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Abstract 
 

 

The theory of the elasticity undoubtedly can be regarded as one of the most important 

branch of solid mechanics which deals with the stresses and deformations produced in 

elastic media under the action of external forces or due to temperature gradients. Hooke’s 

law forms the core of entire theory of elasticity. But its failure to explain response of 

materials like polymers, fibrous materials, coarse grains or any material in which its 

microstructure plays important role, lead many researchers to focus on new theory which 

can remain consistent with experimental observations. Breakthrough achievement in this 

regard can be considered as development of micropolar theory of elasticity. Micropolar 

theory assumes materials to be made up of small dumb-well like interconnected 

molecules, which can undergo rotational motion independently in addition to translational 

motion. Later on, this theory was extended to include thermal and electromagnetic effects 

to explain the elastic response of material subjected to thermal or magnetic source. This 

thesis comprises of five chapters containing the detailed analysis of elastic media 

subjected to different sources. Response of homogenous isotropic media placed in 

magnetic field and subjected to thermal and mechanical sources has been investigated in 

this study. Integral transformations have been applied to simplify system of partial 

differential equations. Use of numerical inversion technique has been done to obtain the 

solution in physical domain from frequency domain. Graphical analysis has been done at 

the end of each chapter to explain the outcome of study. First chapter contains brief 

developments in the theory of elasticity. Starting from Galileo’s study to two major 

breakthroughs in the history of elasticity namely; Hooke’s law and Navier’s general 

equations and then recent developments in this field. It acknowledges the contribution of 

modern elasticians like Eringen and Nowacki. Second chapter contains solution of an axi-

symmetric problem in infinite space using Laplace and Hankel transforms. Mechanical 

source was applied in the presence of transverse magnetic field. Next chapter highlights 

the application of a two dimensional plane strain generalized magneto micropolar 

thermoelastic model to analyse the effect of concentrated force on perfectly conducting 

media. A combination of Laplace and Fourier transform has been exercised to solve 

system of resulting partial differential equations. Fourth chapter includes the impact of 

rotation on generalized magneto micropolar thermoelastic medium. An eigen value 
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approach instead of usual treatment for solving system of differential equations has been 

applied. Such elastic models can be very useful in analysing the planetary motion. Final 

chapter investigates the effect of interaction of electromagnetic, elastic and thermal field 

by using modified Ohm’s and Fourier’s law. Both thermal and mechanical sources have 

been applied to magneto micropolar thermoelastic medium. Special cases of interest for 

continuous and concentrated source have been discussed to explain the utility of the 

approach.  
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Chapter 1 

Introduction 
 

 

1.1 Classical theory of Elasticity 

 

The Mathematical theory of elasticity is an endeavour to lessen the work involved in 

determining stress-strain, or relative movement of constituents of a solid body, which is 

subjected to an equilibrating system of forces, or might be in state of slight internal 

relative motion. It aims to derive results which shall be essentially vital in the fields of 

structural design and all other beneficial fields in which the material of construction is 

used. Classical theory of elasticity is one of the most important branches of continuum 

mechanics, which deals with the stresses and deformations in elastic materials generated 

due to action of external forces or change in temperature.  The classical theory of elasticity 

serves as an excellent model for studying the mechanical behaviour of a wide variety of 

solid materials and is used extensively in civil, mechanical and aeronautical engineering 

design. This is the oldest established theory governing the behaviour of deformable solid 

materials, which was founded in the early nineteenth century. Under this theory it is 

assumed that an elastic, continuous medium in which loadings are transmitted through an 

area element %& in the body by means of the stress vector only. The results obtained with 

the application of the classical theory of elasticity are in harmony with experiments 

carried out of many construction materials (steel, aluminium and concrete) provided the 

stresses are within the limits of elasticity of the material. However in many cases 

discrepancies between the experiments and the classical theory of elasticity is 

exceptionally prominent in dynamical problems which can be understood clearly in the 

case of elastic vibrations characterising combination of short wave length and high 

frequency. 
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Basis of this theory is formed by Hooke’s Law which was discovered in 1660 and 

published in 1676. In general form Hooke's law (Constitutive relations) can be expressed 

as  

��� = ���!()!( 

And equation of motion as   

���,� + +� = �
, � , 
Where ���!( is a fourth order tensor having 81 components which depend upon the nature 

of medium.  

Actually Galileo was the first mathematician who studied the resistance of solids to 

rupture by taking solids as an inelastic object. His investigations laid the foundation of a 

field which was later investigated by many researchers. Two major breakthroughs in the 

history of the elasticity initiated by the Galileo’s observations, are the discovery of 

Hooke’s Law in 1660 by British mathematician Robert Hooke and the formulation of the 

general equations by French engineer Navier in 1821. Hooke's law has influenced the 

scientific thoughts for a considerably long period and its results agreed with experiments 

quite well. 

Any solid is called elastic when it can undergo deformation under an applied load and 

can return to its original configuration after release of the deforming loads. An elastic 

solid that undergoes only an infinitesimal deformation and for which the governing 

material law is linear is called linear elastic solid. If the elastic properties of a body are 

same in all directions about any given point, then the body is said to be isotropic. If it 

happens that the elastic properties of the body are independent of the positions of the 

point, then the body is said to be homogeneous. For such materials Hooke’s law reduces 

to 

��� = -���ν + 2���� 

Where - and � are material constants known as Lame’s constants; 0 = �$$ + �11 + �22 

and ��� is the kronecker delta. 
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1.2 Thermoelasticity 

 

The theory of thermoelasticity which is generalization of concepts of classical theory of 

elasticity and theory of thermal conductivity, deals with the effect of thermomechanical 

disturbances on an elastic body. The heating of a body leads to temperature change and 

deformation in structure which causes thermal deformation. Interaction between elastic 

and temperature fields leads to coupling between deformation and temperature 

distribution, so Hooke’s law gets replaced with Duhamel-Neumann equation 

��� = -���ν + 2���� + ���3, 
here  ��� are thermal moduli and 3 is the temperature change. For homogeneous isotropic 

material  

��� = � = −53- + 2�7� 

Where � is the coefficient of thermal expansion. 

Lack of thermodynamical justification of Duhemal’s equation was later provided by Biot 

[1]. Biot also introduced the concept of thermal force. Year 1967 saw the introduction of 

generalized thermoelasticity (L-S theory) with single relaxation time for the special case 

of an isotropic body to overcome one of the two limitations of theory of thermoelasticity 

proposed by Lord and Shulman [2]. Actually till then it had two drawbacks which were 

in contradiction to the physical experiments, first it suggested for an elastic body, its 

mechanical state has nothing to do with the temperature distribution and second, the 

parabolic nature of heat equation resulting in infinite speed of heat propagation. In L-S 

theory, Fourier law was replaced with a modified law of heat conduction which included 

both the heat flux and its time derivative. The second shortcoming was addressed by 

introduction of two relaxation times by Green and Lindsay [3] which is known as the 

theory of temperature-rate-dependent thermoelasticity (G-L theory). When the body 

under consideration has a centre of symmetry, G-L theory is in harmony with Fourier’s 

law of heat conduction, and it is valid for both kind of bodies isotropic as well as 

anisotropic. A detailed survey of thermoelasticity is available in [4]. 
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1.3 Micropolar Elasticity 

 

So far classical theory, which is based on Hooke’s law was being used to analyse the 

behaviour of commonly used materials in engineering. This theory was formed with the 

assumption that each point of the continuum possesses three degrees of freedom or 

displacements in three mutually orthogonal directions. But certain other materials like 

wood, bones and liquid crystal elastomers having no symmetry in their microstructure 

and which cannot be properly modelled by using the classic theory. All this happens due 

to presence of additional mechanisms which resists deformation. Micropolar theory of 

elasticity which is part of Solid Mechanics came into existence aftermath of failure of 

classical theory to explain the behaviour of material possessing internal structure and all 

such materials with fibrous, polycrystalline materials, coarse grain, polymeric materials, 

microcracks, microfractures and fiberglass. Developed by Eringen [5], Micropolar theory 

successfully deals with deformation of these materials or any material whose 

microstructure plays crucial part in their macroscopic reactions. Basically a Micropolar 

continuum can be treated as a collection of small rigid bodies which are interconnected 

and can undergo both rotational and translational motions. These elements are allowed to 

rotate independently. So, both deformation and microrotation describe the state of motion 

in case of micropolar bodies, giving rise to six degrees of freedom. In this theory it is 

assumed that the action across an infinitesimal surface element inside a material is 

equivalent to a force and couple as compared to earlier understanding that the action 

across a hypothetical plane within material should be statically equivalent to a force. 

Usually in micropolar three displacement components 5
$, 
1, 
27 are used to represent 

the macroscopic motion of the material point, and three additional microrotational angles 

5
$, 
1, 
27 are used to characterize the rotation of microstructure within the material 

point. The interaction taking place between two parts of a body is transmitted by a torque 

vector along with force vector which results in asymmetric force stresses and couple 

stresses. This media represents the entire class of materials which are formed by dipole 

atoms or dumb-bell like molecules and are subjected to surface and body couples. 

Micropolar materials are assigned an additional object called “director” to represent their 

orientation in comparison to classical continuum mechanics where its constituents are 

assigned a fixed position regardless of their orientation, inside the body of material at any 
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instant of time. So a micropolar continuum can be regarded as a collection of 

interconnected small elements which can undergo both translational as well as rotational 

motion. Following Eringen [5] mathematical model for representing stress-strain relation 

in homogeneous isotropic micropolar elastic media is taken as: 

��� = -
8,8��� + �9
�,� + 
�,�: + �9
�,� − )��8
8:, 
��� = �
8,8��� + �
�� + �
� . 

First attempt to remove discrepancies of the classical theory was made by Voigt [6] 

by who while investigating the interaction between two particles of a body through an 

elementary area found the presence of moment vector in addition to a force vector. This 

observation gave way to the origin of an additional parameter in the theory of elasticity 

namely couple stress. Subsequently Cosserat and Cosserat [7] showed that the 

deformation of the material can be explained by a displacement vector and an independent 

rotation vector and laid foundation of a unified theory. Further it said that during the 

deformation process every material particle goes through both linear displacement and 

rotation. Another advancement in the field was by introduction of micromorphic 

continuum theory which suggested that each particle within the body possesses twelve 

degrees of freedom; three are contributed by macromotion and remaining by 

micromotion. Thus all material which are capable for undergoing classical motion and 

microrotation can be regarded as micromorphic continuum and in these cases deformation 

of material can assumed to be affine. Hence Cosserat continuum and the indeterminate 

couple stress theory can be considered as a particular case of this theory.  

Micropolar theory of elasticity had the potential of wide-ranging engineering applications 

in acoustics, optics and geophysics or wherever the contemporary engineering materials 

area being used. As these can be regarded as materials made up of constituents possessing 

internal structures and any small-scale effect plays a vital role in the prediction of the 

overall mechanical behaviour of these materials. Recently lot of work is going on in this 

field for isotropic as well as anisotropic media and literature now contains several hundred 

papers in this and in related field. Disturbance caused due to a thermomechanical source 

in homogeneous isotropic heat flux which was dependent upon micropolar thermelastic 

medium was investigated by Kumar et al. [8] by using eigen value approach. An axi-

symmetric problem corresponding to time harmonic vertical and horizontal loads in 
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micropolar medium was investigated by Kumar and Choudhary [9] with the help of 

integral transforms. Hu et al. [10] proposed a variational method approach for evaluating 

the behaviour of non-linear micropolar composites and found that the calculated values 

were in agreement with the available experimental data. Kumar and Ailawalia [11] 

studied the micropolar cubic crystal subjected to mechanical source by deploying eigen 

value approach. Propagation of plane waves in micropolar elastic space was investigated 

by Tomar and Singh [12] and proved the existence of three longitudinal waves and two 

sets of coupled waves. Concept of energy pairs was introduced by Ramezani and 

Naghdabadi [13] in micropolar continuum. Bauer et al. [14] proposed a three dimensional 

finite element technique which can be used to obtain large displacements and small 

strains. Also transition between micropolar and classical continua was reproduced by 

using this model. A numerical manifold (NMM) approach for obtaining solution of plane 

problems in micropolar elasticity has been studied by Zhao et al. [15] and proved that 

results are in agreement with the analytical approach. Some existence and uniqueness 

results were obtained for micropolar solid-solid mixture by Ghiba and Gales [16]. Also 

analysis of longitudinal and displacement waves for displacement and microrotation has 

been presented. 

 

1.4 Micropolar thermoelasticity 

 

The theory which is formed by including the thermal effects in micropolar theory known 

as micropolar coupled theory of thermoelasticity, was developed by Nowacki [17].  

Temperature dependence of displacements is required to be considered in all elasto-

dynamic problems giving rise to coupled thermoelastic equations. This theory consists of 

heat conduction equation and stress strain that are produced due to the flow of heat. It 

makes it possible to calculate the stresses produced by the temperature field and to 

determine the temperature distribution due to the action of time dependent forces and heat 

sources. Following Lord and Shulman [2], Green and Lindsay [3] and Eringen [18], the 

mathematical model for calculating stress-strain together with modified Fourier law of 

heat conduction for homogeneous isotropic micropolar generalized thermoelastic solid is: 

��� = -
8,8��� + �9
�,� + 
�,�: + �9
�,� − ε=>?
8: − 0 @3 + #$
A3
AB C ��� , 



Ch-1 Introduction 7 

 

 

��� = �
8,8��� + �
�,� + �
�,�, 

D∗∇13 = �F∗ GA3
AB + #�

∂1T
∂B1 J + ν3� G A

AB + Ξ #�
∂1

∂B1J 
�,�. 
For a linearly coupled thermoelastic solid, the governing equations consists of 

diffusion type (parabolic) equation of heat conduction and wave type (hyperbolic) 

equation of motion. As discussed earlier due to deficiencies in this equation it was 

observed that its solution was in violation of physical laws. A part of the solution of this 

heat equation was tending to infinity which means if any isotropic and homogeneous 

elastic material is subjected to mechanical or thermal disturbances; the effects in the 

temperature and displacement field can be immediately felt at an infinity. In simple words 

it means that some part of the disturbance is travelling with velocity even greater than 

velocity of light which is practically not possible. To overcome this shortcomings, the 

need was felt to develop theories of generalized thermoelasticity. Soon these were 

addressed with L-S and G-L theories. Lord and Shulman [2], introduced the first 

generalization to this theory by obtaining a head equation of wave nature and also 

proposed a modified law of heat conduction. Wave type heat equation of this theory 

ensured that thermal and elastic disturbances had finite speed of propagation. Other than 

this both equations of motion and constitutive relations remained same for this theory. 

Later the second generalization to the coupled theory of elasticity was made by 

introduction of theory of thermoelasticity with two relaxation times known as 

temperature–rate-dependent thermoelasticity. Constitutive relations in explicit form for 

this theory were obtained by Green and Lindsay [3]. Green and Naghdi [19] proposed the 

theory (G-N theory) of thermoelasticity without energy dissipation and obtained the 

derivation of a complete set of governing equations in the linearized form for isotropic 

and homogeneous materials in terms of temperature and displacement. Uniqueness of the 

solution for the corresponding initial mixed boundary value problem was also established 

by them. 

An intensive study is going on in recent times in the field of micropolar thermoelasticity. 

A detailed review of works on this subject was done by Eringen [20] and Nowacki [21]. 

Lately number of authors have contributed to the field. Kumar et al. [22] investigated 

source problem in micropolar theory of thermoelasticity and obtained the general solution 

for a half-space subjected to arbitrary heat source. For particulate composites, impact of 
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reinforcement size on the yielding and strain hardening was also investigated by them. A 

problem of one relaxation time due to time harmonic series was studied by Kumar and 

Ailawalia  [23] to find the response of a micropolar thermoelastic medium possessing 

cubic symmetry. They also studied [24] themomechanical interactions in a micropolar 

thermoelastic medium possessing cubic symmetry. A comprehensive study was made by 

Othman and Singh [25] in micropolar thermoelastic medium under five theories of 

generalized thermoelasticity namely Lord-Shulman (L-S) with one relaxation time, 

Green-Lindsay (G-L) with two relaxation times, Green and Naghdi (G-N) theory without 

energy dissipation and Chandrasekharaiah-Tzou theory with dual phase lag and coupled 

theory. Propagation of waves using L-S theory in stress free homogeneous isotropic 

thermoelastic plate possessing cubic symmetry was studied by Kumar and Partap [26]. 

Passarella and Zampoli [27] investigated a problem on thermoelasticity without energy 

dissipation allowing propagation of thermal waves at finite speed. Othman et al. [28] 

presented a paper on disturbances in a homogeneous, isotropic elastic medium using G-

N theory with generalized thermoelastic diffusion. Othman et al. [29] with the help of a 

general model of equations of generalized thermo-microstretch studied three theories; L-

S theory, G-L theory and classical dynamical coupled theory for a homogeneous isotropic 

elastic half-space. They used normal mode analyses to find the solution and showed the 

impact of reference temperature on modulus of elasticity and also proved that it has 

significant effect on the thermomechanical interactions. 

 Features of thermo elastic waves with thermal relaxation using generalized theory of 

Lord-Shulman in isotropic micropolar plate was investigated by Shaw and 

Mukhopadhyay [30] and result found in this study were in agreement in the context of 

various theories of classical as well as micropolar thermoelasticity with those predicted 

earlier by Sharma and Eringen. Kumar and Kansal [31] constructed a fundamental 

solution of differential equations in the theory of micropolar thermoelastic diffusion in 

case of steady oscillations in terms of elementary functions. The uniqueness and 

reciprocal theorems were proved by El-Karamany and Ezzat [32] for three-phase-lag 

micropolar thermoelastic solid. Variational principle was established for a linear 

anisotropic and inhomogeneous solid. Variational principal was obtained for two 

temperature homogeneous istropic thermoelastic media by Youssef [33]. Sherief and 

Latief [34] studied a problem in half space in the context of fractional order theory of 

thermoelasticity by taking thermal conductivity as a variable rather than a constant. 
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Othman et al. [35] introduced dual-phase lag theory to study the effect of rotation on a 

two-dimensional problem of micropolar thermoelastic isotropic medium with two 

temperatures. Response of moving heat source in homogeneous, isotropic, micropolar 

medium was analysed by Shaw and Mukhopadhyay [36] subjected to finite rotation about 

its axis. Two temperature generalized thermoelasticity theory was deployed for obtain the 

results. Kumar et al. [37] studied a two temperature problem consisting of propagation of 

waves in homogenous micropolar thermoelastic solid whose boundary is stress free, 

thermally insulated and isothermal. Sherief and El-Latief [38] applied the fractional order 

theory of thermoelasticity to a two dimensional problem in half-space in the absence of 

heat sources and body forces. Kumar et al. [39] investigated a two temperature problem 

to study the reflection of plane waves at the free surface of thermally conducting 

micropolar conducting thermoelastic medium with and without energy dissipation.  

 

1.5 Magneto Micropolar Elasticity 

 

In the recent years the interaction of electromagnetic fields with elastic media is an area 

interest for many researchers working in the field of continuum mechanics and 

geophysics for both theoretical and experimental investigations. So magneto micropolar 

theory of elasticity is study of thermos-elastic deformations of a solid body subjected to 

an externally applied magnetic field. Both magnetic as well as elastic fields contribute to 

the total deformation of the body. Interaction of both fields causes changes in the 

governing laws of both fields. Elastic field enters into governing equations of 

electromagnetism i.e. Maxwell’s equations by modifying the Ohm’s law and  in turn 

electro-magnetic field effects the elastic field by inclusion of Lorentz’s ponderomotive 

force in Hooke’s law. 

So modified model [40] for this type of media by considering the Lorentz force, 

is taken as 

��� = -
!,!��� + �9
�,� + 
�,�: + � 9
�,� −∈��! 
!:, 
��� = �
!��� + �
�,� + �
�,�, 

5� + �7
�,�� + 5- + �7
�,�� + ����!
!,� +∈��! ���! = �
, � , , 
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����!
!,� − 2�
� + 5� + �7
�,�� + �
�,�� = �	
, � . 
 

1.6 Magneto Micropolar thermoelasticity 

 

This theory deals with the effects of magnetic field on the elastic deformation produced 

by uneven heating throughout the body which may or may not be subjected to mechanical 

forces. In this case, besides the elastic and electro-magnetic fields, thermal field is also 

present. Each of these fields interact with each other and contribute to the total 

deformation of the body. The electro-magnetic field is still governed by Maxwell’s 

equations with, of course, a modified Ohm’s law, while the elastic field is determined by 

the modified Hooke’s law and the thermal field by Fourier’s law of heat conduction in its 

modified form. Current area of study magneto micropolar thermoelasticity is an extension 

of this theory. This theory deals the effects of magnetic field on the elastic deformation 

produced by uneven heating throughout the body which may or may not be subjected to 

mechanical forces. In this case, in addition to elastic and electro-magnetic fields, thermal 

field is also present. Maxwell’s equations still govern the electro-magnetic field while the 

elastic field is determined by the modified Hooke’s law and the thermal field by Fourier’s 

law of heat conduction in its modified form. Due to superposition of electromagnetic field 

on elastic field, elastic-stress relation gets modified by addition of a new body force 

namely Lorentz’s force and in turn elastic field causes changes in the the electro-magnetic 

field by modifying ohm’s law.  

The theories of magneto elasticity and thermos magneto elasticity have been developed 

to study the thermoelastic deformation when medium is under an externally applied 

magnetic field. In recent years, because of the possibilities of their extensive practical 

applications in diverse fields such as acoustics, geophysics, optics, damping of acoustic 

waves in the magnetic field and so on, these theories are being rapidly. It can also find 

application in analysis of propagation of seismic waves from the earth’s mantle to its core. 

For explaining certain phenomena concerning these waves, Cagniard [41]  suggested that 

the existence of the earth’s magnetic field may be taken into consideration. Basic 

equations of magneto micro thermoelasticity were derived by Kaliski [42]. Later on, 
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Knopoff [43] attempted to determine the effects of the magnetic field on the propagation 

of elastic waves on a geophysical scale.  

In recent years number of authors have contributed to the development of this field. Baksi, 

Bera and Debnath [44] studied magneto–thermal elastic problems with thermal 

relaxations and heat sources in a three dimensional infinite rotating elastic media. Youssef 

[45] studied a generalized magneto thermoelastic problem with variable material 

properties in conducting medium. An axi-symmetric problem subjected to 

thermomechanical source in electromagnetic micropolar thermoelastic medium was 

analysed by Kumar and Rupender [46], by using a two dimensional model in cylindrical 

polar coordinates. A comparative study between one-temperature theory and two 

temperature theory in generalized magneto thermoelastic medium in perfectly conducting 

medium was made by Ezzat and Bary [47] by using state space approach and found that 

two-temperature generalized theory more accurately describes the behaviour of the 

particles of an elastic body than the one-temperature theory. Ezzat and Awad [48] studied 

a problem in micropolar generalized magneto thermoelasticity and introduced the 

modified Ohm’s law which contained the charge density effects and also temperature 

gradient by using the generalized Fourier’s law containing current density term. Normal 

mode analysis is used to obtain the solution. He and Cao [49] used generalized 

thermoelastic theory in context of L-S theory with thermal relaxation and investigated the 

response of thin film strip placed in magnetic field and moving heat source and found that 

displacement and stress were significantly influenced by magnetic field but temperature 

remains unaffected. Effect of rotation was analysed by Kumar and Rupender [40] in an 

electromagnetic micropolar generalized thermoelastic medium, which is subjected to 

mechanical force or thermal source. By means of a two dimensional model they also 

proved that application of thermal source plays dominant role in the stress-strain 

distribution as compared to mechanical force in the presence of a transverse magnetic 

field. Singh and Kumar [50] studied the interaction of electromagnetic field with elastic 

field in the presence of temperature by applying Mechanical force and thermal source by 

using modified Fourier and Ohm’s law.  

A mathematical model [48] for isotropic micropolar thermoelastic homogenous 

solid placed in the externally applied magnetic field is usually taken as, 

��� = -
!,!��� + �9
�,� + 
�,�: + � 9
�,� −∈��! 
!: − 0 3���, 



 

 

Chapter 1 

Introduction 
 

 

1.1 Classical theory of Elasticity 

 

The Mathematical theory of elasticity is an endeavour to lessen the work involved in 

determining stress-strain, or relative movement of constituents of a solid body, which is 

subjected to an equilibrating system of forces, or might be in state of slight internal 

relative motion. It aims to derive results which shall be essentially vital in the fields of 

structural design and all other beneficial fields in which the material of construction is 

used. Classical theory of elasticity is one of the most important branches of continuum 

mechanics, which deals with the stresses and deformations in elastic materials generated 

due to action of external forces or change in temperature.  The classical theory of elasticity 

serves as an excellent model for studying the mechanical behaviour of a wide variety of 

solid materials and is used extensively in civil, mechanical and aeronautical engineering 

design. This is the oldest established theory governing the behaviour of deformable solid 

materials, which was founded in the early nineteenth century. Under this theory it is 

assumed that an elastic, continuous medium in which loadings are transmitted through an 

area element �� in the body by means of the stress vector only. The results obtained with 

the application of the classical theory of elasticity are in harmony with experiments 

carried out of many construction materials (steel, aluminium and concrete) provided the 

stresses are within the limits of elasticity of the material. However in many cases 

discrepancies between the experiments and the classical theory of elasticity is 

exceptionally prominent in dynamical problems which can be understood clearly in the 

case of elastic vibrations characterising combination of short wave length and high 

frequency. 
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Basis of this theory is formed by Hooke’s Law which was discovered in 1660 and 

published in 1676. In general form Hooke's law (Constitutive relations) can be expressed 

as  

��� = ����	
�	 

And equation of motion as   

���,� + 
� = ��� � , 
Where ����	 is a fourth order tensor having 81 components which depend upon the nature 

of medium.  

Actually Galileo was the first mathematician who studied the resistance of solids to 

rupture by taking solids as an inelastic object. His investigations laid the foundation of a 

field which was later investigated by many researchers. Two major breakthroughs in the 

history of the elasticity initiated by the Galileo’s observations, are the discovery of 

Hooke’s Law in 1660 by British mathematician Robert Hooke and the formulation of the 

general equations by French engineer Navier in 1821. Hooke's law has influenced the 

scientific thoughts for a considerably long period and its results agreed with experiments 

quite well. 

Any solid is called elastic when it can undergo deformation under an applied load and 

can return to its original configuration after release of the deforming loads. An elastic 

solid that undergoes only an infinitesimal deformation and for which the governing 

material law is linear is called linear elastic solid. If the elastic properties of a body are 

same in all directions about any given point, then the body is said to be isotropic. If it 

happens that the elastic properties of the body are independent of the positions of the 

point, then the body is said to be homogeneous. For such materials Hooke’s law reduces 

to 

��� = ����ν + 2���� 

Where � and � are material constants known as Lame’s constants; � = ��� + ��� + ��� 

and ��� is the kronecker delta. 
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1.2 Thermoelasticity 

 

The theory of thermoelasticity which is generalization of concepts of classical theory of 

elasticity and theory of thermal conductivity, deals with the effect of thermomechanical 

disturbances on an elastic body. The heating of a body leads to temperature change and 

deformation in structure which causes thermal deformation. Interaction between elastic 

and temperature fields leads to coupling between deformation and temperature 

distribution, so Hooke’s law gets replaced with Duhamel-Neumann equation 

��� = ����ν + 2���� + ����, 
here  ��� are thermal moduli and � is the temperature change. For homogeneous isotropic 

material  

��� = � = −�3� + 2� ! 

Where ! is the coefficient of thermal expansion. 

Lack of thermodynamical justification of Duhemal’s equation was later provided by Biot 

[1]. Biot also introduced the concept of thermal force. Year 1967 saw the introduction of 

generalized thermoelasticity (L-S theory) with single relaxation time for the special case 

of an isotropic body to overcome one of the two limitations of theory of thermoelasticity 

proposed by Lord and Shulman [2]. Actually till then it had two drawbacks which were 

in contradiction to the physical experiments, first it suggested for an elastic body, its 

mechanical state has nothing to do with the temperature distribution and second, the 

parabolic nature of heat equation resulting in infinite speed of heat propagation. In L-S 

theory, Fourier law was replaced with a modified law of heat conduction which included 

both the heat flux and its time derivative. The second shortcoming was addressed by 

introduction of two relaxation times by Green and Lindsay [3] which is known as the 

theory of temperature-rate-dependent thermoelasticity (G-L theory). When the body 

under consideration has a centre of symmetry, G-L theory is in harmony with Fourier’s 

law of heat conduction, and it is valid for both kind of bodies isotropic as well as 

anisotropic. A detailed survey of thermoelasticity is available in [4]. 
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1.3 Micropolar Elasticity 

 

So far classical theory, which is based on Hooke’s law was being used to analyse the 

behaviour of commonly used materials in engineering. This theory was formed with the 

assumption that each point of the continuum possesses three degrees of freedom or 

displacements in three mutually orthogonal directions. But certain other materials like 

wood, bones and liquid crystal elastomers having no symmetry in their microstructure 

and which cannot be properly modelled by using the classic theory. All this happens due 

to presence of additional mechanisms which resists deformation. Micropolar theory of 

elasticity which is part of Solid Mechanics came into existence aftermath of failure of 

classical theory to explain the behaviour of material possessing internal structure and all 

such materials with fibrous, polycrystalline materials, coarse grain, polymeric materials, 

microcracks, microfractures and fiberglass. Developed by Eringen [5], Micropolar theory 

successfully deals with deformation of these materials or any material whose 

microstructure plays crucial part in their macroscopic reactions. Basically a Micropolar 

continuum can be treated as a collection of small rigid bodies which are interconnected 

and can undergo both rotational and translational motions. These elements are allowed to 

rotate independently. So, both deformation and microrotation describe the state of motion 

in case of micropolar bodies, giving rise to six degrees of freedom. In this theory it is 

assumed that the action across an infinitesimal surface element inside a material is 

equivalent to a force and couple as compared to earlier understanding that the action 

across a hypothetical plane within material should be statically equivalent to a force. 

Usually in micropolar three displacement components ���, ��, ��  are used to represent 

the macroscopic motion of the material point, and three additional microrotational angles 

�"�, "�, "�  are used to characterize the rotation of microstructure within the material 

point. The interaction taking place between two parts of a body is transmitted by a torque 

vector along with force vector which results in asymmetric force stresses and couple 

stresses. This media represents the entire class of materials which are formed by dipole 

atoms or dumb-bell like molecules and are subjected to surface and body couples. 

Micropolar materials are assigned an additional object called “director” to represent their 

orientation in comparison to classical continuum mechanics where its constituents are 

assigned a fixed position regardless of their orientation, inside the body of material at any 
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instant of time. So a micropolar continuum can be regarded as a collection of 

interconnected small elements which can undergo both translational as well as rotational 

motion. Following Eringen [5] mathematical model for representing stress-strain relation 

in homogeneous isotropic micropolar elastic media is taken as: 

��� = ��#,#��� + �$��,� + ��,�% + &$��,� − 
��#"#%, 
��� = !"#,#��� + �"�� + '"� . 

First attempt to remove discrepancies of the classical theory was made by Voigt [6] 

by who while investigating the interaction between two particles of a body through an 

elementary area found the presence of moment vector in addition to a force vector. This 

observation gave way to the origin of an additional parameter in the theory of elasticity 

namely couple stress. Subsequently Cosserat and Cosserat [7] showed that the 

deformation of the material can be explained by a displacement vector and an independent 

rotation vector and laid foundation of a unified theory. Further it said that during the 

deformation process every material particle goes through both linear displacement and 

rotation. Another advancement in the field was by introduction of micromorphic 

continuum theory which suggested that each particle within the body possesses twelve 

degrees of freedom; three are contributed by macromotion and remaining by 

micromotion. Thus all material which are capable for undergoing classical motion and 

microrotation can be regarded as micromorphic continuum and in these cases deformation 

of material can assumed to be affine. Hence Cosserat continuum and the indeterminate 

couple stress theory can be considered as a particular case of this theory.  

Micropolar theory of elasticity had the potential of wide-ranging engineering applications 

in acoustics, optics and geophysics or wherever the contemporary engineering materials 

area being used. As these can be regarded as materials made up of constituents possessing 

internal structures and any small-scale effect plays a vital role in the prediction of the 

overall mechanical behaviour of these materials. Recently lot of work is going on in this 

field for isotropic as well as anisotropic media and literature now contains several hundred 

papers in this and in related field. Disturbance caused due to a thermomechanical source 

in homogeneous isotropic heat flux which was dependent upon micropolar thermelastic 

medium was investigated by Kumar et al. [8] by using eigen value approach. An axi-

symmetric problem corresponding to time harmonic vertical and horizontal loads in 
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micropolar medium was investigated by Kumar and Choudhary [9] with the help of 

integral transforms. Hu et al. [10] proposed a variational method approach for evaluating 

the behaviour of non-linear micropolar composites and found that the calculated values 

were in agreement with the available experimental data. Kumar and Ailawalia [11] 

studied the micropolar cubic crystal subjected to mechanical source by deploying eigen 

value approach. Propagation of plane waves in micropolar elastic space was investigated 

by Tomar and Singh [12] and proved the existence of three longitudinal waves and two 

sets of coupled waves. Concept of energy pairs was introduced by Ramezani and 

Naghdabadi [13] in micropolar continuum. Bauer et al. [14] proposed a three dimensional 

finite element technique which can be used to obtain large displacements and small 

strains. Also transition between micropolar and classical continua was reproduced by 

using this model. A numerical manifold (NMM) approach for obtaining solution of plane 

problems in micropolar elasticity has been studied by Zhao et al. [15] and proved that 

results are in agreement with the analytical approach. Some existence and uniqueness 

results were obtained for micropolar solid-solid mixture by Ghiba and Gales [16]. Also 

analysis of longitudinal and displacement waves for displacement and microrotation has 

been presented. 

 

1.4 Micropolar thermoelasticity 

 

The theory which is formed by including the thermal effects in micropolar theory known 

as micropolar coupled theory of thermoelasticity, was developed by Nowacki [17].  

Temperature dependence of displacements is required to be considered in all elasto-

dynamic problems giving rise to coupled thermoelastic equations. This theory consists of 

heat conduction equation and stress strain that are produced due to the flow of heat. It 

makes it possible to calculate the stresses produced by the temperature field and to 

determine the temperature distribution due to the action of time dependent forces and heat 

sources. Following Lord and Shulman [2], Green and Lindsay [3] and Eringen [18], the 

mathematical model for calculating stress-strain together with modified Fourier law of 

heat conduction for homogeneous isotropic micropolar generalized thermoelastic solid is: 

��� = ��#,#��� + �$��,� + ��,�% + &$��,� − ε*+,"#% − � -� + .�
/�
/0 1 ��� , 
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��� = !"#,#��� + �"�,� + '"�,�, 

2∗∇�� = �5∗ 6/�
/0 + .7

∂�T
∂0� : + ν�7 6 /

/0 + Ξ .7
∂�

∂0�: ��,�. 
For a linearly coupled thermoelastic solid, the governing equations consists of 

diffusion type (parabolic) equation of heat conduction and wave type (hyperbolic) 

equation of motion. As discussed earlier due to deficiencies in this equation it was 

observed that its solution was in violation of physical laws. A part of the solution of this 

heat equation was tending to infinity which means if any isotropic and homogeneous 

elastic material is subjected to mechanical or thermal disturbances; the effects in the 

temperature and displacement field can be immediately felt at an infinity. In simple words 

it means that some part of the disturbance is travelling with velocity even greater than 

velocity of light which is practically not possible. To overcome this shortcomings, the 

need was felt to develop theories of generalized thermoelasticity. Soon these were 

addressed with L-S and G-L theories. Lord and Shulman [2], introduced the first 

generalization to this theory by obtaining a head equation of wave nature and also 

proposed a modified law of heat conduction. Wave type heat equation of this theory 

ensured that thermal and elastic disturbances had finite speed of propagation. Other than 

this both equations of motion and constitutive relations remained same for this theory. 

Later the second generalization to the coupled theory of elasticity was made by 

introduction of theory of thermoelasticity with two relaxation times known as 

temperature–rate-dependent thermoelasticity. Constitutive relations in explicit form for 

this theory were obtained by Green and Lindsay [3]. Green and Naghdi [19] proposed the 

theory (G-N theory) of thermoelasticity without energy dissipation and obtained the 

derivation of a complete set of governing equations in the linearized form for isotropic 

and homogeneous materials in terms of temperature and displacement. Uniqueness of the 

solution for the corresponding initial mixed boundary value problem was also established 

by them. 

An intensive study is going on in recent times in the field of micropolar thermoelasticity. 

A detailed review of works on this subject was done by Eringen [20] and Nowacki [21]. 

Lately number of authors have contributed to the field. Kumar et al. [22] investigated 

source problem in micropolar theory of thermoelasticity and obtained the general solution 

for a half-space subjected to arbitrary heat source. For particulate composites, impact of 
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reinforcement size on the yielding and strain hardening was also investigated by them. A 

problem of one relaxation time due to time harmonic series was studied by Kumar and 

Ailawalia  [23] to find the response of a micropolar thermoelastic medium possessing 

cubic symmetry. They also studied [24] themomechanical interactions in a micropolar 

thermoelastic medium possessing cubic symmetry. A comprehensive study was made by 

Othman and Singh [25] in micropolar thermoelastic medium under five theories of 

generalized thermoelasticity namely Lord-Shulman (L-S) with one relaxation time, 

Green-Lindsay (G-L) with two relaxation times, Green and Naghdi (G-N) theory without 

energy dissipation and Chandrasekharaiah-Tzou theory with dual phase lag and coupled 

theory. Propagation of waves using L-S theory in stress free homogeneous isotropic 

thermoelastic plate possessing cubic symmetry was studied by Kumar and Partap [26]. 

Passarella and Zampoli [27] investigated a problem on thermoelasticity without energy 

dissipation allowing propagation of thermal waves at finite speed. Othman et al. [28] 

presented a paper on disturbances in a homogeneous, isotropic elastic medium using G-

N theory with generalized thermoelastic diffusion. Othman et al. [29] with the help of a 

general model of equations of generalized thermo-microstretch studied three theories; L-

S theory, G-L theory and classical dynamical coupled theory for a homogeneous isotropic 

elastic half-space. They used normal mode analyses to find the solution and showed the 

impact of reference temperature on modulus of elasticity and also proved that it has 

significant effect on the thermomechanical interactions. 

 Features of thermo elastic waves with thermal relaxation using generalized theory of 

Lord-Shulman in isotropic micropolar plate was investigated by Shaw and 

Mukhopadhyay [30] and result found in this study were in agreement in the context of 

various theories of classical as well as micropolar thermoelasticity with those predicted 

earlier by Sharma and Eringen. Kumar and Kansal [31] constructed a fundamental 

solution of differential equations in the theory of micropolar thermoelastic diffusion in 

case of steady oscillations in terms of elementary functions. The uniqueness and 

reciprocal theorems were proved by El-Karamany and Ezzat [32] for three-phase-lag 

micropolar thermoelastic solid. Variational principle was established for a linear 

anisotropic and inhomogeneous solid. Variational principal was obtained for two 

temperature homogeneous istropic thermoelastic media by Youssef [33]. Sherief and 

Latief [34] studied a problem in half space in the context of fractional order theory of 

thermoelasticity by taking thermal conductivity as a variable rather than a constant. 
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Othman et al. [35] introduced dual-phase lag theory to study the effect of rotation on a 

two-dimensional problem of micropolar thermoelastic isotropic medium with two 

temperatures. Response of moving heat source in homogeneous, isotropic, micropolar 

medium was analysed by Shaw and Mukhopadhyay [36] subjected to finite rotation about 

its axis. Two temperature generalized thermoelasticity theory was deployed for obtain the 

results. Kumar et al. [37] studied a two temperature problem consisting of propagation of 

waves in homogenous micropolar thermoelastic solid whose boundary is stress free, 

thermally insulated and isothermal. Sherief and El-Latief [38] applied the fractional order 

theory of thermoelasticity to a two dimensional problem in half-space in the absence of 

heat sources and body forces. Kumar et al. [39] investigated a two temperature problem 

to study the reflection of plane waves at the free surface of thermally conducting 

micropolar conducting thermoelastic medium with and without energy dissipation.  

 

1.5 Magneto Micropolar Elasticity 

 

In the recent years the interaction of electromagnetic fields with elastic media is an area 

interest for many researchers working in the field of continuum mechanics and 

geophysics for both theoretical and experimental investigations. So magneto micropolar 

theory of elasticity is study of thermos-elastic deformations of a solid body subjected to 

an externally applied magnetic field. Both magnetic as well as elastic fields contribute to 

the total deformation of the body. Interaction of both fields causes changes in the 

governing laws of both fields. Elastic field enters into governing equations of 

electromagnetism i.e. Maxwell’s equations by modifying the Ohm’s law and  in turn 

electro-magnetic field effects the elastic field by inclusion of Lorentz’s ponderomotive 

force in Hooke’s law. 

So modified model [40] for this type of media by considering the Lorentz force, 

is taken as 

��� = ���,���� + �$��,� + ��,�% + & $��,� −∈��� "�%, 
��� = !"���� + �"�,� + '"�,�, 

�� + & ��,�� + �� + � ��,�� + &>���"�,� +∈��� ?�@� = ��� � , , 
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&>�����,� − 2&"� + �! + � "�,�� + '"�,�� = �A"� � . 
 

1.6 Magneto Micropolar thermoelasticity 

 

This theory deals with the effects of magnetic field on the elastic deformation produced 

by uneven heating throughout the body which may or may not be subjected to mechanical 

forces. In this case, besides the elastic and electro-magnetic fields, thermal field is also 

present. Each of these fields interact with each other and contribute to the total 

deformation of the body. The electro-magnetic field is still governed by Maxwell’s 

equations with, of course, a modified Ohm’s law, while the elastic field is determined by 

the modified Hooke’s law and the thermal field by Fourier’s law of heat conduction in its 

modified form. Current area of study magneto micropolar thermoelasticity is an extension 

of this theory. This theory deals the effects of magnetic field on the elastic deformation 

produced by uneven heating throughout the body which may or may not be subjected to 

mechanical forces. In this case, in addition to elastic and electro-magnetic fields, thermal 

field is also present. Maxwell’s equations still govern the electro-magnetic field while the 

elastic field is determined by the modified Hooke’s law and the thermal field by Fourier’s 

law of heat conduction in its modified form. Due to superposition of electromagnetic field 

on elastic field, elastic-stress relation gets modified by addition of a new body force 

namely Lorentz’s force and in turn elastic field causes changes in the the electro-magnetic 

field by modifying ohm’s law.  

The theories of magneto elasticity and thermos magneto elasticity have been developed 

to study the thermoelastic deformation when medium is under an externally applied 

magnetic field. In recent years, because of the possibilities of their extensive practical 

applications in diverse fields such as acoustics, geophysics, optics, damping of acoustic 

waves in the magnetic field and so on, these theories are being rapidly. It can also find 

application in analysis of propagation of seismic waves from the earth’s mantle to its core. 

For explaining certain phenomena concerning these waves, Cagniard [41]  suggested that 

the existence of the earth’s magnetic field may be taken into consideration. Basic 

equations of magneto micro thermoelasticity were derived by Kaliski [42]. Later on, 
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Knopoff [43] attempted to determine the effects of the magnetic field on the propagation 

of elastic waves on a geophysical scale.  

In recent years number of authors have contributed to the development of this field. Baksi, 

Bera and Debnath [44] studied magneto–thermal elastic problems with thermal 

relaxations and heat sources in a three dimensional infinite rotating elastic media. Youssef 

[45] studied a generalized magneto thermoelastic problem with variable material 

properties in conducting medium. An axi-symmetric problem subjected to 

thermomechanical source in electromagnetic micropolar thermoelastic medium was 

analysed by Kumar and Rupender [46], by using a two dimensional model in cylindrical 

polar coordinates. A comparative study between one-temperature theory and two 

temperature theory in generalized magneto thermoelastic medium in perfectly conducting 

medium was made by Ezzat and Bary [47] by using state space approach and found that 

two-temperature generalized theory more accurately describes the behaviour of the 

particles of an elastic body than the one-temperature theory. Ezzat and Awad [48] studied 

a problem in micropolar generalized magneto thermoelasticity and introduced the 

modified Ohm’s law which contained the charge density effects and also temperature 

gradient by using the generalized Fourier’s law containing current density term. Normal 

mode analysis is used to obtain the solution. He and Cao [49] used generalized 

thermoelastic theory in context of L-S theory with thermal relaxation and investigated the 

response of thin film strip placed in magnetic field and moving heat source and found that 

displacement and stress were significantly influenced by magnetic field but temperature 

remains unaffected. Effect of rotation was analysed by Kumar and Rupender [40] in an 

electromagnetic micropolar generalized thermoelastic medium, which is subjected to 

mechanical force or thermal source. By means of a two dimensional model they also 

proved that application of thermal source plays dominant role in the stress-strain 

distribution as compared to mechanical force in the presence of a transverse magnetic 

field. Singh and Kumar [50] studied the interaction of electromagnetic field with elastic 

field in the presence of temperature by applying Mechanical force and thermal source by 

using modified Fourier and Ohm’s law.  

A mathematical model [48] for isotropic micropolar thermoelastic homogenous 

solid placed in the externally applied magnetic field is usually taken as, 

��� = ���,���� + �$��,� + ��,�% + & $��,� −∈��� "�% − � ����, 
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��� = !"���� + �"�,� + '"�,�, 

2∗B�� = 6 /
/0 + .C

/�
/0�: ���∗� + �C�� + DC?�,�, 

�� + & ��,�� + �� + � ��,�� + &>���"�,� +∈��� ?�@� − ��,� = ��� �, 
&>�����,� − 2&"� + �! + � "�,�� + '"�,��= �A"� � . 

Ezzat et al. [51], by taking into consideration the heat effects and permitting the magnetic 

field effects, investigated a problem in an isotropic homogeneous micropolar medium. 

They also introduced a model of equations for generalized magneto micropolar 

thermoelasticity in the context of theory of two temperatures. Zakaria and Zakaria [52] 

discussed a two dimensional problem in generalized magneto micropolar thermoelastic 

medium rotating with uniform angular velocity in the presence of a transverse magnetic 

field by taking into consideration the effect of Hall current- subjected to ramp-type 

heating. Othman and Lotfy [53] studied the effects of gravity, magnetic field and rotation 

with the help of a two dimensional fiber-reinforced thermoelastic problem. For analysis 

they made use of three different theories; coupled theory, L–S theory with one relaxation 

time and G–L theory with two relaxation times. Sarkar and Lahiri [54] used model 

proposed by Sherief et al. for generalized thermoelasticity for fractional order time 

derivatives for analysing the propagation of electro-magneto-thermoelastic disturbances 

in a perfectly conducting elastic half-space. Effects of magnetic field on the generalized 

thermoelastic diffusion using L-S theory were investigated by Othman and Elmaklizi [55] 

by considering modulus of elasticity linearly dependent on reference temperature. Deswal 

and Kalaka [56] investigated magneto-thermoelastic interactions in perfectly conducting 

unbounded half-space surface which is subjected to a time harmonic thermal source with 

fractional order heat transfer allowing second sound effect. Ezzat et al. [57] proposed a 

new mathematical model for perfectly conducting solid for two-temperature. Model was 

applied to analyse one dimensional problem subjected to heat source in the presence of 

constant magnetic field. Magneto-thermoelastic interactions in an isotropic homogeneous 

elastic half-space with two temperatures were discussed by Lotfy [58] using mathematical 

methods under the purview of the Lord–Şhulman (LS) and Green–Lindsay (GL) theories, 

as well as the classical dynamical coupled theory (CD). Sarkar [59] studied a thermal 

shock problem by deploying three different theories of generalized electromagneto-
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thermo-elasticity namely coupled (CD) theory, Lord-Shulman (LS) theory and Green-

Lindsay (GL) theory for an isotropic and homogeneous hals space solid which was 

thermally and electrically conducting. 

Due to its applications in the other branches of science like plasma physics, geophysics, 

crystal physics to name a few, interaction between magnetic fields and strain in a 

micropolar thermoelastic solid is receiving lot of attention. To study deformations at any 

point of the medium around mining tremors and drilling into the crust of the earth, this 

theory can be deployed. In fourth chapter an elastic model is presented for studying the 

earth’s planetary motion as it involves rotational velocity in addition to its thermal and 

electromagnetic field. Due to such applications, this field is witnessing active research in 

recent times. 



 

 

 

Chapter 2 

Elastodynamics of two dimensional plane problem in magneto 

micropolar elastic solid 

  

 

This chapter contains study of response of solid in magneto micropolar medium when it 

is subjected to mechanical source in an infinite space. Due to superposition of 

electromagnetic field on elastic field, elastic-stress relation gets modified with 

introduction of Lorentz’s force as body force and in turn elastic field influences the 

electro-magnetic field by modifying Ohm’s law.  At present, number of researchers in the 

field of continuum mechanics and geophysics are keenly working on elastic media to 

analyse outcome of its interaction with electromagnetic fields. Significant contributions 

in the field of Magneto elasticity have been made by Paria [60], Knopoff [43], Chadwick 

[61] and Purushothama [62]. Effect of magnetic field, rotation and initial stress in a 

circular cylindrical flexible tube with viscoelastic or elastic wall properties on peristaltic 

motion of micropolar fluid were investigated by Abd-All et al. [63]. Runge-Kutta method 

was used to solve the governing equations of motion. Jamia et al. [64]  extended Eringen's 

non-local theory to investigate the mixed-mode crack problem in a functionally graded 

magneto-electro-elastic medium. 

In current study, we have used system of cylindrical polar coordinates to analyse axi-

symmetric problem with the help of potential method. Integral transformations along with 

potential method have been applied to simplify the system of partial differential 

equations. Normal force at the boundary has been applied to explain the utility of the 

entire approach. 

 

2.1. Basic Equations 
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Following Nowacki [65], the field equations, constitutive relations in micropolar elastic 

solid by taking the Lorentz force into consideration along with equations of 

electromagnetism are given by 

�� + ��∇�∇. �	
� + �� + ��∇��	
 + �∇ × ϕ		
 + J
 × B		
 = ρ ∂�u	

∂�� , (2.1) 

�� + � + ��∇�∇. ϕ		
� − �∇ × ∇ × ϕ		
 + �∇ × u	
 − 2κϕ		
 = ρj ∂�ϕ		

∂�� , (2.2) 

 !" = ��#,#$!" + ���!," + �",!� + ���",! − %!"#&#�, (2.3) 

�!" = �&#,#$!" + �&!," + �&",!. (2.4) 

'�() ℎ	
 = ,
 + -.		

-� , '�() /	
 = − -0	


-� , (2.5) 

/	
 = −�1 2-�	

-� × 3		
14, (2.6) 

567 3		
 = 0, 0	
 = �13		
 where .		
 = %1/	
,    3		
 = 3		
1 + ℎ	
. (2.7) 

Also Ohm’ law in this case is 

,
 =  1/	
. (2.8) 

For the purpose of linearizing the problem we take 3		
 = ℎ	
 + 3		
1, where 3		
1 = �0, 31, 0�. 

Using equations (2.5)-(2.8), it can be shown that 

,
 × 0	
 = −�1�%131�
- �	

-� , (2.9) 

The equations of motion (2.1)-(2.2) with the aid of equation (2.9) in cylindrical polar co-

ordinate system �(, 9, :� in component form become 

�� + �� 2∂��;∂(� + 1
(

-�;-( − �;(� − 1
(�

-�=-9 + 1
(

-��=-9-( + -��>-(-:4 + κ
r @-&>-9 − ( -&=-: A

+ �� + �� 2∂��;∂(� + 1
(

-�;-( − �;(� − 2
(�

-�=-9 + 1
(�

-��;-9� + -��;-:� 4

− �1�%131�
-�;∂t = ρ ∂��;∂�� , 

(2.10) 
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�� + �� 21
(

∂��;∂θ ∂r + 1
(�

-�;-9 + 1
(�

-��=-9� + 1
(

-��>-9-:4 + κ @-&;-: − -&=-: A

+ �� + �� 2∂��=∂(� + 1
(�

-��=-9� + 1
(

-�=-( + -��=-:� + 2
(�

-�;-9 − �=(�4

− �1�%131�
-�=∂t = D -��=-�� , 

(2.11) 

�� + �� 2-��;-(-: + 1
(

-�;-: + 1
(

-��=-9-: + -��>-:� 4 + κ
r @-�(&=�

-( − -&;-9 A

+ �� + �� 2∂��>∂(� + 1
(

-�>-( + 1
(�

-��>-9� + -��>-:� 4 − �1�%131�
-�>∂t

= D -��>-�� , 

(2.12) 

�� + �� 2∂�&;∂(� + 1
(

-&;-( − &;(� − 1
(�

-&=-9 + 1
(

-�&=-9-( + -�&>-(-:4 + κ
r @-�>-9 − ( -�=-: A

+ � 2∂�&;∂(� + 1
(

-&;-( − &;(� − 2
(�

-&=-9 + 1
(�

-�&;-9� + -�&;-:� 4 − 2�&;

= DE ∂�&;∂�� , 

(2.13) 

�� + �� 21
(

∂�&;∂θ ∂r + 1
(�

-&;-9 + 1
(�

-�&=-9� + 1
(

-�&>-9-:4 + κ @-�;-: − -�>-( A

+ � 2∂�&=∂(� + 1
(�

-�&=-9� + 1
(

-&=-( + -�&=-:� + 2
(�

-&;-9 − &=(� 4

− 2�&= = DE -�&=-�� , 

(2.14) 

�� + �� 2-�&;-(-: + 1
(

-&;-: + 1
(

-�&=-9-: + -�&>-:� 4 + κ
r @-�(�=�

-( − -�;-9 A

+ � 2∂�&>∂(� + 1
(

-&>-( + 1
(�

-�&>-9� + -�&>-:� 4 − 2�&> = DE -�&>-�� , 
(2.15) 

where ��; , �= , �>� and �&; , &= , &>� are the cylindrical polar components of displacement 

vector �	
 and microrotation vector &	
 respectively. 
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2.2. Formulation and Solution of the problem 

 

We consider homogeneous, isotropic micropolar elastic media which is moving slowly. 

Cylindrical polar coordinate system (r,θ,z) with z-axis pointing into the medium have 

been employed to study the problem. 

As we are considering two-dimensional axisymmetric problem, so we take the 

components of displacement vector �	
, microrotation vector &	
  and magnetic field 

intensity vector ℎ	
 of the form  

�	
 = ��; , 0, �>�, &	
 = �0, &=,0), ℎ	
 = �0, ℎ, 0�. (2.16) 

Equations (2.5)-(2.8) after simplification give 

2∇� − �1 1
-
-� − �1%1

-�
-��4 ℎ	
 = 0. (2.17) 

Due to axial symmetry about z-axis, the quantities are independent of 9. With these 

considerations, the equations (2.11),(2.13) and (2.15) become identically zero and the 

equations (2.10), (2.12) and (2.14) along with constitutive relations (2.3)-(2.4) takes the 

form 

�� + �� 2∂��;∂(� + 1
(

-�;-( − �;(� + -��>-(-:4 − κ -&=-: + �� + �� @∇� − 1
(�A �;

− �1�%131�
-�;∂t = D -��;-�� , 

(2.18) 

�� + �� 2-��;-(-: + 1
(

-�;-: + -��>-:� 4 + �
(

-�(&=�
-( + �� + ��∇��> − �1�%131�

-�>∂t
= D -��>-�� , 

(2.19) 

κ @-�;-: − -�>-( A + � @F� − 1
(�A &= − 2�&= = DE -�&=-�� , (2.20) 

 >; = �� + �� -�;-: + � -�>-( − �&=, (2.21) 

 >> = � @-�;-( + �;( A + �� + 2� + �� -�>-: , (2.22) 

�>= = � -&=-:  , (2.23) 

Introducing the scalar potential G and vector potential H
 as  
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�	
 = ∇G + ∇ × H
,     where  ∇. H
 = 0  and  H
 = �I, H=, 0� (2.24) 

Using equations (2.24) in equations (2.18)-(2.20), we obtain 

�� + 2� + �� 2∂�ψ
∂(� + 1

(
-G
-( + ∂�ψ

∂:� 4 − %1�1�31�
-G
-� − ρ ∂�ψ

∂�� = 0, (2.25) 

�� + �� 2∂�ηL∂(� + 1
(

-ηL-( − ηL(� + ∂�ηL∂:� 4 + ��&= − %1�1�31�
-H=-� − ρ ∂�η=∂�� = 0, (2.26) 

2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:�4 ℎ − σ1�1
∂ℎ
∂t − ϵ1�1

∂�ℎ
∂�� = 0, (2.27) 

As the electric field intensity vector and current density vector are normal to the magnetic 

field intensity vector, so its components are obtained as 

/; = �131
-�>-� , (2.28) 

/> = −�131
-�;-� , (2.29) 

,; = − -ℎ
-: − %1

-/;-� , (2.30) 

,> = -ℎ
-( + ℎ

( − %1
-/>-� . (2.31) 

Now we define the dimensionless quantities as 

(O = (
ℎP , :O = :

ℎP , �;O = �;ℎP , �>O = �>ℎP , &=O = �
� &= ,      

�O = Q∗�,  !"O =  !"� , �!"O = ℎP� �!" ,      ,;O = ℎP31 ,; , ,>O = ℎP31 ,> ,     (2.32) 

/;O = 1
Q∗31�1ℎP /; , />O = 1

Q∗31�1ℎP /> , ℎO = ℎ
31.   

where ℎP is the parameter having the dimensions of length. 

After using these dimensionless quantities as defined in equation (2.32) in the equations 

(2.21)-(2.23) and (2.25)-(2.31), we obtain (after dropping dashes for convenience) 

2∂�ψ
∂(� + 1

(
-G
-( + ∂�ψ

∂:� 4 − SP
-G
-� − S�

∂�ψ
∂t� = 0, (2.33) 

2∂�ηL∂(� + 1
(

-ηL-( − ηL(� + ∂�ηL∂:� 4 + ST&= − SU
-H=-� − SV

∂�η=∂�� = 0, (2.34) 
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2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:�4 ℎ − SW
∂ℎ
∂t − SX

∂�ℎ
∂�� = 0, (2.35) 

2∂�&L∂(� + 1
(

-&L-( − &L(� + ∂�&L∂:� 4 − SY 2∂�ηL∂(� + 1
(

-ηL-( − ηL(� + ∂�ηL∂:� 4 − SZ&=

− SP1
∂�ϕ=∂�� = 0, 

(2.36) 

 >; = SPP
-�;-: + -�>-( − &=, (2.37) 

 >> = SP� @-�;-( + �;( A + SPT
-�>-: , (2.38) 

�>= = SPU
-&=-:  , (2.39) 

/; = -�>-� , (2.40) 

/> = − -�;-� , (2.41) 

,; = − -ℎ
-: − SPV

-/;-� , (2.42) 

,> = -ℎ
-( + ℎ

( − SPV
-/>-� . (2.43) 

where 

SP = %131��1�Q∗ℎP�� + 2� + � , S� = DQ∗�ℎP�� + 2� + � , ST = �ℎP�� + �,        

SU = %131��1�Q∗ℎP�� + � , SV = DQ∗�ℎP�� + � , SW =  1�1Q∗ℎP�, SX = %1�1Q∗�ℎP�, (2.44) 

SY = �
�� , SZ = 2ℎP��

� , SP1 = DEQ∗�ℎP�� , SPP = � + �
� ,    

SP� = �
�  , SPT = � + 2� + �

� , SPU = �
� , SPV = %1Q∗�1ℎP�.  

Now we apply the Laplace transform with respect to variable � and [ as Laplace transform 

variable on equations (2.33)-(2.43) as 

\]^�(, :, ��_ = ` abcde
1 ^�(, :, ��5� = ^�̅(, :, [�, (2.45) 

With following conditions 

\ ghi
hdj = [^�̅(, :, [� − ^�(, :, 0�, (2.46) 
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\ k-�^
-�� l = [�^�̅(, :, [� − [^�(, :, 0� − @-^

-�Adm1. (2.47) 

We obtain 

2 ∂�
∂(� + 1

(
-

-( + ∂�
∂:� − SP[ − S�[�4 Gn = 0, (2.48) 

2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:� − −SU[ − SV[� 4 ηnL + ST&n= = 0, (2.49) 

2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:� − SW[ − SXs�4 ℎn = 0, (2.50) 

2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:� − SZ − SP1s�4 &nL − SY 2 ∂�
∂(� + 1

(
-

-( − 1
(� + ∂�

∂:�4 ηnL

= 0, 
(2.51) 

 n>; = SPP
-�n;-: + -�n>-( − &n=, (2.52) 

 n>> = SP� @ -
-( + 1

(A �n; + SPT
-�n>-: , (2.53) 

�̅>= = SPU
-&n=-:  , (2.54) 

/n; = [�n> , (2.55) 

/n> = −[�n; , (2.56) 

,;̅ = − -ℎn
-: − SPV[/n; , (2.57) 

,>̅ = 2 -
-( + 1n

(4 ℎn − SPV/n> . (2.58) 

where the initial values of �; , �> , &=, ℎ, G and H= and corresponding velocities are 

assumed as zero throughout the medium. 

The Hankel transform [66] of order n of ^�̅(, :, [� with respect to variable ( is defined as 

3pq^�̅(, :, [�r = s (e
1

^�̅(, :, [�,p�t(�5( = û�t, :, [�. (2.59) 

where t is the Hankel transform variable and ,p�t(� is the Bessel function of first kind 

of order n having following properties, 
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31 k-^̅
-( + 1

( ^l̅ = t3Pq^r̅, 31 k-�^̅
-(� + 1

(
-^̅
-(l = −t�31q^r̅,  (2.60) 

31 k-^̅
-(l = −t31q^r̅, 3P k-�^̅

-(� + 1
(

-^̅
-( − 1

( ^l̅ = −t�3Pq^r̅, (2.61) 

Applying the Hankel transform defined by (2.59) on equations (2.48)-(2.57) and with the 

help of results (2.60)-(2.61), we obtain 

�.� − �P�ψv = 0, (2.62) 

�.� − ���Hw= = −ST&x=, (2.63) 

�.� − �T�ℎx = 0, (2.64) 

�.� − �U�&x= = SX�.� − t��Hw=, (2.65) 

 w>; = SP1.�w; − t�w> − &x=, (2.66) 

 w>> = SPPt�w; + SP�.�w> , (2.67) 

�w>= = SPT.&x=, (2.68) 

/x; = [�w> , (2.69) 

/x> = −[�w; , (2.70) 

,u; = −.ℎx − SPU[/x; , (2.71) 

,u> = tℎx − SPU[/x> . (2.72) 

where 

Gx = 31]Gn_, Hw= = 31]H̅=_, &x= = 3P]&n=_, ℎx = 3Pqℎnr, 
(2.73) �w> = 31]�n> _,  w>; = 3P] n>; _,  w>> = 31] n>> _, �w>= = 3P]�̅>= _,   

/x; = 31]/n; _, /x> = 3P]/n> _, ,u; = 3P],;̅ _, ,u> = 31],>̅ _,   
�w; = 3P]�n; _. 
Simplifying equations (2.63)-(2.65), we obtain 

�.U − �V.� + �W�Hw= = 0. (2.74) 

 

Solutions of equations (2.62),(2.64) and (2.74) are given by 
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Gx�t, :, [� = yPaz{> + y�abz{>, (2.75) 

ℎx�t, :, [� = yTaz|> + yUabz|>, (2.76) 

Hw=�t, :, [� = yVaz}> + yWabz}> + yXaz~> + yYabz~>. (2.77) 

where y!O[ some functions of parameter t and [. 

�P = √�P, �� = ��T, �T = P
� ��V + ��V� − 4�W� , �U = P

� ��V − ��V� − 4�W� ,
�P = t� + SP[ + S�[�, S� = t� + SU[ + SV[�, �T = t� + SW[ + SX[�, �U =
t� + SY + SZ[�, . = �

�>. 

(2.78) 

The remaining components of microrotation, displacement, stress, couple stress, electric 

field and current density in transformed domain are obtained as, 

&x=�t, :, [� = 1
ST �yV�1 − �T��az}> + yW�1 − �T��abz}> + yX�1 − �U��az~>

+ yY�1 − �U��abz~>�, 
(2.79) 

�w;�t, :, [� = −yPtaz{> − y�tabz{> − yV�Taz}> + yW�Tabz}> − yX�Uaz~>
+ yY�Uabz~> , 

(2.80) 

�w>�t, :, [� = yP�Paz{> − y��Pabz{> + yVaz}> + yWabz}> + yXaz~> +
yYabz~>, 

(2.81) 

 w>;�t, :, [� = �yP�−SP1 − 1�t�Paz{> + y��SP1 + 1�t�Pabz{>

− yV 2�T� + t + 1 − �T�ST 4 az}> − yW 2�T� + t + 1 − �T�ST 4 abz}>

− yX 2�U� + t + 1 − �U�ST 4 az~> − yY 2�U� + t + 1 − �U�ST 4 abz~>�, 

(2.82) 

 w>>�t, :, [� = yP�−SPPt� + SP��P��az{> + y��−SPPt� + SP��P��abz{>
+ yV�−SPPt + SP���Taz}> + yW�SPPt − SP���Tabz}>
+ yX�−SPPt − SP���Uaz~> + yY�SPPt − SP���Uabz~>, 

(2.83) 

�w>=�t, :, [� = SPTST �yV�1 − �T���Taz}> − yW�1 − �T���Tabz}>

+ yX�1 − �U���Uaz~> − yY�1 − �U���Uabz~>� 
(2.84) 

/x;�t, :, [� = [�yP�Paz{> − y��Pabz{> + yVaz}> + yWabz}> + yXaz~>

+ yYabz~>�, 
(2.85) 
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/x>�t, :, [� = −[�−yPtaz{> − y�tabz{> − yV�Taz}> + yW�Tabz}> − yX�Uaz~>

+ yY�Uabz~>�, 
(2.86) 

,;�t, :, [� = −yPSPU[��Paz{> + y�SPU[��Pabz{> + yT��az|> − yU��abz|>
− yVSPU[�az}> − yWSPU[�abz}> + yXSPU[�az~>
+ yYSPU[�abz~>, 

(2.87) 

,>�t, :, [� = −yPSPU[�taz{> − y�SPU[�tabz{> + yTtaz|> + yUtabz|>
− yVSPU[��Taz}> + yWSPU[��Tabz}> − yXSPU[��Uaz~>
+ yYSPU[��Uabz~>. 

 

(2.88) 

2.3. Boundary Conditions 

 

We undertake an infinite elastic medium in cylindrical polar coordinate system, with a 

concentrated mechanical force � = − ����;���d�
��;  with magnitude  �1, is applied in the 

direction of z-axis at the origin, where $�� is the Dirac-delta function. We call the medium 

for the region in which : > 0 as medium-I and : < 0 as medium-II. Appropriate 

boundary conditions at : = 0 are 

�;�(, 0�, �� − �;�(, 0b, �� = 0,    �>�(, 0�, �� − �>�(, 0b, �� = 0, (2.89) 

&=�(, 0�, �� − &=�(, 0b, �� = 0,    >;�(, 0�, �� −  >;�(, 0b, �� = 0, (2.90) 

 >>�(, 0�, �� −  >>�(, 0b, �� = − �1$�(�$���
2�( ,    �>=�(, 0�, �� − �>=�(, 0b, ��

= 0, 
(2.91) 

ℎ�(, 0�, �� − ℎ�(, 0b, �� = 0,    ,;�(, 0�, �� − ,;�(, 0b, �� = 0. (2.92) 

After using the dimensionless quantities as defined in equation (2.32) along with �1O =
��
�  and applying Laplace and Hankel transforms as defined in (2.45) and (2.59) on 

equations (2.89)-(2.92), we get 

�w;�t, 0�, [� − �w;�t, 0b, [� = 0,   �w>�t, 0�, [� − �w>�t, 0b, [� = 0, (2.93) 

&x=�t, 0�, [� − &x=�t, 0b, [� = 0,    w>;�t, 0�, [� −  w>;�t, 0b, [� = 0, (2.94) 
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 w>>�t, 0�, [� −  w>>�t, 0b, [� = − �12�,   �w>=�t, 0�, [� − �w>=�t, 0b, [� = 0, (2.95) 

ℎx�t, 0�, [� − ℎx�t, 0b, [� = 0,   ,u;�t, 0�, [� − ,u;�t, 0b, [� = 0. (2.96) 

 

Medium-I: Since � > 0 for the medium-I, coefficients yP, yT, yV and yX in the 

expressions (2.76),(2.79)-(2.84) and (2.87) of the transformed displacement, 

microrotation, stress components, current density and magnetic field intensity must be 

zero. Hence these transformed components for medium-I are given by 

�w;�t, :, [� = −y�tabz{> + yW�Tabz}> + yY�Uabz~>, (2.97) 

�w>�t, :, [� = −y��Pabz{> + yWabz}> + yYabz~>, (2.98) 

&x=�t, :, [� = P
�} �yW�1 − �T��abz}> + yY�1 − �U��abz~>�, (2.99) 

 w>;�t, :, [� = �y��SP1 + 1�t�Pabz{> − yW 2�T� + t + 1 − �T�ST 4 abz}>

− yY 2�U� + t + 1 − �U�ST 4 abz~>�, 
(2.100) 

 w>>�t, :, [� = y��−SPPt� + SP��P��abz{> + yW�SPPt − SP���Tabz}>
+ yY�SPPt − SP���Uabz~>, 

(2.101) 

�w>=�t, :, [� = SPTST �−yW�1 − �T���Tabz}> − yY�1 − �U���Uabz~>� (2.102) 

,;�t, :, [� = y�SPU[��Pabz{> − yU��abz|> − yWSPU[�abz}> + yYSPU[�abz~>, (2.103) 

ℎx�t, :, [� = yUabz|>, (2.104) 

Medium-II:  Since � < 0 for this medium, the coefficients y�, yU, yW and yY in 

expressions (2.76),(2.79)-(2.84) and (2.87) of the transformed displacement, 

microrotation, stress components, current density and magnetic field intensity must be 

zero. Hence these transformed components for medium-II are given by 

�w;�t, :, [� = −yPtaz{> − yV�Taz}> − yX�Uaz~>, (2.105) 

�w>�t, :, [� = yP�Paz{> + yVaz}> + yXaz~>, (2.106) 

&x=�t, :, [� = P
�} �yV�1 − �T��az}> + yX�1 − �U��az~>�, (2.107) 
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 w>;�t, :, [� = �yP�−SP1 − 1�t�Paz{> + yV 2�T� + t + 1 − �T�ST 4 az}>

− yX 2�U� + t + 1 − �U�ST 4 az~>�, 
(2.108) 

 w>>�t, :, [� = yP�−SPPt� + SP��P��az{> + yV�−SPPt + SP���Taz}>
+ yX�−SPPt − SP���Uaz~> , 

(2.109) 

�w>=�t, :, [� = SPTST �yV�1 − �T���Taz}> + yX�1 − �U���Uaz~>� (2.110) 

,u;�t, :, [� = −yPSPU[��Paz{> + yT��az|> − yVSPU[�az}> + yXSPU[�az~>, (2.111) 

ℎx�t, :, [� = yTaz|>, (2.112) 

After making use of the transformed components as defined in equations (2.97)-(2.104) 

for medium-I and equations (2.105)-(2.112) for medium-II in transformed boundary 

conditions (2.93)-(2.96), we obtain a system of eight equations in eight unknowns y!�6 =
1,2, … ,8� as 

−t�y� − yP� + �T�yW + yV� + �U�yY + yX� = 0, (2.113) 

�P�y� + yP� + �yW − yV� + �yY + yV� = 0, (2.114) 

1
ST

��1 − �T���yW − yV� + �1 − �U���yY − y7�� = 0, (2.115) 

t�P�SW + 1��y� + yP� − ��T� + t + 1 − �T�ST � �yW + yV� − �yY − yX� = 0, (2.116) 

�−SXt� + SY�P���y� − yP� + �SXt�T − SY�T��yW + yV�
+ ��USXt − SY�U��yY + yX� = − �x12�, 

(2.117) 

SZST
��1 − �T���T�−yW − yV� − �U�1 − �U���yY + yX�� = 0, (2.118) 

yU − yT = 0, (2.119) 

−SP1[��P�yP + y�� + ���yT + yU� + SP1[��yW − yV� + SP1[��yY − yX �
= 0. 

(2.120) 

Solving equations (2.113)-(2.120) for unknowns y!�6 = 1,2, … ,8�, we obtain 

y� = −yP = − )P�)PT �x1, (2.121) 
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yU = yT = 0, (2.122) 

yW = yV = )PP)PT t�x1, (2.123) 

yY = yX = − P
�{} tΔ�x1. (2.124) 

where 

Δ = �T�1 − �T��,    )PP = �U�1 − �U��,   )P� = �UΔ − �T)PP,    )PT = 4���SY�P� −
SXt�� − �SXt�T − SY�T�)PPt + ��USXt − SY�U�tΔ�. 

(2.125) 

 

2.4. Inversion of the transform 

 

The transformed solutions obtained above are functions of the form û�t, :, [�, so to get 

these functions back in the form ^�(, :, �� i.e. in the physical domain, we first remove the 

Hankel transform by using the following procedure. 

^�̅(, :, [� = s t û�t, :, [�,p�t(�5t.e
1

 (2.126) 

The expression (2.126) produces the Laplace transform ^�̅(, :, [� of the function 

^�(, :, ��. Further, for the fixed values of ( and :, the function ̂ �̅(, :, [� can be considered 

as the Laplace transform  ℎn�[� of some function ℎ���. Following Honig and Hirdes [67], 

the Laplace transformed function  ℎn�[�can be inverted to obtain function ℎ��� in the 

following manner 

h�t� = 1
2πι s acdℎn�[�5[,�� e

�b e
 (2.127) 

where  Y is any real number which is greater than all the real parts of singularities of 

ℎn�[�. Taking s = Y + ιz, we get 

ℎ��� = a�d
2�£ s a d>

e

be
ℎn�¤ + £:�5:, (2.128) 

Considering ab�dℎ��� as ¥���, we expand it in a Fourier series in interval �0,2L�. It 

approximately leads to the formula, 

ℎ��� = ℎe��� + /§, 
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where 

ℎe��� = ��
� + ∑ ¤©e©mP ,     0≤t≤2L, (2.129) 

and  

¤# = �«¬­
® � ¯a °a±²­

³ ´ ℎn @¤ + � #�
® �A. (2.130) 

Here E¶ represents the discretization error and can be controlled by choosing appropriate 

values of ¤. Also we have used the criteria laid by Honig and Hirdes [67]  for choosing 

the values of ¤ and \. Since the infinite series in equation (2.129) can be summed up only 

to a finite number N terms, the approximate value of ℎ��� becomes 

ℎ·��� = ��
� + ∑ ¤©·©mP ,     .0 ≤ � ≤ 2\. (2.131) 

A truncation error /¸ is now introduced and is added to the discretization error to generate 

the total approximate error in calculating ℎ��� using the above mentioned technique. 

Further we deploy technique of Honig and Hirdes [67] in order to increase the rate of 

convergence and reducing the amount of truncation error. 

To evaluate the function ℎ���, we use Korrecktur method, 

ℎ��� = ℎe��� − ab��®ℎe�2\ + �� + /§O , 
where |/′§| ≪ |/§|. 
So, the estimated value of ℎ��� becomes 

ℎ·¼��� = ℎ·��� − ab��®ℎ½�2\ + ��, (2.132) 

where ¾ is an integer such that ¾ < ¿. 

Now to accelerate the convergence of the series mentioned in the equation (2.131), we 

have used À − S)ÁI(6�ℎÂ. For defining the ‘À − [aÄ�aÅ'a’, we take N be an odd natural 

number and Ç© = ∑ ¤#©#mP   be the sequence of partial sums of equation (2.131), which 

leads to,  

À1,© = 0, ÀP,© = Ç©, Àp�P,© = ÀpbP,©�P + P
ÈÉ,ÊË{bÈÉ,Ê  for Â, Å = 1,2,3 … 

The sequence εP,P, εT,P … εÎ,P converges faster than the sequence generated by partial 

sums  SÐ,   � m =  1, 2, 3 … � and converges to ℎ��� + /§ − Ò�
�  .  
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2.5. Numerical results and discussion 

 

Following Eringen [18], relevant parameters for Magnesium crystal can be taken as 

λ = 9.4 × 10P1¿. Âb�,    � = 4 × 10P1¿. Âb�,   Õ = 1 × 10P1¿. Âb�,   D = 1.74 ×
10T ÕÁ. ÂbT,  , = 0.2 × 10bPZ Â�,   %1 = 10bZ 36�⁄ �. ÂbP,   � = 0.98 ×
10bV¿. Âb�,     1 = 2.2356 × 10XÇ. ÂbP,   �1 = 4� × 10bX3. ÂbP,   3Ù = 1 y. ÂbP. 

 

The computations are discussed for three values of non-dimensional time namely � =
 0.100, 0.125, 0.150 at : =  1.0 in the range 0 ≤ ( ≤ 10 by assigning value ℎP =
 0.01Â. The distribution of non-dimensional normal displacement Ú> = �

�� �> , non-

dimensional normal force stress   >>∗ = �
��  >> and non-dimensional tangential force stress 

�>=∗ = �
�� �>= with non-dimensional distance ( have been shown in Fig. 2.1-2.3. 

 

Fig. 2.5.1 Variation of normal displacement Ú>�(, 1� 
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Fig. 2.5.1 shows that value of normal displacement Ú>  has large values near the point of 

application of source for large values of time and starts decreasing initially in the range 

0 ≤ ( ≤ 5 for all three values of t but starts oscillating in the range 5 < ( ≤ 10. 

 

Fig. 2.5.2 Variation of normal force stress  >>∗  
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Fig. 2.5.3 Variation of tangential couple stress �>=∗  

 

Fig. 2.5.2 shows that for lower value of t, normal displacement  >>∗  increases initially in 

the range 0 ≤ ( ≤ 1 but later becomes stationary for t=0.100 and starts oscillating in the 

range 1 < ( ≤ 4 for t=0.125 and t=0.150.  Fig. 2.5.3 shows that tangential couple stress 

�>=∗  initially decreases for t=0.100 and t=0.150 in the range 0 ≤ ( < 3 but then increases 

in the range 3 ≤ ( < 4 and oscillates in the range 4 ≤ ( ≤ 10. But for t=0.125, tangential 

couple stress increases for 0 ≤ ( ≤ 2 and then becomes steady. 

 

2.6. Conclusion 

 

This study reveals a simple technique of obtaining stress-strain components for magneto 

micropolar elastic solid subjected to concentrated force. Considerable magnetic effect is 

observed on normal stress  >> and tangential couple stress �ÛL on the application of 

mechanical force. It is seen that near the point of application of source, normal 

displacement has higher values for larger values of parameter ‘t’. Same is the case with 

normal stress component. One can observe that deformation of a body depends on the 
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nature of forced applied in addition to the applied boundary conditions. Further it can be 

concluded that decrease or increase in normal displacement and components of stress is 

not uniform with respect to parameter ‘t’. 



 

 

Chapter 3 

Dynamical problem of generalized magneto micropolar 

thermoelastic medium in half space  

 

 

 

The theories developed by including the magnetic effect namely magneto-elasticity and 

both magnetic and thermal effect namely magneto-thermo-elasticity are being deployed 

to study the elastic and thermo-elastic deformations when body is under externally 

applied magnetic field. Due to their extensive engineering applications in the fields of 

geophysics, optics, acoustics, damping of acoustic waves in the magnetic field etc., these 

theories are being rapidly developed in recent years. A two-dimensional problem in 

magneto thermo elastic half-space subjected to a non-uniform thermal shock was studied 

by Sherief and Helmy [68] in the presence of a transverse magnetic field. They made use 

of theory of generalized thermoelasticity with one relaxation time for this study. Influence 

of rotation and the magnetic field using G-N theory of a rotating semi-infinite magneto 

thermoelastic medium on the plane harmonic waves was presented by Othman and Song 

[69]. A two-dimensional coupled problem in magneto thermoelastic half space solid 

which is thermally as well as electrically conducting and subjected to a time-dependent 

heat was studied by He and Li [70]. Othman and Song [71] studied the models of 

generalized thermo magneto elasticity using three different theories namely L-S theory 

(with one relaxation time), G-L theory (with two relaxation times) and classical dynamic 

coupled theory. Problem was investigated in a perfectly conducting medium which is 

rotating with uniform angular velocity. Lotfy et al. [72] investigated a two dimensional 

problem in half space possessing cubic symmetry with mode-I crack. All three models 

(L-S theory with one relaxation time, G-L theory with two relaxation times and coupled 

theory) were compared using three dimensional graphs.  

In the present study a two dimensional model has been used to analyse the magneto 

micropolar thermoelastic problem with two temperature parameter subjected to 

concentrated force. Solution has been obtained in frequency domain by employing 

Laplace and Fourier transform and inversion has been done numerically. As an 
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application of the approach an instantaneous thermal point source has been applied at the 

boundary. 

 

3.1. Basic Equations 

 

For a perfectly conducting micropolar elastic medium, the constitutive relations, field 

equations in micropolar elastic solid along with the equations of electromagnetism are 

given by (Following Nowacki [65]), 

��� = ���,�	�� + ����,� + ��,�
 + ����,� − ������
 − � �1 + �� �
��� �	��, (3.1) 

��� = ���,�	�� + ���,� + ���,�. (3.2) 

 � + �!∇ ∇. �#$! +  � + �!∇%�#$ + �∇ × ϕ##$ − ν )1 + ��
*

*+ - ∇T = ρ ∂%u#$
∂+% , (3.3) 

 � + � + �!∇�∇. ϕ##$
 − �∇ × ∇ × ϕ##$ + �∇ × u#$ − 2κϕ##$ = ρj ∂%ϕ##$
∂+% , (3.4) 

5�67ℎ#$ = 9$ + :##$; , 5�67<#$ = −=#$; , (3.5) 

<#$ = −�>��#$; × ?##$>
, (3.6) 

@AB?##$ = 0,     =#$ = �>?##$, (3.7) 

:##$ = �><#$,   ?##$ = ?##$> + ℎ#$. (3.8) 

Following Youssef [73] relation between the heat conduction and the dynamical heat 

with D > 0 as two-temperature can be written as 

F∗∇%H = � �
�� + �> �I

��I�  JKL� + ��>∇. �#$!, (3.9) 

H − � = DM%H, (3.10) 

The equations (3.3)-(3.4) and (3.9)-(3.10) in the Cartesian coordinate system  N�, N%, NO! 

in component take the form 

 � + �! P∂%��*N�%
+ ∂%�%*N�*N% + ∂%�O*N�*NOQ +  � + �! P∂%��*N�%

+ ∂%��*N%%
+ ∂%��*NO%

Q

+ � )*�O*N% − *�%*NO - − ν )1 + ��
*

*+ -
∂T
*N�  = ρ ∂%��∂+% , 

(3.11) 
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 � + �! P ∂%��*N%*N� + ∂%�%*N%%
+ ∂%�O*N%*NOQ +  � + �! P∂%�%*N�%

+ ∂%�%*N%%
+ ∂%�%*NO%

Q

+ � )*��*NO − *�O*N� - − ν )1 + ��
*

*+ -
∂T
*N%  = ρ ∂%�%∂+% , 

(3.12) 

 � + �! P ∂%��*NO*N� + ∂%�%*N%*NO + ∂%�O*NO%
Q +  � + �! P∂%�O*N�%

+ ∂%�O*N%%
+ ∂%�O*NO%

Q

+ � )*�%*N� − *��*N% - − ν )1 + ��
*

*+ -
∂T
*NO  = ρ ∂%�O∂+% , 

(3.13) 

 � + �! P∂%��∂N�%
+ *%�%*N�*N% + *%�O*N�*NOQ + � P∂%��∂N�%

+ *%��*N%%
+ *%��*NO%

Q

+ κ )*�O*N% − *�%*NO- − 2κ�� = JR ∂%��∂+% , 
(3.14) 

 � + �! P ∂%��*N%*N� + *%�%∂N�%
+ *%�O*N%*NOQ + � P∂%�%∂N�%

+ *%�%*N%%
+ *%�%*NO%

Q

+ κ )*��*NO − *�O*N�- − 2κ�% = JR ∂%�%∂+% , 
(3.15) 

 � + �! P ∂%��*NO*N� + *%�%*NO*N% + *%�O∂NO%
Q + � P∂%�O∂N�%

+ *%�O*N%%
+ *%�O*NO%

Q

+ κ )*�%*N� − *��*N%- − 2κ�O = JR ∂%�O∂+% , 
(3.16) 

F∗ P∂%H
∂N�%

+ *%H
*N%%

+ *%H
*NO%

Q

= JKL P*�
*+ + �>

*%�
*+% Q

+ J�KL�> P *
*+ + �>

*%
*+%Q )*��*N� + *�%*N% + *�O*NO- 

(3.17) 

H − � = D P∂%H
∂N�%

+ *%H
*N%%

+ *%H
*NO%

Q, (3.18) 

 

3.2. Formulation and solution of the problem 

 

Considering the region NO ≥ 0 to be occupied with linear homogenous isotropic 

micropolar thermoelastic medium with two temperatures which is perfectly conducting. 
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As we are considering a two dimensional plane strain problem in which with NO-axis is 

pointing vertically into the medium, we take 

�#$ =  ��, 0, �O!, �#$ =  0, �%, 0!, ℎ#$ =  0, ℎ, 0!. (3.19) 

Using equation (3.19) in equations (3.1)-(3.18),(3.2), we obtain 

 � + �! ∂%��*N�%
+  � + �! P∂%��*N�%

+ ∂%��*NO%
Q − � *�%*NO − ν )1 + ��

*
*+ -

∂T
*N�  

= ρ ∂%��∂+% , 
(3.20) 

 � + �! ∂%�O*NO%
+  � + �! P∂%�O*N�%

+ ∂%�O*NO%
Q + � *�%*N� − ν )1 + ��

*
*+ -

∂T
*NO  

= ρ ∂%�O∂+% , 
(3.21) 

 � + �! *%�%∂N�%
+ � P∂%�%∂N�%

+ *%�%*NO%
Q + κ )*��*NO − *�O*N�- − 2κ�% = JR ∂%�%∂+% , (3.22) 

F∗ P∂%H
∂N�%

+ *%H
*NO%

Q

= JKL P*�
*+ + �>

*%�
*+% Q + J�KL�> P *

*+ + �>
*%

*+%Q )*��*N� + *�O*NO- 

(3.23) 

�OO = � )*��*N� + *�O*NO- +  2� + �! *�O*NO − � )1 + ��
*
*+- T, (3.24) 

��� = � *�O*NO +  � + 2� + �! *��*N� − � )1 + ��
*
*+- T, (3.25) 

�O� = � *�O*N� +  � + �! *��*NO + ��% (3.26) 

�O% = � *�%*NO . (3.27) 

Introducing the displacement potential functions U N�, NO, +! and V$ N�, NO, +! by taking 

�#$ = ∇U + ∇ × V$, ∇. V$ = 0, V$ =  0, V, 0!. (3.28) 

 And using following dimensionless quantities in equations (3.20)-(3.27),  

 N�W , NOW , ��W , �OW ! = 5>X N�, NO, ��, �O!,  +W, �>W , ��W ! = 5>%X +, �>, ��!,    
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���W = ���� + 2� + � ,   ���W = �
5>X � + �! ��� ,    9�W = X

�>%�>%5>?> 9�,
�%W = �

� + � �%,    
(3.29) 

   ℎW = X
�>�>?> ℎ,  HW, TW! =  H, �! − �>�> , <�W = X

�>�>%5>?> <�  

Where 

X = JKLF∗ , 5>% = � + 2� + �
J . 

We obtain (after dropping dashes for convenience) 

D�∇%U − D%UY − DO )1 + ��
*
*+- T − DZUY = 0, (3.30) 

D[∇%V − D[�% − D%VY − DZVY = 0, (3.31) 

∇%�% − D\∇%V − D]�% − D^�%Y = 0, (3.32) 

∇%H − D_ P *
*+ + �>

*%
*+%Q T − D�> P *

*+ + �>
*%
*+%Q U = 0, (3.33) 

H − T = D��∇%H, (3.34) 

�OO = D�%
*��*N� + *�O*NO − DOD� )1 + ��

*
*+- T, (3.35) 

��� = *��*N� + D�%
*�O*NO − DOD� )1 + ��

*
*+- T, (3.36) 

�O� = D�O
*�O*N� + D�Z

*��*NO + D�Z�%, (3.37) 

�O% = � *�%*NO , (3.38) 

ℎ = −D�[ )*��*N� + *�O*NO-, (3.39) 

<� = D�\
*�O*+ , (3.40) 

<O = −D�\
*��*+ , (3.41) 

9� = −D�[
*ℎ
*NO + D�]

*%�O*+% , (3.42) 

9O = D�[
*ℎ
*N� − D�]

*%��*+% , (3.43) 
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Where 

M% = *%
*N�%

+ *%
*NO%

,    D� = � + 2� + �,    D% = 5>%�>�>?>%,    DO = ��>,    DZ = J5>%,    D[

= � + �, 

D\ = �%
�X%5>% � + �!,    D] = 2�

5>%X%� ,    D^ = JR5>%X
� ,    D_ = JKLF∗X ,   D�> = �

F∗X ,    D��

= D5>%X%,  

D�% = �
� + 2� + �,   D�O = �

� + 2� + �,    D�Z = � + �
� + 2� + �,    D�[ = X

�>�> ,    D�\

= X
�>�>5>, 

   D�] = 5>%�>X%
�>%�> . 

Now using the Laplace transform and its properties as defined in equations (2.45)-(2.47) 

on equations (3.30)-(3.43), we obtain 

D�∇%Ù − D%a%Ù − DO 1 + ��a!T̅ − DZa%Ù = 0, (3.44) 

D[∇%V̅ − D[�̀% − D%a%V̅ − DZV̅ = 0, (3.45) 

∇%�̀% − D\∇%V̅ − D]�̀% − D^a%�̀% = 0, (3.46) 

∇%H̀ − D_ a + �>a%!T̅ − D�> a + �>a%!Ù = 0, (3.47) 

H̀ − T̅ = D��∇%H̀, (3.48) 

�̀OO = D�%
*�̀�*N� + *�̀O*NO − DOD�

 1 + ��a!T̅, (3.49) 

�̀�� = *�̀�*N� + D�%
*�̅̀O*NO − DOD�

 1 + ��a!T̅, (3.50) 

�̀O� = D�O
*�̀O*N� + D�Z

*�̀�*NO + D�Z�̀%, (3.51) 

�̅O% = � *�̀%*NO , (3.52) 

ℎ̀ = −D�[ )*�̀�*N� + *�̀O*NO-, (3.53) 

<̀� = D�\a�̀O, (3.54) 
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<̀O = −D�\a�̀�, (3.55) 

9�̅ = −D�[
*ℎ̀
*NO + D�]a%�̀O, (3.56) 

9O̅ = D�[
*ℎ̀
*N� − D�]a%�̀�, (3.57) 

The Fourier transform [66] of c ̅N�, NO, a! with respect to variable N� is defined through 

the relation 

dec ̅N�, NO, a!f = g hijklmn
in c ̅N�, NO, a!@N� = co p, NO, a!, (3.58) 

where p is the Fourier transform variable. 

Applying this transform on equations (3.44)-(3.57), we get 

 :% − ��!Uq − �%Tq = 0, (3.59) 

 :% − �O!Vo − �q% = 0, (3.60) 

 :% − �Z!Uq − D\ :% − p%!Vo = 0, (3.61) 

 :% − p%!Hr − �[Tq − �\ :% − p%!Uq = 0, (3.62) 

D�� :% − �]!Hr + Tq = 0, (3.63) 

�rOO = D�%
*�r�*N� + *�rO*NO − DOD� )1 + ��

*
*+- Tq, (3.64) 

�r�� = *�r�*N� + D�%
*�r ̃O*NO − DOD� )1 + ��

*
*+- Tq, (3.65) 

�rO� = D�O
*�rO*N� + D�Z

*�r�*NO + D�Z�q%, (3.66) 

�rO% = � *�q%*NO , (3.67) 

ℎq = −D�[ tp�r� + :�rO!, (3.68) 

<q� = D�\a�rO, (3.69) 

<qO = −D�\a�r�, (3.70) 

9o� = −D�[:ℎq + D�]a%�rO 
(3.71) 

9oO = D�[tpℎq − D�]a%�r�, (3.72) 



Ch-3 Dynamical problem of generalized… 39 

 

 

Equations (3.59)-(3.63) can be re-written as 

 :Z − ��O:% + ��Z! Vo, �q%! = 0, (3.73) 

 :Z − ��[:% + ��\! Uq, Tq, Hr! = 0, (3.74) 

where 

: = @
@NO , �� = p% + D% + DZD� a%, �% = DOD�

 1 + ��a!,
�O = p% + D% + DZD[ a%, 

�Z = p% + D] + D^a%, �[ = D_ a + �>a%!, �\ = D�> a + �>a%!,
�] = p% + 1

D��, 

�^ = 1 + D���[, �_ = p% + D���[�], ��> = D���%�\ + �%, 
��� = D���%�\ p% + �]! + ���% + �_, ��% = D���%�\�]p% + �_���, 
��O = �O + �Z + D\, ��Z = �O�Z + D\p%, ��[ = �����> , ��\ = ��%��>. 

Solutions of equation (3.73)-(3.74) satisfying the radiation condition  uh v�! ≥ 0  are of 

the form, 

Vo p, NO, a! = w� p, a!hixmly + w% p, a!hixIly , (3.75) 

Uq p, NO, a! = wO p, a!hixyly + wZ p, a!hixzly, 
(3.76) 

where 

 v�% = ��O + {��O% − 4��Z2 , v%% = ��O − {��O% − 4��Z2 , 

vO% = ��[ + {��[% − 4��\2 , vZ% = ��[ − {��[% − 4��\2 , 
Using (3.75)-(3.76) in equations (3.59)-(3.72), we obtain 

�q% p, NO, a! =  v�% − �O!w�hixmly +  v%% − �O!w%hixIly , (3.77) 
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Tq p, NO, a! = 1
�%

} vO% − ��!wOhixyly +  vZ% − ��!wZhixzly~, (3.78) 

Hr p, NO, a! = − 1
D���% � vO% − ��!

 vO% − �]! wOhixyly +  vZ% − ��!
 vZ% − �]! wZhixzly�, (3.79) 

�r� =  v�w�hixmly + v%w%hixIly! + tp wOhixyly + wZhixzly!, (3.80) 

�rO = tp w�hixmly + w%hixIly! −  vOwOhixyly + vZwZhixzly!, (3.81) 

�rOO = −tp 1 − D�%! v�w�hixmly + v%w%hixIly!
+  �� − p%D�%! wOhixyly + wZhixzly!, 

(3.82) 

�r�� = tp 1 − D�%! v�w�hixmly + v%w%hixIly!
+  �� − p% − vO% + D�%vO%!wOhixyly

+  �� − p% − vZ% + D�%vZ%!wZhixzly , 
(3.83) 

�rO� = − p%D�O + D�Z�O! w�hixmly + w%hixIly!
− tp D�O + D�Z! vOwOhixyly + vZwZhixzly!, 

(3.84) 

�rO% = −�}v� v�% − �O!w�hixmly + v% v%% − �O!w%hixIly~, (3.85) 

ℎq = −D�[} vO% − p%!wOhixyly +  vZ% − p%!wZhixzly~, (3.86) 

��̃ = D�]a%}tp w�hixmly + w%hixIly! −  vOwOhixyly + vZwZhixzly!~
− D�[% }vO vO% − p%!wOhixyly + vZ vZ% − p%!wZhixzly~, 

(3.87) 

 

3.3. Boundary Conditions 

 

Boundary conditions at the plane NO = 0  which is stress free and subjected to an 

instantaneous thermal point source, are: 

T N�, 0, +! = T>	 N�!	 +!, (3.88) 

�OO N�, 0, +! = 0, (3.89) 

�O� N�, 0, +! = 0, (3.90) 

�O% N�, 0, +! = 0. (3.91) 

Where T> is the maximum constant temperature applied on the boundary. 
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After making use of Laplace and Fourier transforms as defined in (2.45) and (3.58) on 

equations (3.88)-(3.91), we get 

Tq p, 0, a! = Tq>, (3.92) 

�rOO p, 0, a! = 0, (3.93) 

�rO� p, 0, a! = 0, (3.94) 

�O% p, 0, a! = 0. (3.95) 

Using equations (3.78), (3.82), (3.84) and (3.85) in (3.92)-(3.95), we get 

1
�%

} vO% − ��!wO +  vZ% − ��!wZ~ = Tq>, (3.96) 

−tp 1 − D�%!}v�w� + v%w%~ +  �� − p%D�%!}wO + wZ~ = 0, (3.97) 

− p%D�O + �OD�Z!}w� + w%~ − tp D�Z + D�O!}vOwO + vZwZ~ = 0, (3.98) 

v� v�% − �O!w� + v% v%% − �O!w% = 0. (3.99) 

Equations (3.96)-(3.99), after simplification give, 

w� = t�% �� − p%D�%! v%% − �O! �� + �%!
pv� 1 − D�%! v�% − v%%!} vO% − ��!�% +  vZ% − ��!��~ Tq>, (3.100) 

w% = − t�% �� − p%D�%! v�% − �O! �� + �%!
pv% 1 − D�%! v�% − v%%!} vO% − ��!�% +  vZ% − ��!��~ Tq>, (3.101) 

wO = �%�%} vO% − ��!�% +  vZ% − ��!��~ Tq>, (3.102) 

wZ = �%��} vO% − ��!�% +  vZ% − ��!��~ Tq>. (3.103) 

where 

Δ� = }��] v%% − �O! − ��^v�vO v�% − v%%!~, 
Δ% = }��] v�% − �O! + ��^v%vZ v�% − v%%!~, 

��] = − t p%D�O + �OD�Z! �� − p%D�%!
p 1 − D�%! , ��^ = tp D�Z + D�O!. 
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3.4. Inversion of the transforms 

 

The transformed solutions are functions of the form co p, NO, a!, so to get these functions 

back in the physical domain in the form c N�, NO, +!, we first invert the Fourier transform 

by using 

c ̅N�, NO, a! = 1
2� � co p, NO, a!hjklm@p.n

in
 (3.104) 

Since every function can be expressed uniquely as sum of an even and odd function. 

Hence we write 

co p, NO, a! = co� p, NO, a! + co� p, NO, a!, (3.105) 

where 

co� p, NO, a! = 1
2 eco p, NO, a! + co −p, NO, a!f, (3.106) 

co� p, NO, a! = 1
2 eco p, NO, a! − co −p, NO, a!f, (3.107) 

are even and odd parts of the function co p, NO, a! with parameter p respectively. Thus 

equation (3.104) can be re-written as 

c ̅N�, NO, a! = 1
� � �cos pN�!co� + sin  pN�!co��@p.n

>
 (3.108) 

The evaluation of integral in equation (3.108) leads to the transformed function 

c ̅N�, NO, a! of the function c N�, NO, +!. Afterwards, for the fixed values of N� and NO, the 

function c ̅N�, NO, a! can be considered as the Laplace transform  �̅ a! of some 

function � +!. The technique for numerical inversion of �̅ a! has already been explained 

in section 2.5 of chapter 2. Also the integral in equation (3.104) is to be calculated 

numerically with the help of technique mentioned in the above mentioned section. 
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3.5. Numerical discussion and Analysis 

 

The analysis is conducted for a magnesium crystal. Using reference [18], the physical 

parameters are taken as 

� = 9.4 × 10�>�. vi%,   � = 4.0 × 10�>�. vi%,   � = 1.0 × 10�>�. vi%, J =
1.74 × 10O F�. viO, 9 = 0.2 × 10i�_ v%,    �> = 10i_ 36�⁄ d. v−1, � = 0.98 ×
10i[�. vi%,   �> = 2.2356 × 10]�. vi�,   �> = 4� × 10i]?. v−1, , ?� =
1 w. vi�, X = 0.0168, F∗ = 386�. vi�. Fi�, KL = 383.1J. F�i�. Fi�,    �> =
293F, T> = 1.  

 

Graphical analysis of variation in temperature distribution, displacement, normal stress 

and tangential couple stress has been done. Results have been compared in the absence 

and presence of magnetic field for two different t values. In the following figures 1-4, the 

solid line represents the magneto micropolar thermoelastic medium (MMT1) at t=0.1; 

small dashed line magneto micropolar thermoelastic medium (MMT2) at t=0.5; solid line 

with circles signifies micropolar thermoelastic medium (MT1) at t=0.1 and small dashed 

line with circles represents micropolar thermoelastic medium (MT2) at t=0.5 under the 

application of thermal source. 

Fig. 3.5.1 shows the variation in normal displacement component (�O!with changes in 

value of N�.It is observed that the presence of magnetic field leads to higher values of �O 

as compared to its values in the absence of magnetic field. Also its nature is oscillatory 

for MT1 and MT2 and amplitude keeps on decreasing with increase in N�. 
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Fig. 3.5.1 Variation of displacement 

Fig. 3.5.2 shows vartions in temperature distribution  T! with N�. Initially starting with 

same values for both mediums MMT and MT, value of T has higher amplitude in the the 

absence of magnetic effect. For large values of N�  4 ≤ N� ≤ 5!, its values start 

coinciding for both theories and tend to zero. 
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Fig. 3.5.2 Variation of temperature distribution 

 

Variation in Normal force stress  �OO! is being shown in Fig. 3.5.3. Here it is observed 

that �OO behaves in opposite manner under both theories for range 0 ≤ N� < 9 but this 

difference tends to cease in the range N� ≥ 9. 
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Fig. 3.5.3 Variation of Normal stress distribution 
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Fig. 3.5.4 behaviour of tangential couple stress  �O�! is depicted. Values have been plotted 

after multiplying it with 10. �O� again shows oscillatory nature in the absence of magnetic 

field (MT1 and MT2) but for large values of N�, this behaviour tends to diminish and 

shows linear nature. 

 

Fig. 3.5.4 Variation of tangential stress distribution 
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3.6. Conclusion 

 

This study highlights a simplified technique of obtaining the stress and strain components 

in the case of micropolar isotropic solid subjected to thermal field in the presence of 

magnetic field. The trend of variations of the considered components are different in the 

presence and absence of magnetic field which confirms that magnetic field has significant 

impact on the normal displacement component �O, temperature distribution T, normal 

force stress �OO and tangential couple stress �O� along with application of thermal source. 

This study can be useful in analysing stress-strain behaviour of earth like model which is 

subjected to both thermal and magnetic fields.



 

Chapter 4 

Eigen value approach to two dimensional problem in 

generalized magneto Micropolar thermoelastic medium with 

rotation effect 

  

 

Last chapter represented a model for analysing the stress-strain relationship of a body 

under thermal and magnetic effect. In this chapter a problem with an eigen value approach 

has been studied to examine the effects of rotation when mechanical force is applied in 

the presence of transverse magnetic field in two dimensional generalized magneto 

micropolar thermoelastic infinite space. Present study can be regarded as a better 

representation of elastic model for studying the earth’s planetary motion as it involves 

rotational velocity in addition to its thermal and electromagnetic field.   Due to its many 

applications in the field of engineering, plasma physics, crystal physics, solid-earth 

geophysics and related areas, increasing attention is being given to this area. Literature 

contains numerous studies in this field. Singh [74] studied reflection and refraction at an 

interface between liquid half space and micropolar generalized thermoelastic solid half 

space using plane sound wave. Othman [75] investigated a problem on generalized 

thermoelastic plane waves under the effect of rotation by using the G-L theory. Results 

were also computed in the absence of rotation effect. Kong et al. [76] studied thermo 

magneto elastic stresses and perturbation of the magnetic field vector using an analytic 

method in a conducting non-homogenous hollow cylinder subjected to thermal shock.  A 

one-dimensional problem in an infinite rotating medium for a generalized magneto-

thermoelastic diffusive solid possessing a spherical cavity which is subjected to a time 

dependent thermal shock at its internal boundary was examined by Abd-All and Abo-

Dahab [77] by considering it to be traction free. Also results were studied by including 

and excluding the effect of diffusion, rotation and magnetic field. Influence of number of 

effects in an elastic half space granular medium, like rotation, relaxation times, magnetic 

field, initial stress and gravity field on attenuation coefficient (Imaginary part of 

frequency equation root) were analysed by Mahmoud [78]. Lame’s potential method was 
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applied for obtaining the solution. Thermoelastic interactions in a homogeneous, 

thermally conducting cubic crystal, elastic half-plane had been studied by Abbas et al. 

[79] by using linear temperature ramping function.  

In the current chapter results have been obtained by treating rotational velocity to be 

invariant. Integral transforms have been applied to solve the system of partial differential 

equations. Components of displacement, normal stress, tangential couple stress, electric 

field, temperature distribution and magnetic field have been obtained in transformed 

domain. Finally numerical inversion technique has been used to invert the result in 

physical domain. Graphical analysis has been done to describe the study. 

 

4.1. Basic Equations 

 

Following Baksi et al. [44] and Nowacki [65], the field equations in linearized form and 

constitutive relations for a slowly moving medium which is homogenous and perfectly 

conducting elastic solid in the simplified form taking in to account the Lorentz force are 

given by (4.1)-(4.9) 

���� ℎ�� = J� + �
 ������ , (4.1) 

���� ��� = − �ℎ����  ,  (4.2) 

��� = −�
 ������� × ������, (4.3) 

���ℎ�� = 0, (4.4) 

�� + 2� +  !∇�∇. ���! − �� +  !∇ × �∇ × ���! +  $∇ × %��& + '�
− ( )1 + +, ���- ∇. = / 0�1�����1 + Ω��� × $Ω��� × ���& + 2Ω��� × ������ 3, (4.5) 

�4 + 5 + 6!∇$∇. %��& − 6∇ × $∇ × %��& +  �∇ × ���! − 2 %��
= /7 0�1%����1 + Ω��� × �%���� 3, (4.6) 
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8∗∇1. = /:∗ � ��� + +� �1��1� . + (.� � ��� + +�;� �1��1� �∇. ���!, (4.7) 

<=> = ��?,?@=> + �$�=,> + �>,=& +   $�>,= −∈=>? %?& − ( )1 + +, ���- .@=>, (4.8) 

�=> = 4%?,?@=> + 5%=,> + 6%>,= (4.9) 

Where ( = �3� + 2� +  !4C and '� = �
$D� × �����&. 

The equations of motion (4.5)-(4.6) along with heat equation (4.7) in Cartesian 

coordinates �E,, E1, EF! in component form can be written as 

�� + �! �∂1�,�E,1 + ∂1�1�E,�E1 + ∂1�F�E,�EF� + �� +  ! �∂1�,�E,1 + ∂1�,�E11 + ∂1�,�EF1 �
+  )�%F�E1 − �%1�EF - − ν )1 + +, ��� - ∂T�E, + ��D1�F − DF�1!  
= ρ ∂1�,∂�1 − 3Ω1�,, 

(4.10) 

�� + �! � ∂1�,�E1�E, + ∂1�1�E11 + ∂1�F�E1�EF� + �� +  ! �∂1�1�E,1 + ∂1�1�E11 + ∂1�1�EF1 �
+  )�%,�EF − �%F�E, - − ν )1 + +, ��� - ∂T�E1 + ��DF�1 − D1�F!
= ρ ∂1�1∂�1 − 3Ω1�1, 

(4.11) 

�� + �! � ∂1�,�EF�E, + ∂1�1�E1�EF + ∂1�F�EF1 � + �� +  ! �∂1�F�E,1 + ∂1�F�E11 + ∂1�F�EF1 �
+  )�%1�E, − �%,�E1 - − ν )1 + +, ��� - ∂T�EF + ��D,�1 − D1�,!
= ρ ∂1�F∂�1 − 3Ω1�F, 

(4.12) 

�4 + 5! �∂1%,∂E,1 + �1%1�E,�E1 + �1%F�E,�EF� + 6 �∂1%,∂E,1 + �1%,�E11 + �1%,�EF1 �
+ κ )��F�E1 − ��1�EF- − 2κ%, = /7 ∂1%,∂�1 , (4.13) 

�4 + 5! � ∂1%,�E1�E, + �1%1∂E,1 + �1%F�E1�EF� + 6 �∂1%1∂E,1 + �1%1�E11 + �1%1�EF1 �
+ κ )��,�EF − ��F�E,- − 2κ%1 = /7 ∂1%1∂�1 , 

(4.14) 
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�4 + 5! � ∂1%,�EF�E, + �1%1�EF�E1 + �1%F∂EF1 � + 6 �∂1%F∂E,1 + �1%F�E11 + �1%F�EF1 �
+ κ )��1�E, − ��,�E1- − 2κ%F = /7 ∂1%F∂�1 , (4.15) 

8∗ �∂1L∂E,1 + �1L�E11 + �1L�EF1 �
= /�M ��.�� + +
 �1.��1 �
+ /N�M.
 � ��� + +
 �1��1� )��,�E, + ��1�E1 + ��F�EF- 

(4.16) 

Where ��,, �1, �F!, �%,, %1, %F!, �D,, D1, DF! and ��,, �1, �F! are the components of 

displacement vector ���, microrotation vector %��, current density vector D� and magnetic field 

vector ���� respectively.  

 

4.2. Formulation and solution of the problem 

 

We consider a generalized micropolar thermoelastic medium which is perfectly 

conducting, homogenous, isotropic and permeated by an initial magnetic field ����
 which 

is acting along the E1-axis. For two dimensional problem we take the displacement 

vector ���, rotation vector Ω��� and microrotation vector %�� (by assuming Ω��� to be invariant) as 

��� = ��,, 0, �F!, %�� = �0, %1, 0!, Ω��� = �0, Ω1, 0!, ��� = ��,, 0, �F!,ℎ�� = �0, ℎ, 0!, ����
 = �0, �
1, 0! 

(4.17) 

Using expressions mentioned in equation (4.17) in equations (4.1)-(4.4) and (4.8)-(4.9), 

we get 

�� + 2� +  ! �1�,�E,1 + �� + �! �1�F�E,�EF + �� +  ! �1�,�EF1 −  �%1�EF − �
�
1DF
− N )1 + +, ���- �.�E, =  / 0�1�,��1 − 3Ω11�,3, (4.18) 

�� + �! �1�F�E,�EF + �� + 2� +  ! �1�F�EF1 + �� +  ! �1�F�E,1 + 8 �%1�EF + �
�
D,
− N )1 + +, ���- �.�EF =  / 0�1�F��1 − 3Ω1 1 �F3, (4.19) 
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−6 ��1%1�E,1 + �1%1�EF1 � +  )��,�EF − ��F�E,- − 2 %1 =  /7 �1%1��1 , (4.20) 

8∗∇1. = /:∗ � ��� + +� �1��1� . + (.� � ��� + +�;� �1��1� )��,�E, + ��F�EF-, (4.21) 

<F, = � ��F�E, + �� +  ! ��,�EF +  %1, (4.22) 

<FF = � ��,�E, + �� + 2� +  ! ��F�EF −  N )1 + +, ���- ., (4.23) 

�F1 = 6 �%1�EF , (4.24) 

�, = �
�
1 ��F�� , (4.25) 

�F = −�
�
1 ��,�� , (4.26) 

ℎ = −�
1 )��,�E, + ��F�EF-. (4.27) 

We define the dimensionless quantities as 

E=∗ = OP:, E= , �=∗ = /:,OPN.
 �= , �∗ = OP�, +
∗ = OP+
, +,∗ = OP+,,
D=∗ = ;
<
1�
1�
1:
 D= , ℎ∗ = ;
<
�
�
1 ℎ, <=>∗ = 1N.
 <=> ,
�=>∗ = OP:,N.
 �=>, �=∗ = �= �
�
1:, , Ω1∗ = Ω1OP ,
.∗ = N./:
1 , %1∗ = /:,1OPN.
 %1, � = 1,3 

(4.28) 

Where  

:,1 = QR1SRTU       and    OP = UV∗VWXT . 

 Using the dimensionless quantities as defined in equation (4.28), the system of 

equations (4.18)-(4.27) can be rewritten as after suppressing the asterisks 

�4, + 4Y! �1�,�E,1 + �41 + 4Y! �1�F�E,�EF + 4F �1�,�EF1 − 4Z �%1�EF
− 4[ )1 + +,OP ���- �.�E, =  �4\ + 4[! �1�,��1 − 4]�,, (4.29) 
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4F �1�F�E,1 + �41 + 4Y! �1�,�E,�EF + �4, + 4Y! �1�F�EF1 + 4Z �%1�E,
− 4[ )1 + +,OP ���- �.�EF =  �4\ + 4[! �1�F��1 − 4]�F, (4.30) 

−4,, ��1%1�E,1 + �1%1�EF1 � + 4,1 )��,�EF − ��F�E,- − 4,F%1 =  4,Z �1%1��1 , (4.31) 

4,Y∇1. = 4,\ � ��� + +�OP �1��1� . + 4,[ � ��� + +�;�OP �1��1� )��,�E, + ��F�EF-, (4.32) 

<F, = 41
 ��F�E, + 41, ��,�EF + 411%1, (4.33) 

<FF = 4,^ ��,�E, + 4,] ��F�EF − 41
., (4.34) 

�F1 = 41F �%1�EF , (4.35) 

�, = 41Z ��F�� ′ (4.36) 

�F = −41Z ��,�� , (4.37) 

ℎ = −�
1 )��,�E, + ��F�EF-, (4.38) 

Where 

4, = �� + 2� +  !/:,F N.
OP, 41 = �� + �!/:,F N.
OP, 4F = �� +  !/:,F N.
OP,
4Z =  N.
OP/:,F , 4Y = �
�
11 N.
OP/:,F , 4\ = `
�
1�
11 N.
OP/:, ,
4[ = N.
OP:, , 4^ = N.
OP:, , 4] = 3Ω11 N.
OP/:,F ,   
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4,, = 6N.
OP1/:,Z , 4,1 =  N.
/:,1 , 4,F = 2 N.
/:,1 , 4,Z = 7N.
OP1:,1 ,
4,Y = 8∗.
OP1:,1 , 4,\ = /OP.
, 4,[ = N1.
1OP/:,1 ,
4,^ = �/:,1 , 4,] = �� + 2� +  !/:,1 , 41
 = �/:,1 ,
41, = � +  /:,1 , 411 =  /:,1 , 41F = 6OP1/:,Z , 41Z = N.
/:,1 ,
41Y = N.
/:,1OP 

(4.39) 

After applying Laplace transform and its properties as defined in equations (2.45)-(2.47) 

on equations (4.29)-(4.38), we get 

�4, + 4Y! �1�a,�E,1 + �41 + 4Y! �1�aF�E,�EF + 4F �1�a,�EF1 − 4Z �%a1�EF − 4[�1 + +,OPb! �.a�E,= c�4\ + 4[!b1 − 4]d�a,, (4.40) 

4F �1�aF�E,1 + �41 + 4Y! �1�a,�E,�EF + �4, + 4Y! �1�aF�EF1 + 4Z �%a1�E,
− 4[�1 + +,OPb! �.a�EF = c�4\ + 4[!b1 − 4]d�aF, (4.41) 

−4,, ��1%a1�E,1 + �1%a 1�EF1 � + 4,1 )��a,�EF − ��aF�E,- − 4,F%a1 =  4,Zb1%a1, (4.42) 

4,Y∇1.a = 4,\�b + +�OPb1!.a + 4,[�b + +�;�OPb1! )��a,�E, + ��aF�EF-, (4.43) 

<aF, = 41
 ��aF�E, + 41, ��a,�EF + 411%a1, (4.44) 

<aFF = 4,^ ��a,�E, + 4,] ��aF�EF − 41
.a, (4.45) 

�̅F1 = 41F �%a1�EF , (4.46) 

�a, = 41Zb�aF, (4.47) 

�aF = −41Zb�a,, (4.48) 

ℎa = −�
1 )��a,�E, + ��aF�EF-, (4.49) 

Also applying Fourier transform as defined in (3.58) on equations (4.40)-(4.49), we obtain 
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f1�g, = 14F hi�4, + 4Y!j1 + �4\ + 4^!b1 − 4]k�g, − lj�41 + 4Y!f�gF
+ 4Zf%m1 − lj4[�1 + OP +,!.mn, (4.50) 

f1�gF = 14, + 4Y h−lj�41 + 4Y!f�g, + i4Fj1 + �4\ + 4^!b1 − 4]k�gF
− lj4Z%m1 + 4[�1 + OP +,b!f.mn, (4.51) 

f1%m1 = 14,, h4,1�f�g, − lj�gF! + �4,,j1 − 4,F − 4,Zb1!%m1n, (4.52) 

f1.m = 14,Y clj4,[�b + +
;
OPb1!�g, + 4,[�b + +
;
OPb1!f�gF
+ �4,Yj1 + b + OP+
b1!.md, (4.53) 

<gF, = loY1�gF + 41,f�g, + 411%m1, (4.54) 

<gFF = loY,�g, + 4,]f�gF − 41
.m , (4.55) 

�gF1 = 41Ff%m1, (4.56) 

�m, = oYF�gF, (4.57) 

�mF = −oYF�g,, (4.58) 

ℎm = −loYZ�g, − 41Yf�gF, (4.59) 

where f = ppqr. 
Equations (4.50)-(4.53) can be written in matrix form as  

fs�j, EF, b! = ts�j, EF, b!, (4.60) 

where 

s = u vfvw ,  v = c�g, �gF %m1 .mdx, (4.61) 

t = y z {t1 t,|,        t, = } 0 −l~,1 ~,F 0l~1, 0 0 ~1Z~31 0 0 00 ~Z1 0 0 �,  

t1 = } o,, 0 0 −lo,Z0 o11 �o1F 00 −loF1 oFF 0loZ, 0 0 oZZ
�,  

(4.62) 
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Here { is identity matrix of order 4, z is Null matrix of order of 4 and c dx is transpose 

of matrix. 

o,, = 14F c�4, + 4Y!j1 + �4\ + 4^!b1 − 4]d, o,Z = j4[4F �1 + OP+,b!,
o11 = 4Fj1 + 4\b1 + 4^b1 − 4]4, + 4Y , o1F = − 4Zj4, + 4Y ,
oF1 = j4,14,, , oFF = 4,,j1 − 4,Zb1 − 4,F4,, ,
oZ, = − j4,[4,Y �b + +
;
OPb1!,
oZZ = 14,Y �4,Yj1 + b + +
OPb1!, ~,1 = − j�41 + 4Y!4F ,
~,F = 4Z4F , ~1, = − j�4Y + 41!4, + 4Y ,
~1Z = 4[4, + 4Y �1 + +,OPb!, ~F, = 4,14,, ,
~Z1 = 4,[4,Y �b + +
;
OPb1!. 

(4.63) 

Solution of equation (4.60) is of the form 

s�j, EF, b! = ��j, b!��qr , for some parameter �. (4.64) 

Using this value in equation (4.60), we get  

ts�j, EF, b! = �s�j, EF, b!, (4.65) 

which gives rise to an eigen value problem.  

Now corresponding to the matrix t, characteristic equation can be written as 

|t − �{| = 0, (4.66) 

On expansion it can be written as 

�^ − �,�\ + �1�Z − �F�1 + �Z = 0, (4.67) 

where 

�, = ~1Z~Z + o,, + oZZ + o11 + oFF − ~,1~1, + ~,F~F,,  
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 �1 = −oZ,~,1~1Z + o,ZoZ, + ~,F~1Z~F,~Z1 + oFF~1Z~Z1 + o,,~Z1 − o,Zo1,~Z1+ o,,oZZ + o,,�XX + o,,oFF + o11oZZ + oFFoZZ + o11oFF + o1FoF1− oZZ~,1~1, − oFF~,1~1, + o1F~,1~F, + oZZ~,F~F, + oF1~,F~1,+ o11~,F~F,,  �F = −oF1oZ,~,F~1Z − oFFoZ,~,1~1Z + o,ZoFFoZ, + o,Zo11oZ, + o,Zo1F~F,~Z1+ o,,oFF~Z1 − o,Zo1,oFF~Z1 + o11o,,oZZ + o,,oFFoZZ + o,,o11oFF+ o11oFFoZZ + o1FoF1oZZ − oFFoZZ~,1~1, + o1FoZZ~,1~F,+ oF1oZZ~,F~1, + o11oZZ~,F~F,,  �Z = o,Zo1FoF1oZ, + o,ZoFFoZ,o11 + o,,o11oFFoZZ + o,,o1FoF1oZZ. 

 

(4.68) 

The eigen values of matrix t are the characteristic roots of the equation (4.67). The eigen 

vectors ��j, b! corresponding to eigen value �� can be determined by solving the 

homogenous equations 

ct − �{d��j, b! = 0, (4.69) 

Which gives 

���j, b! = y��,��1|, ��, = ���
�������:����� ���

�
, ��1 = ����,for � = ��, � = 1,2,3,4 and 

 �>�j, b! = y�>,�>1|, �>, = ���
�−������−:����� ���

�
, ��1 = ����,, for 7 = � + 4, � = −��, � =

1,2,3,4  

(4.70) 

where 

�� = ci−~,1$oZZ − ��1& + loZZ~Z1k$oFF − ��1& − ~,F~F,��1$oZZ − ��1&d, (4.71) 

�� = h��o,, − ��1!$oZZ − ��1& + lo,ZoZ,�$o1F − ��1& − ~,F~F,��1$oZZ − ��1&n, (4.72) 

:� = h��o,, − ��1!$oZZ − ��1& + o,ZoZ,�oF1+ ~F,��1�−~,1$oZZ − ��1& + lo,Z~Z1�n, (4.73) 

�� = − l$oZ, �� + ~Z1��&oZZ − ��1 , (4.74) 

Thus a solution of equation (4.65) becomes 
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s�j, b! = �h�����j, b!���qr + ��RZ��RZ�j, b!����qrnZ
��, , (4.75) 

Where �=′b are eight arbitrary constants. 

Now after using equations (4.50)-(4.59), (4.61) and (4.75), we obtain values of  �g,, �gF, %m1, .m, <gF,, <gFF, �gF1, �m,, �mF and ℎm as 

�g, = �h���������qr − ������RZ����qrnZ
��, , (4.76) 

�gF = �h�������qr + ����RZ����qrnZ
��, , (4.77) 

%m1 = − �h:������qr + :���RZ����qrnZ
��, , (4.78) 

.m = �h�������qr + ����RZ����qrnZ
��, , (4.79) 

<gFF = �h�l����oY,+4,]���� − 41
��!�����qr + �−loY,���� − 4,]����
Z

��, − 41
��!��RZ����qrn, 
(4.80) 

<gF, = �h�loY1�� + 41,����1 − 411:�!�����qr + �loY1�� + 41,����1
Z

��, − 411:�!��RZ����qrn, 
(4.81) 

�gF1 = −41F �h��:��������qr − :�����RZ����qrnZ
��, , (4.82) 

�m, = oYF �h�������qr + ����RZ����qrnZ
��, , (4.83) 

�mF = −oYF �h���������qr − ������RZ����qrnZ
��, , (4.84) 
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ℎm = −�oYZ �h$−l����oYZ+41Y����&�����qrZ
��, + $loYZ���� + 41Y�� − ��&��RZ����qrn. 

(4.85) 

 

4.3. Boundary Conditions 

 

To obtain �=′b ,  we consider an infinite micropolar elastic space in which at origin a 

concentrated force ' = −�
@�E,!@��! ,where �
 is the magnitude of the force, has been 

applied in the direction of the EF-axis. We call the region EF > 0 as Medium-I and EF <0 as Medium-II. The boundary condition for present problem on the plane EF = 0 are  �,�E,, 0R, �! − �,�E,, 0�, �! = 0, (4.86) 

�F�E,, 0R, �! − �F�E,, 0�, �! = 0, (4.87) 

%1�E,, 0R, �! − %1�E,, 0�, �! = 0,  (4.88) 

.�E,, 0R, �! − .�E,, 0�, �! = 0,  (4.89) 

���qr �E,, 0R, �! − ���qr �E,, 0�, �! = 0,  (4.90) 

<F,�E,, 0R, �! − <F,�E,, 0�, �! = 0, (4.91) 

<FF�E,, 0R, �! − <FF�E,, 0�, �! = −�
@�E,!@��!, (4.92) 

�F1�E,, 0R, �! − �F1�E,, 0�, �! = 0, (4.93) 

After using the dimensionless quantities as defined in equation (4.28) and after applying 

the transforms  defined in equation (2.45) and (3.58) along with �i@��!k = 1  on 

equations (4.86)-(4.93), we obtain �g,�j, 0R, b! − �g,�j, 0�, b! = 0, (4.94) 

�gF�j, 0R, b! − �gF�j, 0�, b! = 0, (4.95) 

%m1�j, 0R, b! − %m1�j, 0�, b! = 0,  (4.96) 

.m�j, 0R, b! − .m�j, 0�, b! = 0,  (4.97) 
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f.m�j, 0R, b! − f.m�j, 0�, b! = 0,  (4.98) 

<gF,�j, 0R, b! − <gF,�j, 0�, b! = 0, (4.99) 

<gFF�j, 0R, b! − <gFF�j, 0�, b! = −�m
, (4.100) 

�gF1�j, 0R, b! − �gF1�j, 0�, b! = 0, (4.101) 

 

Medium-I: As EF > 0 for this region, coefficients �,, �1, �F and �Z in the expressions 

(4.69)-(4.75) of the transformed displacement, microrotation, stress components, 

temperature distribution and couple stress components must be zero. Hence these 

transformed components for medium-I are given by 

�g, = − � ������RZ����qrZ
��, , (4.102) 

�gF = � ����RZ����qrZ
��, , (4.103) 

%m1 = − � :���RZ����qrZ
��, , (4.104) 

.m = � ����RZ����qrZ
��, , (4.105) 

<gFF = − ��loY,���� + 4,]���� + 41
��!��RZ����qr ,Z
��,  (4.106) 

<gF, = ��loY1�� + 41,����1 − 411:�!��RZ����qrZ
��, , (4.107) 

�gF1 = 41F � :�����RZ����qrZ
��, , (4.108) 

 

Medium-II: As EF < 0 for this region, coefficients �Y, �\, �[ and �^ in the expressions 

(4.69)-(4.75) of the transformed displacement, microrotation, stress components, 

temperature distribution and couple stress components must be zero. Hence these 

transformed components for medium-II are given by 
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�g, = � ���������qrZ
��, , (4.109) 

�gF = � �������qrZ
��, , (4.110) 

%m1 = − � :������qrZ
��, , (4.111) 

.m = � �������qrZ
��, , (4.112) 

<gFF = ��l����oY,+4,]���� − 41
��!�����qr ,Z
��,  (4.113) 

<gF, = ��loY1�� + 41,����1 − 411:�!�����qrZ
��, , (4.114) 

�gF1 = −41F � ��:��������qrZ
��, , (4.115) 

After making use of the transformed components as defined in equations (4.102)-(4.108) 

for medium-I and equations (4.109)-(4.115) for medium-II in transformed boundary 

conditions (4.94)-(4.101), we obtain a system of eight equations in eight unknowns �=�� = 1,2, … ,8! as 

− �$��RZ + ��&����
Z

��, = 0, (4.116) 

�$��RZ − ��&��
Z

��, = 0, (4.117) 

− �$��RZ − ��&:�
Z

��, = 0, (4.118) 

�$��RZ − ��&��
Z

��, = 0, (4.119) 

�$��RZ + ��&����
Z

��, = 0, (4.120) 
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�c��RZ$loY1�� + 41,����1 − 411:�& − ��$loY1�� + 41,����1 − 411:�&dZ
��, = 0, 

(4.121) 

�c��RZ$−loY,���� − 4,]���� − 41
��&Z
��, − ��$loY,���� + 4,]���� − 41
��&d = −�m
, 

(4.122) 

�$��RZ + ��&:���
Z

��, = 0, (4.123) 

 

After solving equations (4.116)-(4.123) for unknown �=xb, we get 

�, = �Y = �
:Z�,,�, y�,1�1F − �,F�11�11�FF − �F1�1F|, (4.124) 

�1 = �\ = − �
�1F:Z�1��11�FF − �F1�1F!, (4.125) 

�F = �[ = �
�11:Z�F��11�FF − �F1�1F!, (4.126) 

�Z = �^ = − �
:Zc�,��,1�1F − �,F�11! − �1�,,�1F + �F�11�,,d�Z�Z��11�FF − �F1�1F! , (4.127) 

where �,, = �1:Z − :,�Z, �,1 = �1:Z − �Z:1, �,F = �F:Z − �Z:F,
�11 = ��1:Z − :1�Z! − ��,:Z − :,�Z!��,:Z − :,�Z! ��1:Z − :1�Z!,
�1F = ��F:Z − :F�Z! − ��,:Z − :,�Z!��,:Z − :,�Z! ��F:Z − :F�Z!,
�F1 = ��1:Z − :1�Z! − ��,:Z − :,�Z!��,:Z − :,�Z! ��1:Z − :1�Z!,
�FF = ��F:Z − :F�Z! − ��,:Z − :,�Z!��,:Z − :,�Z! ��F:Z − :F�Z!. 

(4.128) 

Using these values of �=xb in equations (4.76)-(4.85), we obtain transformed components 

of displacement, microrotation, temperature distribution, tangential and normal stress, 

couple stress, induced electric field and magnetic field. 
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4.4. Inversion of the transforms 

 

The transformed components of displacement, tangential and normal stress, couple stress, 

microrotation, temperature distribution, magnetic field and induced electric field are 

dependent on parameters EF, b and j. To obtain them in the physical domain in the form 

of o�E,, EF, �!, we invert integral transforms by using the inversion technique as 

mentioned in section 3.5 of chapter 3. 

 

4.5. Numerical discussion and Analysis 

 

Following values for the case of magnesium crystal are taken for analysis by making use 

of Eringen [18],  

� = 9.4 × 10,
¢. £�1, � = 4 × 10,
¢. £�1,  = 1 × 10,
¢. £�1,/ = 1.74 × 10F8~. £�F, EF = 1, 7 = 0.2 × 10�,]£1,8∗ = 1.1753 × 10�,]£1, O∗ = 0.0787 × 10�,¢. £�1. b,+
 = 6.131 × 10�,Fb, +, = 8.765 × 10�,Fb, ε = 0.073,
.
 = 2968, ε
 = 136¨ × 10�]'. £�,, �
 = 4¨ × 10�[�. £�,,
Ω = 1, 4
 = 0.779 × 10�]¢. 

 

The computations are carried out for the non-dimensional time � = ,1 and range 0 ≤ E, ≤9. The distribution of non-dimensional normal displacement �F, non-dimensional normal 

stress <FF, non-dimensional tangential couple stress �F1 and non-dimensional 

temperature distribution . with non-dimensional distance E, have been shown in Figs. 

4.6.1–4.6.4. 
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Fig. 4.5.1 Variation in normal displacement �F 

 

Fig. 4.5.2 Variation in normal force stress <FF 
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Fig. 4.5.3 Variation in tangential couple stress �F1 

 

Fig. 4.5.4 Variation in temperature field . 
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The smooth-solid lines with and without solid squares have been used to signify 

generalized micropolar thermoelastic medium, for Green and Lindsay [3] theory as G-L 

(MGTER) and for Lord and Shulman [2] theory as L-S (MGTER), respectively with 

rotation effect. Again lines made up of small dashes with and without circles signify 

generalized magneto micropolar thermoelastic, for L–S theory as L-S (MMGTE) and for 

G–L theory as G-L (MMGTE), respectively. Finally lines with large dashes with and 

without triangles denotes generalized magneto micropolar thermoelastic medium with 

rotation effect, for G-L theory as G-L (MMGTER) and for L-S theory as L-S 

(MMGTER), respectively. Variations with distance E, in normal displacement �F, 

normal stress <FF, tangential couple stress �F1 and temperature distribution . have been 

shown for mechanical force in figs. 4.6.1–4.6.4.  It is clear from Fig. 4.5.1 that near the 

source �F has higher values for G-L (MGTER) and L-S (MGTER) theories as compared 

to its values for all other theories. Also as E, increases, electromagnetic and rotation effect 

tend to diminish. Fig. 4.5.2 again shows that electromagnetism and rotation effect have 

very less impact in the range 3 ≤ E, ≤ 9 for normal stress <FF. Fig. 4.5.3 shows that 

tangential couple stress keeps on increasing as we move away from the point of 

application of source for all theories. Finally Fig. 4.5.4 depicts that variation in the 

temperature distribution . with rotation effect, near the source has higher values and then 

keeps on decreasing with E, whereas without rotation effect has lower values near the 

source and then keeps on increasing with E,. 

 

4.6. Conclusion 

 

Eigen value approach has been applied to obtain solution of two dimensional plane strain 

problem in generalized magneto micropolar thermoelastic infinite space by including the 

rotation effect. Graphical analysis suggests that normal displacement, normal stress, 

tangential couple stress and temperature distribution . are affected significantly by 

application of rotation and magnetic field. Significant difference can be obtained in the 

temperature distribution by including the rotation effect.  Also in case rotation effect is 

considered, normal stress shows opposite behaviour for L-S and G-L theories. 



 

 

Chapter 5 

Thermo-Mechanical deformation in Magneto Micropolar 

thermoelastic medium with modified Fourier and Ohm’s law 

  

 

Contemporary engineering material are usually made up of particles possessing internal 

structures. Classical elasticity lacks justification to explain the elastic behaviour of such 

materials. To analyse such materials, theory which incorporates the orientation of 

particles is required. The present investigation is concerned with a two dimensional 

problem in a magnetic micropolar thermoelastic half space, whose surface in the presence 

of transverse magnetic field is subjected to thermo-mechanical sources with  modified 

Ohm’s and Fourier’s law. Integral transforms, Laplace and Fourier transforms have been 

used to solve the problem. In the past Ezzat and Youssef [80] investigated three different 

theories; L-S theory with one relaxation time, G-L theory with two relaxation time and 

coupled theory in generalized magneto thermoelastic perfectly conducting medium. An 

exact solution based upon Fourier Hankel series and Laplace transform was obtained by 

Jabbari and Dehbani [81] for classical coupled magneto thermo elasticity in cylindrical 

coordinates. Thermo magneto elastic interaction due to thermal shock of a stress free 

boundary of perfectly conducting medium were analysed by [82] in the context of two 

temperature generalized thermoelasticity with energy dissipation. Lotfy and Hassan [83] 

investigated a problem on two temperature generalized theory using normal mode 

analysis. Abo-Dahab and Elsagheer [84] studied the effects of relaxation times, magnetic 

field and rotation on the reflection of P-wave and SV-wave on the boundary of 

thermoelastic stress free and insulated medium which is homogeneous and isotropic. 

In this chapter an application of concentrated normal force and thermal source have been 

taken to illustrate the utility of the approach. The transformed components of 

displacement, stress, couple stress, electric field and current density vector have been 
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derived. Some special cases of interest have also been deduced from the present 

investigation. 

 

5.1. Basic Equations 

 

Following Ezzat and Emad [48], the basic field equations and constitutive relation in 

magneto Micropolar thermoelasticity are given by (5.1)-(5.4) 

���� ℎ�� = J� + �
����� , (5.1) 

���� ��� = − ������ , (5.2) 

 , ���
��� = ��, (5.3) 

� ���� =  ������   ,  
��� =∈� ���, where ���� = ����� + ℎ��. (5.4) 

Here ℎ�� is the perturbation caused by induction in the total magnetic field and dot 

represents the derivative w.r.t time. 

�∗�,�� =  ��� + !� �"
��"# $�%∗� + ��&'( + )�*�,�, (5.5) 

Maxwell components of stress are given by 

��+ = �,-��ℎ+ + �+ℎ� − �.ℎ./�+0. (5.6) 

Due to interaction of electromagnetic and elastic fields, Ohm’s law with finite 

conductivity gets modified and can be written as 

*� = 2�-�� + �34 �.0 +  ���4 �  − 5� �,�. (5.7) 

where 5, is the coefficient connecting the electric current density and temperature 

gradient. 

After considering the effect of Lorentz force in the absence of body couples and taking in 

to account electromagnetic couples, the equation of balance of linear momentum and 

angular momentum can be written as follows. 
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2+�,+ +∈�+. *+�. + ���� = ��6 � , (5.8) 

∈�+. 2+. + �+�,+ +∈�+. 7+$∈.89 *8�9( = �:;6 � , (5.9) 

Constitutive relations are 

2�+ = <�.,./�+ + �-��,+ + �+,�0 + = -�+,� −∈�+. ;.0 − &�/�+, (5.10) 

��+ = >;./�+ + ?;�,+ + @;+,�. (5.11) 

Now we consider a micropolar thermoelastic half space defined as 

R=A$7B, 7", 7C(  ∶ 7B ≥ 0, −∞ < 7", 7C < ∞I and R*=A$7B, 7", 7C( ∶ 7B ≤
0, −∞ < 7", 7C < ∞I is vacuum. 

(5.12) 

Let  ℎ��, = $0, ℎ,, 0( and ���, = $�B,, 0, �C,( denote the induced magnetic field and electric 

field in R*. 

In the vacuum, constructing the micropolar elastic half space, the system of equations of 

electrodynamics is 

���� ℎ��, =∈, ����,�� , (5.13) 

���� ���, = −�, �ℎ��,�� , (5.14) 

��� ℎ��, = 0. (5.15) 

In R* components of Maxwell stress are 

��+, = �,-��ℎ+, + �+ℎ�, − �.ℎ.,/�+0. (5.16) 

Thus equations (5.1)-(5.5), (5.7)-(5.9) and (5.10)-(5.11) form the field equations and 

constitutive relations in the linearized form for a generalized magneto micropolar 

thermoelastic medium with modified Ohm's law and modified generalized Fourier's law 

and equations (5.12)-(5.14) represent the equations of vacuum. 

With the aid of (5.10)-(5.11) equations (5.8)-(5.9) after linearizing take the form 

$< + 2� + =(∇$∇. ���( − $� + =(∇ × ∇ × u�� + =∇ × ;�� + �,$*� × �,( − &∇�
= � �"�����" , 

(5.17) 
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$> + ? + @(∇-∇. ;��0 − ∇ × ∇ × ;�� + =∇ × ��� − 2=;�� =  �: �";����" . (5.18) 

Re-writing the equations (5.17)-(5.18) in component form in Cartesian coordinate system 

$7B, 7", 7C( as 

$< + �(  ∂"�B�7B" + ∂"�"�7B�7" + ∂"�C�7B�7C# + $� + =(  ∂"�B�7B" + ∂"�B�7"" + ∂"�B�7C" #
+ = P�;C�7" − �;"�7C Q − ν ∂T�7B + �$*"�C − *C�"( = ρ ∂"�B∂�" , 

(5.19) 

$< + �(  ∂"�B�7"�7B + ∂"�"�7"" + ∂"�C�7"�7C# + $� + =(  ∂"�"�7B" + ∂"�"�7"" + ∂"�"�7C" #
+ = P�;B�7C − �;C�7B Q − ν ∂T�7" + �$*C�" − *"�C( = ρ ∂"�"∂�" , 

(5.20) 

$< + �(  ∂"�B�7C�7B + ∂"�"�7"�7C + ∂"�C�7C" # + $� + =(  ∂"�C�7B" + ∂"�C�7"" + ∂"�C�7C" #
+ = P�;"�7B − �;B�7" Q − ν ∂T�7C + �$*B�" − *"�B( = ρ ∂"�C∂�" , 

(5.21) 

$> + ?(  ∂";B∂7B" + �";"�7B�7" + �";C�7B�7C# + @  ∂";B∂7B" + �";B�7"" + �";B�7C" #
+ κ P��C�7" − ��"�7CQ − 2κ;B = �: ∂";B∂�" , 

(5.22) 

$> + ?(  ∂";B�7"�7B + �";"∂7B" + �";C�7"�7C# + @  ∂";"∂7B" + �";"�7"" + �";"�7C" #
+ κ P��B�7C − ��C�7BQ − 2κ;" = �: ∂";"∂�" , 

(5.23) 

$> + ?(  ∂";B�7C�7B + �";"�7C�7" + �";C∂7C" # + @  ∂";C∂7B" + �";C�7"" + �";C�7C" #
+ κ P��"�7B − ��B�7"Q − 2κ;C = �: ∂";C∂�" . 

(5.24) 

 

5.2. Formulation and solution of the problem 

 

We consider a homogeneous generalized micropolar thermoelastic medium which is 

isotropic in nature and undergoing a constant applied magnetic field in the direction of  x2-
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axis, ����, = $0, �,, 0( and induced magnetic field can also be considered in the same 

direction as of the applied magnetic field,   ℎ�� = $0, ℎ, 0(.   

A Cartesian coordinate system VWBW"WC is taken with x3 pointing normally into the 

medium. For the two dimensional problem, we assume that all quantities are dependent on 

x1 and x3 co-ordinates. For this we take the vector ��� and microrotation vector ;��  XY     
 ��� = $�B,0, �C,(, ;�� = $0, ;, 0(.    

Also, the electric field is taken normal to the undertaken magnetic field  ��� = $�B,0, �C,(  

and the electric current density is parallel to the electric field i.e. *� = $*B,0, *C,( . Using the 

above assumptions in the equations (5.1)-(5.4), (5.7)  and (5.19)-(5.24), we obtain 

�ℎ�7C = −2�$�B − ���4 C��( + 5� ���7B − ∈� �4B, (5.25) 

�ℎ�7B = 2�$�C + ���4 B��( − 5� ���7C + ∈� �4C, (5.26) 

��C�7B − ��B�7C = ���4 , (5.27) 

JB = 2�$�B − ���4 C��( + 5� ���7B, (5.28) 

JC = 2�$�C + ���4 B��( + 5� ���7C. (5.29) 

$< + �( ∂"�B�7B" + $� + =(  ∂"�B�7B" + ∂"�B�7C" # − = �;�7C − ν ∂T�7B − �*C�, = ρ ∂"�B∂�" , (5.30) 

$< + �(  ∂"�B�7C�7B + ∂"�C�7C" # + $� + =(  ∂"�C�7B" + ∂"�C�7C" # + = �;�7B − ν ∂T�7C
+ �*B�, = ρ ∂"�C∂�" , 

(5.31) 

$> + ?( �";∂7B" + @  ∂";∂7B" + �";�7C" # + κ P��B�7C − ��C�7BQ − 2κ; = �: ∂";∂�" , (5.32) 

Where dot denotes derivative w.r.t. time �. 

Introducing the following non-dimensional variables in equations (5.5) and (5.25)-(5.29), 

7�∗ = %,Z,7�, ��∗ = %,Z,�� , �∗ = %,"Z,�, !,∗ = %,"Z,!,,   (5.33) 
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  ;∗ = �$� + =( ;, 2�+∗ = 1$� + =( 2�+ , ��+∗ = =%,Z,$� + =($? + @( ��+, 
  ℎ∗ = Z,2,�,�, ℎ, ��∗ = Z,2,�,"�,%, �� , �∗ = &��%," ,

*�∗ = Z,2,"�,"�,%, *�   \]�  � = 1,3 

where 

%," = < + 2� + =� ,   Z, = �%∗
�∗  .  

we obtain (asterisks dropped for convenience) 

XC �'�7B + �_�7C − �;�7C − XB"�C − XC P ���7B − XBC ���7CQ = XC  �"�B��" + XB` ��B�� #, (5.34) 

XC �'�7C − �_�7B + �;�7B + XB"�B − XC P ���7C + XBC ���7BQ = XC  �"�C��" + XB` ��C�� #, (5.35) 

∇"; + XBa_ − XBb; = XBc �";��" , (5.36) 

∇"� =  ��� + !� �"
��"# $ � + XB' (– X" ��� ��� ���, (5.37) 

�ℎ�7C = −Xe�B + ��C�� + X` ���7B − XB, ��B�� , (5.38) 

�ℎ�7B = Xe�C + ��B�� − X` ���7C + XB, ��C�� , (5.39) 

��C�7B − ��B�7C = �ℎ�� , (5.40) 

JB = �B − 1Xe �4 C − XBB ���7B, (5.41) 

*C = �C + 1Xe �4 B − XBB ���7C, (5.42) 

where 

_ = ��B�7C − ��C�7B  , ' = ��B�7B + ��C�7C , (5.43) 
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XB = &"�,�"%,"%∗ , X" = ), ∈, 2,�,"�,&�"%∗ , XC = �%,"
� + = , Xf = <� + = ,

Xa = �� + = , Xb = @? + @ , Xc = ?? + @ , Xe = 2,�,Z, ,
X` = �%," Z,&2,�,�, , XB, =∈, �,%,", XBB = 5,�Z," %," 

&2,"�,"�, ,
XB" = �,C2," �," 

Z," $� + =( , XBC = 5,�,�,& , XBe = XCXBC,
XB` = �,"�,"2,%,"�Z, , XBf = XCXB`, XBa = ="

@$� + =(%,"Z," ,
XBb = 2=@%,"Z," , XBc = �:%," . 

(5.44) 

Using Laplace transforms as defined in equation (2.45) and its properties (2.46)-(2.47) on 

equations (5.34)-(5.42), we obtain 

XC �'̅�7B + �_h�7C − �;h�7C − XB"�hC − XC  ��h�7B − XBC ��h�7C# = XC$Y"  + XB`Y(�h ̅B, (5.45) 

XC �'̅�7C − �_h�7B + �;h�7B + XB"�hB − XC  ��h�7C + XBC ��h�7B# = XC$Y"  + XB`Y(�hC, (5.46) 

∇";h + XBa_h − XBb;h = XBc Y";h, (5.47) 

∇"�h = $Y + !�Y"($ �h + XB'̅ (– X"Y  ��hB�7B + ��hC�7C#, (5.48) 

�ℎh�7C = −Xe�hB + Y�hC + X` ��h�7B − XB, Y�hB, (5.49) 

�ℎh�7B = Xe�hC + Y�hB − X` ��h�7C + XB,Y�hC, (5.50) 

��hC�7B − ��hB�7C = Yℎh, (5.51) 

JB̅ = �hB − 1Xe Y�hC − XBB ��h�7B,   (5.52) 

*C̅ = �hC + 1Xe Y�hB − XBB ��h�7C, (5.53) 

Now applying the Fourier transforms as defined in equation (3.58) on equations (5.45)-

(5.62), after some simplification, we obtain 



Ch-5 Thermo-Mechanical deformation in … 75 

 

−XC$i"�jB + ki�jC( + $
"�jB + i"�jC( − 
;l − XB"�lC − XCki�l − XBC 
�h
= XC$Y"  + XB`Y(�jB, (5.54) 

XC$ki
�jB + 
"�jC( − $ki
�jB + 
"�jC( + 
;l + XB"�lB − XC-
�l + XBCki�l0
= XC$Y"  + XB`Y(�jC, (5.55) 

$D" − i"(;l + XBa$
�jB − ki�jC( − XBb;l = XBc Y";l, (5.56) 

$D" − i"(�l = $Y + !�Y"( �l
+ XB$Y + !�Y"($ki�jB + 
�jC(– X"Y-−ki�lB + 
�lC0, (5.57) 


ℎl = −Xe�lB + Y�jC + X`ki�l − XB, Y�lB, (5.58) 

kℎl = Xe�lC + Y�jB − X`
�l + XB,Y�lC, (5.59) 

k�lC − 
�lB = Yℎl, (5.60) 

JnB = �lB − 1Xe Y�jC − XBB �l,   (5.61) 

*nC = �lC + 1Xe Y�jB − XBB 
�l, (5.62) 

where D=
o

opC. 

After some simplification, we obtain 

$
B, + >"e
e + >"`
b + >C,
f + >CB
" + >C"(q;l, �jB, �jC, ℎl, �l r = 0 . (5.63) 

where 

>B = i" + XBb + XBcY", >" = i" + Y + !,Y", >C = XB$Y + !,Y"(,
>f = X"Y,
>a = i" + Y" + XB`Y,   >b = XB"XC Y,   >c = i" + XC$Y" + XB`Y(,
>e = XCXBC,   >` = i" + XeY + XB,Y",   >B, = Xe  + Y XB,X` ,   >BB

= − YX` ,   >B" = >` + >a,   >Cf = XB" − >e>B,, >BC = >`>a − >bY,
>Bf = i" + >`,
>Ba = >`i",   >Bb = >B" + >" + >C,   >Bc = >BC + >B">" + >C>Bf,   >Be
= >C>Ba − >">BC,   >B` = >f + >B,, >", = >f$>B" + i"( + >B,>b, 
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>"B = >f$>BC + >B" i"( + >B,>c, >"" = >f>BCi" + >B,>Be,
>"C
= −s>B>B` + A>", + >c>B` − $>BB>B" + >f>e>BB(I − XBa>B`t,   >"f
= >B$>BB>B" + >f>e>BB( + >"B + >c>",
− ->BB>B">Bb + >f>e>BB$i" + >B"(0 − XBa$i">B` + >",(,   >"a
= −$>"" + >c>"B( + >BB>B">Bc + >f>e>BB$>BC + i">B"(
− >BA>"B + >c>", − $>BB>B">Bb + >f>e>BB$i" + >B"(I + XBa>"B
+ XBa>",i",   >"b
= >c>"" − $>BB>B">Be + >f>e>BB>BCi"(
− >BA−$>"" + >c>"B( + >BB>B">Bc + >f>e>BB$>BC + >B"i"(I
− XBa>"" − XBa>"Bi", 

  >"c = −>BA>c>"" − $>BB>B">Be + >f>e>BB>BCi"(I + XBa>""i",
>"e = >"C>B` ,   >"` = >"f>B` ,   >C, = >"a>B` , >CB = >"b>B` ,   >C" = >"c>B`. 

The characteristic equation of differential equation (5.63) is given by 

uB, + >"eue + >"`ub + >C,uf + >CBu" + >C" = 0. (5.64) 

Solution of equation (5.63) satisfying the radiation condition v'$u+( ≥ 0  is given by 

;l = w x+$Y, i('y9zp{
a

+|B
, (5.65) 

where u+′Y are the roots of equation (5.64),  for  j = 1,2,3,4,5 

Similarly we can obtain 

$ '̃, ℎl, � � , _l( = ∑ $x+$B(, x+$"(, x+$C(, x+$f(('y9zp{a+|B , (5.66) 

where  

x+ , x+$B(, x+$"(, x+$C( X��  x+$f(
 are related as 

x+$B( = �-u+" − >`0-u+" − i"0�+ � x+ , (5.67) 

x+$"( = �Y-u+" − i"0�+ � x+ , (5.68) 
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x+$C( = − �-u+" − >a0-u+" − >`0 − >bY�+ � x+ , (5.69) 

x+$f( = − �-u+" − >B0XBa � x+  for j = 1,2,3,4,5. (5.70) 

where 

�+ = − XBa>f>BB-u+" − >B0 �q>B,-u+" − >"0 + >f-u+" − i"0rq-u+" − >a0-u+" − >`0
− >bYr − >C>B,-u+" − i"0-u+" − >`0�, 

Using (5.71)-(5.74) in equation (5.63), we obtain 

�l = w �-u+" − >a0-u+" − >`0 − >bY�+ � x+'y9zp{
a

+|B
, (5.71) 

_l = w �− -u+" − >B0XBa � x+'y9zp{
a

+|B
, (5.72) 

'̃ = w �-u+" − >`0-u+" − i"0�+ � x+'y9zp{ ,
a

+|B
 (5.73) 

ℎl = w �Y-u+" − i"0�+ � x+'y9zp{
a

+|B
 . (5.74) 

Now with the help of equations (2.47), (3.58), (5.10), (5.11), (5.43) and (5.58)-(5.62) we 

obtain the transformed components of displacement, normal stress, tangential stress, 

tangential couple stress, electric field and current density as 

�jB = w �u+-u+" − >B0
XBa-u+" − i"0 + k i-u+" − >`0�+ � x+'y9zp{

a

+|B
, (5.75) 

�jC = w �u+-u+" − >`0�+ + k u+i-u+" − >B0
XBa-u+" − i"0 � x+'y9zp{

a

+|B
, (5.76) 
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 �lB = 1Xe + XB,Y w �Yu+-2u+" − >` − i"0
�+

a

+|B
+ k iX`u+q-u+" − >a0-u+" − >`0 − >bYr�+
+ iY-u+" − >B0

XBa-u+" − i"0� x+'y9zp{ , 

(5.77) 

�lC = 1Xe + XB,Y w �−X`u+q-u+" − >a0-u+" − >`0 − >bYr�+ + Yu+-u+" − >`0
XBa-u+" − i"0

a

+|B
− kiY$i" − >`(�+ � x+'y9zp{ , 

(5.78) 

JnB = w �Yu+�+  2u+" − >` − i"
Xe + XB,Y − u+" − >`Xe #

a

+|B
+ k iq-u+" − >a0-u+" − >`0 − >bYr�+ P X`Xe + XB,Y − XBBQ
+ k iY

XBa-u+" − i"0 � u+" − >`Xe + XB,Y − u+" − >BXe �� x+'y9zp{ , 

(5.79) 

JnC = w �u+q-u+" − >a0-u+" − >`0 − >bYr�+ PXBB − X`Xe + XB,YQ
a

+|B
+ Yu+-u+" − >B0

XBa-u+" − i"0 � 1Xe + 1Xe + XB,Y�
+ kiY�+  >` − i"

Xe + XB,Y + u+" − >`Xe #� x+'y9zp{ , 

(5.80) 

2jCC = w �−-u+" − >`0-u+"XC + Xfi"0 − -u+" − >a0-u+" − >`0 + >bY�+
a

+|B
+ k iu+-u+" − >B0$Xf − XC(

XBa-u+" − i"0 � x+'y9zp{ , 
(5.81) 

2jCB = w �−1 − -u+" − >B0-u+" + Xai"0
XBa-u+" − i"0

a

+|B
+ k iu+-u+" − >`0$Xa − 1(

�+ � x+'y9zp{ , 
(5.82) 
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�jC" = −Xb w u+x+'y9zp{
a

+|B
 . (5.83) 

Using the dimensionless quantities given by equation (5.33) in equations (5.13)-(5.16) 

and adopting the same procedure as above, we obtain the values of  ℎl,, �lB,, �lC,  satisfying 

the radiation condition as 

ℎl, = xb$Y, i('�p{ , (5.84) 

�lB, = − 1YXB, �xb$Y, i('�p{ , (5.85) 

�lC, = − �iYXB, �xb$Y, i('�p{ , (5.86) 

where 

�" = i" + Y"
%" . 

 

5.3. Boundary Conditions 

 

The dimensionless boundary conditions are 

2CC + �CC − �CC, = −�B$7B, 0, �(,  (5.87) 

2CB = 0, (5.88) 

�C" = 0, (5.89) 

���7C = �"$7B, 0, �(, (5.90) 

ℎ$7B, 0, �( = ℎ,$7B, 0, �(, (5.91) 

�C$7B, 0, �( = �C,$7B, 0, �(. (5.92) 

Because the relative permeabilities are nearly one, it leads to �CC = �CC,. So equation 

(4.1) becomes 

2CC = −�B$7B, 0, �(. (5.93) 
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Applying Laplace and Fourier transforms defined by (2.47) and (3.58) on equations 

(5.88)-(5.93), we obtain 

2jCB = 0, (5.94) 

�jC" = 0,  (5.95) 


�l = �l"$i, 0, Y(, (5.96) 

ℎl$i, 0, Y( = ℎl,$i, 0, Y(, (5.97) 

�lC$i, 0, Y( = �lC,$i, 0, Y(. (5.98) 

2jCC = −�lB$i, 0, Y(. (5.99) 

Now using equations (5.71), (5.74), (5.78) and (5.81)-(5.83) in equations (5.88)-(5.93), 

we obtain six equations in six unknowns x+  $: = 1,2, . . . ,6( as 

w �-u+" − >`0-u+"XC + Xfi"0 + -u+" − >a0-u+" − >`0 − >bY�+
a

+|B
− k iu+-u+" − >B0$XC − Xf(

XBa-u+" − i"0 � x+ = �lB$i, 0, Y(, 
(5.100) 

w �−1 − -u+" − >B0-u+" + Xai"0
XBa-u+" − i"0 + k iu+-u+" − >`0$Xa − 1(

�+ � x+ = 0
a

+|B
, (5.101) 

w u+x+
a

+|B
= 0, (5.102) 

w �− -u+" − >a0-u+" − >`0 − >bY�+ � u+x+
a

+|B
= �l"$i, 0, Y(, (5.103) 

w �Y-u+" − i"0�+ � x+
a

+|B
− xb = 0, (5.104) 

w �Yu+-2u+" − >` − i"0
�+ + k iX`u+q-u+" − >a0-u+" − >`0 − >bYr�+

a

+|B
+ iY-u+" − >`0

XBa-u+" − i"0� x+ + >CCxb = 0 . 
(5.105) 

Solution of system of equations (5.100)-(5.105) is given by 
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x+$Y, i( = ∆z∆        for j=1,2,3,4,5,6 (5.106) 

where ∆= ��8$.(�b�b,  
∆�= �lB��8$.(���B8�� − �l"��8$.(���f8��   for j,k, � =1,2,3,4,5,6. 

�+$B( = -u+" − >`0-u+"XC + Xfi"0 + -u+" − >a0-u+" − >`0 − >bY�+
− k iu+-u+" − >B0$XC − Xf(

XBa-u+" − i"0 , 
�+$"( = −1 − -u+" − >B0-u+" + Xai"0

XBa-u+" − i"0 + k iu+-u+" − >`0$Xa − 1(
�+ , 

�+$C( = u+ , 
�+$f( = − -u+" − >a0-u+" − >`0 − >bY�+ , 
�+$a( = Y-u+" − i"0�+ , 
�+$b( = Yu+-2u+" − >` − i"0

�+ + k iX`u+q-u+" − >a0-u+" − >`0 − >bYr�+
+ iY-u+" − >`0

XBa-u+" − i"0 , \]� : = 1,2,3,4,5. 
 

�b$B( = 0, �b$"( = 0, �b$C( = 0,    �b$f( = 0, �b$a( = −1, �b$b( = >CC,
>CC = ki$Xe + XB,Y(YXB, . 

Using equation (5.106) in equations (5.75)-(5.83), we obtain 

�jB = w �u+-u+" − >B0
XBa-u+" − i"0 + k i-u+" − >`0�+ � ∆+∆ 'y9zp{

a

+|B
, (5.107) 

�jC = w �u+-u+" − >`0�+ + k u+i-u+" − >B0
XBa-u+" − i"0 � ∆+∆ 'y9zp{

a

+|B
, (5.108) 
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�lB = 1Xe + XB,Y w �−X`u+q-u+" − >a0-u+" − >`0 − >bYr�+ + Yu+-u+" − >B0
XBa-u+" − i"0

a

+|B
+ kiY$i" − >`(�+ � ∆+∆ 'y9zp{ , 

(5.109) 

�lC = 1Xe + XB,Y w �Yu+$>` − i"(
�+ − k iX`u+q-u+" − >a0-u+" − >`0 − >bYr�+

a

+|B
+ Yu+-u+" − >B0

XBa-u+" − i"0 � ∆+∆ 'y9zp{ , 
(5.110) 

2jCC = w �-u+" − >`0-u+"XC + Xfi"0 − -u+" − >a0-u+" − >`0�+
a

+|B
+ k iu+-u+" − >B0$XC − Xf(

XBa-u+" − i"0 � ∆+∆ 'y9zp{ , 
(5.111) 

2jCB = w �−1 − -u+" − >B0-u+" + Xai"0
XBa-u+" − i"0

a

+|B
+ k iu+-u+" − >`0$Xa + 1(

�+ � ∆+∆ 'y9zp{ , 
(5.112) 

�jC" = −Xb ∑ u+ ∆z∆ 'y9zp{a+|B . (5.113) 

 

Case I:   Normal concentrated force or continuous force 

In this   �B$7B, 0, �( = �   /$7B(/$�(             \]� �]�uX� %]�%'���X�'� \]�%'/$7B(�$�(              \]� %]�����]�Y \]�%'               

            �"$7B, 0, �( = 0. 

Applying Laplace and Fourier transforms defined by (2.45) and (3.58) we obtain 

   �lB$i, 0, Y( = �     1             \]� �]�uX� %]�%'���X�'� \]�%'1Y              \]� %]�����]�Y \]�%'               

 

                �l"$i, 0, Y( = 0. 
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Case II:  Concentrated thermal source or continuous thermal source 

In this case 

    �B$7B, 0, �( = 0, 

   �"$7B, 0, �( = � /$7B(/$�(                    \]� %]�%'���X�'� �ℎ'�uX� Y]��%'        /$7B(�$�(                   \]� %]�����]�Y �ℎ'�uX� Y]��%'               
Applying Laplace and Fourier transforms defined by (2.45) and (3.58), we obtain 

�lB$7B, 0, �( =0,        

 �l"$i, 0, Y( = � 1             \]� %]�%'���X�'� �ℎ'�uX� Y]��%'      
    1Y              \]� %]�����]�Y �ℎ'�uX� Y]��%'               

Replacing values of �lB and �l" in equations (5.107)-(5.113), we obtain expressions for 

transformed components of displacement, Electric field, current density, tangential stress 

and tangential couple stress for Normal concentrated force, normal continuous force,  

concentrated thermal source and continuous thermal source. 

 

5.4. Inversion of the transforms 

 

To obtain solution of the problem in physical domain, the transformed components given 

by equations (5.107)-(5.113) must be inverted. These components are functions of 7C, 

parameter of Laplace transform (s) and Fourier transform (ξ). To obtain them in the 

physical domain in the form of \$7B, 7C, �(, we invert integral transforms by using the 

inversion technique as mentioned in section 3.5 of chapter 3. 

 

5.5. Numerical discussion and Analysis 

 

Magnesium crystal material is used for analysis. Following reference [18] the values of 

physical constants are 

λ = 9.4 × 10B,�. uy", � = 4 × 10B,�. uy", = = 1 × 10B,�. uy", � = 1.74 ×
10C �  . uyC, @ = 0.779 × 10ya�. uy", ? = 0.98 × 10ya�. uy",2, = 2.2356 ×
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10c¢. uyB,  �0 = 4) × 10−7�. u−1. £0 = 10−9 36)⁄ �. u−1,¥ = 0.0268 ×
10e�. uy". �yB,  : = 0.2 × 10yB`u", %∗ = 1.04  J. � yB. �yB  �� = 1 x. uyB,  

!, = 0.01. 

 

The computations are carried out for the dimensionless time t=0.5 in the range0 ≤ xB ≤
6. Effect of modification in Ohm’s and Fourier’s law in magneto micropolar 

thermoelastic medium (MMT) have been shown by assigning different values to  a" and 

 aBC. In graphs 5.6.1-5.6.6 variations have been represented by solid line for MMT1 (τ, =
0,  a" = 0,  aBC = 0  ); dashed line with centered symbol for MMT2 (τ, = 0,  a" =
0.5,  aBC = 0.25); small dashed line for MMT3 (τ, = 0.01,  a" = 0,  aBC = 0 ) and dotted 

line for MMT4 (τ, = 0.1,  a" = 0.5,  aBC = 0.25). The variations in the dimensionless 

normal stress σCC, dimensionless couple stress μC", and dimensionless temperature 

distribution T  with dimensionless distance xB for concentrated source have been shown 

in figures 5.6.1-5.6.3 whereas for  continuous source the same have been shown in figures 

5.6.4-5.6.6. 

 

5.6.1 Concentrated Source 

Fig. 5.5.1 shows the variations in dimensionless normal stress σCC with the dimensionless 

distance xB. Initially it decreases in the range 0< x1 <2 and is larger for MMT4 as 

compared to MMT1, MMT2 and MMT3. Further as x1 increases in the range 2 < x1 < 6, 

it increases. Fig. 5.5.2 shows that tangential couple stress μC" increases in the range     0 

<  x1   <  2 and decreases in the range 2 < x1 < 6. Fig. 5.5.3 shows the variation in 

temperature distribution T. It keeps on decreasing with x1 

 

 

5.6.2 Continuous Source 

Fig. 5.5.4 shows that for  0 < x1 <  2 value of normal stress force σCC decreases for MMT1, 

MMT3, MMT4 but its behaviour is of opposite nature for MMT2 i.e. it increases for 

MMT2. In the range 2 < x1 < 6,  σCC  becomes oscillatory. Fig. 5.5.5 depicts that the 
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variations in  μC" are very small for MMT1 whereas for MMT2, MMT3 and MMT4 it 

becomes oscillatory in the range 1 < x1 < 6 with decreasing amplitude. Fig. 5.5.6 shows 

that the temperature distribution T keeps on decreasing as x1 increases for MMT2 and 

MMT3. For MMT4 it is oscillatory however the variations are very small for MMT1. 

 

Fig. 5.5.1 Variation of normal stress 2CC with x1 

(Concentrated source) 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 1 2 3 4 5 6

N
o

rm
a

l 
S

tr
e

ss
  

σ
3

3

Distance x1

MMT1

MMT2

MMT3

MMT4



Ch-5 Thermo-Mechanical deformation in … 86 

 

 

Fig. 5.5.2 Variation of tangential couple stress  �C"  with x1 

(Concentrated source) 

 

Fig. 5.5.3 Variation of temperature distribution  T with x1 

 (Concentrated source) 
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Fig. 5.5.4 Variation of normal stress  2CC with x1 

(Continuous source)

 

Fig. 5.5.5 Variation of tangential couple stress  �C" with x1 

 (Continuous source)  
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Fig. 5.5.6 Variation of temperature distribution T with x1 

(Continuous source) 

 

5.6. Conclusion 

 

Modified Ohm’s and Fourier’s law have been used to investigate the problem in magneto 

micropolar thermoelastic half-space. Both concentrated and continuous sources have 

been applied on the boundary. Laplace and Fourier transform techniques were applied to 

obtain the values of stresses, strains, displacements and temperature distribution in 

transformed domain. This study can be useful in analysing the stress-strain of modern 

engineering materials subjected to thermal and mechanical disturbances. From the above 

discussion it is observed that the effect of modification in Ohm’s and Fourier’s law is 

evident as stresses, couple stresses and temperature distribution are showing different 

trend for new model.  
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