PREPARATION AND EVALUATION OF *VINCA ROSEA* ENRICHED FRUIT BASED BEVERAGES

Dissertation I Report

Submitted by

ANKIT CHOUDHARY

Registration No. - 11705804

Programme – M.Sc. (FOOD TECHNOLOGY)

Section H1730

School of Agriculture

Lovely Professional University, Phagwara

Transforming Education Transforming India

Under the Guidance of

Dr. Vikas Kumar

Assistant Professor

School of Agriculture

Lovely Professional University, Phagwara

CERTIFICATE

This is to certify that Ankit Choudhary has personally completed M.Sc. Pre-dissertation entitled, "*Preparation and evaluation of Vinca rosea enriched fruit based beverages*" under my guidance and supervision. To the best of my knowledge, the present work is the result of his original investigation and study. No part of pre-dissertation has ever been submitted for any other purpose at any University.

The project report is appropriate for the submission and the partial fulfilment of the conditions for the evaluation leading to the award of Master of Food Technology.

Signature of Supervisor

Dr. Vikas Kumar Assistant Professor School of Agriculture Lovely Professional University, Phagwara

DECLARATION

I hereby declare that the work presented in the pre- dissertation report entitled "Preparation and evaluation of Vinca rosea enriched fruit based beverages" is my own and original. The work has been carried out by me at School of Agriculture, Lovely Professional University, Phagwara, Punjab, India under the guidance of Dr.Vikas Kumar, Assistant Professor (Food Technology) of School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, for the award of the degree of Master of Science in Food Technology.

Date:

Ankit Choudhary

Place: Phagwara, Punjab (India)

Registration No.: 11705804

I certified that the above statement made by the student is correct to the best of my knowledge and belief.

Place: Phagwara, Punjab (India) Date:

Dr. Vikas Kumar

Assistant Professor (Food Technology) School of Agriculture Lovely Professional University Phagwara, Punjab,India

INDEX

CHAPTERS	TOPICS	PAGE NO.
1.	Introduction	
2.	Problem Background	
3.	Review of Literature	
4.	Proposed Objectives	
5.	Proposed Research Methodology	
6.	Expected Research Outcome	
7.	References	
8.		

Chapter 1: INTRODUCTION

From ancient times, people are using creepers, shrub, herbs and trees for medicinal and ornamental purposes and *Catharanthus roseus* is one of them, which is also known as Vinca Rosea, wild and endangered species. It is also known by different names like periwinkle, Ammocallis rosea and Lochnera rosea depending on the location and language (Barik et al, 2016). Table 1 lists down the different names of C. roseus according to varying languages.

Catharanthus is upto 1 m tall herb, whose flowers vary from pink to purple in color (Mishra and Verma 2017). Catharanthus roseus belongs to Apocynaceae family and the word 'Catharanthus' is a greek word means "pure flower" in Greek and "roseus" means red or rosy. Catharanthus roseus belongs to kingdom Plantae, Division- Magnoliophyta, Class-Magnoliopsida, Order- Gentianales, Genus- catharanthus, Species- C. roseus. People use this crop because of its pharmaceuticals property such as Antidiabetic property, anticancer property (Balaji et al, 2014), antimicrobial property, antioxidant property, antihelmintic property, antidiarrheal, antiulcer property, hypertensive property, phytoremediation, antimutagenic, antimitotic property, memory enhancement activity, hypolimidic effect, wound healing property, blood cleanser, antihypercholesterolemic activity, disinfectants, Transquilizing and sedative action. There is a wide use of this plant in different parts of the world. In India the extract of plant leaves is used as application of wasp sting. In Africa plant leaves are used for rheumatism and menorrhagia (Sain et al, 2013). In Hawai people use boiled plant extract to stop bleeding (Sain et al, 2013). In Mauritius juice extract of plant leaves is used to cure indigestion and dyspepsia problem (Sain et al, 2013). In West Indies and Nigeria Vinca rosea plant is used to cure diabetes (Sain et al, 2013). In Cuba and Jamaica flower extract is used for eye washing of infants (Sain et al, 2013). In Brahamas concentrated extract of vinca rosea is used to cure asthma, flatulence and tuberculosis (Sain et al, 2013). In Malaysia it is used to treat diabetes, cancer, insomnia and hypertension (Sain et al, 2013). In America extract of plant is used to cure sore throats, chest ailments, and laryngitis by gargling (Sain et al, 2013). In Madagascar plant leaves and roots are used for laxative effect, curing toothache, detoxification and anthelmintic (Sain et al, 2013). In Philippines concentrated plant juice used to cure diabetes, concentrated juice of young plant leaves to cure stomach cramps, concentrated extract of root is used for dysentery and crude extract of leaves and roots is having anticancer property (Sain et al, 2013).

Chapter 2: PROBLEM BACKGROUND

Diabetes is a life threatening metabolic disorder which is caused due to disturbance in the metabolism of protein, carbohydrates, fat. It occurs when there is a deficiency in the production of insulin by the pancreas in the beta cells of the pancreas (Yadao et al, 2015). There is no effective medicine available in the market till date to cure diabetes mellitus and due to this people are shifting towards the traditional natural ayurvedic products to minimize the side effects associated with the use of insulin and oral hypoglycemic agents (Balaji et al, 2014). Past researches have proved that *Catharanthus roseus* has antidiabetic property owing to the presence of vincristine and vinblastine (Modak et al, 2006; Gupta et al, 1998). It has also been proved that ethanolic extracts of flowers and leaves of this plant lower the blood glucose level to a greater extent as compared to standard drug gliben clamide (Sharma et al, 2013).

Chapter 3: REVIEW OF LITERATURE

Origin and Distribution

The origin of *Catharanthus roseus* is from islands of Madagascar (Mishra et al, 2017; Aruna et al, 2015). It is widely distributed in different subtropical and tropical area of the world along United States (Aruna et al, 2015). It is present in every continent except Antartica or some islands. Therefore it is available throughout the year except winters and hence in temperate regions because their growth is inhibited in low temperature. It is also cultivated in gardens and widely distributed in the wasteland (Qureshi et al, 2008).

Nutritional Composition

From past few decades, *Catharanthus roseus* has been reported to be a perfect blend of ornamental and medicinal plants which have witnessed its utilization in the traditional medicinal systems. Currently, *Catharanthus roseus* has been found to have immense potential in food industry also. To know the nutritional significance of any edible plant, the proximate and nutritional composition analysis is important. The plant and its different parts i.e. root, shoot, leaves and flower comprises of wide range of physicochemical and phytochemicals and the same has been presented in table

Proximate composition

The nutritional composition of *Catharanthus roseus* has been tabulated in the following table.

Parameters	Concentration in leaves	Reference	Concentration in flowers	Reference
Moisture	9.64-15.72	Choudhary et al.,	10.04	Sharma et
Fat	8.0-42.8	2014; Ekwealor et	4.19	al., 2017
Crude lipid (%)	19.68	al., 2016; Esther et		
Ash	3.89-8.94	al., 2016; Sharma et	5.21	
Acid insoluble ash (%)	0.21	al., 2017		
Water soluble ash (%)	1.01			
Crude fibre (%)	1.04-2.85		1.33	
Fibre (%)	17.55			
Chlorophyll(mg/100g)	0.94		0.11	
Nitrogen	1.30			
Protein	4.74-8.08			
Crude protein	7.05-8.08			
Carbohydrate	40.25-81.21			
Dry matter	24.28-25.80			
Vitamin C (mg/100g)	0.09			
Organic content (%)	90.63			
Micronutrient				
Nutrient	Concentration in leaves (mg $100g^{-1}$)	Reference	Concentration in flowers (mg $100g^{-1}$)	Reference
Sodium	66.46-472	Sahito et al., 2001;	38.4-231	Sahito et
Potassium	190.16-2307	Singh et al., 2010;	176.38-2342	al., 2001;
Calcium	122.9-3619	Choudhary et al.,	140.98-605	Aziz et al.,
Magnesium	141.35-513	2014;	85.69-175	2016
Chromium	0.26-2.46	Aziz et al., 2016;	0.20-0.26	
Iron	4.99-104	Ekwealor et al., 2016	10.56-55.90	

Zinc	2.30-5.46		4.80-7	
Aluminium	3.50-45.31		0.20-3.12	
Copper	0.37-0.775		0.20-0.536	
Lead	0.08-0.519		0.03-0.331	
Cadmium	0.02-0.363		0.01-0.184	
Manganese	3.69-18.37		2-3.27	
Nickel	0.6-0.402		0.21-0.36	
Cobalt	0.085-0.41		0.638-0.777	
Barium	0.60			
Rubidium	1.54			
Strontium	24.72			
Phosphorus	252.2			
Phytochemicals				
CONSTITUENT	Concentration in leaves	Reference	Concentration in Flowers (%)	Reference
Sterol	0.16	Esther et al., 2016;		Sharma et
Flavonoid	0.0175-0.48	Sharma et al., 2017	0.019	al., 2017
Glycosides	1.76			
Alkaloid	11.84			
Saponin	0.46			
Phenol	0.0423-0.32		0.450	
Anthocyanin	0.42			

Anti-nutritional components of C. roseus

ANTINUTRIENTS	Concentration in leaves (mg/100g)	Reference
Hydro cyanide	0.89	Choudhary et al., 2014
Total oxalates	239	
Soluble oxalates	10.39	
Phytates	0.06	
Tannin	0.04	

Bioactive compounds present in different parts of Catharanthus roseus

Bioactive compounds, produced from the plant secondary metabolism, are the non-nutritional constituents of plants, and which have been found to have significant positive health effects on humans. Recently compounds like flavonoids, alkaloids and tannins, anthocyanin have been reported in various parts of Catharanthus roseus which are responsible for the numerous biological activities. For example, Catharanthus roseus contains vinca alkaloids, which is the second most and oldest plant alkaloids groups used as drug for cancer treatment (Moudi et al, 2013). Among all the bioactive compounds, alkaloid is the dominant compound present in the Vinca rosea and is responsible for numerous health benefits. Vinca alkaloids such as vincristine, vinblastine, vinorelbine were also use in the western medicines (Pan et al, 2010). It contains more than 300 alkaloids which is having antineoplastic agents to treat leukemia, hodgkine's disease (Punia et al, 2014; Rosario et al, 2015), malignant lymphomas, neuroplastoma, wilm's tumour and other cancers, also have indole alkaloid such as lochnerine, tetrahydroalstonine and vindolidine which possesses hypoglycemic effect (Barik et al, 2016). Mostly the alkaloids present are ajmalcine, vinceine, resperine, vincristine, raubasin and vinblastine (Mishra et al, 2017). Anticancer property of Catharanthus roseus is due to vinblastine and vincristine compounds (Mishra et al, 2017; Khanuja, 2012; Gupta and Raina, 1998). Vinblastine compound prevents germ cells, renal cancers, breast cancer and lymphoma cancers by stopping mitosis in metaphase and prohibiting microtubule formation (Mishra et al, 2017). Catharanthus roseus is having the phenolic compounds which includes C6C1 compounds such as 2, 3-dihydroxybenzoic acid and phenylpropanoids such as derivatives of cinnamic acid, flavonoids and anthocyanin (Barik et al, 2016). Percentage of alkaloids on dry weight basis in different parts of the Catharanthus roseus is root; 0.12-9.00, stem; 0.07-0.46, leaf; 0.10-1.16, fruit; 0.40, seed; 0.18, flower; 0.005, pericarp; 0.14 (Barik et al, 2016).

Alkaloid	Mechanism	Action against
Vinblastine	Stops tubulin protein formation and stops cell division in metaphase	Lymphoma, breast and renal cancers
Vincristine	Stops tubulin protein formation and stops cell division in metaphase	Leukemia, lymphoma and cancers of breast and lungs

Mechanism of action of alkaloids present in Catharanthus roseus (Pandey, 2009)

Flower

Flowers of *Catharanthus roseus* contain high amount of tannins, triterpenoids and alkaloids which possesses numerous biological activity such as antidiabetic and antibacterial properties (Barik et al, 2016). The flower of *Catharanthus roseus* shows high antioxidant activities 97.44% at 800µg, which is higher than standard L- ascorbic acid that shows 94% in the same concentration (Barik et al, 2016). This prevents the formation of free radicals due to the presence of volatile phenolic compounds such as glycosides, flavanols and caffeoylquinic acids (Rao et al, 2013). Anthocyanin pigment i.e. rosidin is present in this flower (Mishra et al, 2017; Das and Sharangi, 2017). *Catharanthus roseus* contains indole alkaloids in all its plant parts.

Bark

Bark of this flower contains alkaloid Alastonin that helps in regulating blood pressure (Barik et al, 2016). Bark of the root of *Catharanthus roseus* contains vincristine and vinoblastine which is used as sedative (Barik et al, 2016).

Root

In root tissues catharanthine is present which posseses antidiabetic, menorrhagia and antihypertensive properties (Barik et al, 2016). Ajmalicine is a monomeric alkaloid that cures circulatory diseases and maintains normal cerebral blood flow by increasing the blood flow in the brain and pheripheral parts of the body (Barik et al, 2016). Roots also contain quinones which are antibacterial in function (Barik et al, 2016). Flavonoids, triterpenoid, tannins, saponin, coumarin, quinones and phenolic compounds are also present which possess antioxidant activity

which prevents enzymatic and non-enzymatic oxidation (Barik et al, 2016). *Catharanthus roseus* has the highest oxygen radical absorbance capacity (ORAC) (Barik et al, 2016). Roots contains antihypersensitive alkaloids such as serpentine, ajmalicine, reserpine (Rao et al, 2013).

Leaves

Leaves contain good amount of alkaloids and polyphenols. Polyphenols exhibit antioxidant properties. *C.roseus* contains 130 alkaloids of indole group from which 25 are dimeric in nature and leaves produce two important commercially cytotoxic dimeric alkaloids which is vinblastine and vincristine (Barik et al, 2016). Vincristine and vinblastine are helpful in the treatment of leukemia and lymphoma. The ethanolic extract of *Catharanthus roseus* leaves, estimated by HPLC (High pressure liquid chromatography) method shows the presence of natural antioxidants such as quercetin and rutin (Rao et al, 2013). The leaves of *Catharanthus roseus* helps in reducing the blood glucose level and hence in curing diabetes (Barik et al, 2016; Sen et al, 2008)

Major constituents in different parts of *Catharanthus roseus*

Plant part	Major constituents	Reference
Flower	Saponin, carbohydrate, alkaloid, tannin, steroid	Jarald et al., 2006
Leaf	Alkaloid, vindoline, vinblastine, carbohydrate, vincristine, tannin, saponin, avonoid,	Jarald et al., 2006;
	chlorogenic acid, steroid, triterpenoid, loganic acid, vincristine, secologenin	Siddiqui et al., 2010;
		Guimaraes et al.,
		2012
Stem	Alkaloid, carbohydrate, avonoid, steroid, tannin	Jarald et al., 2006
whole plant	Vinblastine, catharanthine, vincristine, vindoline, monoterpenoid, 7-O-methylated	Kulkarni et al., 1999;
	anthocyanin, glycoside, steroid, phenolic, avonoid,	Williams et al., 2004;
		Jaleel et al., 2008;
		Siddiqui et al., 2010;
		Guimaraes et al.,
		2012
Root	Serpentine, saponin, carbohydrate, alkaloid, tannin, alkaloid, ajmalicine, steroid, triterpenoid	Kulkarni et al., 1999;
		Jarald et al., 2006

Alkaloids present in different parts of *Catharanthus roseus*

Plant part	Alkaloids	Properties	Reference
Root	Ajmalicine	Antihypertensive and controls cardiovascular diseases	Jaleel et al., 2006;
	Catharanthine	Antidiabetic	Ferreres et al., 2008;
		Leukaemia, anti-diabetic,	Kotakadi et al., 2013
		Anti-hypertensive, relieves menorrhagia	Punia et al, 2014;
	Raubasin	Pain relieving	Kumar et al, 2015;
	Reserpine	Tranquilizer	Barik et al 2016
	Serpentine	Antihypertensive and controls cardiovascular diseases	
Leaf	Vinblastine	Anticancer property	
	Vincristine	Anticancer property,	
		Helps to treat leukemia in children, choriocarcinoma, and Hodgkin's	
		disease	
	Vindoline		
		Anti-ulcer property	
	Vincamine	Neuroprotective,	
		Cerebro-vasodilatory,	
		Anti-ulcer property	
Bark	Alastonin	Regulate blood pressure	
	Vincristine	Antitumor property	
Stem	Vinblastine		

Medicinal properties of different parts of *Catharanthus roseus*

Bioactivities	Plant part used	Method	Remarks	Reference
Antimicrobial	Leaves	Ethanolic extract	Ethanolic extract of <i>Catharanthus roseus</i> showed Antiplasmodial activity	Kumar et al., 2012
			Ethanolic extract of <i>Catharanthus roseus</i> leaves at concentrations 50, 75, 100% showed inhibited the growth of <i>Macrophomia phaseolina</i> and <i>Sclerotium rolfsii</i>	Wadikar et al.,2010
			Showed antimicrobial activity against Psedomonas aeuroginosa and Staphylococcus aureus	Nayak et al., 2006
		Silver nano particles of dried leaves	Showed antimicrobial activity against <i>Bacillus</i> species, Lactobacillus, Staphylococcus aureus, Pseudomonas flucorescens	Kotakadi et al., 2013
		Methanolic extract (Concentration 12.5mg and 25mg)	Klebsiella pneumonia, Salmonella paratyphi	JayaKumar et al, 2010
		Ethanolic extract	Showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, salmonella typii, streptococcus pyrogens, Pseudomonas aeruginosa, Serratia marcescens, Bacillus subtilis	Ramya, 2008
		Methanolic extract	Showed antimicrobial activity against Psedomonas aeuroginosa, Serratia marcescens, salmonella typii, Staphylococcus aureus, streptococcus pyrogens, , Bacillus subtilis	
		Ethanolic extract (dried powder)	Showed antibacterial activity against Escherichia coli, Salmonella paratyphi, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia	Goyal et al., 2008
		Ethanolic extract	Showed antibacterial against Escherichia coli,	

	(fresh sample)	Salmonella paratyphi, Klebsiella pneumonia,	
		Bacillus subtilis, Staphylococcus aureus	
	Methanolic extract	Showed antibacterial against Salmonella	
	(dried powder)	paratyphi, Klebsiella pneumonia,	
		Staphylococcus aureus	
	Methanolic extract	Showed antibacterial against Salmonella	
	(Fresh sample)	paratyphi, Klebsiella pneumonia,	
		Staphylococcus aureus	
	Hot water extract	Showed antibacterial against Salmonella	
		paratyphi, Klebsiella pneumonia,	
		Staphylococcus aureus	
	Ethanolic extract	Shows antimicrobial activity against	Balaabirami and
		Escherichia coli, Klebsiella oxytoca, Proteus	Patharajan., 2012
		mirabilis, Salmonella paratyphi	~
Stem	Ethanolic extract	Showed antibacterial activity against	Goyal et al., 2008
	(dried powder)	Escherichia coli, Salmonella paratyphi, Bacillus	
		subtilis, Staphylococcus aureus	
	Methanolic extract	Showed antibacterial activity against	
	(dried powder)	Staphylococcus aureus, Staphylococcus aureus	
	Ethanolic extract	Showed antimicrobial activity against <i>Bacillus</i> subtilis	Ramya, 2008
	Methanolic extract	Showed antimicrobial activity against	
		Psedomonas aeuroginosa, salmonella typii,	
		Staphylococcus aureus, Serratia marcescens,	
		Bacillus subtilis, streptococcus pyrogens	
	Methanolic extract	Salmonella paratyphi	Jayakumar., 2010
	(concentration		
	12.5mg)		
		Escherichia coli, Staphylococcus aureus,	
	(Concentration	Salmonella paratyphi, Salmonella typhi	

	25mg)		
Root	Ethanolic extract	Showed antimicrobial activity against <i>Bacillus</i> subtilis	Ramya, 2008
	Methanolic extract	Showed antimicrobial activity against <i>Bacillus</i> cereus, Bacillus subtilis, salmonella typii, Staphylococcus aureus, streptococcus pyrogens	
	Ethanolic extract (dried powder)	Showed antibacterial activity against Escherichia coli, Salmonella paratyphi, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Bacillus cereus	Goyal et al., 2008
	Ethanolic extract (fresh powder)	Showed antibacterial activity against Escherichia coli, Salmonella paratyphi, Klebsiella pneumonia, Staphylococcus aureus, Bacillus subtilis	
	Methanolic extract (dried powder)	Showed antibacterial activity against Salmonella paratyphi, Klebsiella pneumonia, Staphylococcus aureus	
	Methanolic extract (fresh sample)	Showed antibacterial activity against Escherichia coli, Salmonella paratyphi, Klebsiella pneumonia, Staphylococcus aureus, Bacillus subtilis	
	Methanolic extract (concentration 12.5mg)	Klebsiella pneumonia, Staphylococcus aureus Escherichia coli, Klebsiella pneumonia,	JayaKumar et al, 2010
	(concentration 25mg)	Staphylococcus aureus, Salmonella paratyphi, Shigella sonnei, salmonella typii	
flower	Ethanolic extract (dried powder)	Antimicrobial against Escherichia coli, Salmonella paratyphi, Klebsiella pneumonia, Staphylococcus aureus, Bacillus cereus	Goyal et al., 2008
	Ethanolic extract	Antibacterial activity against Bacillus cereus	Ramya, 2008

		Methanolic extract	Antibacterial activity against <i>Staphylococcus</i> aureus, Bacillus cereus, salmonella typii, Streptococcus pyrogens	
		Methanolic extract (concentration 12.5mg)	Escherichia coli, Salmonella paratyphi, Shigella sonnei	JayaKumar et al, 2010
		(Concentration 25mg)	Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Shigella sonnei, Salmonella paratyphi, Salmonella typhi	
	Whole plant	Aqueous extract	Antimicrobial against Chromobacterium, Escherichia coli, Enterobacter faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirabilis, Salmonella paratyphi, Salmonella typhi	Srinivasan et al., 2001
	Seed	Methanolic extract (Concentration 25mg)	Escherichia coli, Bacillus cereus	JayaKumar et al, 2010
Antifungal	Leaves	Ethanolic extract	Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Penicillium species	Balaabirami and Patharajan., 2012
Antidiabetic	Whole plant	Alloxan induced diabetic rats (150mg/kg)	Methanolic extract of whole plant of <i>Catharanthus roseus</i> showed antihyper glycemic activity at a dose of 500mg/kg for days Regeneration of β cells of pancreas in diabetic rats	Ahmed et al., 2010
	Leaves	Alloxan induced diabetic rats (100mg/kg)	Aqueous extract of leaves given at a dose of 0.5, 0.75, 1.0ml/kg body weight showed reduction in blood glucose level in alloxan induced diabetic rats by increasing the secretion of insulin from	Nammi et al., 2003

	β cells of langerhans through extrapancreatic	
	mechanism.	
Streptozotocin	There is lowering of blood glucose level in	Singh et al., 2001
induced diabetic	streptozotocin induced diabetic rats when they	Singil et al., 2001
rats (75mg/kg)	are treated with crude aqueous extract at a dose	
Tats (75mg/kg)	of 1g/kg for 21days	
Streptozotocin	There is reduction in plasma glucose and	Rasineni et al., 2010
induced male wistar	increase in plasma insulin in streptozotocin	
rats (55mg/kg body	induced male wistar rats when treated with	
weight)	suspension of Catharanthus roseus leaf powder	
	at dose of 100mg/kg/body weight for 60 days	
Alloxan induced	Ethanolic extract of catharanthus leaves when	Akhtar et al., 2007
diabetic rats	given at a dose of 300mg/kg reduces the blood	
(110mg/kg)	glucose level of diabetic rats.	
Alloxan induced	Methanolic extract of Catharanthus roseus	Ohadoma et al., 2011
diabetic rats	leaves (250 mg/kg for 7 days) and extract- drug	
(110mg/kg)	(metformin) (100mg/kg and 250 mg/kg for 7	
	days) combination showed lowering of blood	
	glucose level in diabetic rats	
Alloxan induced	Crude dichloromethane:methanol (1:1) leaves	Jayanthi et al., 2010
diabetic rats	extract of Catharanthus roseus given at a dose	
(80mg/kg)	of 500mg/kg for 20 days showed decrease in	
	blood glucose level	
Streptozotocin	Hydroalcoholic extract of Catharanthus roseus	Chattopadhyay et al.,
induced inbred	leaves given at a dose of 50mg/kg decreases the	1999
Swiss albino rats	blood glucose level in normal and diabetic	
	model rats	
Alloxan induced	Leaf juice of Catharanthus roseus lowers the	Satyanarayana et al.,
rabbits	blood glucose level in alloxan induced rabits	2003
Alloxan induced	Aqueous extract of Catharanthus roseus given	Ghosh et al., 2001
male albino rats	at a dose of 4mg/kg for 7 days lowers blood	
(150mg/kg)	glucose level in diabetic rats	
Streptozotcin	Ethyl acetate extract of catharanthus leaves	Islam et al., 2009

		induced Long Evan females (45mg/kg)	given at a dose of 150mg/kg showed reduction in blood glucose level in diabetic rats	
	Leaves and twigs	Streptozotocin induced diabetic rats (75mg/kg)	Dichloromethane:methanol (1:1) extract of leaves and twigs of <i>Catharanthus roseus</i> given at a dose of 500mg/kg showed hyperglycemic activity in streptozotocin induced diabetic rats	Singh et al., 2001
	Flowers	Alloxan induced male albino rats (150mg/kg)	Aqueous extract of <i>Catharanthus roseus</i> flowers 10ml/kg for 7 days decreases the blood glucose level in diabetic rats	Ghosh et al., 2001
Anticancer	Whole plant	Antiproliferative active assay	Methanolic extract of <i>Catharanthus roseus</i> showed antiproliferative activity against metastatic-1080 fibrosarcoma cells	Ueda et al., 2002
		Chlorioallantoic membrane assay (CAM) and In vitro bovine aortic endothelial cells (BAEC _S)	Boiling extract of <i>Catharanthus roseus</i> posess activity in both Chick embryo chlorioallantoic membrane (CAM) and Bovine aortic endothelial cells culture model (BAEC _s)	Wang at al., 2004
	Root and Aerial parts	MTS (3-(4,5- dimethylthiazol-2- yl)-5-(3- carboxymethoxyph enyl)-2-(4- sulfophenyl)-2H- tetrazolium assay)	Methanolic extract of roots and aerial parts of <i>Catharanthus roseus</i> reduced the proliferation of human ductal breast epithelial tumour cell lines (T47D) with a mean inhibition concentration (IC ₅₀) of 2.8%.	Widowati et al., 2013
		MTT cell proliferation assay	Methanol extract of catharanthus leaves showed dose independent cytotoxic activity against HCT-116 colorectal carcinoma cell line. Methanol, n-hexane and chloroform fractions showed dose independent cytotoxic activity against HCT-116 colorectal carcinoma cell line	Siddiqui et al., 2010

			Pure alkaloids Catharanthine and Vindoline	
			extracted from the leaves of Catharanthus leaves showed dose dependent cytotoxic activity	
			against HCT-116 colorectal carcinoma cell line	
	Leaves and stem	Vincristine, vinblastine	Prevents breast cancer, soft tissues sarcomas, Hodgkin's disease, leukemia in children	Ferreres et al., 2008
Wound healing	Flowers	Incision wound Sprague Dawley rats	Ethanolic extract of <i>Catharanthus roseus</i> flowers given at a dose of 100mg/kg/day increased the wound healing capacity in incision wound Sprague Dawley rats	Nayak et al., 2006
L	Leaves	Excision wound Male Sprague Dawley rats	Methanolic extract of <i>Catharanthus roseus</i> leaves showed wound healing activity in Male Sprague Dawley rats when given at a dose of 100mg/kg/day	Nayak et al., 2007
Antioxidant	Leaves	DPPH assay	Crude ethanolic extract of <i>Catharanthus roseus</i> leaves showed antioxidant activity of 25.58% inhibition.	Fawole et al., 2013
		Ferric reducing	Crude ethanolic extract of <i>Catharanthus roseus</i>	
		antioxidant power	leaves showed antioxidant activity of	
		assay (FRAP)	151.03(µmol Fe(II)/g dry weight of the extract)	
		Total phenol	Crude aqueous extract of <i>Catharanthus roseus</i>	
		content assay (TPC)	showed antioxidant activity of 140.81 (mg GAE/ 100g dry weight of extract)	
		DPPH assay	Methanolic extract <i>Catharanthus roseus</i> leaves showed antioxidant potential of 83.72% at concentration 800µg	Jayakumar et al., 2010
		TPC assay	Leaves of <i>Catharanthus roseus</i> have 422.56mg/100g of phenolic content which shows it is having high antioxidant activity	Sharma et al., 2017
		TFC asaay	Leaves of catharathus roseus have 17.50mg/100g of phenolic content which shows it is having high antioxidant activity	
	Stem	DPPH assay	Methanolic extract Catharanthus roseus stem	Jayakumar et al., 2010

			showed antioxidant potential of 93.75% at concentration 800µg	
Ro	oot	DPPH assay	Methanolic extract <i>Catharanthus roseus</i> root showed antioxidant potential of 93.84% at concentration 800µg	
		Hydroxyl radical scavenging activity Superoxide radical scavenging activity DPPH assay Nitric oxide radical inhibition method	Ethanolic extract of <i>Catharanthus roseus</i> showed good amount of radical scavenging activity in all the radical scavenging assays.	Bhutkar and Bhise., 2011
Flo	ower	DPPH assay	Methanolic extract <i>Catharanthus roseus</i> flower showed antioxidant potential of 97.44% at concentration 800µg	Jayakumar et al., 2010
		TPC assay	Flowers of catharathus roseus have 450.20mg/100g of phenolic content which shows it is having high antioxidant activity.	Sharma et al., 2017
		TFC assay	Flowers of <i>Catharanthus roseus</i> have 19.00mg/100g of flavonoids which shows it is having good amount of antioxidant property	
Se	eed	DPPH assay	Methanolic extract <i>Catharanthus roseus</i> seed showed antioxidant potential of 80.28% at concentration 800µg	Jayakumar et al., 2010
	erial and ots	DPPH assay	Methanolic extract of roots and aerial parts of <i>Catharanthus roseus</i> showed antioxidant activity of 71.87%	Widowati et al., 2013
Sh	noots	DPPH assay	100% Methanolic extract and 100% ethylacetate fraction of <i>Catharanthus roseus</i> showed significant antioxidant activity	Rasool et al., 2011
		Total phenol content assay (TPC)	100% Methanolic extract of <i>Catharanthus</i> <i>roseus</i> showed significant antioxidant activity 8.5g/100g	

		Total Flavonoid content assay (TFC)	100% Methanolic extract of <i>Catharanthus</i> <i>roseus</i> showed significant antioxidant activity of 19.8g/100g	
Hypolipidemic	Leaves	UV Spectrophotometer	Leaf juice of <i>Catharanthus roseus</i> reduces serum total cholesterol, total triglycerides, LDL- cholesterol, and VLDL-cholesterol in Albino wistar rats	Antia et al., 2005
		UV spectrophotometer	Ethanolic extract of catharanthus leaves given at dose of 150mg/g to normal and alloxan induced diabetic rats lowers their and serum glycerides	Akhtar et al., 2007
		UV spectrophotometer	Ethyl acetate extract of catharanthus leaves given at a dose of 150mg/kg reduced serum triglyceride level in streptozotocin induced diabetic rats	Islam et al., 2009
		Estimation method (Friedewald et al., 1972)	Leaf juice of <i>Catharanthus roseus</i> lowers the total cholesterol, triglycerides, LDL-cholesterol, VLDL-cholesterol, HDL-cholesterol	Patel et al., 2011
Antiulcer	Leaves	Experimentally induced gastric damage in rats (96% ethanol)	Vinpocetine alkaloid present in the catharanthus leaves showed antiulcer activity against experimentally induced gastric damage in rats	Nosalova et al., 1993
		Vincamine and Vindoline	They possess antiulcer property	Sain et al, 2013
Anthelminthic	Whole plant	Earthworms (Pheretima posthuma)	Ethanolic extract given at a dose of 200mg/ml showed anthelminthic activity with death time of 46.33 minute Ethanolic extract showed paralysis effect in 6.67 minute	Agarwal et al., 2011
Antidiarrheal	Aerial parts	Castor induced wistar rats	Ethanolic extract given at a dose of 500mg/kg showed antidiarrheal activity in castor induced wistar rats	Rajput et al., 2011
Hypotensive	Root	Alstonine, Ajmalicine,	Helps in lowering blood pressure	Kotakadi et al., 2013

		Serpentine,		
		Reserpine		
Transquilizer	Root	Reserpine	It helps in reducing pain	Jaleel et al., 2006
Sedative	Root	Raubasin	It helps in lowering down anxiety, excitement	
Memory	Aerial part	Vincamine,	Vincamine and Vinpocetine improves the brain	Rathee et al., 2008
enhancement		Vinpocetine	function by enhancing the ability to utilise	
			glucose and oxygen.	

Therapeutic importance of C. roseus

Traditionally people utilize this crop because of its numerous health benefits such as antidiabetic, anticancer, antimicrobial, antioxidant, antihelmintic, antidiarrheal, antiulcer, antihypertensive, phytoremediation, antimutagenic, memory enhancement activity, wound healing property, blood cleanser, antihypercholesterolemic, disinfectants, tranquilizing and sedative actions throughout the world (Ramesh and Subramani, 2015; Kumar 2014), (Balaji et al, 2014; Kumar 2014; Vaidya and Devasagayam, 2007, Kumar et al, 2014).

The different parts of plant have been reported to have wide application in various parts of the world, where its extract is being used for curing rheumatism, menorrhagia, indigestion, dyspsia, diabetes, eye problems, cancer, asthma, tuberculosis, sleeping disorders, hypertension, chest ailments, sore throat etc.

Traditional uses of *Catharanthus roseus* in different parts of the world

Plant part	Traditional uses	Reference
Plant leaves	 Traditionally the extract of leaves utilized for treatment of wasp sting. Cures rheumatism, menorrhagia, diabetes, diarrhoea, indigestion, dyspepsia, haemorrhage, scurvy. Juice extract of plant leaves was used to cure indigestion and dyspepsia problem. It was also used as mouthwash for toothache, cleaning and healing of chronic wounds. 	Sain et al, 2013; Ndip et al, 2013; Aruna et al, 2015; Aziz et al, 2016; Das and Sharangi, 2017
Flower extract	Used for eye washing of infants and cure irritation	
Root	 Traditionally used for laxative effect concentrated extract of root is used for dysentery, intestinal parasitism crude extract of roots have anticancer property 	
Whole plant	 Concentrated plant juice to cure diabetes. Concentrated extract of <i>Catharanthus roseus</i> is used to cure asthma, flatulence and tuberculosis. <i>Catharanthus roseus</i> was used to treat diabetes, cancer, insomnia and hypertension. Extract of plant was used to cure sore throats, chest ailments, laryngnitis by gargling. Concentrated juice of young plant leaves to cure stomach cramps Crude extract of leaves and roots have anticancer property. People use boiled plant extract to stop bleeding. 	

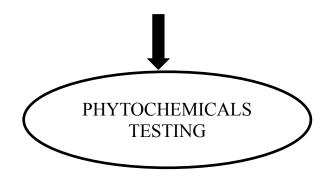
Chapter5: PROPOSED RESEARCH OBJECTIVES

The mandate of the present study is as under –

(1) To standardize the drying technology for Vinca rosea.

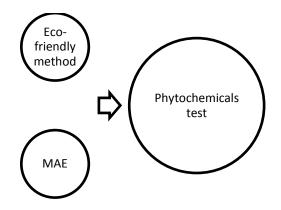
(2) To check the suitability of different extraction methods (eco-friendly and microwave assisted) for the extraction of phytochemicals from the Vinca rosea.

(3) Preparation and evaluation of Vinca rosea enriched fruit based beverages.

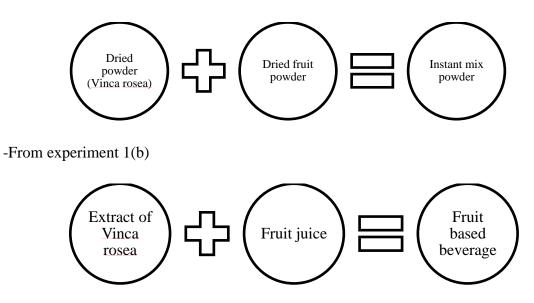

Chapter 6: PROPOSED RESEARCH METHODOLOGY

EXPERIMENT 1 (a) - Drying of different parts of Vinca rosea at different temperatures and determination of its phytochemicals retention.

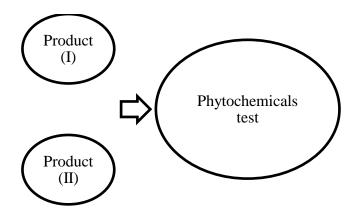
Plant parts	Drying temperature
Leaf	45°C
Stem	55°C
Flower	65°C


No. of treatments = $3 \times 3 = 9$

Number of replication = 3


EXPERIMENT 1 (b) – The plant part with maximum phytonutrient retention will

undergo MAE (microwave assisted extraction) and eco- friendly extraction.



EXPERIMENT NO. 2 – Development of Vinca rosea enriched fruit based beverages and instant beverage mix powder.

-From experiment 1(a)

- Phytochemical testing

EXPERIMENT NO. 3 – Storage studies of the developed beverages by using different packaging materials and at different storage conditions.

Storage conditions	Storage durations (days)
Ambient	0
Refrigerated	30
	60
	90

No. of treatments = $2 \times 4 = 8$

Number of replication = 3

EXPERIMENT NO. 4- Consumer studies of developed products.

Consumer studies for the acceptance and rejection of the product will be carried out using the hedonic scale.

6.1 Chemical composition

6.1.1 Protein content	AOAC 2000
6.1.2 Fat content	Ranganna 2016
6.1.3 Crude fibre content	AOAC 2000
6.1.4 Moisture content	AOAC 2000
6.1.5 Ash content	AOAC 2000
6.1.6 Sugars	AOAC 2000
6.1.7 Dietary fibre content	AOAC 2000

6.2 Phytonutrient composition

6.2.1 Flavonoids	AOAC 2000
6.2.2 Tannins	AOAC 2000
6.2.3 Phytic acid	AOAC 2000
6.2.4 DPPH assay	AOAC 2000
6.2.5 Metal chelation	AOAC 2000
6.2.6 Ascorbic acid	AOAC 2004
6.2.7 Phenols	AOAC 2000
6.2.8 FRAP	AOAC 2000
6.2.9 Chlorophyll	AOAC 2000
6.3 Antimicrobial activity	AOAC 2000
6.3.1 Antidiabetic activity	AOAC 2000
6.3.2 FTIR	AOAC 2000

6.4 Organoleptic evaluation

Chapter 7: EXPECTED RESEARCH OUTCOME

The dried flowers of *Vinca rosea* will be rich in anti-oxidant, anti-microbial, anti-diabetic and antidiarrheal properties. The developed food product will help to boost the immunity, thus providing health benefits to the consumers. The product will serve as an economic functional food for diabetic patients. The high amount of antioxidants, amino acids, proteins and other vital nutrients in the product will be suitable and beneficial for all economic strata. Not only the diabetics but people suffering from majority of life threatening ailments will benefit from this product. Our main aim is to standardize the drying technique in which the dried flowers will have the retention of maximum amount of nutrients in it.

REFERENCES

- Agarwal, S., Jacob, S., Chettri, N., Bisoyi, S., Tazeen, A., Vedamurthy, A.B., Krishna, V. and Hoskeri, H.J., 2011. Evaluation of in-vitro anthelminthic activity of Catharanthus roseus extract. *Int J Pharm Sci Drug Res*, *3*(3), pp.211-3.
- Ahmed, M.F., Kazim, S.M., Ghori, S.S., Mehjabeen, S.S., Ahmed, S.R., Ali, S.M. and Ibrahim, M., 2010. Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. *International Journal of Endocrinology*, 2010.
- Akhtar, M.A., Rashid, M., Wahed, M.I.I., Islam, M.R., Shaheen, S.M., Islam, M.A., Amran, M.S. and Ahmed, M., 2007. Comparison of long-term antihyperglycemic and hypolipidemic effects between Coccinia cordifolia (Linn.) and Catharanthus roseus (Linn.) in alloxaninduced diabetic rats. *Research Journal of Medicine and Medical Sciences*, 2(1), pp.29-34.
- Akhtar, M.A., Rashid, M., Wahed, M.I.I., Islam, M.R., Shaheen, S.M., Islam, M.A., Amran, M.S. and Ahmed, M., 2007. Comparison of long-term antihyperglycemic and hypolipidemic effects between Coccinia cordifolia (Linn.) and Catharanthus roseus (Linn.) in alloxaninduced diabetic rats. *Research Journal of Medicine and Medical Sciences*, 2(1), pp.29-34.
- Alba Bhutkar, M.A. and Bhise, S.B., 2011. Comparative Studies on Antioxidant Properties of Catharanthus Rosea and Catharanthus. *International Journal of Pharmaceutical Techniques*, *3*(3), pp.1551-1556.
- Antia, B.S. and Okokon, J.E., 2005. Effect of leaf juice of Catharanthus roseus Linn on cholesterol, triglyceride and lipoproteins levels in normal rats. *Indian journal of pharmacology*, *37*(6), p.401.
- AOAC. (2000). Official methods of analysis of the AOAC, 16th ed. Association of official analytical chemists. Arlington, VA, USA
- Aruna, M.S., Prabha, M.S., Priya, N.S. and Nadendla, R., 2015. Catharanthus roseus: Ornamental Plant is now medicinal Boutique. *Journal of Drug Delivery and Therapeutics*, 5(3), pp.1-4
- Aziz, S., Saha, K., Sultana, N., Nur, H.P., Ahsan, M.A., Ahmed, S. and Hossain, M.K., 2016. Comparative studies of elemental composition in leaves and flowers of Catharanthus roseus growing in Bangladesh. *Asian Pacific Journal of Tropical Biomedicine*, 6(1), pp.50-54.
- Balaabirami, S. and Patharajan, S., 2012. In vitro antimicrobial and antifungal activity of Catharanthus roseus leaves extract against important pathogenic organisms. *Int J Pharm Pharm Sci*, 4(3), pp.487-490.

- Balaji, D.H., 2014. Versatile. Therapeutic effects of Catharanthus roseus Linn. *International Journal of Pharmaceutical Science and Health Care*, 1(4), pp.59-76.
- Barik, K., Sao, S. and Parihar, D.K., 2016. Phytochemical and pharmaceutical panorama of Catharanthus roseus. *Indo American Journal of Pharmaceutical Sciences*, *3*(3), Pp.288-293.
- Chattopadhyay, R.R., 1999. A comparative evaluation of some blood sugar lowering agents of plant origin. *Journal of ethnopharmacology*, 67(3), pp.367-372.
- Das, S. and Sharangi, A.B., 2017. Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. *Journal of Pharmacognosy and Phytochemistry*, 6(5), pp.1695-1701.
- Ekwealor, U.K., Okereke, C.N., Ugwoke, E.C., Ukpaka, G.C., Nweze, E.A. and Iroka, F.C., 2016. Studies on the proximate and mineral composition of leave, Stem and Root of Catharanthus Roseus (Linn). *Studies*, 4(5).
- Esther, A.E., Maureen, C.O., Ruffina, A.N., Ann, M. and Chisom, I.F., Preliminary studies on the phytochemical and proximate composition of Catharanthus roseus (Linn).
- Fawole, F.J., Sahu, N.P., Pal, A.K. and Lakra, W.S., 2013. Evaluation of antioxidant and antimicrobial properties of selected Indian medicinal plants. *International Journal of Medicinal and Aromatic Plants*, 3(1), pp.69-77.
- Ferreres, F., Pereira, D.M., Valentão, P., Andrade, P.B., Seabra, R.M. and Sottomayor, M., 2008. New phenolic compounds and antioxidant potential of Catharanthus roseus. *Journal of Agricultural and Food Chemistry*, 56(21), pp.9967-9974.
- Friedewald, W.T., Levy, R.I. and Fredrickson, D.S., 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clinical chemistry*, 18(6), pp.499-502.
- Ghosh, S. and Suryawanshi, S.A., 2001. Effect of Vinca rosea extracts in treatment of alloxan diabetes in male albino rats.
- Goyal, P., Khanna, A., Chauhan, A., Chauhan, G. and Kaushik, P., 2008. In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. *International Journal of Green Pharmacy (IJGP)*, 2(3)..
- Gupta, L.M. and Raina, R., 1998. Side effects of some medicinal plants. *Current Science*, 75(9), pp.897-900.
- Islam, M.A., Akhtar, M.A., Islam, M.R., Hossain, M.S., Alam, M.K., Wahed, M.I.I., Rahman, B.M., Anisuzzaman, A.S.M., Shaheen, S.M. and Ahmed, M., 2009. Antidiabetic and

hypolipidemic effects of different fractions of Catharanthus roseus (Linn.) on normal and streptozotocin-induced diabetic rats. *Journal of Scientific Research*, 1(2), pp.334-344.

- Jaleel, C.A., Gopi, R., Lakshmanan, G.A. and Panneerselvam, R., 2006. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. *Plant Science*, 171(2), pp.271-276.
- Jarald, E.E., 2008. Comparative Evaluation of Antihyperglycaemic and Hypoglycaemic Activity of Various Parts of Catharanthus roseus Linn. E. Edwin Jarald, E. Sheeja, S. Motwani, KR Dutt and RK Goel Department of Herbal Drug Research. *Research Journal of Medicinal Plant*, 2(1), pp.10-15.
- Jayakumar, D., Mary, S.J. and Santhi, R.J., 2010. Evaluation of antioxidant potential and antibacterial activity of Calotropis gigantea and Vinca rosea using in vitro model. *Indian Journal of Science and Technology*, 3(7), pp.720-723.
- Jayanthi, M., Sowbala, N., Rajalakshmi, G., Kanagavalli, U. and Sivakumar, V., 2010. Study of antihyperglycemic effect of Catharanthus roseus in alloxan induced diabetic rats. *Int J Pharm Pharm Sci*, 2(4), pp.114-116.
- Khanuja, S.P., 2012. Functional diversity of plant metabolome and microbiome in health services to the human life. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, 82(2), pp.291-294.
- Kotakadi, V.S., Rao, Y.S., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V. and Gopal, D.S., 2013. Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its anti microbial activity. *Colloids and Surfaces B: Biointerfaces*, 105, pp.194-198.
- Kulkarni, R.N., Baskaran, K., Chandrashekara, R.S. and Kumar, S., 1999. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. *Plant Breeding*, 118(1), pp.71-74.
- Kumar A, Malik R, Giri P, Parveen N, S. Up-to-date Review on Therapeutic Interior of Catharanthus Roseus; for Anticancer and Antidiabetic Activities. Journal of Phytomedicine : Archived. 2015 Jun 25 [last modified: 2016 Jun 14]. Edition 1.
- Kumar, A., Mishra, P., Shukla, A.K. and Sundaresan, V., 2014. A tale of three medicinal plants-Catharanthus roseus L., Artemesia annua L. and Withania somnifera (L.) Dunal. *CSIR-CIMAP.*, p.144.
- Mishra, J.N. and Verma, N.K., A brief study on Catharanthus Roseus: A review.
- Moudi, M., Go, R., Yien, C.Y.S. and Nazre, M., 2013. Vinca alkaloids. *International journal of preventive medicine*, 4(11), p.1231.

- Nammi, S., Boini, M.K., Lodagala, S.D. and Behara, R.B.S., 2003. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. *BMC complementary and Alternative Medicine*, 3(1), p.4.
- Nayak, B.S. and Pereira, L.M.P., 2006. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. *BMC Complementary and Alternative Medicine*, 6(1), p.41.
- Nayak, B.S., Anderson, M. and Pereira, L.P., 2007. Evaluation of wound-healing potential of Catharanthus roseus leaf extract in rats. *Fitoterapia*, 78(7-8), pp.540-544.
- Ndip, R.N., Tanih, N.F. and Kuete, V., 2013. Antidiabetes activity of African medicinal Plants. In *Medicinal Plant Research in Africa* (pp. 753-786).
- Nosálová, V., Machova, J. and Babulová, A., 1993. Protective action of vinpocetine against experimentally induced gastric damage in rats. *Arzneimittel-Forschung*, 43(9), pp.981-985.
- Ohadoma, S.C. and Michael, H.U., 2011. Effects of co—administration of methanol leaf extract of Catharanthus roseus on the hypoglycemic activity of metformin and glibenclamide in rats. *Asian Pacific Journal of Tropical Medicine*, *4*(6), pp.475-477.
- Pan, L., Chai, H. and Kinghorn, A.D., 2010. The continuing search for antitumor agents from higher plants. *Phytochemistry letters*, *3*(1), pp.1-8.
- Pandey, G., 2009. An overview on certain anticancer natural products. *J Pharm Res*, 2(12), pp.1799-1803.
- Patel, Y., Vadgama, V.I.S.H.A.L.K.U.M.A.R., Baxi, S.E.E.M.A. and Tripathi, B.C., 2011. Evaluation of hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs. Acta Pol Pharm, 68(6), pp.927-935.
- Qureshi, S.J., Khan, M.A. and Ahmad, M., 2008. A survey of useful medicinal plants of Abbottabad in northern Pakistan. *Trakia Journal of Sciences*, *6*(4), pp.39-51.
- Rajput, M.S., Nair, V., Chauhan, A., Jawanjal, H. and Dange, V., 2011. Evaluation of antidiarrheal activity of aerial parts of Vinca major in experimental animals. *Middle-East Journal of Scientific Research*, 7(5), pp.784-788.
- Ramesh, P. and Subramani, A., 2015. Ethnobotanical Study of Utilization of Medicinal Plant for Diabetics in the Tribal Peoples of Parvathamalai Hills, Tiruvannamali, India. *World Scientific News*, 23, pp.90-105.
- Ramya, S., 2008. In Vitro Evaluation of Antibacterial Activity Using Crude Extracts of Catharanthus roseus L.(G.) Don. *Ethnobotanical Leaflets*, 2008(1), p.140.

- Rasineni, K., Bellamkonda, R., Singareddy, S.R. and Desireddy, S., 2010. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. *Pharmacognosy research*, 2(3), p.195.
- Rasool, N., Rizwan, K., Zubair, M., Naveed, K.U.R., Imran, I. and Ahmed, V.U., 2011. Antioxidant potential of different extracts and fractions of Catharanthus roseus shoots. *International journal of phytomedicine*, *3*(1), p.108.
- Rosario, J.C. and Josephine, R.M., 2015. A review on traditional medicinal plants for anticancerous activity. *Int J Recent Sci Res*, *6*, pp.5634-7.
- Sahito, S.R., Kazi, T.G., Kazi, G.H., Jakhrani, M.A. and Shaikh, M.S., 2001. Trace elements in two varieties of indigenous medicinal plant Catharanthus roseus (Catharanthus roseus). Sciences, 1, pp.74-7.
- Sain, M. and Sharma, V., 2013. Catharanthus roseus (An anti-cancerous drug yielding plant). A Review of Potential Therapeutic Properties. *Int. J. Pure App. Biosci*, *1*(6), pp.139-142.
- Sandeep, P., Jagjit, K., Raman, K. and Kuldeep, K., 2014. www. ijrap. net.
- Satyanarayana, S., Sarma, G.S., Ramesh, A., Sushruta, K. and Srinivas, N., 2003. Evaluation of herbal preparations for hypoglycemic activity in normal and diabetic rabbits. *Pharmaceutical biology*, 41(6), pp.466-472.
- Sen, P., Dollo, M., Choudhury, M.D. and Choudhury, D., 2008. Documentation of traditional herbal knowledge of Khamptis of Arunachal Pradesh.
- Sharma, B.R., Sharma, K.G., Rustagi, S. and Awasthi, K.Y., 2017. Comparative studies on general parameters of flowers and leaves of Catharanthus alba and Catharanthus roseus. *Asian Journal of Dairy & Food Research*, 36(3).
- Siddiqui, M.J., Ismail, Z., Aisha, A.F.A. and Abdul, M., 2010. Cytotoxic activity of Catharanthus roseus (Apocynaceae) crude extracts and pure compounds against human colorectal carcinoma cell line. *IJP-International Journal of Pharmacology*, *6*(1), pp.43-47.
- Singh, N.K., Devi, C.B., Singh, T.S. and Singh, N.R., 2010. Trace elements of some selected medicinal plants of Manipur.
- Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumria, M.M.L., Ranganathan, S. and Sridharan, K., 2001. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. *Journal of Ethnopharmacology*, 76(3), pp.269-277.
- Srinivasan, D., Nathan, S., Suresh, T. and Perumalsamy, P.L., 2001. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. *Journal of Ethnopharmacology*, 74(3), pp.217-220..

- Ueda, J.Y., Tezuka, Y., Banskota, A.H., Le Tran, Q., Tran, Q.K., Harimaya, Y., Saiki, I. and Kadota, S., 2002. Antiproliferative activity of Vietnamese medicinal plants. *Biological and Pharmaceutical Bulletin*, 25(6), pp.753-760.
- Vaidya, A.D. and Devasagayam, T.P., 2007. Recent Advances in Indian Herbal Drug Research Guest Editor: Thomas Paul Asir Devasagayam Current Status of Herbal Drugs in India: An Overview. *Journal of clinical biochemistry and nutrition*, 41(1), pp.1-11.
- Wadikar, M.S. and Nimbalkar, R.K., 2010. Efficacy of leaf extracts of Taphrosia purpurea and Catharanthus roseus against root rot diseases of chickpea (Cicer arietium L.). *Recent Research in Science and Technology*, 2(7).
- Wang, S., Zheng, Z., Weng, Y., Yu, Y., Zhang, D., Fan, W., Dai, R. and Hu, Z., 2004. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. *Life sciences*, 74(20), pp.2467-2478.
- Widowati, W., Mozef, T., Risdian, C. and Yellianty, Y., 2013. Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines. Oxidants and Antioxidants in Medical Science, 2(2), pp.137-142.
- Williams, C.A. and Grayer, R.J., 2004. Anthocyanins and other flavonoids. *Natural product reports*, 21(4), pp.539-573.