
i

ANALYSIS OF FEED FORWARD MULTI LAYER

NEURAL NETWORKS FOR SOFTWARE EFFORT

AND COST ESTIMATION

A Dissertation

Submitted by

SHEENA THAKUR

11004936

To

Department of Computer Science Engineering & Information

Technology

In partial fulfilment of the Requirement for the Award of the Degree of

Master of Technology in

Computer Science

Under the guidance of

Mr. Harshpreet Singh

Asst. Professor

(17478)

Lovely Professional University

Jalandhar

(May 2015)

ii

ABSTRACT

Software effort and cost estimation is one of the critical tasks in the software development

process but still their computation technique and its accuracy are challenging. It is an

important aspect of the software development estimation which determines the overall

time and effort required and development cost of the software project.

Since, the early and widely used techniques are the parametric or algorithmic,

implemented using mathematical equations based on the data of already developed

projects, like COCOMO, SLIM but they lack in the robustness as well as the

effectiveness. Hence this led to the exploration of the non algorithmic models for the

accurate software effort and cost computation.

The aim of this study is to propose an alternative approach for software effort and cost

estimation using the artificial neural networks. Artificial Neural Networks are particularly

useful in modelling complex non linear relationships and provides high degree of

accuracy, reliability and flexibility as the software project progresses and the

requirements are elaborated. The results can be analysed using different accuracy

criterions on the performance plots.

iii

CERTIFICATE

This is to certify that Sheena Thakur has completed M.Tech dissertation titled Analysis

of Feed Forward Multilayer Neural Networks for Software Effort and Cost

Estimation under my guidance and supervision. To the best of my knowledge, the

present work is the result of her original investigation and study. No part of the

dissertation has ever been submitted by her for any other degree or diploma.

The dissertation is fit for submission and partial fulfilment of the conditions for the award

of M.Tech Computer Science & Engg.

Date: Signature of Advisor

 Harshpreet Singh

 Assistant Professor

iv

ACKNOWLEDGEMENT

I am thankful to different local and global peers who have contributed shaping this

dissertation work. At the outset, I would like to express deep thanks to Prof. Harshpreet

Singh for his constant guidance during my dissertation. As my supervisor he has always

encouraged me to remain focussed on achieving my goal. His observations and comments

helped me establish the overall direction to the research and move forward with

investigation in an interesting manner. He has helped me greatly and been a source of

immense knowledge.

I would like to thank all my friends and class mates for their encouragement, help and

cooperation. This can never be penned in words.

I must acknowledge the academic resources that I have got from Lovely Professional

University. I would like to thank the administrative and technical staff members of the

Department who have been kind enough to advise and help in their respective roles.

Last, but not the least, this dissertation work is completed by Almighty God’s grace and

my family’s love, patience and understanding.

 Sheena Thakur

 11004936

v

DECLARATION

I hereby declare that the dissertation entitled “Analysis of Feed Forward Multilayer

Neural Networks for Software Effort and Cost Estimation” submitted for the M.Tech

degree is entirely my original work and all ideas and references have been acknowledged.

It does not contain any work for the award of any other degree or diploma by me.

 The matter presented in this report has not been submitted by me for the award of any

other degree elsewhere.

 Date: Investigator

 Registration No. 11004936

vi

TABLE OF CONTENTS

Abstract……………………………..…………….…………...………….……….………..i

Certificate………………………………..………...………………….…………………...ii

Acknowledgement…………………………..………...………….....…………..………...iii

Student Declaration………………………..……………..……..………...………..……..iv

Table of Contents…………………………..……………..….…………………..…..…….v

List of Tables……………………………….…………………………………….……….vi

List of Figures…………………………...…….…………………………..………..........vii

Chapter 1: Introduction…………………….………...………………….……………..1-14

 1.1 Software Estimation………………..………..……………….…..……….1-9

 1.2 Introduction to Neural Networks………………………………...……..10-12

 1.3 Metrics for Assessment of Effort and Cost Estimation…………...……12-14

 1.4 Organization of Thesis………….………………………………………….15

Chapter 2: Literature Survey…………………………………………...………....…..16-23

Chapter 3: Present Work……………………………………………..………….……24-26

 3.1 Problem Formulation………………………………….………..………...24

 3.2 Objectives of Study…………………………………….……..………..…24

 3.3 Research Methodology………………………………...………………24-26

Chapter 4: Results and Discussions………………….………………………….……27-38

Chapter 5: Conclusion and Future Scope…………………..…………………………….38

 5.1 Conclusion……………………………….…………..……….……….….38

 5.2 Future Scope………………………………….………..……..…………..38

Chapter 6: References……………………………………………..………………….39-42

vii

LIST OF TABLES

Table 1.1: Factors of Function Point Analysis…………………………………………….3

Table 1.2: Holistic Models for Effort Estimation…………………..……...…….………..5

Table 1.3: Advantages and Disadvantages of Existing Techniques……….………………8

Table 1.4: Different Evaluation Measures used for Software Effort and Cost

 Estimation…………………………………...….…………...…………….13-14

viii

LIST OF FIGURES

Fig. 1.1: Structure of an Artificial Neural Network……………….…………………..…10

Fig. 1.2: Topology of Neural Networks…………………………….……...........…....….11

Fig. 3.1: Flowchart of step-by-step process of research methodology adopted……….…25

Fig. 4.1: Function fitting neural network…………………………………..…….…….…26

Fig. 4.2a: Neural Network Training…………………………………….…….…….....…27

Fig. 4.2b: NN Training Performance (trainlm)………………………….….……..….….28

Fig. 4.3a: Neural Network Training using traingd…………………….….…….……..…29

Fig. 4.3b: NN Training Performance (traingd)………………………………….......…....30

Fig. 4.4a: Neural Network Training using traingda……………………………...………31

Fig. 4.4b: NN Training Performance (traingda)……………………….......………..……32

Fig. 4.5a: Neural Network Training using traingdm……………………………..………33

Fig. 4.5b: NN Training Performance (traingdm)………………………………..……….33

Fig. 4.6a: Neural Network Training using trainrp………………………...……………...34

Fig. 4.6b: NN Training Performance (trainrp)…………………………..………….....…35

Fig. 4.7: MMRE Values of the Algorithms used with Artificial Neural Networks…...…36

1

Chapter 1

INTRODUCTION

This chapter gives a description of Software estimation parameters like software size,

effort and cost estimation, software schedule including approaches for their efficient

computation.

1.1 Software Estimation

Software estimation is one of the most crucial aspects of the software project

development. Software project management and control are not feasible without reliable

estimates.

It includes the estimation of software size, cost, effort and schedule involved in the

development of the software [Brykczynski et al.,2006]. The precise effort estimation of

the software project is the one module that needs more attention.

Software development estimation is classified as:

 Software Size

 Software Effort

 Software Cost

 Software Schedule

1.1.1 Software Size

Software Size is the predictable size or length of the piece of software. Size can be said as

the inherent feature of the software piece like weight as the inherent feature of a

substantial material. It is a vital characteristic of the software because it affects staffing,

budget and duration for the project.

The metrics currently being used for determining the software size are Lines of Code

(LOC), Function point (FP) and Object Points [Abran et al.,2009]. Size should be

calculated as precise as possible since it is the basis for effort and cost estimation.

i) Lines of Code

Line of code is the most popular software size indicator. It measures the software size

simply by counting the number of source instructions in the code of the software project.

2

It is the program length which effectively predicts the effort as well as the ease of

maintenance.

Source Lines of Code

This software metric keeps an account of the total number of lines in the source code of

the program [Gencel et al.,2006].

Two types of SLOC are:

a) Physical SLOC: This includes the number of lines in the source code of the program

with comments and even blank lines in special cases.

b) Logical SLOC: This includes the number of “executable” lines in the program’s source

code. It varies for different programming languages.

For C or C++, logical SLOC can be stated as the number of statements ending with the

semi colon.

The models used for SLOC calculation are analogy model, bottom-up model, expert

judgement model and parametric model.

Other metrics are:

 KLOC (Thousand Lines of Code) for 1,000 Lines of code: It is the estimated number

of deliverable lines of code for project.

 MLOC (Million Lines of Code) for 1,000,000 Lines of Code

Though, LOC can be easily determined after the completion of the project but

determining it at the early phase of the project is tough.

ii) Function Points

Function Point facilitates the determination of the size of project independent of the

language used in coding. It works by counting the number of externals (number of inputs,

number of outputs, number of inquiries, number of files, and number of interfaces) that

make up the software system [Symons et al.,1991].

Function Point Analysis

a) Account the occurrence of each external.

b) Assign the complexity weight to each occurrence.

c) Multiply complexity weights and occurrences (function count is obtained).

d) Multiply function count and value adjustment factor to obtain function point count.

V=

 *0.01+0.65

3

where vi is rating of 0-5 dependent of some factors affecting software size.

Table 1.1: Factors of function point analysis

 Multipliers

Externals Low Average High

Input(I) 3 4 6

Output(O) 4 5 7

Inquiry(I) 3 4 6

Number of files(F) 7 10 15

Number of

interfaces

5 7 10

ii) Object Points

Object points are developed by Banker et al,1994. They are conformed for object oriented

software.

Steps for object point analysis:

a) Count all instances for each object type.

b) Assign a complexity weight to each object.

c) Add complexity weights of all objects to obtain Object-Point (OP).

d) Product Object Point (OP) and Reuse Factor (RF).

e) If the program is not new, calculate New Object Point (NOP).

NOP = OP (1 – RF)

f) Expected productivity cost is calculated using New Object Point, that is,

Effort = NOP / Productivity cost

iii) Halstead Software Science Model

Halstead estimated the number of errors in the program using the source code length and

also the volume metrics using primitive measures [P. G. Hamer,1982]:

The length of the program code can be defined as:

N= N1+N2

where, N1= number of operator occurrences,

 N2= number of operand occurrences

4

The program volume corresponds to the amount of required storage space and is defined

as:

V = N log(n1+n2)

where, n1= number of distinct operators in the program,

 n2= number of distinct operands in the program.

This model has got decreasing use and support in the recent years.

1.1.2 Effort and Cost Estimation

A sound project should be well constrained within budget and required effort.

By definition, Effort estimation is the phenomenon of computing the realistic effort

required for developing and maintaining the software systems and their duration.

The estimates can be done using the following two approaches [Jørgensen ,2004]:

 Top-Down Estimate: It includes algorithmic models and analogies. An algorithmic

model may have one or more formulae based on productivity factors or software size.

 Bottom-Up Estimate: It includes the disintegration of a large schedule and the overall

effort comes out by summing up the computed effort for an individual activity of the

component tasks.

Prediction Models

The software effort and cost prediction for a project falls under the following two

categories [Ramesh K. et al,2014]:

Algorithmic or Parametric Modelling, and

Non Algorithmic Modelling

 Algorithmic or Parametric Modelling

Parametric models are implemented using the mathematical equations based on the data

of already developed projects.

They are represented using:

i) Holistic Models

The different holistic models are beneficial for new organizations for which the baseline

data from historical projects is unavailable. It does not consider the individual activities

regarding the software project for effort prediction.

5

Table 1.2: Holistic Models for Effort Estimation

Name of the Model Introduced By Year

SDM (Software Development Model) Putnam 1978

SLIM (Software Lifecycle Management) Putnam 1979

COCOMO (Constructive Cost Model) Boehm 1981

COPMO (Cooperative Programming Model) Conte, Dunsmuir, Shen 1986

Of the all holistic models, COCOMO is best known parametric model and is widely used

[Boehm, 1981].

ii) Activity-Based Model

These activity based models are dependent of the data from the previous projects for

accurate effort computation. They consist of the standard development rates for the

organizations.

This can be formulated as:

Effort =

 i,new •SLOCnew +

 i,reused •SLOCreused

where (PH/SLOC)i,j is the labour rate for activity i and class j (j can be new or reused),

and (SLOC)j is the estimated size (in SLOC) of code for the class j.

The effort calculated will be in person hour unit.

 Non Algorithmic Modelling

The non algorithmic methods are based on soft computing [Masoomi,Z.,2013]. The data

from the previous projects might be used and are flexible to the changing circumstances

during the software development process. They produce efficient results for effort

prediction.

Major categories of non algorithmic models are:

i) Neural Network Based Models

These are the computational models inspired by central nervous system capable of the

machine learning and pattern recognition with the functionality similar to that of the

human brain [Bawa, A et al.,2012]. Most of the neural network based techniques uses

back propagation algorithms.

6

ii) Evolutionary Computation

Evolutionary Computation is a subfield of artificial intelligence that includes the different

optimization problems. It uses iterative progress, such as growth or development in a

population. Since the evolution can produce highly optimised process and networks, it is

used for the software development estimation.

The techniques used can be:

a) Evolutionary algorithms: They are the heuristic search techniques that imitate the

analogy of natural evolution. They implement the principle of survival of the fittest. It is a

method for solving the parameter optimization problems [Liu, J. et al.,2005]. The main

advantage is that evolutionary strategies can easily control the parameters to self adapt

rather than changing their attribute values using other deterministic algorithms. After

investigating the evolutionary algorithms, postulates regarding why EAs perform up to

the mark are given as:

 Selection process yield good solutions

 Candidate solutions provide independent sampling

 Partial solutions can be modified and integrated via genetic operators

b) Genetic algorithms: They are based on the evolutionary concepts of natural selection.

They portray an intelligent exploitation of the mechanism, random search used to

minimize optimization difficulties [Choudhary K.,2010]. GAs exploits historical data to

direct the search into the space of better performance in between the search region. After

examining the inter relationship between parameters of the software models, it is observed

that effective software effort is obtained using GA.

c) Swarm intelligence: The particle swarm optimization was introduced by Eberhart and

Kennedy in 1999, it is inspired from the imitation of social behaviour. Particle defines a

prospective problem solution shifting through n-dimensional region. Each particle shares

details about the search space. The speed of the particle gets updated as per their and their

neighbours preceding best position. It is the only evolutionary computation techniques

that do not follow survival of the fittest.

7

iii) Case Based Reasoning

It is necessary that effort or cost estimation models should deal with the uncertain and

undefined attributes of the software engineering. Case Based Models are specifically

useful when it is complex to state concrete rules regarding the problem domain, also it

may consider expert advice for complementing the available knowledge [Rashid et

al.,2012].

Case Based Approaches takes data from the previously developed projects. The project

estimator identifies the completed projects with similar characteristics to the new

developed project. The effort of the matching source case is further used for the base of

the new project. This is a good approach when you have information about some previous

projects but not good enough to draw the generalised conclusions about the vital cost

drivers or the productivity rates.

iv) Fuzzy Logic Models

These models are based on fuzzy logic. It is a form of many-valued logic; dealing with

reasoning that is approximate rather than fixed and exact. The fuzzy logic variables may

have a truth value that ranges in degree between 0 and 1.

Fuzzy logic based models are suitable for approximate and indistinct data. Integrating

fuzzy constituent with intermediate COCOMO have improved the accuracy while

computation of the software effort [Hamdy et al.,2010]. FL offers several unique features

that make it a particularly good choice:

 FL can control nonlinear systems that would be difficult or impossible to model only

using equations. This initiates control systems that would be deemed not possible for

automation.

 FL is not only constrained to few feedback inputs and one or more control outputs, nor

is it necessary to measure rat of change attributes in order for it to be implemented.

 It is inherently robust because it does not require accurate, noise-free inputs and it is

programmed to fail safely if a feedback sensor quits or is destroyed. Output control is a

smooth function despite a wide range of input variations.

8

Table 1.3: Advantages and Disadvantages of Existing Techniques [Maitreyee et

al.,2013][Khatibi et al.,2011]

Technique Type Advantage Disadvantage

COCOMO

Levels

Parametric Fair results, Commonly

used

Huge data is needed, Not

adaptable to every project

Expert

Judgement

Non

Parametric

Quick prognosis, Suitable

for some exclusive projects

Completion depends on

expertise

Function

Point

Parametric Works with almost all

software languages, Better

prediction than SLOC

Difficult computerization,

Quality results are not

achieved

Analogy Non

Parametric

Concepts based on real

project experiences, not

necessary to have special

expert

Require details and

information from legacy

projects

Top-Down Non

Parametric

Requires least project

information, Easy and quick

to implement

Less information specific

Not much substantial

Bottom-Up Non

Parametric

Highly substantial, More

information specific

System level costs may not

be considered, Effort and

time consuming

Neural

Networks

Non

Parametric

Homogeneous with variant

data, Power reasoning

No specific guidelines for

network design, Performance

is dependent of training

dataset

Fuzzy

Approach

Non

Parametric

Flexible method, Robust,

Can control non-linear

systems, Training of data is

not necessary

Complex to use, Hard to

maintain the degree of

relevance or significance

Parkinson Non

Parametric

Corresponds with the

experience

Lack realistic estimates

Price to

win

Non

Parametric

Gets the contract easily Delay in project delivery,

Development team have to

overtime for completion

9

The cost of software projects is deduced by the cost of developing the software. In some

projects, other kind of costs may incur referred as overhead costs. The overhead costs can

be cost of software and hardware equipments and supplies, company overheads required

for office area, administration, etc.[Kemerer et al.,1993].

The cost of software project is simply obtained by multiplying the estimated effort (in

person-month or person-hour) with the constant labour or manpower cost.

Cost = Estimated Effort x Manpower Cost

So with this reason, we focus on estimating the precise software development effort.

v) Parkinson’s Method

The Parkinson's principle states that, if the work extends to occupy the available volume,

the project cost is predicted with the current resources instead of the objective assessment.

For say, if the software project has to be completed in 6 months and only 5 people are

capable for work, the calculated effort would be 30 person-months. Inspite of generating

fair estimation, this approach is not followed widely since it lacks realistic estimates

[B.W. Boehm et al.,1996].

vi) Price to win Method

As per this cost estimation method, the software cost is calculated as the best price to win

over the particular project. The cost estimation is based on the customer's allocation rather

than the software functionality [Khatibi et al.,2011].

For say, if the software effort estimation for a specific project comes out to be 100 person-

months but customer is able to afford only 60 person-months, the estimator would try to

fit 60 person-months effort so as to win the project. Resultantly, this approach may cause

insignificant delay in project delivery or may lead the development team to overtime for

project completion.

In absolute sense, there is only comparison between various approaches but still none

model perform best at software development effort as well as cost estimation. All the non

algorithmic approaches are nearly competitive. Table1.3 gives an overview of the existing

techniques of the software effort and cost estimation. They are widely used for hybrid

approaches and analysed to obtain effective software effort computation.

Some of such approaches include:

10

 Generalized Regression Neural Network Model [Reddy et al.,2010]

 COCOMO II tuned with radial basis function network by Gupta U.

 Radial Basis Function Network with regression and clustering algorithms

 Radial Basis Function Neural Network with Genetic Algorithm [Molani et al.,2014]

 Grey relation analysis (GRA) technique with regression and GRA with fuzzy logic

[Nagpal G. et al.,2014]

1.1.3 Software Schedule

The software schedule is estimated with the Gantt charts, Network diagrams, PERT

Charts, Critical Path Methods developed using the various tools.

1.2 Introduction to Neural Networks

Artificial neural network is a computational conformity inspired by the framework,

processing and learning potentiality of human brain.

Such networks are described using the type and number of the neurons representing the

linkage between the individual elements and the learning algorithms applied to data to be

used within the network. Each neuron consists of a non linear transfer function which

gives an output as a resultant of the number of input values at the neuron unit. A weight is

allotted to each input value in the connection. The characteristic feature of such neural

network organization is that they can learn from the historical project data and its

attributes.

Fig. 1.1: Structure of an Artificial Neural Network

11

Artificial neural networks are the data modelling tools which are capable of depicting and

representing even the complex input/output equations. The main advantage of the neural

networks is that they can hold both non linear as well as the linear relationships.

ANNs are preferred because of several characteristics, like they are fault tolerant,

generalization and learning capability, tremendous parallelism.

There exist numerous types of neural networks as described in Fig. 1.2. Neural networks

majorly used for software effort and cost computation are Cascade Feed Forward, Elman,

Recurrent and Feed Forward Artificial Neural Networks.

Other ANNs used for effort and cost calculations are Back Propagation ANN, Wavelet

neural networks.

Fig. 1.2: Topology of Neural Networks

Neural Networks

Feed Forward
Networks

Single Layer
Perceptron

Multi Layer
Perceptron

Radial Basis
Function Nets

Recurrent/ Feedback
Networks

Competitive Models

Kohonen's SOM

Hopfields Network

ART Models

12

A neural network for performing any specific functionality can be trained by adjusting the

weights, i.e., values of the connections between individual elements. Generally, the

artificial neural networks are trained or adjusted in order to generate input a specific target

output from the input given. A neural network can be adjusted on the basis of a

comparison of the target element and the output, until the target and the network output

resembles each other. Most times such input/target pairs are applicable in the supervised

learning for training the neural network. Batch training of such network can be done by

altering the weights and bias on the whole batch of input vectors. Incremental training

modifies the weights and biases of a network as per the requirement of the different input

vectors. Incremental training can also be called adaptive training [Subitsha et al.,2014].

1.2.1 Learning in Neural Networks

The neural network connection weights and biases can be learnt from an arrangement of

training representation. Various network structures have learning algorithm approaches.

i) Supervised Learning

The artificial neural network is arranged with a linear output for each input attribute.

Weights are predicted to let the network to yield values approximate to the known precise

values. For example, back propagation algorithm.

ii) Unsupervised Learning

This type of learning does not need a precise value associated with every individual input

attribute in the training dataset. It examines the basic structure of data, relations between

the data patterns, and then arranges the patterns into sub categories with the correlations.

Kohonen algorithm falls into this category.

iii) Hybrid Learning

It is a blend of supervised learning with the unsupervised. The initial part of weight is

calculated via supervised learning, whereas the biases are computed with the help of

unsupervised learning.

13

1.3 Metrics for Assessment of Effort and Cost Estimation

The evaluation for accuracy of the model can be computed using various similarity

measures [Prabhakar, M. D, 2013].

Absolute Error is the indicator of the difference between the inferred value xo and its

actual value x:

 x = x0-x

Relative Error is the ratio of mean absolute error to the mean value of the measured

quantity:

δa = Δamean/am

Table 1.4: Different evaluation measures used for software effort and cost estimation

Evaluation Measure Description Formula

Magnitude of

Relative Error (MRE)

Difference between

actual and estimated

or predicted effort

relative to the actual

effort

Mean Magnitude of

Relative Error

(MMRE)

Considers the

value for each

observation in data

distribution and is

prone to individual

prediction with

numerous MREs

Median Magnitude of

Relative Error

(MdMRE)

Median measure is

less prone to outliers

while calculating

the error.

Median()

Mean Squared Error

(MSE)

It evaluates

performance of an

estimator/ predictor

yi= vector representing N predictions,

 = vector representing actual values

14

Root Mean Square

Error (RMSE)

It is the root of

variance, so this is

also called standard

deviation.

Mean Absolute Error

(MAE)

It is a measure of

how far the

estimated value lies

from the actual

values.

 Predicted Value for point i

 Actual Value for point i

Balanced Relative

Error(BRE)

This measure gives

the ratio of absolute

and relative errors.

 is the estimated effort and is the

actual effort

Magnitude of Error

Relative (MER)

This error is relative

to the estimate.

Mean Magnitude of

Error Relative

(MMER)

It is mean of MER

from N number of

observations.

Prediction Level

(PRED(p))

Determines per-

centage of estimates

within a given level

of accuracy and is

obtained from

relative error.

Higher the value of

predi(p) is better.

N = total size of the data set

K = number of programs with MRE

less than or equal to the magnitude

of p

Correlation

Coefficient

Measure of the

strength of the

relationship between

two variables

Higher value of correlation coefficient

depicts stronger relationship

15

1.4 Organization of Thesis

The dissertation report has been organized into following chapters:

Chapter 1 gives introduction about aspects of software development like, software size,

effort and cost estimation, and software schedule. A brief description of neural networks

is also mentioned following the general metrics used for the performance evaluation.

Chapter 2 outlines the extensive literature review regarding the different non parametric

techniques used for the software effort and cost computation.

Chapter 3 discusses the problem formulation, objectives of the study and the research

methodology adopted for generating neural network based model for the estimation of

software effort and cost.

Chapter 4 highlights the results and discussion regarding various training functions used

with the neural networks, their progress, and the performance plots.

Chapter 5 is about conclusion of the research work and the future perspectives in this

area.

Chapter 6 is the list of references used in the dissertation completion.

16

Chapter 2

 LITERATURE REVIEW

This chapter highlights the literature review studied during the dissertation.

Prasad Reddy PVGD et al. (2010) proposed neural network models using the Radial

Basis and Generalized Regression. COCOMO81 dataset is used for analysis and

comparing the results of the proposed model with intermediate COCOMO using different

measures MMRE, Mean BRE and Pred(40). GRNN is used for function approximation. It

constitutes a radial basis layer and a special linear layer. The first layer corresponds to that

of the RBFN but second layer has as many as neurons as input/target vectors. Therefore, it

is clearly portrayed that Radial Basis Neural Network gives better results with respect to

evaluation measures than Generalised Regression Neural Network and Intermediate

COCOMO.

Jagannath Singh et al. (2011) analysed the performance of various Artificial Neural

Networks (ANN) in the effort calculation. ANNs can efficiently map functions between

dependent variable, effort and independent variable, cost drivers to use it for tool design

for software estimation. It generalizes the training data set to predict unseen data. Four

types of ANN are pretended for NASA dataset using MATLAB. The four models used are

Cascade forward ANN, Elman ANN, Feed forward ANN, Recurrent ANN. The trainlm

algorithm is used for training ANN. The actual effort is evaluated with MMRE, RMSE,

BRE and Prediction indicator. Cascade feed forward network showed the best among

results among the four considered models for cost and effort estimation for software

projects.

Ekbal Rashid et al. (2012) proposed the estimation approach based upon the analogy. A

case based reasoning model for the calculation of distinct effort for software projects have

been developed using Euclidean and Manhattan distance. These distance measures use the

knowledge base to figure out the matching cases for the input parameters. Case Based

Reasoning (CBR) deals with the uncertainty and imprecision. It may use the expert

knowledge as complement to available knowledge. CBR may involve Delphi, group

consensus and other expert judgement methods. The CBR model is generally used when it

difficult to define precise rules of the problem domain. The CBR is validated on a student

17

dataset and then evaluated using magnitude of MRE. The results are considered quite

efficient as development time is a real complex attribute since it is dependent on human

behaviour. For this approach, better results are obtained when large database is considered.

Anupama Kaushik et al. (2012) proposed the use of back propagation trained feed

forward neural networks for software cost estimation. The proposed model obliges

COCOMO II model and enhances the software cost estimation. The model is implemented

using the two validation datasets COCOMO and COCOMO NASA 2. Post architecture

model of COCOMO II is considered. The back propagation method is used for training the

samples and comparing actual values. The evaluation criteria used is Magnitude Relative

Error (MRE) and Mean MRE (MMRE). The proposed model definitely outscored

COCOMO model with comparable results.

Venus Marza et al. (2012) proposed the neuro-fuzzy model for effort estimation using

ANOVA. The expert knowledge, project data and the traditional algorithmic model as well

as the fuzzy rules are put together into one general framework. The proposed model is

compared with the four other models, viz, neural network model, fuzzy logic model,

multiple regression model and statistical model. It is inferred that function point is the only

aspect that influences the software development effort; however, the precise estimation

should consider the various other elements like type of development, development

language, and average number of developers worked on the project in the development

environment.

Amanjot Singh Klair et al. (2012) analysed the computer based techniques, Support

Vector Machine (SVM) and k-Nearest Neighbour Approach (kNN) for effort estimation

for software projects. These techniques facilitate an automatic and economic software tool

for generating rank for software by formulating the relationships based on its training.

kNN is an instance based learning, the object is classified by majority vote of its

neighbours, as object is fixed at the most common class amongst the other k neighbours.

Since the survey for various applications have been conducted using SVM and kNN

models and it is found that the SVM performs way better than kNN technique with

perspective of computation of effort involved in the software program development.

18

Sriman Srichandan (2012) proposed the construction of Radial Basis Function Networks

for the effort and cost estimation of the software. The datasets used for case study are

COCOMO81 and Tukutuku. Prediction indicator and MMRE are used for evaluation. .

The width of the activation function and the neuron count in the hidden layer of the radial

basis structural design influences the cost estimate obtained from them. Different

mathematical equations are used for determining the width associated with Gaussian

Kernels and it is clear that using unsuitable width would result in poor function

approximation. The width should be chosen as per the number of projects covered by

centres in region for monitoring the overlap between existing Gaussian kernels for

adequate estimates.

Mohd. Sadiq et al. (2013) analysed the organic projects with software size between 2-50

KLOC written in C++ with value of LOC/FP equivalent to 64 for effort calculation. The

applied approach is linear regression model predicting software efforts as well as the

function point, i.e. Effort= -1.5 + 0.1804 FP. 0.1804 implies that it would cost 0.1804 man

day to finish one function point and the software company can establish their own linear

model by using their records. The value of function point can be computed as FP = a + b

Effort. The relationship between the function point and effort came out to be highly

positive correlation, that is, when value of first variable increases or decreases, predicts the

same directional change for second one.

Maitreyee Dutta et al. (2013) analysed Arificial Neural Networks (ANN) and Support

Vector Machine (SVM) for the China dataset for software effort estimation. Various

evaluation measures like MMRE, PRED(25), Correlation coefficient, etc. are being used

for the comparison. Error back propagation method is used for the training of ANN.

During the forward pass of this propagation algorithm, the weights are assigned in the

network and in the backward pass; the weights are rectified and adjusted as per the error

calculated. On the other hand, SVM takes a defined set of input attributes, which of two

possible classes the input is a member of what makes the support vector machine a non

probabilistic binary linear classifier. Resultantly, the model approach with smaller values

of MMRE, MAE, RMSE and greater value for correlation coefficient is considered more

suitable and efficient.

19

Usha Gupta et al. (2013) analysed the precise software effort estimation using radial basis

function network (RBFN) integrated with the ANN-COCOMO II used for functional

approximations. This technique highlights the functionality of COCOMO II with the radial

basis clustering algorithms. The dataset used for training the RBFN is COCOMO II.

RBFN training is quick to implement when both the stages of RBFN are treated with

suitable algorithms. The clustering algorithms used for RBFN are K-means and APC-III.

K-means computes the centre of the clusters by minimizing the distance between clusters

whereas the APC-III is a one pass algorithm finding the radius of each cluster. Cluster is

generated for each dataset. The number of generated clusters will be inversely proportional

to the radius of cluster. RBFN is incorporated with the three clustering techniques,

COCOMO, K-means (calculating mean value for the Gaussian function of network) and

APC-III (estimation based on past projects by calculating radius function). RBFN yields

more accurate results with the APC-III.

Ridhika Sharma (2013) reviewed different non algorithmic models and observed that

they are definitely more accurate and efficient than algorithmic ones for computing the

software effort. Neural network models, fuzzy logic based models, genetic algorithm are

discussed in this respect. Neural networks used are the back propagation algorithms and

cascade correlation networks. Fuzzy logic models are generally used with vague and

uncertain data. The fuzzy triangular membership function and the Fuzzy Inference System

(FIS) developed using the COCOMO are explained. The fuzzy based COCOMO model

and the COCOMO are compared using various membership functions, and it is observed

that the fuzzy based COCOMO is a better choice for effort estimation. Genetic algorithms

search heuristic that mimics the process of natural selection. These algorithms are not as

efficient as fuzzy and ANN, they offer many limitations too. The outcomes from various

research papers and journals proved that if neural techniques are used, MMRE value

comes out to be comparatively better. In case of fuzzy approaches, when Gaussian

membership function is used, lower MMRE is yielded.

Tulin Ercelebi Ayyilidiz et al. (2014) proposed the early software effort and cost

estimation approach using the problem domain concepts inherited from the use cases as

developed during the requirement phase. The data of 14 CMMI level 3 certified software

20

development projects using object oriented development approach from defense industry

have been used and their effort is computed using the UCP (Use Case Point) Analysis

depicting better results with the proposed methodology than the UCP. The results show

that the correlation between the number of conceptual classes and number of software

classes as well as actual software development effort is at peak. These correlations

accounts that the software development size and effort can be dependent of number of

concepts for the object oriented software projects.

P. Subitsha et. al. (2014) reviewed five approaches, Multilayered Perceptron Network,

Radial Basis Function Network, Extreme Learning Machines, Particle Swarm

Optimisation and Support Vector Machines for the grand scale study to obtain

unambiguous result for most suitable approach. The data used for the study have been

taken from COCOMO II. After investigating about these techniques, accounting their

strengths and weaknesses, it is said that the ordinary least squares methodologies are better

than the non linear methodologies with respect to the performance. Though the evaluation

measures depict minor differences in the absolute terms but they are of important notice in

software cost and effort terms. A very simple approach of regression is accounted to be

suitable because of incremental stepwise analysis as well as the statistical significance of

testing the parameters. Thus it is suggested to concentrate more on the quality rather than

clustering various predictive attributes.

Geeta Nagpal et al. (2014) proposed that the analogy is one of the most suited software

effort estimation approach when the project is not completely or poorly understood,

calculating the effort from the like projects from the project warehouse. They have

introduced espousing two approaches, viz., the one is predictive model based on Grey

Relational Analysis (GRA) and regression and other deals with the uncertainty in the

projects using combination of GRA and fuzzy set theory. GRA is a Grey System Theory

technique which uses the point to point distance between cases. In first approach, the effort

is calculated using k nearest projects from the sum total of n projects, and then regressing

their effort of k projects while in the second approach, the grey relational coefficient

makes use of the Fuzzy C-Means (FCM) algorithm to compute the distance between the

projects. The research has been done on the six different datasets and it is found that it

outperforms the algorithmic techniques. The outcome using both the approaches are

21

precisely treated to statistical testing using the Wilcoxon Signed Rank Test. Resultantly it

is proved that the proposed models GREAT_RM and FuzzyGRA can be used at the early

phase of the project when data is uncertain and they have shown enhanced effort

estimation.

K.P. Manju et al. (2014) proposed a linear regression model facilitating exponential

transformation for the estimation of software effort from use case diagrams. The use case

diagrams are inputs for software size and use case points are received as corresponding

output. This can be efficiently used in initial phases of the software development life cycle

for the accurate results from software effort calculation. As the linear regression finds the

relationship between variables and for precise results of the regression, the data obtained in

the effort should be distributed normally. Exponential transformation of data completes the

normal distribution. The exponential function maps the relationship in which an inevitable

change in the independent variable also gives the similar proportional change for the

dependent variable. Linear Regression applied on the normalized data gives correct results.

It is depicted that log linear regression model as well as the linear regression model with

exponential transformation are efficient for software effort estimation. The proposed

regression based model overcomes the disadvantages and is useful in improving the

conformity of software effort calculation.

Jayashree K.M. et al. (2014) proposed a simple analogy based software technique for the

effort estimation of software projects. Algorithmic techniques like COCOMO, Use case

point method lack flexibility and are not much understandable which gave rise to the

introduction of non algorithmic techniques showing the relationship between cost drivers

and effort. In such aspect, this paper have focussed on the Case Based Reasoning, also

called estimation by analogy. They just gathered the data from past similar projects within

a set of attributes namely number of images, team experience, number of developers

involved, etc. and analyzed it. It is based on the principle “similar projects require similar

effort”. The CBR is a four step process-Retrieve, Reuse, Revise, Retain. The variation in

the values of the attributes for similar projects (past project and candidate project) lies

within the fixed specified range. The distance with new candidate project is computed by

adding up the differences in individual attribute values for every similar project defined.

Thus the analogy based technique is quite simple and less time and effort consuming as it

22

determines the new effort value by comparing the already available effort values for the

software projects.

Maryam Molani et al. (2014) proposed a methodology for software effort and cost

computation using the radial basis function (RBF) neural network and genetic algorithm

(GA). They have designed software cost estimation models compatible with the

COCOMO81 model using the methodology of RBF neural network and GA enabled the

selection of most relevant attributes so as to enhance the training network. The proposed

model has RBF trained as per the COCOMO81 dataset and further the reduced model is

proposed on the basis of GA. Since training a RBF network is easier than training the

multilayered perceptron network, thus involves two step learning process, i.e., input

dataset determines the parameters for basis function and in next step, the weights are

obtained. Further RBF network is generated using newrb function. GA following survival

of the fittest selects the suitable attributes giving high network estimation results. Hence

ANNs effectively models complex non linear relationships.

Seyyed Reza Khaze et al. (2014) have proposed the approach of effort estimation using

Particle Swarm Optimization and the effective counter measures of PSO and better results

have been obtained than the COCOMO Model. In order to obtain good software quality

and decreased costs, Software effort estimation is used for the support. The KEMERER

dataset is used with the algorithms and evaluation criteria considered is MMRE of the

software projects.

Berna Seref et al. (2014) predicted the software effort using Multilayer Perceptron and

Adaptive Neuro Fuzzy Inference System. The data sets used are the NASA with 93

projects and Desharnais with data of 77 projects. The results depicted that MMRE of the

Adaptive Neuro Fuzzy Inference System is lower than Multilayer Perceptron, where as the

evaluation measure PRED(0.25) is higher for Adaptive Neuro Fuzzy Inference System.

Hence, Adaptive Neuro Fuzzy Inference System yielded efficient results than the

Multilayer Perceptron.

The covered literature reviews numerous techniques for the effort estimation of a software

project.

23

The software estimations are being developed since many years, yet obtaining the exact

estimates for the software projects are challenging. It is difficult to compute effort in the

initial phase of the software development when software product is unseen. Accurate effort

estimation is critical because cost, time and manpower required for the software

development also rely on it. The effort estimation techniques are based on algorithmic and

non algorithmic modelling. For precise estimations, researchers are working for the

development of the new models, improving the existing ones using soft computing or

proposing hybrid approaches efficient for the software effort estimation.

The scope of exploring the non algorithmic approaches for prediction of effort arises from

limitations of the non-algorithmic approaches. Such limitations can be accounted as:

a) Algorithmic approaches are incapable of handling the practical ambiguous conditions of

the software projects. They are not efficient to handle explicit data and are devoid of

reasoning capabilities.

b) It is complex to model the inherent associations between subscribing factors using

mathematical formulas.

c) The parametric or algorithmic approaches are not as accurate and robust as they should

be.

d) Effort and cost computation of the developing projects depends majorly on adapting the

model as per the needs of organization, using historical data which might not always be

readily available.

e) High error deflection is observed in parametric approaches.

Hence, there is comparison between numerous approaches but still no best technique is

evolved for the software effort estimation. Also, there is no universally acceptable approach

evolved for accurate effort calculation for all types of software projects, i.e. projects for

small scale, medium scale or large scale organizations.

24

Chapter 3

 PRESENTWORK

3.1 Problem Formulation

In earlier researches, various limitations of the parametric approaches of the software

effort as well as cost estimation were observed, as mentioned in previous chapter. Thus

following problem is formulated to overcome such challenges and limitations.

1. Model the neural network based models using efficient training functions for software

effort and cost prediction.

2. Yield the results using performance plots, regression plots, etc.

3.2 Objectives of the Study

In past researches, various limitations were observed, as mentioned earlier. Hence the

problem is formulated to overcome such challenges and limitations.

1. Study and Analysis of various evolved approaches for the effort estimation required for the

development of software projects.

2. Examine the various Software Effort Estimation Models based on the Artificial Neural

Networks to overcome the limitations of algorithmic modelling.

3. To implement the proposed model using MATLAB tool and validate its accuracy using

evaluation metric MMRE for the software effort and cost estimation.

3.3 Research Methodology

Research is a logical, methodical and orderly search for new and useful information on a specific

subject. It adds contribution to the existing knowledge.

Research Methodology is one of the ways to interpret and resolve a research problem.

In order to achieve the mentioned objectives, the effective methodologies are considered to

complete this task as:

25

1. In order to achieve the objective “Study and Analysis of various evolved approaches for the

effort estimation required for the development of software projects”, comprehensive literature

survey was carried out for software estimation techniques and different challenges were observed

that exist during software development for the effort computation during early design phase.

2. In order to achieve the objective “Examine the various Software Effort Estimation Models

based on the Artificial Neural Networks to overcome the limitations of algorithmic modelling”,

the work is lead as:

a) First, a complete analysis of the limitations of the algorithmic modelling is done.

b) Then Artificial Neural Network (ANN) based models were accounted potential, accurate and

robust for effort computation of software projects.

c) ANNs based approaches were critically reviewed.

3. In order to achieve the objective “To implement the neural network for effort and cost

estimation using MATLAB and validate its accuracy using evaluation metrics for the software

effort estimation”, the work is encompassed in the following steps:

a) Selection and preparation of dataset: Choose the dataset containing attributes of the software

projects required for the feed forward neural networks. The dataset will be dispensed into training

set, testing set and validation set. The data for function fit problems will be organized as input

matrix, X and target matrix, T.

b) Design and function fitting to the network: Structure the Neural Network, two

layered neural network and one hidden layer with activated sigmoid functions. An ANN

consists of set adaptive weights in their connections with the nodes. The network is

initiated with some weights using randstream along random seed to avoid randomness.

The non linear input (cost drivers) is approximated to the output (effort) of the network as

the linear combination of all outputs.

c) Training: Train the simple artificial neural network.

The training neural network can be enhanced using variant algorithms, like batch gradient

back propagation, resilient back propagation, etc.

d) Testing the neural network: This step gives the sense that how the data will fit to the

real world data. Regression for the output and target values will be plotted for all the data

attributes for testing the network. In case the values do not fit, more training at the hidden

layer is advisable.

26

e) Error Calculation: Check the performance of proposed model using evaluation

measure. MMRE will be calculated as:

i) Compute error.

Error= Actual Effort – Estimated Effort

ii) Determine relative error.

RE =

iii) Magnitude of relative error will be calculated as:

MRE = abs(RE)

iv) Calculate Mean magnitude of relative error as:

MMRE =

Fig. 3.1: Flowchart of step-by-step process of research methodology adopted

Choose and prepare the
dataset for feeding the input
layer of the neural networks

Structure the feed forward
neural network and fit the

functions to it

Apply learning algorithms for
enhancing the network

Test the neural network

Evaluate the performance
and compute MMRE for the

linear outputs

27

Chapter 4

RESULTS AND DISCUSSION

When the weights and biases of the artificial neural networks are defined, the network can

be trained. The multilayer feed forward neural network is trained for function

approximation (nonlinear regression) or even pattern recognition as per the application

requirement. The training process consists of a set of specified network behaviour—

network inputs, p and target output, t. The phenomenon of training an artificial neural

network involves the adapting values of the weights as well as biases of the neural

network to elevate the network overall performance, as defined by the

function net.performFcn. The conventional performance function for feed forward

neural networks is Mean Squared Error (MSE). It decreases as the network is trained. It is

formulated as:

F=mse=

 =

Fig. 4.1: Function fitting neural network (view)

The input and output both have the sizes 0 because the network is not configured to match

the input data as well as the target data. This is observed when the network is trained.

Listed are the training functions used with the neural networks from the toolbox of

MATLAB R2013a:

i) train: Train neural network

train calls net.trainFcn(trainlm), with the training parameter values indicated by

net.trainParam. Generally one epoch of training is represented as a single presentation of

all input vectors into the network. The network is further upgraded as per the results of all

28

such notations. Training occurs until a maximum number of epochs are achieved, or any

stopping condition of the function net.trainFcn occurs.This is implemented as:

% to eliminate initial random values every time we assume some bit
 setdemorandstream(35734567)

% Create Hidden Layer (10 Neurons in 1)
net = fitnet(10);
view(net)

% N/w is ready to trained
[net,tr] = train(net,b1,b);
nntraintool

% Difference b/w actual n expected Price
b1 = double(b1);
y = net(b1);

% Diference calculation
 e = b – y

Fig. 4.2a: Neural Network Training

29

The data is automatically divided into training, testing and validation dataset. The training

will be working until the network is improving over the validation dataset. The NN

training tool depicts the network under training as well as the algorithms used for training

it. The quickest and default training function is trainlm for most feed forward networks.

The training state and the conditions that halted it are highlighted in green.

The training window enables to access plots: performance, training state, error histogram,

regression and fit.

The performance plot depicts values of the performance function versus iteration

number. It plots training, testing and validation performances. The training state plot

depicts proficiency of training parameters, like gradient magnitude, or number of the

validation checks, etc. The error histogram plot depicts the propagation of the network

errors. The regression plot depicts the relation of regression between the network outputs

and their targets. The histogram as well as regression plots are helpful in validating the

network performance.

Fig. 4.2b: NN Training Performance (trainlm)

For considering the improved network’s performance due to training, click on

“Performance” button on the training tool or PLOTPERFORM can be called.

As per the fig. 4.2b, the best validation performance is achieved at 0.00019714 at epoch

(repetition) 6.

http://in.mathworks.com/help/nnet/ref/trainlm.html

30

ii) traingd: Batch gradient back propagation

This is a batch steepest descent training function available in MATLAB. The traingd can

train any network as long as its weight, input, biases and transfer functions have

derivative functions. It is implemented as:

net = newff(p,t,3,{},'traingd');

net.trainParam.epochs = 10; %Maximum number of epochs to train
net.trainParam.goal = 0; %Performance goal
net.trainParam.showCommandLine = 0; %Generate command-line output
net.trainParam.showWindow = 1; %Show training GUI
net.trainParam.lr = 0.05; %Learning rate
net.trainParam.max_fail = 55; %Maximum validation failures
net.trainParam.min_grad = 1e-10; %Minimum performance gradient
net.trainParam.show = 25; %Epochs between displays (NaN for no

displays)
net.trainParam.time = inf; %Maximum time to train in seconds

Fig. 4.3a: Neural Network Training using traingd

31

Fig. 4.3b: NN Training Performance (traingd)

Training stops when validation performance has increased more than max_fail times

since the last time it decreased (when using validation) and other prevailing conditions.

Performance is quantified in MSE, with log scale as shown in fig. 4.3b. The best

validation performance is 3.5284713.2542 at epoch 0. It may reduce as the network gets

trained effectively.

iii) traingda: Gradient descent with adaptive learning rate back propagation

Adaptive learning rate is efficient fpr keeping the learning rate stable while keeping the

size of the learning step as large as required. The traingda can train any network as long

as their weight, input, and transfer function does have the derivative functions. Back

propagation computes the derivatives of performance dperf with respect to the weight as

well as bias variables X. Individual variable is adjusted as per the gradient descent:

dX = lr*dperf/dX

At each epoch, the performance decreases towards the goal, then the learning rate is hiked

by a factor of lr_inc. The performance is increased even higher than max_perf_inc, then

learning rate is affected by lr_dec.

This is implemented as:

net = newff(p,t,3,{},'traingda');

net.trainParam.epochs = 100; %Maximum number of epochs to train
net.trainParam.goal = 0; %Performance goal
net.trainParam.showCommandLine = 0; %Generate command-line output

32

net.trainParam.showWindow = 1; %Show training GUI
net.trainParam.lr = 0.05; %Learning rate
net.trainParam.max_fail = 155; %Maximum validation failures
net.trainParam.min_grad = 1e-10; %Minimum performance gradient
net.trainParam.show = 25; %Epochs between displays (NaN for no

displays)
net.trainParam.time = inf; %Maximum time to train in seconds

Fig. 4.4a: Neural Network Training using traingda

The NN Training Tool clearly shows the neural network that is being trained and also the

algorithms used for the same. Training state is also displayed.

The performance can be seen for each of the training, validation and test data sets. After

the training of the network, best results were obtained on the validation data set. Other

measures of how well the neural network has fit the data attributes are regression plot,

error histogram.

33

Fig. 4.4b: NN Training Performance (traingda)

It is observed from the fig. 4.4b that the best validation performance is achieved at

0.0019927 at epoch 65. Even if in such case, the data does not well fit the neural network,

more training is suggested.

iv) traingdm: Gradient descent with momentum back propagation

traingdm can train any network as long as its weight, net input, and transfer functions

have derivative functions. Back propagation determines derivatives of performance perf

with respect to the weight and bias variables X. Each variable is adjusted as per the

gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous alteration to the weight or bias.

This is implemented as:

net = newff(p,t,3,{},'traingdm');

net.trainParam.epochs = 100; %Maximum number of epochs to train
net.trainParam.goal = 0; %Performance goal
net.trainParam.showCommandLine = 0; %Generate command-line output
net.trainParam.showWindow = 1; %Show training GUI
net.trainParam.lr = 0.05; %Learning rate
net.trainParam.max_fail = 155; %Maximum validation failures
net.trainParam.min_grad = 1e-10; %Minimum performance gradient
net.trainParam.show = 25; %Epochs between displays (NaN for no

displays)
net.trainParam.time = inf; %Maximum time to train in seconds

34

Fig. 4.5a: Neural Network Training using traingdm

Training using traingdm adds to the advantage that besides local gradient, it also

acknowledges the variations in the surface of error. Using such function, the performance

goal is met (Fig4.5a), as the best validation performance showed up at epoch 0 as

35284713.2542 (Fig. 4.5b).

Fig. 4.5b: NN Training Performance (traingdm)

35

v) trainrp: Resilient back propagation

trainrp can train any network when its weight, network inputs, and transfer functions

have derivative functions. Back propagation estimates derivatives of performance perf

according to weight as well as the bias variables X. Individual variable is adjusted as:

dX = deltaX.*sign(gX);

where the elements of deltaX are all set to delta0, with gX as the gradient.

This is implemented as:

net = newff(p,t,3,{},'trainrp');

net.trainParam.epochs = 100; %Maximum number of epochs to train
net.trainParam.goal = 0; %Performance goal
net.trainParam.showCommandLine = 0; %Generate command-line output
net.trainParam.showWindow = 1; %Show training GUI
net.trainParam.lr = 0.05; %Learning rate
net.trainParam.max_fail = 155; %Maximum validation failures
net.trainParam.min_grad = 1e-10; %Minimum performance gradient
net.trainParam.show = 25; %Epochs between displays (NaN for no

displays)
net.trainParam.time = inf; %Maximum time to train in seconds

Fig. 4.6a: Neural Network Training using trainrp

36

The buttons at the bottom line of the NN training tool for various plots can be used after

and even during training.

The resilient back propagation (Rprop) eliminates the side effects of the minute

alterations in the weights and the biases due to small magnitude of the gradient. It has two

additional parameters for initial weight change and maximum weight change from the

other training functions discussed. This algorithm is quite quicker than the basic descent

algorithm.

The performance of the Rprop is not much dependent on the arrangement of the training

parameters. The best performance validation for trainrp is 0.0019927 at epoch 65 as

illustrated in fig. 4.6b.

Fig. 4.6b: NN Training Performance (trainrp)

Well, the successful implementation of the proposed research methodology has been

carried out with the help of MATLAB R2013a. The performance analysis of the various

learning and back propagation algorithms used with the training of the feed forward

artificial neural networks has been noted in terms of Mean Magnitude of Relative Error

(MMRE).

Fig. 4.7 records the MMRE values obtained after the complete analysis of the training,

testing as well as the validation state of the dataset fed into the neural network as

performance criterion using the learning algorithmic functions.

37

Fig. 4.7: MMRE Values of the algorithms used with artificial neural networks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Batch
gradient

Gradient
descent with

adaptive
learning rate

Gradient
descent with
momentum

Resilient
back

propagation

MMRE

MMRE

38

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In the various training functions, feed forward neural networks are evaluated to predict

the software effort for projects. The performances of the developed models were tested on

the nasa software project dataset. It is concluded that neural networks are one of the most

efficient approach for the function fit problems. The artificial neural network with the

specified number of neurons can accurately fit any data set. Particularly, such networks

are good at handling non linear data. So, the training functions model is able to provide

good estimation for the software effort and cost using the neural network.

5.2 FUTURE WORK

The trained neural network provided efficient estimation capability for the software effort

and the cost. This work can be extended as:

1. Explore the neural network approach for generating a suitable model structure for

software metrics along software effort and cost estimation.

2. Different activation functions can be applied to the neural networks for quicker and

more robust estimations.

3. More variant learning functions can be used to estimate the error rate and the efforts.

4. Advanced machine learning algorithms can be applied to the neural networks.

39

Chapter 6

REFERENCES

A. A. W. B. Barry Boehm (2007), “Software Cost Estimation with COCOMO II”

A. Idri, A. Abran and S. Mbarki (2006), “An Experiment on the Design of Radial Basis

Function Neural Networks for Software Cost Estimation”

A.P. Engelbrecht (2006), “Fundamentals of Computational Swarm Intelligence”

JohnWiley & Sons, New Jersey

Abeer Hamdy (2012), “Fuzzy Logic for Enhancing the Sensitivity of COCOMO Model”

Abran, A.; Gallego, J.J. (2009), “Software Estimation Models and Economies of Scale”

Amanjot Singh Klair & Raminder Preet Kaur (2012) “Software Effort Estimation using

SVM and kNN”

Anjana Bawa, Mrs. Rama Chawala (2012), “Experimental Analysis of Effort Estimation

using Artificial Neural Network”

Anupama Kaushik, AK Soni, Rachna Soni (2012) “An Adaptive Learning Approach to

Software Cost Estimation”

B.W. Boehm et al "The COCOMO 2.0 Software Cost Estimation Model", American

 Programmer, July 1996, pp.2-17.

Ch. Satyananda Reddy, KVSN Raju (2009) “An Improved Fuzzy Approach for

COCOMO’s Effort Estimation using Gaussian Membership Function”

Chadha, R., & Nagpal, S. Optimization of COCOMOII Model Coefficients using Tabu

Search.

Ekbal Rashid, Vandana Bhattacherjee & Srikanta Patnaik (2012), “The Application of

Case-Based Reasoning to Estimation of Software Development Effort”

Geeta Nagpal, Moin Uddin and Arvinder Kaur (2014), “Grey Relational Effort Analysis

Technique Using Regression Methods for Software Estimation”

Gencel, C.; Buglione, L.; Demirors, O.; Efe, P. (2006); “A case study on the evaluation

of COSMIC-FPP and Use Case Points”

Gharehchopogh, F. S., & Dizaji, Z. A. (2014). A New Approach in Software Cost

Estimation with Hybrid of Bee Colony and Chaos Optimizations Algorithms (Vol.

2, No. 6, pp. 1263-1271). MAGNT RESEARCH REPORT.

40

Gharehchopogh, F. S., Maleki, I., haze, S. R. (2014). A Novel Particle Swarm

Optimization Approach for Software Effort Estimation. International Journal of

Academic Research, Part A, 6(2), 69-76.

Gharehchopogh, F. S., Maleki, I., haze, S. R. (2014). A Novel Particle Swarm

Optimization Approach for Software Effort Estimation. International Journal of

Academic Research, Part A, 6(2), 69-76.

Hamer P.G.,. Frewin,, G. D., “M.H. Halstead’s Software Science – a critical

 examination”, Proceedings of the 6th International Conference on Software

 Engineering, Sept. 13-16, 1982, pp. 197-206.

I. Myrtveit & E.Stensurd (1999), “A controlled experiment to assess the benefits of

estimation with analogy and regression models”

Jagannath Singh & Bibhudatta Sahoo (2011), “Software Effort Estimation with Different

Artificial Neural Network”

Jayashree K.M., Sathya Bama & J. Frank Vijay (2014), “Software Effort Estimation

Using Analogy”

K. Ramesh & P. Karunanidhi (2013), “Literature Survey On Algorithmic And Non

Algorithmic Models For Software Development Effort Estimation”

K.P. Manju & B.Arthi (2014), “A Linear Regression Model with Exponential

Transformation for Software Effort Estimation”

Kamal, S., & Nasir, J. A. (2013). A Fuzzy Logic Based Software Cost Estimation

Model. International Journal of Software Engineering & Its Applications, 7(2).

Kavita Chaudhary (2010), “GA Based Optimization of Software Development Effort

Estimation”

Kemerer, Chris F., and Michael W. Patrick (1993) "Staffing factors in software cost

estimation models”

Khatibi, V., & Jawawi, D. N. (2011). Software Cost Estimation Methods: A Review 1.

Kowalska, J., & Ochodek, M. (2014). Supporting Analogy-based Effort Estimation with

the Use of Ontologies. e-Informatica Software Engineering Journal, 8(1).

M rgensen (2004), “Top-down and bottom-up expert estimation of software

development effort”

Maitreyee Dutta and Prabhakar (2013), “Prediction of Software Effort using Artificial

Neural Network and Support Vector Machine”

41

Maleki, I., Ghaffari, A., & Masdari, M. (2014). A new approach for software cost

estimation with hybrid genetic algorithm and ant colony

optimization.International Journal of Innovation and Applied Studies, 5(1), 72-81.

Maryam Molani, Ali Ghaffari and Ahmad Jafarian (2014), “A New Approach to Software

Project Cost Estimation using a Hybrid Model of Radial Basis Function Neural

Network and Genetic Algorithm”

Mohd. Sadiq, Aleem Ali, Syed UvaidUllah, Shadab Khan and Qamar Khan (2013),

“Prediction of Software Project Effort Using Linear Regression Model”

Muhammad Waseem han and Imran Qureshi (2014), “Neural Network Based Software

Effort Estimation: A Survey”

P. Subitsha, J.Kowski Rajan (2014), “Artificial Neural Network Models for Software

Effort Estimation

Prasad Reddy PVGD, Sudha KR, Rama Sree P and Ramesh SNSVSC (2010) “Software

Effort Estimation using Radial Basis and Generalized Regression Neural

Networks”

R. Banker, R. auffman, C. Wright, D. Zweig. (1994), “Automatic Output Size and

Reuse Metrics in a Repository-Based Computer-Aided Software Engineering

(CASE) Environment”, IEEE Transactions on Software Engineering

R.M. Dawes, D. Faust and P.E. Meehl (1989), “Clinical versus actuarial judgement”

Rao, P. S., & Kumar, R. K. (2015, January). Software Effort Estimation through a

Generalized Regression Neural Network. In Emerging ICT for Bridging the

Future-Proceedings of the 49th Annual Convention of the Computer Society of

India (CSI) Volume 1 (pp. 19-30). Springer International Publishing.

Ridhika Sharma (2013), “Survey: Non Algorithmic Models for Estimating Software

Effort”

Rizvi, S., Abbas, S. Q., & Beg, R. AHybrid FUZZY-ANN APPROACH FOR

SOFTWARE EFFORT ESTIMATION.

Seref, B., & Barisci, N. Software Effort Estimation Using Multilayer Perceptron and

Adaptive Neuro Fuzzy Inference System.

Sriman Srichandan (2012), “A new approach to Software Effort Estimation using Radial

Basis Function Neural Networks”

Sweta Kumari , Shashank Pushkar CSE & BIT Mesra, Ranchi India (2013),

“Performance Analysis of the Software Cost Estimation Methods: A Review”

42

Symons, C. (1991), “Software sizing and estimating: Mk II FPA (Function Point

Analysis)”, John Wiley & Sons, New York

Thayer, H.R. (2001), “Software Engineering Project Management, Second edition IEEE

CS Press”

Tulin Ercelebi Ayyilidiz & Altan Kocyigit (2014), “An Early Software Effort Estimation

Method Based on Use Cases and Conceptual Classes”

Usha Gupta and Manoj Kumar (2013), “Software effort estimation through clustering

techniques of RBFN network”

Venus Marza and Mohammad Teshnehlab (2012) “Estimating Development Time and

Effort of Software Projects by using a Neuro-Fuzzy Approach”

Ziauddin, Z., Shahid Kamal, S. K., Shafiullah khan, S. K., & Jamal Abdul Nasir, J. A. N.

(2013). A Fuzzy Logic Based Software Cost Estimation Model.International

Journal of Software Engineering and Its Applications, 7(2), 7-18.

Zibigniew Michalewicz, Robert Hinterding & Maciej Michalewicz, “Evolutionary

Algorithms”

