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INTRODUCTION 

 

During the research based on catalytic asymmetric organic synthetic methods, 

researchers have focused mainly on metal-mediated catalysis. Metal complexes 

have catalysed a wide variety of transformations stereoselectively. But with its 

positive part, there comes the drawbacks. Many catalytic metal complexes are 

difficult to remove from the products, they are highly toxic, and expensive [16]. 

Thus with the growing interest in the asymmetric synthesis of chiral molecules, 

there are still opportunities for the development of alternative approaches. 

Therefore lot of efforts are being made by different research groups to develop 

metal free ligands as potential catalyst for carrying out different synthetic 

transformations. This has opened up a new area of design and synthesis of organic 

molecules known as organocatalysts which can catalyse different chemical 

reactions by overcoming the limitations associated with the metal ligands. The 

field of organocatalysts has witnessed a substantial growth in the recent past [17, 

18, 19]. Various organic molecules have been reported in literature for their 

activity as organocatalyst like proline and its derivatives [20, 21], pyrrolidine and 

its derivatives [22, 23], natural products [24], etc. Out of these, proline and its 

derivatives have proved to be most favorable in catalyzing various reactions like 

Aldol [25, 26], Mannich [27, 28], Micheal [29, 30] and Robinson Annealation 

reactions [31] with better stereochemical control. L-proline and its derivative 

showed 99% ee. Also proline is inexpensive, it exists in both enantiomeric forms 

and its reactions can normally be done at ambient temperature. Literature survey 

has revealed that Aldol reaction can lead to the synthesis of intermediates which 

can act as starting material for various types of molecules of biological and 

medicinal use [32]. Therefore the main focus of the present work is to develop 

prolinamide derivatives to explore their use on rate of reaction as well as on the 

stereochemical output in case of Aldol reaction and check their utility for carrying 

out Aldol reaction and to study their effect on rate of reaction and 

stereoselectivity. 
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 LITERATURE REVIEW 

In early 1970’s L-proline catalysed intramolecular aldol cyclization was explored 

by Hajos and Parrish, called the Hajos-Parrish-EderSauer-Wiechert reaction. 

They isolated hydrindane dione (Compound-1, Fig-1). The experiment was done 

using 3 mole percent of L-proline in DMF. After 20 hours the reaction lead to 

96.5:3.5 enantiomeric ratio of aldol product (Compound-2, Fig-1). But the field 

did not expand even after getting such encouraging results. [1] 
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O
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Fig-1 

The interest on proline and its derivatives as a catalyst rekindled in 1990’s. Barbas 

performed the first Aldol reaction with acetone and 4-nitrobenzaldehyde in 

presence of 30 mole percent of L-proline. In this conditions the Aldol product 

gave 68% yield with 88:12 enantiomeric ratio (Fig-2). 
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Fig-2 

 

The conclusion drawn by Barbas and his co-workers was that the branched 

aliphatic aldehydes gave highest yield and enantioselectivity. The alpha 

unbranched aldehydes turned out to give less yield and medium 

enantioselectivity. Simple benzaldehyde showed enantioselectivity of 57%. The 



 
8 

 

presence of an electron withdrawing group in the benzene ring showed more 

enantioselectivity than the presence of an electron donating group. For example- 

p-nitrobenzaldehyde showed 71% enantioselectivity whereas methoxy 

benzaldehyde showed 48% enantioselectivity. [2] 

 

Benzamin List and his co-workers performed proline catalysed intermolecular 

Aldol reaction (Fig-3). Various conclusions that alpha unbranched aldehydes 

turned out to be difficult substrate and it did not provide the corresponding Aldol 

products under standardised conditions. Branched aldehydes gave upto 96% 

enatioselectivity whereas alpha unbranched aldehydes gave enantioselectivity as 

low as 67%. The attachment of a cyclic chain to an aldehydic group gave 

enatioselectivity upto 84%. [3] 
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Fig-3 

 

Barry M. Trost and Cheyenne S. Brindle compared many proline catalysed based 

reactions and concluded that the facts and findings of Barbas and his co-workers 

were right. Even after modifying the reactions with different temperature, 

pressure, substituting the groups etc., the end results were almost similar (Fig-4). 

[4] 
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Alberto Martinez and his co-workers set up two reactions to compare the effect 

of branched aldehydes and unbranched aldehydes. (Fig-5) 

 

R
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Fig-5 

 

The enantioselectivity for branched aldehydes was found to be above 90%. In the 

case of alpha unbranched aldehydes, the enatioselectivity went upto 70%. As the 

chain increased, the enantioselectivity decreased. Also when there was branching 

in the beta position, it decreased enatioselectivity further to 47% in comparision 

to 51% of the unsubstituted benzaldehyde. [5]    

 

Kazumasa Funabiki and his co-workers prepared a trifluoromethylated molecules 

using trifluoroacetaldehyde (CF3CHO). However, it was found that this method 

with CF3CHO had drawbacks as there was use of excessive amount of 

concentrated sulphuric acid under high reaction temperature. The generated 

aldehyde could not be stored as-at room temperature it was gaseous, it had high 

hygroscopicity and it was so highly reactive that it lead to self-polymerization.  
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Fig-6 

 

So to overcome their problem they used L-proline for catalysing direct 

asymmetric Aldol reaction of trifluroacetaldehyde ethyl hemiacetal with ketones 

which were not modified (Fig-6). This produced beta-hydroxy-beta-

trifluoromethylated ketones with good diastereoselectivity (nearly 96% de) and 

enantioselectivity (nearly 91% ee). [6] 

 

S. Chandrasekhar, Ch. Narsihmulu, N. Ramakrishna Reddy and S. Shameem 

Sultana did Aldol reaction catalyzed by L-proline. They used di-acetone as one 

of the reactants. (Fig-7).  
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Fig-7 
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Various aromatic aldehydes and aliphatic aldehydes were studied for the above 

reaction and the aldol adducts were isolated having good yields (nearly 40–91%) 

and good enantiomeric excess (nearly 48–86% ee). [7] 

 

Kegang Liu and his co-workers worked on proline derivatives as a catalyst during 

Aldol reaction. They used proline derived beta-cyclo dextrin conjugate covalently 

linked by a urea spacer. It was used as a water-soluble, effective catalyst for 

highly enantioselective aldol reactions between aldehydes and acetone in aqueous 

media. He compared the catalyst by changing the ‘R’ groups (Fig-8). Studies 

found that when R=H was tested with different solvents, it gave more 

enantioselectivity. 
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Fig-8 

 

The results showed that the electron withdrawing group in the para position of 

benzaldehydes furnished the corresponding Aldol adducts in high yields. Even if 

the halogenated 4-fluorobenzaldehye and 4-chlorobenzaldehyde resulted in low 

yields but the eantiomeric excess varied from 77% to 82%.The stereoselectivities 

of electron rich derivatives of benzaldehyde was high because of their higher 

binding ability. High yield and enantioselectivity was also found in unbranched 

aliphatic aldehydes but the branched and bulky aldehydes were least reactive 

substrate for the given reaction. [8] 
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Tumma Naresh and his co-workers worked on two new pyrrolidine derivatives 

azidothymidine (AZT)-prolinamide 9a and 9b (Fig-12). The reaction had very 

slight variation in reaction time , yield and selectivity when there was change in 

slovent system. The reactions with catalyst 9a were found to be better than those 

catalyzed by 9b (Fig-9). 
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Fig-9 

The presence of electron withdrawing group in the ring gave better results than 

electron donating groups attached to the ring. Like nitro group attached to the ring 

gave 81% yield and 91% ee with catalyst-9a whereas attachment of methoxy 

group to the ring gave 77% yield and 75% ee with catalyst-1. [9]  

 

Togapur Pavan Kumar and his co-workers did further research on prolinamides. 

They did direct Aldol reaction between cyclohexanone and p-nitrobenzaldehyde 

which proceeded well in all solvents giving products having high yields and 

selectivities (Fig-10). 
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Fig-10 

Their results showed that the reaction proceeded at room temperature with 20 mol 

% of catalyst 10a and 5 mol % of benzoic acid in a solvent free medium leading 

to the product having 94% yield (95:5 anti/syn) and 93% enantiomeric excess. 

[10] 

 

Pascuala Vizcaíno-Milla and his co-scientist used recoverable Pyrimidine-

derived Prolinamides as a bifunctional organocatalysts  for enantioselective Aldol 

reactions having no slovent. They studied the two catalyst 11a and 11b (Fig-11). 

It was found that catalyst 11b was more productive than 11a.  The recovery of 

catalyst 11b was done by carrying out 1g scale reaction between cyclohexanone 

of 4-nitrobenzaldehyde. The reaction took place in 36 h with  51:1diastereotopic 

ratio; 83% yield of pure anti-aldol was obtained after recrystallization and anti-

product was obtained with 95 % enantiomeric excess. After workup, the yield of 

the recovered catalyst 87 %. While the reaction was completed there were 

different observations. Cyclohexanone reacted with aromatic aldehydes forming 

corresponding anti aldols in good yields (up to 56–94 %), good 

diastereoselectivities (90:10 to 96:4) and good enantioselectivities (99 %). 

Whereas cyclopentanone reacted with p-nitrobenzaldehyde to give mainly syn-

aldol under prolinamide. Catalysis gave 91% and 30% ee for anti and syn product 

respectively. [11] 
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Fig-11 

 

 

Liu Hua and his co-workers did extensive work on asymmetric Aldol reactions. 

They worked basically on 2, 2, 2-trifluoro-1-phenylethanone. The trifluoromethyl 

group, due to its electron-withdrawing nature, increased the positive charge 

density on the carbonyl carbon thereby increasing the reactivity in proline 

catalyzed intermolecular aldol reaction (Fig-12). 
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Fig-12 

 

The reaction proceeded with acetone and 2,2,2-trifluoro-1-phenylethanone at 

room temperature. After 4 hours the aldol product was formed and giving 

quantitative yield with 49% ee. When the same reaction proceeded in -20 degrees 

with increase of ee%  to 64%. Also when R was replaced by –CH3CH2 group and 
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Ar was replaced by p-ClC6H4 then the ee% decreased to 3.4% at room 

temperature. [12] 

 

Demetrios D. Chronopoulos and few other scientsts did aldol reaction based on 

Fullerene–proline hybrids. There was study of three different C60 proline catalyst 

giving its various characterizations. It was observed that using C60–proline 

organocatalyst 13b during the Aldol reaction gave aldol product with higher 

enantioselectivity than reference organocatalyst 13c (Fig-13). When C60–proline 

13a was used as the organocatalyst there was moderate enantioselectivity.  
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Fig-13 

 

This was because the latter had steric hindrance by the proline unit which was in 

closer to the fullerene sphere, thus, preventing to catalyze the reaction with high 

enantioselectivity. Moreover, there was significant rate acceleration (2 h instead 

of 42 h) of the Aldol reaction in aqueous medium. Their main focus was to 

increase the yield of Aldol product in presence of DMSO and enhancing the 

enantioselectivity in water. [13] 

 

Haydee Rojas Cabrera and co-workers reported a homochiral L-prolinamido-

sulfonamides  as organocatalysts which was used in aldol reactions. 

Organocatalysts 1–7(Fig-14) were prepared from enantiomerically pure (R, R)-

11, 12-diamino-9, 10-dihydro-9, 10-ethanoanthracene. They evaluate based on 

the optimization process of organocatalysts 14a-14i (10 mol %) in a solution of 
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dichloromethane, acetic acid (20 mol %) and H2O (1.0 equivalent) (Fig-14). The 

Aldol reaction resulted in high yields (92-97%) and good enantioselectivities 

(84–90%). They made an observation that different substituents did not have 

much effect on the organocatalysts. Organocatalyst-14d gave highest catalytic 

effect where maximum yield of 97% along with enantioselectivity of 90%ee were 

observed. The minimum ee of 84% with maximum yield 97% were recorded in 

case of catalyst-14e, which bearing bulkier and electron rich group, (tri (iso) 

propyl) phenyl. [14] 
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Fig-14 

 

LIU Ling and his co-workers worked on L-Proline catalyzed Aldol reactions 

between acetone and aldehydes using supercritical fluids (Fig-15). 
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Their experiment resulted with aldol product having 84% enantioselectivity.  

Also the process did not use the high-boiling-point polar solvents like DMSO. 

Even the reaction showed efficiency with 15 mol% catalyst. Their results 

illustrated tha the high- pressure technique was an effective way to promote the 

above type of asymmetric catalysis. [15] 

 

 

OBJECTIVE 

The literature survey has revealed that the proline and its derivatives proved to be 

the potent organocatalysts for carrying out various synthetic transformation. But 

derivatives which imparts better yield suffer with fair control on the 

stereoselectivity and the catalysts having better control on the stereochemical 

output suffer with the lesser yield. Therefore, there is still a need to develop new 

prolinamide derivatives which can give greater stereochemical control over the 

reaction with desired yield.  

The objectives of the present work are as follows.  

1. To synthesize L-proline derivatives from commercially available L-Proline 

and amine via multiple step synthesis, by varying the amide moiety. 

2. Characterization of synthesized L-prolinamide derivatives by using 

various spectroscopic techniques like IR, NMR etc. 

3. To study the effect of L-Prolinamide derivatives on rate of reaction of aldol 

reaction between acetone and P-nitrobenzaldehyde. 

4. To study the effect of L-prolinamide derivatives on stereochemical output 

of Aldol reaction. 
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PLAN OF WORK 

 

Stage-1: Synthesis of Prolinamide derivatives 

In the first stage, commercially available L-proline will be protected as L-Boc –

proline under basic conditions at nitrogen end to make carboxylic end available 

for its participation for amide coupling by using different amines via DCC 

coupling. Once the desired amide formation takes place, the final stage will be 

the deprotection of the BOC under acidic conditions to get the desired 

prolinamide derivatives as potential organocatalysts (Fig-16). 
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Fig-16 

 

Stage-2: Characterization of the synthesized prolinamide derivatives 

The prolinamide derivatives synthesized in stage-1 will be subjected to different 

spectroscopic tecgniques like 1H-NMR, IR etc for their structure elucidation. 

Stage-3: Study of Aldol reaction of acetone and p-nitrobenzaldehyde in the 

presence of synthesized prolinamide derivative 

The synthesized prolinamide derivatives will be studied for their effect on of 

Aldol reaction between p-nitrobenzaldehyde and acetone in terms of rate of 

reaction and stereochemical output (Fig-17). 
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Fig-17 

 

WORK DONE TILL DATE 

 

Stage-1: Synthesis of prolinamide derivatives 

 

Step-1: Protection of L-Proline 

N
H

O

OH

+ NaHCO3 +

O O O

O
O

N

O

OH

O O

L-proline di-tert-buty-dicarbonate
BOC-L-proline

THF

 

Fig- 18 

 

Procedure- 

 

1 g (0.008mol) of L-proline was dissolved in the mixture of 10 ml of water and 

40 ml of THF at 30oC. 0.803g of sodium bicarbonate (1.1 mol) was added to 

reaction mass after 5 minutes and the reaction mass was stirred for 10 minutes. 

2.08g (1.1mol) of BOC anhydride was added to reaction mass and the solution 

was stirred for 8 hours. The progress of the reaction was monitored by TLC in 

9:1 DCM:MeOH mixture. After the reaction was complete, pH of the reaction 

mass was maintained at 5-6 with the help of 10% citric acid solution. Added 

100ml of ethyl acetate and stirred the reaction mass for 10 minutes. The ethyl 
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acetate layer was separated and distilled under reduced pressure at 55-60oC to 

isolate crude L-BOC-Proline as white solid. 

 

Results: 

 

TLC- 

   

 

Experimental Yield = 1.56g 

Theoretical Yield = 1.86g 

Percentage Yield =75% 

Melting point= 1370C 

Characteristic IR peaks (cm-1, KBr): ѵ(C=O acid) 1741, ѵ(C=O amide) 1638, ѵ 

(C-O-) 1164, 1129 

TLC-1: For BOC-Proline 

Distance travelled by solvent= 5.8 cm 

Distance travelled by reactant= 2.4cm 

Distance travelled by reaction mass= 4.6cm 

Rf for reactant= 0.428 

Rf for product= 0.793 

 



 
21 

 

 

 

  

 

 

Step-2: Synthesis of BOC-proline derivative 
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Fig-18 

 

 

Procedure: 

A mixture of 0.500g BOC L-Proline and 0.376g (0.9mol equivalent) 2-amino-

6methoxy benzothiazole in0.479mL (1.2mol equivalent) DiPEA was dissolved in 

10mL DCM. The reaction was stirred for 5minutes. Simultaneously a solution of 

0.527g (1.1mol equivalent) DCC and 10mL of DCM was prepared. This solution 

was added to the first solution dropwise (in 30-40minutes). The reaction was 

stirred for 4-5hours. The progress of the reaction was monitored by TLC in 5:5 

Hexane: ethylacetate mixture. When the reaction was complete, workup was 

done.20mL DCM and 10mL H2O was added to the reaction mixture and stirred 

for 10minutes.Lower layer of DCM was taken and 10% NaHCO3 was added. 

Again it was stirred and the lower layer of DCM was taken and treated with 5% 

acetic acid. The lower layer was separated and given a wash with 10mL H2O. 

Then the solvent was removed by rotavapor and brownish solid of the required 

product was left behind. 
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Results: 

TLC- 

 

 

Experimental Yield = 0.35g 

Theoretical Yield = 0.787g 

Percentage Yield =44% 

Characteristic IR peaks (cm-1, KBr): ѵ (O-H stretching) 3364, ѵ(C=O amide) 

1699, ѵ(C=O acid) 1647, ѵ (C-O-) 1166, ѵ (C=C stretching) 1647 

From the characteristic peak of C=O of amide and acid we can conclude that the 

required product was obtained. 

 

TLC-2: For BOC-L-Proline derivative 

Distance travelled by solvent= 5.6 cm 

Distance travelled by reactant= 3.4cm 

Distance travelled by reaction mass=0.9 cm 

Rf for reactant= 0.642 

Rf for product= 0.16 
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Stage-2: Optimization of reaction condition for Aldol reaction 

NO2

CHO

O

+ L-Proline

O2N

HO

H

O

 

Fig-19 

Procedure:  

Prepare two mixtures containing 10mL acetone, 500mg 4-nitrobenzaldehyde 

and 10mg L-Proline. Stir the mixture. In one of the reaction mass add 1mL H2O 

and in other mixture add 2ml H2O. It was observed that the mixture having 1mL 

took nearly 10hrs for completion whereas the 2mL took 6hrs for completion. 
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Therefore, the reaction mass having 2mL of water was considered to be 

optimized reaction. 

TLC- 

  

 

   

TLC-3: For addition of 1mL in Aldol reaction 

Distance travelled by solvent= 2.8 cm 

Distance travelled by reactant= 2.4cm 

Distance travelled by reaction mass= 1.6cm 

Rf for reactant= 0.92 

Rf for product= 0.57 

 

TLC 4: For addition of 2mL in Aldol reaction 

Distance travelled by solvent= 5.2cm 

Distance travelled by reactant= 4.5cm 

Distance travelled by reaction mass= 2.4cm 

Rf for reactant= 0.865 

Rf for product= 0.461 
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