## Pharmaceutical Development and Evaluation of Mamajjaka Ghanavati

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHARMACY (AYURVEDA)

In

Rasashastra & Bhaishajya Kalpana

By

Shivangni Raj 11501454

### Under the guidance of

Dr. Manish Vyas Associate Professor Rashashastra & Bhaishajya Kalpana



Transforming Education Transforming India

School of Ayurvedic Pharmaceutical Sciences Lovely Professional University Punjab 144411 November 2017

# **Statementby the Candidate**

This is to submit that this written submission in my project report entitled "**Pharmaceutical development and evaluation of Mamajjaka Ghanavati**" represents original ideas in my own words and where others 'ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have stuck to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above wills because for disciplinary action by the School and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when required. I assure and hold full responsibility for its genuineness.

Forwarded Through **Dr. ManishVyas** Associate Professor

Shivangni Raj Reg. No: 11501454

# **Certificate by Supervisor**

The work described in this project report entitled **"Pharmaceutical development and evaluation of Mamajjaka Ghanavati"** has been carried out by **Shivangni Raj (11501454)** under my supervision. I certify that this is her bonafide work. The work described is original and has not been submitted for any degree to this or any other university.

Date: Place: **Dr. Manish Vyas** Associate professor

# **Certificate by School**

This is certified that the work described in this project report entitled "**Pharmaceutical development and evaluation of Mamajjaka Ghanavati**" Has been carried out by **Shivangni Raj** at the School of Ayurvedic Pharmaceutical Sciences, Lovely Professional University, Punjab.

Mr. Saurabh Singh Baghel (COD) Ayurvedic Pharmacy

**Dr. Monica Gulati** (Professor & Sr. Dean) Sr. Dean and Head of School

## Acknowledgement

First and above all, I praise god, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to assistance and guidance of several people.

I would like to express my deepest gratitude to my guide "**Dr. Manish Vyas**" Associate **professor**, Lovely School of Ayurvedic Pharmaceutical Sciences, Lovely Professional University for their valuable warm encouragement, thoughtful guidance, gracious attention and motivation for completing my project work. It gives me immense pleasure to submit my dissertation work as his student.

I want to express my deep thanks to my **Co-Guide "Dr. Gopal Lal Khatik**" for the trust, the insightful discussion, offering valuable advice, for your supportduring the whole period of the study, and especially for your patience and guidance during the writing process.

I am very obliged to "**Mr. Saurabh Singh Baghel**" HOD Lovely School of Ayurvedic Pharmaceutical Sciences, Lovely Professional University for giving his support to proceed my project work.

I am very grateful to **"Dr. Monica Gulati"** Senior Dean Lovely School of Applied Medical Sciences, Lovely Professional University whose continuous guidance helped me a lot to face many problems during my project work.

I would like to thank my parents "Mr. Deepak Raj" and "Mrs. Uma Raj" who have always been with me. It was due to my parent's dream, ambition, and sacrifice that I get so much ability to face all challenges during my research work today. I would like to express my heartiest gratitude to my friends "Anil Kumar Sah, Neha Bhatia, Saveena Chauhan, Arun Kumar, Swati Sharma, Sweta pathyarach, Ambika Thakur, and Preeti Kalsi" as without their love and support it would not have been possible to complete the task.

Words will fall short to express my feelings for my parents and my guide. They are the soul of my energy and motivation. Their blessings have tolead me towards achieving my goals.

## INDEX

| S.No.  | Content                                       | Page No. |
|--------|-----------------------------------------------|----------|
| 1      | Introduction                                  | 1        |
| 2      | Terminology                                   | 2        |
| 3.1    | Literature Review                             | 3-13     |
| 3.1.1  | Samhita Kala                                  | 3        |
| 3.1.2  | Formulations mentioned in Charaksamhiata      | 3        |
| 3.1.3  | Sangraha Kala                                 | 3        |
| 3.1.4  | Adhunik Kala                                  | 4        |
| 3.1.5  | Ghana                                         | 4        |
| 3.1.6  | Definition of ghana                           | 4        |
| 3.1.7  | Synonyms of ghana                             | 4        |
| 3.1.8  | Advantages of ghana                           | 5        |
| 3.1.9  | Ghana vati                                    | 5        |
| 3.1.10 | Vati kalpana                                  | 5        |
| 3.1.11 | Definition of vati                            | 5        |
| 3.1.12 | Synonyms of vati                              | 5        |
| 3.1.13 | Type of vati kalpana                          | 5        |
| 3.1.14 | Dose of ghanavati                             | 5        |
| 3.1.15 | Some formulations of ghanavati with reference | 6        |
| 3.2    | Literature review of SNEDDS                   | 7-8      |
| 3.2.1  | SNEDDS                                        | 7        |
| 3.2.2  | Types of nanoemulsion                         | 7        |
| 3.2.3  | Selection of excipients for SNEDDS            | 7        |
| 3.2.4  | Excipients used in formulation of SNEDDS      | 7        |
| 3.2.5  | Mechanism of self nano emulsification         | 8        |
| 3.2.6  | Characterization of SNEDDS                    | 8        |
| 3.2.7  | Advantages of SNEDDS                          | 8        |
| 3.3    | Literature review of drug                     | 9-13     |
| 3.3.1  | Mamajjaka                                     | 9        |

| 3.3.2   | References found in Nighantu about Mamajjak        | 9     |
|---------|----------------------------------------------------|-------|
| 3.3.3   | Taxonomic position of <i>Enicostemma littorale</i> | 9     |
| 3.3.4   | Vernacular name of Enicostemma littorale           | 9     |
| 3.3.5   | Ayurvedic properties of mamajjaka                  | 10    |
| 3.3.6   | Description of plant                               | 10    |
| 3.3.6.1 | Macroscopic characterstics                         | 10    |
| 3.3.6.2 | Microscopic characteristics                        | 11    |
| 3.3.7   | Distribution                                       | 11    |
| 3.3.8   | Chemical constituents of Enicostemma littorale     | 12    |
| 3.3.9   | Part used of mamajjaka                             | 12    |
| 3.3.10  | Dose                                               | 12    |
| 3.3.11  | Ayurvedic pharmacology                             | 12    |
| 3.3.12  | Reported pharmacological actions                   | 12-13 |
| 4.1     | Scope of study                                     | 14    |
| 5.1     | Aim of study                                       | 15    |
| 5.2     | Objectives of study                                | 15    |
| 6.1     | List of Equipment used                             | 16    |
| 6.2     | Chemical used                                      | 17    |
| 6.3     | Research methodology                               | 18    |
| 7       | Experimental work                                  | 19-27 |
| 7.1     | Collection of drug                                 | 19    |
| 7.2     | Authentication of drug                             | 19    |
| 7.3     | Organoleptic study                                 | 19    |
| 7.4     | Physicochemical analysis of mamajjaka              | 19    |
| 7.4.1   | Foreign matter                                     | 19    |
| 7.4.2   | Loss of drying                                     | 19    |
| 7.4.3   | Total ash                                          | 19    |
| 7.4.4   | Acid insoluble ash                                 | 20    |
| 7.4.5   | Alcohol soluble extractive                         | 20    |
| 7.4.6   | Water soluble extractive                           | 20    |

| 7.5    | Qualitative analysis of Enicostemma littorale | 21 |
|--------|-----------------------------------------------|----|
| 7.5.1  | Test for flavonoids                           | 21 |
| 7.5.2  | Test for alkaloids                            | 21 |
| 7.5.3  | Test for tannin                               | 21 |
| 7.5.4  | Test for phenolic compound                    | 21 |
| 7.5.5  | Test for coumarin                             | 21 |
| 7.5.6  | Test for reducing sugar                       | 22 |
| 7.5.7  | Test for quinones                             | 22 |
| 7.5.8  | Test for saponins                             | 22 |
| 7.5.9  | Test for proteins                             | 22 |
| 7.5.10 | Test for fixed oil and fats                   | 22 |
| 7.6    | Preparation of Mamajjak ghanavati             | 22 |
| 7.6.1  | Preparation of Kwatha                         | 22 |
| 7.6.2  | Preparation of ghana                          | 23 |
| 7.6.3  | Preparation of ghanavati                      | 23 |
| 7.7    | Evaluation of mamajjaka ghanavati             | 23 |
| 7.8    | Chromatography                                | 23 |
| 7.8.1  | Test solution for TLC and HPTLC               | 23 |
| 7.8.2  | Chromatography conditions                     | 23 |
| 7.8.3  | Preparation of spray reagent                  | 23 |
| 7.9    | Preparation of SNEDDS                         | 24 |
| 7.9.1  | Preparation of extract                        | 24 |
| 7.9.2  | Calibration curve for extract                 | 24 |
| 7.9.3  | Solubility study                              | 24 |
| 7.9.4  | Pseudoternary phase Diagram                   | 24 |
| 7.10   | Characterization of SNEDDS                    | 24 |
| 7.10.1 | Entrapment efficiency                         | 24 |
| 7.10.2 | Droplet size                                  | 25 |
| 7.10.3 | Transmission electron microscopy              | 25 |
| 7.10.4 | Zeta potential                                | 25 |

| 7.10.5   | Polydespersity index                                   | 25    |
|----------|--------------------------------------------------------|-------|
| 7.11     | In vitro studies                                       | 26    |
| 7.11.1   | Antioxidant study                                      | 26    |
| 7.11.1.1 | OH <sup>-</sup> Scavenging Assay                       | 26    |
| 7.11.1.2 | DPPH Assays                                            | 26    |
| 7.11.2   | Anti-diabetic Activity                                 | 26    |
| 7.11.2.1 | α-amylase inhibition assay                             | 26    |
| 8        | Result and Discussion                                  | 27-44 |
| 8.1      | Analysis of raw drug                                   | 28    |
| 8.1.1    | Organoleptic study                                     | 28    |
| 8.1.2    | Physicochemical study                                  | 28    |
| 8.2      | Preparation of Mamajjaka Ghanavati                     | 29    |
| 8.2.1    | Ingredients of Mamajjaka Ghanavati                     | 29    |
| 8.2.2    | Preparation of mamajjaka kwatha                        | 30    |
| 8.2.3    | Evaluation of kwath                                    | 30    |
| 8.2.4    | Observation during mamajjaka ghana preparation         | 30    |
| 8.2.5    | Preparation of mamajjaka ghanavati                     | 31    |
| 8.3      | Pharmaceutical analysis of mamajjaka ghanavati         | 31    |
| 8.4      | Qualitative test for mamajjaka ghanavati               | 33    |
| 8.5      | Chromatographic analysis                               | 33    |
| 8.5.1    | TLC analysis of mamajjaka ghanavati                    | 33    |
| 8.5.2    | HPTLC analysis of mamajjaka ghanavati                  | 34    |
| 8.6      | SNEDDS                                                 | 35    |
| 8.6.1    | Extraction of mamajjaka                                | 35    |
| 8.6.2    | Calibration of curve                                   | 36    |
| 8.6.3    | Emulsification of oils, surfactants and co-surfactants | 37    |
| 8.6.4    | Characterization of SNEDDS                             | 39    |
| 8.6.4.1  | % Drug loading                                         | 39    |
| 8.6.4.2  | Droplet size analysis                                  | 39    |
| 8.6.4.3  | Zeta potential                                         | 40    |

| 8.6.4.4 | Transmission Electron microscopy                 | 41    |
|---------|--------------------------------------------------|-------|
| 8.7     | In-vitro study on mamajjaka ghanavati and SNEDDS | 42    |
| 8.7.1   | OH <sup>-</sup> scavenging activity              | 42    |
| 8.7.2   | DPPH assay                                       | 43    |
| 8.7.3   | α-amylase activity                               | 44    |
| 9       | Conclusion                                       | 45    |
| 10      | References                                       | 46-51 |
| 11      | Appendixes                                       | 52    |

| LIST | OF | TAE | BLES |
|------|----|-----|------|
|------|----|-----|------|

| Table No. | Name of Tables                                                     | Page No. |
|-----------|--------------------------------------------------------------------|----------|
| 3.1       | Description available in samhitakala                               | 3        |
| 3.2       | Rasakriya mentioned in Charaka samhita                             | 3        |
| 3.3       | Description available in Sangraha kala                             | 4        |
| 3.4       | Examples of ghanavati with reference                               | 6        |
| 3.5       | Mamajjaka in Nighantus                                             | 9        |
| 3.6       | Pharmacological actions of mamajjaka                               | 12       |
| 8.1       | Observation of organoleptic study of Enicostemma littorale         | 28       |
| 8.2       | Physicochemical study                                              | 28       |
| 8.3       | Ingredients and quantity to prepare mamajjaka ghanavati            | 29       |
| 8.4       | Observation during preparation of mamajjaka kwatha                 | 29       |
| 8.5       | Analysis of mamajjaka kwath                                        | 30       |
| 8.6       | Results obtained during preparation of mamajjaka ghana             | 30       |
| 8.7       | Quantity of ghana and mamajjaka power for preparation of ghanavati | 32       |
| 8.8       | Observation during pharmaceutical analysis of mamajjaka ghanavati  | 33       |
| 8.9       | Observation during phytochemical screening of mamajjaka ghanavati  | 33       |
| 8.10      | Rf values of mamajjaka ghanavati                                   | 33       |
| 8.11      | HPTLC showing Rf values of mamajjaka ghanavati                     | 34       |
| 8.12      | Observation of extraction process                                  | 35       |
| 8.13      | Calibration curve of mamajjaka ghanavati                           | 36       |
| 8.14      | Results of different ratio of oil, surfactant and co-surfactant    | 38       |
| 8.15      | % inhibition of mamajjaka ghanavati and its SNEDDS                 | 42       |
| 8.16      | % inhibition of mamajjaka ghanavati and its SNEDDS (OH- scavenging | 43       |
| 8.17      | % inhibition of mamajjaka ghanavati and its SNEDDS                 | 44       |

## LIST OF ABBREVIATIONS

| Ch. Chi.          | – Charakchikistasthan                   |
|-------------------|-----------------------------------------|
| Su. Su.           | – Shusrut sutra sthana                  |
| A.P.              | – Ayurvedprakash                        |
| Sha. Sam. Ut.Kha. | – Sharangdharsamhitautar khan           |
| mg.               | – Milligram                             |
| g.                | – Gram                                  |
| mm.               | – Millimeter                            |
| ml.               | – Millilitter                           |
| Kg.               | – Killogram                             |
| Dia.              | – Diameter                              |
| μg                | – Microgram                             |
| Conc.             | - Concentration                         |
| Abs.              | – Absorption                            |
| DPPH              | - 2,2-diphenyl-1-picrylhydrazyl         |
| Charac.           | – Characteristics                       |
| SNEDDS            | - Self emulsifying drug delivery system |
| IC <sub>50</sub>  | – Inhibitory concentration              |
| hrs.              | – Hours                                 |
| nm                | – Nanometer                             |

### ABSTRACT

Ethnomedicine is contributed to the evolution of different systems of medicine viz. Ayurveda, Siddha, Unani, Naturopathy including the modern medicine. It has continuously providing the information about the various effective drugs for the exploration of their therapeutic profile. *Enicostemma littorale* is one of the traditional drugs used mainly in Gujarat, Madhya Pradesh, and Rajasthan as a stomachic, tonic, carminative and appetizer. It is generally prescribed in the form of vati for the treatment of type 2 diabetes in Ayurveda. Recent studies based on the antidiabetic effect of mamajjaka suggesting its role to reduce blood glucose and increase serum insulin level. However, standards of mamajjaka ghanavati are not available in the official monographs. So, present study was designed to develop standards for the preparation and evaluation of mamajjaka ghanavati. The average yield of ghana was 23.75%. The dose of prepared vati was 500 mg. Vati was complying with the various standards including disintegration, hardness, weight variation, and friability. HPTLC profile revealed the presence of 9 constituents in ghanavati. In addition to this, SNEDDS were also prepared to improve the efficacy of the mamajjaka. Labrafil, tween-80 and Transcutol P were used as oil, surfactant, and co-surfactant respectively for the preparation of SNEDDS. Nano droplet size and zeta potential of SNEDDS were optimized, noted as 500nm and -22.8 mV respectively. Entrapment efficacy of prepared formulation was 92%. In-vitro antioxidant and anti diabetic activities of mamajjaka ghanavati and SNEDDS revealed that nano formulation is the better dosage form for the mamajjaka than ghanavati.

### **INTRODUCTION**

Ethnomedicine is the knowledge based on the curative and palliative effects of certain herbs, animals and minerals. This knowledge is the outcome of trial and error practices of the several generations. Ethnomedicine is contributed to the evolution of different systems of medicine viz. Ayurveda, Siddha, Unani, Naturopathy including modern medicine. It has continuously providing the information about the various effective drugs for the exploration of their therapeutic profile. Enicostemma littorale is one of the traditional medicine used mainly in Gujarat, Madhya Pradesh, and Rajasthan as a stomachic, tonic, carminative<sup>1</sup> and appetizer. E. littorale is also prescribed as a single or in combination in the form of Vati (Pills) for the treatment of type 2 diabetes in Avurveda. Recent studies based on the anti-diabetic effect of E. littorale suggesting its role to reduce blood glucose and increase serum insulin level. Significant improvement in kidney function, lipid profile, systolic and diastolic blood pressure also reported<sup>2</sup>. Moreover, it possesses multidimensional therapeutic properties viz. antimicrobial activity,<sup>3</sup> antihelminthic activity,<sup>4</sup> antinociceptive effect,<sup>5</sup> antioxidant activity,<sup>6</sup> antiulcer anti-inflammatory activity, antitumour activity,<sup>8</sup> hepatoprotective activity,<sup>9</sup> activity,<sup>7</sup> hepatomodulatory activity, and antihyperlipidaemic activity including the hypoglycemic activity,<sup>10</sup> antihyperinsulinemic activity, and aiabteic neuropathy activity.

WHO (World Health Organization) and Ministry of AYUSH, India collaboratively establishing protocols or monographs for the global acceptance of traditional medicines. Standardization confirms the identity, quality, purity and efficacy of drugs and formulations.<sup>11</sup> Therefore, continuous efforts of APC (Ayurvedic Pharmacopeia Committee) & PLIM (Pharmacopoeial Laboratory for Indian Medicines) have resulted in the publication of several monographs for the standardization of ayurvedic drugs and formulations. However, standards are not available for the mamajjaka ghanavati which commonly used by the traditional healers and ayurvedic physicians for the treatment of diabetes. Hence, the present study has been designed to prepare and standardize the mamajjaka ghanavati by using different parameters and further evaluated for its anti-oxidant and antidiabetic activities by using *in-vitro* models.

### TERMINOLOGY

| Standardization  | Standardization of drug is defined as authentication of its identity,     |  |
|------------------|---------------------------------------------------------------------------|--|
|                  | determination of quality, purity and detection of nature of adulterant by |  |
|                  | various parameters like morphological, microscopical, physical,           |  |
|                  | chemical and biological evaluations.                                      |  |
| Vati and gutika  | Classical solid and unit dosage form similar like pills are known as vati |  |
|                  | and gutika.                                                               |  |
| Ghanavati        | Ghanavati is pill form of ghana.                                          |  |
| SNEDDS           | Self nano emulsifying drug delivery system.                               |  |
| Characterization | The art of describing the character.                                      |  |

### **3.1LITERATURE REVIEW OF GHANA AND GHANAVATI**

**3.1.1 Samhita Kala:** Various references are available regarding raskriya in Charaka and Sushruta samhita which can be compared with ghana kalpana.

| Classical text                 | Description                                                                                                                                                                                                                  | Reference                       |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Charak Samhita <sup>12</sup>   | Ghana is 1 <sup>st</sup> time mentioned in charaksamhita.<br>Charak has mentioned the ghana kalpana<br>according to its method of preparation and<br>consistency like dadhi (Curd)                                           | Ch. Chi. 15/229                 |
| Sushruta Samhita <sup>13</sup> | Acharya Dalhana defined raskriya.<br>In raskriya decoction is prepared from 8 or 16<br>times of water and evaporated till 1/8 or 1/16 parts<br>of water remain. Then, subjected to further heating<br>till it becomes thick. | Su. Su. 37/21<br>(Dalhana Tika) |

 Table 3.1: Description available in samhitakala

### **3.1.2 Formulations mentioned in Charaksamhita:**

| S.No. | Formulations                              | References         |
|-------|-------------------------------------------|--------------------|
| 1     | Dravyadiraskriya <sup>14</sup>            | Ch. Chi. 26/202    |
| 2     | Pippalyaadi raskriya <sup>15</sup>        | Ch. Chi. 26/258    |
| 3     | Krishnasarparasadi raskriya <sup>15</sup> | Ch. Chi. 26/259    |
| 4     | Dhatryadi raskriya <sup>16</sup>          | Ch. Chi 26/260-261 |

 Table 3.2: Rasakriya mentioned in Charaka samhita

### 3.1.3 Sangraha Kala:

Various references are available in Astanga sangraha, Bhavaprakash, Ayurveda prakash and Sharangdhara samhita which can be correlated with Ghana kalpana.

| Classical text                 | Description                                                        |
|--------------------------------|--------------------------------------------------------------------|
| Astanga Sangraha <sup>17</sup> | Rasakriya is one of the type of anjana kalpana.                    |
|                                | Description about rasanjana is available.                          |
| Bhavaprakash <sup>18</sup>     | Decoction of darvi added with an equal quantity of milk and heated |
|                                | till it becomes thick termed as rasakriya.                         |
| Ayurveda Prakash               | The method of preparation of rasanjana with aja milk.              |
| Sharangadhara                  | Examples of rasakriya under anjana kalpana is mentioned i.e.       |
| Samhita <sup>19</sup>          | davryadi rasakriya, babul rasakariya.                              |

 Table 3.3: Description available in Sangraha kala

### 3.1.4 Adhunik Kala (Sidha Yoga Samgraha):

Guduchi ghanavati is mentioned by Acharya Yadavaji Trikamaji as Samshani Vati in Jwaradhikar.<sup>20</sup>

### 3.1.5 Ghana

Ghana is a concentrated form of the liquid material of plant like swarasa and decoction etc. Ghana is actually a dried aqueous extract. The liquid content of 'kwatha' is evaporated with the help of heat. In ayurvedic literature, the Raskriya is considered as Ghana, Phanita, Avleha because the method of preparation of these dosage forms is similar except minor differences. Avleha is semi-solid which can be licked whereas 'Ghana' is a solid form.

### **3.1.6 Definition of Ghana**

Swarasa and kwatha of plant parts when further heated to concentrate is known as rasakriya.<sup>21</sup>

"Aqueous solutions of plants i.e. swarasa and kwatha when concentrated with the help of heat to get the semi-solid form is termed as Ghana."

### 3.1.7 Synonyms of Ghana

There is no synonyms mentioned for Ghana but due to the common pharmaceutical procedure of Leha, alveha, and phanita,<sup>21</sup> has mentioned as synonyms of raskriya by Acharya Sharangdhara. All these terms have their specific meaning and therapeutical value. Avleha and khanda are concentrated form liquids with sweet substance but Ghana and raskriya are concentrated forms of aqueous solution without sweet substance.

### 3.1.8 Advantages of Ghana:<sup>22</sup>

- Highly concentrated.
- Reduced dose.
- More shelf life.
- More stable.
- Increased bioavailability.

### 3.1.9 Ghana Vati

Ghanavati is compressed pill form of ghana. Many formulations of ghanavati are available in classical texts like sarpagandha ghanavati and guduchi ghanavati. In charaksamhita it is mentioned that vati is prepared from semisolid form.<sup>23</sup>

### 3.1.10 Vati kalpana:

The pill form of the medicines is a convenient form for the patient as well as a physician in treatment<sup>24</sup>. Vati is made in the shape of flat circular mass hence it is similar to the pills.

# **3.1.11 Definition:** Medicines prepared in the form of tablet or pills are known as Vati or Gutika.<sup>25</sup>

3.1.12 Synonyms of vati: Gutika, vati, vatika, modak, pindi, guda and varti.

### 3.1.13 Types of vati kalpana:

- 1. Agnisadhya Vati: Vati is prepared with the help of heat. The sugar or jiggery or guggulu is prepared like leha on mild heat and powder materials are added to leha and then vati is made by rolling, circular in shape
- 2. Anagnisadhya Vati: Vati is made without heat. Powder materials are triturated with guggulu, guda or suggested liquid or to make thevati.<sup>26</sup>

### **3.1.14 Dose of ghanavati:**

The dose of ghana is not clearly mentioned in our classics but, there is reference regarding Samsamani Vati in Siddha Yoga Sangraha. The dose of ghana is mentioned as 5 to 10 Vati of 2 Ratti (250 -500mg) four to five times a day. So, the dose of ghana may be taken 5- 10 g per day.<sup>27</sup>

| S. No. | Formulation                           | Reference                                                 |
|--------|---------------------------------------|-----------------------------------------------------------|
| 1      | Kutajaghana vati                      | Siddhayogasangraha, atisara-pravahika-<br>grahanyadhikara |
| 2      | Sarpagandhaghana vati                 | Siddhayogasangraha, bhrama-anidra-<br>unmadadhikara       |
| 3      | Sarpagandhaghana Vati                 | Siddhayogasangraha, bhrama-Anidra-<br>unmadadhikara       |
| 4      | Samsamani Vati (Guduci<br>Ghana Vati) | Siddayogasangraha, jvaradhikara                           |

3.1.15 Some formulations of ghanavati with references:<sup>25</sup>

 Table 3.4: Examples of ghanavati with reference

### **3.2 Literature review of SNEDDS**

### 3.2.1 SNEDDS

It is an isotropic mixture of oil, surfactant and co-surfactant having a specific ability to develop oil-in-water (O/W) nano-emulsion in aqueous media.<sup>28</sup>

### 3.2.2 Types of nano-emulsion (SNEDDS)

### **3.2.2.1** Water in oil (W/O)

Droplets of water dispersed in continuous phase oil.

### **3.2.2.2 Oil in water (O/W)**

Droplets of oil dispersed in continuous phase water.<sup>29</sup>

### 3.2.2.3 Biphasic nano-emulsion

Surfactant soluble in oil as well as water phase and dispersion of droplet in both i.e. oil and water phase.<sup>30</sup>

### 3.2.3 Selection of excipients for SNEDDS

Self-emulsification is depending upon the nature and concentration of oil, surfactant and co-surfactant. Very few excipients are having the property to develop good self-emulsifying system.<sup>31</sup>

### 3.2.4 Excipients used in formulation of SNEDDS

### 3.2.4.1 Oils

Oil is very important excipient for the preparation of SNEDDS because it helps in emulsification and increases the lipophilicity via intestinal lymphatic system. Oils help to enhance the absorption in GI tract depending upon nature of triglyceride.<sup>32</sup> Synthetic or chemically modified oils are extensively used to prepare self-nanoemulsion such as hydrolyzed vegetable oils which is having better ability to form self-emulsification because they also hold surfactant property.<sup>33,34</sup>

### 3.2.4.2 Surfactants:

Surfactants are defined as amphiphilic molecules and having of both hydrophilic and lipophilic or hydrophobic parts. The function of surfactants is to enhance self-emulsification ability of SNEDDS, which further improves the bioavailability of partially absorbable drugs.<sup>35</sup>

### 3.2.4.3 Co-surfactants:

Co-surfactants like mono ethyl ether (transcutol P), diethylene glycol, poly ethylene glycol, ethanol, capyrol 90, poly- oxyethylene, propylene carbonate, lauroglycol, propylene glycol, glycofurol and spans can increase the solubility of high amounts of hydrophilic surfactants or hydrophobic drugs in the lipid or oil base.<sup>36</sup>

### 3.2.5 Mechanism of self-emulsification

In the process of emulsification, the associated free energy ( $\Delta G$ ) is can be explained by following equation.

$$G = \Sigma N\pi r 2\sigma$$

Where,

 $\Delta G$  = free energy associated with the process

N = number of droplets

 $\mathbf{r} =$ Radius of droplets

 $\sigma$  = interfacial energy

It is apparent from the above equation that the spontaneous formation of the interface between the oil and water phases is energetically not favored. The system commonly classified as SEDDS has not yet been shown to emulsify spontaneously in the thermodynamic sense. The emulsification process may be associated with the ease with which water penetrates the oil – water interface with the formation of liquid crystalline phases resulting in swelling at the interface, thereby resulting in greater ease of emulsification.<sup>37</sup>

#### **3.2.6 Characterization of SNEDDS**

Entrapment efficiency, particle size, poly-disperse index, zeta potential, and TEM are generally used for the characterization of SNEDDS.

#### **3.2.7 Advantages of SNEDDS**

SNEDDS are novel approach in order to improve the bio-availability of lipophilic drugs administered through the oral route. It has many benefits over the conventional emulsions including the long-term stability, patient compliance, palatability, ease of manufacture & scale-up, and quick onset of action. <sup>38,39</sup>

### **3.3 LITERATURE REVIEW OF DRUG**

### 3.3.1Mamajjaka (*Enicostemma litorale* Blume)

This plant is first time mentioned in Shodhal nighantu (12<sup>th</sup> century) in lakshamanadivarg. It is a traditional popular herb used in the treatment of diabetes mellitus.<sup>40</sup> This plant is also used in combination with other drugs.<sup>41</sup>Number of polyherbal formulations are available in the market in which mamajjaka is used as an important ingredient like Diasol, Dihar.<sup>42</sup> Mamajjaka ghanavati i.e. pill form of ghana used for treating the type-2 diabetes by reducing blood glucose and increase serum insulin level.

### 3.3.2 References found in Nighantus about Mamajjaka:<sup>43</sup>

| S. No. | Nighantu          | Period                       | Varga              |
|--------|-------------------|------------------------------|--------------------|
| 1.     | Sodhala Nighantu  | 12 <sup>th</sup> century AD  | Lakshamandi varga  |
| 2.     | Saligram Nighantu | 19 <sup>th</sup> century AD  | Parishishta bhaga  |
| 3.     | Nighantu Adarsh   | 20 <sup>th</sup> centuary AD | Kiratadi gavar     |
| 4.     | Priya Nighantu    | 20 <sup>th</sup> century AD  | Satapushpadi varga |

**Table 3.5:** Mamajjaka in Nighantus

### 3.3.3 Taxonomic position of *Enicostemma littorale*:<sup>44</sup>

| Kingdom     | : Plantae       |
|-------------|-----------------|
| Subdivision | : Angiospermae  |
| Class       | : Dicotyledonae |
| Subclass    | : Gamopetalae   |
| Series      | : Bicarpellatae |
| Order       | : Gentianales   |
| Family      | : Gentianaceae  |
| Genus       | : Enicostemma   |
| Species     | : littorale     |
|             |                 |

### 3.3.4 Vernacular name:<sup>44</sup>

| Sanskrit | : Mamajjaka, Naahi, Tikshanpatra |
|----------|----------------------------------|
| Hindi    | : Naahi, Chhota Chirayata        |
| Gujarati | : Mamejavo                       |

Bengal : Nagajivha

Tamil: Vellarugu or Vallari

English name : White head, Indian Gentian

### 3.3.5 Ayurvedic properties of mamajjaka<sup>45</sup>

- Rasa : Tikta
- Guna : Laghu, Ruksha

Virya : Ushna

Vipaka : Katu

Doshakarma : Kaphapittashamak

### 3.3.6 Description of plant:

*Enicostemma littorale* Blume (Mamajjaka) is a glabrous perennial herb<sup>45</sup> attaining a height of 5-20 inches, distributed throughout India up to a height of 1500 feet. Drug consist of dried whole plant of E. littorale Blume (Enicostemma hyssopifolium) belonging to the family Gentianaceae.



Figure: 3.1 Habitat of *Enicostemma littorale* Blume.

### 3.3.6.1 Macroscopic characteristics

Stem is cylindrical, glabrous, readily rooting at nodes; no odour; taste-bitter.

**Leaves** are sessile, longer than internodes;  $5-8 \times 0.3-1$  cm. Midrib depressed on adaxial side.

**Flowers** are white in colour arranged in a cluster, numerous in the axils of each pair of leaves. Calyx tube 1-2 mm, unequal lobes  $0.7-1.5 \times 0.4-0.7$  mm. Corolla tube 3.5-6mm.

**Fruits** are capsule, globes with pale, ridged ovate seeds 0.4-0.5mm in diameter. This plant is used as a folk medicine in the treatment of inflammation, diabetes mellitus and to regulate bowel functions<sup>46</sup> in western and southern India.

Roots are 2-4mm in dia., taproot dull white, surface slightly rugose.



Figure: 3.2 Leaves, flowers, and stem of *Enicostemma littorale* Blume.

#### **3.3.6.2** Microscopic characteristics

**Leaf-** Presence of prominent bulge abaxially in transverse section of the midrib of the leaf, collenchymas cells, vascular bundle, and parenchyma cells in ground tissues. Epidermis is single layered, papillae on the epidermis, anisocytic stomata.

**Stem-**Quadrangular stem and having narrow wings, single layered epidermis, collenchymas and parenchyma are present in winged corners, uniseriate medullary rays, presence of starch grains.

**Root-** Transverse section shows single layered epidermis, unicellular trichomes, uniseriate medullary rays. Pith is absent.<sup>47</sup>

#### **3.3.7 Distribution:**

E. littorale is widely distributed in South America, Africa, and Asia. It is found in all over the India up to the height 1500 feet, mostly in the coastal region.<sup>48</sup>

### 3.3.8 Chemical constituents of *Enicostemma littorale*:

*Enicostemma littorale* has chemical constituents like sterols, satechins, triterpenoids, volatile oil, and alkaloids. Main chemical constituents are betuline, triterpene sapogenin, and swertiamarin. It also contains erythrocentaurin reported to have  $\alpha$ -amylase inhibitory activity. Heptacosane, nonacosane, myristic acid, stearic acid and oleic acid are also present in minor quantities.<sup>49</sup> Monoterpene alkaloids like enicoflavine and Gentiocrucine are also present.<sup>50</sup>

**3.3.9 Part used** : Whole plant

**3.3.10 Dose** : 1-3g churna, 50-100ml kwatha.<sup>45</sup>

### 3.3.11Ayurvedic pharmacology:<sup>45</sup>

| Action on digestive system   | : Deepan, aampachan, yakritutejak, and krimighan. |
|------------------------------|---------------------------------------------------|
| Action on circulatory system | : Rakatshodhak and shothhar.                      |
| Action on urinary system     | : Parmehaghan.                                    |
| Action on skin               | : Kushatghan.                                     |

### **3.3.12 Reported pharmacological actions:**

| <b>S. No</b> . | Pharmacological activity                                    | Part<br>used   | Extract               | Model                                                   | Dose                      |
|----------------|-------------------------------------------------------------|----------------|-----------------------|---------------------------------------------------------|---------------------------|
| 1.             | Anthelmintic activity <sup>51</sup>                         | Aerial<br>part | Ethanolic<br>extract  | -                                                       | -                         |
| 2.             | Analgesic and anti-<br>inflammatory activity <sup>52</sup>  | Whole<br>plant | Methanolic<br>extract | Freund's adjuvant-<br>induced arthritis                 | 150mg/Kg                  |
| 3.             | Cardio protective and antihypertensive effect <sup>53</sup> | -              | Water extract         | -                                                       | 1.5g/100g body<br>wt./day |
| 4.             | Antidiabetic activity <sup>54,55</sup>                      | Whole<br>plant | Water extract         | Alloxan-induced diabetic rats.                          | 2g/Kg                     |
|                |                                                             | Whole<br>plant | Methanolic<br>extract | Alloxan-induced diabetic rats.                          | 2.5g/Kg/day               |
| 5.             | Hepatoprotective<br>activity <sup>56</sup>                  | Aerial<br>part | Water extract         | Paracetamol-induced<br>hepatotoxicity in<br>albino rats | 200mg/Kg                  |

| 6.  | Antimalarial activity <sup>57</sup>          | -              | Methanolic<br>extract           | -                                                     | 529.04 μg/ml<br>(swertiamarin) |
|-----|----------------------------------------------|----------------|---------------------------------|-------------------------------------------------------|--------------------------------|
| 7.  | Antiulcer activity <sup>58</sup>             | Aerial<br>part | Methanolic<br>extract           | Aspirin-induced gastric ulcer                         | 200mg/Kg                       |
| 8.  | Antiobesity activity <sup>59</sup>           | -              | Water &<br>ethanolic<br>extract | High fat diet-induced obesity                         | 200,250,400,<br>500mg/Kg       |
| 9.  | Antihyperlipidemic<br>activity <sup>60</sup> | -              | Methanolic<br>extract           | Poloxamer-407-<br>induced<br>hyperlipidaemic<br>model | 50mg/Kg<br>(swertiamarin)      |
| 10. | Antipyretic activity <sup>61</sup>           | Whole<br>plant | Ethanolic<br>extract            | -                                                     | 260-780mg/Kg                   |

 Table 3.6:
 Pharmacological actions of mamajjaka

### **4.1 SCOPE OF STUDY**

Standardization is an important factor for ensuring the quality of ayurvedic dosage forms. Standardization is required to describe all measures related to the manufacturing process and quality control to develop a reproducible quality and standards for any dosage form. Ghanavati is an important formulation of ayurveda. It has been prescribed by the ayurvedic physicians since ancient time. However, sufficient data related to the standardization of ghanavati are not available. In addition to this, Mamajjakaghanavati has been used as an ethnomedicine and also by ayurvedic physicians of Gujarat mainly to treat the type-2 diabetes. It reduces the blood glucose and increases the level of serum insulin. Mamajjaka ghanavati is prepared by using mamajjaka (*Enicostemma littorale*) as the main ingredient. However, preparation of Mamajjakaghanavati is not been described by the ayurvedic scholars. So, the present study was focused on development of the standards for the preparation and evaluation of mamajjaka ghanavati.

In addition, SNEDDS of mamajjaka was also developed to improve efficacy and bioavailability.

### 5.1 AIM:

Pharmaceutical development and evaluation of Mamajjaka ghanavati

### **5.2 OBJECTIVES:**

- To authenticate the crude drug.
- To develop the method of preparation of mamajjaka ghanavati.
- To evaluate the prepared ghanavati by using analytical parameters.
- To develop SNEDDS from the Mamajjaka
- To characterized the prepared SNEDDS.
- To evaluate anti-oxidant and antidiabetic activity of ghanavati and SNEDDS by *in-vitro* models.

### MATERIALS AND RESEARCH METHODOLOGY

### **6.1 List of Equipment used:**

| S. No. | Material                           |
|--------|------------------------------------|
| 1      | Stainless steel containers         |
| 2      | Ladle                              |
| 3      | Stainless steel plate              |
| 4      | Cotton cloth                       |
| 5      | Sieves                             |
| 6      | Gas stove                          |
| 7      | Spatula                            |
| 8      | Beakers                            |
| 9      | Friability apparatus               |
| 10     | Disintegration apparatus           |
| 11     | Crucible                           |
| 12     | China dish                         |
| 13     | Vernier caliper                    |
| 14     | Microscope                         |
| 15     | Digital pH meter                   |
| 16     | Electric balance                   |
| 17     | Hot plate                          |
| 18     | Water bath                         |
| 19     | Hot air oven                       |
| 20     | Sonicator                          |
| 21     | UV spectrophotometer               |
| 22     | Magnetic stirrer                   |
| 25     | Ultra centrifuge                   |
| 26     | Transmission electronic microscope |
| 27     | Zeta sizer                         |

### 6.2 Chemical used:

### S.No. Material

- 1 Mamajjaka (*Enicostemma litorale* Blume)
- 2 Labrafil
- **3** Tween 80
- 4 Transcutol
- 5 DPPH
- 6 Acarbose
- 7 Chloroform
- 8 Hydrochloric acid
- 9 Ferric chloride
- 10 Lead acetate
- **11** Sodium hydroxide
- 12 Copper sulphate
- 13 Ninhydrin
- 14 Gelatin
- 15 Hager's reagent
- **16** Dragendroff's reagent

### 6.3 Research methodology:

- Identification and collection of raw drug.
- Authentication of raw drug.
- Physicochemical studies of raw drug.
- Preparation of mamajjakaghanavati.
- Evaluation of mamajjaka ghanavati.
- Preparation of SNEDDS from mamajjaka.
- Characterization of SNEDDS.
- *In-vitro* antioxidant and anti-diabetic activities of the mamajjaka ghanavati and SNEDDS.

### 7. EXPERIMENTAL WORK

### 7.1 Collection of drug:

The whole plant of mamajjaka was collected from the Dang Forest, Gujarat, India.

### 7.2 Authentication of drug:

The drug was authenticated from the Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar.

### 7.3 Organoleptic study:

The *Enicostemma littorale* was observed for colour, odour, taste, texture etc.

### 7.4 Physicochemical Analysis of Mamajjaka (Enicostemma littorale):

### 7.4.1 Foreign matter:

100 g of sample was taken and spreaded in a stainless-steel tray. The foreign matter was detected with the unaided eye. Remaining quantity of sample was weighed and percentage of foreign matter calculated.<sup>62</sup>

### Foreign matter = (Weight of foreign matter / Weight of drug) ×100

### 7.4.2 Loss on drying:

5-10 gm of sample was taken (without preliminary drying) in the accurately weighed dry petri dish and kept into the dry oven at  $105^{0}$ Cfor 5 hours. Then, petri dish was removed from the oven and placed into desiccator under vacuum till shelf cooling and weighed the reduced moisture content from the sample.<sup>63</sup>

### 7.4.3 Total ash:

Incinerated of the 2.5 gm of the sample into the crucible, at temperature of 450°C for 5 hours. After shelf cooling, kept in the desiccator under vacuum. The weight of obtained ash was measured and percentage of obtained ash was calculated. <sup>62</sup>

### Total Ash = (Weight of ash / Weight of sample) ×100

#### 7.4.4 Acid insoluble ash:

Ash obtained from the above method was mixed with 25 ml dilute hydrochloric acid and boiled for 5 minutes. Then, mixture was filtered through ash less filter paper. The filtrate was subjected for the washing with hot water to make it chloride free and again ignited to constant weight. Percentage of acid insoluble ash was calculated after weighing obtained ash.<sup>63</sup>

# Acid insoluble ash = (Weight of residue × Volume made) / (Weight of sample × Volume taken) × 100

#### 7.4.5 Alcohol soluble extractive:

5gm of the sample (coarse powder) was taken in a closed conical flask with 100ml of alcohol. Conical flask was shaken frequently for 6 hours and kept undisturbed for 18 hours. Then, it was filtered by using filter paper. 25 ml of filtrate was taken in the china dish and allowed the content to evaporate. Percentage was calculated after weighing the residue.<sup>63</sup>

# Alcohol soluble extractive value = (Weight of residue × Volume made) / (Weight of sample × Volume taken) × 100

#### 7.4.6 Water soluble extractive:

5gms of the sample (coarse powder) was taken in a closed conical flask with 100ml of water. Conical flask was shaken frequently for 6 hours and kept undisturbed 18 hours. Then, it was filtered by using filter paper. 25 ml of filtrate was taken in the china dish and allowed the contents to evaporate. Percentage was calculated after weighing the residue.<sup>63</sup>

Water soluble extractive value = (Weight of residue × Volume made) / (Weight of sample × Volume taken) × 100

### 7.5 Qualitative analysis of *Enicostemma littorale*<sup>64</sup>:

### 7.5.1 Test for flavonoids (Shinoda test):

The extract was dissolved in methanol (50%, 1-2 ml) by heating. To an alcoholic solution of each of the extract, three pieces of magnesium chips were added followed by a few drops of concentrated hydrochloric acid. Appearance of an orange, pink or red to purple colour indicates the presence of flavonoids.

### 7.5.2 Test for alkaloids

#### 7.5.2.1 Mayer's test:

One ml of aqueous extract was acidified with 2-3 drops of 1M hydrochloric acid and treated with 4-5 drops of Mayer's regent (Potassium Mercuric Iodide) Formation of a yellow or white coloured precipitates or turbidity indicate the presence of alkaloids.

### 7.5.2.2Dragendroff's test:

Extract was dissolved individually in dilute Hydrochloric acid and filtered. Filtrates were treated with Dragendroff's reagent (solution of Potassium Bismuth Iodide). Formation of red precipitate indicates the presence of alkaloids.

### 7.5.3 Test for Tannin:

A small quantity of the extract was boiled with water and filtered. Two drops of ferric chloride were added to the filtrate. Formation of blackish green precipitates confirmed presence of tannins.

### 7.5.4 Test for Phenolic compounds:

Two to three drops of 1% ferric chloride (FeCl<sub>3</sub>) solution were added in to 2 ml of 1 % extract. Deep violet colour was not produced which should be produced in the presence of phenolic compounds.

#### 7.5.5 Test for Coumarins:

Coumarins form a yellow colour with 1% KOH in absolute ethanol. 1 ml of extract in test tubes was treated with 3-4 drops of 1% KOH in absolute ethanol.

### 7.5.6 Test for Reducing Sugar (Fehling's test):

To a test tube 1 ml each a Fehling's A and B solutions were added and mixed. To this 2 ml of plant extract was added and heated on a boiling water bath for 10 minutes. Formation of brick red or orange precipitate indicates the presence of reducing sugar/ carbohydrates.

#### 7.5.7Test for Quinones:

To the test sample, sodium hydroxide is added. Formation of blue, green, or red colour indicates the presence of quinones.

#### 7.5.8Test for Saponins (Foam Test):

0.5 g of extract was shaken with 2 ml of water. Foam produced persists for ten minutes it indicates the presence of saponins.

### 7.5.9Test for Proteins (Xanthoproteic Test):

The extracts were treated with few drops of conc. nitric acid. Formation of yellow colour indicates the presence of proteins.

#### 7.5.10Test for fixed oil and fats:

A drop of concentrated extract was pressed in between two filter papers and kept undisturbed. Oil stain on the paper indicated the presence of oils and fats.

### 7.6 Preparation of Mamajjak ghanavati:

Three major steps were involved in the preparation of mamajjaka ghanavati. Total six batches of mamajjaka ghanavati were prepared.

#### 7.6.1 Preparation of Kwatha:

The authenticated crude drug was crushed to a coarse powder (sieve no. 8) and then soaked in 16<sup>th</sup> part of water in stainless steel container for 15 hours. Then, it is subjected to continuous mild heat (80-90 °C) until it was reduced upto 1/8<sup>th</sup> of its initial quantity. During the heating process, continuous stirring was done to facilitate the evaporation and avoid any deterioration due to burning of materials. After 1/8<sup>th</sup> reduction of water, the kwatha was filtered through double folded cotton cloth and collected in separate vessel.

### 7.6.2 Preparation of Ghana:

The prepared kwatha was further subjected to mild heat (80-90 °C) and continuously stirred for the preparation of ghana. In the final stage, indirect heating was given to avoid denaturation of the ghana by heat.

### 7.6.3 Preparation of Ghanavati:

Classical method was adopted to prepare vati from Ghana. The semisolid Ghana was rolled by hands to make the round shaped vati of 500mg. Then, vati were placed in oven at temperature 45°C for 12 hours. Prepared ghanavati were subjected to various analytical parameters.

#### 7.7 Evaluation of Mamajjaka ghanavati:

Mamajjaka ghanavati were evaluated by using different analytical parameters.

### 7.8 Chromatography:

### 7.8.1 Test solution for TLC and HPTLC

Five grams of powdered drug was taken and added 50 ml of methanol. Shaken for some time (15-20 minutes) and then mild heat is given to it for half an hour. After cooling, it is filtered. The filtrate is evaporated on water bath to approximately 10 ml and used for spotting.

### 7.8.2 Chromatographic conditions:

| Solvent System     | : Ethyl acetate: Methenol (8: 2)               |
|--------------------|------------------------------------------------|
| Extract            | : Methanol extract                             |
| Chamber Saturation | : 30 minute                                    |
| Visualization      | : Short U.V. (254 nm) and long U.V. (365nm) $$ |

### 7.8.3 Preparation of spray reagent (Anisaldehyde in H<sub>2</sub>SO<sub>4</sub>):

0.5 ml Anisaldehyde is mixed with 10 ml glacial acetic acid, followed by 85 ml methanol and 5 ml concentrated sulphuric acid in that order.

#### 7.9 Preparation of SNEDDS:

#### 7.9.1 Preparation of extract:

Soxhlet apparatus was used for the preparation of mamajjaka extract. Coarse powder of drug was used to prepare the thimble and methanol was used as solvent. The process was continued for the 24 hrs. After continuous extraction, methanol was evaporated on water bath and stored for the further use.

#### 7.9.2 Calibration curve for extract:

0.1 ml of extract was dissolved in 100 ml of methanol. Then, 10 ml of solution was transferred into the 90 ml of methanol. Then, 1 ml, 2 ml, 3 ml, 4 ml, and 5 ml of the solution were transferred to 9 ml, 8 ml, 7 ml, 6 ml, and 5 ml of methanol, respectively. After dilution, different concentrations were analyzed by using UV spectroscopy in wavelength range of 200-400 nm. The absorbance of standard solutions was measured at  $\Lambda_{\text{max}}$  of 231 nm to prepare calibration curve.

#### 7.9.3 Solubility studies of mamajjaka ghanavati oil in oils, surfactants, co-surfactants:

Solubility study was performed to check the solubility of extract in labrafil (oil), tween 80 (surfactant), transcutol P (co-surfactant) before formulating SNEDDS.

# 7.9.4 Emulsification of oils, surfactants and co-surfactants and creation of pseudoternary phase Diagram:

27 batches (B1-B27) were prepared by using various ratios of oil, surfactant and cosurfactant to prepare the SNEDDS from mammajaka ghanavati. Labrafil, tween 80 and transcutol were mixed in different ratios. The resultant mixture of each batch was subjected for the sonication on ultrasonicator for duration of 15 minutes at 37°C. Then, prepared isotropic were diluted to 200 ml by double distilled water and kept on magnetic stirrer at 500 rpm (37°C). The prepared emulsions were observed visually for their clarity and related turbidity.

#### 7.10 Characterization of SNEDDS:

#### 7.10.1 Entrapment Efficiency:

The proportion of encapsulated drugs was determined by centrifuging a 10 ml of SNEDDS at 15000 rpm for 60 minutes at room temperature. The supernatant was taken carefully using micropipette. Pure supernatant was then dissolved in methanol to disrupt

the vesicles and appropriate dilution was made in order to measure the content using UV spectrophotometry at 231 nm. Entrapment efficiency was calculated by the equation below<sup>65</sup>

% Entrapment efficiency= (Amount of encapsulated drug/ amount of total drug) × 100

#### 7.10.2 Droplet size:

The average diameter of the SNEDDS of the mamajjaka ghanavati was measured using particle size analyzer (Beckman Coulter Desla Nano Common) in different frequencies at 25°C.

#### 7.10.3 Transmission electron microscopy (TEM):

The TEM imaging of the sample is done to observe the scanned images of the prepared SNEDDS under very high resolution 200000x to determine the particle size of the SNEDDS and entrapped drugs in the lipid.<sup>66</sup>

#### 7.10.4 Zeta potential:

Zeta potential is used to identify the charge of the oil droplets of SNEDDS. The charge of the oil droplets in conventional SNEDDS is negative due to the presence of free fatty acids.<sup>67</sup> For the droplets in SNEDDS emulsions, a high zeta potential confirms stability and long shelf life.<sup>68</sup>

### 7.10.5 Polydespersity Index

The polydespersity index as a measure of the width of the molecular weight distribution (MWD). The MWD data analysis is presented for the correct interpretation and comparison of different, experimentally obtained, molecular weight distributions of polymers.

#### 7.11 In vitro studies:

#### 7.11.1 Antioxidant study

#### 7.11.1.1 OH<sup>-</sup> Scavenging Assay<sup>69</sup>

OH<sup> $^{-}</sup> radicals were originated from FeSO<sub>4</sub> and H<sub>2</sub>O<sub>2</sub> and detected by their ability to hydroxylate salicylate. 3 ml of reaction mixtures were prepared by using 1 ml of FeSO<sub>4</sub> (1.5mM), 0.7ml H<sub>2</sub>O<sub>2</sub> (6mM),0.3ml sodium salicylate (20mM) and 1 ml of different dilutions of the extract. Then, these mixtures were subjected for the incubation of 1hour at 37°C. After incubation, absorbance of hydroxylated salicylate complex was recorded at 562nm for different samples. Percentage of inhibition was calculated by using following formula.</sup>$ 

Scavenging rate= 
$$[1-(A_1-A_2)/A_0] \times 100$$

Where,

 $A_0$  = absorbance of the control (without Sample),

A1=absorbance of presence of extract and

A<sub>2</sub>=was the absorbance without salicylate.

#### 7.11.1.2 DPPH Assays<sup>70</sup>

 $700\mu$ l of extract was added in to the same volume of  $100\mu$ M DPPH methanolic solution. Then, it was shaken vigorously and kept in the dark place for 20 min at room temperature. Lastly, absorbance was recorded at 515 nm. Percentage of inhibition was calculated by using following formula.

Percentage inhibition (I%)=Abs<sub>control</sub>-Abs<sub>Sample</sub> / Abs<sub>control ×100</sub>

#### 7.11.2 Anti-diabetic Activity

#### 7.11.2.1 $\alpha$ -amylase inhibition assay<sup>71</sup>

Starch iodine method was used for the determination of  $\alpha$ -Amylase activity. 10 µl of  $\alpha$ amylase solution (0.025 mg/ml) was mixed with 390 µl of phosphate buffer containing different concentrations of extract. After incubation at 37 °Cfor 10 min, 100 µl of the 1% starch solution was added and re-incubated for 1 hour. After re-incubation 0.1 ml of 1% iodine solution was added and further it was diluted with 5 ml distilled water. The absorbance was taken at 565 nm.

Inhibition of enzyme activity was calculated as  $(\%) = (A-C) \times 100/(B-C)$ 

where, A = absorbance of the sample, B = absorbance of blank (no  $\alpha$ -amylase), and C = absorbance of control (no starch)

# **CHAPTER 8**

## **RESULTS AND DISCUSSIONS**

## 8.1 Analysis of raw drug:

## 8.1.1 Organoleptic study:

| S. no. | Parameters | Observation     |  |  |
|--------|------------|-----------------|--|--|
| 1      | Colour     | Yellowish brown |  |  |
| 2      | Odour      | Characteristic  |  |  |
| 3      | Taste      | Bitter          |  |  |
| 4      | Texture    | Smooth          |  |  |

Table 8.1: Observation of organoleptic study of mamajjaka

The organoleptic characteristics of raw material like colour, odour, taste and texture is mentioned in Table 8.1

### 8.1.2 Physicochemical study:

| S. no.                     | Parameters (%)             | Observations |  |
|----------------------------|----------------------------|--------------|--|
| 1                          | Foreign matter             | 3.2          |  |
| 2                          | Loss on drying             | 1.377        |  |
| 3                          | Total ash                  | 19           |  |
| 4                          | Acid insoluble ash         | 1.78         |  |
| 5                          | Water soluble ash          | 2.35         |  |
| 6                          | Alcohol soluble extractive | 37.26        |  |
| 7 Water soluble extractive |                            | 23.04        |  |
| 8                          | pH                         | 6.02         |  |

**Table 8.2:** Observation of physicochemical study of mamajjaka

Standards of the physicochemical analysis of mamajjaka were not found in Ayurvedic Pharmacopoeia of India. However, physicochemical parameters were performed during the study and results of the analysis are mentioned in **Table 8.2** 

#### 8.2 Preparation of Mamajjaka Ghanavati:

### 8.2.1 Ingredients of Mamajjaka Ghanavati:

| Sr. No. | Dravya                                                                   | Latin Name            | Part Used   | Quantity (gm) |  |  |  |  |
|---------|--------------------------------------------------------------------------|-----------------------|-------------|---------------|--|--|--|--|
| 01.     | Mamajjaka                                                                | Enicostemma littorale | Whole plant | 300           |  |  |  |  |
| 02.     | Drinking Water (ml)                                                      | 4800                  |             |               |  |  |  |  |
|         | Table 9.2. In such diants and superfity to mensure momobility shows usti |                       |             |               |  |  |  |  |

**Table 8.3:** Ingredients and quantity to prepare mamajjaka ghanavati

The ratio of mamajjaka and water was 1:16 for each batch of the kwatha because yield of ghana was more in comparison to 1:8 may due to the more amount of the solvent. The quantities of ingredients used for the preparation of kwatha are mentioned in **Table 8.3**.

### 8.2.2 Preparation of mamajjaka kwatha:

| Parameter                                                | Batches |      |      |      |      |      |  |
|----------------------------------------------------------|---------|------|------|------|------|------|--|
| ranneter                                                 | Ι       | II   | III  | IV   | V    | VI   |  |
| Initial quantity of Kwatha Churna<br>(g)                 | 300     | 300  | 300  | 300  | 300  | 300  |  |
| Total quantity of water (ml)                             | 4800    | 4800 | 4800 | 4800 | 4800 | 4800 |  |
| Total time for soaking (hrs)                             | 15      | 15   | 15   | 15   | 15   | 15   |  |
| Temp. during preparation of Kwatha<br>(after 60 minutes) | 90°C    | 90°C | 90°C | 90°C | 90°C | 90°C |  |
| Total time taken for Kwatha<br>(minutes)                 | 135     | 135  | 135  | 135  | 135  | 135  |  |
| Total quantity of Kwatha obtained (ml)                   | 610     | 630  | 620  | 630  | 615  | 620  |  |

**Table 8.4:** Observation during preparation of mamajjaka kwatha

Drug was washed and shade dried for the preparation of coarse powder and sieved through 8#. The material was soaked for 17 hrs for each batch and subjected to heat. Continuous stirring was done during the preparation of kwatha to get uniform concentration throughout the solvent and also to protect the drug from burning. The temperature was maintained below 90°C throughout the process. The first batch took 135 minutes to get reduced up to 1/8<sup>th</sup>. The average yield of kwatha for all batches was approximately 621 ml. Prepared kwatha was subjected for the physico-chemical analysis. Observations of all batches of kwatha are mentioned in **Table 8.4**.

| S. no. | Parameters          | Batches |         |        |         |         |         |
|--------|---------------------|---------|---------|--------|---------|---------|---------|
|        |                     | Ι       | II      | III    | IV      | V       | VI      |
| 1      | Colour              | Brown   | Brown   | Brown  | Brown   | Brown   | Brown   |
| 2      | Odour               | Charac. | Charac. | Charac | Charac. | Charac. | Charac. |
| 3      | Taste               | Bitter  | Bitter  | Bitter | Bitter  | Bitter  | Bitter  |
| 4      | рН                  | 6       | 6.02    | 6      | 6       | 5.9     | 6       |
| 5      | Total solid content | 5.14    | 5.17    | 5.08   | 5.11    | 5.05    | 5.15    |
| 6      | Viscosity           | 0.92    | 0.92    | 0.90   | 0.92    | 0.92    | 0.90    |
| 7      | Specific gravity    | 0.961   | 0.963   | 0.961  | 0.961   | 0.962   | 0.965   |
| 8      | Refractive index    | 0.35    | 0.35    | 0.35   | 0.35    | 0.35    | 0.35    |

#### 8.2.3 Evaluation of kwath:

**Table 8.5:** Analysis of mamajjaka kwath

Kwatha of each batch was evaluated by using organoleptic and physicochemical parameters. No significant difference was found in any of the parameter. Results of all batches for different parameters are mentioned in **Table 8.5**.

## 8.2.4 Observation during mamajjaka ghana preparation:

| Parameters                                                        | Batches |      |      |      |      | Avg. |       |
|-------------------------------------------------------------------|---------|------|------|------|------|------|-------|
|                                                                   | Ι       | Π    | III  | IV   | V    | VI   |       |
| Total time taken for preparation of Ghana (min.)                  | 200     | 230  | 210  | 200  | 220  | 210  | 211   |
| Final quantity of Ghana obtained (g)                              | 72.2    | 70.4 | 71.6 | 70.7 | 71.8 | 70.9 | 71.26 |
| Table 8.6: Results obtained during preparation of mamajjaka ghana |         |      |      |      |      |      |       |

Kwatha was further boiled for the evaporation of water to get the solid content and stirred continuously throughout the process to avoid burning of content. In final stage of ghana preparation, water bath was used to avoid the denaturation of the content by the heat. The same procedure was repeated for the all batches of the ghana. The average duration for the preparation of ghana was 211. Then, ghana was collected from the vessel and kept in an oven for 6 hrs to make it dry. Average yield of all batches was 71.26g. The observations of the preparation of ghana are mentioned in the **Table 8.6**.

## 8.2.5 Preparation of mamajjaka ghanavati:

| Ingredients                 | Batches |       |       |       |       |       |  |
|-----------------------------|---------|-------|-------|-------|-------|-------|--|
|                             | Ι       | II    | III   | IV    | V     | VI    |  |
| Mamajjaka Ghana (g)         | 72.2    | 70.4  | 71.6  | 70.7  | 71.8  | 70.9  |  |
| Fine powder of Mamajjaka(g) | 13.85   | 14.18 | 13.96 | 14.14 | 13.92 | 14.10 |  |
| Percentage of powder        | 19.18   | 20.14 | 19.49 | 20    | 19.39 | 19.89 |  |

**Table 8.7:** Quantity of ghana and mamajjaka power for preparation of ghanavati

The ghana was mixed with the fine powder of mamajjaka to roll the vati by hand. Approximately, 20 % fine powder of mamajjaka was added in each batch for the preparation of vati. Then, vati were kept for drying and stored in a well closed container for the further use. The observations of mamjjaka ghanavati are mentioned in the **Table 8.7**.

## 8.3 Pharmaceutical analysis of mamajjaka ghanavati:

| Parameters                | Batches           |                   |                   |                   |                   |                   |  |  |
|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| rarameters                | Ι                 | II                | III               | IV                | V                 | VI                |  |  |
| Colour                    | Blackish<br>brown | Blackish<br>brown | Blackish<br>brown | Blackish<br>brown | Blackish<br>brown | Blackish<br>brown |  |  |
| Odour                     | Charac.           | Charac.           | Charac.           | Charac.           | Charac.           | Charac.           |  |  |
| Taste                     | Bitter            | Bitter            | Bitter            | Bitter            | Bitter            | Bitter            |  |  |
| Shape                     | Round             | Round             | Round             | Round             | Round             | Round             |  |  |
| рН                        | 5.6               | 5.7               | 5.6               | 5.5               | 5.7               | 5.5               |  |  |
| Weight variation          | Pass              | Pass              | Pass              | Pass              | Pass              | Pass              |  |  |
| LOD at 105 °C (%)         | 7.09              | 7.00              | 7.41              | 7.27              | 11.08             | 11.02             |  |  |
| Total ash (%)             | 11.02             | 10.89             | 11.18             | 11.07             | 10.94             | 11.11             |  |  |
| Acid insoluble ash<br>(%) | 0.22              | 0.27              | 0.30              | 0.32              | 0.28              | 0.18              |  |  |

| Water soluble<br>extract (%)   | 86.21 | 84.00 | 85.06 | 84.23 | 86.39 | 85.09 |
|--------------------------------|-------|-------|-------|-------|-------|-------|
| Alcohol soluble<br>Extract (%) | 12.96 | 13.02 | 12.87 | 12.89 | 13.05 | 12.95 |
| Disintegration test<br>(min)   | 15:07 | 15:00 | 15:05 | 15:07 | 15:04 | 15:01 |
| Friability (%)                 | 0.098 | 0.097 | 0.098 | 0.098 | 0.097 | 0.099 |
| Diameter (cm)                  | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   |
| Hardness (kg/cm <sup>2)</sup>  | 5.34  | 5.35  | 5.35  | 5.35  | 5.34  | 5.35  |

**Table 8.8:** Observation during pharmaceutical analysis of mamajjaka ghanavati

No significant variation was observed in the organoleptic and physico-chemical parameters in different batches of ghanavati. The average disintegration time was recorded 15.04 min. the percentage of friability was very low without significant difference in the different batches. The average percentage of friability percentage was 0.097. The average diameter of vati in all batches was 0.9 cm. Weight variation in each batch is below 5% which is acceptable for the vati of 500 mg. Whereas, in hardness test 5.34 (kg/cm<sup>2</sup>)The results of organoleptic and physico-chemical parameters of different batches of vati were mentioned in the **Table 8.8** 

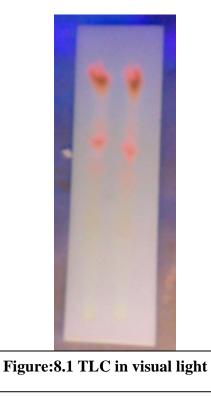
| S. No. | Components              | Chemical tests        | Observation           | Results |
|--------|-------------------------|-----------------------|-----------------------|---------|
| 1      | Phenolic compound       | _                     | Brown                 | _       |
| 2      | Tannins                 | Ferric chloride test  | Greenish black colour |         |
|        |                         |                       |                       | +       |
| 3      | Flavonoids              | Shinoda test          | Yellow colour         | +       |
| 4      | Coumarins               | КОН                   | Yellow colour         | +       |
| 5      | Steroidal glycosides    | L. Burchard's test    | Reddish brown ring    | +       |
| 6      |                         | Mayer's test          | Red Precipitates      |         |
|        | Alkaloids               |                       |                       | +       |
|        |                         | Dragendroff's test    | Red precipitates      |         |
| 7      | Protein                 | Xanthoprotein test    | Yellow colour         | +       |
| 8      | Quinones                | Sodium hydroxide test | Green colour          |         |
|        |                         |                       |                       | +       |
| 9      | Anthraquinone glycoside | Borntrager test       | Greenish brown        | _       |
| 10     | Saponins                | Foam test             | Formation of foam     | +       |
| 11     | Reducing sugars         | Fehling's test        | Brick red colour      | +       |
| 12     | Fixed oil and Fats      | Spot test             | Oil stain on paper    | +       |

#### 8.4 Qualitative test for mamajjaka ghanavati:

Table 8.9: Observation during phytochemical screening of mamajjaka ghanavati

Qualitative analysis of vati revealed the presence of tannins, flavonoids, coumarins, steroidal glycosides, alkaloids, protein, quinones, saponins, reducing sugars, fat and fixed oil. The results of qualitative tests are mentioned in the **Table 8.9** 

### **8.5 Chromatographic analysis:**


### 8.5.1 TLC analysis of mamajjaka ghanavati

| Sample                 | Solvent system                  | Rf. value<br>(short UV) | Rf. value<br>(long UV) | Rf. value<br>(After spraying<br>with<br>analseldehyde) |
|------------------------|---------------------------------|-------------------------|------------------------|--------------------------------------------------------|
| Mamajjaka<br>ghanavati | Ethyl acetate : Methenol (8: 2) | 0.08,0.91               | 0.08,0.91              | 0.08,0.71,0.91                                         |

## Table 8.10: Rf. values of mamajjaka ghanavati

Two Rf were recorded in the TLC of mamajjaka ghanavati under the short wavelength. Whereas, one additional Rf was observed after spray. The results are mentioned in **Table 8.10** 

8.5.1.1 Image of TLC plate run on Ethyl acetate: Methenol (8: 2):



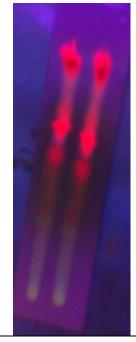



Figure:8.2 TLC in Short UV

8.5.2 HPTLC analysis of mamajjaka ghanavati:

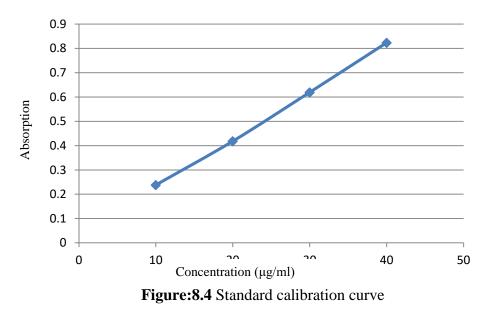
| S. No. | Rf. values in HPTLC | Rf. value in TLC |
|--------|---------------------|------------------|
| 1      | 0.03                |                  |
| 2      | 0.08                | 0.08             |
| 3      | 0.14                |                  |
| 4      | 0.24                |                  |
| 5      | 0.30                |                  |
| 6      | 0.47                |                  |
| 7      | 0.57                |                  |
| 8      | 0.81                |                  |
| 9      | 0.91                | 0.91             |

**Table 8.11:** HPTLC showing Rf. values of mamajjaka ghanavati



#### 8.6 SNEDDS:

| Sr. No. | Observations           | Batch |       |       |       |       | Average |
|---------|------------------------|-------|-------|-------|-------|-------|---------|
|         |                        | Ι     | II    | III   | IV    | V     | 0       |
| 1       | Weight of drug (g)     | 25    | 25    | 25    | 25    | 25    | 25      |
| 2       | Volume of solvent (ml) | 150   | 150   | 150   | 150   | 150   | 150     |
| 3       | Yield of extract (%)   | 10.90 | 10.23 | 11.02 | 10.88 | 10.78 | 10.79   |
| 4       | Duration (hours)       | 24    | 24    | 24    | 24    | 24    | 24      |


 Table 8.12: Observation of extraction process

Total 5 batches were prepared for the extraction of mamajjaka. The quantity of drug and methanol were taken for the extraction of each batch was 25 g and 150 ml respectively. The duration of process was 24 hrs which provided average 10.79% yield of methanolic extract.

#### **8.6.2** Calibration of curve:

| S. No. | Conc. ( µg/ml ) | Absorption |
|--------|-----------------|------------|
| 1      | 0               | 0          |
| 2      | 1               | 0.124      |
| 3      | 10              | 0.238      |
| 4      | 20              | 0.418      |
| 5      | 30              | 0.619      |
| 6      | 40              | 0.823      |

Table 8.13: Calibration curve of mamajjaka ghanavati



The extract concentration 1mg/ml was scanned on 200-400nm to determine the  $\lambda$ max, shown in the Figure 4 to determine the linearity to use the  $\lambda$ max 231nm to see the absorbance of the serial dilution solution of the extract. Absorbance was found respectively in the different concentration and plotted the standard graph using Conc. Vs Abs. and found the linear equation. Y=0.019x+0.047, R<sup>2</sup> =0.988, it is closed to the 1 and confirm the linearity of the lambert law.

| Batch | Oil      | Surfactant | Со-        | Sample | Water | Result              |
|-------|----------|------------|------------|--------|-------|---------------------|
| no.   |          |            | surfactant |        |       |                     |
| 1     | 0.1(10%) | 0.45(45%)  | 0.45(45%)  | 150µl  | 200ml | Creaming            |
| 2     | 0.2(20%) | 0.40(40%)  | 0.40(40%)  | 150µl  | 200ml | Very turbid         |
| 3     | 0.3(30%) | 0.35(35%)  | 0.35(35%)  | 150µl  | 200ml | Creaming            |
| 4     | 0.4(40%) | 0.30(30%)  | 0.30(30%)  | 150µl  | 200ml | Turbid and creaming |
| 5     | 0.5(50%) | 0.25(25%)  | 0.25(25%)  | 150µl  | 200ml | Creaming            |
| 6     | 0.6(60%) | 0.2(20%)   | 0.2(20%)   | 150µl  | 200ml | Creaming            |
| 7     | 0.7(70%) | 0.15(15%)  | 0.15(15%)  | 150µl  | 200ml | Creaming            |
| 8     | 0.8(80%) | 0.10(10%)  | 0.10(10%)  | 150µl  | 200ml | Creaming            |
| 9     | 0.9(90%) | 0.05(5%)   | 0.05(5%)   | 150µl  | 200ml | Turbid and creaming |
| 10    | 0.1(10%) | 0.3(30%)   | 0.6(60%)   | 150µl  | 200ml | Cracking            |
| 11    | 0.2(20%) | 0.27(27%)  | 0.53(53%)  | 150µl  | 200ml | Cracking            |
| 12    | 0.3(30%) | 0.23(23%)  | 0.47(47%)  | 150µl  | 200ml | Cracking            |
| 13    | 0.4(40%) | 0.2(20%)   | 0.40(40%)  | 150µl  | 200ml | Cracking            |
| 14    | 0.5(50%) | 0.17(17%)  | 0.33(33%)  | 150µl  | 200ml | Creaming            |
| 15    | 0.6(60%) | 0.13(13%)  | 0.27(27%)  | 150µl  | 200ml | Cracking            |
| 16    | 0.7(70%) | 0.1(10%)   | 0.2(20%)   | 150µl  | 200ml | Cracking            |
| 17    | 0.8(80%) | 0.07(7%)   | 0.13(13%)  | 150µl  | 200ml | Cracking            |
| 18    | 0.9(90%) | 0.03(3%)   | 0.07(7%)   | 150µl  | 200ml | Creaming            |
| 19    | 0.1(10%) | 0.6(60%)   | 0.3(30%)   | 150µl  | 200ml | Clear               |
| 20    | 0.2(20%) | 0.53(53%)  | 0.27(27%)  | 150µl  | 200ml | Cracking            |
| 21    | 0.3(30%) | 0.47(47%)  | 0.23(23%)  | 150µl  | 200ml | Cracking            |
| 22    | 0.4(40%) | 0.40(40%)  | 0.2(20%)   | 150µl  | 200ml | Cracking            |
| 23    | 0.5(50%) | 0.33(33%)  | 0.17(17%)  | 150µl  | 200ml | Cracking            |
| 24    | 0.6(60%) | 0.27(27%)  | 0.13(13%)  | 150µl  | 200ml | Cracking            |
| 25    | 0.7(70%) | 0.2(20%)   | 0.1(10%)   | 150µl  | 200ml | Cracking            |

8.6.3 Emulsification of oils, surfactants and co-surfactants and creation of pseudoternary phase Diagram:

| <b>27</b> 0.9(90%) 0.07(7%) 0.03(3%) 150μl 200ml Creaming | 26 | 0.8(80%) | 0.13(13%) | 0.07(7%) | 150µl | 200ml | Creaming |
|-----------------------------------------------------------|----|----------|-----------|----------|-------|-------|----------|
|                                                           | 27 | 0.9(90%) | 0.07(7%)  | 0.03(3%) | 150µl | 200ml | Creaming |

 Table 8.14: Results of different ratio of oil, surfactant and co-surfactant

27 batches were prepared by using various ratios of oil, surfactant and co-surfactant to prepare the SNEDDS from mamajjaka ghanavati. The prepared emulsions were checked visually for their clarity and related turbidity. B19 was found clear in all the batches of the SNEDDS. Whereas, B2, B4, and B9 were turbid, creaming were observed in B1, B3, B5, B6, B7, B8, B14, B18, B26, and B27. Phase separation was occurred in B10, B11, B12, B15, B17, B20, B21, B22, B23, B24, and B25. On the basis of above observations a ternary phase diagram was drawn to find out the SNEDDS region. The detail observations of different batches are mentioned in **Table 8.14.** 

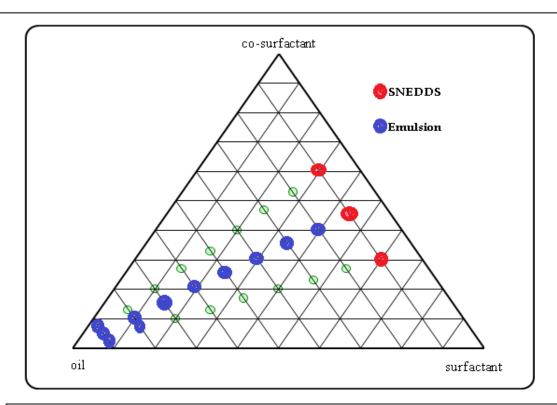
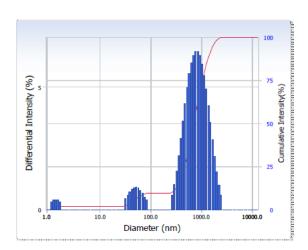
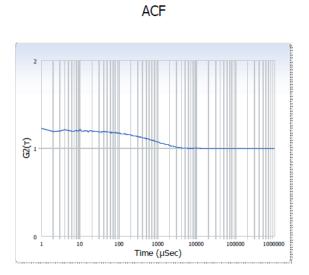


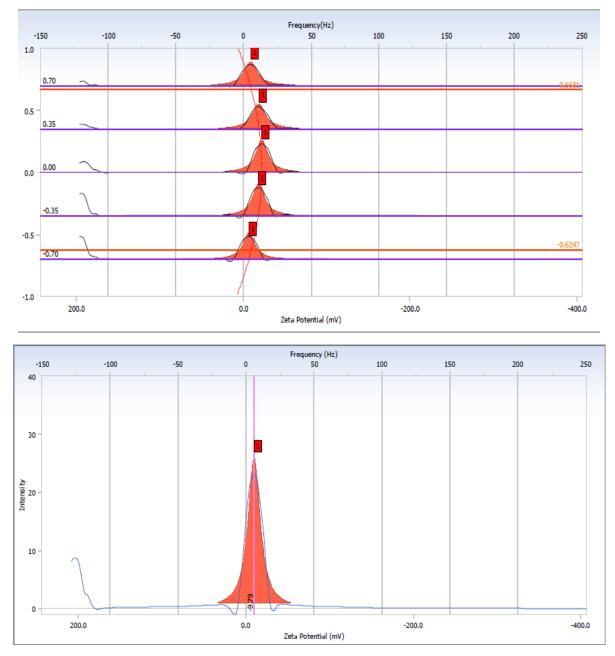

Figure: 8.5 Ternary phase diagram showing SNEDDS, Emulsion and Phase


## 8.6.4 Characterization of optimized batch of SNEDDS:

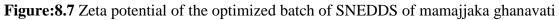

## 8.6.4.1 % Drug loading

The % drug loading capacity of the optimized batch of SNEDDS was found 92%.

#### **8.6.4.2** Droplet size analysis






## Figure:8.6 Droplet size analysis of optimizes batch of SNEDDS of mamajjaka ghanavati

| Distribution Results (Contin)                                                                                       |               |           |  | Cumulants Results<br>Diameter                    | (d)      | : 545.8                        | (nm)                   |
|---------------------------------------------------------------------------------------------------------------------|---------------|-----------|--|--------------------------------------------------|----------|--------------------------------|------------------------|
| Peak                                                                                                                | Diameter (nm) | Std. Dev. |  | Polydispersity Inde                              | x (P.I.) | : 0.377                        |                        |
| 1                                                                                                                   | 1.5           | 0.2       |  | Diffusion Const.                                 | (D)      | : 9.037e-009                   | (cm <sup>2</sup> /sec) |
| 2                                                                                                                   | 55.3          | 14.7      |  | Molecular Weight                                 |          | :1.225e+010                    |                        |
| 3                                                                                                                   | 902.7         | 439.6     |  | Measurement Condi                                | tion     |                                |                        |
| 4                                                                                                                   | 0.0           | 0.0       |  | Temperature                                      |          | : 25.1                         | (°C)                   |
| 5                                                                                                                   | 0.0           | 0.0       |  | Diluent Name                                     |          | : WATER                        |                        |
| Average                                                                                                             | 820.8         | 488.3     |  | Refractive Index                                 |          | : 1.3328                       |                        |
| Residual :                                                                                                          | 2.930e-003    | (O.K)     |  | Viscosity<br>Scattering Intensit<br>Attenuator 1 | y        | : 0.8858<br>: 28253<br>: 10.12 | (cP)<br>(cps)<br>(%)   |
| The mean droplet size of optimized batch of SNEDDS was 545.8 nm. Whereas, polydispersity index of SNEDDS was 0.377. |               |           |  |                                                  |          |                                |                        |



## 8.6.4.3 Zeta potential



#### Pharmaceutical development and evaluation of Mamajjaka ghanavati

| Zeta Potential<br>Mobility<br>Conductivity               | : -22.08<br>: -1.713e-004<br>: 0.2680 | (mV)<br>(cm²/Vs)<br>(mS/cm) |                                              | : 13.49<br>: 120.8<br>: Smoluchowski | (Hz)<br>(Hz) |
|----------------------------------------------------------|---------------------------------------|-----------------------------|----------------------------------------------|--------------------------------------|--------------|
| Zeta Potential of Cell<br>Upper Surface<br>Lower Surface | : 17.05<br>: 55.45                    | (mV)                        | Diluent Properties<br>Diluent Name           | : WATER                              |              |
| Cell Condition<br>Cell Type                              | : 55.45<br>: Flow Cell                | (mV)                        | Temperature<br>Refractive Index<br>Viscosity | : 24.7<br>: 1.3328<br>: 0.8939       | (°C)<br>(cP) |
| Avg. Electric Field<br>Avg. Current                      | : -16.30<br>: -0.22                   | (V/cm)<br>(mA)              | Dielectric Constant                          | : 78.4                               | (ur)         |

Zeta potential of SNEDDS of mamajjaka ghanavati was found to be -22.8mV which was attributed to the steric stabilization of SNEDDS due to the presence of surfactant and co-surfactant system.

#### 8.6.4.4 Transmission Electron microscopy(TEM):

The Transmission electron microscopic scanning of the prepared SNEDDS were done at the SAIF lab under the premisses of the Punjab University, Chandigarh. The following scanned images were obtained.

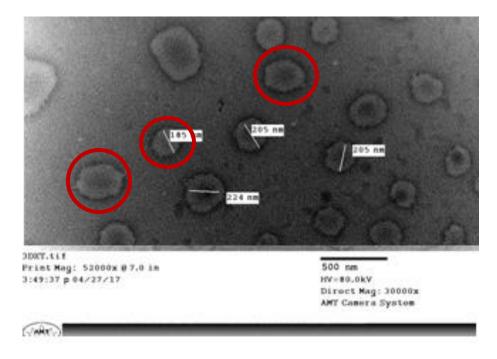
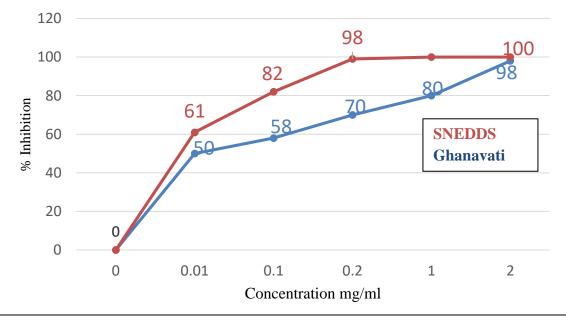



Figure:8.8

TEM image of SNEDDS loaded with the mamajjaka ghanavati

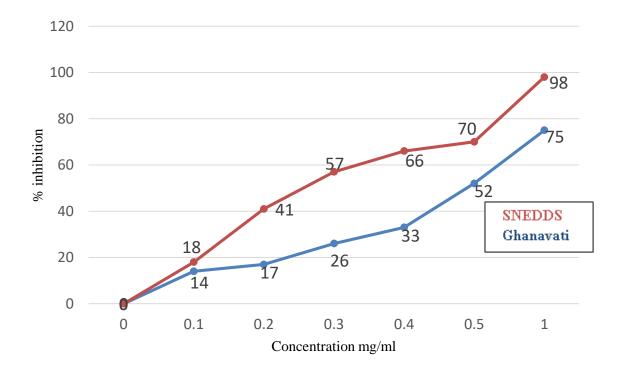

The TEM image clearly indicated spherical droplets of mamajjaka ghanavati loaded SNEDDS in nanometer range. The image confirmed the particle size and shape of SNEDDS that they were in spheres and less than 500 nm in size.

#### 8.7 In-vitro study on mamajjaka ghanavati and SNEDDS:

#### 8.7.1 OH<sup>-</sup> scavenging activity:

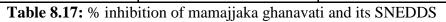
| S.No. | Conc.<br>(mg/ml) | % inhibition of ghanavati | % inhibition of<br>SNEDDS |
|-------|------------------|---------------------------|---------------------------|
| 1     | 0.01             | 50                        | 61                        |
| 2     | 0.1              | 58                        | 82                        |
| 3     | 0.2              | 70                        | 99                        |
| 4     | 1                | 80                        | 100                       |
| 5     | 2                | 98                        | 100                       |

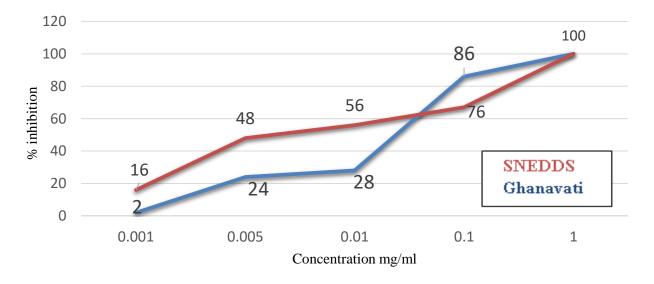
 Table 8.15: % inhibition of mamajjaka ghanavati and its SNEDDS




Different concentrations of mamajjaka ghanavati and SNEDDS were used to check its anti-oxidant activity by  $OH^-$  scavenging assay. % inhibition of SNEDDS were comparatively high than mamajjaka ghanavati. The IC<sub>50</sub> value of SNEDDS was -0.34 and IC<sub>50</sub> value of mamajjaka ghanavati was 0.25.

| Sr. No. | Conc. (mg/ml) | % inhibition of extract | % inhibition of formulation |
|---------|---------------|-------------------------|-----------------------------|
| 1       | 0.1           | 14                      | 18                          |
| 2       | 0.2           | 17                      | 41                          |
| 3       | 0.3           | 26                      | 57                          |
| 4       | 0.4           | 33                      | 66                          |
| 5       | 0.5           | 52                      | 70                          |
| 6       | 1             | 75                      | 98                          |


8.7.2 DPPH assay:


 Table 8.16: % inhibition of mamajjaka ghanavati and its SNEDDS (OH<sup>-</sup> scavenging assay)



| S. No. | Conc. (mg/mi) | % inhibition Extract | % inhibition Formulation |
|--------|---------------|----------------------|--------------------------|
|        |               |                      |                          |
| 1      | 0.001         | 2                    | 16                       |
| 2      | 0.005         | 24                   | 48                       |
| 3      | 0.01          | 28                   | 56                       |
| 4      | .1            | 86                   | 67                       |
| 5      | 1             | 100                  | 100                      |

## **8.7.3** α-amylase activity:





To evaluate and compare the anti-diabetic activity  $\alpha$ -amylase assay was performed. SNEDDS was having high % inhibition as compare to mamajjaka. IC<sub>50</sub> of SNEDDS was 0.093 whereas IC<sub>50</sub> of mamajjaka ghanavati was 0.26.

## **CHAPTER 9**

## **CONCLUSION AND FUTURE SCOPE**

For 300 gm of *Mamajjaka Kwatha Churna* (sieve size no. 08), 16 times water ( 4800 ml) should be taken and reduced upto 1/8<sup>th</sup> (600 ml) to prepare *Kwatha* at 90°C temperature. Again this *Kwatha* should be heated for the preparation of Ghana. The average yield of ghana was 71.26 g (Average 23.75%). Vati prepared by traditional method complying with the all standards. Labrafil, tween-80 and Transcutol P were selected as oil, surfactant, and co-surfactant respectively. The optimized design suggested that use of 0.1 ml of Labrafil M 1944CS, 0.6 ml of tween 80 and 0.3 ml of Transcutol P could give SNEDDS with 500 nm mean droplet size, 92 % drug loading and -22 mV zeta potential. *In-vitro* antioxidant and anti diabetic activities of mammajaka ghanavati and SNEDDS revealed that nano formulation is the better dosage form for the mammajaka than ghanavati.

Future scope: *In-vivo* studies are required to compare the anti-diabetic effect of mamajjaka gahavati and SNEDDS.

# CHAPTER 10 References

- Sankaranarayanan S, Bama P, Ramachandran J, Kalaichelvan PT, Deccaraman M, Vijayalakshimi M, et al. et al. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. J Med Plants Res. 2010;4(12):1089–1101.
- 2 Upadhyay UM, Goyal RK. Efficacy of *E. littorale* in type 2 diabetic patients. Phyto Res. 2004;18:233–235.
- 3 Praveena P, Sudarsanam D. In vitro antimicrobial activity studies on Enicostemma littorale (Lam), Raynal Whole plants. Int J Curr Res. 2011;11(3):123–124.
- 4 Mishra S, Shukla P. *In vitro* anthelmintic activity of *Enicostemma littorale* Blume. Int J Pharma Sci Res. 2011;2(5):1193–1196.
- 5 Jaishree V, Badami S, Kumar MP, Tamizhmani T. Antinociceptive activity of Swertaimarin isolated from *Enicostemma axillare*. Phytomedicine. 2009;16: 227–232.
- 6 Mukundray NB, Chauhan K, Gupta S, Pillai P, Pandya C, Jyoti V, et al. et al. Protective effect of *Enicostemma littorale* Blume methanolic extract on Gentamicin induced Nephrotoxicity in rats. Am J Inf Dis. 2011;7(3):83–90.
- Roy SP, Niranjan CM, Jyothi TM, Shankrayya MM, Vishawanath KM, Prabhu K, et al.
   et al. Antiulcer and anti-inflammatory activity of aerial parts of *Enicostemma littorale* Blume. J Young Pharm. 2010;2(4):369–373.
- 8 Kavimani S, Manisenthilkumar KT. Effect of methanolic extract of *Enicostemma littorale* on Dalton's aseptic lymphoma. J Ethnopharmacol. 2000;71:349–352.
- 9 Vaijanathappa J, Badami S, Bhojraj S. *In vitro* antioxidant activity of *Enicostemma axillare*. J Heal Sci. 2008:524–528.
- 10 Prince PSM, Srinivasan M. *Enicostemma littorale* Blume aqueous extract improves the antioxidant status in alloxan induced diabetic rat tissues. Acta Pol Pharm Drug Res. 2005;62(5):363–367.
- 11 http://pib.nic.in/newsite/PrintRelease.aspx?relid=136482 (03.04.2017)
- 12 Agniveshacharya, Charak Samhita, Elaborated by Charak and Drudhabala edited by

Priyavrat Sharama Chikistha sthana, 26/206. Chaukhambha orientalia, Varanasi 2007; 269.

- 13 Sushruta, Sushruta Samhita, Uttaratantra, edited with Ayurveda TatvaSandipika Hindi commentary by Ambikadutta Shastri,13th edition, Chaukhamba Sanskrit Sansthan, Varanasi, 2002, 24/20
- Agniveshacharya, Charak Samhita, Elaborated by Charak and Drudhabala edited by Priyavrat Sharama Chikistha sthana, 26/206. Chaukhambha orientalia, Varanasi 2007; 445.
- Agniveshacharya, Charak Samhita, Elaborated by Charak and Drudhabala edited by
   Priyavrat Sharama Chikistha sthana, 26/206. Chaukhambha orientalia, Varanasi 2007;
   451.
- 16 Agniveshacharya, Charak Samhita, Elaborated by Charak and Drudhabala edited by Priyavrat Sharama Chikistha sthana, 26/206. Chaukhambha orientalia, Varanasi 2007;452-453.
- 17 Vagbhata, Astanga Hridaya, Sutrasthana, Vidyotini Bhashatika by Kaviraj Atridev Gupta, 14th edition, Chaukhamba Sanskrit Sansthan, Varanasi, 2003, 27/41.
- 18 Bhavamishra, Bhavaprakasha, Part 2, Edited with Hindi commentary by Pandit Bhramashankar Misra, 11th edition, Chaukhamba Sanskrit Bhavan, Varanasi, 2007, 2/1
- 19 Tripathi Brahmanand. Sarangadhara Samhita of Pandit Sarngadhar Acarya, utara khanda.Chaukhamba surbharti prakashan Varanasi; 437.
- 20 Vaidhya Yadavji Trikamaji, Siddha Yoga Sangraha, 11th Edition, Shri Baidhnath Ayurved Bhavan; 4.
- 21 Tripathi Brahmanand. Sarangadhara Samhita of Pandit Sarngadhar Acarya, Mdhyam khanda. Chaukhamba surbharti prakashan Varanasi; 210.
- 22 Dhundi S N. Pharmaceutical standardization of Guduchi Ghana. International research journal of pharmacy 2011; 2(11):104.
- Agniveshacharya, Charak Samhita, Elaborated by Charak and Drudhabala edited by
   Priyavrat Sharama Chikistha sthana, 26/206. Chaukhambha orientalia, Varanasi 2007;
   446.
- 24 Tripathi Brahmanand. Sarangadhara Samhita of Pandit Sarngadhar Acarya, Mdhyam

|    | khanda. Chaukhamba surbharti prakashan Varanasi; 195.                                    |
|----|------------------------------------------------------------------------------------------|
| 25 | The Ayurvedic Pharmacopoeia of India. Part II (Formulations) Volume-1. First edition;    |
|    | 97.                                                                                      |
|    | Panda P, Meher SK. Tablet & tableting in ayurveda (vati kalpana)- A review. IAMJ         |
|    | 2016; 07:1219.                                                                           |
| 27 | The Ayurvedic Pharmacopoeia of India. Part II (Formulations) Volume-1. First edition;    |
|    | 146                                                                                      |
| 28 | Savale K Sagar. A Review- Self Nanoemulsifying Drug Delivery System (SNEDDS).            |
|    | International Journal of Research in Pharmaceutical and Nano Sciences. 4(6), 2015, 385-  |
|    | 386.                                                                                     |
| 29 | Sandeep Kumar Singh, Priya Ranjan Prasad Verma and Balkishen Razdan.                     |
|    | Development and characterization of a lovastatin loaded selfmicroemulsifying drug        |
|    | delivery system, Pharmaceutical Development and Technology, 15(5), 2010, 469-483.        |
| 30 | Rajalakshmi R, Mahesh K, Ashok Kumar C K. A Critical Review on Nano Emulsions,           |
|    | International Journal of Innovative Drug Discovery, 1(1), 2011, 1-8.                     |
| 31 | Gursoy RN, Benita S, self emulsifying drug delivery systems (SNEDDS) for improved        |
|    | oral delivery for lipophilic drugs. Biomed Pharmacother 2004; 58: 173-182.               |
| 32 | Gershanik T, Benita S. Self -dispersing lipid formulations for improving oral absorption |
|    | of lipophilic drugs, Eur J Pharm Sci 2000; 50:179-188.                                   |
| 33 | Pouton CW. Self emulsifying drug delivery system: accessment of efficiency of            |
|    | emulsification. Int J Pharm 1985; 27: 335- 338.                                          |
| 35 | Bajaj H, Bisht, S, Yadav M, SinghV, Singh M.Self emulsifying drugdelivery system: an     |
|    | approach to enhance Bioavailability. Int J Pharm 2011 Research, 3, 59-79.                |
| 36 | Patel PA, Chaulang GM, Akolkotkar A, Mutha, SS, Hardikar SR, Bhosale AV.Self             |
|    | Emulsifying Drug Delivery System: A Review. Research J Pham Tech 2008; 1: 313-           |
|    | 23.91                                                                                    |
| 37 | Shukla Jill B, Koli Akshay R, Ranch Ketan M and Parikh Rajesh K, Self-Micro              |
|    | Emulsifying Drug Delivery System, Pharma Science Monitor, An International Journal of    |
|    | Pharmaceutical Sciences, 1(2), 2010, 13-33.                                              |
| 38 | K, Pawar YB, Bansal AK. Self emulsifying drug delivery systems: A strategy to improve    |

48

oral bioavailability. Curr Res Info Pharm. 2010; 11: 42-49.

- Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in selfnanoemulsifying drug delivery systems. Expert Opinion on Drug Delivery 2012;9:1305-17.
- 40 Taha E, Ghorab D, Zaghloul A-a. Bioavailability assessment of vitamin A selfnanoemulsified drug delivery systems in rats: a comparative study. Medical Principles and Practice 2007;16:355-9.
- Shukla A. A review of a potential hypoglycemic plant (Enicostemma littorale blume).
   European journal of biomedical and pharmaceutical sciences 2014. Vol. 2; 1:154-155.
   Rajamani S, Trumalai T; Pharmacognosy of Enicostemma littorale: A review. Asian pacific journal of tropical biomedicine. 2013; 3(1): 79
- 42 Srivastava S, Kumar V. Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. Inforesights publishing 2012; 5.
- Vaibhav A, Singh O P. A concise review on "mamajjaka" (Enicostemma littorale). AsianJournal of science and technology 2016. Vol-07; 07: 3204.
- Sharma PV. Dravyaguna Vijnana. Vol. 2. Chaukhambha Bharti Academy Varanasi 2012;
   704-705.
- Maroo J, Vihas T. Glucose lowering effect of aqueous extract of Enicostemma littorale
   Blume in diabetes: a possible mechanism of action. Journal of Ethnopharmacology 2002;
   317.
- 46 Sanmugarajah V, Thabrew I. Phyto, physicochemical standardization of medicinal plant Enicostemma littorale, Blume. IOSR Journal of Pharmacy 2013. Vol. 4; 2: 52
- 47 The Ayurvedic Pharmacopoeia of India. Part-I. Volume- VI.First edition;115.
- Rathod M C, Dhale D A, Pharmacognostic characterization of Enicostemma littorale
   Blume. Int. J. Res. Ayurveda Pharma 2013; 4(6): 893.
- 49 Hassan N, Ahamad J. Rapid preparative isolation of erythrocentaurin from Enicostemma littorale by medium-presssure liquid chromatigraohy, its estimation by high-pressure thin layer chromatography, and its α-amylase inhibitory activity. J. Sep. Sci. 2015; 1-7.
- 50 Dhanavathy G. Immunohistochemistry, histopathology, and biomarker studies of

swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced Bcell damage in Wistar rat pancreas. Italian Society of Endocrinology 2015; 2.

- Mishra S, Mishra A. In-vitro anthelmintic activity of Enicostemma littorale Blume.
   International journal pharmaceutical sciences and research 2011; Vol. 2(5) : 1194-1195.
- 52 Shabi M M. Uthrapathy S. Analgesic and anti-arthritic effect of Enicostemma littorale Blume. Advances in Bioscience and Biotechnology 2014; 1018-1020.
- Bhatt N, Chavda M. Cardioprotective and antihypertensive effects of Enicostemma
   littorale Blume extract in fructose-fed rats. Can. J. Physiol. Pharmacol 2012; 1065-1070.
- 54 Srinivasan M, Padmanabhan M. Effect of aqueous Enicostemma littorale Blume extract on key carbohydrate metabolic enzymes, lipid peroxides and antioxidants in alloxaninduced diabetic rats. Journal of pharmacy and pharmacology 2005; 57: 497-500.
- 55 Maroo J, Ghosh A. Antidiabetic Efficacy of Enicostemma littorale methanol extract in alloxan-induced diabetic rats 2003. Pharmaceutical biology. Vol. 41; 5: 388-390.
- 56 Gite V N, Pokharkar R D. Hepato-protective activity of Enicostemma axillare in paracetamol induced hepato-toxicity in albino rats. International journal of pharmacy & life sciences 2010; 50-53.
- 57 Soni S, Gupta S. In vitro anti plasmodial activity of Enicostemma littorale. American journal of infectious Diseases 2009; 5(3): 259-260.
- 58 Roy S P, Niranjan C M. Antiulcer and anti-inflammatory activity of aerial parts Enicostemma littorale Blume. Journal of young pharmacists 2010; 2(4): 369-370.
- Garg A, Singh R. Antiobesity activity of aqueous and ethanol extracts of Enicostemma littorale in high fat diet induced obese rats. International journal of phytomedicine 2014;
  6: 433-440.
- 60 Vaidya H, Rajani M. Antihyperlipidaemic activity of swertiamarin, a secoiridoid glycoside in poloxamer- 407 - induced hyperlipidaemic rats. The Japanese Society of Pharmacognosy and Springer 2009; 437.
- 61 Okokon J E, Nwafor P A. Antipyretic and antimicrobial activities of crude lesf of Enicostemma Littorale. Asian Pacific Journal of Tropical disease 2012; 2(6):442-444.
- 62 The Ayurvedic Pharmacopeia of India, Govt. of India, Controller of Publications, New Delhi, 1st ed.1999, part I, Vol.-II,Apx-2 Page no-190.

- 63 The Ayurvedic Pharmacopeia of India, Govt. of India, Controller of Publications, New Delhi, 1st ed.1999, part I, Vol.-II,Apx-2 Page no191.
- 64 T. Prashant, Bimlesh Kumar et.al. Phytochemical screening and Extraction : A Review, International Pharmaceutical Science 2011;1: 98-106
- 65 Pushpendra Kumar Jain, Navneet Khurana et.al.,Enhancement of absorption and hepatoprotective potential through soya-phosphatidylcholine-andrographolide vesicular system, J Liposome Res,2013, 1532-2394
- 66 Felix Borrnet..Thought about next generation (S)TEM instrument in science, micrin 2015; 90: 1-5
- 67 Gershanik T, Benita S. Positively charged self-emulsifying oil formulation for improving oral bioavailability of progesterone. Pharmaceutical Development And Technology 1996;1:147-57.
- 68 Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN pharmaceutics, 2013.
- 69 Hua Wang,Xiang Dong Gao et.al, In vitro and in Vivo antioxidant activity of aqueous extract from choerospondias axillaries fruit, Food Chemistry 106 (2008) 888-895
- 70 Monica Locatelli,Roberto gindro et.al.,Study of the DPPH-Scavenging activity: Development of a free softwear for the correct interpretation of data,Food chemistry,114 (2009),889-897
- 71 Sudha P, Smita S Zinjarde et.al., Potent a-amylase inhibitory activity of Indian Ayurvedic medicinal plants, BMC Complementary and Alternative Medicine 2011, 11:5

## **CHAPTER 11**

# Appendixes

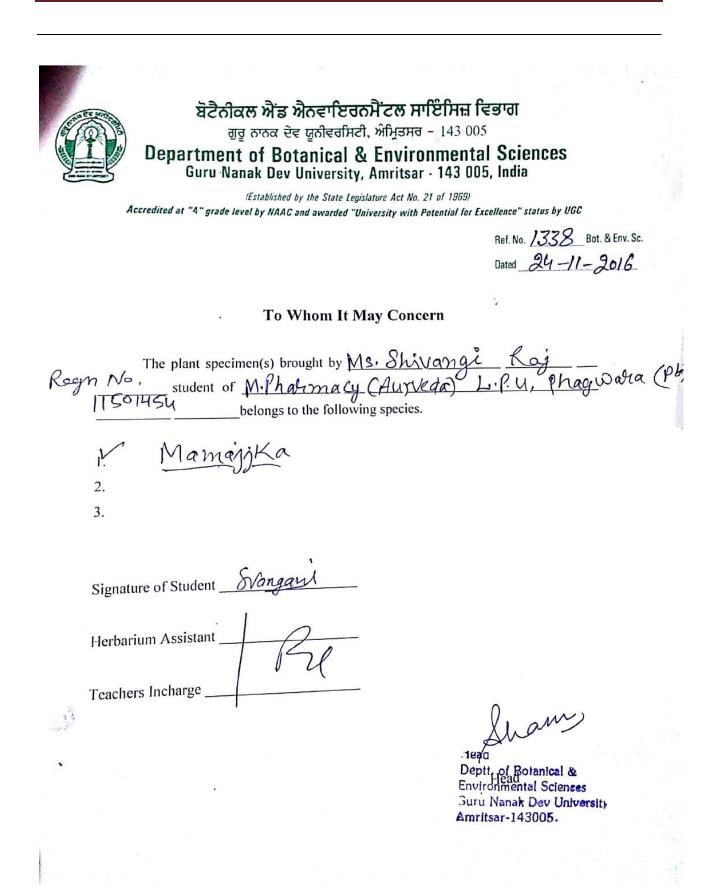
|                                                                                    | TOPIC APPROVAL PERFORMA                              |                     |               |                     |  |  |
|------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|---------------|---------------------|--|--|
| PROFESSIONAL<br>UNIVERSITY                                                         | LIT (Pharmacy)/Department of Pharmaceutical Sciences |                     |               |                     |  |  |
| Transforming Zulantion, Transforming Judia Program : P570-NN7::M.Pharm. (Ayurveda) |                                                      |                     |               |                     |  |  |
| COURSE CODE : APH623                                                               | REGULAR/BACKLOG :                                    | Regular             | GROUP NUMBER  | R: PHRRGD0037       |  |  |
| Supervisor Name : Dr. Manish V                                                     | /yas UID: 17410                                      |                     | Designation : | Associate Professor |  |  |
| Qualification :                                                                    |                                                      | Research Experience | e:            |                     |  |  |
|                                                                                    |                                                      |                     |               |                     |  |  |

| SR.NO. | NAME OF STUDENT | REGISTRATION NO | BATCH | SECTION | CONTACT NUMBER |
|--------|-----------------|-----------------|-------|---------|----------------|
| 1      | Shivangni Raj   | 11501454        | 2015  | Y1553   | 8679368425     |

SPECIALIZATION AREA : Ayurvedic Pharmacy Supervisor Signature:

PROPOSED TOPIC : Pharmaceutical development and evaluation of Mamajjaka ghanvati

| Qualitative Assessment of Proposed Topic by PAC |                                                                                                                                                                                              |                    |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| Sr.No. Parameter                                |                                                                                                                                                                                              | Rating (out of 10) |  |  |  |
| 1                                               | Project Novelty: Potential of the project to create new knowledge                                                                                                                            | 6.00               |  |  |  |
| 2                                               | Project Feasibility: Project can be timely carried out in-house with low-cost and available resources in the University by the students.                                                     | 7.00               |  |  |  |
| 3                                               | Project Academic Inputs: Project topic is relevant and makes extensive use of academic inputs in UG<br>program and serves as a culminating effort for core study area of the degree program. | 7.00               |  |  |  |
| 4                                               | Project Supervision: Project supervisor's is technically competent to guide students, resolve any issues,<br>and impart necessary skills.                                                    | 7.00               |  |  |  |
| 5                                               | Social Applicability: Project work intends to solve a practical problem.                                                                                                                     | 7.00               |  |  |  |
| 6                                               | Future Scope: Project has potential to become basis of future research work, publication or patent.                                                                                          | 8.00               |  |  |  |


| PAC Committee Members                  |            |                        |  |  |  |
|----------------------------------------|------------|------------------------|--|--|--|
| PAC Member 1 Name: Dr. Amit Mittal     | UID: 13145 | Recommended (Y/N): NA  |  |  |  |
| PAC Member 2 Name: Saurabh Singh       | UID: 12208 | Recommended (Y/N): Yes |  |  |  |
| PAC Member 3 Name: Dr. S. Tamilvanan   | UID: 16391 | Recommended (Y/N): NA  |  |  |  |
| PAC Member 4 Name: Dr. Navneet Khurana | UID: 18252 | Recommended (Y/N): NA  |  |  |  |
| DAA Nominee Name: Dr. Sazal Patyar     | UID: 17050 | Recommended (Y/N): NA  |  |  |  |

Final Topic Approved by PAC: Pharmaceutical development and evaluation of Mamajjaka ghanvati

Overall Remarks: Approved

PAC CHAIRPERSON Name: 11045::Dr. Monica Gulati

Approval Date: 29 Nov 2016

