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ABSTRACT 

The present research report addresses the formulation of novel hybrid heuristics algorithm 

for multi-objective flow shop scheduling problems with dual objectives of minimizing the 

process time and completion time, constrained by sequence dependent setups and 

backlogging. The purpose of present work is to develop a model using two heuristics, 

capable of minimizing the considered objectives and hence leads to increase in capacity 

utilization efficiency thereby reducing the time required to complete jobs, and 

consequently increasing the profitability of an organization in present competitive 

environment. The two adopted heuristics are Teacher Learning based Optimization 

(TLBO) and Biogeography Based Optimization (BBO). TLBO utilizes the concept of 

interaction between teacher and learners, and then among learners themselves to increase 

knowledge level. On the other hand, BBO is based on natural process of migration and 

emigration of the species from one habitat to other. A novel hybrid heuristics algorithm 

namely BBO-TLBO is proposed, which includes teacher phase of TLBO between the 

migration and mutation phase of BBO and is implemented to assess a manufacturing 

system of two products-eight machines. Multi-objective scheduling with SDST also 

becomes NP hard with greater complexity towards the optimality in a reasonable time. 

Hence, heuristics has become greater choice for solving NP hard problems because of 

their multi-solution and strong neighborhood search capabilities in a reasonable time. 

MATLAB is utilized to evaluate the different functions of both objectives. The results 

using proposed BBO-TLBO are compared with the present industrial outputs and 

respective validation is conducted case study wise. The proposed work formulates eight 

different functions for both the objectives, respectively. The post results generated proved 

to be better than actual data. For objective of minimization of process time, the 

comparative and optimized mean values (in minutes) for both the parts on machine M1 is 

9.233; M2 is 6.209; M3 is 10.619; M4 is 23.976; M5 is 11.685; M6 is 11.685; M7 is 

22.044 and M8 is 14.364. For objective of minimization of cycle time, the comparative 

and optimized mean values (in minutes) for both the products on machine M1 is 8.755; 

M2 is 12.405; M3 is 12.975; M4 is 32.442; M5 is 8.838; M6 is 22.372; M7 is 38.453 and 

M8 is 32.886. In this regard, it is determined from the analytical results that examined 

time estimates are within range of lower and upper bounded limits of cycle time of 3.8 to 

10.3 minutes for part 1 and from 4.8 to 12.2 minutes for part 2. Simultaneously, the 

process time for part 1 ranges between 1.4 to 11.3 minutes and from 4.8 to 12.2 minutes 
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for part 2. Therefore, the proposed model finds as validated and model can be 

implemented in industry to minimize the process time and cycle time, hence the 

manufacturing capacity of the system. Also, the reduced time refers the effectiveness of 

the proposed hybrid heuristics algorithm and hence, it makes the system more reliable. 

The diversity in the optimization values shows the effectiveness of the proposed hybrid 

heuristic. Number of iterations taken for evaluation of every function are 20 and it takes 3 

seconds to evaluate each function on 1.5 GHz quad core processor. 
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CHAPTER 1: INTRODUCTION 

1.1 SCHEDULING 

In the real time scenario, there exist many situations in manufacturing system like due date 

changes, unexpected job release, machine breakdowns and greater processing times, than 

estimated and expected. The cost of production aggregates to high proportion of any firm’s 

expenditure, hence every firm tries to get a proper design of shop and scheduling of jobs on 

various machines to optimize the task times for long-term and short-term goals. Scheduling, 

hence, is a non-ignorable aspect of every manufacturing system. Scheduling is the allocation 

of limited resources (man and machinery), by organizing, controlling and optimizing various 

set of activities in a manufacturing process in a specific amount of time. Simply, it 

authenticates the production facility when to make, on which equipment and with which 

staff. Johnson (1954) studied two and three stage production system with included set-up 

times. Li and Willis (1992) mentioned two aspects , forward  scheduling , in which activities 

are planned from the date they become available to determine the due date, and backward 

scheduling, in which activities are planned for later as possible, to meet the due date. Singh 

and Mahapatra (2012) and Huang et al. (2014) specified the various criterions as minimizing 

the make-span, lateness, machine idle cost, inventory cost and tardiness. The objective is to 

increase the production efficiency, optimization of resources, minimizing production cost and 

increase in competitive strength. Rossi (2016) defined it as a set of ‘n’ jobs (different or 

same) processed on ‘m’ set of machines to minimize the given criterion. Scheduling is an 

effective method to plan the sequence of tasks and is applicable to service industry, project 

control, electronic industry, computer science, food processing industry, chemical, textile and 

so on. 

1.1.1 General Terms Describing a Job in a Scheduling Problem 

The following terms describe jobs in single machine scheduling problem. 

(i) Processing time: It is the time required to process job ‘j’. It includes both, the act 

processing time and set-up time. 

(ii) Ready time: It is the difference between the arrival time of the job and the time at which, 

the processing of job starts. 

(iii) Due date: It is the time at which the processing of the job j is to be completed. 

(iv) Completion Time: It is the time at which the job ‘j’ is actually completed in a sequence. 

http://www.sciencedirect.com/science/article/pii/0377221792903209
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(v) Flow time: It is the amount of time that job ‘j’ spends in a system. It is difference between 

completion and ready time. 

(vi) Lateness: It is the amount of time by which completion time of job ‘j’ differs from its 

due date.  It can be positive or negative. Positive lateness implies completion of job after its 

due date, and is a measure of poor service, while negative lateness is measure of better 

service. 

(vii) Tardiness: it is the lateness of job ‘j’, if it fails to meet its due date, else it will be zero. 

The maximum of zero and difference of completion and due date is tardiness. 

1.1.2 Assumptions in Scheduling 

The following conditions prescribe the scheduling process: 

1. A set of ‘n’ independent jobs, each with single operation is available for processing at time 

zero. 

2. Set-up time of each of the jobs is independent of its position in the sequence of jobs. 

Therefore, the set-up tie of each job can be included in its processing time. 

3. Job descriptors are to know in advance. 

4. One machine is continuously available and is never kept idle when work waiting. 

5. Each job is processed until its completion without any pre-emption. 

1.1.3 Classification of Scheduling 

Scheduling is allocating the resources from the initial to the final times, for the various tasks 

associated with different jobs, to optimize some performance measures. Figure 1.1 depicts 

classification of scheduling problem. 

 

 

          

 

 

 

                                  

                     Figure 1.1: Depiction of Classification Scheduling Problem 

(i) Single machine scheduling 

Single Machine scheduling, consists of ‘n’ independent jobs, each with single operation. The 

objective of minimizing the make span is achieved by arranging the  jobs on the basis of  in-
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process time, implying that, jobs with less in-process time are put ahead of those with higher 

in-process times. 

(ii) Job Shop Scheduling 

In job shop scheduling, each job have ‘m’ different operations. If jobs are having less than m 

operations, we assume required number of dummy operations with zero process times, 

ensuring the condition of equal number of operations. Graham (1966) first presented the 

competitive analysis for such combinatorial optimization problem. Taillard (1993) discussed 

the various problems for basic model to minimize the make-span.  The process sequences of 

jobs are not same. Hence, the flow of each job is not unidirectional and it is not compulsory 

to process all the jobs on each machine available that means each distinct job may be 

processed in any distinct number of machines as requirement demands. Neither, an initial 

machine is there to perform only first operation of a job, nor any terminal machine to 

perform only last operation of job. Each operation ‘j’ in operation sequence of job I in the job 

shop problem is described as triplet (i, j, k), where ‘k’ is the required machine for processing 

the jth operation of ith job. 

(iii) Flow shop scheduling  

In flow shop environment, each job has to go through a series of operations in the same 

order, implying that the jobs have to follow the same route or process sequence, but the 

processing time of each operation on a job will be different from that of other jobs. Garey et 

al. (1976) studied the complexity in the flow shop environment. While evaluating a flow 

shop problem, we examine all possible sequences before carrying out the job, and then the 

best get chosen among those. A flow-shop scheduling problem involves scheduling ‘n’ jobs 

on ‘m’ machines. A job consists of ‘m’ tasks and the jth operation of each job must be process 

on the jth machine, which only happens if it has already completed on machine j −1 and 

machine j is idle. The time taken to process a job on a machine may be constant, non-

negative or even zero. In the case where the processing time of a job on a machine is zero, 

implying that the job is not processed on the machine. Graham et al. (1979) studied 

sequencing and scheduling w.r.t optimization and approximation algorithms and interpreted 

in computational complexity theory. Potts (1980) presented a branch and bound algorithm for 

permutation flow-shop problem, which included dominance rules, and, computed upper 

bounds to minimize the maximum total flow time. Bellman et al. (1982) discussed two-
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machine flow shop scheduling problem with an aim to find a job sequence to minimize the 

make span, in which, one machine was assumed to had sequence dependent set-up times. 

Graves et al. (1983) developed a computerized heuristic procedure for the scheduling of the 

re-entrant flow shop environment including photolithographic process applicable to flexible 

machining system and integrated circuit fabrication process. Hariri et al. (1984) considered 

two-machine flow shop problem with constraints for minimizing the completion time, and 

developed three branch and bound algorithms including lower bounds, developed using 

Lagrangian relaxation. Scudder and Hoffmann (1985)  investigated the value based 

dispatching rules for flow shop environment to obtain on-time performance simultaneously 

reducing the investment in inventory Boxma and Forst (1986) considered stochastic 

scheduling problems involving both single machine and arbitrary number of machines with 

an objective to minimize the weighted number of tardy jobs when all the jobs have due dates. 

Flynn et al. (1987) investigated Repetitive Lots Procedure (RL) and Truncated Repetitive 

Lots (TRL) procedure, which uses sequence dependent set-up times to improve the 

performance of group technology manufacturing. Nowicki et al. (1988) proposed two 

heuristics for two-machine flow shop problem whose decision variables are sequence of jobs 

and processing time on which cost of performing a job depends linearly. Potts et al. (1990) 

proposed a heuristic method that aim at minimizing the length of flow shop schedule when 

lot streaming is in action. Hunsucker and Shah (1992) developed a simulation model for 

constrained flow shop with multiple processes problem (CFSMP) considering mean tardiness 

and number of tardy jobs as performance measures. Sarin et al. (1993) addressed a heuristic 

to minimize idle time on last machine and determining the sequence to prioritize the jobs to 

minimize total completion time. Halim et al. (1994) proposed the optimal algorithms to solve 

the problem of multi due-date, determining and scheduling the batch size in order to 

minimize actual flow time in JIT environment. Uetake et al. (1995) experimented two-stage 

hybrid flow- shop problem consisting of one machine at first stage and several kinds at 

second stage, to schedule the jobs taking make-span and maximum work-in process as 

performance measures. Kawtummachai (1997) applied genetic algorithm and simulated 

annealing to automated flow shop environment to minimize the total cost of scheduling of 

orders during production. Ben-Daya and Al-Fawzan (1998) proposed tabu search for 

permutation flow shop problem in combination with collaborated scheme for  intensification 
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and diversification, for generating neighborhood of given sequence. Botta-Genoulaz et al. 

(2000) proposed six heuristics to minimize maximum lateness in hybrid flow shop 

scheduling which considers precedence constraints, time lags and due-dates. Ouenniche and 

Boctor (2001) presented a Two-group Heuristic (TG), to solve multi-product, scheduling and 

economic lot sizing problem to minimize work-in-progress inventory, holding costs, setup 

costs without backlogging. Jain and Meeran (2002) applied Scatter Search (SS) and Path 

Relinking (PR) to explore the search space for the best solutions in the flow shop 

environment, which allows passing during the processing. Gourgand et al. (2003) proposed a 

recursive algorithm based on Markov chain and a simulated model for a stochastic flow-shop 

scheduling problem in order to minimize the make-span. Nearchou (2004) presented a hybrid 

Simulated Annealing Algorithm (SAA), consisting the features of local search technique and 

GAs to improve the performance for flow shop problem. Kumar et al. (2006) proposed a 

psycho-clonal algorithm based on artificial immune system and Maslow’s need hierarchy 

theory for no-wait flow shop problem to reduce total flow time. Moghaddam et al. (2007) 

investigated a Hybrid Multi-Objective Immune Algorithm (HMOIA) for minimizing 

weighted mean time and weighted mean tardiness using Immune System (IS) and Bacterial 

Optimization (BO) to find Pareto solution. Xu et al. (2008) presented a model to minimize 

one of the three criteria’s, namely, total weighted completion time, discounted total weighted 

completion time and sum of quadratic job completion time by using optimal permutations  

and formed an algorithm. Moslehi et al. (2009) introduced an algorithm using Branch and 

Bound (B & B) method with upper and lower bounds with an objective to minimize sum of 

maximum earliness and tardiness, useful in Just in Time production (JIT) system. Kahraman 

et al. (2010) formulated a greedy algorithm with two phases, destructive and constructive, 

along with four constructive heuristics to solve Hybrid Flow Shop Scheduling with 

Multiprocessor Task (HFSMT) to minimize the total completion time. Pan et al. (2011), 

proposed a Discrete Artificial Bee Colony (DABC), considering total weighted earliness and 

tardiness penalties as parameters to solve lot-streaming flow shop scheduling problem under 

both idling and no-idling cases. The rules smallest overall slack time (OSL), Earliest Due 

Date (EDD) and the smallest slack time on the last machine (LSL) was employed to 

construct diversity and quality in population. Ahmadizar et al. (2012) proposed a hybrid 

genetic algorithm for open shop scheduling to minimize the make-span. The algorithm uses 
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mutation operator, to prevent searching of repetitive solutions, and crossover operator for 

preserving the order of jobs relatively on machines. Based on three concepts, lower bound to 

reduce search space, dispatching index supported on longest remaining process time and 

randomized active schedules, and employed an iterative heuristic as an optimized measure. 

Mousavi et al. (2013) introduced BOLS i.e. bi-objective local search algorithm for hybrid 

flow shop with bi-objectives, minimizing the make-span and total tardiness. This is a three-

phase search algorithm, using heuristics and local search method. The first phase relocates 

the assigned set of the jobs to other machine. Secondly, the sequence of jobs changed for a 

machine and in the third phase, simultaneously, the set of jobs on machine and sequence of 

jobs is changed. Disposal hull approach and triangle method, were applied to ensure quality 

solutions. Costa et al. (2014) considered hybrid flow shop parallel batching (HFSPB), which 

involved stages with parallel and proposed a mixed linear programming model with a GA, 

which uses crossover operator for scheduling the jobs to minimize the make-span. Bassedik 

et al. (2015) investigated a novel hybrid immune system based on genetic algorithm with an 

aim to minimize the make-span for permuted flow shop scheduling environment and 

proposed two aspects, first being the hybrid of genetic algorithm and immune system, 

introduced a vaccination biological aspect of immunity, and second, based on immune 

network theory. 

 

1.2 HEURISTICS 

Heuristics refers to as an approach to problem solving, or discovery that employs a practical 

method not guaranteed to be optimal, but sufficient to obtain results. Polya (1945) gave some 

heuristics like working backward if unable to find a result, considering an example for an 

abstract problem, or picturing a problem rather than mathematically or theoretically focusing 

on it. Simon (1955) defined a term satisficing, which implies to the situation where further 

optimization of solutions is possible. Kahneman et al. (1982) studied the judgments made 

under uncertain situations. Heuristic methods can rapidly process the problem giving a 

satisfactory solution. Judea (1983) described heuristics as the strategies, influenced by 

experiences with resembling problems, using readily approachable, though loosely applicable 

information to control solving in machines, man and abstract issues. So heuristics simply 
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explains how people make decisions, come to judgments, and solve problems typically when 

facing complex problems or incomplete information. 

1.2.1 Different Types of Heuristics to Solve Scheduling Problems 

The researchers have found many methods to solve scheduling problems, applicable to the 

different manufacturing industries. Figure 1.2 depicts the various methods of solving 

scheduling problems. 

 

 

 

 

 

 

 

 

              

Figure 1.2: Depictions of Various Methods to Solve Scheduling Problems 

1.2.2 Genetic Algorithms 

Genetic Algorithm (GA) inspired and originated from the natural selection, is a meta-

heuristic approach to produce high quality results in order to achieve optimization by using 

crossover, inversion, mutation and selection operators. GA is an approach to produce off-

springs from the parent population called chromosomes, which consists of a gene. The 

selection operator, selects the fitter chromosomes to reproduce, crossover, interchange the 

two chromosomes, mutation, randomly vary the gene values in between chromosomes thus 

maintaining the diversity in new population and inversion, rearranges the genes in their 

respective arrayed order.  
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Chastang and Gremy (1978) verified compatibility of father’s phenotype keeping the 

assumption of assured motherhood w.r.t the genotypes of all the children. Pettit and Pettit 

(1987) experimented in different noise environments (low, medium and high) to construct  an 

adaptive approach to perform rapid classification of messages from sensor (possibly very 

noisy), w.r.t the objects present in the environment, so that continuous acquisition of 

knowledge takes place. Stark (1990) proposed a GA for a set of counts in classes,  to 

compute standard error of estimator  based on formula of R.A. Fisher, which involves their 

partial derivatives with respect to the frequencies, thus eliminating the need to compute them 

analytically. Lim (1997) proposed an efficient algorithm for material handling in a single 

hoist scheduling to determine cyclic schedules for printed-circuit-board (PCB) electroplating, 

maximize the line throughput rate. Alexouda and Paparrizos (2001) presented a GA, which 

consists of GA1 (uses random population to initialize) and GA2 (includes solution of beam 

search method in the first population) to solve product line design problem taking seller’s 

marginal return as a criterion. Zhao et al. (2009) considered problem of travelling salesman 

for pickup and delivery of one commodity and proposed a GA based crossover operator 

utilizing both global and local information designing a new tour to generate initial population 

giving a faster convergence. Lu and Huang (2015) investigated cutting stock problem with 

two-dimensions in liquid crystal display industry and proposed an efficient and effective GA 

involving mixed integer programming model and corner space algorithm to reduce the 

production costs and improving the customer satisfaction. Morini and Pellegrino (2016) 

employed a genetic algorithm to explore a huge combinatorial space of tax structures with an 

aim to establish a best real world income tax structure, blocking the taxpayers for being 

worse off with present tax structure and maximizing redistribution of tax. Figure 1.3 shows 

the various steps involved in genetic algorithm in a hierarchy along with the functions/work 

each step performs to determine the result. 

1.2.3 Simulated Annealing 

Simulated Annealing (SA) published by Metropolis et al. (1953) is a probabilistic approach 

and is a bi-product of Monte Carlo method to determine states in thermodynamic system. It 

approximates the global optimization in a huge discrete search space. The name derived from 

metallurgy, which includes heating and cooling in a controlled manner to reduce the defects 

in a material and increasing its crystal size. The characteristic property is to accept the worse 
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solutions while exploring the search space and at the same time, probability for considering 

the worse solutions decreases with the cooling speed getting slower. Khachaturyan et al. 

(1979) formulated a simulated annealing approach to minimize function, having large 

number of variables in artificial multi-atomic system, to statistical equilibration of the 

system. Molitor (1985) proposed heuristic method using SA for minimizing the two laters, 

being similar to crystallization process, to accept the arrangements, that lowers the function 

cost and regulate the uphill steps. Dolan et al. (1990) studied the efficiency of SA algorithm 

and implemented in heat exchanger network design, with the aims of calculation of the cost 

change between different states randomly generated, scheduling the annealing temperature 

and at-last determining the computational time. Berthiau and Siarry (1993) formulated an 

Enhanced SA Algorithm to address continuous variable problems of electronic component to 

reduce the computational, minimizing the open circuit simulator parameters and determine 

synaptic coefficients of analogue neural network. Chardaire (1993) proposed a heuristic, 

which is an extension of SA algorithm for 0-1 optimization problems, which approximates 

the variable value at a given temperature, fixing the variable as temperature decreases, thus 

reducing the problem size, so that better solutions are determined in less time. Raaymakers 

and Hoogeveen (2000) proposed a SA algorithm for multipurpose batch process scheduling 

environment with no-wait restrictions, which needs adaptation from neighborhood structure 

due to presence of overlapping operations to obtain near-optimal solutions to determine 

make-span. Varadharajan and Rajendran (2005) presented a multi-objective simulated 

annealing algorithm for permutation flow-shop scheduling to minimize the flow-time, make-

span of jobs and, obtained three improvement schemes with two initial sequences containing 

minimum value of objective function, taking temperature and epocth length as parameters. 

Muppani and Adil (2008) developed a SA algorithm to resolve an integer programming 

model considering all aspects of combination of products, cost of storage space and cost of 

order picking for the class formation with cubic per order index restrictions. Czapinski 

(2010) presented parallel SA with genetic enhancement based on clustering algorithm 

introducing the new mechanism for dynamic parameters, which gives new solutions, along 

with those given by other meta-heuristics, in permuted flow shop environment to minimize 

the total flow time.  Jayaswal and Agarwal (2014) addressed research on source dependent 

U-shaped assembly line balancing and proposed meta-heuristic based on SA, to determine 
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the optimal solution for small and medium problems eliminating large inventories, line 

inflexibility and monotomy. Matai (2015) proposed a modified SA algorithm for multi-

objective facility problem for any number of objectives, eliminating the dependency on 

decision maker to generate the weights to each objective. Shaabani and Kamalabadi (2016) 

presented mathematical model called population based simulated annealing  for multi-period 

multi routed inventory routing problem which includes perishable products with fix life time, 

utilizing the shipping strategies with an aim of minimizing the total cost without any stock 

out condition. 

1.2.4 Branch and Bound Method 

Branch and Bound (B&B) proposed by A.H. Land and A.G. Doig in 1960’s, and is an 

algorithm to find the solutions for combinatorial problems, general real valued and discrete 

problems. The aim of B&B is to determine a maximum or minimum value objective 

function. Three operations included are branching, i.e. producing subsets for solution, 

bounding, computing a lower bound against any candidate and solution , determining 

whether  obtained result is feasible or not. It is a state space search, in which the solution 

formed as a rooted tree, then traversing the branches of the tree, which are subsets of a 

solution, are crosschecked by the upper and the lower bounds, hence giving an optimal 

solution. Henley and Williams (1973) described B&B as a powerful and feasible method 

against the time consumption and storage memory, a computer needs with the increasing 

number of variables to solve combinatorial problems. B&B includes search trees, whose each 

node delivers a possible solution corresponding to the cost bounds. When a new solution 

with respect to cost could not be less than the lower bounds, search stops. Bilde and Krarup 

(1977) developed a theorem, and presented algorithms to determine lower bounds using 

B&B for solving un-capacitated plant issues including set partitioning and set covering. Also, 

gave a computational report showing their high standard of performance and simplicity. 

Henry and Penny (1982) presented two efficient B&B algorithms and implemented for 

practical problems for extracting minimal and near-minimal phylogenetic trees from protein 

sequence data. Christofides et al. (1987) described a B&B algorithm, for project scheduling 

environment where conflicts arises due to the scheduling of sets of activities constrained by 

the availability of the resources. There were four lower bounds determined, first based on 

longest path computation, second, based on linear programming relaxation, third, on 
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Lagrangian relaxation and fourth based on disjunctive arcs to plot the problem on the graph. 

Quesada and Grossmann (1992) proposed an Linear programming based B&B algorithm to 

improve the efficiency of MINLP problems by defining the master problem dynamically 

during the tree search reducing the number of nodes and thus, predicting the lower bounds by 

solving linear programming sub-problems, until appropriate solution is found. Yamada et al. 

(1997) developed B& B algorithm with three lower bounds for mini- max spanning problem 

in forests, to reduce the costs of constituent trees by finding a spanning forest of an 

undirected graph. Sun (2002) formulated two B&B algorithms, which uses primal network 

simplex method to determine relaxations in network and Driebeek penalties to strengthen 

lower bound to select variables, to solve a logical and distribution transportation problem 

with side constraints, is modeled as mixed integer programming model in 0-1 coding. Mu et 

al. (2007) presented simple, efficient and fast B&B algorithm for binary quadratic 

programming problem with pre-treatment, which initially decreases the size of programming 

and then, gave a new pruning method, bounding method and procedure for initial solution. 

Kellegoz and Toklu (2012) proposed B&B algorithm based on efficient feasibility and 

dominance criteria, and heuristic for enumeration process, to utilize large area of line-

established, investment (of equipment’s and tools) and work-in-process in assembly lines of 

long product flow line with multi-manned parallel work stations. Ozturk et al. (2014) 

presented high quality B&B algorithm to solve problem of parallel batching in hospital 

sterilization services, where jobs have different release dates, sizes and same processing 

times with an objective to minimize the make-span. Abdelsadek et al. (2015) presented a 

B&B using lower bound supported by greedy search and genetic algorithm, for undirected 

graph G to determine maximum un-weighed vertex-triangles and, also, proposed an upper 

bound based on surrogate relaxation. Freire et al. (2016) re-formulated the capture demand 

problem with random utilities into Mixed-Integer Linear Programming model and proposed 

B&B algorithm using greedy approach to determine relaxation and, applied it in park-and-

ride facility location. 

1.2.5 Ant Colony Optimization 

Ant Colony optimization (ACO) proposed by Dorigo (1992) is a probabilistic method to 

solve combinatorial problems by determining the paths through graphs. Dorigo and 

Gamberdella (1997) described ant colony system, based on the natural ant behavior, in which 
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upon return after finding food, to their colony an ant leaves pheromone trail and other ants 

follows that reinforcing if they eventually find food. The evaporation of pheromone is 

critical, as it avoids the convergence of local optimal solution, and depends on the path 

lengths, if longer, pheromone evaporates for more time and if short, more ants can travel 

frequently, thus increasing the density of pheromone. The aim is to mimic the behavior of the 

simulated ants giving a positive feedback and represents problem to solve, on graph. 

Sendova-Franks and Franks (1993) reviewed the division of labor with monomorphic worker 

environment, also, presented a data for ant colony of small size in a seasonal environment, 

which resulted in workers ability to reproduce with existing variety of task. Dorigo and 

Gambardella (1997) demonstrated the capability of the quality of solutions for both 

symmetric and asymmetric approaches for travelling salesman problem by computer 

simulations and found that Ant Colony Optimization technique generates feasible solutions 

in shorter periods. Song et al. (1999) presented a novel ant colony search algorithm for 

combined heat and power economic dispatch lines (with multi-objectives), and listed the 

three characteristics, positive feedback, constructive greedy heuristic and distributed 

computation. T'kindt et al. (2002) proposed ACO approach, by using simulated annealing 

feature and local search algorithm for two- machine flow-shop scheduling environment with 

aim of minimizing make-span and total completion time. Shyu (2004) listed the applications, 

and proposed an ACO algorithm with several features for flow-shop environment where no 

in-between storage is available between two workstations and each operation needs a 

different setup, with an objective of minimizing total completion time. Hani et al. (2007) 

presented a hybrid ant colonization approach combined with guided local approach in a 

quadratic assignment problem in train maintenance facility and demonstrated improvement in 

the new layout that the actual layout. Gajpal and Abad (2009) proposed a Multi-Ant Colony 

System (MACS) to design the routes for vehicles in a Capacitated Vehicle Routing Problem 

(CVRP), constrained by the number of vehicles and deliveries to line-haul customers being 

the priority, in order to minimize the total distance travelled by the vehicle. Liao et.al (2014) 

proposed a Unified Ant Colony Optimization Algorithm (UACOR) for continuous 

optimization, which is capable of producing new ACO algorithms by using automatic 

configuration techniques, and presented two new algorithms, UACOR-s and UACOR-c. Bera 

and Mukherjee (2016) presented a combined ACO algorithm with a desirability function for 
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serial multi-stage manufacturing system in multi-response optimization problem, with an aim 

of optimal product quality constrained by setting condition at each stage having multi-

correlated responses at each stage by building empirical response function. 

1.2.6 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) proposed by Kennedy and Eberhart (1995) is a meta-

heuristic approach, to optimize the problem by taking candidate solution as an input and 

moving them around the search space by its velocity and position and is influenced by their 

own and entire swarms (population) best-known position, and guided toward best positions, 

thus upgrading better positions. PSO can search large spaces with fewer assumptions and do 

not require differentiable function. Abido (2002) presented efficient and reliable PSO for 

solving the optimal power flow with aim of voltage profile improvement, fuel cost 

minimization and voltage stability enhancement, by incorporating PSO, derivative- free 

technique for optimization controlling the optimal setting variables. Yin and Wang (2006) 

presented an effective and efficient PSO for solving a nonlinear resource allocation problem, 

by instructing the problem using proposing adaptive resource bounds for optimally allocating 

the limited number of resources to the various activities. Zhang et al. (2008) proposed an 

improved PSO algorithm to resolve large-scale flow shop scheduling problem, which aim at 

minimizing the make-span by combining genetic operators and PSO algorithm, in which 

mutation operator searches neighborhood and is all different constrained. Yalaoui et al. 

(2009) presented a hybrid PSO algorithm and GA to solve facility layout problem, for group 

technology environment, which simultaneously include machines and products in a 

manufacturing cell and regarded as quadratic assignment problem. Unler and Murat (2010) 

investigated feature subset selection problem using a regression model and employed a 

discrete PSO algorithm, which dynamically accounts dependency and relevance of features 

included in the problem subset, and find it to be competitive with scatter search and Tabu 

Search algorithm. Wille et al. (2011) proposed an efficient discrete PSO algorithm for 

discrete capacity assignment problem in a realistic general-topology network, which is 

constrained by end-to-end quality of service, for obtaining optimal solutions with small 

computational effort. Altinoz and Yilmaz (2012) formulated a PSO algorithm with parameter 

dependency walls in synthesis problem of microstrip-like interconnected lines with an aim of 

finding rapid solutions for optimization problems where dependencies exists in-between 



15 
 

input variables. Prescilla and Selvakumar (2013) applied a Binary PSO algorithm for the 

real-time task assignment, which includes several independent periodic tasks, in a 

heterogeneous multiprocessor with an aim to schedule maximum tasks and consuming 

minimum energy without surpassing the utilization bound. Lin et al. (2015) proposed a novel 

Multi Objective PSO (MOPSO) for multi-objective optimization problems, which aggregates 

to a single problem and then assigning each particle to every aggregation problem, also, 

designing two search strategies for updating velocity of each particle to increase convergence 

speed and maintain the population diversity. Kumar et al. (2016) developed a Self Learning 

PSO (SLPSO) algorithm to solve Multi-objective Multi-Vehicle Production and Pollution 

Routing Problems with a Time Window (MMPPRP-TW) which focuses on optimizing the 

routes of vehicles in supply chain planning system to minimize emissions and total 

operational cost.  

1.2.7 Tabu Search 

Tabu Search (TS) invented by Glover (1986) is a local search method used for optimization. 

It approaches the neighborhood solution, which means the similar solutions except with 

minor details to generate a new improved solution. Ability to accept the worsening moves on 

sub-optimal and plateaus, where solutions are likely to fit equally and, introducing the 

prohibitions to stop the search from coming back to yester visited solutions, enhances its 

performance. Glover (1989) described the memory structures, short term, intermediate and 

long term to store the visited solutions. Hertz (1991) adapted TS for large-scale time tabling 

problems to minimize the conflicts due to courses taking place parallel to each other, which 

include common teachers or students requiring the same classroom, which are constrained by 

groups of students, geographical and precedence requirements. Icmeli and Erenguc (1994) 

proposed a TS algorithm for Resource Constrained Project Scheduling Problem with 

Discounted Cash Flows (RCPSPDC) with an objective to maximize net present value with 

precedence and resource constraints, producing optimal solutions with reasonable 

computational effort. Armentano and Ronconi (1999) proposed a heuristic based on TS for 

permutation flow-shop scheduling problem with an aim to minimize total tardiness, including 

the evaluated strategies of intensification, diversification and neighborhood restriction and 

explored the solution space to obtain better results in reasonable period. Chao (2002) 

constructed and tested TS method using the deviation concept found in annealing to solve 
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truck and trailer routing problem considering the three routes, a pure truck route by truck 

alone, a pure vehicle route without any sub-tours and a complete vehicle route with sub-

tours, with an objective to minimize the cost incurred and total travel distance. Grabowski 

and Wodecki (2004) proposed a fast and accurate local search procedure based on TS method 

for permutation large-size flow shop scheduling problem with an aim of minimizing the 

make-span, by using lower bounds on make-span instead, computing explicitly and introduce 

perturbations for exploring the search space for better solutions. Mika et al. (2008) proposed 

a local search meta-heuristic based on TS for a multimode resource constrained project-

scheduling problem including the schedule dependent set-up times with renewable resources 

and pre-emptable activities with an aim to minimize the total duration of the project. 

Lamghari and Dimitrakopoulos (2012) presented a meta-heuristic approach based on TS for 

open-pit mine production scheduling problem constrained by metal uncertainty, using two 

diversification strategies, exploiting the long-term memory of search history and 

neighborhood search strategy, producing solutions in short computational times. Costa et al. 

(2015) presented a Parallel Tabu Search (PTS) algorithm along with neighborhood 

generation mechanism in a serial production system for a buffer allocation problem, with an 

aim to minimize the total buffer capacity and developed a multi-factor analysis to analyze the 

influencing factors, from the results obtained. Sukkerd and Wuttipornpun (2016) proposed a 

hybrid algorithm of TS and GA, which includes various steps, generating the production 

schedule, generate initial sequence of orders, iteratively improving the sequences and 

determining the start time of operations, in finite capacity material requirement planning 

system in a flexible flow shop environment with assembly operations, to minimize the 

computational time. 

1.2.8 Differential Evolution 

Differential Evolution (DE) is a meta-heuristic, and an optimization method, which improves 

the solution with respect to the desired quality, required. The characteristic feature is the non-

requirement of gradient of the problem i.e. a problem does not need to be differentiable, thus 

allowing its applications in noisy, vary with time and are not continuous. DE generates new 

solutions by collaboration of existing ones and stores the candidate solution depending upon 

the fitness or best score, when compared among each other. Bahu and Shastry (1999) 

combined DE with orthogonal collocation  proposing a non-sequential technique for 
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estimating the effective heat transfer parameters in trickle bed reactors, assuring the 

convergence from any initial point with reduced function evaluations, in a less computational 

time as compared to radial temperature profile. Kyprianou et al. (2001) used DE method in 

memory dependent vibrations system to carry out the direct search without any derivative 

estimation in a continuous parameter space, to simulate the noisy data, noise-free data and 

experimental data of a nuclear power plant. Cruz et al. (2003) investigated DE algorithm for 

solving multimodal optimal control problems and claimed it to be efficient, robust and 

effective and at the same time eliminating the drawback of long computational times, 

dependency on gradient information in other evolutionary techniques. Nearchou (2005) 

described the application of DE algorithm in assembly line balancing problem, with an aim 

to minimize the number of workstations needed to manufacture a product constrained by 

fixed cycle time. Al-Anzi and Allahverdi (2007) presented a self-adaptive DE heuristic for 

two-stage assembly flow shop scheduling problem including the set-up times in processing 

times with an aim to minimize the maximum lateness and compared the results with and 

outperforming  particle swarm optimization by reducing computational time by one-third. 

Damak et al. (2009) proposed a DE algorithm for resource constrained project scheduling 

problem including multiple execution modes with an objective to minimize the make-span 

and computing the results in less time for each activity. Dong and Wang (2012) developed a 

novel Hybrid Permutation Based DE (HPDE) for Zero Wait Scheduling Problems (ZWSP) 

specified as, asymmetric travelling salesman problem , resulting in high quality solutions 

with reduced computational time requiring less user-defined parameters, making it applicable 

to real life large scale ZWSPs involving  set up times. Ying Liu et al. (2014) proposed a 

hybrid DE by combining DE with Individual Improving Scheme (IIS), which diversifies the 

population with enhanced solutions, and greedy based local search which guides algorithm to 

escape local minimum, for permutation flow shop scheduling problem. Zhou et al.(2016) 

formulated an effective DE based hybrid algorithm for scheduling uniform parallel batch 

processing machines having different capacities with arbitrary job sizes, by first, representing 

the population as discrete jobs and applying crossover, mutation operators, secondly, forming 

the batches and scheduling them on uniform parallel machines, with an objective to minimize 

the make-span. 
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1.2.9 Immune Algorithm 

Artificial Immune System (AIS) authored by Farmer (1986) is a technique intended to 

function and mechanize as immune system do, to solve the computational problems from 

engineering, mathematics and information technology. AIS is an adaptive system and bi-

product of natural computing and biological inspired computing considering immunology for 

its principles, models and working. Huang (1999) proposed IA for thermal generation 

scheduling problems, in which constraints and objective functions were made antigens ,and 

antibodies were determined by calculating the affinity which is the deemed solution to the 

problem. Wen and Song (2004) proposed an immune evolutionary algorithm (IEA), which 

consist of self-adaptive mutation operator to decide step size of antibody and affinity 

calculation, to maintain diversity, to evaluate the sphericity error by making objective 

function as antigen and fitting the antibodies with antigen to find the solution. Zandieh et al. 

(2006) described an overview and basic notions, and presented an IA for hybrid flow shop 

scheduling problems with sequence dependent set-up times, to obtain a manufacturing 

schedule within a reasonable time and then compared the results to random key genetic 

algorithm, which is out- performed. Hsieh et al. (2009) proposed an IA for flow shop 

scheduling problem with buffers with an aim to minimize the make-span and the solutions 

proved to be superior as compared to hybrid genetic algorithm with less relative errors, also, 

showed the impact on make-span with and without buffers. Wang et al. (2009) proposed an 

immune-genetic algorithm for planning of the new products, which is a type of semi-infinite 

programming model having infinite constraints, by first generating random antigens along 

with training antibodies ,then applying immune system to recognize self and non-self 

antigens by antibodies, and at-last, repairing the infeasible chromosomes. Massim et al. 

(2010) implemented a combined artificial immune system optimization algorithm with 

decomposition method with an aim to allocate buffers in transfer lines in order to maximize 

the line throughput, optimize work in process inventory and maximizing the economic profit. 

Lin (2013) presented a novel immune multi-objective optimization algorithm, based on 

micro-population involving a novel adaptive mutation operator (applied according to the 

fitness value) and fine grained selection operator for preserving the population diversity, thus 

enhances the ability to converge. Azadeh et al. (2014) proposed combined algorithm of 

artificial immune system with genetic algorithm and particle swarm optimization, for 
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forecasting yearly electrical energy consumption by utilizing the fittest random variables as 

an input to reduce the relative error and used mean absolute percentage error to evaluate the 

results to select forecasting model. Souza et al. (2016) used artificial immune algorithm for 

combinatorial optimization to reconfigure the electrical distribution systems with a varying 

demand, with an objective to determine the radial topology and to minimize the cost of 

energy losses for given operation time. 

1.2.10 Teacher Learning Based Optimization (TLBO) 

TLBO is an optimization method, proposed by Rao et al. in 2011 which is based on the 

teacher and student learning process. It is a naturally inspired population method, where class 

of learners will represent the population. The best learner in the process is selected as a 

teacher, as only a teacher is considered with best knowledge and then increments the 

knowledge level of the students known as learners, so as to obtain the good marks. Here, the 

capability of a teacher to deliver and the quality of the class present also plays an important 

factor in order to increase the average of the class. There are two phases which constitutes 

the whole process namely, teacher’s phase i.e. grabbing knowledge directly from the teacher 

and learner’s phase, which motivates the grabbing knowledge between the learners. In the 

teacher phase, the teacher approaches to impart all of his knowledge among the class which 

is impractical in reality. This is because of the difference in the capability of delivering by 

teacher and that of understanding by the students. The learner phase on the other hand, inputs 

the knowledge from teaching phase and then further, increases it by interaction among the 

learners. Zou et al. (2013) proposed TLBO method for multi objective optimization problems 

by utilizing crowding distance computation mechanism with non-dominated sorting method. 

The highest crowding values are selected as the teacher and the centroid of the non-

dominated solutions is the mean of the learners. Baykasoglu et al. (2014) investigated the 

performance of TLBO for optimization problems along with constrained and unconstrained 

linear programming problems for flow shop scheduling environment. The objective studied 

was to minimize the makespan constrained by precedence relations. Also, the comparative 

statistical analysis with the other methods has been provided to show the superiority of 

TLBO. Chen et al. (2015) presented an enhanced TLBO by adding local learning and self-

learning methods. In self-leaning, the individuals renew their position or exploit randomly to 

the new positions whereas local learning maintains the diversity of the population by 
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rearranging the set of iterations. Patel and Savsani (2016) proposed the teacher tutorial and 

self-learning in TLBO for multi-objective optimization problems of Sterling heat engine.  

The non-dominated solutions are assessed by grid based approach and the objectives 

undertaken were maximizing the thermal efficiency, output power and minimizing total 

pressure drop of the engine.  

1.2.11 Biogeography Based Optimization (BBO) 

Biogeography is inspired from the nature’s geographic dispersion and proportioning of the 

biological organisms and was formulated by Dan Simon in 2008. BBO imbibe features of 

genetic algorithms and particle swarm optimization therefore can be utilized for the same 

problems these two. BBO is capable of laying down the mathematical models for migration 

of the species and their extinction along with the rise of new species. This is done in order to 

relocate the population of species to the neighboring islands.  There are two phases namely, 

migration and mutation. Mutation phase maintains the diversity in the population. The term 

island refers to the habitat which has been isolated from the other habitats. For population to 

grow, and it is supposed to have high suitability index (HSI) which is dependent on the 

natural conditions such as rainfall, temperature, topography and vegetation whereas 

suitability variable index is independent of the conditions. High HSI will lead to emigration 

of various species to the nearby habitats by virtue of large species they host. Low HSI habitat 

experiences high immigration rate due to their sparse population and results in increase of the 

HSI. Bhattacharya and Chattopadhyay (2010) proposed BBO for solving the convex and 

non-convex economic load dispatch problem under taking constraints such as transmission 

losses, ramp rate limits, multi-fuel options and prohibited operating zones. The proposed 

method was applied to a 6-generator system limited by ramp rate, 40 generators with valve 

point loading and 10 generators with multiple fuels availability. Roy et al. (2012) presented 

multi-constrained optimal reactive power flow (ORPF) problem in power system with an 

objective of bus voltage deviation and real power loss. When the presented method was 

compared with other population based methods, the former founds better results. Wang and 

Duan (2014) proposed a hybrid biogeography based optimization heuristic for scheduling 

problems. Two strategies namely, chaos strategy and searching around the optimum strategy 

were embedded in the BBO mechanism in order to stabilize the value of global optimum. 

Santosa and Safitir (2015) developed BBO heuristic to solve the combinatorial problem of 
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single machine scheduling environment with an objective of minimizing the total weighted 

tardiness. When computed, BBO was able to solve 57 out of 75 instances while PSO solved 

only 19 out of 75 instances, hence showing the superiority of the method. Lin and Zhang 

(2016) investigated distributed assembly permutation flow-shop scheduling problem 

(DAPFSP) by using hybrid biogeography based optimization (HBBO) with an objective of 

optimizing the makespan for the manufacturing system. The migration phase was inserted 

with path relinking mechanism and mutation phase utilizes an insertion based method.  

 

1.3 MULTI-OBJECTIVE FLOW SHOP SCHEDULING PROBLEMS (MFSP) 

In the scheduling problems, there exists many objectives such as minimizing the make-span, 

tardiness, lateness, flow-time, achieving due dates; decreasing job disruptions, energy 

consumption etc. There are single objective problems, which only solve one objective, bi-

objective problems, which aim to solve two objectives and multi-objective problems, which 

considers more than two objectives. MFSP problems are more complex and considered as 

NP-Hard (non-deterministic polynomial time) whose exact solutions do not exist.  Loukil et 

al.(2007) did a case study of scheduling environment where first sub-parts are manufactured, 

which are followed by the assembly of final product and proposed a multi-objective 

simulated annealing approach with objectives of minimizing make-span, maximum tardiness, 

mean tardiness and completion time. The paper considered the overlap of processing periods 

of two successive operations of same job. Qian et al. (2009) proposed a hybrid algorithm 

based on differential evolution for permutation flow shop scheduling problem with multiple 

objectives and constrained by limited buffers between consecutive machines. First, largest 

order value (LOV) rule was employed to convert continuous values in DE to job 

permutations and then  local search method is applied to explore the solutions and Pareto 

dominance was used to update the solutions. Yagmahan and Yenisey (2010) presented a 

multi-objective ant-colony system algorithm (MOACSA) for flow shop scheduling with 

objectives to minimize make-span and total flow time. Local search strategy, which explores 

the solution space was combined with ant colony algorithm and performance was compared 

with multi objective heuristics, showing MOACSA being more efficient. Azadeh et al. 

(2015) investigated flow shop manufacturing system having multi state machines with 

multiple objectives, such as, maximizing system reliability, minimizing make-span and 
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minimizing the purchasing cost by proposing a genetic algorithm to find near optimal 

solutions. Han et al. (2016) proposed a novel multi-objective optimization algorithm using 

GA to solve blocking  lot-streaming flow shop scheduling problem, in which differences 

among parents and non-dominated solutions are used to design crossover operator and local 

search strategy was employed to explore the search space. Tang et al. (2016), proposed a 

novel particle swarm optimization approach to address flexible flow shop scheduling 

problem, to achieve objectives of minimizing the disruptions in job arrivals, energy 

consumption and minimizing the make-span (constrained by machine breakdown), hence 

meet the demand of sustainable manufacturing. 

 

1.4 SEQUENCE DEPENDENT SETUP TIMES (SDST) 

In scheduling, set-up time makes problem more complex and comes to play when production 

changeover is required between the different jobs, taking different amount of time to set-up 

on the machine before starting the operation. There are two type of structures; simple, in 

which set-up is independent of sequences and decisions for previous times, and complex, in 

which set-up time is dependent on both the factors. There exists three types of complex 

structures; first includes set-up carryover, hence allowing non-disruptive production run from 

last time to present without any additional set-up, second, contains a major set-up for similar 

jobs and third is dependent on the production sequence. Kim et al. (1996) proposed Tabu 

Search (TS) and Simulated Annealing (SA) algorithms for flow-shop environment in a 

printed circuit board industry, with lot streaming and sequence dependent setup times 

considered for each lot. The aim was to minimize the mean tardiness as there was time-lag 

between the machines because it was possible to start job on following machine before job is 

entirely completed on previous machine. Rios-Mercado and Brad (1998) presented a branch-

and-cut (B&C) algorithm for flow-shop scheduling problem with sequence dependent set-up 

times with an aim to minimize the make-span by formulating two models, Model A, based on 

salesman travelling problem and Model B, which is less structured and uses few binary 

variables and constraints. B&C performed better than Branch and bound approach. Ruiz et al 

(2005) applied genetic algorithms to check their effectiveness in a permutation flow-shop 

scheduling problem with sequence dependent setup times with an aim to minimize make-

span. Design of Experiments (DOE), was used for calibrating the parameters and operators 
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and evaluated the results with benchmark based on instances of Taillard. Ruiz and Stitzle 

(2008) proposed two Iterated Greedy (IG) algorithms for complex flow-shop problem with 

sequence dependent setup time on machines with objectives of minimizing total weighted 

tardiness and maximum completion time. One IG algorithm is baesd on adaption of IG 

principle and second, based on local search approach. Kirlik and Oguz (2012) presented 

effective, efficient and robust General Variable Neighborhood Search (GVNS) heuristic to 

solve problem of sequence dependent setups with an aim to minimize total weighted 

tardiness. For single machine scheduling with varying size from small to large, 35 instances 

were optimized and improved results of 16 instances, out of total 64 instances considered. 

Ciavotta et al. (2013) proposed a novel method named as Restarted Iterated Pareto Greedy 

(RIPG) approach for sequence dependent setups in permutation flow shop scheduling 

problem, both with single objectives and multi-objective flow-shop problem .Pareto approach 

and Greedy method was combined and when tested, outperformed conventional approaches. 

Jeong and Kim (2014) presented a Branch and bound based algorithm and heuristic 

algorithm for two-machine re-entrant flow-shop scheduling problem with objective of 

minimizing total tardiness. Each job was twice processed, and considered sequence 

dependent setup times on the second machine for developing dominance properties and a 

lower bound used in branch and bound based algorithm. 

 

1.5 BACKLOGGING IN SCHEDULING 

In the manufacturing industry, backlog is the uncompleted, unprocessed work for a specified 

time or jobs in the process of completion. It implies to the workload, which is beyond the 

capacity of the production system. The factor on which it depends is waiting time more the 

waiting time lower is the backlogging rate. Partial backlogging is a situation where the 

demand of a product met from other sources where as in full backlogging, demand remains 

unfulfilled until the next order. Yan et al. (2010) tested a hypothesis for a case of internet 

retailers with objective of managing the backlog variation in the order fulfillment to meet 

supply, capacity and efficiency of the system by studying the link between backlog variation 

and order fulfillment. Wu et al. (2011) proposed mixed integer linear model for capacitated 

multi-level lot sizing problem, constrained by backlogging with an aim to provide lower 

bound on optimal solutions. Brito and de Almeida (2012) presented multi-attribute utility 
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model for newsvendor model with an objective of making explicit decisions for order 

quantities, impacted by backlogging, in order to maximize the profit. Ouyang and Chang 

(2013) presented a mathematical model for reworking of imperfect items and trade cost due 

to imperfect production processes and backlogging with an objective to reduce cost of 

production inventory by reworking them, which incurs less holding cost. Babaei et al. (2014), 

developed a genetic algorithm for capacitated scheduling and lot sizing problem with 

sequence dependent setups, backlogging and setup carryover to study the complexity and 

determine the near-optimal solutions in reasonable computational time, and tested its 

accuracy by developing a lower bound. 
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CHAPTER 2: LITERATURE REVIEW                                                                                                      

2.1 INTRODUCTION 

This chapter reviews the contributions made towards multi-objective flow shop scheduling 

problems, sequence dependent set-up times problems and backlogging problems in the past 

few years. As flow-shop environment is worldwide practice in the manufacturing industries, 

hence important to improve the productivity to achieve profit-worthy status in the economy.  

The significance of reviewing lies in the diversity of flow shop problem, its parameters 

which on optimizing/minimizing even one of them would produce significant results in the 

efficiency and effectiveness of the production system. Each review describes the 

method/approach/heuristics used to solve the problems with their specified objectives, how 

the method works in order to produce results and the software used to code the algorithms 

along with the comparisons made with the respective contemporary methods. The 

introduction chapter showed the spread of flow shop problems in the different fields of 

science and many heuristics to compute results, which here has been narrow to few only. One 

most used heuristic is genetic algorithm and objective to be achieved is to minimize the 

makes-pan in the below contributions.  

2.2 RESEARCH MODELS 

Azzi et al. (2012) presented a heuristic procedure to solve hybrid flow shop scheduling 

problem in a flexible multistage batch production system with an aim to minimize make-

span. The other aim was to increase production capacity utilization (affected due to decrease 

in marketing time and increased number of models) by using a batch splitting or aggregation 

strategy and introduced workload leveling function (which determines the cost by reducing 

the make-span by rearranging the machines or by splitting into batches) as each stage 

comprises of certain number of machines. This condition is acceptable when benefits 

considered be function of setting up new machines and reducing process time and when same 

job is required at the different stages of production batches, set-up times be reduced. The 

system includes two or more production stages and a job processed on one, none or every 

machine groped in the batches with buffers of work in progress among different stages. 

When compared with short processing time method, reduced make-span by 65 % and 

increased capacity to 60 %. The proposed heuristic has a potential to reduce make-span with 
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inter-operational buffer limits in multi-stage multi-product batch production system with 

first-in-first-out flow. 

Liv(m1, m2, … , mh, mz, jz) = PT(mz) − PT(m1) − TS(jz) H + 1⁄              (2.1)   

PT (minew
)=  PT(mi) + TS(jz) − Liv(mi, mj,jz)                                                                 (2.2) 

PT(mz)new = PT(mz) − Liv(mi, mz, jz). H                                                                        (2.3) 

PT(mz) − PT(m1) > K. TS(j)                                                                                             (2.4) 

Javandi et al. (2012) proposed a mathematical model and immune algorithm for hybrid flow 

shop scheduling problem with sequence dependent set-up times, time lags and possibility of 

jobs to skip stage, with an aim to minimize make-span in solving small size problems in a 

reasonable computational time. The algorithm uses mutation to search near optimal solution 

and redeploys the best solution in the subsequent population, thus striking out the solution 

with better convergence. Immune algorithm outperformed the presented mathematical model 

in producing optimal solutions in less computational time. The proposed algorithm was 

coded in MATLAB 7.5 and solved in LINGO 8.0 0in Pentium IV 2-GHz processor with 1GB 

RAM. 

Singh and Mahapatra (2012) presented Particle Swarm Optimization (PSO) algorithm to 

solve flexible flow-shop scheduling problem, which combines both flow shop and parallel 

machines in order to minimize the make-span so that multiprocessor system be executed with 

minimum length. The algorithm uses mutation operator to avoid premature convergence and 

trapping of solution in the local minima. Chaotic numbers generated with help of logistic 

mapping to converge the solution rapidly towards near-optimal solution, thus reducing the 

computational time.  When compared, the average percentage deviation in PSO was 2.961 to 

that of 3.559 in genetic algorithm (GA), hence making PSO to be more effective in 

producing quality solutions in less computational time and with less parameters. The 

algorithm was structured in C++ on Pentium 4 3GHz processor with 1 GB RAM. 

Elyasi and Salmasi (2013) proposed a dynamic method for flow-shop scheduling problem 

with an aim to reduce number of tardy jobs constrained by stochastic due dates and included 

processing times. The due dates followed normal distribution with pre-known mean and 

variance. The proposed method decomposes m-machine flow shop problem into sub-

problems of m-stochastic single machine scheduling, each of which regarded as individual 
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mathematical problem. The presented method when compared to shortest processing time 

(SPT) proved 23.9% better on scheduling average industry-size problem and observed that 

more the environment is dynamic better were the results produced. The computational time 

of both the compared methods was same. This method has a potential to solve large size 

problems with random processing times or weighted jobs. C# language was used to code the 

algorithm along with LINGO 11.0 to solve the individual problems on 2 GHz Intel core 

processor with 3GB RAM. 

Mousavi et al. (2013) addressed hybrid flow shop scheduling problem in just in time 

environment, to minimize total tardiness and make-span. Heuristics and local search method 

combined to develop an efficient bi-objective local search algorithm (BOLS) with three 

phases. First phase moves assigned set of jobs to other machines, second phase changes the 

order of machines and third phase simultaneously changes job set of machine and order of 

jobs. The quality of solutions verified by testing 30 instances with a maximum of 50 jobs 

using triangle method and hull approach proved to be better than multi-objective simulated 

annealing (MOSA) and bi-objective heuristic (BOH) approach. The presented method has a 

potential to find optimum solutions including total completion time, maximum lateness and 

to find Pareto frontier using other evolutionary algorithms. The algorithms were coded in 

MATLAB 7with CPU 800 processor having 512 RAM. 

Toledo et al. (2013) proposed a novel hybrid multi population genetic algorithm (HMPGA), 

which combines mathematical programming technique and meta-heuristic for multi 

population, using fix and optimize (FO) heuristic to solve capacitated lot sizing problem with 

backlogging. HMPGA produced three populations, which structured individuals in a tree. 

The genetic operators, crossover and mutation, explore the solution space of variables and 

FO intensifies its exploration in the neighborhood of better individuals in mix integer 

problem. The FO heuristic improve the following fittest individuals using two rolling horizon 

windows for fixing and optimizing variables indexed by periods and families, and acts as 

memetic component of hybrid method. When results compared with Akartunali and Miller 

heuristic (AMH) solutions, HMPGA outperformed it 75 out of 120 times and performed 

better in the sets of higher resource utilization in a reasonable computational time. The 

heuristics were coded in GAMS and computed in CPLEX 12.2 on Intel core 2-duo 2.66 GHz 

processor with 2GB RAM. 
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Vanchipura and Sridharan (2013) formulated two constructive heuristics named as Setup 

Ranking Algorithm (SRA) and Fictitious job setup ranking algorithm (FJSRA) in flow shop 

scheduling environment with sequence dependent set-up times, with an aim to minimize 

make-span. SRA has the ability to produce sequences from the set-up time of the jobs and 

FJSRA constitutes of jobs with minimum set-up times.  Taillard benchmark problems at eight 

different levels were tested by proposed approaches with their graphical analysis, statistical 

analysis and relative performance index, and FJSRA proved to be better for large problems 

and small problems with higher set-up time. Drawback of SRA was not giving importance to 

processing time. The problem was coded in MATLAB using core2duo 2GHz processor with 

2GB RAM. 

Babaei et al. (2014) formulated a genetic algorithm (GA) using crossover and mutation 

operators, to address backlogging, setup carry over and sequence dependent setups for lot 

sizing and scheduling problems to find optimal solutions constrained by minimum 

computational times. The problem is a mix integer linear problem. GA combined with a 

procedure to obtain lower bound against optimal solutions garnered better results and the 

same lower bound use to evaluate the proposed algorithm. The future scope includes use of 

other meta-heuristics like particle swarm optimization, simulated annealing and imperialist 

competitive approach to solve this model. Some of parameters that can be involved in this 

problem are maintenance activities, machine breakdown, infinite buffers between levels and 

stochastic process time. Also, analysis of variance was performed and results when compared 

appealed for the effectiveness and efficiency of the algorithm. MATLAB was use to encode 

the algorithm and LINGO 8.0 in Intel core duo 2.94 GHz processor was used to frame the 

problem. 

Chutima and Narumitwong (2014) presented a Pareto biogeography- based optimization 

(BBO) approach for multi-objective sequencing problem for two-sided assembly line (SAL) 

considering a learning effect with objectives of minimizing total sequence dependent setup 

time, minimizing total utility work and minimizing the variance of production rate. Adaptive 

BBO (A-BBO) was embedded into BBO for obtaining high quality non-dominated solutions 

in such a way that both A-BBO and BBO work together through monitoring feedback status 

of evolving solution and triggering adaptive commands to control parameters of algorithm. 

A-BBO explores and exploits the search space, converge the solution and avoids premature 
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convergence. The algorithm was encoded in MATLAB using Intel Core i7 2.20 GHz 

processor with 4 GB RAM. 

Costa et al. (2014) proposed a mixed integer linear programming model and smart decoding-

based genetic algorithm (SGA), to manage hybrid flow-shop  

(HFSP) environment, with parallel batching, limited machine capacity and eligibility 

machine restrictions. The objective was to minimize the make span. SGA uses permutation 

encoding scheme that manages batching of identical jobs, job sequencing and machine 

eligibilities. The crossover operator known as enclosed order crossover (EOX) keeps the set 

of identical jobs included in a solution, unchanged. The paper employed full factorial 

experiment to calibrate the parameters and selects the best combination to be used. Also, 

analysis of variance (ANOVA) demonstrated the effectiveness of SGA under both 

computational time and quality of solutions. This method contains potential to solve HFSP 

with stage skipping or sequence dependent setup times. The problem was framed using 

Design Expert 7.0.0 version. 

Gerstl and Mosheiov (2014) developed dynamic programming algorithms for the scheduling 

problem of unit time jobs and batch production in a two-stage flexible flow shop 

environment, with aim of minimizing the makespan and total flow time. The study assumed, 

batch availability i.e. all the jobs in the batch be completed, batch consistency, which 

allocates same batches in both stages and non-anticipatory set-up times, which enforced 

processing on second stage only after all jobs of the batch are processed on first stage. Also, 

the sequence dependent set-up times are included in the study. Both, the stages of the flow 

shop environment, involves different number of parallel identical machines and no restriction 

exists, on the number of batches to process on each machine. Although the proposed 

approach are polynomial and guarantee optimal schedules, but is inefficient for large number 

of machines. 

Huang et al. (2014) developed an effective and robust Farness Particle Swarm Optimization 

(FPSO) algorithm for re-entrant flow-shop scheduling problem, with objectives of 

minimizing tardiness and total weighted earliness, by taking into consideration wafer testing 

process with due window problem. Results when compared with those of Particle swarm 

optimization method and ant colony optimization, outperformed both in terms of average 

improvement of effectiveness by 33.47 and 42.99 %, respectively and in robustness by 
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44.44% and 39.36%, respectively for small-scale problems. For large-scale problems 

improvement in robustness concluded were 36.74 and 55.11% respectively. This shows the 

capacity of FPSO in solving scheduling problems. LINGO 13 used to determine 

mathematical results and heuristics in C++ using Intel core i5 2.81 Hz processor with 3.46 

GB RAM. 

Objective function = min w1 ∑ Ej + w2 ∑ Tj
n
j=1

n
j=1                (2.5) 

Ej = max{dj
L − Cj, 0}, j = 1,2,3 … . , n                (2.6) 

Tj = max{Cj − dj
U, 0}, j = 1,2,3 … . , n                (2.7) 

Cj = maxiԑ{1,2}{Cij}, j = 1,2,3 … . , n                 (2.8) 

∑ xijkl = 1, i = 1,2;  j = 1,2. . , n; l =
mi
k=1 1, … , Rj               (2.9) 

FTijl= STijl + pijl, i = 1,2; j = 1,2, … , n; l = 0,1, … , Rj, i > l            (2.10) 

FTijl + Q(2 + yijlj′l′ − xijkl − xijkl′ )≥  FTij′l′ + pijl ,             (2.11) 

 i = 1,2; j = 1,2 … , n ;  k =  1,2, …  m_i, j < l  

              l = 0,1, … , R_j  , l’ = 0,1, … R_j′; i > l  

ST1jl+1 ≥  F1jl +  p1jl+1, j = 1,2, … , n; l = 0,1 … , Rj − 1           (2.12) 

Karimi and Dvoudpour (2014) proposed an algorithm, which uses Variable Neighborhood 

Search (VNS), for solving flow shop scheduling problems using Pareto solutions, which 

constitutes artificial chromosome and consider repetitive sequences for producing next 

generation offspring. The objectives were minimization of total weighted tardiness and make 

span. The algorithm executes a sequential mining procedure on the best-found solutions in 

the Pareto archive. The data mining technique search among the elite solution relationship 

and VNS act as guide to carry out search procedure in best direction. Crossover and 

mutation, operators produces offspring from parent generation and maintains diversification 

in the population, respectively. So mining of solutions along with VNS on the chromosomes 

increases the convergence and enhances the performance. When compared, the results of 

multi-objective genetic local search (MOGLS) algorithm were outperformed. The problem 

was coded in MATLAB was used for coding in  2.33 GHz Intel core 2 duo processor with 2 

GB RAM. 

Mirabi (2014) framed a novel hybrid genetic algorithm (HGA) which uses three genetic 

operators named as, order crossover, heuristic mutation and inversion mutation for large flow 
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shop scheduling problems including sequence dependent set-up times for every machine, to 

generate an improved population of chromosomes using an Iterated Swap Procedure (ISP), 

with an aim to minimize the makes-span. GA combined with modified NEH_RMB approach 

to produce initial population of chromosomes. The presented HGA compared to prediction 

error method (PEM), polynomial time heuristic (PH) and stochastic hybrid heuristic 

produced better results at a confidence level of 0.05. The problem was coded in MATLAB 

using Pentium III 1.2 Hz CPU with 512 MB RAM. 

Navei et al. (2014) addressed the two-stage assembly flow-shop scheduling problem 

(TSAFSP), with sequence dependent set-up times, for second stages with the objective of 

minimizing the holding cost and delay costs. Simulated annealing (SA) and imperialistic 

competitive algorithm (ICA) were combined to determine a scheduling order of jobs at first 

stage and developed a heuristic (HEU) also. Then, four hybrid meta-heuristics were 

developed, for assigning the jobs at stage two of the assembly by combining SA and SA, SA 

and HEU, ICA and HEU, and SA and ICA. One-way analysis of variance along with 

computational results shows that combination of ICA and HEU outperformed all the three, 

with SA and HEU being the worst in terms of average error. The combination of SA and 

HEA gives the least computational time. Meta-heuristics were implemented in C++ 5.02 and 

8.2 GHz processor with 2GB RAM is used. 

Xiong et al. (2014) addressed a novel distributed two-stage assembly flow-shop problem 

(DTSAFSP), with objective to minimize the total completion time to assign the jobs to each 

factory. Three hybrid meta-heuristics proposed, namely HVNS, based on variable 

neighborhood search, HGA-RVNS, a combination of genetic algorithm and variable 

neighborhood search, and HDDE-RVNS, a combination of differential evolution and variable 

neighborhood search. ANOVA method was used to tune the parameters of HVNS and 

Taguchi method for the rest two. The analyses of computational results showed that for large 

number of jobs HGA-RVNS obtain better results and for small number of jobs HDDE-RVNS 

outperforms other two. The performances of both RVNS based algorithms were un-affected 

by the number of machine set-ups and RVNS based local search showed the effectiveness 

and efficiency of HGA-RVNS and HDDE- RVNS. The experiments were run on an Intel 

Core i7 3.4 GHz processor with 4 GB RAM. 
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Yu et al. (2014) developed a multi-objective optimization model for a two line-cell (seru) 

conversion assembly system with aim of optimizing the total labor hours (TLH) and total 

throughput time (TTT). Further, to find out characteristics such as its complexity, non-

convex properties and solution space, this bi-objective model was examined. For solving 

large size problems in a reasonable computational time, presented a non-dominated sorting 

genetic algorithm. The paper clarified complexity and solution space of problem in which 

assembly line converted to pure cell system proved the non-convex nature of problem 

developed NSGA-II based algorithm and modified its operators to fit features of line-cell 

problem. In addition, compared the results with those obtained from enumeration methods. 

The problem was coded in C# in an Intel Core 2 processor of 3 GHz using 992 MB of RAM. 

Fernandez-Viages and Framinan (2015) developed two algorithms namely, advanced non 

population based algorithm (ANPA) and a bounded insertion based constructive heuristic 

(BICH) by combining Tabu local search method and Taillard’s acceleration for permutation 

flow shop scheduling problem with aim of minimizing the make-span and maximum 

tardiness, and constrained by two parameters, customer satisfaction and machine utilization. 

The combination of both the methods explored the solution space. The efficiency of both 

algorithms is measure of number of feasible solutions, number of instances with best solution 

and average relative percentage deviation. When compared to GA and FL algorithms, which 

are state-of-the-art-algorithms, newly developed proved to generate better solution and 

constituted the new state-of-art approximation solution procedures. The problem was coded 

in C# language in Intel Core i7 3.4 GHz processor with 16 GB RAM. 

Gedik et al. (2015) proposed three formulations namely, logic based bendor decomposition 

algorithm, integer linear programming and constraint programming model, for unrelated 

parallel machine in a fixed planning horizon with an objective to schedule the non-similar 

jobs with sequence dependent set-up times, job availability intervals, non-identical job 

durations and unrelated machines. The jobs being constrained by minimum cost, maximum 

profit and assigned to only one machine in order to maximize the total profit. The study 

assumes cost and profit being independent of type of machine, soft transition gaps between 

constraints and environmental work window is incorporated by assigning different values to 

intensity function and master problems of decomposition algorithm are created for each 

iteration. The models provide feasible results when carried out on real life case study with 
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U.S. Army Corps of Engineers. IBM ILOG CPLEX Optimization studio was used to model 

the problem in Core 2 Duo @.93 GHz processor with 16 GB RAM. 

Guo et al. (2015) developed a novel harmony search based multi-objective optimization 

model (HSMO), which is a combination of Pareto optimization method and Monte Carlo 

simulation process, for multi-site order scheduling problem under production un-certainties 

and, includes learning effects, in a make-to order manufacturing system. First, HSMO 

process was finds Pareto optimal solution to MMOP problem and then, Monte Carlo 

Simulation determines performance of each solution and manage production uncertainties. 

At-last, heuristic pruning process obtains final Pareto solution form the initial solutions. The 

optimum-seeking process was simplified by assigning production processes 1 of each order 

group. When compared, HSPA performs better than NSGA-II and hence is very effective in 

solving MMOP problems. Further, HSMO has a potential to solve stochastic multi-objective 

optimization problems. 

Hatami et al. (2015) addressed distributed assembly permutation flow-shop scheduling 

problem with sequence dependent set up times with an objective of minimizing the makes-

pan. There were two stages, production and assembly. In production stage, identical factories 

considered produces jobs in a flow-shop environment and then assembled to form final 

products through identical assembly program made by single machine. Set up times were 

included in both the stages. Two meta-heuristics and two simple heuristics were developed, 

and Design of Experiments (DOE), carried out for analysis. The algorithms such as Variable 

Neighborhood descent (VND) and Iterated greedy (IG), were proposed, calibrated, analyzed 

and further made simpler with addition of acceptance criterion with reduced parameters. Intel 

XEON 2.5 GHz processor with 16 GB RAM was used to solve the mathematical formulation 

of the heuristics. 

Li et al. (2015) proposed a heuristic algorithm Minimum Attribute Ratio of Batch (MARB) 

for scheduling on singe batch processing machine for minimization of tardiness and earliness 

of the jobs having a common due date. The problem considers non-identical job sizes, and 

introduced a concept named, attributed ratio of batch (ARB), which is the heuristic 

information to assign the jobs into batches and should be small as possible so to achieve the 

defined objective. Also, MARB combined with GA and a hybrid genetic algorithm was 

developed to study the problem, under the optimal properties, which were applied to 
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effectively schedule the batches. The study can be stretch to analyze parallel flow-shop 

environment or penalties can be included on earliness or tardiness. A mathematical model 

was formulated in IBM ILOG CPLEX and algorithms were coded in C# language on 2.2 

GHz processor with 2 GB RAM. 

Liao et al. (2015) formulated an efficient heuristic for scheduling of ‘n’ number of jobs in a 

two-stage assembly problem with set up times included for each job, in order to minimize the 

make-span.  There were two levels, on first there existed a machine for machining the jobs, 

on second, a single assembly machine to assemble the product with similar components on 

the basis of purchase orders of clients. The proposed approach considered processing time 

and assembly time for each job. The set-up times were required at the start of the machining 

operation, or when parts were switched-on to machine. This problem is framed to be a mix-

integer linear programming model (MIP), identified various properties to find optimal 

solution and a lower bound to check the performance of formed heuristic was derived. Two 

lower bounds based on machining and assembly time, were developed and higher value 

bound selected for further use in the approach. The software used for coding the heuristic 

was C++ on Pentium 2.51 GHz processor with 1 GB RAM. 

Lin et al. (2015) developed Backtracking Search Algorithm (BSA), for permutation flow 

shop scheduling problem (PFSP) in the manufacturing industries with an objective to 

minimize make-span, and used simulated annealing mechanism and operators such as 

crossover, mutation to avoid random and premature local search. BSA combined with local 

searches to explore and exploit the search space developed a Hybrid backtracking search 

algorithm (HBSA).This algorithm utilized discrete crossover and mutation strategies along 

with SA to avoid falling into local optimal. HBSA produced global optimal solution and 

reduced the gap among the optimal solutions. Local search methods such as SA combined 

with meta-Lamarckian learning strategy, referred local search (RFL), pair-wise based local 

search were tried to solve PFSP problems and prove to be effective in producing more 

competent results. The algorithm coded in MATLAB 7.0 and simulated using Pentium dual 

core 3.0 GHz processor with 4 GB RAM. 

Liou  and Hsieh (2015) combined Genetic Algorithm and Particle Swarm Optimization to 

develop effective and efficient hybrid algorithm, for multi-stage flow shop group scheduling 

problem considering sequence dependent set-up times and transportation time, with an aim to 
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minimize the make-span. The algorithm determines sequence of groups and sequence of jobs 

in groups. Three lower bounds developed to verify quality of solution. The developed hybrid 

algorithm, which is fast and easy to configure, outperformed both GA and PSO in producing 

optimal solutions, particularly for the large-scale problems. The future scope of this 

algorithm could be finding solutions including minimizing weighted job tardiness, total 

tardiness and job blocking be considered. Problem, coded in MATLAB 7.0 used Intel-

Pentium 2.4 GHz Processor with 1.97 GB RAM. 

Pakzad-Moghaddam (2015) invented Levy Flight Embedded Particle swarm optimization 

(LFEPSO) algorithm, for scheduling jobs in parallel machine scheduling environment 

formulated as bi-objective mixed integer mathematical model. The objectives were to 

minimize maximum completion time and machine hiring cost. The algorithm can learn, adapt 

and depend upon the several parameters, which follow triangular distributions. PSO was 

modified to fit well in the complicated structure of problem along with levy flights, which 

were to replace the uniformly distributed walks and are effective in solving local optima 

problems of traditional PSO. LFEPSO outperformed exact solution method in scheduling 8-

500 jobs on 3-50 parallel processors. When compared to PSO, LEFPSO managed to pass 20 

% occasions where PSO stuck to find solution and gave better results but took more 

computational time. The numerical results showed undeniable gaps, after neglecting the 

adapting ability. This algorithm has a potential to solve problems with earliness, setup cost 

and tardiness included. The method uses Intel core i7-2640 M chip processor with 6 GB 

RAM. 

Shahsavar et al. (2015) formulated three genetic algorithms (GA), named as two stage multi 

population genetic algorithm (MPGA), two phase subpopulation genetic algorithm (TPSGA) 

and non-dominated ranked genetic algorithm (NRGA), based on Pareto Optimal method, for 

project scheduling problems. The objectives were to minimize variability of resource usage 

known as resource leveling problem (RLP) which uses pattern of resource usage in the past 

time, reducing the resource usage cost known as resource investment problem (RIP) which 

assumes resources as unlimited and make decision on their availability level, and minimizing 

the make-span. NRGA outperformed TPSGA and MPGA according to the technique for 

order preference by similarity to ideal solution (TOPSIS). The algorithms were multi-
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evolutionary and included two control strategies of self-adapting and five performance 

parameters such as variance of solution, diversity, convergence and extent of spread. 

Smutnicki et al. (2015) developed Vector Evaluated Simulated Annealing (VESA) approach 

for solving multi-criteria flow shop scheduling problems, using fine grained parallel 

computing to explore the search space, which allows to approximate the Pareto front in 

competitive time known in other algorithms. VESA explores the solution space by 

considering cloud of individual solutions by using vector parallel processing in order to 

reduce computational time. By taking the advantage of multi-objective properties of problem, 

parallel-evaluated permutations were used to determine Pareto frontier. All the parallel-

evaluated permutations Also, to verify the solutions, enhanced simulated annealing approach 

was formulated using the excellent approximation of Pareto front and produced 31% more 

results per unit time than SA. VESA used Intel Core i7 2.3 GHz processor to carry out the 

experiment. 

Wang and Zhang (2015) presented heuristic algorithm for the flow-shop scheduling problem 

with set-up times included, which changes according to learning effects. The objectives were 

to minimize the weighted total make-span and total completion time. The processing time of 

a job was summation of the logarithms of jobs already processed and its position in the 

sequence. The presented algorithm was modified from the optimal schedules of the 

corresponding single machine-scheduling problem, so named as Modify–FL (MFL) and their 

worst-case error bound was analyzed. Also, branch and bound was adopted for m-machine 

permutation flow-shop problem. MFL has potential to study parallel machine problems, 

solve considering other objectives or consider genetic algorithm or Tabu search approach. 

The algorithm was coded in C++ 6.0 and 2.20 GHz processor with 4GB RAM was used to 

conduct mathematical experimentation. 

Amini et al. (2016) addressed problem of truck scheduling in a cross-docking center, in 

which breakdown can happen during service time with aim to hand over the services before a 

pre-determined time i.e. a due date is assigned. Poisson distribution used to frame the 

breakdowns. There were two objectives, minimizing total tardiness and weighted completion 

time. A reliable system expected to determine whose breakdowns are zero and hence 

minimizing weighted completion time with same weights. Three meta-heuristics were 

formulated namely, Multi-objective Simulated Annealing (MOSA), Multi-objective 
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Differential Evolutionary (MODE) and Non-Dominated Sorting Genetic Algorithm (NSGA 

II). MOSA gave befitting results with lowest computational times and MODE proved to be 

the most efficient of the three. Factors associated with meta-heuristic were found using 

Response Surface Methodology (RSA). The algorithms were coded in MATLAB in Core 2 

Duo 2.67 GHz processor with 4GB RAM. 

Batur et al. (2016) presented a heuristic based on simulated annealing along with two 

neighborhood structures, for hybrid flexible flow shop environment with an aim to determine 

the best cycle time, which is constrained by robot movement, machine assignment and part 

sequences in a multi-part manufacturing system, where robots transport the parts between 

machines. There were two stages, first containing one machine and second with two 

machines. The lots with different parts were processed repeatedly and transportation is done 

by robot, hence considered as travelling salesman problem. The solution must define exact 

movement of robots to load, unload and carry the part in the system. Also, a lower bound was 

developed, which does not depend upon parameters such as number of stages, machines or 

parts and was outperformed by presented algorithm. The presented algorithm narrowed the 

gap between optimal solutions and was competitive to lower bound value. The algorithm was 

implemented in MS visual Studio 2010 using C++ on Pentium V 2.80 GHz processor with 1 

GB RAM. 

Martin et al. (2016) proposed an agent based framework in which each agent implements 

different meta-heuristic or local search method for permutation flow shop scheduling 

problems and capacitated vehicle routing, with an aim to provide a flexible framework, 

which is capable of dealing with various kinds of problem ranges. Ontology helps the agents 

to represent same internal structure. The agent adapts itself to the search process and 

improved solutions, identified by their frequency of occurrence. The solutions shared among 

agents and identified by cooperation protocol, which is a combination of reinforcement 

learning and pattern matching. Cooperation protocol means ability of parallel agents to share 

information in the whole process. Many agents had a confidence level of 95 % and those 

with somewhat less had a chance to improve. The framework needs very little tuning of 

parameters in the ongoing process. This study used Linux cluster with eight identical 

machines with two agents at a time, using a 2 GB memory. 
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Lin and Zhang (2016) developed Hybrid Biogeography Optimization Algorithm (HBBO) for 

minimizing the make-span in Distributed assembly permutation flow-shop scheduling 

problem (DAPFSP). There were two steps, first employing path-relinking heuristic in 

migration stage as local search strategy, and second being insertion based heuristic to 

determine job permutation in migration stage. The local search presented explores the 

solution space. BBO designed includes many efficient heuristics and evaluated by comparing 

with two sets of benchmark instances.  The new optimum solutions found in 71 small size 

instances and 91 large-size instances. Further, fitness landscape analysis applied to explore 

characteristics of solution space, hence reducing the computational time. BBO being a high-

level strategy, applied for low-level heuristics for optimal scheduling in DAPFSP. The 

algorithm was coded in C++ language using Intel Core I3 2.50 GHz processor with 4 GB 

RAM. 

Liu et al. (2016) introduced multi-objective genetic algorithm (GA) based on non-dominated  

sorting genetic algorithm (NSGA-II) with additional two steps to expand the solution space, 

for minimizing total weighted tardiness and non-processing electricity consumption giving 

the schedules of machining without turn off/on the machines repeatedly, which consumes the 

electricity. The proposed algorithm is an intelligent scheduling method, which combines 

fragmented short idle periods on machines into large ones to reduce energy consumption. 

Local search Heuristic and shifting bottleneck heuristic were used to deliver the baseline 

scenarios for the machines. The Pareto fronts produced gives optimal solutions for 

scheduling, and simultaneously carrying out production and switching off underutilized 

resources. The performance testing has been done including the electrical profiles of the 

machine tools. When compared with NSGA-II produced better results in reducing non-

processing electricity consumption along with minimizing tardiness. 

Saraswat et al. (2016) presented a model using simulated annealing approach for planning 

block layout design with an objective of minimizing the average work-in process, 

minimizing the flow distance and number of material handling devices required, constrained 

by no empty material transfer, which increases equipment cost and work-in-process. The 

model considered accurate model for flow-distance optimization, sequence pair 

representation and work in process calculator to determine average work in process layout. 

The research neglected intra-departmental queues, which requires exact number of machines 



39 
 

in each department. Since the departments may have different or similar input and output 

stations, also presented a procedure to determine the input and output station of each 

department. The problem computed on Pentium IV 3.2 GHz processor with 1GB RAM using 

ILOG OPL Studio 3.7 and ILOG CPLEX 9.0, and coded in C++ 6.0. 

Velez-Gallego et al. (2016), presented a novel mixed integer linear program (MILP) to 

schedule the set of jobs, in manufacturing processes like metalworking or painting, 

constrained by release dates and sequence dependent set-up times with an aim to minimize 

the maximum completion time of all jobs. A beam search algorithm was developed to find 

the optimal high quality solutions at low computational costs in reasonable computational 

time with no effect of release dates. The proposed model can solve small to medium sized 

instances and varying release dates affects the performance of MILP. Intel Xeon 8 core 2.337 

GHz processor with 16 GB memory, used to run the experiment in Rocks 6.1.1 Linux 

distribution. 

Khorasanian and Moslehi (2017) presented variable neighborhood search algorithm (VNS) 

for two-machine flow shop scheduling problems with an aim to minimize the make-span and 

constrained by blocking. Two characteristics, multi-task flexibility to process the operations 

of at least one other machine a preemption, to allow the solution space to grow in order to 

find efficient solutions, were added. As schedules were infinite in number, a dominant 

schedule was defined for each sequence. A variant of VNS called dynamic VNS (DVNS) 

presented produces high quality solutions for large sized instances and two mathematical 

models formulated for small sized instances. VNS algorithm was coded in C# and GAMS 

24.4.6/CPLEX solved the mathematical models using Intel core 3.06 GHz processor with 

4GB RAM. 
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CHAPTER 3: PRESENT WORK 

 

3.1 INTRODUCTION 

The flow-shop scheduling environment consists of ‘n’ number of jobs, to be processed on 

‘m’ number of machines, following the same sequence. The foremost objective of flow-

shop scheduling is to arrange the jobs of the manufacturing system to get optimize or 

maximum productivity and hence, utilizing all the resources (man, machinery, finance). 

In the previous sections the extensive overview described the various methods to solve 

the flow-shop problem under different objectives, parameters and constraints. In view of 

this, the most common issue is to optimize the make-span of the production system. 

Further, lateness, tardiness (or weighted lateness and weighted tardiness) with a sequence 

dependent set-up times and due dates are the secondary issues taken in consideration. As 

there can be infinite ways to arrange jobs, selecting an optimum schedule for the jobs on 

each machine and their execution at the time allocated will complete the orders before the 

due dates. Dispatching to the required locations with well marketing can exponentially 

increase the sales, maintains customer loyalty and hence the profit, which is the ultimate 

aim of any industry. Tardiness and lateness employs to the underutilization of resources, 

results in problem of backlogging too. The problems with backlogging, sequence 

dependent set-up times and due dates have been enlightened in the recent years because 

of the presentation of new techniques for stock administration, for example, just in time 

(JIT) manufacturing system which does not allows a moment to be spared. It is to be 

ensured that jobs are finished neither too soon nor past the estimated time which arises 

the scheduling issues with both earliness and lateness costs. The capacity of the system is 

also another parameter to be considered and to be improved. The amount of stock to be 

streamed and the requirements go hand in hand. If more stock is generated then it will 

cause backlogging, and if it is less than decreases the efficiency of the production system. 

Nowadays, all the parameters are used as issued a term weighted as a predecessor, which 

attempts to calculate the exact need or importance of the parameter. More is the 

weightiness more will be the priority given to fulfil that criterion among others. In today's 

competitive era, the expense of creation must be lessened keeping in mind the end goal to 

get by in this dynamic environment which is finished by viable use of the considerable 

number of assets and fulfilment of generation in shorter time to expand the efficiency 

with at the same time considering due dates of the job. It is to be keep in mind that 

optimization of makes-pan should be with respect to assigned due dates, otherwise it will 
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be of no use, as orders will not be delivered on time, intern causes loss of market for the 

product. Therefore, in present day fabricating environment industry needs to overcome 

every issue in order to stay into the clashing cum negotiating markets. Hence, keeping in 

mind the end aim to maximize the profit and market space for the company, there is a 

need of multi-objective scheduling framework, which is capable of accomplishing each 

and every aspect of the system simultaneously and in the specified time. So, considering 

the realistic scenario, this present work tries to manage flow-shop scheduling problems 

for optimization of make-span. This can be considered as a basic goal to accomplish 

utilization of assets in admiration of increasing the effectiveness and expanding the 

efficiency, meeting the due dates so, as to gain more customer satisfaction with 

improving the brand name.  

 

3.2 PROBLEM FORMULATION 

The flow-shop scheduling problems are regarded as non-deterministic polynomial (NP-

Hard) time problems, whose exact solutions are difficult to find due their complexity and 

takes a significant amount of time. In the past years, various methods have been proposed 

such as genetic algorithm (GA), simulated annealing (SA), immune algorithm (IA), ant 

colony optimization(ACO), branch and bound (B&B), particle swarm optimization 

(PSO), tabu search (TS) and differential evolution (DE). These heuristics are used alone 

or can be combined with one another making a hybrid heuristics. Further, some search 

methods like local search technique, variable neighbourhood approach are applied to 

explore the search space and chose the best among the solution. All these heuristics are 

used to achieve the desired objective with a reasonable computational time. The problem 

can be formulated by dispatching the rules, constructing the heuristic and improving 

heuristic. Dispatching of the rules will initiate the formulation process by building the 

initial schedule for the further process. A series of passes is made through the 

unscheduled jobs in constructive heuristics, which adds one or more jobs in the schedule. 

Improvement heuristics is a reverse process as it starts from a convenient solution and 

tries to improve it.  The parameters, assumptions, constraints, objectives and collected 

relevant data should be well defined before initialising the mathematical computation in 

the software’s. The software used for coding is selected so it is compatible, fast, and 

reliable with respect to the algorithm. Some frequently used software’s are LINGO, 

MATLAB and languages for coding are C, C# and C++. 
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3.2.1 Assumptions 

The assumptions used in the flow-shop scheduling problems are as follows:   

(i) Jobs are independent and are available for processing at time zero. 

(ii) All the descriptors regarding the respective job are known before starting any 

operation on it. 

(iii) At least one machine is available at all the time. 

(iv) No machine is kept idle. 

(v) A job will be passed onto next machine only after its completion. 

(vi) Pre-emption is not allowed. 

(vii) Machines are accessible all through the scheduling period. 

(viii) Each machine is ceaselessly accessible for task, without critical division of the scale 

into movements or days and without thought of provisional inaccessibility, for example, 

breakdown or support. 

(ix) The system may have movable machines. 

(x) In-process stock is permitted. In the event that the following machine on the 

arrangement required by a job is not accessible, the job can hold up and joins the line at 

that machine.  

3.2.2 Considerations 

There are ‘n’ number of jobs to be scheduled in a specific order in a flow-shop machine 

arrangement in order to optimize the objectives. The jobs follows the constraints 

presented below: 

(i) Set-up times are attached with each job 

(ii) No-wait constraints. 

(iii) Multiple criteria’s are to be optimized. 

(iv) At a given time, no two jobs are processed on a machine. 

(v) Two machines cannot process the same job at the same time. 

 

3.3 RESEARCH GAPS 

(i) Implementation of the heuristics methods by combination and cross-functioning of 

performance measures of scheduling such as tardiness, lateness, due dates, minimization 

of make-span, considering sequence dependent set up times and backlogging have not 

been executed. 

(ii) The retrospection of the research aims to utilize the conventional methods designed 

decades back such as GA, PSO, SA, and AI and so on, which restricts the development of 
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the newly formed methods to solve the flow shop scheduling problems. Further, the 

examination of the considered constraints namely, sequence dependent setups and 

backlogging have been seen in fewer studies with the non-conventional methods, hence 

widening the scope of more work to be implemented in future. 

(iii) Fewer case studies which are based on the real data analysis of the various 

parameters such as process time, earliness, tardiness and others, have been taken less into 

consideration related to multi-objective flow shop scheduling problems and its 

constraints. The previous research lacks more realistic formulations, which can be 

reverted, back to improve the respective system in the industry. 

(iv) Investigation of a hybrid scheduling problem where the machine configurations such 

as open; permutation; flexible, and hybrid are more complex and the integrated problems 

as formation of multiple scheduling are even harder to solve as it includes various 

parameters of production, inventory, distribution, total cost and service level, which have 

not been contributed in the earlier works. 

(v) The scheduler faces difficulty in selection of the appropriate algorithm for flow-shop 

scheduling under specified variables and objectives as cross-validation of these algorithm 

methods is less contributed. The computational results of various heuristics should be 

compared for the given problem in the validated data sets. 

(vi) Lesser attempts have been conducted to develop some dominance conditions based 

upon data identification that can either be independent of schedules of the previous job or 

schedules with lesser number of jobs to be rejected quickly. 

 

3.4 OBJECTIVES 

(i) To investigate a hybrid scheduling problem with complex machine configurations with 

multi-objectives. Since the multi-objective flow shop problem (MFSP) is a special case of 

flow shop scheduling problem termed as NP-hard as it includes more than one objective 

to be solved.    

(ii) To formulate a heuristic method to minimize the process time and cycle time for flow 

shop scheduling problem related to sequence dependent setup time with each part under 

full backlogging consideration.  

(iii) To simulate a novel heuristic algorithm for solving the multi-objective flow shop 

scheduling problem with stochastic parameters by applying heuristic approaches such as 

tabu search, branch and bound, genetic algorithm, simulated annealing, ant colony 

optimization other heuristic methods, preferably latest optimized approaches such as 
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Teacher-Learning Based Optimization (TLBO) and Biogeography-Based Optimization 

(BBO) algorithm in proposed research work. 

(iv) To formulate and implement the novel heuristic method by considering performance 

measures of production scheduling, such as process time and cycle time criterion and 

respective optimization. 

(v) To validate the proposed research model by the comparison of analytical results 

generated by the implementation of novel hybrid heuristic algorithm approach in 

MATLAB with the optimized results generated by mathematical empirical relations from 

hybrid BBO-TLBO heuristics approach. This validation will also address the superiority 

of the proposed algorithm and further, the validated proposed best-fitted model will 

present the possibility of an improved manufacturing system with increased production 

efficiency. 

 

3.5 OBJECTIVE FUNCTION 

The following section aims at minimization of the dual objectives for flow shop 

scheduling problem, namely process time and cycle time by modelling a novel hybrid 

heuristic calculation. For this, a case with 8 machines and 2 parts is considered in which 2 

parts are processed by the 8 different machines in a way such that it spends least time for 

processing of all the parts. The 8 machines and 2 parts are assumed as: - 

Table 3.1: Model Problem of Flow Shop Scheduling with 2 parts and 8 Machines 

Parts 

/Machines 

M1 M 2 M 3 M 4 

 

M 5 

 

M 6 

 

M 7 

 

M 8 

Part 1 J11 J12 J13 J14 J15 J16 J17 J18 

Part 2 J21 J22 J23 J24 J25 J26 J27 J28 

 

The Mathematical model of the problem is as follows:  

JMN – Part M processing on Machine N. 

M= {1,2} and N= {1,2,3,4,5,6,7,8} 

Let Process – Z and Cycle Time – C. 

Objective Functions are Minimize (Process Time [Z]) and Minimize (Cycle Time [C]). 

The Constraints are mentioned below as:  

 (i) Only one machine should be selected from the set of available machines for each 

operation.  
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(ii) The preventive maintenance tasks have to be executed within their time windows.  

(iii) The feasibility of the two variables.  

 

3.6 HEURISTIC METHODS AND HYBRID ALGORITHM 

The two heuristics which will be utilized to optimize the current problem are Teacher 

Based Learning Optimization (TLBO) and Biogeography Based Optimization (BBO). 

The first two subsections below will enlighten about the each of the algorithm 

respectively, and the third will be devoted to the formulation of novel hybrid algorithm by 

using the features of above two. 

3.6.1 Teacher Learning Based Optimization (TLBO) 

The efficient optimization method named TLBO was proposed by Rao et al. in 2011 

which is based on the teacher and student learning process. It is a naturally inspired 

population method, where class of learners will represent the population. The best learner 

in the process is selected as a teacher, as only a teacher is considered with best knowledge 

and increments the knowledge level of the students known as learners, so as to obtain the 

good marks. Here, the capability of a teacher to deliver and the quality of the class present 

also plays an important factor in order to increase the average of the class. The mean 

value of the class indicates the quality of class. After reaching a certain level of 

knowledge, the class needs a new teacher who can impart a better content with increased 

capability. The best learner in the process is selected as a teacher, as only a teacher is 

considered the best knowledgeable person in the class. There are two phases which 

constitutes the whole process namely, teacher’s phase i.e. grabbing knowledge directly 

from the teacher and learner’s phase, which motivates the grabbing knowledge between 

the learners. In the teacher phase, the teacher approaches to impart all of his knowledge 

among the class which is impractical in reality. This is because of the difference in the 

capability of delivering by teacher and that of understanding by the students. The teacher 

efforts to move the mean value to its own level. The learner phase on the other hand, 

inputs the knowledge from teaching phase and then further, increases it by interaction 

among the learners. The learners interacts randomly with one another through 

presentations, discussions or formal communication. But the level of learner can only 

increase if the other learner has more knowledge, so here the job of the teacher is shifted 

to the more knowledgeable individual, who now tries to increase knowledge level of the 

former their own respective levels.  

3.6.1.1 Steps in the implementation of TLBO 
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There are number of steps involved in the formulation of the TLBO algorithm consisting 

of two phases, namely teacher and learner.  
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Figure 3.1: Depiction of Process of TLBO for Optimization of MFSP 
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The steps include notations, equations and description of each step. The following are the 

steps that are used in the implementation of TLBO: 

Step 1: Defining of the optimization function and initializing the parameters such as 

population size (Pn), generations to be computed (Gn), variables (Dn), upper bound (Ul) 

and lower bound (Ll).  Minimize f (Z), where Z ɛ 1,2,… Dn.  

F (Z) = objective function and Z is a vector for design variables such as LL,i≤ Zi ≤ UL,I. 

Step 2: Initialization of Population 

A random set of population is generated depending upon the population size which 

represents the learners and decision variables represent the subjects offered. 

Step 3: Teacher Phase 

The column wise mean of the population is calculated giving the mean of every subject 

such as M,D = [m1,m2,…,mD] 

The best solution will act as teacher for iterations Xteacher= Xf(X)=min 

Now, the teacher efforts to increase mean from M,D to Xteacher by M_new,D=Xteacher,D 

The difference between two means is Difference,D= r (M_new,D- TFM,D), where TF is the 

teaching factor 1 or 2.  

The current solution is updated by Xnew,D=Xold,D + Difference,D 

Step 4: Learner Phase 

The learners increase their knowledge by interaction and given by  

For i = 1:Pn 

Randomly select two learners Xi andXj, where i ≠ j 

If f (Xi) < f (Xj) 

Xnew,i = Xold,i+ ri(Xi− Xj) 

Else 

Xold,i= Xold,i + ri(Xj− Xi) 

End If 

End For 

Accept Xnew if it gives a better function value. 

Step 5: Termination Condition 

Stop when the maximum generation number is reached; otherwise iterate step 3. 

3.6.2 Biogeography Based Optimization (BBO) 

Biogeography is inspired from the nature’s geographic dispersion and proportioning of 

the biological organisms and was formulated by Dan Simon in 2008. It imbibe features of 
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genetic algorithms and particle swarm optimization therefore can be utilized for the same 

problems these two. The field of biogeography was studied by Alfred Wallace [1] and 

Charles Darwin [2] but the mathematical formulations were framed by Robert MacArthur 

and Edward Wilson in 1960’s.  BBO is capable of laying down the mathematical models 

for migration of the species and their extinction along with the rise of new species. This is 

done in order to relocate the population of species to the neighbouring islands. The term 

island refers to the habitat which has been isolated from the other habitats. The 

geographical areas are home to the species and are affected by natural conditions such as 

rainfall, temperature, topography and vegetation. For population to grow, and it is 

supposed to have high suitability index (HSI) which is dependent on the natural 

conditions whereas suitability variable index is independent of the conditions. High HSI 

will lead to emigration of various species to the nearby habitats by virtue of large species 

they host. The immigration rate will be very less due to already existence of saturated 

species. Low HSI habitat experiences high immigration rate due to their sparse population 

and results in increase of the HSI. But, if the HSI remains low, the species will tend to 

extinct. A good or bad solution is proportionate the high or low HSI value, respectively. 

The low and high HSI habitats share the features that remain in high HIS, and new 

features are observed in low HSI habitat. The quality of the solutions is increased due to 

the formation of new features in low HSI as it has the ability to accept changes in the 

habitat, as compared to the high HSI habitat which resists changes.  

 

 

 Immigration 

                           Emigration 

              Rate 

 

 

 

          

                                               𝑆1               𝑆2           𝑆𝑚𝑎𝑥 

                                                       Number of species 

Figure 3.2: Depiction of Relation between Emigrations, Immigration Rates w.r.t. 

Number of Species for BBO Algorithm 
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The maximum immigration can take place when there is no population in the habitat. 

With the increase in population, the crowdedness rises and it becomes difficult to survive 

with the immigrants hence results in the decrease of the immigration rate. In case of 

emigration, with the rise in the population, now the species has the opportunity to 

discover new habitats for residence purposes, hence the emigration rate increases. BBO 

utilizes two operators namely migration and mutation. The migration resembles the other 

evolutionary methods, in which parent produces an off-spring with a little distinction in 

the features. The migration is an adaptive strategy which alters the existing solutions. 

Elitism is also used along with migration to store the best solutions without any 

corruption due to immigration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Depiction of Various Steps Included in BBO for Optimization of MFSP 
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Mutation rates are determined by the probabilities of the species count. Every member of 

the species is associated with a probability and medium HSI values are considered to be 

probable than high or low HSI. If a low HSI exist, it will tend to mutate to the other 

solution and that with high probability resists the mutation to the other solution. Mutation 

raises the diversity among the species and is inversely proportionate to the probability. 

There is a possibility to improve the solutions by mutating them and uses elitism to revert 

back the best solution. The steps involved in the implementation of BBO are mentioned 

as: 

Step 1: Initialize the BBO parameters such as maximum species count, the maximum 

migration rates, the maximum mutation rate, and an elitism parameter. The maximum 

species count and the maximum migration rates are relative quantities. That is, if they all 

change by the same percentage, then the behavior of BBO will not change. This is 

because if and change, then the migration rates and the species count will change by the 

same relative amount for each solution. 

Step 2: Initialize a random set of habitats, each habitat corresponding to a potential 

solution to the given problem. 

Step 3: For each habitat, map the HSI to the number of species, the immigration rate, and 

the emigration rate.  

Step 4: Probabilistically use immigration and emigration to modify each non-elite habitat 

and then re-compute each HSI 

Step 5: For each habitat, update the probability of its species count using. Then, mutate 

each non-elite habitat based on its probability, and re-compute each HSI.  

Step 6: Go to step (3) for the next iteration. This loop can be terminated after a predefined 

number of generations, or after an acceptable problem solution has been found. 

3.6.3 Novel Hybrid Heuristic: TLBO’s Teacher Phase Based BBO (BBO-TLBO) 

The two methods which are utilized to solve the respective problem are Teacher Learning 

based Optimization (TLBO) and Biogeography Based Optimization (BBO), which are 

described in the above subsections as well. Where TLBO undertakes the learning 

mechanism or process between student and teacher as their foundation to solve the 

optimization problems, there on the other hand BBO takes its inspiration from the 

distribution of natural habitats. The execution of BBO is similar to the other evolutionary 

heuristics such as GA and PSO whereas TLBO depends on the capability of teacher to 

deliver and that of the learner to adapt. The two phases that exist in the TLBO are named 

as teacher phase and learning phase. The teacher phase proclaims the teachers to share 
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and impart the complete knowledge that they possess among the learners. On the contrary 

the learner phase encourages the sharing of knowledge among the group of learners to 

gain the same level of knowledge. The teacher phase here is collaborated with the BBO’s 

working mechanism and is added to the migration section in the BBO mechanism. 

Migration has the ability to improve the solutions by altering the solutions produced. So, 

in context to produce the solutions the teacher phase is inserted, hence affirming the new 

solutions. The researches till now were contrary to this step, as they utilized the mutation 

or migration phase of BBO in the TLBO working mechanism. There are number of steps 

for the execution of the proposed hybrid heuristic, enumerated as below: 

Step 1: Defining the problem 

The objective function of the problems is to be defined. 

(i) Define the objective function: Objfun (x). The objective function contains the 

equations formed from the system.  

(ii) Define the number of variables in the objective function: nVar. All the unknowns in 

the objective functions on whose value changes during the working of algorithm are 

mentioned.           

 

Figure 3.4: Depiction of the Step 1 which Defines the Problem in MATLAB Software 
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(iii) Define the other lower bound: VarMin. This the lower value for the variables which 

they can achieve. 

(iv) Define the upper bound: VarMax. This is the upper value for the variables which they 

can achieve. 

The lower and the upper bounds is the range for the variables, within which the values for 

the variable will be roaming to satisfy the objective function. 

Step 2: Describing the Parameters of the Heuristic 

(i) Define the number of iterations to be executed: MaxIt. It is to be noted that, this will 

serve as our termination condition and the heuristic will stop working after the specified 

number of iterations. 

(ii) Define the population size of the habitat: nPop. This is the maximum number of 

species residing in the habitat. 

(iii) Define the immigration rate: mu. This is the rate at which the population can 

immigrate to the other habitats. 

(iv) Define the emigration rate: lambda. This the rate at which the population from a 

specific habitat can exit to the other habitat. 

(v) Define the Mutation rate: pMutation. This the rate at which the population in the 

habitat will be mutated. 

              

 
 

Figure 3.5: Depiction of Step 2, which Defines the Parameters in MATLAB Software 
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Step 3. Initialization of the process 

(i) Create the empty arrays for the population to reside. 

(a) habitat.position, will define the position of the specie. 

(b) habitat.cost, will define the value of function w.r.t position of the specie. 

(ii) Intialize the habitats. 

for i=1:nPop 

    pop (i).Position=unifrnd (VarMin, VarMax, VarSize); 

    pop (i).Cost=Cost Function (pop (i).Position); 

end 

Here, unifrnd, is a value which will be randomly selected by the algorithm to initialize the 

population but in correspondence to the parameters such as lower bound, upper bound. 

(iii) Sort the population: pop=pop (SortOrder). The population of the species is sorted in 

particular order which depends on the cost value in the decreasing order. 

(iv) Create an array to hold the best cost: BestCost = zeros (MaxIt, 1).  The best cost 

among the iterations can be separately viewed by this function.  

Step 4: Formulation of the loop containing both the algorithms 

 

Figure 3.6: Depiction of Step 3 which Initializes the Algorithm in MATLAB Software 
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(i) Start the loop by using for loop, which will be repeated for the population size 

mentioned above. 

for it=1: MaxIt 

                         newpop =pop; 

                         for i=1:nPop 

 (ii) Start the Migration loop inside the main loop above.  

for k=1:nVar 

            if rand <= lambda (i) 

(a) Here the TLBO teacher phase starts. Calculate the mean of the population. 

                  Mean = 0; 

                  for i=1:nPop 

                       Mean = Mean + pop (i).Position; 

                  end 

                  Mean = Mean / nPop;  

(b) Selection of the best teacher modified to the best habitat. 

                 habitat = pop (1); 

                 for i=2:nPop 

                      if pop (i).Cost < habitat.Cost 

                      habitat = pop (i); 

                     end 

                 end     

(c) Create the empty solution  

               for i=1:nPop 

               newsol = habitat; 

  (d) Define the teacher factor modified as habitat Factor 

                HF = randi([1 2]); 

(e) Define the function to move towards the best solution  

               newsol.Position = pop(i).Position ... 

                  + rand(VarSize).*(habitat.Position - HF*Mean); 

               End 

End 
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Figure 3.7: Depiction of Teacher Phase in Proposed Heuristic in MATLAB Software 

(iii) Now, the Mutation phase of the BBO starts. 

            if rand<=pMutation 

                newpop(i).Position(k)=newpop(i).Position(k)+sigma*randn; 

            end 

        end         

(a) Apply lower and upper bound limits 

        Newpop (i).Position = max (newpop(i).Position, VarMin); 

        Newpop (i).Position = min (newpop(i).Position, VarMax); 

(b) Evaluation the new cost function 

        Newpop (i).Cost = Cost Function (newpop(i).Position); 

    end 

 (iv) Sort the new population 

    [~, SortOrder]=sort ([newpop.Cost]); 

    Newpop = newpop (SortOrder); 

(v) Select next iteration population 

     Pop = [pop(1:nKeep) 

         newpop (1:nNew)]; 
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Figure 3.8: Depiction of Various Steps of Proposed Hybrid Heuristic for optimization of 

                                                             MFSP 
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The proposed heuristic which includes the teacher phase of TLBO algorithm in the 

migration and mutation phases of the BBO algorithm has various steps, as coded above. 

The steps include defining the objective functions, defining the parameters, migration 

phase, teacher phase, mutation phase, sorting the newly formed population and checking 

the termination condition. All these steps are necessary and make the proposed heuristic 

successful in its objective of producing the better results. The steps are depicted flow 

chart below in Figure 3.8. 

 

3.7 COLLECTION OF DATA FROM INDUSTRY TO SOLVE MFSP 

Federal Mogul is a piston ring manufacturing industry which is located in Bahadurgarh, 

Patiala district of Punjab, India. This industry is known to produce of ring carrier pistons, 

passenger car pistons and 4-stroke bi-wheeler pistons. The associated customers include 

the names of well reputed automobile firms such as Bajaj, TATA Motors, Mahindra, 

Escorts, Hero, Maruti Suzuki, Yamaha, Sonalika Internationals and Harley Davison 

Company. The main purpose of the industrial visit is to collect the field data. The field 

data refers to the data which is collected from the manufacturing system, during its 

working such as processing time, due dates, cycle time, and idle time, transportation 

distance, set up time and any break downs during the operation. 

3.7.1 Process Flow-Piston Machinery Shop  

Federal Mogul is a piston manufacturing industry, and manufacturing two different 

products, namely ring carrier pistons and 4-strokes bi-wheeler piston rings using a flow 

shop environment for the various machines. The flow shop arrangement authenticates the 

utilization of the same process sequence for all the products with an advantage of having 

different processing times on the various machines. Therefore, the flow patterns of both 

the products are common and are described with the help of flow chart in Figure 3.9. 

3.7.2 Business Plan of Piston Manufacturing Industry 

Business plan of a piston manufacturing industry enlists the essential factors according to 

which the manufacturing unit working is designed. These factors decide the number of 

products to be made in the unit per day, the rejection rate, cost of per product, and target 

under the specified period and so on. The various factors included in the business plan of 

the respective industry are listed below.  

Business plan target for the month = 45,155  

Production target for the month = 49,671  

Actual production till date = 22,760  
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Asking rate of start of month = 1910 nos. /days  

Asking rate for remaining WD’s = 1416 nos. /days  

Business plan rejection target = 4.20%  

Actual rejection till date = 3.10%  

Consumable cost/product (budgeted) = 7.50/production  

Consumable cost/product (actual) = 6.15/production  

Energy units/product (budgeted) = 0.38/production  

Energy units/product (actual) = 0.37/production 

3.7.3 Database Sheet  

The preparation of the database sheet is an essential step in any industrial related research 

approach. These database sheets consists the information related to the respective 

manufacturing unit or shop. The sheet is prepared according to the need of data i.e. 

collection of the data needed for initializing the work. Some of the information in the 

sheets contains is enlisted below: 

(a) Cycle time  

(b) Processing time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Depiction of the Flow Process of Products in Piston Manufacturing Industry 
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(c) Due date  

(d) Number of workers  

(e) Work in process  

(f) Task Time 

After deciding the activities to be worked on the process observation is conducted in 

which all the details about the process are collected. All the data needed is loaded in 

tables and graphs which is further used in formulation, analysis and documentation of the 

data. The observation should be very precise as the further activities depends on the 

observed data during the manufacturing in action. 

3.7.4 Data Analysis and Documentation  

After the collection of data, the drafting of the data is the next step to be executed which 

gives the current map of the various activities and times associated with them. The 

analysis of the data for each machine and part is necessary to ensure any non-existence of 

any errors in the collected data. The data may be compared with the previous obtained 

data for the same process and product The weak area which are identified to be worked 

on are closely analysed and respective actions are planned. Specific documentation is 

done for each process for better results.  

3.7.4.1 Analysis of data of part 1 in the manufacturing industry  

The analysis of data includes the different times taken on the various machines for the 

manufacturing of part 1. All the times are in minutes and the distance is in meters. The 

different notations used are:  M1: Finish seat machining; M2: Rough turning; M3: Oil-

hole  

Table 3.2: Depiction of the Different Times of Part 1 on Various Machines 

Part 1 M1 M2 M3 M4 M5 M6 M7 M8 

Distance (m) 76 1.5 1.7 1.9 1.5 3 1.5 11.5 

Transportation 

Time 

5 0.5 0.5 0.5 0.5 0.5 0.5 3 

Set Up Time 2 1.5 2 3 2 2 2.5 3.5 

Process Time 11 11 12 19 11 15 19 15 

Backlog time 4 5 5 8 4.5 6.5 11 10 

Cycle time 17 18 19.5 30.5 18 24 33 31.5 

Time/day 60 90 90 100 60 120 90 120 
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drilling; M4: Finish grooving; M5: Rough boring; M6: Finish diameter boring; M7: 

Bottom finish; M8: Cleaning; M9: Inspection; P1: Bi-wheeler piston rings; P2: Non-ring 

carrier. The following Table 3.2 shows the data analysis for Part 1: 

3.7.4.2 Analysis of Data of Part 2 in the Manufacturing Industry 

The analysis of the data, likewise for Part 1, here also describes the different times taken 

by the Part 2 on the different machines during its manufacturing. All times are in minutes 

and distance is in meters. The following Table 3.3 contains the analysis of data for part 2. 

Table 3.3: Depiction of the Different Times of Part 2 on Various Machines 

Part 2 M1 M2 M3 M4 M5 M6 M7 M8 

Distance (m) 76 1.5 1.7 1.9 1.5 3 1.5 10 

Transportation 

Time 

10 0.5 0.5 0.5 0.5 0.5 0.5 1 

Set Up Time 1.5 3 2 2.5 1 1.5 6 2 

Process Time 12 11 15 21 13 14 20 17 

Backlog time 5 3.5 6 10 5 6 8 10 

Cycle time 18.5 18 23.5 34 19.5 22 34.5 30 

Time/day 60 90 90 100 60 120 90 120 

 

3.7.5 Formation of the Objective Functions for Part 1 and Part 2 

The two objectives selected to formulate the data as a multi-objective problem are process 

time and the cycle time. The makespan and cycle time of both the products would be 

under consideration. Therefore, in order to minimize the process time and cycle time of 

the products the first and foremost step is to generate objective functions and subjected to 

constraints. Optimization is a process to produce the most beneficial, or optimum, 

solution for a root cause. An objective function can be minimized or maximized in the 

process. For our purpose, we need to minimize the value of the objective functions. The 

objective functions are made using the data analysis Table 3.2 and Table 3.3. 

3.7.5.1 Objective functions for minimization of process time of part1 and part 2 

For the optimization of make span, the following functions are to be minimized. The 

variable x (1) representative of Part 1 whereas x (2) represents Part 2. The coefficients of 

variables x (1) and x (2) represents the process time of Part 1 and Part2, respectively. 

For Part 1 and Part 2 on machine 1:  

11 x (1) + 12 x (2) ≤ 60;             (3.1) 
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For Part 1 and Part 2 on machine 2: 

11 x (1) + 11 x (2) ≤ 90;              (3.2) 

For Part 1 and Part 2 on machine 3: 

12 x (1) + 15x (2) ≤ 90;              (3.3) 

For Part 1 and Part 2 on machine 4: 

19 x (1) + 21 x (2) ≤ 100;             (3.4) 

For Part 1 and Part 2 on machine 5: 

11 x (1) + 13 x (2) ≤ 60;              (3.5) 

For Part 1 and Part 2 on machine 6: 

15 x (1) + 14 x (2) ≤ 120;              (3.6) 

For Part 1 and Part 2 on machine 7:  

19 x (1) + 24 x (2) ≤ 90;              (3.7) 

For Part 1 and Part 2 on machine 8: 

15 x (1) + 17 x (2) ≤ 120;            (3.8) 

3.7.5.2 Objective functions for minimization of cycle time of part 1 and part 2 

For the optimization of cycle time, the following functions are to be minimized. The 

variable x (1) is representative of Part 1 whereas x (2) represents Part 2. The coefficients 

of variables x (1) and x (2) represents the cycle time of Part 1 and Part2, respectively. 

For Part 1 and Part 2 on machine 1:  

17 x (1) + 18.5 x (2) ≤ 60;             (3.9) 

For Part 1 and Part 2 on machine 2:  

18 x (1) + 18 x (2) ≤ 90;           (3.10) 

For Part 1 and Part 2 on machine 3:  

19.5 x (1) + 23.5 x (2) ≤ 90;            (3.11) 

For Part 1 and Part 2 on machine 4:  

30.5 x (1)  + 34 (x2) ≤ 100;           (3.12) 

For Part 1 and Part 2 on machine 5: 

18 x (1) + 19.5 x (2) ≤ 60;             (3.13) 

For Part 1 and Part 2 on machine 6:  

24 x (1) + 22 x (2) ≤ 120;            (3.14) 

For Part 1 and Part 2 on machine 7:  

33 x (1) + 34.5 x (2) ≤ 90;            (3.15) 

For Part 1 and Part 2 on machine 8:  

31.5 x (1)  + 30 x(2) ≤ 120;           (3.16) 
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3.8 DESCRIPTION OF SOFTWARE USED TO IMPLEMENT THE NOVEL 

HYBRID BBO-TLBO HEURISTIC FOR MFSP 

The use of the some tools is always necessary to execute the loops designed in the 

algorithms. These software’s repeat the steps in the loops with varying some of the values 

assigned by the user to obtain different results, each time. The variety in the results gives 

user the freedom to choose best results from the formed set of results. And, hence 

optimizes the values of the functions. As there are many software’s available to code the 

algorithms some of which include C, C++, C#, Java, MATLAB, FORTRAN, LINGO 

with their different versions. The Software used to evaluate the functions of the 

subsections 3.7.1 and 3.7.2 is MATLAB 9.1 R2016b. The software was designed by 

Clever Moler in the 1970’s and was first released in 1984. Nowadays this software is 

developed by ‘Mathworks’ while licensed by ‘Proprietary Commercial Software’. Also 

known as Matrix laboratory, MATLAB is capable to handle the other languages such as 

C, C++, Java and Python as well. This software can solve inequality equations; object 

oriented programming, vectors, variables, structures such as arrays. Further, graphical 

user interfaces can be constructed which gives the user a chance to enter the values each 

time, also graphs in the three dimensions are possible to be designed and modifies, as 

required. In the present work, as there are sixteen different functions formed, these all 

will be framed separately in the software with names TB1, TB2… TB16. Each of the 

objective function will be evaluated using the developed BBO-TLBO heuristic, coded in 

the MATLAB as shown in the Section 3.6.3. The results obtained will be further 

compared to the actual collected data, and the optimized values will be computed. For 

loops is used in the programming of the algorithm to repeat the structure for the same 

function till 20 iterations. Arrays have been used to show the results in the sequential 

manner. The mathematical values obtained after solving the functions has been shown in 

Chapter 4 named as results and discussion. The present work in MATLAB uses quad-core 

processor with 4 GB RAM, system running on WINDOWS 10. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 IMPLEMENTATION OF PROPOSED HYBRID BBO-TLBO HEURISTIC FOR 

MFSP 

The proposed hybrid BBO-TLBO heuristic is implemented for the minimization of the two 

objectives, namely process time and cycle time which are sequence dependent setup time 

(SDST) correlating backlogging of all the machines for both the products. The proposed 

heuristic combines both BBO’s migration and mutation phases with the teacher phase of 

TLBO. The migration phase includes immigration and emigration of the population and the 

mutation will preserve the diversity in the population. The teacher phase encourages the 

achieving the value near to the best solution. The heuristic will tend to minimize the function 

named as ‘cost function value’ as the number of iterations increases while using the different 

values of the variables each time for the successive iterations. The validation of the model is 

conducted by comparative analysis of actual results with computed values from MATLAB.  

 

 

  

  

 

 

 

 

 

 

 

 

                       Figure 4.1: Implementation of Proposed BBO-TLBO Heuristic for MFSP 
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Further, the optimized values are also validated by the comparative analysis of functions of 

parameters and results generated from MATLAB. 

4.2 MATHEMATICAL ANALYSIS USING PROPOSED BBO-TLBO FOR 

OPTIMIZATION OF PROCESS TIME AND CYCLE TIME FOR MFSP  

The mathematical analysis includes the implementation of the proposed heuristic and 

analyzing the results produced for the respective functions. The heuristic will be producing the 

mathematical values using the algorithm explained in the Section 3.6.3. The objectives to be 

focused are minimization of process time and minimization of cycle time, respectively for each 

product.  

Number of variables =2; 

For functions related to minimization of process time, 

Lower bound= 1, Upper Bound =15; 

For functions related to minimization of cycle time, 

Lower bound = 1, Upper Bound=24; 

The upper bound is calculated by taking the average of the process time for the functions 

related to the minimization of process time, and taking average of cycle time for the functions 

related to minimization of the cycle time, for both the products. 

Population Size=20, 

Number of Iterations =20, 

Mutation rate=0.1, 

Keep Rate =0.2, 

Equation of teacher phase, 

Xnew=Xold + (Xteacher -(TF) Mean), where Xnew, Xold = new solution and old solution 

respectively Mean= average of the population, TF= Teaching factor ranging between 1 and 2. 

4.2.1 Mathematical Analysis for Minimization of Process Time Using the Proposed BBO-

TLBO Heuristic  

This section is addressing the evaluation and optimization of various functions of process time 

formulated in Section 3.7.5.1 with the proposed hybrid BBO-TLBO heuristic algorithm. These 

respective iterations of functions with analytical results are evaluated and explained below as: 

(i) Function 1: Evaluation and Optimization of function 11x(1)+12x(2)≤60 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 
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Table 4.1: Evaluation and Optimization of Function 11x(1)+12 x(2)≤ 60 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function 

Value 

Iteration 1 10.700 10.868 248.132 

Iteration 2 6.899 13.741 240.868 

Iteration 3 4.887 14.865 232.199 

Iteration 4 4.391 13.796 213.826 

Iteration 5 4.639 13.142 208.726 

Iteration 6 10.638 6.962 200.514 

Iteration 7 4.568 6.366 192.314 

Iteration 8 10.447 4.904 191.313 

Iteration 9 10.964 7.593 179.465 

Iteration 10 7.697 7.532 175.056 

Iteration 11 7.410 7.172 167.586 

Iteration 12 9.059 4.132 149.253 

Iteration 13 5.144 6.461 134.1209 

Iteration 14 1.849 8.364 120.718 

Iteration 15 9.092 1.249 115.005 

Iteration 16 2.087 7.123 108.445 

Iteration 17 7.592 1.065 96.298 

Iteration 18 1.552 5.493 82.991 

Iteration 19 4.934 1.349 70.465 

Iteration 20 2.748 1.971 53.891 

Mean 6.365 7.402  

      

  

Figure 4.2: Graph Showing the Variation of Function f=11x(1)+12 x (2)≤60 Corresponding 

to the Number of Iterations 
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Table 4.1 addresses the evaluation and optimization of the function f=11x(1)+12 x(2)≤60 by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows the 

range between 1 and 15 which further impacts the optimization of the evaluated Cost function 

value. The variable x(1)= processing time of part 1 on machine 1 and x(2)= processing time of 

part 2 on machine 1. The constraints in the equation are x (1)>0, x (2)>0 and f<60. The mean 

of iterations for x (1) comes out to be 6.365 and that of x (2) is 7.402. The best cost function 

value is obtained is 53.891. Figure 4.2 illustrates the variation of the values of the function 

f=11x(1)+12x(2)≤60 with the iterations taking place. It is evident from the graph that as the 

number of iterations are increasing, the value of the function keeps optimizing. The maximum 

value 248.132 is at first iteration and there after optimized to 50.891 at the last. The minimum 

value of the function can be seen on the 20th iteration. The dots in the graph represents, the 

value of function corresponding to the respective iteration. It is to be noted that the rate of 

optimization is not constant and varies differently between the successive iterations. 

Table 4.2: Evaluation and Optimization of Function Using Proposed BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 12.872 13.173 286.506 

Iteration 2 10.939 12.803 261.175 

Iteration 3 11.880 11.113 252.927 

Iteration 4 13.334 8.787 243.345 

Iteration 5 8.341 13.327 238.354 

Iteration 6 13.268 4.489 195.342 

Iteration 7 5.905 11.80 194.818 

Iteration 8 14.798 2.85 194.224 

Iteration 9 4.477 13.176 194.193 

Iteration 10 3.614 11.462 165.845 

Iteration 11 8.724 5.260 153.828 

Iteration 12 6.619 6.495 144.264 

Iteration 13 6.414 6.224 139.028 

Iteration 14 10.546 2.053 138.596 

Iteration 15 9.371 3.186 138.138 

Iteration 16 9.772 2.651 136.661 

Iteration 17 4.464 6.319 118.632 

Iteration 18 5.745 4.678 114.672 

Iteration 19 2.144 3.723 64.546 

Iteration 20 1.817 1.741 39.147 

Mean 8.252 7.266  
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(ii) Function 2: Evaluation and Optimization of function 11x(1)+11x(2)≤90 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.2 addresses the evaluation and optimization of the function f=11x (1)+11x(2)≤ 90 by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows the 

range between 1 and 15 which further impacts the optimization of the evaluated Cost function 

value. The variable x (1) = processing time of part 1 on machine 2 and x(2) = processing time 

of part 2 on machine 2. The constraints in the equation are x(1)>0, x(2)>0 and f<90. The mean 

of iterations for x (1) comes out to be 8.252 and that of x (2) is 7.266. The best cost function 

value is obtained is 39.147. Figure 4.3 refers the variation of the values of the function f=11x 

(1)+11x(2)≤ 90 with the iterations taking place.  It is evident from the graph that as the number 

of iterations are increasing, the value of the function keeps optimizing. The maximum value 

286.506 is at first iteration and there after optimized to 39.147 at the last. The minimum value 

of the function can be seen on the 20th iteration. The dots in the graph represents, the value of 

function corresponding to the respective iteration. It is to be noted that the rate of optimization 

is not constant and varies differently between the successive iterations. 

 

Figure 4.3: Graph Showing the Variation of Function f=11x (1)+11x(2)≤ 90 Corresponding 

to the Number of Iterations 
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range between 1 and 15 which further impacts the optimization of the evaluated cost function 

value.  

Table 4.3: Evaluation and Optimization of Function 12x(1)+15x(2)≤90 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 13.964 12.793 359.482 

Iteration 2 8.907 14.621 326.21 

Iteration 3 8.660 13.870 311.984 

Iteration 4 7.252 14.35 302.416 

Iteration 5 14.099 7.461 281.109 

Iteration 6 6.023 13.44 273.927 

Iteration 7 11.259 7.943 254.265 

Iteration 8 3.695 13.50 246.956 

Iteration 9 11.937 6.850 246.008 

Iteration 10 12.245 5.189 225.652 

Iteration 11 10.615 6.303 221.933 

Iteration 12 10.603 5.599 211.237 

Iteration 13 14.384 2.309 207.253 

Iteration 14 13.68 1.543 187.324 

Iteration 15 9.409 4.059 173.803 

Iteration 16 4.393 7.396 159.061 

Iteration 17 3.422 6.668 141.086 

Iteration 18 2.927 4.582 103.867 

Iteration 19 6.968 1.005 98.703 

Iteration 20 1.889 1.627 47.082 

Mean 8.816 7.565  

 

 

Figure 4.4: Graph Showing the Variation of Function f = 12 x (1) + 15 x (2) ≤ 90 

Corresponding to the Number of Iterations 
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The variable x(1)=processing time of part 1 on machine 3 and x(2)= processing time of part 2 

on machine 3. The constraints in the equation are x (1)>0, x(2)> 0 and f<90. The mean of 

iterations for x(1) comes out to be 8.816 and that of x(2) is 7.565. The best cost function value 

is obtained is 47.082. Figure 4.4 depicts the variation of values of the function f = 12 x (1) + 

15 x (2) ≤ 90 with the iterations taking place.  It is evident from the graph that as number of 

iterations are increasing, the value of the function keeps optimizing. The maximum value 

359.482 is at first iteration and there after optimized to 47.082 at the last. The minimum value 

of the function can be seen on the 20th iteration. The dots represents the value of function 

corresponding to the respective iteration. It is to be noted that the rate of optimization is not 

constant and varies differently between the successive iterations. 

(iv) Function 4: Evaluation and Optimization of function 19x(1)+21x(2)≤100 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

 

Table 4.4: Evaluation and Optimization of Function 19x(1)+21x(2)≤100 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 13.019 12.416 508.111 

Iteration 2 10.288 13.288 474.543 

Iteration 3 14.707 7.177 430.175 

Iteration 4 8.201 13.042 429.716 

Iteration 5 8.083 10.469 373.440 

Iteration 6 5.063 12.762 364.221 

Iteration 7 8.364 9.729 363.259 

Iteration 8 6.981 10.219 347.250 

Iteration 9 5.522 10.11 308.148 

Iteration 10 5.760 9.462 317.405 

Iteration 11 5.840 9.285 305.946 

Iteration 12 11.495 3.971 301.821 

Iteration 13 14.046 1.325 294.724 

Iteration 14 10.855 3.273 275.004 

Iteration 15 12.238 1.519 264.429 

Iteration 16 6.439 6.649 261.990 

Iteration 17 7.736 4.773 247.236 

Iteration 18 6.469 4.129 209.629 

Iteration 19 5.519 4.944 208.709 

Iteration 20 2.577 2.720 106.110 

Mean 8.460 7.564  
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Table 4.4 addresses the evaluation and optimization of the function f=19x(1)+21x(2)≤100, by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows the 

range between 1 and 15 which further impacts the optimization of the evaluated Cost function 

value. The variable x (1) = processing time of part 1 on machine 4 and x(2)= processing time 

of part 2 on machine 4. The constraints in the equation are x(1)>0, x(2)>0 and f<60. The mean 

of iterations for x(1) comes out to be 8.460 and that of x(2) is 7.564. Figure 4.5 illustrates the 

variation of the values of the function f=19x(1)+21x(2)≤100 with the iterations taking place.  

It is evident from the graph that as the number of iterations are increasing, the value of the 

function keeps optimizing. The maximum value 508.111 is at first iteration and there after 

optimized to 106.110 at the last. The minimum value of the function can be seen on the 20th 

iteration. The dots in the graph represents, the value of function corresponding to the respective 

iteration. It is to be noted that the rate of optimization is not constant and varies differently 

between the successive iterations. 

 

Figure 4.5: Graph Showing the Variation of Function f=19x(1)+21x(2)≤100 Corresponding 

to the Number of Iterations 
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value. The variable x(1) = processing time of part 1 on machine 5 and x(2) = processing time 

of part 2 on machine 5. The constraints in the equation are x(1)>0, x(2)>0 and f<60.  

Table 4.5: Evaluation and Optimization of Function 11x(1)+13x(2)≤60 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost function value 

Iteration 1 14.405 14.424 345.971 

Iteration 2 12.887 14.075 324.752 

Iteration 3 12.090 14.432 320.627 

Iteration 4 12.406 13.681 314.321 

Iteration 5 10.502 11.608 266.433 

Iteration 6 14.400 7.795 259.742 

Iteration 7 6.905 13.820 255.615 

Iteration 8 3.206 14.588 224.920 

Iteration 9 11.403 6.4911 209.827 

Iteration 10 2.777 13.787 209.790 

Iteration 11 2.359 12.528 188.827 

Iteration 12 12.203 5.439 188.715 

Iteration 13 10.727 1.482 176.603 

Iteration 14 14.303 2.986 173.066 

Iteration 15 4.898 8.656 166.421 

Iteration 16 10.176 3.396 156.099 

Iteration 17 9.853 2.36 139.135 

Iteration 18 10.884 1.479 138.524 

Iteration 19 10.180 1.499 131.483 

Iteration 20 4.876 1.641 75.049 

Mean 9.572 8.311  

 

 

Figure 4.6: Graph Showing the Variation of Function f=11x(1)+13x(2)≤60 Corresponding to 

the Number of Iterations 
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The mean of iterations for x(1) comes out to be 9.572 and that of x(2) is 8.311. The best Cost 

function value is obtained is 75.049. Figure 4.6 depicts the variation of the values of the 

function f=11x(1)+13x(2)≤60 with the iterations taking place. It is evident from the graph that 

as the number of iterations are increasing, the value of the function keeps optimizing. The 

maximum value 345.971 is at first iteration and there after optimized to 75.049 at the last. The 

minimum value of function can be seen on 20th iteration. The dots in the graph represents, the 

value of function corresponding to the respective iteration. It is to be noted that the rate of 

optimization is not constant and varies differently between the successive iterations. 

(vi) Function 6: Evaluation and Optimization of function 15x(1)+14x(2)≤120 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.6: Evaluation and Optimization of Function 15x(1)+14x(2)≤120 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost function value 

Iteration 1 13.729 13.080 389.070 

Iteration 2 12.340 14.556 388.897 

Iteration 3 13.756 11.047 361.022 

Iteration 4 9.939 14.901 357.717 

Iteration 5 9.515 14.409 342.909 

Iteration 6 14.615 8.560 339.083 

Iteration 7 9.412 13.976 338.402 

Iteration 8 10.133 10.567 299.951 

Iteration 9 11.082 8.184 280.817 

Iteration 10 6.980 12.112 274.289 

Iteration 11 11.323 5.095 241.198 

Iteration 12 8.592 7.477 233.576 

Iteration 13 12.261 1.111 199.455 

Iteration 14 1.960 11.635 192.301 

Iteration 15 1.585 9.864 161.882 

Iteration 16 1.604 9.637 159.010 

Iteration 17 8.693 1.101 145.824 

Iteration 18 7.888 1.356 137.312 

Iteration 19 7.756 1.421 133.713 

Iteration 20 1.288 1.802 44.559 

Mean 8.723 8.592  

 

Table 4.6 addresses the evaluation and optimization of the function f=15x(1)+14x(2)≤120, by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follow the 

range between 1 and 15 which further impacts the optimization of the evaluated Cost function 
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value. The variable x(1)=processing time of part 1 on machine 6 and x(2)= processing time of 

part 2 on machine 6. The constraints in the equation are x(1)>0, x(2)>0 and f<120. The mean 

of iterations for x (1) comes out to be 8.723 and that of x (2) is 8.592. The best Cost function 

value is obtained is 44.559. Figure 4.7 illustrates the variation of the values of the function 

f=15x(1)+14x(2)≤120 with the iterations taking place.  It is evident from the graph that as the 

number of iterations are increasing, the value of the function keeps optimizing. The maximum 

value 389.070 is at first iteration and there after optimized to 44.559 at the last. The minimum 

value of the function can be seen on the 20th iteration. The dots in the graph represents, the 

value of function corresponding to the respective iteration. It is to be noted that the rate of 

optimization is not constant and varies differently between the successive iterations. 

 

Figure 4.7: Graph Showing the Variation of Function f=15x(1)+14x(2)≤120 Corresponding 

to the Number of Iterations 
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Table 4.7: Evaluation and Optimization of Function f=19x(1)+24x(2)≤90 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 14.924 11.354 556.059 

Iteration 2 13.394 10.817 514.12 

Iteration 3 9.963 13.120 504.195 

Iteration 4 8.003 12.652 455.722 

Iteration 5 10.921 9.957 446.497 

Iteration 6 12.056 7.773 415.631 

Iteration 7 5.340 12.773 408.051 

Iteration 8 3.655 13.463 392.584 

Iteration 9 9.996 7.931 380.288 

Iteration 10 4.856 10.926 354.524 

Iteration 11 6.125 9.027 336.028 

Iteration 12 5.275 8.837 312.347 

Iteration 13 7.277 6.542 295.303 

Iteration 14 6.996 6.292 283.958 

Iteration 15 5.602 5.602 240.916 

Iteration 16 5.918 4.942 231.070 

Iteration 17 7.008 3.242 210.994 

Iteration 18 1.371 7.584 208.152 

Iteration 19 7.151 1.897 181.410 

Iteration 20 6.426 2.359 178.588 

Mean 7.613 8.343  

   

             

Figure 4.8: Graph Showing the Variation of Function f=19x(1)+24x(2)≤90 Corresponding to 

the Number of Iterations 
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Figure 4.8 refers the variation of the values of the function f=19x(1)+24x(2)≤90 with the 

iterations taking place.  It is evident from the graph that as the number of iterations are 

increasing, the value of the function keeps optimizing. The maximum value 556.059 is at first 

iteration and there after optimized to 178.588 at the last. The minimum value of the function 

can be seen on the 20th iteration. The dots in the graph represents, the value of function 

corresponding to the respective iteration. It is to be noted that the rate of optimization is not 

constant and varies differently between the successive iterations. 

(viii) Function 8: Evaluation and Optimization of function 15 x (1) + 17 x (2) ≤ 120 for 

Objective of Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.8: Evaluation and Optimization of Function 15x(1)+17x(2)≤120 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost function value 

Iteration 1 14.258 14.692 463.758 

Iteration 2 11.563 12.069 378.637 

Iteration 3 8.105 13.903 357.941 

Iteration 4 12.050 9.091 335.321 

Iteration 5 13.444 7.085 322.158 

Iteration 6 14.762 5.615 316.903 

Iteration 7 7.323 11.488 305.151 

Iteration 8 8.006 10.760 303.039 

Iteration 9 6.857 11.364 296.067 

Iteration 10 4.282 12.672 279.068 

Iteration 11 1.717 14.645 274.692 

Iteration 12 9.820 7.179 269.359 

Iteration 13 10.838 6.142 266.992 

Iteration 14 13.761 1.578 233.258 

Iteration 15 12.861 1.992 226.781 

Iteration 16 11.703 2.983 226.265 

Iteration 17 5.076 8.671 223.559 

Iteration 18 7.197 6.530 218.991 

Iteration 19 11.959 1.861 211.029 

Iteration 20 1.285 4.352 87.518 

Mean 9.343 8.206  

Table 4.8 addresses the evaluation and optimization of the function f=15x(1)+17x(2)≤120 by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x(2) follows the 

range between 1 and 15 which further impacts the optimization of the evaluated cost function 

value. The variable x(1)=processing time of part 1 on machine 8 and x(2)=processing time of 

part 2 on machine 8. The constraints in the equation are x(1)>0, x(2)>0 and f<120. The mean 

of iterations for x(1) comes out to be 9.343 and that of x(2) is 8.206. The best Cost function 
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value is obtained is 87.518. Figure 4.9 displays the variation of the values of the function 

f=15x(1)+17x(2)≤120 with the iterations taking place.  It is evident from the graph that as the 

number of iterations are increasing, the value of the function keeps optimizing. The maximum 

value 463.758 is at first iteration and there after optimized to 87.518 at the last. The minimum 

value of the function can be seen on the 20th iteration.    

              

Figure 4.9: Graph Showing the Variation of Function f = 15x(1)+17x(2)≤120 Corresponding 

to the Number of Iterations 

4.2.2 Mathematical Analysis for Minimization of Cycle Time Using the Proposed Hybrid 

BBO-TLBO Heuristic  

This section is addressing the evaluation and optimization of various functions of cycle time 

which includes sequence dependent setup time (SDST) and backlogging time formulated in 

Section 3.7.5.2 with the proposed hybrid BBO-TLBO heuristic algorithm. These respective 

iterations of functions with analytical results are evaluated and explained below as: 

(i) Function 9: Evaluation and Optimization of function 17x(1)+18.5x(2)≤60 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.9 addresses the evaluation and optimization of the function f=17x(1)+18.5x(2)≤60  by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x(2) follows the 

range between 1 and 24 which further impacts the optimization of the evaluated cost function 

value. The variable x(1)=processing time of part 1 on machine 1 and x (2)= processing time of 

part 2 on machine 1. The constraints in the equation are x(1)>0, x(2)>0 and f<60. The mean of 
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iterations for x(1) comes out to be 13.139 and that of x(2) is 12.106. The best cost function 

value is obtained is 235.570.  

Table 4.9: Evaluation and Optimization of Function f=17x(1)+18.5x(2)≤60 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 23.770 20.075 775.506 

Iteration 2 22.901 14.604 659.506 

Iteration 3 9.987 18.802 517.640 

Iteration 4 4.365 23.640 511.558 

Iteration 5 21.971 6.483 493.565 

Iteration 6 21.033 7.312 492.850 

Iteration 7 12.758 14.790 490.528 

Iteration 8 18.611 9.224 487.057 

Iteration 9 7.005 19.130 473.018 

Iteration 10 20.602 6.135 463.744 

Iteration 11 3.395 21.858 462.095 

Iteration 12 20.446 4.563 432.006 

Iteration 13 12.514 11.690 429.006 

Iteration 14 11.516 11.359 405.925 

Iteration 15 9.196 13.420 404.625 

Iteration 16 10.167 9.420 347.128 

Iteration 17 15.437 2.557 309.735 

Iteration 18 5.966 10.406 293.953 

Iteration 19 8.464 6.507 264.291 

Iteration 20 2.680 10.270 235.570 

Mean                13.139  
 

12.106  

 

 

Figure 4.10: Graph Showing the Variation of Function f=17x(1)+18.5x(2)≤60  

Corresponding to the Number of Iterations 
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Figure 4.10 illustrates the variation of the values of the function f=17x(1)+18.5x(2)≤60  with 

the iterations taking place.  It is evident from the graph that as the number of iterations are 

increasing, the value of the function keeps optimizing. The maximum value 775.506 is at first 

iteration and there after optimized to 235.570 at the last. The dots in the graph represents, the 

value of function corresponding to the respective iteration. It is to be noted that the rate of 

optimization is not constant and varies differently between the successive iterations.  

(ii) Function 10: Evaluation and Optimization of function 18x(1)+18x(2)≤90 for Objective of 

Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.10: Evaluation and Optimization of Function 18x(1)+18x(2)≤90 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 22.062 17.749 716.629 

Iteration 2 18.425 18.676 667.840 

Iteration 3 20.390 13.779 615.072 

Iteration 4 11.567 21.262 590.933 

Iteration 5 23.748 7.974 571.011 

Iteration 6 13.561 17.090 551.741 

Iteration 7 11.053 17.145 507.579 

Iteration 8 15.407 11.433 483.133 

Iteration 9 6.562 19.411 467.525 

Iteration 10 16.356 5.585 395.001 

Iteration 11 6.459 13.401 357.509 

Iteration 12 8.626 9.943 334.255 

Iteration 13 11.518 7.009 333.498 

Iteration 14 13.241 4.732 323.538 

Iteration 15 4.162 13.750 322.431 

Iteration 16 11.129 5.312 295.95 

Iteration 17 2.266 12.939 273.718 

Iteration 18 1.346 12.652 251.979 

Iteration 19 8.727 4.635 247.319 

Iteration 20 1.904 9.555 206.277 

Mean                 11.426  
 

12.169  

Table 4.10 addresses the evaluation and optimization of the function 18x(1)+18x(2)≤90 by the 

proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows the 

range between 1 and 24 which further impacts the optimization of the evaluated cost function 

value. The variable x(1)=processing time of part 1 on machine 2 and x(2)= processing time of 

part 2 on machine 2. The constraints in the equation are x(1)>0, x(2)>0 and f<90. The mean of 

iterations for x (1) comes out to be 11.426 and that of x(2) is 12.169. The best cost function 

value is obtained is 247.319. Figure 4.11 depicts the variation of the values of the function 
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18x(1)+18x(2)≤90 with the iterations taking place.  It is evident from the graph that as the 

number of iterations are increasing, the value of the function keeps optimizing. The maximum 

value 716.629 is at first iteration and there after optimized to 247.319 at the last. The minimum 

value of the function can be seen on the last iteration. 

 

Figure 4.11: Graph Showing the Variation of Function f=18x(1)+18x(2)≤90 Corresponding 

to the Number of Iterations 

(iii) Function 11: Evaluation and Optimization of function 19.5x(1)+23.5x(2)≤90 for Objective 

of Minimization of Process Time Using Proposed BBO- TLBO Heuristic 
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function value. The variable x(1)=processing time of part 1 on machine 3 and x(2)= processing 

time of part 2 on machine 3. The constraints in the equation are x(1)>0, x(2)>0 and f<90. The 

mean of iterations for x (1) comes out to be 13.013 and that of x(2) is 12.955. The best cost 

function value is obtained is 110.574. Figure 4.12 illustrates the variation of the values of the 

function f=19.5x(1)+23.5x(2)≤90 with the iterations taking place.  It is evident from the graph 

that as the number of iterations are increasing, the value of the function keeps optimizing. The 

maximum value 908.782 is at first iteration and there after optimized to 110.574 at the last.  
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Table 4.11: Evaluation and Optimization of Function 19.5x(1)+23.5x(2)≤90 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function 

Value 

Iteration 1 19.426 22.551 908.785 

Iteration 2 23.894 18.028 889.625 

Iteration 3 15.951 21.423 814.488 

Iteration 4 17.835 18.850 790.794 

Iteration 5 14.912 20.743 778.274 

Iteration 6 9.945 23.277 740.961 

Iteration 7 11.087 19.903 683.920 

Iteration 8 16.241 15.361 677.710 

Iteration 9 21.692 9.189 638.977 

Iteration 10 9.627 18.976 633.680 

Iteration 11 7.289 20.430 622.027 

Iteration 12 17.049 6.979 496.488 

Iteration 13 14.557 7.432 458.533 

Iteration 14 21.488 1.174 446.640 

Iteration 15 8.823 7.518 348.748 

Iteration 16 6.361 9.460 346.371 

Iteration 17 5.937 9.402 336.734 

Iteration 18 10.186 2.395 254.943 

Iteration 19 6.391 2.774 189.794 

Iteration 20 1.558 3.412 110.574 

Mean                13.013  
 

12.955  

 

                 

Figure 4.12: Graph Showing the Variation of Function f =19.5x(1)+23.5x(2)≤90 

Corresponding to the Number of Iterations 
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The minimum value of the function can be seen on the 20th iteration. The dots in the graph 

represents, the value of function corresponding to the respective iteration. It is to be noted that 

the rate of optimization is not constant and varies differently between the successive iterations. 

(iv) Function 12: Evaluation and Optimization of function 30.5x(1)+34x(2)≤100 for Objective 

of Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.12 addresses the evaluation and optimization of the function f=30.5x(1)+34x(2)≤100  

by the proposed BBO-TLBO heuristic. In this table, input variables x(1) and x(2) follows range 

between 1 and 24 which further impacts the optimization of the evaluated Cost function value. 

The variable x(1)=processing time of part 1 on machine 4 and x(2)= processing time of part 2 

on machine 4. The constraints in the equation are x(1)>0, x(2)>0 and f<100.  

Table 4.12: Evaluation and Optimization of Function 30.5x(1)+34x(2)≤100 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 23.026 23.054 1486.031 

Iteration 2 20.529 22.481 1390.547 

Iteration 3 19.220 23.068 1370.557 

Iteration 4 19.738 21.833 1344.358 

Iteration 5 16.610 18.428 1133.185 

Iteration 6 23.018 12.163 1115.512 

Iteration 7 10.700 22.061 1076.471 

Iteration 8 4.625 23.323 934.061 

Iteration 9 18.092 10.021 892.529 

Iteration 10 3.920 22.007 868.841 

Iteration 11 16.981 8.293 799.894 

Iteration 12 3.234 19.939 776.582 

Iteration 13 22.855 1.792 758.017 

Iteration 14 19.406 4.263 736.851 

Iteration 15 7.405 13.578 687.527 

Iteration 16 16.075 4.937 658.185 

Iteration 17 17.239 1.732 584.684 

Iteration 18 15.544 3.298 584.376 

Iteration 19 16.082 1.821 552.428 

Iteration 20 7.369 2.061 294.867 

Mean 15.083 
 

13.012  

 The mean of iterations for x(1) comes out to be 15.083 and that of x(2) is 13.012. The best 

cost function value is obtained is 294.867. Figure 4.13 illustrates the variation of the values of 

the function f=30.5x(1)+34x(2)≤100 with the iterations taking place.  It is evident from the 

graph that as the number of iterations are increasing, the value of the function keeps optimizing. 
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The maximum value 1486.031 is at first iteration and there after optimized to 294.867 at the 

last. The minimum value of the function can be seen on the 20th iteration. The dots in the graph 

represents, the value of function corresponding to the respective iteration. It is to be noted that 

the rate of optimization is not constant and varies differently between the successive iterations.        

 

Figure 4.13: Graph Showing the Variation of Function f =30.5x(1)+34x(2)≤100 

Corresponding to the Number of Iterations 
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function value is obtained is 71.733. Figure 4.14 shows the variation of the values of the 
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that as the number of iterations are increasing, the value of the function keeps optimizing. The 

maximum value 805.804 is at first iteration and there after optimized to 71.733 at the last. The 

minimum value of the function can be seen on the 20th iteration. The dots in the graph 
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represents, the value of function corresponding to the respective iteration. It is to be noted that 

the rate of optimization is not constant and varies differently between the successive iterations. 

Table 4.13: Evaluation and Optimization of Function 18x(1)+19.5x(2)≤60 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost Function Value 

Iteration 1 21.912 21.096 805.804 

Iteration 2 19.631 23.021 802.278 

Iteration 3 15.686 23.838 747.205 

Iteration 4 21.957 17.507 736.628 

Iteration 5 14.819 23.029 715.828 

Iteration 6 14.989 22.318 705.026 

Iteration 7 23.368 13.420 682.344 

Iteration 8 16.005 16.717 614.098 

Iteration 9 10.825 19.256 570.364 

Iteration 10 17.563 12.803 565.810 

Iteration 11 17.960 7.728 474.000 

Iteration 12 13.474 11.641 469.539 

Iteration 13 2.577 18.472 406.613 

Iteration 14 19.501 1.183 374.091 

Iteration 15 1.962 15.562 338.786 

Iteration 16 1.993 15.192 332.124 

Iteration 17 13.639 1.166 268.260 

Iteration 18 12.316 1.585 252.609 

Iteration 19 12.100 1.693 245.001 

Iteration 20 1.474 2.318 71.733 

Mean 13.687  
 

13.475  

 

 

Figure 4.14: Graph Showing the Variation of Function f=18x(1)+19.5x(2)≤60  

Corresponding to the Number of Iterations 
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(vi) Function 14: Evaluation and Optimization of function 24x(1)+22x(2)≤120 for Objective 

of Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.14 addresses the evaluation and optimization of the function f=24x(1)+22x(2)≤120 by 

the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows the 

range between 1 and 24 which further impacts the optimization of the evaluated cost function 

value. The variable x(1)=processing time of part 1 on machine 6 and x(2)= processing time of 

part 2 on machine 6. The constraints in the equation are x(1)>0, x(2)>0 and f<120. The mean 

of iterations for x(1) comes out to be 13.842 and that of x(2) is 11.786.  

Table 4.14: Evaluation and Optimization of Function 24x(1)+22x(2)≤120 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost function value 

Iteration 1 22.299 20.375 983.437 

Iteration 2 13.991 23.377 850.098 

Iteration 3 13.585 22.144 813.223 

Iteration 4 22.520 11.614 796.011 

Iteration 5 11.272 22.946 775.363 

Iteration 6 17.854 12.407 701.468 

Iteration 7 9.252 21.442 693.792 

Iteration 8 18.968 10.612 688.701 

Iteration 9 19.474 7.881 640.798 

Iteration 10 22.988 3.151 621.049 

Iteration 11 16.797 9.712 616.799 

Iteration 12 5.422 21.547 604.330 

Iteration 13 16.776 8.556 590.895 

Iteration 14 21.832 1.893 565.635 

Iteration 15 14.815 6.026 488.146 

Iteration 16 6.574 11.509 399.882 

Iteration 17 4.979 10.311 346.359 

Iteration 18 10.805 1.008 281.527 

Iteration 19 4.166 6.885 251.482 

Iteration 20 2.461 2.030 103.739 

Mean         13.842  
 

11.786  

The best cost function value is obtained is 103.739. Figure 4.15 illustrates the variation of the 

values of the function f=24x(1)+22x(2)≤120 with the iterations taking place.  It is evident from 

the graph that as the number of iterations are increasing, the value of the function keeps 

optimizing. The maximum value 983.437 is at first iteration and there after optimized to 

103.739 at the last. The minimum value of the function can be seen on the 20th iteration.  
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Figure 4.15: Graph Showing the Variation of Function f=24x(1)+22x(2)≤120 Corresponding 

to the Number of Iterations 

Table 4.15: Evaluation and Optimization of Function 33x(1)+34.5x(2)≤100 Using Proposed 

BBO- TLBO Heuristic 
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Iteration 4 19.154 14.293 1125.242 
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Iteration 7 11.388 18.230 1004.778 

Iteration 8 12.511 17.035 1000.610 

Iteration 9 10.623 18.027 972.533 

Iteration 10 6.393 20.176 907.074 

Iteration 11 15.490 11.152 895.941 

Iteration 12 17.163 9.447 892.332 

Iteration 13 2.1791 23.413 879.662 

Iteration 14 21.966 1.949 792.152 

Iteration 15 20.486 2.629 766.768 

Iteration 16 18.584 4.258 760.182 

Iteration 17 7.697 13.602 723.302 

Iteration 18 11.182 10.086 716.990 

Iteration 19 19.004 2.414 710.459 
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(vii) Function 15: Evaluation and Optimization of function 33x(1)+34.5x(2)≤100 for Objective 

of Minimization of Process Time Using Proposed BBO- TLBO Heuristic 

Table 4.15 addresses the evaluation and optimization of the function f=33x(1)+34.5x(2)≤100 

by the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x(2) follows 

the range between 1 and 24 which further impacts the optimization of the evaluated cost 

function value. The variable x(1)=processing time of part 1 on machine 7 and x(2)= processing 

time of part 2 on machine 7. The constraints in the equation are x(1)>0, x(2)> 0 and f<100. 

The mean of iterations for x(1) comes out to be 14.707 and that of x(2) is 12.840. The best cost 

function value is obtained is 253.799. Figure 4.16 depicts the variation of the values of the 

function f=33x(1)+34.5x(2)≤100 with the iterations taking place.  It is evident from the graph 

that as the number of iterations are increasing, the value of the function keeps optimizing. The 

maximum value 1562.736 is at first iteration and there after optimized to 253.799 at the last. 

The minimum value of the function can be seen on the 20th iteration. The dots in the graph 

represents, the value of function corresponding to the respective iteration. It is to be noted that 

the rate of optimization is not constant and varies differently between the successive iterations. 

 

Figure 4.16: Graph Showing the Variation of Function f=33x(1)+34.5x(2)≤100 

Corresponding to the Number of Iterations 
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Table 4.16: Evaluation and Optimization of Function 31.5x(1)+30x(2)≤120 Using Proposed 

BBO- TLBO Heuristic 

Iterations x(1) x(2) Cost function value 

Iteration 1 23.354 22.278 1404.033 

Iteration 2 20.627 20.237 1256.893 

Iteration 3 18.586 21.240 1222.705 

Iteration 4 13.398 23.213 1118.474 

Iteration 5 11.494 23.610 1070.403 

Iteration 6 19.990 13.638 1038.686 

Iteration 7 9.737 22.452 980.310 

Iteration 8 21.256 6.849 875.041 

Iteration 9 16.367 11.851 870.986 

Iteration 10 11.975 14.755 819.900 

Iteration 11 11.150 13.602 759.316 

Iteration 12 4.936 19.519 741.072 

Iteration 13 16.976 6.696 735.677 

Iteration 14 3.900 20.330 732.777 

Iteration 15 6.616 15.791 682.181 

Iteration 16 13.077 8.298 660.894 

Iteration 17 12.799 7.304 622.313 

Iteration 18 4.293 15.616 603.746 

Iteration 19 10.030 8.868 582.025 

Iteration 20 14.453 1.535 501.215 

Mean 13.251 14.858  

           

 

Figure 4.17: Graph Showing the Variation of Function f=31.5x(1)+30x(2)≤120 

Corresponding to the Number of Iterations 
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Table 4.16 addresses the evaluation and optimization of the function f=31.5x(1)+30x(2)≤120 

by the proposed BBO-TLBO heuristic. In this table, the input variables x(1) and x (2) follows 

the range between 1 and 24 which further impacts the optimization of the evaluated cost 

function value. The variable x(1) = processing time of part 1 on machine 8 and x(2)= 

processing time of part 2 on machine 8. The constraints in the equation are x(1)>0, x(2)>0 and 

f<120. The mean of iterations for x(1) comes out to be 13.251 and that of x (2) is 14.858. The 

best cost function value is obtained is 501.215. Figure 4.17 refers the variation of the values of 

the function f=31.5x(1)+30x(2)≤120 with the iterations taking place.  It is evident from the 

graph that as the number of iterations are increasing, the value of the function keeps optimizing. 

The maximum value 1404.033 is at first iteration and there after optimized to 501.215 at the 

last. The minimum value of the function can be seen on the 20th iteration. The dots in the graph 

represents, the value of function corresponding to the respective iteration.  

 

4.3 SIMULATION OF SEQUENCE DEPENDENT SETUP TIME ALONG WITH 

BACLOGGING FOR PART 1 AND PART 2 

In scheduling, set-up time makes problem more complex and comes to play when production 

changeover is required between the different jobs, taking different amount of time to set-up on 

the machine before starting the operation. There are two type of structures; simple, in which 

set-up is independent of sequences and decisions for previous times, and complex, in which 

set-up time is dependent on both the factors. Backlog is the uncompleted, unprocessed work 

for a specified time or jobs in the process of completion. It implies to the workload, which is 

beyond the capacity of the production system. The factor on which it depends is waiting time 

more the waiting time lower is the backlogging rate. Partial backlogging is a situation where 

the demand of a product met from other sources where as in full backlogging, demand remains 

unfulfilled until the next order. 

4.3.1 Simulation of Set up and Backlogging for Part 1 

The manufacturing of part 1 that is ring carrier piston is done on the eight different machines 

encountering different times on different machines. Table 4.17 shows the set up time, process 

time, backlog time, cycle tie for the part 1 on the various machines and the reduced cycle time, 

obtained by the implementation of BBO-TLBO heuristic. On machine M1 the set up time is 2 

min, backlog time is 4 min, cycle time is 17 min and reduced to 13.189 min by using the 
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developed heuristic. On machine M2 the set up time is 1.5 min, backlog time is 5 min, cycle 

time is 18 min and reduced to 11.442 min by using the developed heuristic. On machine M3 

the set up time is 2 min, backlog time is 5 min, cycle time is 19.5 min and reduced to 13.013 

min by using the developed heuristic. On machine M4 the set up time is 3 min, backlog time 

is 8 min, cycle time is 30.5 min and reduced to 15.083 min by using the developed heuristic. 

On machine M5 the set up time is 2 min, backlog time is 4.5 min, cycle time is 18 min and 

reduced to 13.687 min by using the developed heuristic. On machine M6 the set up time is 2 

min, backlog time is 6.5 min, cycle time is 24 min and reduced to 13.842 min by using the 

developed heuristic. On machine M7 the set up time is 2.5 min, backlog time is 11 min, cycle 

time is 33 min and reduced to 14.707 min by using the developed heuristic. On machine M8 

the set up time is 3.5 min, backlog time is 10 min, cycle time is 31.5 min and reduced to 13.25 

min by using the developed heuristic. 

Table 4.17: Depiction of the Various Times (in min) of Part 1 on Various Machines 

Part 1 M1 M2 M3 M4 M5 M6 M7 M8 

Set up Time 2 1.5 2 3 2 2 2.5 3.5 

Process Time 11 11 12 19 11 15 19 15 

Backlog Time 4 5 5 8 4.5 6.5 11 10 

Cycle Time 17 18 19.5 30.5 18 24 33 31.5 

Reduced 

Cycle Time 

13.189 11.442 13.013 15.083 13.687 13.842 14.707 13.251 

 

             

Figure 4.18: Depiction of Set up Time, Process Time, Backlog Time, Cycle Time and 

Reduced Cycle Time for Part 1 
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Figure 4.18 depicts various times taken by part 1 on the eight machines in the form of colored 

bars. It is evident from the graph that most time reduced is on the machine M7 which reduces 

the cycle time from 33 min to 14.707 min and the lowest reduction in the cycle time is on the 

machine M1 from 17 min to 13.189 min. The reduction in the cycle time for other machines 

lies between 3.811 min to 18.293 min. The clear comparative visualization of different times 

on the respective machines can be easily seen with the different colored bars. 

4.3.2 Simulation of Set up time and Backlogging for Part 2 

The manufacturing of part 1 that is four stroke bi wheeler piston rings is done on the eight 

different machines which takes different times for the respective operations to be executed.  

Table 4.18: Depiction of the Various Times of Part 2 on Various Machines 

Part 2 M1 M2 M3 M4 M5 M6 M7 M8 

Set up time 1.5 3 2 2.5 1 1.5 6 2 

Process time 12 11 15 21 13 14 20 17 

Backlog Time 5 3.5 6 10 5 6 8 10 

Cycle Time 18.5 18 23.5 34 19.5 22 34.5 30 

Reduced 

Cycle Time 

12.106 12.169 12.955 13.012 13.475 11.786 12.840 14.858 

 

 

Figure 4.19: Depiction of Set up Time, Process Time, Backlog Time, Cycle Time and 

Reduced Cycle Time for Part 2 

Table 4.18 shows the set up time, process time, backlog time, cycle time for part 1 on the 

various machines and the reduced cycle time, obtained by the implementation of BBO-TLBO 
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heuristic. On machine M1 the set up time is 1.5 min, backlog time is 5 min, cycle time is 18.5 

min and reduced to 12.106 min by using the developed heuristic. On machine M2 the set up 

time is 3 min, backlog time is 3.5 min, cycle time is 18 min and reduced to 12.169 min by 

using the developed heuristic. On machine M3 the set up time is 2 min, backlog time is 6 min, 

cycle time is 23.5 min and reduced to 12.955 min by using the developed heuristic. On machine 

M4 the set up time is 2.5 min, backlog time is 10 min, cycle time is 34 min and reduced to 

13.012 min by using the developed heuristic. On machine M5 the set up time is 1 min, backlog 

time is 5 min, cycle time is 19.5 min and reduced to 13.475 min by using the developed 

heuristic. On machine M6 the set up time is 1.5 min, backlog time is 6 min, cycle time is 22 

min and reduced to 11.786 min by using the developed heuristic. On machine M7, set up time 

is 6 min, backlog time is 8 min, cycle time is 34.5 min and reduced to 12.240 min by using the 

developed heuristic. On machine M8 the set up time is 2 min, backlog time is 10 min, cycle 

time is 30 min and reduced to 14.858 min by using the developed heuristic. Figure 4.19 shows 

the various times taken by part 1 on the eight machines in the form of colored bars. It is evident 

from the graph that most time reduced is on machine M7 which reduces the cycle time from 

34.5 min to 12.840 min and the lowest reduction in the cycle time is on the machine M2 from 

18 min to 12.169 min. The reduction in the cycle time for other machines lies between 5.831 

min to 21.66 min. The clear comparative visualization of different times on the respective 

machines can be easily seen with the different colored bars.             

 

4.4 VALIDATION OF RESULTS GENERATED BY PROPOSED BBO-TLBO 

HEURISTIC FOR MINIMIZATION OF PROCESS TIME AND CYCLE TIME 

Validation is the process of certifying the produced results that if they are better than the actual 

data used or not. This process has an advantage to ascertaining the quality of the results 

produced. The validation of the results produced by the proposed BBO-TLBO heuristic is 

compared with the actual data used to form the various functions. These functions were 

supposed to be minimized by the heuristic developed. The objectives namely process time and 

cycle time undertaken for the both parts and all the machines from 1 to 8 will be validated 

separately to ensure the quality of results. The below subsections shows the difference between 

the actual and the generated results and also depicts the quality of the results produced.  
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4.4.1 Validation of Results for the Objective of Minimization of Process Time 

Table 4.19 and Table 4.20 show the actual data used to form the various objective functions 

and the results generated form the proposed heuristic, respectively. Now, as there  

Table 4.19: Depiction of the Actual Data of Process Time (in minutes) from Industry 

 M1 M2 M3 M4 M5 M6 M7 M8 

Part 1 11 11 12 19 11 15 19 15 

Part 2 12 11 15 21 13 14 24 17 

 

Table 4.20: Depiction of Results Generated (in minutes) from Proposed BBO-TLBO 

Heuristic 

 M1 M2 M3 M4 M5 M6 M7 M8 

Part 1 6.365 8.252 8.816 8.460 9.572 8.723 7.613 9.343 

Part 2 7.402 7.266 7.565 7.564 8.311 8.592 8.343 8.206 

are two parts namely Part 1 and Part 2, which were worked upon eight different machines 

namely M1 to M8, so process time will be validated for both the parts separately. 

4.4.1.1 Validation of generated results for Process time (in minutes) for Part 1 on all the 

machines 

By comparing the actual data of part 1 and the results obtained from the heuristic BBO-TLBO, 

it is evident from the table 4.21, that the processing time of the part 1 on all the machines has 

been reduced. Table 4.21 displays the reduced values of actual process time of every machine 

from M1 to M8 for Part 1. Figure 4.20 displays the data of Table 4.21 in the form of bars. The 

x-axis of the graph displays the number of machines and y-axis displays the processing time. 

The red bars displaying the results obtained from BBO-TLBO heuristic are considerably less 

than the actual value of the processing time. Table 4.22 contains the results obtained from the 

proposed heuristic and the optimized time. The optimized time is the difference between the 

actual data and the results obtained. The optimized time shows the quality of the results and 

the effectiveness of the heuristic in minimizing the values processing time.  

Table 4.21: Depiction of Actual Process Time and Results by BBO-TLBO Heuristic (in min) 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual time of Part 1 11 11 12 19 11 15 19 15 

Results obtained from 

BBO-TLBO Heuristic 

for Part 1 

 

6.365 

 

8.252 

 

8.816 

 

8.460 

 

9.572 

 

8.723 

 

7.613 

 

9.343 
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Figure 4.20: Graph Displaying the Actual Process time and Results by BBO-TLBO 

Heuristic 

   

Table 4.22: Depiction of Results by BBO-TLBO Heuristic and Optimized Time (in min) 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Results from BBO-

TLBO of Part 1  

6.365 8.252 8.816 8.460 9.572 8.723 7.613 9.343 

Optimized  Process 

Time data for Part 

1 

4.635 2.475 3.184 10.540 1.428 6.277 11.387 5.657 

 

                

Figure 4.21: Graph Showing Results of BBO-TLBO Heuristic and Optimized Time (in min) 
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Figure 4.21 displays the results obtained from heuristic and the optimized value of the process 

time for Part 1 on all the machines. The x-axis of the graph displays the number of machines 

and y-axis displays the processing time. The minimum optimized time is 1.428 min on machine 

5 and the maximum is 11.387 min on the machine 7. This is evident from the red bars of the 

graph that the heuristic is able to optimize a significantly on all the machines for part 1. 

Table 4.23: Depiction of Actual Process time and Optimized time (in min) 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual time of Part 1 11 11 12 19 11 15 19 15 

Optimized Process 

time data for Part 1 4.635 2.475 3.184 10.54 1.428 6.277 11.387 

 

5.657 

 

Figure 4.22: Graph Displaying the Actual Process Time and Optimized Time (in min) 

Table 4.23 shows the actual time spent by the Part 1 in the industry and the optimized time 

obtained from the proposed heuristic. It is clearly evident from the table that the proposed 

heuristic has been able to optimize the process time for Part 1 on all the machines. Figure 4.22 

displays the actual processing time and the optimized time for Part 1 on all the machines. The 

x-axis of the graph displays the number of machines and y-axis displays the processing time. 

The blue bars shown as the actual time are much bigger than the red bars showing the optimized 

time, but are able to significantly cut the slack of the processing time. The most processing 

time is employed to machine M4 and M7, and the most optimized time 11.387 min is on 
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machine M7. Table 4.22 displays the combined set of actual data, results by heuristic BBO-

TLBO and the optimized data for Part 1 corresponding to each machine. The minimum 

optimized time is on the machine M5 with 1.428 min and the maximum is on the machine M7 

with 11.387 minutes. 

Table 4.24: Depiction of Cumulative Validation of Actual Data, Results by BBO-TLBO and 

Optimized Data for Part 1 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual time of Part 1 11 11 12 19 11 15 19 15 

Results from BBO-

TLBO of Part 1 
6.365 8.252 8.816 8.46 9.572 8.723 7.63 9.343 

Optimized Process 

time data for Part 1 
4.635 2.475 3.184 10.54 1.428 6.277 11.387 5.657 

 

 

Figure 4.23: Graph Showing the Cumulative Validation of Actual data, results by BBO-

TLBO and Optimized Data for Part 1 

The values of the optimized times for all the other machines varies between these two. Figure 

4.23 cumulatively displays the actual process time, results from heuristic and the optimized 

time for part 1. The x-axis of the graph displays the number of machines and y-axis displays 

the processing time. The blue bars denote the actual process time on the respective machines 

holds the highest peaks, but the red bars showing the results from heuristic are significant and 

optimizes the process time on every machine. 
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4.4.1.2 Validation of generated results for Process time (in minutes) for Part 2 on all the 

machines. 

By comparing the actual data of part 1 and the results obtained from the heuristic BBO-TLBO, 

it is evident from the Table 4.25, that the processing time of the Part 1 on all the machines has 

been reduced. Table 4.25 displays the reduced values of actual process time of every machine 

from M1 to M8 for part 2. 

Table 4.25: Depiction of Actual Process Time and Results by BBO-TLBO Heuristic (in min) 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual Process 

time of Part 2 

12 11 15 21 13 14 24 17 

Results from BBO-

TLBO of Part 2 

7.402 7.266 7.565 7.564 8.311 8.592 8.343 8.206 

 

               

Figure 4.24: Graph Showing the Actual Process Time and Results by BBO-TLBO Heuristic 

(in min) 

 

Table 4.26: Depiction of Results by BBO-TLBO Heuristic and Optimized Time (in min) 

 M1 M2 M3 M4 M5 M6 M7 M8 

Results from BBO-

TLBO of Part 1 7.402 

7.266 7.565 7.564 8.311 8.592 8.343 8.206 

Optimized Time for 

Part 2 4.598 

3.734 7.435 13.436 4.689 5.408 15.657 8.794 

Figure 4.24 displays the data of Table 4.21 in the form of bars. The x-axis of the graph displays 

the number of machines and y-axis displays the processing time. The red bars displaying the 

results obtained from BBO-TLBO heuristic are considerably less than the actual value of the 
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processing time. Table 4.26 contains the results obtained from the proposed heuristic and the 

optimized time. The optimized time is the difference between the actual data and the results 

obtained. The optimized time shows the quality of the results and the effectiveness of the 

heuristic in minimizing the values processing time. Figure 4.25 depicts the results obtained 

from heuristic and the optimized value of the process time for part 1 on all the machines. The 

x-axis of the graph displays the number of machines and y-axis displays the processing time. 

The minimum optimized time is 3.734 min on machine M2 and the maximum is 15.657 min 

on the machine M7. This is evident from the red bars of the graph that the heuristic is able to 

optimize a significantly on all the machines for part 1. 

                

Figure 4.25: Graph Showing Results by BBO-TLBO Heuristic and Optimized Process Time 

(in min) 

Table 4.27 shows the actual time spent by the part 2 in the industry and the optimized time 

obtained from the proposed heuristic. It is clearly evident from the table that the proposed 

heuristic has been able to optimize the process time for part 2 on all the machines. 

Table 4.27: Depiction of Actual Process Time and Optimized time (in min) 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual Process time 

of Part 2 

12 11 15 21 13 14 24 17 

Optimized  Process 

Time for Part 2 

4.598 3.734 7.435 13.436 4.689 5.408 15.657 8.794 

Figure 4.26 displays the actual processing time and the optimized time for part 1 on all the 

machines. The x-axis of the graph displays the number of machines and y-axis displays the 

processing time. The blue bars shown as the actual time are much bigger than the red bars 
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showing the optimized time, but are able to significantly cut the slack of the processing time. 

The most processing time 21 min is employed to machine M4, and the most optimized time 

15.657 min is on machine M7. 

 

Figure 4.26: Graph Showing Actual Process Time and Optimized Process Time (in min) 

Table 4.28 displays the combined set of actual data, results by heuristic BBO-TLBO and the 

optimized data for part 2 corresponding to each machine. The minimum optimized cycle time 

is on the machine M2 with 3.734 min and the maximum is on the machine M7 with 15.657 

min. The values of the optimized times for all the other machines varies between these two. 

Figure 4.27 cumulatively depicts the actual process time, results from heuristic and the 

optimized time for part 2. The x-axis of the graph displays the number of machines and y- axis 

displays the processing time. The blue bars denote the actual process time on the respective 

machines holds the highest peaks, but the red bars showing the results from heuristic are 

significant and optimizes the process time on every machine. 

Table 4.28: Depiction of Cumulative Validation of Actual data, results by BBO-TLBO and 

Optimized Data for Part 2 

Machines M1 M2 M3 M4 M5 M6 M7 M8 

Actual Process time 

of Part 2 

12 11 15 21 13 14 24 17 

Results from BBO-

TLBO of Part 2 

7.402 7.266 7.565 7.564 8.311 8.592 8.343 8.206 

Optimized Time for 

Part 2 

4.598 3.734 7.435 13.436 4.689 5.408 15.657 8.794 
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Figure 4.27: Graph Showing the Cumulative Validation of Actual Data, Results by BBO-

TLBO and Optimized Data for Part 2 

4.4.2 Validation of Results for the Objective of Minimization of Cycle Time 

Table 4.29 and Table 4.30 show the actual data used to form the various objective functions 

and the results generated form the proposed heuristic, respectively. Now, as there are two parts 

namely part 1 and part 2, which were worked upon eight different machines namely M1 to M8, 

so cycle time will be validated for both the parts separately. 

Table 4.29: Depiction of the Actual Data of Cycle Time (in minutes) from Industry 

 M1 M2 M3 M4 M5 M6 M7 M8 

Part 1 17 18 19.5 30.5 18 24 33 31.5 

Part 2 18.5 18 23.5 34 19.5 22 34.5 30 

 

Table 4.30: Depiction of the Results Generated (in minutes) from Proposed BBO-TLBO 

Heuristic 

 M1 M2 M3 M4 M5 M6 M7 M8 

Part 1 13.139 11.426 13.013 15.083 13.687 13.842 14.707 13.251 

Part 2 12.106 12.169 12.955 13.012 13.475 11.786 12.840 14.858 

  

4.4.2.1 Validation of generated results for cycle time (in minutes) for part 1 on all the machines. 

By comparing the actual data of part 1 and the results obtained from the heuristic BBO-TLBO, 

it is evident from the Table 4.31, that the cycle time of the part 1 on all the machines has been 

reduced. Table 4.31 displays the reduced values of actual process time of every machine from 

M1 to M8 for part 1.  
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Table 4.31: Depiction of Actual Data of cycle Time and Results Generated (in minutes) from 

Proposed BBO-TLBO Heuristic for Part 1 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual data of 

cycle time Part 

1 

   17 18 19.5 30.5 18 24 33 31.5 

Results 

produced by 

BBO-TLBO for 

Part 1 

13.139 11.426 13.013 15.083 13.687 13.842 14.707 13.251 

 

 

Figure 4.28: Graph Displaying the Actual Data of Cycle Time and Results Generated (in 

minutes) from Proposed BBO-TLBO Heuristic for Part 1 

Figure 4.28 displays the above data of Table 4.29 in the form of bars. The x-axis of the graph 

displays the number of machines and y-axis displays the processing time. The red bars 

displaying the results obtained from BBO-TLBO heuristic are considerably less than the actual 

value of the processing time. 

Table 4.32: Depiction of Results Generated (in minutes) from Proposed BBO-TLBO 

Heuristic and the Optimized data for Part 1 

 M1 M2 M3 M4 M5 M6 M7 M8 

Results 

produced by  

BBO-TLBO for 

Part 1 

13.139 11.426 13.013 15.083 13.687 13.842 14.707 13.251 

Optimized Data 

for part 1 

3.861 6.574 6.487 15.417 4.313 10.158 18.293 18.249 
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Table 4.32 contains the results obtained from the proposed heuristic and the optimized time. 

The optimized time is the difference between the actual data and the results obtained. The 

optimized time shows the quality of the results and the effectiveness of the heuristic in 

minimizing the values of cycle time. Figure 4.29 display the results obtained from heuristic 

and the optimized value of the cycle time for part 1 on all the machines. The x-axis of the graph 

displays the number of machines and y-axis displays the processing time. The minimum 

optimized time is 3.861 min on machine M1 and the maximum is 18.293 min on the machine 

M7. This is evident from the red bars of the graph that the heuristic is able to optimize a 

significantly on all the machines for part 1. 

 

Figure 4.29: Graph Showing the Results Generated (in minutes) from Proposed BBO-TLBO 

Heuristic and the Optimized Data for Part 1 

Table 4.33: Depiction of Actual Data and Optimized Data for Part 1 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual data of cycle 

time Part 1 

17 18 19.5 30.5 18 24 33 31.5 

Optimized Data for 

Part 1 

3.861 6.574 6.487 15.417 4.313 10.158 18.293 18.249 

Table 4.33 depicts the actual time spent by the part 1 in the industry and the optimized time 

obtained from the proposed heuristic. It is clearly evident from the table that the proposed 

heuristic has been able to optimize the cycle time for part 1 on all the machines. Figure 4.30 

displays the actual cycle time and the optimized time for part 1 on all the machines. The x-axis 

of the graph displays the number of machines and y-axis displays the processing time. The 
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blue bars shown as the actual time are much bigger than the red bars showing the optimized 

time, but are able to significantly cut the slack of the processing time. 

 

                Figure 4.30: Graph Showing Actual Data and Optimized Data for Part 1 

The most cycle time is employed to machine M8, and the most optimized time 18.293 min is 

on machine M7. Table 4.34 depicts the combined set of actual data, results by heuristic BBO-

TLBO and the optimized data for Part 1 corresponding to each machine. The minimum 

optimized time is on the machine M1 with 3.861 min and the maximum is on the machine M7 

with 18.293 min. The values of the optimized times for all the other machines varies between 

these two. Figure 4.31 cumulatively displays actual cycle time, results from BBO-TLBO 

heuristic and the optimized time for part 1. The x-axis of the graph displays the number of 

machines and y-axis displays the cycle time.  

Table 4.34: Depiction of Actual Data, Results Generated from Proposed BBO-TLBO 

Heuristic and Optimized Data (in minutes) for Part 1 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual data of 

cycle time Part 

1 

17 18 19.5 30.5 18 24 33 31.5 

Results 

produced by 

BBO-TLBO for 

Part 1 

13.139 11.426 13.013 15.083 13.687 13.842 14.707 13.251 

Optimized Data 

for Part 1 

3.861 6.574 6.487 15.417 4.313 10.158 18.293 18.249 
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The blue bars denote the actual process time on the various machines, holds the highest peaks, 

but the red bars showing the results from heuristic are significant and optimizes the cycle time 

on every machine. 

 

Figure 4.31: Graph Showing the Cumulative Display of Actual Data, Results Generated 

from     Proposed BBO-TLBO Heuristic and Optimized Data (in minutes) for Part 1 

4.4.2.2 Validation of generated results for cycle time (in minutes) for part 2 on all the machines 

By comparing actual data of part 2 and the results obtained from the heuristic BBO – TLBO, 

it is evident from table 4.35, that cycle time of the part 2 on all the machines has been reduced. 

Table 4.35 displays the reduced values of actual cycle time of every machine from M1 to M8 

for part 1. 

Table 4.35: Depiction of Actual Data of cycle Time and Results Generated (in minutes) from 

Proposed BBO-TLBO Heuristic for Part 2 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual Cycle 

Time data Part 

2 

17 18 19.5 30.5 18 24 33 31.5 

Results from 

BBO-TLBO 

for part 2 

12.106 12.169 12.955 13.012 13.475 11.786 12.840 14.858 

Figure 4.32 displays the above data of table 4.33 in the form of bars. The x-axis of the graph 

displays the number of machines and y-axis displays the processing time. The red bars 
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displaying the results obtained from BBO-TLBO heuristic are considerably less than the actual 

value of the cycle time.  

 

Figure 4.32: Graph Displaying the Actual Data of cycle Time and Results Generated (in 

minutes) from Proposed BBO-TLBO Heuristic for Part 2 

Table 4.36: Depiction of Results Generated (in minutes) from Proposed BBO-TLBO 

heuristic and the Optimized data for Part 2 

 M1 M2 M3 M4 M5 M6 M7 M8 

Results from 

BBO-TLBO 

for part 2 

12.106 12.169 12.955 13.012 13.475 11.786 12.840 14.858 

Optimized 

Data for Part 2 

4.894 5.831 6.488 17.025 4.525 12.214 20.16 16.642 

 

 

Figure 4.33: Graph showing the Results Generated (in minutes) from Proposed BBO-TLBO 

Heuristic and the Optimized Data for Part 2 
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Table 4.36 contains the results obtained from the proposed heuristic and the optimized time. 

The optimized time is the difference between the actual data and the results obtained. The 

optimized time shows the quality of the results and the effectiveness of the heuristic in 

minimizing the values of cycle time for part 2 on all the machines. Figure 4.33 illustrates the 

results obtained from heuristic and the optimized value of the cycle time for part 1 on all the 

machines. The x-axis of the graph displays the number of machines and y-axis displays the 

processing time. The minimum optimized time is 4.894 min on machine M1 and the maximum 

is 20.16 min on the machine M7. This is evident from the red bars of the graph that heuristic 

is able to optimize a significantly on all the machines for part 2. 

Table 4.37: Depiction of Actual Data and Optimized Data for Part 2 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual Cycle 

Time data Part 2 

17 18 19.5 30.5 18 24 33 31.5 

Optimized Data 

for Part 2 

4.894 5.831 6.488 17.025 4.525 12.214 20.16 16.642 

Table 4.37 shows the actual time spent by the part 2 in the industry and the optimized time 

obtained from the proposed heuristic. It is clearly evident from the table that the proposed 

heuristic has been able to optimize the process time for part 2 on all the machines.  

 

Figure 4.34: Graph Showing the Actual Cycle Time Data and Optimized Cycle Time for 

Part 2 

Figure 4.34 displays the actual cycle time and the optimized time for part 2 on all the machines. 

The x-axis of the graph displays the number of machines and y-axis displays the processing 

time. The blue bars shown as the actual time are much bigger than the red bars showing the 
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optimized time, but are able to significantly cut the slack of the processing time. The most 

processing time is employed to machine M7, and the most optimized time 20.16 min is on 

machine M7. Table 4.38 displays the combined set of actual data, results by heuristic BBO-

TLBO and the optimized data for part 2 corresponding to each machine. The minimum 

optimized time is on the machine M5 with 4.525 min and the maximum is on the machine M7 

with 20.16 min. The values of the optimized times for all the other machines varies between 

these two. Figure 4.35 cumulatively displays the actual process time, results from heuristic and 

the optimized time for part 2. The x-axis of the graph displays the number of machines and y-

axis displays the cycle time. The blue bars denote the actual process time on 

Table 4.38: Depiction of Actual Data, Results Generated from Proposed BBO-TLBO 

Heuristic and Optimized Data (in minutes) for Part 2 

 M1 M2 M3 M4 M5 M6 M7 M8 

Actual Cycle 

Time data Part 2 

17 18 19.5 30.5 18 24 33 31.5 

Results from 

BBO-TLBO for 

part 2 

12.106 12.169 12.955 13.012 13.475 11.786 12.84

0 

14.858 

 

Optimized Data 

for Part 2 

4.894 5.831 6.488 17.025 4.525 12.214 20.16 16.642 

the respective machines holds the highest peaks, but the red bars showing the results from 

heuristic are significant and optimizes the process time on every machine. 

 

Figure 4.35: Graph Showing the Cumulative Display of Actual Data, Results Generated 

from Proposed BBO-TLBO Heuristic and Optimized Data (in minutes) for Part 2 
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4.4.3 Optimization of the Model  

Optimization is the process of reducing the function to the minimum value or maximizing the 

function to its upper limit. The difference between actual value and mean value of the obtained 

results is considered as the optimized value for the respective part and machine. The optimized 

result shows the capability of the developed BBO-TLBO heuristic to reduce from a certain 

minimum to a maximum values between the set of various machines for both the parts, 

separately. The subsections 4.4.3.1 and 4.4.3.2 described the optimization values for part 1 and 

part 2 on each machine, respectively. 

4.4.3.1 Optimization of Part 1 and Part 2 taking process time as the objective 

The optimization of process time takes place on every machine from M1 to M8. But the value 

of optimized time differs on each machine. Table 4.39 shows the combined process time of 

part 1 and part 2 on each machine and combined optimized time on that respective machine. 

On machine M1 the combined process time of part 1 and part 2 is optimized from 23 min by 

9.233 min. On machine M2 the combined process time of part 1 and part 2 is optimized from 

22 min by 6.209 min. On machine M3 the combined process time of part 1 and part 2 is 

optimized from 27 min by 10.619 min. On machine M4 the combined process time of part 1 

and part 2 is optimized from 40 min by 23.976 min. On machine M5 the combined process 

time of part 1 and part 2 is optimized from 24 min by 6.117 min. On machine M6 the combined 

process time of part 1 and part 2 is optimized from 29 min by 11.685 min. On machine M7 the 

combined process time of part 1 and part 2 is optimized from 39 min by 22.044 min. On 

machine M8 the combined process time of part 1 and part 2 is optimized from 32 min by 14.364 

min.     

Table 4.39: Cumulative Depiction of Total Process Time and Total Optimized Time for Part 

1 and Part 2 on Various Machines 

Part 1 and Part 

2 

M1 M2 M3 M4 M5 M6 M7 M8 

Total Process 

Time 

23 22 27 40 24 29 39 32 

Total Optimized 

Process Time 

9.233 6.209 10.619 23.976 6.117 11.685 22.044 

 

14.364 

 

Figure 4.36 depicts the comparison between the total processing time and optimized processing 

time of part 1 and part 2 by the results obtained from implementation of developed BBO-TLBO 
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heuristic. The most optimized machine time for part 1 and part 2 is on machine M4 where 

23.976 min are optimized from the combined processing time of 40 min. The least optimized 

time is found on machine M2 where the combined process time of 22 min is optimized by 

6.209 min. The rest of the machines are optimized within the range of 6.209 min to 23.976 

min.    

              

Figure 4.36: Graph Depicting the Total Process Time and Total Optimized Time for Part 1 

and Part 2 on Various Machines 

4.4.3.2 Optimization of the constraints set up time and backlogging of part 1 and part 2 taking 

cycle time as the objective  

The optimization of cycle time which includes the sequence dependent set up time and 

backlogging time for both the parts takes place on every machine from M1 to M8. The value 

of optimized cycle time differs on each machine. Table 4.40 shows the combined process time 

of part 1 and part 2 on each machine and combined optimized time on that respective machine. 

On machine M1 the combined process time of part 1 and part 2 is optimized from 35.5 min by 

8.755 min. On machine M2 the combined process time of part 1 and part 2 is optimized from 

36 min by 12.405 min. On machine M3 the combined process time of part 1 and part 2 is 

optimized from 43 min by 12.475 min. On machine M4 the combined process time of part 1 

and part 2 is optimized from 64.5 min by 32.442 min. On machine M5 the combined process 

time of part 1 and part 2 is optimized from 37.5 min by 8.838 min. On machine M6 the 

combined process time of part 1 and part 2 is optimized from 42 min by 22.372 min. On 
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machine M7 the combined process time of part 1 and part 2 is optimized from 67.5 min by 

38.453 min. On machine M8 the combined process time of part 1 and part 2 is optimized from 

61 min by 32.886 min.  

Table 4.40: Cumulative Depiction of Total Cycle Time and Total Optimized Time for Part 1 

and Part 2 on Various Machines 

Part 1 and Part 

2 

M1 M2 M3 M4 M5 M6 M7 M8 

Total cycle 

Time 

35.5 36 43 64.5 37.5 46 67.5 61.5 

Total Optimized 

cycle Time 

8.755 12.405 12.975 32.442 8.838 22.372 38.453 

 

32.886 

 

Figure 4.37 shows the comparison between the total cycle time and optimized cycle time of 

part 1 and part 2 by the results obtained from implementation of developed BBO-TLBO 

heuristic. The most optimized machine time for part 1 and part 2 is on machine M8 where 

32.886 min are optimized from the combined processing time of 61.5 min. The least optimized 

time is found on machine M1 where the combined process time of 35.5 min is optimized by 

8.755 min. The rest of the machines are optimized between the range 8.755 min to 32.886 min.   

 

Figure 4.37: Graph Depicting the Total Cycle Time and Total Optimized Cycle Time for 

Part 1 and Part 2 on Various Machines 
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4.5 DISCUSSION OF RESULTS 

The flow shop scheduling problems are studied from the past many decades by utilizing the 

many heuristics as described in the literature review. Here, a new heuristic proposed named as 

BBO-TLBO which utilizes the features of both the methods has been employed. The software 

used to run the heuristic and evaluate the results was MATLAB. The software was run on 

Windows 10 1.5 GHz quadcore processor with 4 GB RAM. The processing time for each 

function was approximately 3 sec. The processing time of the software depends upon the 

number of iterations and the configuration of the computer system used. More the number of 

iterations more will be time taken by the processor to evaluate the results. The two objectives 

which are solved using this software are minimization of the process time and cycle time, 

respectively. As the two objectives are being solved, so the considered problem can be termed 

as multi-objective flow shop scheduling. The subsections 4.5.1 and 4.5.2 below discusses the 

results related to each objective separately.  

4.5.1 Discussion of Results for Minimization of Process Time 

Table 4.1 to 4.8 and Figure 4.2 to 4.9 show the results produced using BBO-TLBO for the 

different functions for the minimization of process time for both the parts. The function 11 x 

(1) + 12 x (2) ≤ 60 is solved in table 4.1, which reduces the actual value of  processing time 

from 11 min of part 1 to 6.365 min and 12 min of part 2 to 7.402 min. The value of the variable 

used by proposed heuristic in the analysis for part 1 ranges from 1.552 to 10.964 and for part 

2 ranges from 1.249 to 14.865. The minimum and maximum value of function is 53.891 and 

248.132, respectively. The function 11 x (1) + 11 x (2) ≤ 90 is solved in table 4.2, which 

reduces the value of processing time of part 1 from 11 min to 8.252 min and that of part 2 from 

11 min to 7.266 min. The value of the variable used by proposed heuristic in the analysis for 

part 1 ranges from 1.817 to 13.268 and for part 2 ranges from 1.741 to 13.176. The minimum 

and maximum value of function is 39.147 and 286.506, respectively. The function 12x (1) + 

15 x (2) ≤ 90 is solved in table 4.3, which reduces the value of processing time of part 1 from 

12 min to 8.816 min and that of part 2 from 15 min to 7.565 min. The value of the variable 

used by proposed heuristic in the analysis for part 1 ranges from 1.889 to 14.099 and for part 

2 ranges from 1.005 to 14.621. The minimum and maximum value of function is 47.082 and 

359.482, respectively. The function 19 x (1) + 21 x (2) ≤ 100 is solved in table 4.4, which 

reduces the value of processing time of part 1 from 19 min to 8.460 min and that of part 2 from 
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21 min to 7.564 min. The value of the variable used by proposed heuristic in the analysis for 

part 1 ranges from 2.577 to 13.019 and for part 2 ranges from 1.325 to 13.288. The minimum 

and maximum value of function is 106.110 and 508.111, respectively. The function 11 x (1) + 

13x (2) ≤ 60 is solved in table 4.5, reduces the value of processing time of part 1 from 11 min 

to 9.572 min and that of part 2 from 13 min to 8.311 min. The value of the variable used by 

proposed heuristic in the analysis for part 1 ranges from 2.359 to 14.405 and for part 2 ranges 

from 1.499 to 14.424. The minimum and maximum value of function is 75.049 and 345.971, 

respectively. The function 15 x (1) + 14 x (2) ≤ 120 is solved in table 4.6, which reduces the 

value of processing time of part 1 from 15 to 8.723 and that of part 2 from 14 min to 8.592. 

The value of the variable used by proposed heuristic in the analysis for part 1 ranges from 

1.288 to 14.615 and for part 2 ranges from 1.101 to 14.556. The minimum and maximum value 

of function is 44.559 and 389.070, respectively. The function 19 x (1) + 14 x (2) ≤ 90 is solved 

in table 4.7, which reduces the value of processing time of part 1 from 19 min to 7.613 min 

and that of part 2 from 14 min to 8.343 min. The value of the variable used by proposed 

heuristic in the analysis for part 1 ranges from 1.371 to 14.924 and for part 2 ranges from 1.897 

to 13.463. The minimum and maximum value of function is 178.588 and 556.059, respectively. 

The function 15 x (1) + 17 x (2) ≤ 120 is solved in table 4.8, which reduces the value of 

processing time of part 1 from 15 min to 9.343 min and that of part 2 from 17 min to 8.206 

min. The value of the variable used by proposed heuristic in the analysis for part 1 ranges from 

1.285 to 14.762 and for part 2 ranges from 1.578 to 14.698. The minimum and maximum value 

of function is 87.518 and 463.758, respectively. 

4.5.2 Discussion of Results for Minimization of Cycle Time  

Table 4.9 to 4.16 and Figure 4.10 To 4.17 show the results generated by using BBO-TLBO 

heuristic for all the functions related cycle time in order to minimize the objective. The function 

17 x (1) + 18.5 x (2) ≤ 60 is solved in table 4.9, which reduces the value of cycle time of part 

1 from 17 min to 13.139 min and that of part 2 from 18.5 min to 12.106 min. The value of the 

variable used by proposed heuristic in the analysis for part 1 ranges from 2.680 to 23.770 and 

for part 2 ranges from 2.557 to 23.640. The minimum and maximum value of function is 

235.570 and 775.506, respectively. The function 18 x (1) + 18 x (2) ≤ 90 is solved in table 

4.10, which reduces the value of cycle time of part 1 from 18 min to 11.426 min and that of 

part 2 from 18 min to 12.169 min. The value of the variable used by proposed heuristic in the 



112 
 

analysis for part 1 ranges from 1.904 to 23.748 and for part 2 ranges from 4.635 to 21.626. The 

minimum and maximum value of function is 206.277 and 716.629, respectively. The function 

19.5 x (1) + 23.5 x (2) ≤ 90 is solved in table 4.11, which reduces the value of cycle time of 

part 1 from 19.5 min to 13.013 min and that of part 2 from 23.5 min to 12.955 min. The value 

of the variable used by proposed heuristic in the analysis for part 1 ranges from 1.558 to 23.894 

and for part 2 ranges from 1.174 to 23.277. The minimum and maximum value of function is 

110.574 and 908.785, respectively. The function 30.5 x (1) + 34x (2) ≤ 100 is solved in table 

4.12, which reduces the value of cycle time of part 1 from 30.5 min to 15.083 min and that of 

part 2 from 34 min to 13.012 min. The value of the variable used by proposed heuristic in the 

analysis for part 1 ranges from 3.234 to 23.018 and for part 2 ranges from 1.792 to 23.833. The 

minimum and maximum value of function is 1486.031 and 294.867, respectively. The function 

18 x (1) + 19.5 x (2) ≤ 60 is solved in table 4.13, which reduces the value of cycle time of part 

1 from 18 min to 13.687 min and that of part 2 from 19.5 min to 13.475 min. The value of the 

variable used by proposed heuristic in the analysis for part 1 ranges from 1.474 to 23.368 and 

for part 2 ranges from 1.166 to 23.029. The minimum and maximum value of function is 

805.804 and 71.733, respectively. The function 24 x (1) + 22 x (2) ≤ 120 is solved in table 

4.14, which reduces the value of cycle time of part 1 from 24 min to 13.842 min and that of 

part 2 from 22 min to 11.786 min. The value of the variable used by proposed heuristic in the 

analysis for part 1 ranges from 2.461 to 22.520 and for part 2 ranges from 1.008 to 23.377. The 

minimum and maximum value of function is 103.739 and 983.437, respectively. The function 

33 x (1) + 34.5 x (2) ≤ 100 is solved in table 4.15, which reduces the value of cycle time of 

part 1 from 33 min to 14.707 min and that of part 2 from 34.5 min to 12.840 min. The value of 

the variable used by proposed heuristic in the analysis for part 1 ranges from 1.468 to 22.782 

and for part 2 ranges from 1.949 to 23.704. The minimum and maximum value of function is 

253.799 and 1562.736, respectively. The function 31.5 x (1) + 30 x (2) ≤ 120 is solved in table 

4.16, which reduces the value of cycle time of part 1 from 31.5 min to 13.251 min and that of 

part 2 from 30 min to 14.858 min. The value of the variable used by proposed heuristic in the 

analysis for part 1 ranges from 4.293 to 23.354 and for part 2 ranges from 1.535 to 23.213. The 

minimum and maximum value of function is 201.215 and 1404.033, respectively. 
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CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE OF WORK 

The scheduling problems have always been the center of research right from the past many 

decades. Out of the various types of scheduling, flow shop scheduling (FSS) related problems 

has garnered the attraction of researchers due to its vast utilization in the global industries. The 

flow shop environment demands the same process sequence of all the products which makes 

it easy for a manufacturing unit to execute and produce variety of products. Many objectives 

have been considered by the researchers over the time such as makespan, tardiness, earliness, 

completion time and so on. The objectives considered in the present research are minimization 

of process time and cycle time, respectively. Due to the two undertaking of two objectives, the 

present proposed problem becomes multi-objective flow shop scheduling problem (MFSP). 

Sequence Dependent Setup Times (SDST) and introduction of Backlogging in the cycle time 

makes the problem more complex. Efficient handling of Sequence Dependent Set-up Times 

(SDST) is one of the important elements to increase manufacturing organization performance 

and experiences to be looked separately from the processing time. This type of MFSP problems 

are considered as NP hard, whose exact solutions cannot be determined. The various heuristics 

developed and used in the previous researches are discussed in Chapter 1 of introduction and 

Chapter 2 of literature models. The present proposed work employs two young heuristics 

namely, Biogeography Based Optimization (BBO) and Teacher Learning Based Optimization 

(TLBO). These both are combined together in order to design a novel hybrid heuristic utilizing 

the migration and mutation phase of BBO, along with teacher phase of TLBO. TLBO’s teacher 

phase based BBO heuristic examines stated scheduling problem. The proposed heuristic is able 

to minimize the process time and cycle time of two parts, machining on the eight different 

machines. Further, the comparisons have been shown in order to validate the results from the 

proposed heuristic corresponding to the actual data used to form the objective functions. The 

analytical results address that the proposed heuristic is effective in minimizing the desired 

functions and fully finds its application in flow shop scheduling environment. 

 

5.1 CONCLUSIONS  

In the present research, a new heuristic model is proposed depending on search algorithms for 

production scheduling and also developed a programming in MATLAB to solve multi-

objective scheduling problems to develop the present scheduling process efficient. The 
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proposed algorithm can be used for analyzing scheduling problems up to eight machines. 

Otherwise, there are some cases to be considered as mentioned. Some of the major discovering 

conclusions from the confront work experienced as follows: 

 (i) The process time and the cycle time have been minimized using the proposed BBO-TLBO 

heuristic and the optimized results contribute that the variation in the objective function. The 

respective function will goes on decreasing with increase in the number of iterations. The 

successive iterations utilize the different value of the variables, hence maintaining the diversity 

in the set of solutions. 

(ii) Sequence Dependent Setup Time (SDST) and Backlogging time were configured with 

multi-objective flow shop scheduling problem to make the system more realistic. This is 

accomplished as multiple decisions are often required in this dynamic and competitive 

surrounding. Keeping these conflicting conditions in mind, the propose heuristic tends to find 

the effective solutions undertaking then concerned conditions.  

(iii) The actual data i.e., process time and cycle time are optimized using proposed BBO-TLBO 

heuristic. For part 1, the processing time on the eight machines has been optimized ranging 

between 1.4 to 11.3 minutes and optimized process time of part 2 ranges between 3.7 to 13.4 

minutes. The optimized cycle time of part 1 ranges between 3.8 to 10.3 minutes and optimized 

cycle time of part 2 ranges between 4.8 to 12.2 minutes. The population size is 20, number of 

variables are 2, number of iterations are 20. Therefore, the reduced time refers the effectiveness 

of the proposed hybrid heuristic algorithm and hence, it makes the system more reliable. 

(iv) The Performance of proposed hybrid BBO-TLBO heuristic displays the wide range of 

results to choose from and analyze the functions deeply. This is evident from the examination 

of the results which shows the tendency of heuristic to achieve the bounded values. Hence, it 

is capable of formulating most beneficial results. The optimized results will be affected with 

changes in the number of machines, variables, lower and upper bound limits.  

(v) The proposed research will suggest the minimization of other objectives such as earliness, 

tardiness, total transportation time, delay time, weighted functions as well can be minimized 

using proposed novel hybrid BBO-TLBO heuristic and the results can be compared with other 

heuristics algorithms listed in the literature. 

(vi) The manufacturing system with many products (jobs) and machines can be studied 

containing many number of variables as well, when configured with the righteous objective 
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functions. The formulation of the objective functions needs to be performed separately in order 

to avoid any miscalculations. 

 

5.2 RECOMMENDATIONS  

The following are the recommendations which will be helpful in exploring the present work in 

order to experiment to make it more reliable.  

(i) The present proposed work strongly would recommend to form as much as novel 

combinations of the selected heuristics while designing or developing the hybrid method. The 

present study utilizes hybrid BBO-TLBO heuristic to optimize the dual objectives of process 

time and cycle time. The bucket of combinations will give the researcher an opportunity to 

decide the best combination for producing results. Moreover, the researcher can be capable of 

designing a thoroughly new method for the concerned problem. 

(ii) The proposed research work would suggest the selection of the objectives, parameters and 

their values should be in accordance to the standards in the base paper, industrial reports from 

authenticated and peer-reviewed before formulation of the objective functions. The objective 

functions in the present work are framed after analyzing the actual data from the industry. This 

ensures the quality of data and moreover, the results can be reverted back to the industry to 

make the same manufacturing unit more efficient than earlier system. 

(iii) The present study would recommend the selection of various values of constants such as 

lower bound; upper bound; number of variables; population rates and number of iterations and 

so on which remain constant throughout the iterating process based upon the requirement of 

data to be optimized and the feasibility of post results. The quality of solutions generated will 

be affected by the variation in the values of the former. Further, it is also recommended, if 

possible, to choose different values of the above constants according to the objective function 

under consideration. 

(iv) The present work would suggest to include the various real life constraints as investgated 

in the present work, such as SDST and backlogging, so as to apply the results obtained by 

utilizing the developed method in real life scenario as well. The constraints are necessary 

because of the complex multi-product manufacturing units used in the global market to produce 

a wide range of products on the same unit and it is often that different products are 

manufactured with different constraints as they differ in specifications. 
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(v) The proposed study would synthesize application of MATLAB for the evaluation of 

optimization of linear and non-linear functions. In the proposed work, objective functions for 

minimization of process time and cycle time are successfully evaluated using BBO-TLBO 

hybrid heuristic coded in MATLAB. The research work recommends the subjective study of 

software beforehand in order to obtain familiarity of modelling in the software. Further, the 

present work recommends utilization of contemporary software such as C, C++,C #, JAVA 

and others, as an alternative for the evaluation of the objective functions. These all differ in 

coding but capable of delivering the results of iterative loops and are highly utilized by 

researchers, as reviewed in literature. 

 

5.3 FUTURE SCOPE OF WORK  

The proposed research work presented a design of novel hybrid heuristic for multi-objective 

flow shop scheduling. Hence it is very naive and open to the any type of explorations which 

expands the horizon of the proposed BBO-TLBO heuristic. Below are some of the aspects in 

which the present work can be made more versatile for scheduling problems.  

(i) The proposed work has been restricted to define the performance measures like minimizing 

process time and cycle time in the proposed BBO-TLBO heuristic. There are number of 

objectives such as total weighted squared tardiness, earliness, make-span, total weighted 

squared earliness and number of tardy jobs, delay time, completion time and so on which can 

be solved using the proposed hybrid heuristic. These objectives can be solved individually or 

taken multiple at time.  

(ii) Advancements in creating a user friendly interaction in MATLAB to enable the user to 

easily input the values and moreover to modify any functions, will prove to be a significant 

improvement. Not only, the modifications if the software may be able to show some relevant 

information regarding the respective methods used, will be a revolutionary step in the working 

experience of the software world. Moreover, some other software such as JAVA, C, C++ can 

be utilized to code the same heuristics.  

(iii) The proposed heuristics can be combined with other heuristics, enlisted in the literature 

such as GA, SA, PSO, TS, IA, DE or any other recently developed methods to make it more 

competent with the contemporary heuristics used to solve scheduling problems. Also, the 
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proposed BBO-TLBO can be used to solve problems of fields other than mechanical, such as 

computer, electronics, and food processing and so on. 

(iv) The proposed heuristics can be developed further to give the faster results with the 

increased number of iterations so as to make the heuristic more efficient. The quality of the 

solutions can also be seen as an aspect to focus on, by making some amendments in the 

parameters in order to generate better results. The effectiveness of algorithms is always under 

radar, and analyzing the results delivered in present work, selection of the variables to obtain 

the function value can be a subject of improvement during the working of heuristic. 

(v) The working of proposed heuristic can be made dynamic so as to enable the user to input 

or modify the values in between the process. Dynamicity of algorithms has always remained a 

big task among the researchers. The current world manufacturing systems demands to be more 

competent, efficient with high production volumes of the diversified specifications of the 

products. Hence, developing the BBO-TLBO heuristic to attain dynamicity will nurture novel 

and reliable results for the industries to make manufacturing systems more effective.   
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