it is used in system

like Java, HitoshiIO. HitoshiIO applies static data flow analysis instead of fixing the

definitions of program to identify potential inputs and outputs of individual methods.

As a result further research that will leverage the information of function clones has

enabled.

Norihiro Yoshida, Takashi Ishioet.al in 2011 [23] proposed in this research big

number of code clones has been described whereas software developers are interested

in only a subset of code clones which are relevant to software development tasks such

as refactoring. In this paper, a method is proposed in which code clones for refactoring

31

activity are extracted by combining clone metrics. Japanese Software Company

developed a study on web application which is being conducted by us. The result

indicates that to extract refactoring candidates of clone metric are most effective than

individual clone metric. A method is proposed in which sets for refactoring are

extracted by using the result of CCFinder. We presented the advantage of the proposed

method with an industrial case study using the source code developed by NEC. The

case study shows that to extract clone sets of refactoring the proposed method is more

useful than using sole clone metric.

Toshihiro Kamiya, Shinji Kusumotoet.al in 2016 [12] propsed that code clone is a

code part of the source data (files) which is exact or similar to another. Several code

clone detection tools and techniques have been proposed as code clones generally trim

maintainability of software. New clone detection is proposed in which the conversion

of input source data and token-by-token similarities are available. CCFinder is being

developed on basis of proposed clone detection technique in which code clones

extracted in java source files and C/C++. As well metrics for code clones were

suggest. Transformation rules and a Token-based comparison are presented with clone

detecting techniques. A metrics is suggested to select interesting clones. Which were

applied to various industrial-size software systems in the experiments.

Geetika, raj Kumaret.al in 2014 [15] proposed that To rework a code segment by

copying it from one section of the software and pasting it with or without some slight

alterations into other sections of the software is called code cloning. It is a basic means

of software reuse. A count of code clone detection techniques have been suggested so

far. In this thesis, an approach is put forward which is metric based which is code

clone detection technique for selection of a set of relevant metrics to detect code

clones. The suggested approach evaluates a set of independent metrics that are

assessed on the basis of the precision and recall values in clone detection starting from

all aggregation of one metric to number of Metrics in the combinations until the

complete set of metrics involved are evaluated in approach. Count Path is a new

metric that has been used in the approach. The result of implementation of the way

that is proposed on a C language software system shows that the use of the metric

CountPath has enlarged the precision value to a great extent. A major condition of

32

metrics based techniques of code clone detection that is less Precise has overcome by

this technique which is also computationally efficient.

Geetika chatley, Sandeep Kauret.al in 2016 [24] proposed the current issue in

industries is software cloning which is making recognition of clones a key of

programming examination. The software or programming clones has been grouped

comprehensively into various classifications. software cloning is Usage of actual code

either by duplication and paste methods or by performing minor changes in the current

code .through this paper , guide to a potential client of clone identification strategies

and its help in choosing the right apparatuses or methods for their interests has been

studied. Thus putting light on all the types of clones and techniques for the detection

of clones that are practiced. The reasons of cloning along with its pros and cons and

the process involved in detection of clones were presented by the paper. Since the last

decade, numerous researchers in the field of software cloning have contributed

magnificently.

Nam H. Pham, Hoan Anh Nguyenet.al in 2009 [30] proposed in this research for

large scale software Model-Driven Engineering (MDE) has become a crucial

development skeleton. Earlier research has reported that cloning also appeared in

MDE as in traditional code-based development. This Paper represents ModelCD,

which is a novel clone detection tool for Matlab/Simulink models that can fluently and

precisely detect both exactly matched and approximate model clones. The unique

graph-based twin identification methods is the origin of ModelCD that are able to

methodically and incrementally invent clones with a high degree of accuracy,

completeness, and scalability. The central ideas include the systematic generation of

the candidate clones with the best techniques, and the accurate structural trait

extraction for candidate sub graphs that have been implemented into ModelCD.

Gehan M. K. Selim, King Chun Foeet.al in 2010 [20] proposed in this research

software clones detection in large scale projects helps improve the feasibility of large

code bases. The source code representation (e.g., Java or C files) of a software system

has been traditionally used for clone detection. In this paper, technique has been

proposed which help transforms the source code to an intermediate representation, and

reuses established source-based clone detection techniques to detect clones in the

33

intermediate representation. Thus a hybrid clone detection technique has presented.

The technique complements string or token-based clone detectors which detects Type

3 clones by leveraging the intermediate representation .The recollection of the

approach is higher than source based clone detectors with minimal drop in the

precision using Bellon corpus which has incomplete clone groups. In the further, this

approach can be applied on bigger systems and evaluated the time performance and

scalability of the approach.

Chengnian Sun, Siau-Cheng Khooet.al in 2011 [17] proposed that a simple practice

is done to employ third-party libraries in software projects. Software libraries

encapsulate a large number of useful, well-tested and robust functions to interact with

libraries, as programmers only need to invoke Application Programming Interfaces

(APIs) exported from libraries. This paper suggested a novel approach based on trace

relation of data dependency graphs to detect imitations of library APIs for acquiring

improved software maintainability. A prototype has made and investigated its utility

on ten sizable open-source software projects. The experiment presents that technique

can report 313 valid checks in total with high precision average of 82% for explicitly

carried library APIs, and 116 valid checks with precision average of 75% for static

library APIs.

Raghavan Komondoor, Susan Horwitzet.al in 2001 [26] proposed that cloned codes

in program make both understanding and maintenance difficult. This flaw can be

minimized by detecting cloned codes and selecting them into a independent new

policy, and replacing all the clones by calls to the new policy. This paper describes the

design and initial implementation of a tool that finds clones and displays them to the

programmer. The novel aspect of this approach is the use of program dependence

graphs (PDGs) and program slicing to find isomorphic PDG sub graphs that show

clones. The implementation shows that the technique is a good one and real code does

include the kinds of clones that our tool is well-suited to handle (and that most

previous approaches to clone detection would not be able) and the tool does the clones

that would be identified by a human.

Mark Gabel, Lingxiao Jiang et.al in 2008 [25] proposed the similar code fragments

in programs have been identified by various approaches which have been refined.

34

These same fragments, called code clones they are used to identify redundant code

.This paper, presents the scalable clone detection algorithm which is based on this

definition of semantic clones. The impression is the discount of the tough graph

comparison problem to a simpler tree comparison problem by scaling carefully

selected PDG sub graphs which are related to their structured syntax. The extended

definition of a code clone to comprise semantically related code which provides an

approximate algorithm for locating these clone pairs. A practical tool based on our

algorithm has implemented that scales to millions of lines of code. An intraprocedural

analysis frame has been refined that could aid in creating PDGs more instantly and for

other languages in future.

Priyanka Batta, miss Himanshi et.al in 2012 [21] proposed that software Clone

detection is one of the main research area as duplicate code from an applications is

detected by it. 5% to 20% of software systems contain duplicated code that is

generated due to simply copying of the existing program code. The aim of this study

is to analyze the working of hybrid clone detection technique that can design and

analyze a hybrid technique for detecting software clone in an application. Metric

approach with text base (line of code) technique is combined for that. A code clone

detection system is designed and implemented which helps in detecting clones in the

code efficiently and productively. The proposed system removed the problems

occurred due to software clone like increase maintenance work and cost, defect

probability and resource requirement.

Gurvinder Singh, Jahid Ali et.al in 2015 [29] proposed in this research the branch of

Clone Detection has undergone a great advancement. This rise is due to the

development of various solutions, which involves the implementation of complex

algorithms and tool chains to offer clone detection. The intention is to present a survey

of the various existing techniques and to develop a tool which is user friendly, easy to

maintain and is not limited to small or big software. Clone detection method can be

used for more complex applications like web based applications. This paper presents a

review of the detection techniques and proposes an approach to deal with code clones

in any situation. Enhancement in research scenario can be exaggerated with advanced

algorithm in future to extend work.

35

Lingxiao Jiang, Ghassan Misherghiet al in 2007 [18] proposed that code clones

detecting has many software engineering applications. Current techniques either do not

scale to large code bases or are not robust against minor code alterations. In this paper,

an efficient algorithm to find similar sub trees is presented to tree representations of

source code. The algorithm is based on a novel characterization of sub trees with

numerical vectors in the Euclidean space Rn and an efficient algorithm to cluster these

vectors w.r.t. the Euclidean distance metric. The algorithm is implemented in a tool

that is DECLARD which is language independent and highly configurable.

Saif Ur Rehman, Kamran Khanet.al in 2012 [16] proposed as the theory of code

reuse is very common in software engineering. By code reuse the code is copied and

pasted in many places in the same or different software without any alterations. For

capturing duplicated redundant code, numerous code clone techniques and tools have

been raised in last few decades. Each of these techniques attempts to find out the

cloned code that is known as software clone. These approaches include Kclone, CP-

Miner, CC-Finder, CReN etc. The technique is capable of diagnosing clones within

wide source codes and is distinctive in its ability to identify code duplication

independent of the source language. One of the prototype tool LSC Miner which takes

a file of source code as input and the tool tokenizes it, storing it in a two-dimensional

array. In the final stage, these tokens are correlated to each other to find clones.

Perumal. A, Kanmani. S et.al in 2010 [28] proposed that copying a code fragment

and reusing it by pasting with or without minor modifications is a common practice in

software development environments. Various techniques have been developed to find

duplicated redundant code. Our proposal is a new technique for finding similar code

blocks and for quantifying their similarity. Clone clusters, sets of code blocks can be

found by technique all within a user supplied similarity. Similar clones can be detected

using metrics for type 1, type 2 of clones. In our proposed system, after clone

detection the system does two functions. In the clone clustering phase, the detected

clones are grouped together after successful clone detection.

Noble kumara, Anju saha et.al in 2014 [14] proposed the effectiveness of different

refactoring methods on quality attributes and to categories according to the results that

they obtained on specific quality attributes. This paper concentrates on the reusability,

36

complexity, maintainability, testability, adaptability, understandability and

completeness quality attributes. Here fourteen refactoring techniques were used to

obtain the result for various quality attributes using the refactoring techniques. These

quality attributes and refactoring methods used to enhance the quality of the software.

Basically those refactoring methods were used which enhances the software metrics

which integrate attribute, method, coupling, cohesion and inheritance of the software.

Anshu rani, Harpreet Kaur et.al in 2012 [27] proposed some refactoring techniques,

tools and some features for code refactoring. Enhancement in the internal quality,

maintainability and reliability without affecting external structure was done by using

refactoring. Some steps were proposed to perform refactoring on code like identifying

the code where it should be applied or determining the methods that can be used for

particular place and assurance about maintaining behavior, applying refactoring

technique and accessing the results of refactoring code. Some refactoring techniques

were used like composing method that includes extract method that replaces temp with

query, inline refactoring methods that moves feature between object includes move

method, inline class for organizing code uses replace type code with class, change

value to reference, and replace array with object for refactoring code. Eclipse and

intellij Idea tools were used.

Ioana verebi et.al in 2015 [22] proposed a model based approach on the code

refactoring was developed that gives better way to investigate reconstructing

alternatives. For this approach a tool was implemented named as refractor that is used

to fill the gap between structure flaw correction and detection. The historical data was

validated by using some solutions that can be used to create high level structure, and

compared the process to standard one in phase of speed, effectiveness and features of

the code which is refractor. Transformed model was uses to compute weighted count

of the code or design computed using baseline model and design flaw model.

Yoshio kataoka, Takeo Imai et.al in 2002 [31] proposed a quantities assessment

method which helps calculating the improved maintainability results of code

refactoring. Focus was on the coupling metrics to assess the effect of refactoring on

code. In this paper the comparison between the coupling before and after refactoring

techniques was made to improve the quality and assess the maintainability

37

improvement. The author used three coupling metrics along with different code

refactoring method and combined these three coupling metrics to evaluate the code.

This paper uses refactoring methods to improve the maintainability and software

implementation of targeted software in order to choose a safe process. Refactoring

Assistant was used as a refactoring tool for implementation of this method

Anam shahjahan, Wasi haider Buttet.al in 2015 [13] proposed in the paper which

enhances the features of the code by using graph theory techniques and the procedure

of enhancing the quality of code without changing its internal structure and external

part is refactoring. Hypothesis techniques were used to correlate the results produced.

Response time got improved through this study. The four main attributes that are

Analyzability, changeability, time behavior and resource utilization were used to

improve code quality.

38

CHAPTER 3

PRESENT WORK

3.1 PROBLEM DEFINATION:

Code clones are easy and quick way to add some existing logic from one section/module to

another section or module. Code Clones make software code more bug prone. Clone is a

persistent form of software reuses that effect on maintenance of large software. Another

issue with code clones is that to change logic in application all clones has to be updated

otherwise there is a risk of increased clone count in the application.

Developer might copy wrong code in different places or may simply skip updating all code

clones whenever there is a change. In this research focus would be on increasing efficiency

of clone detectors in to order detect clone count and thus increased customer satisfaction. By

using hybrid approach higher accuracy, better efficiency and higher performance can be

achieved as compared to existing approaches.

3.2 OBJECTIVE OF THE STUDY:

The main aim of the study is to achieve efficient results, higher accuracy and better

performance than existing technique. To achieve this, objectives are as follows:

 To explore the code clone detection techniques and tools used for detection.

 To Developed and design an algorithm for enhancing code clones detection.

 To implement the propsed algorithm by merging two detection techniques.

 To Evaluate and authenticate the performance of propsed algorithm on standard data

sets.

3.3 RESEARCH METHODLOGY:

Code cloning is done for saving time. The code is copied and fixed or pasted in multiple

places in the software or different software without any alterations by code reuse Code

Clones make software code more bug prone. Detecting code clones in software may save

future efforts very easily.

Researchers have proposed a number of approaches for code clone detection techniques.

39

This approach is calculating code metrics first. Initially set of metrics vector are prepared for

code fragments and then code units will give an idea of code clones. Candidate clone metrics

will compared using program dependency graph which will detect code clones even if

variables have been renamed and a few changes are done in logic. Combined results from

metrics based detection and PDG would provide ample data for code clones detected with

higher rate of accuracy. Methodology of the Research would be in following phases:

1. There are various techniques for Code Clone Detection. The main focus of this research

is on Metric Based and Program Dependency Graph technique.

2. An Algorithm has been designed by merging two techniques (MTB, PDG) named as

Hybrid technique.

The structure of algorithm is defined as:

a) Download latest code from repository

b) Parse code and identify following items:

 Calculate code metrics for code

 Iterate code metrics and identify code clone fragment sections

 Run second pass to match code semantics and filter unnecessary code clone candidates

c) Repeat for all clone fragments:

 Generate code metrics and assign score for each clone set

 Score each candidate :

i. Generate PDG for each clone candidate set

ii. Compare PDG of the candidate set

iii. Look for logical differences

1. If LD <=2 Then

a) Flag segment as code clone

2. Else decrease score of the candidate fragment

iv. If PDG match < 80% then

1. Remove clone candidate from clone set

v. Update score of remaining candidates

 Prepare final list of clones

40

d) Show results.

3. This approach is calculating code metrics first. Initially Set of metrics vector prepared for

code fragments and then code units will give an idea of code clones. Candidate clone

metrics will compared using program dependency graph which will detect code clones.

Combined results would provide higher rate of accuracy.

The flowchart has been designed depicting methodology to be followed for research:

Figure 3.1: Proposed Flowchart

4. Comparison has been done between hybrid and existing technique on the basis of

accuracy and performance and graphs are generated which are differentiating these two

approaches

41

CHAPTER 4

 RESULTS AND DISCUSSIONS

Developer might copy wrong code in different places or may simply skip updating all code

clones whenever there is a change. In this research the focus would be on increasing

efficiency of clone detectors in order to detect more code clone count and thus increased

customer satisfaction. In order to resolve the issues discussed above, algorithm has been

designed (called hybrid technique) by merging two approaches (MTB, PDG). Hybrid

approach in achieving clone detection can help us to improve clone detection.

4.1 DATA CONSTRUCTION:

The dataset contains information release version of Junit open source java framework

accessible in GitHub which gives details about projects. This project was discovered perfect

for research reason due to the adequate number of releases adaptation and the measure of

code between two adjacent releases. Junit’s 3-4 arrivals will be examined.

4.2 EXPERIMENTAL RESULTS:

These results will show us, how system is working on the interface from project selection to

cloned detection.

4.2.1 Eclipse view added: Eclipse is used as platform for this research. Algorithm For code

clone detection will be running over eclipse. Below image shows initial default view when

there is no calculation done. Code clone detection can be initiated by selecting the project.

Figure 4.1: Eclipse view

42

4.2.2 Initiating code clone detection: To calculate code clones, project selection must be

done for starting code scan. Figure 4.2 depicts that data set is selected for metric based,

program dependency graph and hybrid approach same way.

Figure 4.2: initiating clone detection

4.2.3 Calculation progress: After the selection of data set, all the classes will be progressed

and it shows total no of files, duplicate files, raw lines and significant lines. Below figure

shows that now we can select any of the file for viewing code clones. Click on opening

differences.

a) For metric based approach: It finds 46107 number of code clones from the data set

in metric based approach.

Figure 4.3: calculation progress for metric based

43

b) For PDG approach: It finds 49883 number of code clones from the data set. This is

greater in number as compared to metric based approach.

 Figure 4.4: calculation progress for PDG

c) For Hybrid based approach: It finds 56723 maximum number of code clones in the

data set. This is greater in number as compared to existing approach i.e. Metric based

and PDG approach.

Figure 4.5: calculation progress for Hybrid

44

4.2.4 Comparer window: Below screen shows progress of the operation. It automatically

fetches files from project and scans them to find code clones. In this it shows similar code

clones found in two files. It shows code clones detected by tool and listed in eclipse view.

Double click on any of the code clone entry in list opens up shows code block containing

code clone. In expanded view eclipse editor shows the files opened in 2 columns of a screen

and location where code clone has been detected.

a) For metric based approach: In metrics based approach code metrics are converted

and stored into vectorized form for comparison. Code metrics vectors contain list of

code metrics directed by code fragments. Comparison of code metrics fragments is

used to find similarity between code fragments. We are using list of similar code

fragments to calculate PDG and then comparing data and logic dependcy of the code

metrics.

Figure 4.6: comparer window for metric based

b) For PDG approach: PDG uses program dependence graph for finding similarity

between code clones. Here PDG is used for generated to view candidate clones for

finding code clones. Data and logic dependence helps in identifying code clones even

if variables have been renamed.

45

Figure 4.7: comparer window for PDG

c) For Hybrid based approach: Hybrid approach uses both code metrics and PDG

based comparison of code clones. It starts with scanning code of all java files that are

included in project. These code metrics are stored in vectors for finding similarity of

code fragments. PDG for code fragments are generated to enhance the comparison.

Complete list of code clone candidates to refine results obtained from both

techniques.

Figure 4.8: comparer window for Hybrid

46

4.2.5 Accuracy obtained: The values for Accuracy, false positives and true negatives are

obtained for existing and proposed approach. Here false positives are defined in below

section 4.3.2, true negatives in 4.3.3 and accuracy is defined in 4.3.6.

Accuracy= Accuracy of code clone is calculated by equation below. Where A is accuracy is

total number of clones. CC is set of valid clones that it subset of total clones

Formula accuracy isA clones.correct is CC and found clones code ofnumber totalis N where0























N

CC

A

N

i

a) Metric Based

The below figure describes the obtained values for Total True negatives found

20.32%, Accuracy: 28.23% and False Positives: 71.75%.

Figure 4.9: Accuracy for metric based

b) PDG

The below figure describes the obtained values for Total True negatives found

20.03%, Accuracy 30.01% and False Positives 69.96%.

47

Figure 4.10: Accuracy for PDG

c) Hybrid based

The below figure describes the obtained values for Total True negatives found

8.35%, Accuracy 31.57% and False Positives 68.40%.

Figure 4.11: Accuracy for Hybrid

48

4.3COMPARISION WITH EXISTING TECHNIQUE:

4.3.1 Clones detection: number of clones found in antlr4 project

The table below represents number of code clones detected in data set by individual

algorithms. Performance of algorithm shown by count of code clones is detected. Higher the

code clones detected, more is the algorithm’s detection power. Hybrid method adds to

comparison of blocks with metrics and PDG which helps in better comparison of clone

candidates.

Formula: Clone code detection= Total no of code clone found/ Total code fragments.

Table 4.1: clones detection

TECHNIQUES %AGE OF CLONE FOUND

METRIC BASED 24.4

PDG 26.42

HYBRID 30.04

A graph is generated on the basis of above mentioned table 4.1. Which represents percentage

of clones found in Hybrid approach and is compared with the existing approaches.

Figure 4.12: Clones found

4.3.2 False Positives: false positives are clones marked by algorithm but actually which are

not code clones.

49

False positives are wrong clones detected by the algorithm. Higher number of false positives

show lesser accuracy of algorithm and thus reduced efficiency. Using hybrid method helps in

reducing false positives by adding PDG comparison to metrics based comparison of code..

One formula gives false positives FN where NC is set of incorrect clones and N is total

number of clones that were not detected.

Formula:

clones.incorrect ofnumber is NC and found clones code ofnumber totalis N where
0





















N

NC
FN

N

i

Table 4.2: false positives

TECHNIQUES %AGE OF CLONE FOUND

METRIC BASED 72

PDG 70

HYBRID 68

A graph is generated on the basis of above mentioned table 4.2. Which represents percentage

of false positive clones found in Hybrid approach and is compared with the existing

approaches.

Figure 4.13: False Positives

50

4.3.3 True Negatives: True negatives are code clones missed out by the algorithm.

True negatives are cloning candidates that algorithm missed in detection. Here they found

that there are lesser number of true negatives in hybrid algorithms thus it has higher accuracy

as compared to PDG and Metrics based techniques. Using hybrid method helps in reducing

true negative by adding PDG comparison to metrics based comparison of code. Metrics

method added with PDG helps in tackle false positives. Formula gives true negatives TN

where ECC is set of code clones found by simian but not found by algorithm. n is total

number of clones that were not detected.

Formula:

Simian from clones ofnumber totalisn simian. from CodeClones ECC where0 





















n

ECC
n

i

Table 4.3: True negative

TECHNIQUES %AGE OF CLONE FOUND

METRIC BASED 20

PDG 20

HYBRID 8

A graph is generated on the basis of above mentioned table 4.3. Which represents percentage

of true negative clones found in Hybrid approach and is compared with the existing

approaches.

Figure 4.14: True Negatives

51

4.3.4 Performance Time: Time taken by algorithm to process.

Performance is time taken to process a set of code for clone detection. PDG and metrics

based techniques take more time as compared to hybrid method raises performance of the

code clone detection by avoiding over calculations of text based comparisons. One formula is

used for calculating this as written below.

Formula: Performance time = current time before execution/ current time after execution

(millisecond)

Table 4.4: performance time

TECHNIQUES TIME TAKEN IN (MILLI

SEC)

METRIC BASED 3377

PDG 3775

HYBRID 3136

A graph is generated on the basis of above mentioned table 4.4. Which represents

performance time to clones found in Hybrid approach and is compared with the existing

approaches.

Figure 4.15: Performance Time

52

4.3.5. Metrics combination: Below table shows coverage with different number of

metrics used. Code cloned detection was done on basis of number of metrics utilized.

Table 4.5: metric combination

Metrics Metrics based PDG Hybrid

1 15.540% 24.42% 22.78%

2 19.658% 24.42% 23.01%

3 21.654% 24.42% 24.60%

4 23.547% 24.42% 27.96%

5 24.589% 24.42% 29.66%

6 26.420% 24.42% 30.04%

A graph is generated on the basis of above mentioned table 4.5. Which represents percentage

of metric combination of clones found in Hybrid approach and is compared with the existing

approaches.

Figure 4.16: Metrics combination

4.3.6 Comparison on different releases on the basis of code clone detection in

percentage: Below graph shows comparison of clone detection techniques on different

software codes. We used 4 different java code repositories to scan and compare results from

53

Metrics, PDG and Hybrid techniques. Below table shows accuracy comparison with 4

different datasets.

Table 4.6: Comparison on different releases in percentage

DATASETS METRIC BASED PDG HYBRID BASED

ANTRL4 24% 26% 30%

JEDIT
24% 26% 27%

FREECOL 24% 26% 27%

CAMELLIA 24% 26% 57%

A graph is generated on the basis of above mentioned table 4.6. Which represents percentage

of comparison done on different releases in Hybrid approach and is compared with the

existing approaches.

Figure 4.17: Comparison on different releases

54

CHAPTER 5

CONCLUSION AND DISCUSSIONS

5.1 CONCLUSION: Developer might have copied wrong code in different places or may

have simply skipped updating all code clones whenever there is a change. In this research,

the focus has been given on increasing efficiency of clone detectors in order to detect more

code clone count and thus increased customer satisfaction. In order to resolve the issues

discussed above, algorithm has been designed (called hybrid technique) by merging two

approaches i.e. MTB, PDG. Hybrid approach has been used to achieve clone detection. This

approach calculates code metrics first. Initially, set of metrics vector prepared for code

fragments and code units gives an idea of code clones. Candidate clone metrics were

compared using program dependency graph which detects code clones even if variables have

been renamed and a few changes have been made in logic. Combined results from metrics

based detection and PDG provides ample data for code clones detected with higher rate of

accuracy. As shown in experimental results section, proposed technique proves to be of

higher quality in terms of accuracy and performance. The comparison of metric based, PDG

and hybrid techniques has been done and Hybrid technique performs best among existing

techniques. Use of metrics in addition with PDG to find code clones has increased accuracy.

5.2 FUTURE SCOPE: Code clones detection is a way to keep code maintainable and

healthy in terms of coding standards. This method has been proven better than existing

techniques for detection. Code clone detection can further be enhanced by combining

semantics based techniques. There are many languages used in industry for development.

Studies can further be extended to include different languages.

55

REFRENCES

[1] Robin sharma, “Hybrid Approach for Efficient Software Clone Detection,” vol. 3, no.

2, pp. 406–410, 2013.

[2] K. Kaur and R. Maini, “A Comprehensive Review of Code Clone Detection

Techniques,” vol. IV, no. Xii, pp. 43–47, 2015.

[3] G. Bansal and R. Tekchandani, “Selecting a set of appropriate metrics for detecting

code clones,” 2014 7th Int. Conf. Contemp. Comput. IC3 2014, pp. 484–488, 2014.

[4] B. Priyambadha and S. Rochimah, “Case study on semantic clone detection based on

code behavior,” Proc. 2014 Int. Conf. Data Softw. Eng. ICODSE 2014, 2014.

[5] J. F. Islam and C. K. Roy, “Bug Replication in Code Clones : An Empirical Study,”

2016.

[6] R. Sivakumar and K. . Kodhai.E, “Code Clones Detection in Websites using Hybrid

Approach,” Int. J. Comput. Appl., vol. 48, no. 13, pp. 23–27, 2012.

[7] M. Bharti, R. Goyal, and M. Goyal, “Software Cloning and Its Detection Methods 1

1,” vol. 8491, no. 2012, pp. 2012–2015, 2014.

[8] R. V. Patil, S. D. Joshi, S. V. Shinde, D. A. Ajagekar, and S. D. Bankar, “Code clone

detection using decentralized architecture and code reduction,” 2015 Int. Conf.

Pervasive Comput. Adv. Commun. Technol. Appl. Soc. ICPC 2015, vol. 0, no. c, 2015.

[9] P. Prem, “A Review on Code Clone Analysis and Code Clone Detection,” vol. 2, no.

12, pp. 43–46, 2013.

[10] S. Gupta and P. C. Gupta, “Literature Survey of Clone Detection Techniques,” vol. 99,

no. 3, pp. 41–44, 2014.

[11] F. Van Rysselberghe and S. Demeyer, “Evaluating Clone Detection Techniques,”

Evol. Large-Scale Ind. Softw. Appl., no. i, pp. 1–12, 2003.

[12] Toshihiro Kamiya, Shinji Kusumoto ,“A token-based code clone detection tool-

ccfinder and its empirical evaluation,” no. January, 2000.

[13] A. Shahjahan, “Impact of Refactoring on Code Quality by using Graph Theory : An

Empirical Evaluation,” pp. 595–600, 2015.

[14] N. Kumari and A. Saha, “E FFECT OF R EFACTORING ON S OFTWARE,” pp. 37–

46, 2014.

[15] Geetika,mr rajkumar, “Code Clone Detection by Evaluating Combinations of Software

Metrics,” no. June, 2014.

56

[16] S. U. Rehman, K. Khan, S. Fong, and R. Biuk-Aghai, “An efficient new multi-

language clone detection approach from large source code,” Conf. Proc. - IEEE Int.

Conf. Syst. Man Cybern., pp. 937–940, 2012.

[17] U. Edvhg, H. Ri, C. Sun, S. Khoo, and S. J. Zhang, “*udsk edvhg ’hwhfwlrq ri /leudu\

$3, ,plwdwlrqv,” pp. 183–192, 2011.

[18] L. Jiang, G. Misherghi, and Z. Su, “D ECKARD : Scalable and Accurate Tree-based

Detection of Code Clones ∗,” no. 520320, 2007.

[19] F. Su, J. Bell, G. Kaiser, and S. Sethumadhavan, “Identifying Functionally Similar

Code in Complex Codebases,” pp. 1–10, 2016.

[20] G. M. K. Selim, K. C. Foo, and Y. Zou, “Enhancing source-based clone detection

using intermediate representation,” Proc. - Work. Conf. Reverse Eng. WCRE, pp. 227–

236, 2010.

[21] P. Batta, “HYBRID TECHNIQUE FOR SOFTWARE CODE CLONE,” vol. 2, no. 2,

pp. 97–102, 2012.

[22] I. Verebi, “A Model-Based Approach to Software Refactoring,” pp. 606–609, 2015.

[23] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting Code Clones for

Refactoring Using Combinations of Clone Metrics,” pp. 7–13, 2011.

[24] G. Chatley, “Software Clone Detection : A review.”

[25] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” Proc. 13th Int.

Conf. Softw. Eng. - ICSE ’08, p. 321, 2008.

[26] S. Horwitz, “Using Slicing to Identify Duplication in Source Code.”

[27] A. Rani, “Refactoring Methods and Tools,” vol. 2, no. 12, pp. 256–260, 2012.

[28] A. Perumal, S. Kanmani, and E. Kodhai, “Extracting the similarity in detected

software clones using metrics,” 2010 Int. Conf. Comput. Commun. Technol. ICCCT-

2010, pp. 575–579, 2010.

[29] G. Singh and J. Ali, “A Novel Composite Approach for Software Clone Detection,”

vol. 126, no. 7, pp. 31–35, 2015.

[30] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen,

“Complete and Accurate Clone Detection in Graph - based Models,” pp. 276–286,

2009.

[31] T. Imai, H. Andou, and T. Fukaya, “A Quantitative Evaluation of Maintainability

Enhancement by Refactoring,” 2002.

 [32] J. Krinke, “Identifying similar code with program dependence graphs,” Proc. Eighth

57

Work. Conf. Reverse Eng., pp. 301–309, 2001.

[33] S. K. Abd-El-Hafiz, “A Metrics-Based Data Mining Approach for Software Clone

Detection,” Comput. Softw. Appl. Conf. (COMPSAC), 2012 IEEE 36th Annu., pp. 35–

41, 2012.

[34] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using

abstract syntax trees,” Proceedings. Int. Conf. Softw. Maint. (Cat. No. 98CB36272),

pp. 368–377, 1998.

[35] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, “A Tree Kernel based

approach for clone detection,” 2010 IEEE Int. Conf. Softw. Maint., pp. 1–5, 2010.

[36] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” Proc. 13th Int.

Conf. Softw. Eng. - ICSE ’08, p. 321, 2008.

[37] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code clone

detection: incremental, distributed, scalable,” 2010 IEEE Int. Conf. Softw. Maint., pp.

1–9, 2010.

[38] L. Jiang, G. Misherghi, and Z. Su, “D ECKARD : Scalable and Accurate Tree-based

Detection of Code Clones ∗,” no. 520320, 2007.

[39] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic Token-Based

Code Clone Detection System for Large Scale Source Code,” vol. 28, no. 7, pp. 654–

670, 2002.

