
i

Understanding the Behaviour of Privacy in Mobile

Apps and Detecting Privacy Leaks

Dissertation-II submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

SUMIT KUMAR

11600788

Supervisor

Mr. RAVISHANKER

School of Computer Science and Engineering

Lovely Professional University

Phagwara, Punjab (India)

Month November-December Year 2017

ii

iii

DECLARATION STATEMENT

I hereby declare that the research work reported in the dissertation-II entitled

"UNDERSTANDING THE BEHAVIOUR OF PRIVACY IN MOBILE APPS AND

DETECTING PRIVACY LEAKS” in partial fulfilment of the requirement for the award

of Degree for Master of Technology in Computer Science and Engineering at Lovely

Professional University, Phagwara, Punjab is an authentic work carried out under

supervision of my research supervisor Mr. RaviShanker. I have not submitted this work

elsewhere for any degree or diploma.

I understand that the work presented herewith is in direct compliance with Lovely

Professional University’s Policy on plagiarism, intellectual property rights, and highest

standards of moral and ethical conduct. Therefore, to the best of my knowledge, the content

of this dissertation represents authentic and honest research effort conducted, in its entirety,

by me. I am fully responsible for the contents of my dissertation work.

 Signature of Candidate

 Sumit Kumar

 11600788

iv

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the M.Tech Dissertation-II entitled

“UNDERSTANDING THE BEHAVIOUR OF PRIVACY IN MOBILE APPS AND

DETECTING PRIVACY LEAKS”, submitted by Sumit Kumar at Lovely Professional

University, Phagwara, India is a bonafide record of his original work carried out under

my supervision. This work has not been submitted elsewhere for any other degree.

 Signature of Supervisor

 RaviShanker

 Date:

v

ACKNOWLEDGMENTS

The report has been written with the kind guidance and support of my mentor. The

satisfaction and happiness that accompany the successful completion of any task would be

incomplete without the names of people who made it possible, whose constant guidance

and encouragement crowns all efforts with our success.

I would like to present my deepest gratitude to Mr. Ravi Shanker for his guidance, advice,

understanding and supervision throughout the development of this dissertation study. I

would like to thank to the Project Approval Committee members for their valuable

comments and discussions. I would also like to thank to Lovely Professional University

for the support on academic studies and letting me involve in this research.

I express my special thanks to my teachers and friends who have helped me in many ways

for the successful completion of this dissertation. All the simple doubts from their part has

also made me think deeper and helped me to gain a better understanding about this work.

Last but not the least, thanks to my parents for helping me get where I am today.

Date: Sumit Kumar

 Reg. No. 11600788

vi

TABLE OF CONTENTS

CONTENTS PAGE NO.

Inner first page – Same as cover i

PAC Form ii

Declaration by the Scholar iii

Supervisor’s Certificate iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

Abstract x

CHAPTER 1: INTRODUCTION 1

 1.1 Introduction 1

 1.2 Basic Android Privacy Framework 3

 1.3 Basic Apple-iOS Privacy Framework 4

 1.4 Different Security Oriented Techniques 5

 1.5 Different Phases of Application Data 9

CHAPTER 2: REVIEW OF LITERATURE 11

CHAPTER 3: PROBLEM DEFINITION 23

 3.1 Privacy: A Fundamental Right 23

vii

 3.2 App Permissions: A Dilemma 24

 3.3 Issues with Apps Permission List 25

 3.4 Lack of Transport Security 25

 3.5 Lack of Database Security 26

 3.6 Neglecting IPC Endpoint Security 26

CHAPTER 4: SCOPE OF THE STUDY 27

CHAPTER 5: OBJECTIVES OF THE STUDY 28

CHAPTER 6: PROPOSED RESEARCH METHODOLOGY 29

CHAPTER 7: EXPECTED OUTCOMES 32

CHAPTER 8: SUMMARY & CONCLUSIONS 33

REFERENCES 35

viii

LIST OF TABLES

TABLE NO. TABLE DESCRIPTION PAGE NO.

Table 1.1 List of Possible Data Sources 7

Table 1.2 List of Possible Sinks 8

Table 2.1 A comparison among different privacy frameworks 22

Table 6.1 Categorization of different analysis techniques 31

ix

LIST OF FIGURES

FIGURE NO. FIGURE DESCRIPTION PAGE NO.

Figure 1.1 Helping users to control their privacy settings without

 burdening them with numerous decisions 2

Figure 1.2 “App Ops” – Permissions Screen in Google Play Store 3

Figure 1.3 Privacy Settings in iOS 6 5

Figure 1.4 Components of Static, Dynamic and Hybrid Analysis 8

Figure 3.1 Types of users according to their privacy behaviors 24

Figure 6.1 Steps in the process of privacy leaks detection 29

Figure 8.1 Trends showing what kind of information is leaked 34

x

ABSTRACT

With the advent of smartphones, mobile application industry is becoming one of

fastest growing industry today. Every now and then, we hear about a new app being

launched. However, besides providing you with information like news, fun and amusement

services, they can also seize your privacy. One of the most common example of this trend

is asking permission from users when they are seeking to download those apps. Many

researchers have suggested that, users don’t care much while giving permissions to these

apps. The main purpose of our research is to know the reason for asking these permission

requests by analyzing your app’s traffic to detect if there is any leak of private data which

is not intended by the user and to know how the app vendors collect sensitive information

such as your phone’s IMEI number or location for advertisement, tracking, or analytical

purposes. In this report, we analyze the mobile apps privacy framework which primarily

focuses on the effect of sensitive data leakage and privacy risks involved with it. By

distinguishing how and where the information is leaked, the objective is to make the

developers aware about such potential vulnerabilities in their applications that can pose

threat to user’s privacy.

Keywords: Android Privacy, Mobile Apps, Sensitive Data, Permissions Analysis, Data

Flow Analysis, Traffic Analysis, Privacy Leaks, Security Models, Malicious Apps

1

 CHAPTER 1

INTRODUCTION

1.1 Introduction

Smartphones user base has grown with a rapid rate over the last couple of years.

With the emergence in the ownership of smartphones, mobile apps platform became very

prominent, that gives users the liberty to download different types of applications from

their App Stores[1] ranging from entertainment to work into their mobile phones. Based

on a survey done in June of 2016, it has been shown that more than 2,200,000 apps has

been provided by the Google’s App Store; same is the case with Apple which provides

more than 1 million apps in its store. Mobile apps are able to use numerous capabilities of

a smartphone ranging from making a simple call to user’s location, thereby providing its

users with relevant services and striking features.

Admittance to these valuable services and features provides different types of

security and privacy invasions which is inescapable. One clear problem is Malwares, other

severe issue is that, smartphone handlers, in a generic way, are neither completely

conscious and nor have complete control on how these apps gain access and transmits their

private information. For example, the KMPlayer app gathers data regarding Device ID &

call information which can make users very uncomfortable. In fact, studies [2] [3] have

suggested that customers have very little or no understanding regarding these delicate

information.

Many studies done by researchers have shown that a stunningly high percentage of mobile

applications can access their personal information behind users consent and may threaten

their privacy. A recent research [2,3] found out that more than 30 out of 160 Android apps

examined and send information related to geographical data to their remote ad servers

without user’s awareness.

2

Figure 1.1: Helping users to control their privacy settings without burdening them with numerous

decisions [2]

Many of these malicious apps also send the unique mobile IMEI and even the actual

cell and serial number to app sellers. All this information helps the advertisers and sellers

to make complete and exclusive profiles regarding your interests, likes and dislikes,

different locations that you visit while carrying your mobile phone, your social sites surfing

habits and much more. One renowned music app was under federal examination [4] for

collecting their customer’s locality, gender, date of birth, and unique cell phone number

(like IMEI) and sends this information to third party servers like advertisers. Social

networking applications like Facebook and Path, were being caught time and again,

uploading the whole contact lists of their user’s onto their servers, which greatly astonished

the whole world and questions their trustfulness. Our main work is to provide important

and useful information to the end user’s such that it will bring down the gap created

between user’s privacy preferences and research based on privacy.

In this section, a brief description about the current privacy preferences frameworks of the

two prevalent mobile operating systems, namely Android and Apple’s iOS is provided, in

order to get the basic idea about the problems and challenges behind this topic.

1.2 Basic Android Privacy Framework

The privacy preferences framework of Android OS is used to fulfill two purposes in order

to protect their customers: one is to restrict the access of smartphone apps to delicate

3

information (like device ID, system files etc.) and second is to help them in taking proper

choices before mounting the apps. Before installing any app from the Google’s app store,

users are requested to give permission to the app for accessing resources. On the basis of

this information users can make the decision on whether to believe that application or not.

In order to advance for installation, users are required to grant the permissions requested

by the app vendor. And these permissions cannot be withdrawn once granted, unless of

course the user uninstalls the app manually.

Figure 1.2: “App Ops” – Permissions Screen in Google Play Store[5]

Even though Android’s privacy & permission framework is intended to be a more open

platform, still it’s the duty of their users to make appropriate choices. In spite of that, the

ordering of permissions required and their brief description have been improved by Google

through the years.

If you look at the current permission screen in android framework, you can only get an

abstract view which lacks adequate explanations. Another problem is regarding the lack of

control the user have. Previously (Android Jelly Bean), when users grants the permissions

to these apps, they have very little control over the how these apps can exploit those

permissions other than simply removing it. Hence, it is an all or nothing situation.

However, the good news is in the latest versions of android (android 5, 6 & 7), now users

4

are finally able to make small adjustments to their apps privacy preferences by using a

hidden app permission manager also known as “App Ops” feature [2] [6]. The basic idea

behind “App Ops”[6] is that if users don’t want any app, say a music app, to gather their

personal data like location then they can withdraw that particular permission specifically

for that app. However, configuring these applications one at a time seams highly

inefficient, since the number of apps and the permissions requested by each of these apps

on an average is quite huge, and also sometimes these permission requests are very concise

in nature, for instance some of the apps requests the permissions of “Read Phone State and

Identity” which is required to mute its own sound (if it’s a music app), but the same

permission also allows the access to phone’s unique identity (like IMEI) which can be

easily exploited. Hence, bringing the awareness among the users to make proper settings

and provide certain level of computerization becomes more and more pertinent.

1.3 Basic Apple-iOS Privacy Framework

The Apple iOS on the other hand implements a different technique, which is actually better

compared to what Android has done so far. Apple’s privacy framework doesn’t ask its

users to agree for any permissions and also doesn’t provide any information related to data

usage. It prompts the users for either accepting or denying any access to sensitive

information at the time when that app is used for the first time. The decision thus made is

then saved for future references. Similar to “App-Ops” in Android, iOS also provides the

liberty to its users to grant access to the sensitive data usage tracking information (like call

history, access to file manager, Bluetooth, microphones etc.) for individual application.

Still it suffers from a similar kind of usability issue as android because it’s not true for all

cases, some permissions are granted automatically without user’s consent.

The motivation behind this research are the given aforementioned issues in these two

operating systems and aims to give the control of apps traffic analysis by helping users in

terms of better understanding their smartphones and the possible risks of various different

apps and their operations.

5

Figure 1.3: Privacy Settings in iOS 6[5]

1.4 Application Analysis Techniques

With advent of internet, protecting user’s privacy is the main concern which inspires

security researchers to solve this problem and ultimately results in building sophisticated

tools to gain a deeper understanding regarding the sensitive behavioral patterns of mobile

applications.

In order to keep malicious and harmful apps away from Play Store, Google has introduced

a security service codenamed “Bouncer”[7]. This service involves a variety of checks and

it runs each app in the background and looks for any suspicious behavior. According to the

information published by TrendMicro labs In an effort to drop down the malicious behavior

of apps Google scans the entire developers account by themselves, thereby resulting in a

40% reduction of malicious apps in their app store. Hence, this problem is still an open

challenge for researchers. In order to detect the privacy leaks in mobile applications,

researchers have come up with many useful tools and techniques. These techniques are

most preferably used in analyzing apps permissions. Description of these techniques is

given below.

6

Permissions Analysis is the most basic analysis technique [8]. In case of permissions

analysis, list of permissions requested by an application during installation or during run

time are reviewed and analyzed. Various stages need the application to articulate what

features it will try to get access in the midst of execution. The advantage of this approach

is that it permits productive survey of thousands of applications in a single time. The

limitation is that the review is exactly at an unusual state, without knowing whether the

application truly accumulates the requested data and who gets it. There is a connection

between number of downloads and the amount of permission requests. The more

significant the amount of downloads, the more likely the application requests more

approvals. Analyzers may target particular attacks beside these functionalities and try to

evade restrictions.

Control Flow Analysis is a technique used to analyze the logical control structures in the

application program. Utilizing this technique will enable analyzers to recognize common

logical defects, for example, the inability to deal with special cases, and inadequate

authorization restrictions. Control flow analysis is expressed using control flow diagrams

(CFGs) [9].

Data Flow Analysis technique is one of most basic method to analyze the flow of sensitive

data. It searches for different routes among data sources (sensitive data like a file manager

database or users contacts lists) and sinks (access points through which our information

can leak such as cellular data or Wi-Fi) in the operating systems, since mobile apps runs

upon them. At any point if there is a transmission of information from any conceivable

source point to sink point without the knowledge of user then it shall be considered as a

leak of private data. This technique is especially suited for detecting input-validation errors

(like SQL injection attacks) and several private data breaches. Given below table 1.1 lists

possible data sources and sinks in a smartphone.

Given below are some common data flow analysis techniques that can be used for detecting

privacy leaks.

7

Sources Examples

Location Aware Data Sources Wireless LAN, Last Base Station Location, GPS

Exclusive Identifiers IMSI, IMEI

Authenticated Data Sources Cached Usernames & Passwords

Others Contacts, Calendar, Call log info., Number of Calls etc.

Table 1.1: List of Possible Data Sources[10]

 (i) Dynamic Data Flow Analysis

It observes the behavior of mobile apps typically when they are executed in order to detect

any privacy leaks. In this technique our main concern is to know how any application

program behaves on a sensitive information [10].

Users shall be cautioned regarding some privacy information leak from their mobiles by

performing a Dynamic Flow Analysis. To perform this technique, we’re required to have

an emulator or mobile device with us. However, these Dynamic analysis tools are having

several performance related issues like power consumption, processor speed, memory

available etc.

One famous Dynamic Analysis tool is Taintdroid[11] which is used to detect the privacy

leaks among similar kind of application networks.

(ii) Static Data Flow Analysis

In this technique [12], first the application program code is analyzed statically i.e. without

executing it, and then a CFG (control flow graph) is made. This approach attempts to cover

different execution paths that can be possible. The transmission of sensitive information

from different data sources to possible sink points is traced by the CFG created. The time

taken by Static Analysis is more as compared to the Dynamic analysis since all the possible

execution paths and complete code is processed by it and hence performance related issues

in this technique are less as all the processing is done in a static manner before the actual

execution of the code. The static code analysis gives a fully automated scan of mobile

applications, and its precision is relied upon the capability of the decompiler as well as the

8

programming style used by the developer. LinkMiner is one of the famous tool that uses

static analysis.

Sink Examples

Text Messaging Data sent by simple SMS

File System Globally readable files can be written by app data

Network Network access via HTTP or TCP sockets

Intents Communication among different applications

Others Usage of 3rd party APIs to access shared memory

Table 1.2: List of Possible Sinks[10]

(iii) Hybrid Data Flow Analysis

This technique [13] selectively make use of both static and dynamic data flow analysis

thereby improving the detection of privacy leaks among mobile apps. SmartDroid is an

application that uses hybrid technique to detect sensitive data flow. Figure 1.4 shows the

main components of static, dynamic and hybrid data flow analysis.

Figure 1.4: Components of Static, Dynamic and Hybrid Analysis

APIs

Component

Dynamic

Analysis

Hybrid

Analysis

Building Attack Tree

Detecting Attack

Capability
Loading Behavior Rules

Behavior

Analysis

Triggering Behaviors

Permission

s

Reverse

Engineering

Static

Analysis

9

(iv) Cloud Based Data Flow Analysis

Since our smartphones are strictly restricted in terms of resources, because of which it can

be a cumbersome to perform privacy detection on these devices. Many researchers have

therefore come up with a cloud based flow analysis [14] tools. One of such tool is Paranoid.

It allows a synchronized duplicate model of a mobile phone to run on a cloud based server.

Now since, the replica of our mobile phone is on the cloud hence it doesn’t have any

resource constraints like battery power consumption etc. and this would make it easier to

perform privacy leak detection. The emulator that resides on the cloud server is required to

perform all privacy checks [15].

1.5 Different Phases of Application Data

There are a few viewpoints that must be considered when expecting to assess and review

the security level of an application. Understanding the distinctive states in which the digital

information can exists, it can help us to choose the sorts of safety measures and the level

encryption that is needed for its protection. In order to perform a thorough privacy and

security assessment, it is critical to know all the distinctive states in which data can be

found and persists in a mobile device.

There are 3 basic states of application data: data at rest, data currently in use, and data

transmitted over the network. Given below, we will give a brief discussion of these three

states in which data can exists and in addition the sorts of encryption and security expected

to ensure it.

(i). Data at Rest

It refers to the application data that is stored and saved in the storage media of the mobile

device. This data is inactive and is currently not being processed or transmitted over the

network by the application. Since the data is currently not being acted upon by the

application, its state is generally stable. This state of data can be viewed as secure, provided

that it is encrypted by using some strong encryption algorithms having a fairly long

randomness coupled with a strong key-pair generator.

10

(ii). Data currently in Use

Data being utilized is the data that isn’t just being secured idly on an external or internal

storage device. This is the data that is currently being read, processed and modified by the

application. It additionally includes the data that is being seen by the users getting it through

various application endpoints. Data being utilized is vulnerable against different sorts of

risks depending upon where it is in the system and who can use it. This data can be seen as

secure, if access to the memory is completely controlled, and if paying little notice to how

the application closes, data can't be recuperated from any location other than the data at

rest state, which requires re-authorization. The most feeble point for data currently being

used is at the endpoints where users can access the application interface and communicate

with it.

(iii). Data Transmitted over the network

The third phase is data transmitted over the network. In this phase, application data exits

the mobile device over a WiFi access point or GSM network or another mobile device

through peer to peer connection like Bluetooth, NFC (Near Field Communication) etc. This

information can be considered as secure if the data transmitted over the network is

authorized, authenticated and private (encrypted) which implies no unapproved entity can

tune in to the communication and eavesdrop the data sent across the network.

11

 CHAPTER 2

REVIEW OF LITERATURE

Nariman Mirzaei et al. (2012) [16] gives an overview on how to address the issues of

incompatibility with Java Virtual Machine and path-divergence by enabling the execution

of android apps in Java Pathfinder (JPF). This greatly solves the problem of generating test

cases for Android apps on JVM rather than on Dalvik Virtual Machine (DVM). Java

Symbolic Pathfinder (SPF) is a tool that requires its own virtual machine instead of legacy

system (JVM). Therefore, to produce the sample check inputs for mobile apps with the

help of SPF, first the java bytecode of the app is generated and then it is executed on JVM.

Secondly, they have leveraged the program analysis techniques to correlate events with

their handlers for automatically generating Android-specific drivers that simulate all valid

events. They have extended the Symbolic Path Finder and generated the example cases for

mobile apps by using the system’s call graph model. Their main work highlights on:

(1) Creating stubs that helps them in compilation and execution of Android apps on JPF

(2) To solve the issue related to path-divergence, they have created pseudo classes for

Android system library

(3) To mimic the user’s behavior by analyzing the systems source code.

Future Work: By applying the appropriate stubs and mock classes they are emerging

support for a higher subset of Android system library classes. They are also planning to

merge the Symbolic Path Finder with their cloud-based Android testing framework, in

order to find out the functional as well as privacy related vulnerabilities.

Their research project has been granted by the Defense Advanced Research Projects

Agency.

Grace et al. (2012) [17] have proposed Woodpecker a dynamic flow analysis tool that is

used to analyze the capability leaks (i.e. the condition when an app gets access to a

permission without invoking any request for it). It examines each application on the device

12

to investigate reachability of a perilous permission from an open, unguarded interface. This

tool categorizes the capability leaks into two types; first is explicit capability leakage that

permits an application to exploit any publicly available interfaces or services in order to

gain access to certain group of permissions without directly requesting for it. Second is,

implicit capability leakage that instead of exploiting any publicly available service or

interface, uses another app to acquire certain permissions having the same certificate

authority (CA).

Several security researchers and analysts have utilized different devices from various

manufacturers (like Google, Samsung, Motorola and HTC) to identify information leaks

by any pre-installed app. And there analysis have uncovered that all pre-installed

applications have performed capability leaks.

Yang et al. (2012) [18] in their paper have proposed a static taint analysis approach called

Leakminer which helps in detecting the privacy leaks in smartphones. In contrast to

dynamic taint analysis, Leakminer detects privacy leakage information on market site

before apps are downloaded by the user. Leakminer is executed on the Soot framework,

and approximately 1750 android apps are evaluated for any leakage of sensitive data. In

their final report they have found out that nearly half of the leakages are true and about 40

false positives were introduced due to the long propagation path inside these applications

and due to insufficient context information for the duration of taint analysis.

Finally, they have concluded that their static taint analysis approach took nearly 75 hours

to analyze all 1750 apps (2.5 minutes for each app on an average). However, Leakminer

introduces no runtime overhead and the execution time can be reduced by further allocating

the workload to several machines in a distributed manner.

Zhemin Yang et al. (2013)[19] have proposed an app based validation framework called

AppIntent which can provide a sequence of events that leads to the data transmission, which

ultimately supports the analysts to get to know whether the data transmission is intended

by user or not. The basic idea behind this is the concept of event driven symbolic execution.

They have also shown the assessment done by AppIntent on a set of 750 suspicious apps,

13

as well as top 1000 free apps available on Google Play store in the year 2013. Their final

results have shown the apps which leaks the user’s private data.

Future Work: They have also discussed about some of the limitations of this framework

like failure in analyzing some apps because their decompilation tool DED. And another

limitation is the incompatibility between the native code supported by AppIntent.

They have suggested to use a more powerful tool like Dexpler, which can directly parse

the DEX (android native code) files without the need for conversion into java bytecode.

Muhammad Haris et al. (2014) [10] provides a detailed survey of mobile computing

research, which primarily focuses on privacy risks and data leakage effects. First they have

presents an overview of privacy reins implemented in the two major mobile operating

systems – Android and iOS. Secondly, they have discussed a number of methods like Data

flow analysis (dynamic, static and hybrid), Cloud based analysis along with their practical

applications, their architectures and presented different case studies on privacy leaks. They

have discussed about the basic mobile cellular technology and the reason of privacy leaks

and a short summary of phone sensing and connectivity. Apart from that, they have

likewise presented the current research efforts concentrating on refining current techniques

to discover and protect sensitive data leaks.

Li Li et al. (2014)[20] have proposed static taint data flow analysis technique that makes

use of the control-flow graph (CFG) of applications to discover privacy leaks among apps.

They have provided the solution to three difficulties related to internetwork communication

(ICC), lifespan of components and callback mechanism creating the CFG imprecision.

Their aim is to provide a taint analysis mechanism in order to detect intra and inter-

component privacy leaks. They have also claimed that their static taint data flow analysis

tool provides more accurate and better results compared to other tools like AppIntent,

Woodpecker, CHEX etc. They have taken the help of FlowDroid (a very accurate taint

analysis tool used for Android) and Epic (a very effective ICC mapping framework in

Android). Finally, they have described the limitations and their solutions of discovering

private leaks in Android apps by making an accurate control-flow graph and thereby

detecting any inter-component communication based privacy leaks in Android apps.

14

Rasthofer et al. (2014)[21] proposed a machine learning method of detecting source points

and sinks directly in the program of any Android API. Previously, all the research that have

been proposed heavily relied upon the manual configuration of lists of source points and

sinks which is not easy to obtain. On a given training set of hand-annotated source points

and sink points, SuSi (as they named it) identifies the sources and sinks in the entire API

and further classifies the source points (e.g., distinctive identifier, location information,

etc.) and sink points (e.g., network, file, etc.). In this research paper they have claimed to

identify hundreds of source points and sink points with over 92% efficiency, many of which

are skipped by the present information-flow tracking devices. This tool adheres supervised

learning approach to train the classifier on a comparatively small subset of manually-

annotated training examples.

Future Work: Their future work aims to put on this methodology to interfaces for

automatically detecting and classifying sensitive flow callbacks. They have also proposed

to further investigate on how this method is useful for other settings than Android, e.g.,

J2EE and various procedural programming languages such as C++, C# or PHP.

Klieber et al. (2014)[22] have proposed a new static taint analysis for Android apps that

combines and augments the FlowDroid and Epiee analysis to precisely track both inter-

component and intra-component data flow. Two phases are involved for analysis. In the

first phase, they have analyzed each app individually. Sources are the received intents, and

sinks are considered as sent intents. The phase-1 of their analysis gives the following

outcomes:

a) FlowDroid gives the flows within every component,

b) Epiee identifies the properties of the sent intents,

c) Each componets intent filters, which are taken out from the manifest file.

To every location of the source code, an intent ID is given that sends an intent(i.e. the

location of source code that calls to a method named startActivity). Same ID intents are

joined together, while distinct ID intents are termed as distinct sinks.

Using the output given by Phase 1 on a certain number of applications, the analysis of

Phase 2 is carried out.

15

Future work: In order to include the extra data channles like static fields, SQLite

databases, and SharedPreferences, the inter-component portion of taint flow analysis is to

be enhanced further. They also have envisioned their two phase analysis, which can be

further used as: The Phase 1 analyis on each app given in the play store can be executed

easily. Whenever any user wants to install any new app from the app store, the user should

be told about the possible data flows from that app using the Phase 2 analysis.

Tripp et al. (2014) [23] addressed the privacy implementation problem in mobile apps

with a Bayesian classification. The runtime system should be classified as either legitimate

or illegitimate based on the sink’s behavior whenever the data flow is arrived at the sink

point (e.g., any update in database, or any outgoing message). If a release point is valid on

the given evidence(that is raised at the sink point), they propose a Bayesian notion of

statistical classification. They developed a system called BayesDroid in which an evidence

is defined as the likeness among the released data values and personal data held by the

device. They have applied the BayesDroid on 54 of the most downloaded apps and thus

are able to found out the 27 privacy leaks having only 1 false alarm and also proposed that

BayesDroid is substantially more accurate than TaintDroid[16].

Future Work: They have proposed two main objectives for the future course of work. One

is to add more features to their tools like accessing modes of the file system (like private

or public access), secure HTTP communication and API invocations of privacy significant

apps. The other is to apply the static taint analysis to the program code using FlowDroid

[24], and thus optimizing the taint based methods for identifying the appropriate values.

Arzt et al. (2014) [24] presents a novel and exceedingly well accurate static taint analysis

tool called FLOWDROID. Besides that, they have also proposed a framework called

DROIDBENCH which is used for determining the efficiency and accurateness of taint

analysis tools for Android based apps. With the help of FLOWDROID they are able to find

a large number of privacy data leaks with a very low rate of false positives. FLOWDROID

further extends the Soot and Spark framework, in which the former provides the three-

address code representation called Jimple and the latter provides an accurate call-graph

analysis of the given code. They have used a plugin known as Dexpler which helps

FLOWDROID in converting Android’s Dalvik bytecode into Jimple.

16

In the sample test, they have tested a vulnerable android app called InsecureBank and finds

seven data leaks with no false positive or false negative report. The analysis takes

approximately 30 seconds on a laptop computer having 4 GB of RAM and Intel core 2

Centrino processor with Java Runtime Environment 1.7 as the backend virtual machine.

They have also analyzed 500 real-world applications from Google’s Play Store, and

uncover about 2 leaks per sample on average.

Future Work: As a future work they have planned to improve this tool further by

providing the support for handling reflections.

Razaghpanah et al. (2015)[25] have addressed the issues regarding the transparency of

operations in android apps in overcoming the barriers to large-scale deployment by

employing a unique method that takes the advantage of the VPN API on Android based

mobile phones and designed a network flow analysis tool called Haystack, which requires

a full access to device’s network traffic without the need of any root access privileges.

They have implemented the design of Haystack in an Android app which is available on

Google Pay Store for free. Besides this, they have also demonstrated the utility of this app

to its users and researchers in categorizing mobile app’s network traffic and privacy leaks.

Haystack uses the VPN API provided by Android that makes a virtual tunnel channel in

order to direct all the network data flow traffic into the user space process interface. In

order to allow this operation, the user is asked by the client app to permit the request for

BIND_VPN_SERVICE, which do not need any rooted device in order to get executed.

Secondly, in order to maintain the user space network sockets and to transmit the data

traffic through these sockets, it requires the packet header information.

Future Work: Till now, Haystack is being implemented on the Android platform only,

and it can be further implemented on other platforms (iOS, Windows, Blackberry etc.) too.

Even though Apple’s iOS provides strict technical restrictions in application development

(for e.g., it doesn’t allow TaintDroid to execute on their platform), Haystack’s

implementation doesn’t require any of those permissions that are required by TaintDroid

like tools and this allows it to be used on such platforms as well. In order to access the

mobiles data traffic we can further explore Haystack by splitting the Traffic analyzer and

Forwarder modules. In a further improvement process, they are planning to provide

17

Haystack’s code in an open source platform (like GitHub) and are also planning to make

the information collected by Haystack to be made available in a web based platform

interface similar to Recon and Censys.io.

Li et al. (2015)[26] proposed a static taint analyzer tool that helps in detecting the leak of

private data among different modules of any Android application. IccTa (Inter Component

Communication Taint Analysis Tool) supports inter-component detection and greatly

improves the analysis precision. They have detected 534 ICC outflows in 108 mobile

applications from MalGenome (Android Malware Genome Project) and nearly 2,395 ICC

outflows of data in 337 applications from Play Store. In order to detect private data leaks

based on Inter Component Communication, they have developed 22 apps and added these

apps to DroidBench, which is a framework or testing suite for evaluation of usefulness and

accuracy of taint data flow analysis tools. When they have executed IccTa on DroidBench,

they showed that it gives a precision of 96.6 % while on MalGenome, it shows 534 ICC

leaks with 8.6% accuracy. Their project was supported by a Google Faculty Research

Program.

Bosu et al. (2016)[27] presented DIALDroid, a scalable and precise tool in order to analyze

inter-app Inter-Component Communication (ICC) among Android apps, which

outperforms current state-of-the-art ICC analysis tools. Using DialDroid, they have

performed the first large set of discovery of malicious and susceptible apps built on inter-

app ICC data flows between 110,150 popular applications and identified key security

insights.

The workflow of DialDroid involves four key operations as follows:

a) ICC Entry and Exit Points: For a particular app, they have extracted the attributes

and permissions list of the intent filters present in the AndroidManifes.xml file.

They have performed static analysis using their custom ICC extractor to know the

characteristics of the intents going through ICC exit or sink points.

b) DATAFLOW ANALYSIS: They have used the static taint analysis in order to

determine the ICC entry and exit leaks in an app.

18

c) DATA AGGREGATION: They have aggregated the data pulled out in the earlier

two steps to insert in a relational database server.

d) ICC LEAK CALCULATION: With the use of SQL queries and stored procedures,

they have computed Inter Component Communication with collusive information

leakage and privilege increases based on fine-grained security policies.

The time complexity of DialDroid is O(N), where the ‘N’ represents the total no. of

applications that are being analyzed. And, the complexity for calculating the ICC leaks is

O(mN), where the ‘m’ represents the number of apps with leaks at the ICC exit points.

Worst case scenario is when m = N. In practice, m would be much smaller than N.

Raul Herbster et al. (2016)[28] have proposed a framework model that avoids the relay

of sensitive information to suspicious third party server called Privacy Capsules (PCs).

Privacy Capsules executes in two phases. First is unsealed phase, the app has complete

access to the untrusted network resources and second one is sealed phase, in which the

untrusted app cannot be able to communicate with the untrusted resources but can have

access to private input values. Once the app switched to the sealed state, it can only be

terminated or restarted but cannot be returned back to the unsealed state. Privacy Capsules

provides further mechanisms to allow legitimate flow of private data without

compromising user’s privacy, these are as follows:

 Sealed Repository (SR) Using this, an application which is in its sealed state

can collect confidential data continuously during executions. Information thus

inserted into the SR is encrypted with a key (which is same for both user as well as

the application) which is remain confidential and cannot be leaked by the

application. A Sealed Repository could exist on the providers cloud service which

can be untrusted in nature.

 Sealed Channel (SC) Using this, live video/voice/chatting data on different

users devices could be replaced between instances of an app in a sealed state. The

information stored in the Sealed Channel is encoded with the keys and the

participating users are authenticated. This confidential information is never

exposed to the app.

19

 Selective Declassification Using this feature, with user’s consent that particular

information could be unveiled to a third party server.

Using these three mechanisms, they have designed three PC-compliant apps prototype

model. First is a train scheduling and ticketing app which shows transportation schedules,

maps, product lists, and permit users to simply browse or buy the products. Second is a

Wellness app that monitors the health of an individual by communicating to the fitness

sensors thereby examine and tabularize the data thus recorded and provides a facility to

share the results with family, coaches or health care specialists. Finally, they have

presented a live chat application, which provides the class of apps that is primarily focused

on communication with other users. They have concluded that the prototypes thus

implemented have a low battery and performance overhead and is appropriate for a large

set of applications for preventing any privacy leaks.

Several tools and frameworks have been proposed in the past to detect privacy leaks from

android devices. These tools follows various approaches such as static, dynamic, hybrid,

permissions, and cloud based analysis etc. to detect the privacy related behavior of mobile

apps. In this section, we have featured some of the frameworks and tools that are used for

detecting possible privacy leaks in android apps. Furthermore, we have compared all these

tools and provided the result in a tabular format given in table 2.1.

20

Framework/Tools

Used

Analysis Technique

No. of

Apps

Tested

Year

Results Summary

TISSA [29]

Dynamic Flow Analysis

24

2010

It was discovered that location

info. was leaked by 14 apps and

phone’s IMEI was leaked by 13

apps.

PCLeaks [30]

Static Flow Analysis

(Between Components)

2000

2010

About 986 component leaks were

detected. Out of which, 534 leaks

were due to activity launch, 245

leaks due to broadcast injection

and 110 leaks due to activity

hijacking. Furthermore, there were

64 leaks due to service launch.

TaintDroid [31]

Dynamic Flow Analysis

30

2010

They have discovered 68 potential

instances of privacy leakage

through 20 applications.

ScanDal [32]

Static Flow Analysis

90

2011

6 apps were found to be leaking

location info. to ad-servers and 5

apps were leaking the same to

analytics servers.

Woodpecker [17]

Dynamic Flow Analysis

(Capability Leaks)

953

2012

Several pre-installed apps were

found vulnerable of capability

leaks that includes devices from

Google, Samsung, Motorola, HTC

etc.

LeakMiner [18]

Static Flow Analysis

1750

2012

127 apps were found to be leaking

device IMEI, 12 apps leaks contact

details, and 27 apps leaks users

location data.

AndroidLeaks [33]

Static Flow Analysis

25,976

2012

A total of 57,299 leaks were found;

out of which 65.51% of the leaks

are for advertisement purpose,

92% of the leaks are linked with

phone data, 5.94% related to

location, and 0.61% leaks of audio

data.

CHEX [34]

Static Flow Analysis

(Between Components)

5,486

2012

Out of 5,486 android apps, they

have found out 254 potential

vulnerabilities related to

component hijacking.

SmartDroid [35]

Hybrid Analysis

--

2012

It helps in detecting automatic UI

based trigger conditions which are

required to reveal the malicious

behavior in android apps.

AppIntent [19]

Static Flow Analysis

1,000

2013

140 apps were found to have the

potential data breach, out of which

26 apps were leaking data without

users consent, 24 apps leaks

phone’s IMEI number, 1 app each

leaks contacts and messages info

to third party servers.

21

Framework/Tools

Used

Analysis Technique

No. of

Apps

Tested

Year

Results Summary

VetDroid [36]

Dynamic Flow Analysis

(Permissions Analysis)

1,249

2013

 It highlights an efficient system to

build a tool based on the

permissions behavior of android

apps. This eases malware detection

and helps in finding vulnerabilities

that are otherwise hard to find.

DroidTest [37]

Dynamic Flow Analysis

50

2013

They have discovered that most of

the apps leaks data related to

device IMEI, IMSI (Subscriber

ID), and users phone number.

IntentFuzzer [38]

Dynamic Flow Analysis

(Capability Leaks)

2,183

2014

It is discovered that more than half

of the applications are vulnerable

to capability leaks related to phone

and network state, location and

connectivity.

FlowDroid [24]

Static Flow Analysis

500

2014

It performs data leakage detection

with a precision of 86% and

greatly outperforms some of the

famous commercial tools. It

achieves a recall rate of 96% with

only 9 false positives.

AmanDroid [39]

Static Flow Analysis

753

2014

It successfully detects different

types of data leaks like Passwords,

OAuth tokens, API misuse etc.

And outperforms FlowDroid in

terms of positive test results.

A5 [40]

Hybrid Analysis

1,260

2014

Mainly used to detect malicious

network activity and capturing

network threats with a processing

time of 149 seconds per sample.

AMDetector [41]

Hybrid Analysis

728

2014

It is an automated detection tool

for detecting malware apps on

Google play store with a success

rate of 88.14% and false positive

rate of less than 1.8%.

Andrubis [42]

Hybrid Analysis

1,000,000

2014

It has analyzed over 91.67% of all

the apps successfully out of which,

0.34% were failed due to bugs and

7.99% of the samples are having a

corrupt API.

22

Table 2.1: A comparison among different privacy frameworks

Framework/Tools

Used

 Analysis Technique

No. of

Apps

Tested

Year

Results Summary

CoChecker [43]

Static Flow Analysis

1,123

2014

It identifies the potential leak

paths to detect privilege escalation

by malicious apps. It raises alarm

for 117 potential data leaks among

which 84 were capability leaks

and 33 were private data leaks.

DroidTrace [44]

Dynamic Flow Analysis

50,000

2014

It detects malicious apps using

ptrace dynamic analysis and

classifies app behaviors on the

basis of file access, IPC (inter-

process communication), network

connection and privilege

escalation.

Gort [45]

Hybrid Analysis and

Crowd Analysis

40

2014

It is a heuristic framework that

helps security researchers and

analysts to detect privacy leaks

and privacy behavior of android

apps.

IccTa [26]

Static Flow Analysis

 (Between Components)

3,000

2015

425 applications leaks the

information related to device ID

and location of the user without

users consent.

MARVIN [46]

Hybrid Analysis

135,000

2015

This tool leverages machine

learning techniques to analyze the

potential privacy risks associated

with any android application in the

form of malice score. It

successfully classifies 98.24% of

the malicious apps with false rate

as low as 0.04%.

Privacy Capsules

[28]

Dynamic Flow Analysis

--

2016

It is an execution framework for

android apps to detect potential

privacy leaks. It has a lower

processing overhead and capable

of executing large class of

applications.

DialDroid [27]

Dynamic Flow Analysis

100,206

2017

It performs inter-app flow analysis

on such a huge dataset within a

reasonable time and identified

vulnerable apps based on ICC

(Inter Component Communication

leaks).

POSTER [47]

Static Flow Analysis

(Between Components)

08

2017

This tool analyzes multiple apps

simultaneously and detects

potential privacy leakage during

inter app communication and

executed their data set on

DroidBench(a testing framework).

23

 CHAPTER 3

PROBLEM DEFINITION

3.1 Privacy: A Fundamental Right

Over the previous decade, security has increased huge consideration in the scholarly world

and in addition to the industry. The fundamental purpose for this intrigue is the result of

privacy infringement on people. From one perspective, user’s personal information can be

abused by pernicious identities to take or uncover individual data about the user and then

again it can be abused to hurt users monetarily or socially. Besides, organizations can

likewise utilize this information to learn delicate individual identifiable data about users

without their assent and mindfulness.

In spite of the fact that subtle information of private data can fluctuate, implications of

protection have similarities crosswise over various issues. Numerous definitions have been

proposed by research scholars to comprehend the social importance of privacy and security

[48]. Yet, the definition of privacy changes based on individuals preferences. The amount

of data that one user is ready to disclose may differ from the amount of data that a more

conscious user is ready to give up.

Lin et al. [49] have characterize the users based on their privacy preferences into 4 different

categories:

(i). Conservatives (11.9%): This kind of users feels extremely awkward in letting their

delicate individual data (for example, phone IMEI number, location etc.) be utilized by 3rd

party app vendors. They likewise feel uncomfortable if these apps utilizes their location

info, unique ID, call log info/saved contacts or messages internally (for their core

functionality) if the need of utilizing these sensitive individual information is not noticeable

to them.

(ii). Unconcerned (23.34%): This category belongs to the users who are comfortable in

revealing their delicate information (nearly) for each situation, regardless of who is

gathering their information and for what purposes.

24

(iii). Fence-Sitters (50%): Most users inside this group don’t have a solid opinion for the

usage of different permissions by mobile apps. These people feels extremely comfortable

in letting mobile apps get to their private information for their own functionality.

(iv). Advanced Users (17.95%): These are called advanced because they have a more

nuanced comprehension of delicate information utilizations. It means that, these users have

knowledge about what kind of information is used by the apps and for what purpose (like

for apps core functionality).

Figure 3.1: Types of users according to their privacy behaviors

3.2 App Permissions: A Dilemma

The permission model of Android apps is multifaceted [50]. The permissions can be asked

for accessing the interface (API), Accessing the file system, and for Inter-Process

communication. Some of these high-level permissions often maps to the lower-level OS

kernel. For example, accessing Bluetooth service, opening sockets, and accessing certain

file system paths which are otherwise not allowed.

Android processes these app permissions in AndroidManifest.xml file. This application

manifest is presumably the most critical source of data for Android application security

experts. It contains the majority of the information in regards to an application’s permission

and gives us a very few insights about how apps components will be permitted to interact

with the remaining components of the application.

Conservatives

12%

Unconcerned
23%

Advanced

Users

18%

Fence-

Sitters

47%

TYPES OF USERS

25

3.3 Issues with Apps Permission List

Starting in Android 6.0 (API 23), users can allow the applications to access certain

resources while it is running, and not at the time of installation (As with API 5 and below).

It additionally gives the users more control over the applications usefulness; for instance,

a user can give a music app access to its microphone but not to its location at the same

time. However, Android app developers can ask for more number of permissions for their

apps core functionality than it might requires [51]. The explanation for why the app

requires certain permissions which might be dangerous in terms of user’s privacy depends

upon the app developers. In case if a user wants to use the functionality that needs a certain

permission (like asking for users location or accessing contacts list), which the user is not

comfortable with and hence continues turning down the permission request, that most

likely demonstrates that the user doesn’t comprehend why this application needs that

permissions to acquire the required functionality.

In other case, suppose a legitimate messaging app wants to read the contacts list, which the

user grants access to, still there is no full proof guarantee that the app developer will not

use this information in any harmful manner like sending it to advertising companies. These

sorts of oversights, which appear harmless, frequently prompt bad practices from

developer’s side like under-granting or over-granting the permissions. In case if it’s under-

granting, it’s often a functionality or reliability issue, for instance, an unhandled security

exception prompts the application to crash.

With respect to over-granting, it’s increasingly a security issue, for instance, an over-

privileged app exploits the users privacy.

3.4 Lack of Transport Security

Apps which uses permissions to access the internet will make use of mobile data, or Wi-Fi

to transmit the sensitive data. It is the responsibility of app developers to ensure the

confidentiality, integrity, and non-repudiation of data. However, because of the absence of

comprehension about how to correctly implement Secure Socket Layer (SSL) [52] or

Transport Layer Security (TLS), or simply the inaccurate thought that “if it’s over the

26

internet, it’s protected”, application developers neglect to ensure the safety of data that is

transmitted.

This issue tends to show in at least one of the given ways:

 Use of weak encryption algorithms or no encryption at all

 Encryption is strong but lack of security warnings or no certificate validation

 Improper use of transport security according to given network type (for instance,

mobile data vs. Wi-Fi)

3.5 Lack of Database security

Android offers various standard methods for storing user’s data – namely SQLite

databases, Shared Preferences, and plain files. Different applications (based on their

functionalities, stores user’s sensitive data like passwords, authentication tokens (like

OTPs), Contacts, Communication records (like call logs), website names used by users for

sensitive services (like social media, personal blogs, health and dating websites). These

applications saves the user data in databases, XML files etc. It’s important to assess the

security of these storage mediums.

The most common mistakes that app developers do is storing the sensitive data in plaintext

format, using unprotected structured interfaces like content providers and unreliable file

authorizations (permissions to read, write and execute).

3.6 Neglecting IPC Endpoint Security

The basic inter-process communication endpoints (IPC), which includes – Activities,

Services, Content Providers and Broadcast Receivers, are regularly neglected as potential

attack vectors. At its most essential level, security of these interfaces is ordinarily

accomplished by requesting app permissions. For instance, an application may characterize

an IPC endpoint that ought to be accessible by other components of the same application

or by different application that requests the same permission. In the latter case, any

malicious app can access the unsecure endpoints and thus be able to gather user’s private

data without users knowledge.

27

 CHAPTER 4

SCOPE OF THE STUDY

With the increase in smartphone’s usage, privacy of the user’s has become the primary

concern of researchers working in the field of security. Smartphone apps are prevalently

being used these days for leisure and fun activities, work related, news and so on. Before

installing any of these apps, they generally asks of permissions to access different

components of your device like calls, media, microphone, cell ID, Wi-Fi and Bluetooth

information etc. for their proper functioning.

However, sometimes these apps requests for unnecessary permissions for example a music

app might try to access your contacts list or a simple gaming app wants to access your

location or media files. Users generally don’t think much before accepting those

permissions, one reason for that could be – they don’t have any option except to accept

those permissions since there is no choice provided in Google Play Store to select which

permissions user allow and which are not allowed. Because of this disagreement, some

malicious apps might use these permissions to exploit user’s privacy by selling their

information to ad servers or for blackmailing users by leaking their private data. Recently,

WhatsApp is being sued in the Delhi High Court for sharing its user’s data (like names,

chat logs, device status, connection information, phone numbers etc.) to Facebook (its

parent company) without user’s knowledge.

To address this issue, many research have been done from the day smartphone markets are

boomed. Researchers have used different data flow analysis techniques to analyze the app’s

traffic and detect any privacy leaks and found out that almost 20-30% of the apps leaks

private data to third party servers. However, they provide any detailed analysis of these

leaks and their results are not very transparent to the users.

Our aim is to work on these drawbacks and show the true nature of such malicious apps by

answering the questions on how these apps use these permissions to exploit the user’s

privacy for their own benefit.

28

CHAPTER 5

OBJECTIVES OF THE STUDY

Our main objective is to assess the privacy and security of mobile applications particularly

for android platform since it is open source, popular and widely used platform. We began

with examining and distinguishing each conceivable state at which the data can exist,

which is the essential prerequisite, keeping in mind the end goal is to have the capacity to

keep the data safe and secure. Furthermore, to provide useful information to end user’s by

analyzing mobile apps traffic and revealing how these apps communicate with tracking

services and how they collect sensitive personal information for their gain and to show the

result of our research in a single open platform to all its user’s.

Many research have suggested that, users don’t care much while giving permissions to

these apps. The main purpose of our research is to know the reason for asking these

permission requests by analyzing your app’s traffic to detect if there is any leak of private

data which is not intended by the user and to know how the app vendors collect sensitive

information such as your phone’s IMEI number or location for advertisement, tracking, or

analytical purposes.

We have consolidate our research objectives into three research questions which are shown

below:

(i). Where the data can exists?

(ii). How personal data is handled by the applications?

(iii). How can one properly assess the privacy and security of mobile applications?

Meanwhile, we acknowledge that privacy has many faces. Our work will only point out

some of the ways and techniques to tackle this problem. Increasing awareness among

consumers and application developers, implementing IT laws and guidelines are also some

other aspects, which are crucial for the protection of smartphones user’s privacy.

29

CHAPTER 6

PROPOSED RESEARCH METHODOLOGY

Based on our research objectives we have proposed the following work plan:

Figure 6.1: Steps in the process of privacy leaks detection

A. Identification of the target application

Among several categories, like social media, banking, games, productivity, e-commerce

etc. we will take some popular free apps (based on their number of downloads) that are

available on Google play store from each category.

30

B. Data Population

Next step is to populate the database of these applications with enough data such that we

can perform our in-depth analysis. We will create dummy user accounts and assess the

application for potential vulnerabilities in terms privacy leakage.

C. Data Acquisition

We are going to perform all these tests on android device emulator. To acquire the required

data, we will use the Android Debug Bridge (ADB) which is used to fetch the entire

application database into the host machine (including applications APK file).

D. Analysis Techniques

 (i). Static Analysis

This technique will be used to assess the applications data when it is not currently in use.

Data at rest phase comes under static analysis. Given below is the table that describes

different vulnerability types and tools used for its assessment.

(ii). Dynamic Analysis

This technique is used when the application is executed that is, when the application data

is currently in usage. Several vulnerability types (under dynamic analysis) are discussed in

the table given along with the tool that will be used for its assessment.

(iii). Network Analysis

This technique will find the potential leaks when the user sends any sensitive data over the

network. Several vulnerability types (under network analysis) are discussed in the table

given along with the tool that will be used for its assessment.

E. Final Results

In the final step, the obtained results in the form of number of privacy leaks detected, type

of information being disclosed, application vulnerabilities etc. will be discussed.

31

Static Analysis Dynamic Analysis Network Analysis

Vulnerability Tools Used Vulnerability Tools Used Vulnerability Tools Used

Validation of

app signatures

Keytool Memory dump

analysis

LiME/DMD HTTP traffic

inspection

Burp Suite

Inspection of

APK file

Androguard/

CodeInspect

Exploitation of

race conditions

-- Validation of

SSL

certificates

Wireshark/

NetworkMiner

Insecure data

storage

ADB Stack memory

corruption

LiME App sync

procedure

--

Information

log disclosure

Logcat Insecure intent

communication

Drozer/ComDroid Usage of 3rd

party APIs

Gort/Haystack

Table 6.1: Categorization of different analysis techniques, their vulnerabilities and tools used

32

CHAPTER 7

EXPECTED OUTCOMES

Our expected outcomes includes the comprehensive assessment of privacy and security of

mobile applications along with the identification of vulnerable apps and potential privacy

leaks that can be possible during different phases of application data.

Secondly, the implementation of customized security profiles for each and every user based

on their priorities and privacy concerns on how much information the user is willing to

give to the requesting application, thereby making users aware about how their private data

can be utilized by different third party applications and organizations without their consent.

We will also conduct some research surveys to help users in identifying permission usages

by applications and isolate them based on their permission requests along with the purpose

associated with that permission. Thereby, making a small contribution in the area of

privacy and security of users.

33

CHAPTER 8

SUMMARY & CONCLUSIONS

In this study, we have given a detailed and wide-ranging overview of the recent research

contemplates on the privacy and security frameworks of mobile applications [53]. Trust

and Privacy being the most important topic of discussions in today’s world, this paper

provides some insights about how user’s personal data can be leveraged by some malicious

mobile applications for their own benefits. In the first section we have presented a brief

introduction about the Android Apps privacy frameworks, we have given the

categorization of users on the basis of their privacy behaviors. Moreover, we have

discussed some of the analysis techniques like data flow analysis, permissions analysis,

and crowd analysis, that can be used to identify potential privacy leaks. Then we discussed

the literature review where we have given a brief overview of the past research work done

in the area of privacy and security of android applications. Along with that, we reviewed

some of the privacy frameworks and tools proposed by security researchers and analysts in

the past and provided a detailed comparison table of the frameworks developed in the past

along with their results summary. In the Problem definition section we have talked about

some of the potential weaknesses in Androids privacy model for instance, lack of transport

layer security and database security which can be exploited by any unknown app and

results in possible leakage of sensitive information. Then we discussed about the scope and

objectives of our research work by consolidating it into three basic research questions that

needs to be answered. In the research methodology section we have presented the proposed

work plan for every conceivable state of data based on different analysis techniques along

with the tools that we are planning to use. Finally, we have discussed the possible research

outcomes that we expect from our study on privacy and security of android applications.

Based on our survey and the results thus obtained from the past research, we have plotted

the graph between No. of Apps leaking sensitive information vs Type of information

leaked. However, this graph is not very precise (in numbers) and is based upon certain

34

observations and trends from the past results and gives an idea about what type of

information is most notably being used by these applications.

Figure 8.1: Trends showing what kind of information is leaked

0

10

20

30

40

50

60

70

80

90

100

Location Contacts Device ID Phone
Number

Messages Call Logs

N
o

.
o

f
A

p
p

s
L

ea
k
in

g
 S

en
si

ti
v
e

In
fo

(i
n
 t

h
o

u
sa

n
d

s)

Type of Infomation Leaked

35

REFERENCES

[1] Number of Apps available in leading App Stores as of June 2016. [Online] Available:

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-

stores/

[2] Lin J. “Understanding and capturing people’s mobile app privacy preferences”

Carnegie-Mellon University Pittsburgh PA School of Computer Science; 2013 oct 28.

[3] Sadeh, J. L. B. L. N., and Jason I. Hong. "Modeling users’ mobile app privacy

preferences: Restoring usability in a sea of permission settings." Symposium on

Usable Privacy and Security (SOUPS). Vol. 40. 2014.

[4] Federal Trade Commision. Mobile privacy disclosures: building trust through

trasparency. Federal Trade Commision 2013. [Online] Available

http://www.ftc.gov/os/2013/02/130201mobileprivacyreport.pdf

[5] Kang, Jina, Hyoungshick Kim, Yun Gyung Cheong, and Jun Ho Huh.

“Visualizing Privacy Risks of Mobile Applications through a Privacy Meter." In

Information Security Practice and Experience, pp. 548-558 Springer International

Publishing, 2015.

[6] “App Ops – What you need to know”, Android Authority. December 2013 [Online].

Available: http://www.androidauthority.com/app-ops-need- know-324850/

[7] “A look at Google Bouncer”, TrendLabs Security Intellegence Blog. July 2012.

[Online]. Available: http://blog.trendmicro.com/trendlabs-security-intelligence/a-

look-at-google-bouncer/

[8] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.

“Android permissions demystified.” In Proceedings of the 18th ACM conference on

Computer and communications security, pp. 627-638. ACM, 2011.

[9] Barrera, David, H. Gunes Kayacik, Paul C. van Oorschot, and Anil Somayaji. “A

methodology for empirical analysis of permission-based security models and its

application to android.” In Proceedings of the 17th ACM conference on Computer and

communications security, pp. 73-84. ACM, 2010.

36

[10] Haris, Muhammad, Hamed Haddadi, and Pan Hui. "Privacy leakage in mobile

computing: Tools, methods, and characteristics." arXiv preprint arXiv:1410.4978

(2014).

[11] Chun, S. Han V. Tendulkar B G, LP Cox J. Jung P. McDaniel, A N Sheth W. Enck,

and P. Gilbert. " TaintDroid: an information - flow tracking system for realtime

privacy monitoring on smartphones. " ACM Transactions on Computer Systems

(TOCS) (2014).

[12] Lokhande, Bhushan, and Sunita Dhavale. “Overview of information flow tracking

techniques based on taint analysis for android.” In Computing for Sustainable Glabal

Development (INDIACom), 2014 International Conference on, pp. 749-753. IEEE,

2014.

[13] Sarwar, Golam, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaafar. “On the

Effectiveness of Dynamic Taint Analysis for Protecting against Private Information

Leaks on Android-based Devices.” In SECRYPT, pp. 461-468. 2013.

[14] Mahmood, Riyadh, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,

and Angelos Stavrou. “A whitebox approach for automated security testing of Android

applications on the cloud.” In Automation of Software Test (AST), 2012 7th

International Workshop on, pp. 22-28. IEEE, 2012.

[15] Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani. “Crowdroid: behavior-

based malware detection system for android/” In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile devices, pp. 15-26.

ACM, 2011.

[16] Mirzaei, Nariman, et al. "Testing android apps through symbolic execution." ACM

SIGSOFT Software Engineering Notes 37.6 (2012): 1-5.

[17] Grace, Michael C., Yajin Zhou, Zhi Wang, and Xuxian Jiang. “Systematic Detection

of Capability Leaks in Stock Android Smartphones.” In NDSS, vol. 14, p. 19. 2012.

[18] Yang, Zhemin, and Min Yang. "Leakminer: Detect information leakage on android

with static taint analysis." In Software Engineering (WCSE), 2012 Third World

Congress on, pp. 101-104. IEEE, 2012.

37

[19] Yang, Zhemin, et al. "Appintent: Analyzing sensitive data transmission in android for

privacy leakage detection." Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security. ACM, 2013.

[20] Li, Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. "Detecting privacy leaks

in Android Apps." (2014).

[21] Rasthofer, Siegfried, Steven Arzt, and Eric Bodden. "A Machine-learning Approach

for Classifying and Categorizing Android Sources and Sinks." NDSS. 2014.

[22] Klieber, William, et al. "Android taint flow analysis for app sets." Proceedings of the

3rd ACM SIGPLAN International Workshop on the State of the Art in Java Program

Analysis. ACM, 2014.

[23] Tripp, Omer, and Julia Rubin. "A Bayesian Approach to Privacy Enforcement in

Smartphones." In USENIX Security, vol. 14, pp. 175-190. 2014.

[24] Arzt, Steven, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. "Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for

android apps." Acm Sigplan Notices 49, no. 6 (2014): 259-269.

[25] Razaghpanah, Abbas, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian

Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. "Haystack: A Multi-Purpose

Mobile Vantage Point in User Space." arXiv preprint arXiv:1510.01419 (2015).

[26] Li, Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick

McDaniel. "Iccta: Detecting inter-component privacy leaks in android apps."

In Proceedings of the 37th International Conference on Software Engineering-

Volume 1, pp. 280-291. IEEE Press, 2015.

[27] Bosu, Amiangshu, Fang Liu, Danfeng Daphne Yao, and Gang Wang. "Android

Collusive Data Leaks with Flow-sensitive DIALDroid Dataset."

38

[28] Herbster, Raul, Scott DellaTorre, Peter Druschel, and Bobby Bhattacharjee. "Privacy

capsules: Preventing information leaks by mobile apps." In Proceedings of the 14th

Annual International Conference on Mobile Systems, Applications, and Services, pp.

399-411. ACM, 2016.

[29] Zhou, Yajin, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. “Taming

information-stealing smartphone applications (on android).” In International

conference on Trust and trustworthy computing, pp. 93-107. Springer, Berlin,

Heidelberg, 2011.

[30] Li, Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. “Automatically

exploiting potential component leaks in android applications.” In Trust, Security and

Privacy in Computing and Communications (TrustCom), 2014 IEEE 13th

International Conference on, pp. 388-397. IEEE, 2014.

[31] Enck, William, Peter Gilbert, Seungyop Han, Vasant Tendulkar, Byung-Gon Chun,

Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. “TaintDroid:

an information-flow tracking system for realtime privacy monitoring on

smartphones.” ACM Transactions on Computer Systems (TOCS) 32, no. 2 (2014):

5.

[32] Kim, Jinyung, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and S. W. R.D. Center.

“ScanDal: Static analyzer for detecting privacy leaks in android applications.” MoST

12 (2012).

[33] Gibler, Clint, Jonathan Crussell, Jeremy Erickson, and Hao Chen. “AndroidLeaks:

Automatically Detecting Potential Privacy Leaks in Android Applications on a Large

Scale.” Trust 12 (2012): 291-307.

[34] Lu, Long, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. “Chex: statically

vetting android apps for component hijacking vulnerabilities.” In Proceedings of the

2012 ACM conference on Computer and communications security, pp. 229-240.

ACM, 2012.

39

[35] Zheng, Cong, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,

and Wei Zou. “Smartdroid: an automatic system for revealing ui-based trigger

conditions in android applications.” In Proceedings of the second ACM workshop

on Security and privacy in smartphones and mobile devices, pp. 93-104. ACM, 2012.

[36] Zhang, Yuan, Min Yang, Bingquan Xu, Zhemin Yang, Guogei Gu, Peng Ning, X.

Sean Wang, and Binyu Zang. “Vetting undesirable behaviors in android apps with

permission use analysis.” In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pp. 611-622. ACM, 2013.

[37] Rumee, Sarker T. Ahmed, and Donggang Liu. “DroidTest: Testing Android

applications for leakage of private information.” In Information Security, pp. 341-

353. Springer International Publishing, 2015.

[38] Yang, Kun, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan.

“IntentFuzzer: detecting capability leaks of android applications.” In Proceedings of

the 9th ACM symposium on Information, computer and communications security,

pp. 531-536. ACM, 2014.

[39] Wei, Fengguo, Sankardas Roy, and Xinming Ou. “Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of android apps.”

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, pp. 1329-1341. ACM, 2014.

[40] Vidas, Timothy, Jiraqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick

Tague. “A5: Automated analysis of adversarial android applications.” In

Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones &

Mobile Devices, pp. 39-50. ACM, 2014.

[41] Zhao, Shuai, Xiaohong Li, Guangquan Xu, Lei Zhang, and Zhiyong Feng. “Attack

tree based android malware detection with hybrid analysis.” In Trust, Security and

Privacy in Computing and Communications (TrustCom), 2014 IEEE 13th

International Conference on, pp. 380-387. IEEE, 2014.

40

[42] Cui, Xingmin, Da Yu, Patrick Chan, Lucas CK Hui, Siu-Ming Yiu, and Sihan Qing.

“Cochecker: Detecting capability and sensitive data leaks from component chains in

android.” In Australasian Conference on Information Security and Privacy, pp. 446-

453. Springer, Cham, 2014.

[43] Lindorfer, Martina, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick

Frantantonio, Victor Van Der Veen, and Christian Platzer. “Andrubis—1,000,000

apps later: A view on current Android malware behaviors.” In Building Analysis

Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third

International Workshop on, pp. 3-17. IEEE, 2014.

[44] Zheng, Min, Mingshen Sun, and John CS Lui. “DroidTrace: A ptrace based Android

dynamic analysis system with forward execution capability.” In Wireless

Communications and Mobile Computing Conference (IWCMC), 2014 International,

pp. 128-133. IEEE, 2014.

[45] Amini, Shahriyar. “Analyzing mobile app privacy using Computation and

Crowdsourcing.” PhD diss., Carnegie Mellon University, 2014.

[46] Lindorfer, Martina, Matthias Neugschwandtner, and Christian Platzer. “Marvin:

Efficient and comprehensive mobile app classification through static and dynamic

analysis.” In Computer Software and Applications Conference (COMPSAC), 2015

IEEE 39th Annual, vol. 2, pp. 422-433. IEEE, 2015.

[47] Bhandari, Shweta, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari, Partha S.

Roop, and Manoj Singh Gaur. “POSTER: Detecting Inter-App Information Leakage

Paths.” In Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, pp. 908-910. ACM, 2017.

[48] Clarke, Roger. “Internet privacy concerns confirm the case for intervention.”

Communications of the ACM 42, no. 2 (1999): 60-67.

[49] Lin, Jialiu. “Understanding and capturing people’s mobile app privacy preferences.”

PhD diss., Carnegie Mellon University, 2013.

41

[50] Felt, Adrienne Porter, Serge Egelman, Matthew Finifter, Devdatta Akhawe, and

David Wagner. “How to Ask for Permission.” In HotSec. 2012.

[51] Felt, Adrienne Porter, Kate Greenwood, and David Wagner. “The effectiveness of

application permissions.” In Proceedings of the 2nd USENIX conference on Web

application development, pp. 7-7. 2011.

[52] Fahl, Sascha, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd

Freisleben, and Matthew Smith. “Why Eve and Mallory love Android: An analysis

of Android SSL (in) security.” In Proceedings of the 2012 ACM conference on

Computer and communications security, pp. 50-61. ACM, 2012

[53] Nagappan, Meiyappan, and Emad Shihab. “Future trends in software engineering

research for mobile apps.” In Software Analysis, Evolution, and Reengineering

(SANER), 2016 IEEE 23rd International Conference on, vol. 5, pp. 21-32. IEEE,

2016.

