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ABSTRACT 

 

Software effort and cost estimation is one of the critical tasks in the software development 

process but still their computation technique and its accuracy are challenging. It is an 

important aspect of the software development estimation which determines the overall 

time and effort required and development cost of the software project. 

Since, the early and widely used techniques are the parametric or algorithmic, 

implemented using mathematical equations based on the data of already developed 

projects, like COCOMO, SLIM but they lack in the robustness as well as the 

effectiveness. Hence this led to the exploration of the non algorithmic models for the 

accurate software effort and cost computation. 

The aim of this study is to propose an alternative approach for software effort and cost 

estimation using the artificial neural networks. Artificial Neural Networks are particularly 

useful in modelling complex non linear relationships and provides high degree of 

accuracy, reliability and flexibility as the software project progresses and the 

requirements are elaborated. The results can be analysed using different accuracy 

criterions on the performance plots. 
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Chapter 1   

INTRODUCTION 

This chapter gives a description of Software estimation parameters like software size, 

effort and cost estimation, software schedule including approaches for their efficient 

computation. 

 

1.1 Software Estimation  

Software estimation is one of the most crucial aspects of the software project 

development. Software project management and control are not feasible without reliable 

estimates. 

It includes the estimation of software size, cost, effort and schedule involved in the 

development of the software [Brykczynski et al.,2006]. The precise effort estimation of 

the software project is the one module that needs more attention. 

Software development estimation is classified as: 

 Software Size 

 Software Effort 

 Software Cost 

 Software Schedule 

 

1.1.1 Software Size 

Software Size is the predictable size or length of the piece of software. Size can be said as 

the inherent feature of the software piece like weight as the inherent feature of a 

substantial material. It is a vital characteristic of the software because it affects staffing, 

budget and duration for the project. 

The metrics currently being used for determining the software size are Lines of Code 

(LOC), Function point (FP) and Object Points [Abran et al.,2009]. Size should be 

calculated as precise as possible since it is the basis for effort and cost estimation. 

 

i) Lines of Code 

Line of code is the most popular software size indicator. It measures the software size 

simply by counting the number of source instructions in the code of the software project.  
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It is the program length which effectively predicts the effort as well as the ease of 

maintenance. 

 

Source Lines of Code 

This software metric keeps an account of the total number of lines in the source code of 

the program [Gencel et al.,2006]. 

Two types of SLOC are: 

a) Physical SLOC: This includes the number of lines in the source code of the program 

with comments and even blank lines in special cases. 

b) Logical SLOC: This includes the number of “executable” lines in the program’s source 

code. It varies for different programming languages. 

For C or C++, logical SLOC can be stated as the number of statements ending with the 

semi colon. 

The models used for SLOC calculation are analogy model, bottom-up model, expert 

judgement model and parametric model. 

Other metrics are: 

 KLOC (Thousand Lines of Code) for 1,000 Lines of code: It is the estimated number 

of deliverable lines of code for project. 

 MLOC (Million Lines of Code) for 1,000,000 Lines of Code 

Though, LOC can be easily determined after the completion of the project but 

determining it at the early phase of the project is tough. 

 

ii) Function Points 

Function Point facilitates the determination of the size of project independent of the 

language used in coding. It works by counting the number of externals (number of inputs, 

number of outputs, number of inquiries, number of files, and number of interfaces) that 

make up the software system [Symons et al.,1991]. 

Function Point Analysis 

a) Account the occurrence of each external. 

b) Assign the complexity weight to each occurrence. 

c) Multiply complexity weights and occurrences (function count is obtained). 

d) Multiply function count and value adjustment factor to obtain function point count. 

V=   
  
   *0.01+0.65 
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where vi is rating of 0-5 dependent of some factors affecting software size. 

 

Table 1.1: Factors of function point analysis 

 Multipliers 

Externals Low Average High 

Input(I) 3 4 6 

Output(O) 4 5 7 

Inquiry(I) 3 4 6 

Number of files(F) 7 10 15 

Number of 

interfaces 

5 7 10 

 

ii) Object Points 

Object points are developed by Banker et al,1994. They are conformed for object oriented 

software. 

Steps for object point analysis: 

a) Count all instances for each object type. 

b) Assign a complexity weight to each object. 

c) Add complexity weights of all objects to obtain Object-Point (OP). 

d) Product Object Point (OP) and Reuse Factor (RF). 

e) If the program is not new, calculate New Object Point (NOP). 

NOP = OP (1 – RF) 

f) Expected productivity cost is calculated using New Object Point, that is, 

Effort = NOP / Productivity cost 

 

iii) Halstead Software Science Model 

Halstead estimated the number of errors in the program using the source code length and 

also the volume metrics using primitive measures [P. G. Hamer,1982]:  

The length of the program code can be defined as: 

N= N1+N2 

where, N1= number of operator occurrences, 

            N2= number of operand occurrences 
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The program volume corresponds to the amount of required storage space and is defined 

as:  

V = N log(n1+n2) 

where, n1= number of distinct operators in the program,  

            n2= number of distinct operands in the program. 

This model has got decreasing use and support in the recent years. 

 

1.1.2 Effort and Cost Estimation 

A sound project should be well constrained within budget and required effort. 

By definition, Effort estimation is the phenomenon of computing the realistic effort 

required for developing and maintaining the software systems and their duration.  

The estimates can be done using the following two approaches [Jørgensen ,2004]: 

 Top-Down Estimate: It includes algorithmic models and analogies. An algorithmic 

model may have one or more formulae based on productivity factors or software size. 

 Bottom-Up Estimate: It includes the disintegration of a large schedule and the overall 

effort comes out by summing up the computed effort for an individual activity of the 

component tasks. 

 

Prediction Models 

The software effort and cost prediction for a project falls under the following two 

categories [Ramesh K. et al,2014]: 

Algorithmic or Parametric Modelling, and 

Non Algorithmic Modelling 

 

 Algorithmic or Parametric Modelling 

Parametric models are implemented using the mathematical equations based on the data 

of already developed projects. 

They are represented using: 

i) Holistic Models 

The different holistic models are beneficial for new organizations for which the baseline 

data from historical projects is unavailable. It does not consider the individual activities 

regarding the software project for effort prediction. 
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Table 1.2: Holistic Models for Effort Estimation 

Name of the Model Introduced By Year 

SDM (Software Development Model) Putnam 1978 

SLIM (Software Lifecycle Management) Putnam 1979 

COCOMO (Constructive Cost Model) Boehm 1981 

COPMO (Cooperative Programming Model) Conte, Dunsmuir, Shen 1986 

Of the all holistic models, COCOMO is best known parametric model and is widely used 

[Boehm, 1981]. 

 

ii) Activity-Based Model 

These activity based models are dependent of the data from the previous projects for 

accurate effort computation. They consist of the standard development rates for the 

organizations. 

This can be formulated as: 

 

Effort =   
  

    
  

   i,new •SLOCnew  +   
  

    
  

   i,reused •SLOCreused 

 

where (PH/SLOC)i,j is the labour rate for activity i and class j (j can be new or reused), 

and (SLOC)j  is the estimated size (in SLOC) of code for the class j. 

The effort calculated will be in person hour unit.   

 

 Non Algorithmic Modelling 

The non algorithmic methods are based on soft computing [Masoomi,Z.,2013]. The data 

from the previous projects might be used and are flexible to the changing circumstances 

during the software development process. They produce efficient results for effort 

prediction. 

Major categories of non algorithmic models are: 

 

i) Neural Network Based Models 

These are the computational models inspired by central nervous system capable of the 

machine learning and pattern recognition with the functionality similar to that of the 

human brain [Bawa, A et al.,2012]. Most of the neural network based techniques uses 

back propagation algorithms. 
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ii) Evolutionary Computation 

Evolutionary Computation is a subfield of artificial intelligence that includes the different 

optimization problems. It uses iterative progress, such as growth or development in a 

population. Since the evolution can produce highly optimised process and networks, it is 

used for the software development estimation. 

The techniques used can be: 

 

a) Evolutionary algorithms: They are the heuristic search techniques that imitate the 

analogy of natural evolution. They implement the principle of survival of the fittest. It is a 

method for solving the parameter optimization problems [Liu, J. et al.,2005]. The main 

advantage is that evolutionary strategies can easily control the parameters to self adapt 

rather than changing their attribute values using other deterministic algorithms. After 

investigating the evolutionary algorithms, postulates regarding why EAs perform up to 

the mark are given as: 

 Selection process yield good solutions 

 Candidate solutions provide independent sampling 

 Partial solutions can be modified and integrated via genetic operators 

b) Genetic algorithms: They are based on the evolutionary concepts of natural selection. 

They portray an intelligent exploitation of the mechanism, random search used to 

minimize optimization difficulties [Choudhary K.,2010]. GAs exploits historical data to 

direct the search into the space of better performance in between the search region. After 

examining the inter relationship between parameters of the software models, it is observed 

that effective software effort is obtained using GA. 

c) Swarm intelligence: The particle swarm optimization was introduced by Eberhart and 

Kennedy in 1999, it is inspired from the imitation of social behaviour. Particle defines a 

prospective problem solution shifting through n-dimensional region. Each particle  shares 

details about the search space. The speed of the particle gets updated as per their and their 

neighbours preceding best position. It is the only evolutionary computation techniques 

that do not follow survival of the fittest.  
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iii) Case Based Reasoning 

It is necessary that effort or cost estimation models should deal with the uncertain and 

undefined attributes of the software engineering. Case Based Models are specifically 

useful when it is complex to state concrete rules regarding the problem domain, also it 

may consider expert advice for complementing the available knowledge [Rashid et 

al.,2012]. 

Case Based Approaches takes data from the previously developed projects. The project 

estimator identifies the completed projects with similar characteristics to the new 

developed project. The effort of the matching source case is further used for the base of 

the new project. This is a good approach when you have information about some previous 

projects but not good enough to draw the generalised conclusions about the vital cost 

drivers or the productivity rates. 

 

iv) Fuzzy Logic Models 

These models are based on fuzzy logic. It is a form of many-valued logic; dealing with 

reasoning that is approximate rather than fixed and exact. The fuzzy logic variables may 

have a truth value that ranges in degree between 0 and 1. 

Fuzzy logic based models are suitable for approximate and indistinct data. Integrating 

fuzzy constituent with intermediate COCOMO have improved the accuracy while 

computation of the software effort [Hamdy et al.,2010]. FL offers several unique features 

that make it a particularly good choice: 

 FL can control nonlinear systems that would be difficult or impossible to model only 

using equations. This initiates control systems that would be deemed not possible for 

automation. 

 FL is not only constrained to few feedback inputs and one or more control outputs, nor 

is it necessary to measure rat of change attributes  in order for it to be implemented.  

 It is inherently robust because it does not require accurate, noise-free inputs and it is 

programmed to fail safely if a feedback sensor quits or is destroyed. Output control is a 

smooth function despite a wide range of input variations. 
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Table 1.3: Advantages and Disadvantages of Existing Techniques [Maitreyee et 

al.,2013][Khatibi et al.,2011] 

Technique Type Advantage Disadvantage 

COCOMO 

Levels 

Parametric Fair results, Commonly 

used 

Huge data is needed, Not 

adaptable to every project 

Expert 

Judgement 

Non 

Parametric 

Quick prognosis, Suitable 

for some exclusive projects 

Completion depends on 

expertise 

Function 

Point 

Parametric Works with almost all 

software languages, Better 

prediction than SLOC 

Difficult computerization, 

Quality results are not 

achieved 

Analogy Non 

Parametric 

Concepts based on real 

project experiences, not 

necessary to have special 

expert 

Require details and 

information from legacy 

projects 

Top-Down Non 

Parametric 

Requires least project 

information, Easy and quick 

to implement 

Less information specific 

Not much substantial 

Bottom-Up Non 

Parametric 

Highly substantial, More 

information specific 

System level costs may not 

be considered, Effort and 

time consuming 

Neural 

Networks 

Non 

Parametric 

Homogeneous with variant 

data, Power reasoning 

No specific guidelines for 

network design, Performance 

is dependent of training 

dataset 

Fuzzy 

Approach 

Non 

Parametric 

Flexible method, Robust, 

Can control non-linear 

systems, Training of data is 

not necessary 

Complex to use, Hard to 

maintain the degree of 

relevance or significance 

Parkinson Non 

Parametric 

Corresponds with the 

experience 

Lack realistic estimates 

Price to 

win 

Non 

Parametric 

Gets the contract easily Delay in project delivery, 

Development team have to 

overtime for completion 
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The cost of software projects is deduced by the cost of developing the software. In some 

projects, other kind of costs may incur referred as overhead costs. The overhead costs can 

be cost of software and hardware equipments and supplies, company overheads required 

for office area, administration, etc.[Kemerer et al.,1993]. 

The cost of software project is simply obtained by multiplying the estimated effort (in 

person-month or person-hour) with the constant labour or manpower cost. 

Cost = Estimated Effort x Manpower Cost 

So with this reason, we focus on estimating the precise software development effort. 

 

v) Parkinson’s Method 

The Parkinson's principle states that, if the work extends to occupy the available volume, 

the project cost is predicted with the current resources instead of the objective assessment.  

For say, if the software project has to be completed in 6 months and only 5 people are 

capable for work, the calculated effort would be 30 person-months. Inspite of generating 

fair estimation, this approach is not followed widely since it lacks realistic estimates 

[B.W. Boehm et al.,1996]. 

 

vi) Price to win Method 

As per this cost estimation method, the software cost is calculated as the best price to win 

over the particular project. The cost estimation is based on the customer's allocation rather 

than the software functionality [Khatibi et al.,2011]. 

For say, if the software effort estimation for a specific project comes out to be 100 person-

months but customer is able to afford only 60 person-months, the estimator would try to 

fit 60 person-months effort so as to win the project. Resultantly, this approach may cause 

insignificant delay in project delivery or may lead the development team to overtime for 

project completion. 

 

In absolute sense, there is only comparison between various approaches but still none 

model perform best at software development effort as well as cost estimation. All the non 

algorithmic approaches are nearly competitive. Table1.3 gives an overview of the existing 

techniques of the software effort and cost estimation. They are widely used for hybrid 

approaches and analysed to obtain effective software effort computation. 

Some of such approaches include: 
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 Generalized Regression Neural Network Model [Reddy et al.,2010] 

 COCOMO II tuned with radial basis function network by Gupta U. 

 Radial Basis Function Network with regression and clustering algorithms 

 Radial Basis Function Neural Network with Genetic Algorithm [Molani et al.,2014] 

 Grey relation analysis (GRA) technique with regression and GRA with fuzzy logic 

[Nagpal G. et al.,2014] 

 

1.1.3 Software Schedule 

The software schedule is estimated with the Gantt charts, Network diagrams, PERT 

Charts, Critical Path Methods developed using the various tools. 

 

1.2 Introduction to Neural Networks 

Artificial neural network is a computational conformity inspired by the framework, 

processing and learning potentiality of human brain. 

Such networks are described using the type and number of the neurons representing the 

linkage between the individual elements and the learning algorithms applied to data to be 

used within the network. Each neuron consists of a non linear transfer function which 

gives an output as a resultant of the number of input values at the neuron unit. A weight is 

allotted to each input value in the connection. The characteristic feature of such neural 

network organization is that they can learn from the historical project data and its 

attributes. 

 

 

 

Fig. 1.1: Structure of an Artificial Neural Network 
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Artificial neural networks are the data modelling tools which are capable of depicting and 

representing even the complex input/output equations. The main advantage of the neural 

networks is that they can hold both non linear as well as the linear relationships. 

ANNs are preferred because of several characteristics, like they are fault tolerant, 

generalization and learning capability, tremendous parallelism. 

 

There exist numerous types of neural networks as described in Fig. 1.2. Neural networks 

majorly used for software effort and cost computation are Cascade Feed Forward, Elman, 

Recurrent and Feed Forward Artificial Neural Networks. 

Other ANNs used for effort and cost calculations are Back Propagation ANN, Wavelet 

neural networks. 

 

Fig. 1.2: Topology of Neural Networks 

Neural Networks 

Feed Forward 
Networks  

Single Layer 
Perceptron 

Multi Layer 
Perceptron 

Radial Basis 
Function Nets 

Recurrent/ Feedback 
Networks 

Competitive Models 

Kohonen's SOM 

Hopfields Network 

ART Models 



12 

 

 

A neural network for performing any specific functionality can be trained by adjusting the 

weights, i.e., values of the connections between individual elements. Generally, the 

artificial neural networks are trained or adjusted in order to generate input a specific target 

output from the input given. A neural network can be adjusted on the basis of a 

comparison of the target element and the output, until the target and the network output 

resembles each other. Most times such input/target pairs are applicable in the supervised 

learning for training the neural network. Batch training of such network can be done by 

altering the weights and bias on the whole batch of input vectors. Incremental training 

modifies the weights and biases of a network as per the requirement of the different input 

vectors. Incremental training can also be called adaptive training [Subitsha et al.,2014]. 

 

1.2.1 Learning in Neural Networks 

The neural network connection weights and biases can be learnt from an arrangement of 

training representation. Various network structures have learning algorithm approaches. 

 

i) Supervised Learning  

The artificial neural network is arranged with a linear output for each input attribute. 

Weights are predicted to let the network to yield values approximate to the known precise 

values. For example, back propagation algorithm. 

 

ii) Unsupervised Learning  

This type of learning does not need a precise value associated with every individual input 

attribute in the training dataset. It examines the basic structure of data, relations between 

the data patterns, and then arranges the patterns into sub categories with the correlations. 

Kohonen algorithm falls into this category. 

 

iii) Hybrid Learning 

It is a blend of supervised learning with the unsupervised. The initial part of weight is 

calculated via supervised learning, whereas the biases are computed with the help of 

unsupervised learning. 
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1.3 Metrics for Assessment of Effort and Cost Estimation 

The evaluation for accuracy of the model can be computed using various similarity 

measures [Prabhakar, M. D, 2013]. 

Absolute Error is the indicator of the difference between the inferred value xo and its 

actual value x: 

 x = x0-x 

Relative Error is the ratio of mean absolute error to the mean value of the measured 

quantity: 

δa = Δamean/am 

 

Table 1.4: Different evaluation measures used for software effort and cost estimation 

Evaluation Measure Description Formula 

Magnitude of 

Relative Error (MRE) 

Difference between 

actual and estimated 

or predicted effort 

relative to the actual 

effort 

                                    

               
 

Mean Magnitude of 

Relative Error 

(MMRE) 

Considers the 

value for each 

observation in data 

distribution and is 

prone to individual 

prediction with 

numerous MREs 

 

     
 
 

 
 

 

Median Magnitude of 

Relative Error 

(MdMRE) 

Median measure is 

less prone to outliers 

while calculating 

the error. 

 

Median(    ) 

Mean Squared Error 

(MSE) 

It evaluates 

performance of an 

estimator/ predictor 

         
   

   

 
 

yi= vector representing N predictions, 

   = vector representing actual values 
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Root Mean Square 

Error (RMSE) 

It is the root of 

variance, so this is 

also called standard 

deviation. 

 

 

         
   

   

 
 

Mean Absolute Error 

(MAE) 

It is a measure of 

how far the 

estimated value lies 

from the actual 

values. 

 

 
    

 

   

     

    Predicted Value for point i 

    Actual Value for point i 

 

Balanced Relative 

Error(BRE) 

This measure gives 

the ratio of absolute 

and relative errors. 

      

          
 

  is the estimated effort and    is the 

actual effort 

Magnitude of Error 

Relative (MER) 

This error is relative 

to the estimate. 

 

                                    

                  
 

Mean Magnitude of 

Error Relative 

(MMER) 

It is mean of MER 

from N number of 

observations. 

 

     
 
 

 
 

Prediction Level 

(PRED(p)) 

Determines per- 

centage of estimates 

within a given level 

of accuracy and is 

obtained from 

relative error. 

Higher the value of 

predi(p) is better. 

 

 
 

N = total size of the data set 

K = number of programs with MRE 

less        than or equal to the magnitude 

of p 

 

Correlation 

Coefficient 

Measure of the 

strength of the 

relationship between 

two variables 

Higher value of correlation coefficient 

depicts stronger relationship 
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1.4 Organization of Thesis 
 

The dissertation report has been organized into following chapters:  

 

Chapter 1 gives introduction about aspects of software development like, software size, 

effort and cost estimation, and software schedule. A brief description of neural networks 

is also mentioned following the general metrics used for the performance evaluation. 

 

Chapter 2 outlines the extensive literature review regarding the different non parametric 

techniques used for the software effort and cost computation.  

 

Chapter 3 discusses the problem formulation, objectives of the study and the research 

methodology adopted for generating neural network based model for the estimation of 

software effort and cost. 

 

Chapter 4 highlights the results and discussion regarding various training functions used 

with the neural networks, their progress, and the performance plots. 

 

Chapter 5 is about conclusion of the research work and the future perspectives in this 

area. 

 

Chapter 6 is the list of references used in the dissertation completion. 
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Chapter 2 

 LITERATURE REVIEW 

This chapter highlights the literature review studied during the dissertation. 

 

Prasad Reddy PVGD et al. (2010) proposed neural network models using the Radial 

Basis and Generalized Regression. COCOMO81 dataset is used for analysis and 

comparing the results of the proposed model with intermediate COCOMO using different 

measures MMRE, Mean BRE and Pred(40). GRNN is used for function approximation. It 

constitutes a radial basis layer and a special linear layer. The first layer corresponds to that 

of the RBFN but second layer has as many as neurons as input/target vectors. Therefore, it 

is clearly portrayed that Radial Basis Neural Network gives better results with respect to 

evaluation measures than Generalised Regression Neural Network and Intermediate 

COCOMO.   

 

Jagannath Singh et al. (2011) analysed the performance of various Artificial Neural 

Networks (ANN) in the effort calculation. ANNs can efficiently map functions between 

dependent variable, effort and independent variable, cost drivers to use it for tool design 

for software estimation. It generalizes the training data set to predict unseen data.  Four 

types of ANN are pretended for NASA dataset using MATLAB. The four models used are 

Cascade forward ANN, Elman ANN, Feed forward ANN, Recurrent ANN. The trainlm 

algorithm is used for training ANN. The actual effort is evaluated with MMRE, RMSE, 

BRE and Prediction indicator. Cascade feed forward network showed the best among 

results among the four considered models for cost and effort estimation for software 

projects. 

 

Ekbal Rashid et al. (2012) proposed the estimation approach based upon the analogy. A 

case based reasoning model for the calculation of distinct effort for software projects have 

been developed using Euclidean and Manhattan distance. These distance measures use the 

knowledge base to figure out the matching cases for the input parameters. Case Based 

Reasoning (CBR) deals with the uncertainty and imprecision. It may use the expert 

knowledge as complement to available knowledge. CBR may involve Delphi, group 

consensus and other expert judgement methods. The CBR model is generally used when it 

difficult to define precise rules of the problem domain. The CBR is validated on a student 
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dataset and then evaluated using magnitude of MRE. The results are considered quite 

efficient as development time is a real complex attribute since it is dependent on human 

behaviour. For this approach, better results are obtained when large database is considered. 

 

Anupama Kaushik et al. (2012) proposed the use of back propagation trained feed 

forward neural networks for software cost estimation. The proposed model obliges 

COCOMO II model and enhances the software cost estimation. The model is implemented 

using the two validation datasets COCOMO and COCOMO NASA 2. Post architecture 

model of COCOMO II is considered. The back propagation method is used for training the 

samples and comparing actual values. The evaluation criteria used is Magnitude Relative 

Error (MRE) and Mean MRE (MMRE). The proposed model definitely outscored 

COCOMO model with comparable results. 

 

Venus Marza et al. (2012) proposed the neuro-fuzzy model for effort estimation using 

ANOVA. The expert knowledge, project data and the traditional algorithmic model as well 

as the fuzzy rules are put together into one general framework. The proposed model is 

compared with the four other models, viz, neural network model, fuzzy logic model, 

multiple regression model and statistical model. It is inferred that function point is the only 

aspect that influences the software development effort; however, the precise estimation 

should consider the various other elements like type of development, development 

language, and average number of developers worked on the project in the development 

environment. 

 

Amanjot Singh Klair et al. (2012) analysed the computer based techniques, Support 

Vector Machine (SVM) and k-Nearest Neighbour Approach (kNN) for effort estimation 

for software projects. These techniques facilitate an automatic and economic software tool 

for generating rank for software by formulating the relationships based on its training. 

kNN is an instance based learning, the object is classified by majority vote of its 

neighbours, as object is fixed at the most common class amongst the other k neighbours. 

Since the survey for various applications have been conducted using SVM and kNN 

models and it is found that the SVM performs way better than kNN technique with 

perspective of computation of effort involved in the software program development. 
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Sriman Srichandan (2012) proposed the construction of Radial Basis Function Networks 

for the effort and cost estimation of the software. The datasets used for case study are 

COCOMO81 and Tukutuku. Prediction indicator and MMRE are used for evaluation. . 

The width of the activation function and the neuron count in the hidden layer of the radial 

basis structural design influences the cost estimate obtained from them. Different 

mathematical equations are used for determining the width associated with Gaussian 

Kernels and it is clear that using unsuitable width would result in poor function 

approximation. The width should be chosen as per the number of projects covered by 

centres in region for monitoring the overlap between existing Gaussian kernels for 

adequate estimates.   

 

Mohd. Sadiq et al. (2013) analysed the organic projects with software size between 2-50 

KLOC written in C++ with value of LOC/FP equivalent to 64 for effort calculation. The 

applied approach is linear regression model predicting software efforts as well as the 

function point, i.e. Effort= -1.5 + 0.1804 FP. 0.1804 implies that it would cost 0.1804 man 

day to finish one function point and the software company can establish their own linear 

model by using their records. The value of function point can be computed as FP = a + b 

Effort. The relationship between the function point and effort came out to be highly 

positive correlation, that is, when value of first variable increases or decreases, predicts the 

same directional change for second one. 

 

Maitreyee Dutta et al. (2013) analysed Arificial Neural Networks (ANN) and Support 

Vector Machine (SVM) for the China dataset for software effort estimation. Various 

evaluation measures like MMRE, PRED(25), Correlation coefficient, etc. are being used 

for the comparison. Error back propagation method is used for the training of ANN. 

During the forward pass of this propagation algorithm, the weights are assigned in the 

network and in the backward pass; the weights are rectified and adjusted as per the error 

calculated. On the other hand, SVM takes a defined set of input attributes, which of two 

possible classes the input is a member of what makes the support vector machine a non 

probabilistic binary linear classifier. Resultantly, the model approach with smaller values 

of MMRE, MAE, RMSE and greater value for correlation coefficient is considered more 

suitable and efficient. 
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Usha Gupta et al. (2013) analysed the precise software effort estimation using radial basis 

function network (RBFN) integrated with the ANN-COCOMO II used for functional 

approximations. This technique highlights the functionality of COCOMO II with the radial 

basis clustering algorithms. The dataset used for training the RBFN is COCOMO II. 

RBFN training is quick to implement when both the stages of RBFN are treated with 

suitable algorithms. The clustering algorithms used for RBFN are K-means and APC-III. 

K-means computes the centre of the clusters by minimizing the distance between clusters 

whereas the APC-III is a one pass algorithm finding the radius of each cluster. Cluster is 

generated for each dataset. The number of generated clusters will be inversely proportional 

to the radius of cluster. RBFN is incorporated with the three clustering techniques, 

COCOMO, K-means (calculating mean value for the Gaussian function of network) and 

APC-III (estimation based on past projects by calculating radius function). RBFN yields 

more accurate results with the APC-III.  

 

Ridhika Sharma (2013) reviewed different non algorithmic models and observed that 

they are definitely more accurate and efficient than algorithmic ones for computing the 

software effort. Neural network models, fuzzy logic based models, genetic algorithm are 

discussed in this respect. Neural networks used are the back propagation algorithms and 

cascade correlation networks. Fuzzy logic models are generally used with vague and 

uncertain data. The fuzzy triangular membership function and the Fuzzy Inference System 

(FIS) developed using the COCOMO are explained. The fuzzy based COCOMO model 

and the COCOMO are compared using various membership functions, and it is observed 

that the fuzzy based COCOMO is a better choice for effort estimation. Genetic algorithms 

search heuristic that mimics the process of natural selection. These algorithms are not as 

efficient as fuzzy and ANN, they offer many limitations too. The outcomes from various 

research papers and journals proved that if neural techniques are used, MMRE value 

comes out to be comparatively better. In case of fuzzy approaches, when Gaussian 

membership function is used, lower MMRE is yielded. 

 

Tulin Ercelebi Ayyilidiz et al. (2014) proposed the early software effort and cost 

estimation approach using the problem domain concepts inherited from the use cases as 

developed during the requirement phase. The data of 14 CMMI level 3 certified software 
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development projects using object oriented development approach from defense industry 

have been used and their effort is computed using the UCP (Use Case Point) Analysis 

depicting better results with the proposed methodology than the UCP.  The results show 

that the correlation between the number of conceptual classes and number of software 

classes as well as actual software development effort is at peak. These correlations 

accounts that the software development size and effort can be dependent of number of 

concepts for the object oriented software projects. 

 

P. Subitsha et. al. (2014) reviewed five approaches, Multilayered Perceptron Network, 

Radial Basis Function Network, Extreme Learning Machines, Particle Swarm 

Optimisation and Support Vector Machines for the grand scale study to obtain 

unambiguous result for most suitable approach. The data used for the study have been 

taken from COCOMO II. After investigating about these techniques, accounting their 

strengths and weaknesses, it is said that the ordinary least squares methodologies are better 

than the non linear methodologies with respect to the performance. Though the evaluation 

measures depict minor differences in the absolute terms but they are of important notice in 

software cost and effort terms. A very simple approach of regression is accounted to be 

suitable because of incremental stepwise analysis as well as the statistical significance of 

testing the parameters. Thus it is suggested to concentrate more on the quality rather than 

clustering various predictive attributes. 

 

Geeta Nagpal et al. (2014) proposed that the analogy is one of the most suited software 

effort estimation approach when the project is not completely or poorly understood, 

calculating the effort from the like projects from the project warehouse. They have 

introduced espousing two approaches, viz., the one is predictive model based on Grey 

Relational Analysis (GRA) and regression and other deals with the uncertainty in the 

projects using combination of GRA and fuzzy set theory. GRA is a Grey System Theory 

technique which uses the point to point distance between cases. In first approach, the effort 

is calculated using k nearest projects from the sum total of n projects, and then regressing 

their effort of k projects while in the second approach, the grey relational coefficient 

makes use of the Fuzzy C-Means (FCM) algorithm to compute the distance between the 

projects. The research has been done on the six different datasets and it is found that it 

outperforms the algorithmic techniques. The outcome using both the approaches are 
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precisely treated to statistical testing using the Wilcoxon Signed Rank Test. Resultantly it 

is proved that the proposed models GREAT_RM and FuzzyGRA can be used at the early 

phase of the project when data is uncertain and they have shown enhanced effort 

estimation. 

 

K.P. Manju et al. (2014) proposed a linear regression model facilitating exponential 

transformation for the estimation of software effort from use case diagrams. The use case 

diagrams are inputs for software size and use case points are received as corresponding 

output. This can be efficiently used in initial phases of the software development life cycle 

for the accurate results from software effort calculation. As the linear regression finds the 

relationship between variables and for precise results of the regression, the data obtained in 

the effort should be distributed normally. Exponential transformation of data completes the 

normal distribution. The exponential function maps the relationship in which an inevitable 

change in the independent variable also gives the similar proportional change for the 

dependent variable. Linear Regression applied on the normalized data gives correct results. 

It is depicted that log linear regression model as well as the linear regression model with 

exponential transformation are efficient for software effort estimation. The proposed 

regression based model overcomes the disadvantages and is useful in improving the 

conformity of software effort calculation. 

 

Jayashree K.M. et al. (2014) proposed a simple analogy based software technique for the 

effort estimation of software projects. Algorithmic techniques like COCOMO, Use case 

point method lack flexibility and are not much understandable which gave rise to the 

introduction of non algorithmic techniques showing the relationship between cost drivers 

and effort. In such aspect, this paper have focussed on the Case Based Reasoning, also 

called estimation by analogy. They just gathered the data from past similar projects within 

a set of attributes namely number of images, team experience, number of developers 

involved, etc. and analyzed it. It is based on the principle “similar projects require similar 

effort”. The CBR is a four step process-Retrieve, Reuse, Revise, Retain. The variation in 

the values of the attributes for similar projects (past project and candidate project) lies 

within the fixed specified range. The distance with new candidate project is computed by 

adding up the differences in individual attribute values for every similar project defined. 

Thus the analogy based technique is quite simple and less time and effort consuming as it 
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determines the new effort value by comparing the already available effort values for the 

software projects. 

 

Maryam Molani et al. (2014) proposed a methodology for software effort and cost 

computation using the radial basis function (RBF) neural network and genetic algorithm 

(GA). They have designed software cost estimation models compatible with the 

COCOMO81 model using the methodology of RBF neural network and GA enabled the 

selection of most relevant attributes so as to enhance the training network. The proposed 

model has RBF trained as per the COCOMO81 dataset and further the reduced model is 

proposed on the basis of GA. Since training a RBF network is easier than training the 

multilayered perceptron network, thus involves two step learning process, i.e., input 

dataset determines the parameters for basis function and in next step, the weights are 

obtained. Further RBF network is generated using newrb function. GA following survival 

of the fittest selects the suitable attributes giving high network estimation results. Hence 

ANNs effectively models complex non linear relationships. 

 

Seyyed Reza Khaze et al. (2014) have proposed the approach of effort estimation using 

Particle Swarm Optimization and the effective counter measures of PSO and better results 

have been obtained than the COCOMO Model. In order to obtain good software quality 

and decreased costs, Software effort estimation is used for the support. The KEMERER 

dataset is used with the algorithms and evaluation criteria considered is MMRE of the 

software projects. 

 

Berna Seref et al. (2014) predicted the software effort using Multilayer Perceptron and 

Adaptive Neuro Fuzzy Inference System. The data sets used are the NASA with 93 

projects and Desharnais with data of 77 projects. The results depicted that MMRE of the 

Adaptive Neuro Fuzzy Inference System is lower than Multilayer Perceptron, where as the 

evaluation measure PRED(0.25) is higher for Adaptive Neuro Fuzzy Inference System. 

Hence, Adaptive Neuro Fuzzy Inference System yielded efficient results than the 

Multilayer Perceptron. 

The covered literature reviews numerous techniques for the effort estimation of a software 

project.  
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The software estimations are being developed since many years, yet obtaining the exact 

estimates for the software projects are challenging. It is difficult to compute effort in the 

initial phase of the software development when software product is unseen. Accurate effort 

estimation is critical because cost, time and manpower required for the software 

development also rely on it. The effort estimation techniques are based on algorithmic and 

non algorithmic modelling. For precise estimations, researchers are working for the 

development of the new models, improving the existing ones using soft computing or 

proposing hybrid approaches efficient for the software effort estimation. 

 

The scope of exploring the non algorithmic approaches for prediction of effort arises from 

limitations of the non-algorithmic approaches. Such limitations can be accounted as: 

a) Algorithmic approaches are incapable of handling the practical ambiguous conditions of 

the software projects. They are not efficient to handle explicit data and are devoid of 

reasoning capabilities. 

b) It is complex to model the inherent associations between subscribing factors using 

mathematical formulas. 

c) The parametric or algorithmic approaches are not as accurate and robust as they should 

be. 

d) Effort and cost computation of the developing projects depends majorly on adapting the 

model as per the needs of organization, using historical data which might not always be 

readily available. 

e) High error deflection is observed in parametric approaches. 

Hence, there is comparison between numerous approaches but still no best technique is 

evolved for the software effort estimation. Also, there is no universally acceptable approach 

evolved for accurate effort calculation for all types of software projects, i.e. projects for 

small scale, medium scale or large scale organizations. 
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Chapter 3 

  PRESENTWORK 

 

3.1 Problem Formulation 

In earlier researches, various limitations of the parametric approaches of the software 

effort as well as cost estimation were observed, as mentioned in previous chapter. Thus 

following problem is formulated to overcome such challenges and limitations.  

 

1. Model the neural network based models using efficient training functions for software 

effort and cost prediction.  

 

2. Yield the results using performance plots, regression plots, etc.  

 

3.2 Objectives of the Study 

In past researches, various limitations were observed, as mentioned earlier. Hence the 

problem is formulated to overcome such challenges and limitations.  

 

1. Study and Analysis of various evolved approaches for the effort estimation required for the 

development of software projects. 

 

2. Examine the various Software Effort Estimation Models based on the Artificial Neural 

Networks to overcome the limitations of algorithmic modelling. 

 

3. To implement the proposed model using MATLAB tool and validate its accuracy using 

evaluation metric MMRE for the software effort and cost estimation. 

 

3.3 Research Methodology 

Research is a logical, methodical and orderly search for new and useful information on a specific 

subject. It adds contribution to the existing knowledge. 

Research Methodology is one of the ways to interpret and resolve a research problem. 

 

In order to achieve the mentioned objectives, the effective methodologies are considered to 

complete this task as: 
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1. In order to achieve the objective “Study and Analysis of various evolved approaches for the 

effort estimation required for the development of software projects”, comprehensive literature 

survey was carried out for software estimation techniques and different challenges were observed 

that exist during software development for the effort computation during early design phase. 

 

2. In order to achieve the objective “Examine the various Software Effort Estimation Models 

based on the Artificial Neural Networks to overcome the limitations of algorithmic modelling”, 

the work is lead as: 

a) First, a complete analysis of the limitations of the algorithmic modelling is done. 

b) Then Artificial Neural Network (ANN) based models were accounted potential, accurate and 

robust for effort computation of software projects. 

c) ANNs based approaches were critically reviewed. 

 

3. In order to achieve the objective “To implement the neural network for effort and cost 

estimation using MATLAB and validate its accuracy using evaluation metrics for the software 

effort estimation”, the work is encompassed in the following steps: 

 

a) Selection and preparation of dataset: Choose the dataset containing attributes of the software 

projects required for the feed forward neural networks. The dataset will be dispensed into training 

set, testing set and validation set. The data for function fit problems will be organized as input 

matrix, X and target matrix, T. 

b) Design and function fitting to the network: Structure the Neural Network, two 

layered neural network and one hidden layer with activated sigmoid functions. An ANN 

consists of set adaptive weights in their connections with the nodes. The network is 

initiated with some weights using randstream along random seed to avoid randomness. 

The non linear input (cost drivers) is approximated to the output (effort) of the network as 

the linear combination of all outputs. 

c) Training: Train the simple artificial neural network. 

The training neural network can be enhanced using variant algorithms, like batch gradient 

back propagation, resilient back propagation, etc.  

d) Testing the neural network: This step gives the sense that how the data will fit to the 

real world data. Regression for the output and target values will be plotted for all the data 

attributes for testing the network. In case the values do not fit, more training at the hidden 

layer is advisable. 
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e) Error Calculation: Check the performance of proposed model using evaluation 

measure. MMRE will be calculated as: 

i) Compute error. 

Error= Actual Effort – Estimated Effort 

ii) Determine relative error. 

RE = 
                              

                
 

iii) Magnitude of relative error will be calculated as: 

MRE = abs(RE) 

iv) Calculate Mean magnitude of relative error as: 

MMRE = 
     
 
 

 
 

 

 

Fig. 3.1: Flowchart of step-by-step process of research methodology adopted 

 

  

Choose and prepare the 
dataset for feeding the input 
layer of the neural networks 

Structure the feed forward 
neural network and fit the 

functions to it 

Apply learning algorithms for 
enhancing the network 

Test the neural network 

Evaluate the performance 
and compute MMRE for the 

linear outputs 
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Chapter 4 

RESULTS AND DISCUSSION 

When the weights and biases of the artificial neural networks are defined, the network can 

be trained. The multilayer feed forward neural network is trained for function 

approximation (nonlinear regression) or even pattern recognition as per the application 

requirement. The training process consists of a set of specified network behaviour—

network inputs, p and target output, t. The phenomenon of training an artificial neural 

network involves the adapting values of the weights as well as biases of the neural 

network to elevate the network overall performance, as defined by the 

function net.performFcn. The conventional performance function for feed forward 

neural networks is Mean Squared Error (MSE). It decreases as the network is trained. It is 

formulated as: 

F=mse=
 

 
   

  
   =

 

 
        

  
    

Fig. 4.1: Function fitting neural network (view) 

The input and output both have the sizes 0 because the network is not configured to match 

the input data as well as the target data. This is observed when the network is trained. 

Listed are the training functions used with the neural networks from the toolbox of 

MATLAB R2013a:  

i) train: Train neural network  

train calls net.trainFcn(trainlm), with the training parameter values indicated by 

net.trainParam. Generally one epoch of training is represented as a single presentation of 

all input vectors into the network. The network is further upgraded as per the results of all 
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such notations. Training occurs until a maximum number of epochs are achieved, or any 

stopping condition of the function net.trainFcn occurs.This is implemented as: 

% to eliminate initial random values every time we assume some bit 
 setdemorandstream(35734567) 
  

% Create Hidden Layer ( 10 Neurons in 1) 
net = fitnet(10); 
view(net) 

  
% N/w is ready to  trained 
[net,tr] = train(net,b1,b); 
nntraintool 

  
% Difference b/w actual n expected Price 
b1 = double(b1); 
y = net(b1); 

   
% Diference calculation 
 e = b – y 

 

 

 

 

 
Fig. 4.2a: Neural Network Training 
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The data is automatically divided into training, testing and validation dataset. The training 

will be working until the network is improving over the validation dataset. The NN 

training tool depicts the network under training as well as the algorithms used for training 

it. The quickest and default training function is trainlm for most feed forward networks. 

The training state and the conditions that halted it are highlighted in green.  

The training window enables to access plots: performance, training state, error histogram, 

regression and fit. 

The performance plot depicts values of the performance function versus iteration 

number. It plots training, testing and validation performances.  The training state plot 

depicts proficiency of training parameters, like gradient magnitude, or number of the 

validation checks, etc. The error histogram plot depicts the propagation of the network 

errors. The regression plot depicts the relation of regression between the network outputs 

and their targets. The histogram as well as regression plots are helpful in validating the 

network performance. 

 

 

Fig. 4.2b: NN Training Performance (trainlm) 

 

For considering the improved network’s performance due to training, click on 

“Performance” button on the training tool or PLOTPERFORM can be called. 

As per the fig. 4.2b, the best validation performance is achieved at 0.00019714 at epoch 

(repetition) 6. 

http://in.mathworks.com/help/nnet/ref/trainlm.html
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ii) traingd: Batch gradient back propagation 

This is a batch steepest descent training function available in MATLAB. The traingd can 

train any network as long as its weight, input, biases and transfer functions have 

derivative functions. It is implemented as: 

net = newff(p,t,3,{},'traingd'); 
 

net.trainParam.epochs = 10;    %Maximum number of epochs to train 
net.trainParam.goal = 0;       %Performance goal 
net.trainParam.showCommandLine  = 0;    %Generate command-line output 
net.trainParam.showWindow   = 1;        %Show training GUI 
net.trainParam.lr   = 0.05;            %Learning rate 
net.trainParam.max_fail = 55;       %Maximum validation failures 
net.trainParam.min_grad = 1e-10;     %Minimum performance gradient 
net.trainParam.show = 25;     %Epochs between displays (NaN for no                

displays) 
net.trainParam.time = inf;           %Maximum time to train in seconds 

 

 

Fig. 4.3a: Neural Network Training using traingd 
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Fig. 4.3b: NN Training Performance (traingd) 

 

Training stops when validation performance has increased more than max_fail times 

since the last time it decreased (when using validation) and other prevailing conditions. 

Performance is quantified in MSE, with log scale as shown in fig. 4.3b. The best 

validation performance is 3.5284713.2542 at epoch 0. It may reduce as the network gets 

trained effectively. 

 

iii) traingda: Gradient descent with adaptive learning rate back propagation  

Adaptive learning rate is efficient fpr keeping the learning rate stable while keeping the 

size of the learning step as large as required. The traingda can train any network as long 

as their weight, input, and transfer function does have the derivative functions. Back 

propagation computes the derivatives of performance dperf with respect to the weight as 

well as bias variables X. Individual variable is adjusted as per the gradient descent: 

dX = lr*dperf/dX 

At each epoch, the performance decreases towards the goal, then the learning rate is hiked 

by a factor of lr_inc. The performance is increased even higher than max_perf_inc, then 

learning rate is affected by lr_dec. 

This is implemented as: 

net = newff(p,t,3,{},'traingda'); 
 

net.trainParam.epochs = 100;    %Maximum number of epochs to train 
net.trainParam.goal = 0;       %Performance goal 
net.trainParam.showCommandLine  = 0;    %Generate command-line output 
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net.trainParam.showWindow   = 1;        %Show training GUI 
net.trainParam.lr   = 0.05;            %Learning rate 
net.trainParam.max_fail = 155;      %Maximum validation failures 
net.trainParam.min_grad = 1e-10;     %Minimum performance gradient 
net.trainParam.show = 25;     %Epochs between displays (NaN for no 

displays) 
net.trainParam.time = inf;           %Maximum time to train in seconds 

 

 

Fig. 4.4a: Neural Network Training using traingda 

 

The NN Training Tool clearly shows the neural network that is being trained and also the 

algorithms used for the same. Training state is also displayed. 

The performance can be seen for each of the training, validation and test data sets. After 

the training of the network, best results were obtained on the validation data set. Other 

measures of how well the neural network has fit the data attributes are regression plot, 

error histogram. 
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Fig. 4.4b: NN Training Performance (traingda) 

 

It is observed from the fig. 4.4b that the best validation performance is achieved at 

0.0019927 at epoch 65. Even if in such case, the data does not well fit the neural network, 

more training is suggested. 

 

iv) traingdm: Gradient descent with momentum back propagation 

traingdm can train any network as long as its weight, net input, and transfer functions 

have derivative functions. Back propagation determines derivatives of performance perf 

with respect to the weight and bias variables X. Each variable is adjusted as per the 

gradient descent with momentum,  

dX = mc*dXprev + lr*(1-mc)*dperf/dX 

where dXprev is the previous alteration to the weight or bias. 

This is implemented as: 

net = newff(p,t,3,{},'traingdm'); 
 

net.trainParam.epochs = 100;    %Maximum number of epochs to train 
net.trainParam.goal = 0;       %Performance goal 
net.trainParam.showCommandLine  = 0;    %Generate command-line output 
net.trainParam.showWindow   = 1;        %Show training GUI 
net.trainParam.lr   = 0.05;            %Learning rate 
net.trainParam.max_fail = 155;      %Maximum validation failures 
net.trainParam.min_grad = 1e-10;     %Minimum performance gradient 
net.trainParam.show = 25;     %Epochs between displays (NaN for no 

displays) 
net.trainParam.time = inf;           %Maximum time to train in seconds 
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Fig. 4.5a: Neural Network Training using traingdm 

 

Training using traingdm adds to the advantage that besides local gradient, it also 

acknowledges the variations in the surface of error. Using such function, the performance 

goal is met (Fig4.5a), as the best validation performance showed up at epoch 0 as 

35284713.2542 (Fig. 4.5b). 

 

Fig. 4.5b: NN Training Performance (traingdm) 
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v) trainrp: Resilient back propagation  

trainrp can train any network when its weight, network inputs, and transfer functions 

have derivative functions. Back propagation estimates derivatives of performance perf 

according to weight as well as the bias variables X. Individual variable is adjusted as:  

dX = deltaX.*sign(gX); 

where the elements of deltaX are all set to delta0, with gX as the gradient.  

This is implemented as: 

net = newff(p,t,3,{},'trainrp'); 

  
net.trainParam.epochs = 100;    %Maximum number of epochs to train 
net.trainParam.goal = 0;       %Performance goal 
net.trainParam.showCommandLine  = 0;    %Generate command-line output 
net.trainParam.showWindow   = 1;        %Show training GUI 
net.trainParam.lr   = 0.05;            %Learning rate 
net.trainParam.max_fail = 155;      %Maximum validation failures 
net.trainParam.min_grad = 1e-10;     %Minimum performance gradient 
net.trainParam.show = 25;     %Epochs between displays (NaN for no 

displays) 
net.trainParam.time = inf;           %Maximum time to train in seconds 

 

 

 
Fig. 4.6a: Neural Network Training using trainrp 
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The buttons at the bottom line of the NN training tool for various plots can be used after 

and even during training. 

The resilient back propagation (Rprop) eliminates the side effects of the minute 

alterations in the weights and the biases due to small magnitude of the gradient. It has two 

additional parameters for initial weight change and maximum weight change from the 

other training functions discussed. This algorithm is quite quicker than the basic descent 

algorithm. 

The performance of the Rprop is not much dependent on the arrangement of the training 

parameters. The best performance validation for trainrp is 0.0019927 at epoch 65 as 

illustrated in fig. 4.6b. 

 

Fig. 4.6b: NN Training Performance (trainrp) 

 

Well, the successful implementation of the proposed research methodology has been 

carried out with the help of MATLAB R2013a. The performance analysis of the various 

learning and back propagation algorithms used with the training of the feed forward 

artificial neural networks has been noted in terms of Mean Magnitude of Relative Error 

(MMRE). 

Fig. 4.7 records the MMRE values obtained after the complete analysis of the training, 

testing as well as the validation state of the dataset fed into the neural network as 

performance criterion using the learning algorithmic functions. 
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Fig. 4.7: MMRE Values of the algorithms used with artificial neural networks 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

In the various training functions, feed forward neural networks are evaluated to predict 

the software effort for projects. The performances of the developed models were tested on 

the nasa software project dataset. It is concluded that neural networks are one of the most 

efficient approach for the function fit problems. The artificial neural network with the 

specified number of neurons can accurately fit any data set. Particularly, such networks 

are good at handling non linear data. So, the training functions model is able to provide 

good estimation for the software effort and cost using the neural network. 

 

5.2 FUTURE WORK 

The trained neural network provided efficient estimation capability for the software effort 

and the cost. This work can be extended as: 

1. Explore the neural network approach for generating a suitable model structure for 

software metrics along software effort and cost estimation. 

2. Different activation functions can be applied to the neural networks for quicker and 

more robust estimations. 

3. More variant learning functions can be used to estimate the error rate and the efforts.  

4. Advanced machine learning algorithms can be applied to the neural networks. 
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