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Chapter 1

Introduction and Preliminaries

This chapter elaborates the basic definitions, results and notations, which are required

in the subsequent chapters. It begins with the study of core material of thesis along

with the previously known results.

1.1 Background of Fixed Point Theory

Fixed point theory is a beautiful mixture of analysis, topology and geometry. Over since

last 50 years, fixed point theory has been revealed itself as a very powerful and impor-

tant tool in the study of nonlinear phenomena. In particular, fixed point techniques

have been applied in divers fields such as in biology, chemistry, economics, engineering,

game theory and physics. The point at which the curve y = f(x) and the line y = x

intersects gives the solution of the curve, and the point of intersection is the fixed point

of the curve. The usefulness of the concrete applications has increased enormously due

to the development of accurate techniques for computing fixed points.

Fixed point theory is a rapidly moving into the mainstream of mathematics mainly be-

cause of its applications in diverse fields which include numerical methods like Newton-

Raphson method, establishing Picard Existence Theorem, existence of solution of inte-

gral equations and a system of linear equations.

1.1.1 Significance of fixed points

Fixed points are points which remain invariant under a map/transformation. Fixed

points tells us which part of the space are pinned in plane, not moved, by the trans-

formation. The fixed points of a transformation restrict the motion of the space under

some restrictions.
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We note that fixed points problems and root finding problems f(x) = 0 are equivalent.

Now the question arises what types of problems have the fixed points. The fixed points

problem can be elaborated in following manner:

1. what functions/maps have fixed points?

2. How do we determine the fixed points?

3. Is the fixed point unique?

Next we state a result which gives us the gurantee of existence of fixed points.

Suppose g is continuous self map on [a, b]. Then we have the following conclusions:

If the range of the mapping y = g(x) satisfies y ∈ [a, b] for all x ∈ [a, b], then g has

a fixed points in [a, b].

Suppose that g
′
(x) is defined over (a, b) and that a positive constant k < 1 exist with

|g′(x)| ≤ k for all x ∈ (a, b),then g has unique fixed point p in [a,b].

Now suppose that (X, d) be a complete metric space and T : X → X be a map. The map-

ing T satisfies a Lipschitz condition with constant α ≥ 0 such that d(Tx, Ty) ≤ α(x, y),

for all x, y ∈ X. For different values of α, we have the following cases:

1. T is called contraction mapping if α < 1

2. T is called non-expensive if α ≤ 1

3. T is called contractive if α = 1

It is clear that contraction⇒ contractive⇒ non-expensive⇒ Lipschitz. However, con-

verse may not true in either case as:

The identity map I : X → X is a metric space, is non-expansive but not contrac-

tive.

Let X = [0,∞) be a complete metric space equipped with the metric of absolute value.

Define, f : X → X given by f(x) = x + 1
x . Then f is contractive map, while f is not

contraction.

There are two fixed points theorem: one is Brouwers, and the other Banach fixed point

theorem. Brouwers fixed point theorem is extential by its nature.
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Brouwer(1912): Every continuous self map on the closed unit ball C = x : |x| ≤ 1

in Rn has a fixed point.

The elegant Banach fixed point theorem solves:

the problem on the existence of a unique solution to an equation,

gives a practical method to obtain approximate solutions and

gives an estimate of such solutions.

The applications of Banach fixed point theorem and its generalization are very impor-

tant in diverse disciplines of mathematics, statistics, engineering and economics.

In 1922, Banach [8] proved a fixed point theorem and called it Banach Fixed point

theorem/Banach Contraction Principle which is considered as the mile stone on fixed

point theory. This theorem states that if T is self mapping of a complete metric space

(X, d) and there exist a number h ∈ [0, 1), such that for all x, y ∈ X,

d(Tx, Ty) ≤ hd(x, y) (1.1)

Then T be continuous throughout X.

This theorem provides a technique for solving a variety of applied problems in mathemat-

ical sciences and engineering. This theorem was generalized and improved in different

ways by various authors. This principle has had many applications but it suffers from

one drawback-the definition requires that T be continuous throughout X.

Definition 1.1. Let X be a non empty set and T : X → X be a mapping. A solution

of an equation Tx = x is called fixed point of T .

Example 1.1. Examples of fixed points are following:

(i) A translation mapping has no fixed points,that is Tx = x+ 3 for all x ∈ R.

(ii) A mapping T : R→ R defined by Tx = x
p − (p− 1) where p is positive integer, then

x = −p is the unique fixed point.

(iii) A mapping T : R→ R defined by Tx = x2 has two fixed points 0 and 1.

(iv) A mapping T : R → R defined by Tx = x, has infinitely many points, i.e,every

point of domain is a fixed point of T .

Therefore, from the above examples one can conclude that a mapping may have unique

fixed point, it may have more than one or even infinitely many fixed points and it may
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have no fixed point. Therefore dealing with the existence and construction of a solution

to an operator equation Tx = x from the part of fixed point theory.

We note that every mapping is continuous and uniformly continuous but converse need

not be true. The first answer of this question is given by Kannan in 1968, who proved

a fixed point theorem for operators which do not have to be continuous.

Kannan (1968): If T is a self mapping and a complete metric space X satisfying

d(Tx, Ty) ≤ k[d(Tx, x) + d(Ty, y)] (1.2)

for all x, y ∈ X and 0 ≤ k < 1
2 , then T has unique fixed point in X. We note that a

map T is not continuous even though T has fixed point. However, in every case, the

maps involved are continuous at the fixed. Therefore, Kannan type and their general-

izations have been considered as an important class of mapping in fixed point theory.

Following Kannan, Chatterjea proved a fixed point theorem for operator which satisfies

the condition: there exist c ∈ [0, 12) such that for all x, y ∈ X,

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)] (1.3)

Rhoades had shown that these conditions (1.1), (1.2) , (1.3) are independent. Zamrfescu

combined the conditions (1.1), (1.2) , (1.3) as follows:

there exist a number a, b and c satisfying 0 ≤ b < 1, 0 ≤ a < 1
2 , and 0 ≤ c < 1

2 ; such

that for each x, y ∈ X at least one of the following is true:

(z1) d(Tx, Ty) ≤ ad(x, y);

(z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];

(z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

In 1983, Rus gave another generalization of Banach contraction principle replacing the

condition (1.1) with the next condition as follows:

there is a comparison function ϕ : Rn → Rn such that

d(Tx, Ty) ≤ ϕ(d(x, y)) (1.4)

for all x, y ∈ X.

A generalization of Kannan Theorem was made by Bianchini, who replace the condition

(1.2) with:

there is a ∈ [0, 1) such that for all x, y ∈ X

d(Tx, Ty) ≤ a.max{(d(x, Tx), d(y, Ty)} (1.5)
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In these conditions the operator T has a unique fixed point.

1.2 Various Types Of Spaces

We emphasis our research mainly on metric spaces and multiplicative metric spaces.

1.2.1 Metric Spaces

In 1906, Maurice Frechet (1878-1973), a French mathematician, introduced the nota-

tion of metric space, which derived from the word metor (measure). Further, he pio-

neered the study of such spaces and their applications to different areas of mathematics.

Thought, the definition presently in use is given by the German mathematician. Felix

Hausdroff(1868-1942) in 1914.

Definition 1.2. Let X be an arbitrary set. Let d : X ×X → R+ satisfies the following

conditions :

(i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. The set X together with the metric d, i.e, (X, d) is called metric

space.

Definition 1.3. Let (X, d) be a metric space. A sequence {xn} in X is said to be

(i) Convergent to x if and only if d(xn, x) → 0 as n → ∞. We denote this by xn → x

as n→∞ or limn→∞xn = x.

(ii) Cauchy sequence if and only if for each ε > 0 there exists a natural number n(ε)

such that for all n > m > n(ε), d(xn, xm) < ε.

(iii) Complete if every cauchy sequence is convergent in X.

The study of common fixed point of mappings satisfying contractive condition have been

a very active field of research during recent years. The most general of common fixed

point theorems pertaining to four mappings A,B, S and T of a metric space (X, d) uses

either a Banach-type contractive condition of the form

d(Ax,By) ≤ km(x, y) (0 ≤ k < 1),where
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m(x, y) = max{d(Ax,By), d(Sx,Ax), d(Ty,By),
d(Sx,By) + d(Ty,Ax)

2
},

or a Meir-Keeler-type (ε, δ)-contractive condition, that is, given ε > 0, there exist a

δ > 0 such that

ε ≤ m(x, y) < ε+ δ ⇒ d(Ax,By) < ε,

or a ϕ-contractive condition of the form

d(Ax,By) ≤ ϕ(m(x, y)),

involving a contractive gauge function ϕ : [0,∞) → [0,∞) such that ϕ(t) < t for each

t > 0. Note that Banach-type contractive condition is a special case of both conditions

Meir-Keeler-type (ε, δ)-contractive and ϕ-contractive. A ϕ-contractive condition does

not guarantee the existence of a fixed point unless some additional condition is assumed.

Moreover, a ϕ-contractive condition, in general, does not imply the Meir-Keeler-type

(ε, δ)-contractive conditions.

In this , we will prove a common fixed point theorem for four weakly compatible self-maps

satisfying a general contractive condition and also prove common fixed point theorems

for weakly compatible maps along with E.A. and (CLR) properties.

1.2.2 Multiplicative Metric Spaces

Let X be a non-empty set. A multiplicative metric is a mapping d : X × X → R+

satisfying the following conditions:

(i) d(x, y) ≥ 1, d(x, y) = 1 iff x = y,

(ii) d(x, y) = d(y, x),

(iii d(x, y) ≤ d(x, z).d(z, y) (multiplicative triangular inequality)

for all x, y, z ∈ X. The set X together with the multiplicative metric d, i.e, (X, d) is

called Multiplicative Metric Space.

Definition 1.4. Let (X, d) be multiplicative metric space. Then a sequence {xn} is

said to be a multiplicative convergent to x for every multiplicative open ball

Bε(x) = {y ∈ X|d(x, y) < ε, ε > 1},

there exist a natural number N such that n ≥ N then xn ∈ Bε(x) that is, d(xn, x)→ 1

as n→∞ .
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Definition 1.5. Let (X, d) be multiplicative metric space. Then a sequence {xn} is

said to be cauchy sequence if for all ε > 1 there exist N ∈ N such that d(xn, xm) < ε, ∀
m,n > N that is d(xn, xm)→ 1 as n,m→∞.

A multiplicative metric space is said to be complete if every multiplicative cauchy se-

quence in it is a multiplicative convergent sequence.



Chapter 2

Review of the Literature

Throughout this paper the letters R, R+ and N denote the set of all real numbers, the

set of all positive real numbers and the set of all natural numbers,respectively.

It is well known that the set of positive real number R+ is not a complete accord-

ing to the usual metric. To overcome this problem, in 2008, Bashirov[2] introduced the

concept of multiplicative metric space as follows:

Definition 2.1. Let X be a non-empty set. A multiplicative metric is a mapping

d : X ×X → R+ satisfying the following conditions:

(i) d(x, y) ≥ 1, d(x, y) = 1 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z).d(z, y) (multiplicative triangular inequality)

for all x, y, z ∈ X. The set X together with the multiplicative metric d, i.e, (X, d) is

called Multiplicative Metric Space.

Example 2.1. Let Rn+ be the collection of all n-tuples of positive real numbers. Let

d∗(u, v) : Rn+ → R be defined as follows:

d∗(u, v) = |u1
v1
|∗ · |u2

v2
|∗ · · · |un

vn
|∗,

where u = (u1, u2, · · ·un), v = (v1, v2, · · ·vn) ∈ Rn+ and | · |∗ : R+ → R+ is defined by:

|k|∗ =


k, if k ≥ 1;

1
k , if k < 1,

8



9

Then it is obvious that all conditions of a multiplicative metric space are satisfied and

(Rn+, d) is a multiplicative metric space.

Example 2.2. Let d : R × R → [1,∞) be defined as d(x, y) = a|x−y|, where x, y ∈ R
and a > 1. Then d is a multiplicative metric and (R, d) is a multiplicative metric space.

Remark 2.2. We note that Example 2.1 is valid for positive real numbers and Example

2.2 is valid for all real numbers.

Example 2.3. Let (X, d) be a metric space. Define mapping da on X by

da(x, y) = ad(x,y) =


1, if x = y;

a, if x 6= y,

where x, y ∈ X and a > 1. Then da is called a discrete multiplicative metric and (X, da)

is known as the discrete multiplicative metric space.

Example 2.4. Let X = C∗[a, b] be the collection of all real-valued multiplicative con-

tinuous function on [a, b] ⊂ R+, then (X, d) is a mutiplicative continuous metric space

with d defined by

d(f, g) = supx∈[a,b]|
f(x)
g(x) | for arbitrary f,g ∈ X.

Remark 2.3. Neither every metric is multiplicative metric nor every multiplicative metric

is metric. The mapping d∗ defined above is multiplicative metric but not but not metric

as it does not triangular inequality,

Consider d∗(13 ,
1
2) + d∗(12 , 3) = 3

2 + 6 = 7.5 < 9 = d∗(12 , 3).

On the other hand the usual metric on R is not multiplicative metric as it does not

satisfy multiplicative triangular inequality,since

d(2, 3).d(3, 6) = 3 < 4 = d(2, 6)

Definition 2.4. Let (X, d) be multiplicative metric space. Then a sequence {xn} is

said to be a multiplicative convergent to x for every multiplicative open ball

Bε(x) = {y ∈ X|d(x, y) < ε, ε > 1},

there exist a natural number N such that n ≥ N then xn ∈ Bε(x) that is, d(xn, x)→ 1

as n→∞ .

Definition 2.5. Let (X, d) be multiplicative metric space. Then a sequence {xn} is

said to be cauchy sequence if for all ε > 1 there exist N ∈ N such that d(xn, xm) < ε, ∀
m,n > N that is d(xn, xm)→ 1 as n,m→∞.

A multiplicative metric space is said to be complete if every multiplicative cauchy se-

quence in it is a multiplicative convergent sequence.
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Remark 2.6. The set of positive real number R+ is not complete according to usual

metric.

Let X = R+ and the sequence {xn} = 1
n .

It is obvious {xn} is a cauchy sequence in X and X is not a complete metric space, Since

0 ∈ R+.In case of multiplicative metric space, we take a sequence {xn} = a
1
n , where

a > 1. Then {xn} is a cauchy sequence, since for n ≥ m,

d(xn, xm) = | xnxm | = |a
1
n
− 1
m | ≤ a

1
n
− 1
m < a

1
m < ε if m > loga

logε ,

where

|a| =


a, if a ≥ 1;

1
a , if a < 1,

Also xn → 1 as n → ∞ and 1 ∈ R+. Hence (X, d) is complete multiplicative metric

space.

In 2012, Ozavsar and Cevikel [11] gave the concept of multiplicative contraction map-

pings and proved some fixed point theorem of such mappings in a multiplicative metric

space.

Definition 2.7. Let f be mapping of a multiplicative metric space (X, d) into self.

Then f is said to be multiplicative contraction if there exist a real constant λ ∈ [0, 1)

such that

d(fx, fy) ≤ dλ(x, y) for all x, y ∈ X.

Gu et al.[6] introduced the notation of commutative and weak contraction mappings in

a complete multiplicative metric space and proved some fixed point theorems for these

mappings.



Chapter 3

Common Fixed Point Theorems

In Metric Space

3.1 Objective of the study

Our objective was to meet the following:

To design a framework to survey the study of fixed point in metric spaces and multi-

plicative metric spaces as studied by other researchers using

(i) weakly compatible property,

(ii) E.A. property,

(iii) CLR property.

Some Common Fixed Point Theorems for Four Self-Mappings satisfying a

general contractive condition

Definition 3.1. Two self maps f and g are said to be weakly compatible if they commute

at coincidence points.

Definition 3.2. Two self-mapping f and g of metric space (X, d) are said to be

satisfy E.A. property if there exist a sequence {xn} in X such that limn→∞fxn =

limn→∞gxn = t for some t in X.

Definition 3.3. Two self-mapping f and g of metric space (X, d) are said to be sat-

isfy (CLRf ) property if there exist a sequence {xn} in X such that limn→∞fxn =

limn→∞gxn = fx for some x in X.

Theorem 3.4. Let A, B, S and T be self maps of metric space (X, d) satisfying the

followings:

(i) SX ⊆ BX, TX ⊆ AX,

11
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(ii) for all x, y in X, there exists a right continuous functions ψ, φ : R+ → R+,

ψ(0) = 0 = φ(0) and ψ(s) < s, φ(s) < s for s > 0 such that

ψ(d(Sx, Ty)) ≤ ψ(m(x, y))− φ(m(x, y)), where

m(x, y) = max{d(Ax,By), d(Sx,Ax), d(Ty,By), 12(d(Sx,By) + d(Ty,Ax))}.

If AX, BX, SX or TX is complete subspace of X, then the pair (A,S) or (B, T ) have

a coincidence point.

Moreover, if (A,S) and (B, T ) are weakly compatible, then A, B, S and T have a unique

common fixed point.

Proof. Let x0 ∈ X be an arbitrary point of X. From (i), we conclude that {yn} in X as

follows:

y2n+1 = Sx2n = Bx2n+1, y2n+2 = Tx2n+1 = Ax2n+2, for all n = 0, 1, 2, .... (3.1)

Define dn = d(yn, yn+1). Suppose that d2n = 0 for some n. Then y2n = y2n+1, that is,

Tx2n−1 = Ax2n = Sx2n = Bx2n+1. A and S have coincidence point.

Similarly, if d2n+1 = 0, then B and T have coincidence point. Assume that dn 6= 0 for

each n. From (ii), we have

ψ(d(Sx2n, Tx2n+ 1)) ≤ψ(m(x2n, x2n+1))− φ(m(x2n, x2n+1)), where (3.2)

(m(x2n, x2n+1)) = max{d(Ax2n, Bx2n+1), d(Sx2n, Ax2n), d(Tx2n+1, Bx2n+1),

1

2
(d(Sx2n, Bx2n+ 1) + d(Tx2n+1, Ax2n))}

= max{d2n, d2n+1}. (3.3)

Thus from (3.2) we have

ψ(d(Sx2n, Tx2n+ 1)) ≤ψ(max{d2n, d2n+1} − φ(max{d2n, d2n+1}). (3.4)

Now, if d2n+1 ≥ d2n, for some n, then from (3.4), we have

ψ(d2n+1) ≤ ψ(d2n+1)− φ(d2n+1)

< ψ(d2n+1) a contradiction. (3.5)
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Thus, from d2n > d2n+1 for all n, and so, from (3.4), we have

ψ(d2n+1) ≤ ψ(d2n)− φ(d2n), for all n ∈ N (3.6)

Similarly

ψ(d2n) ≤ ψ(d2n−1)− φ(d2n−1)

ψ(d2n−1) ≤ ψ(d2n−2)− φ(d2n−2)

In general, we have for all n= 1,2,3,...,

ψ(dn) ≤ ψ(dn−1)− φ(dn−1)

< ψ(dn−1). (3.7)

Hence the sequence {ψ(dn)} is monotonically decreasing and bounded below. Thus,

there exists, r ≥ 0, such that

limn→∞ψ(dn) = r. (3.8)

From (3.7), we deduce that

0 ≤ φ(dn−1) ≤ ψ(dn−1)− ψ(dn).

Letting limit as n→∞ and using (3.8), we get

limn→∞φ(dn−1) = 0⇒limn→∞dn−1 = limn→∞∞d(yn−1, yn) = 0, or (3.9)

limn→∞dn = limn→∞d(yn, yn+1) = 0. (3.10)

Now, we show that {yn} is a cauchy sequence. For this, it is sufficient to show that {yn}
is a cauchy sequence. Let, if possible {yn} is not a cauchy sequence. Then there exist an

ε > 0 such that for each even integer 2k there exist even integers 2m(k) > 2n(k) > 2k

such that

d(y2n(k), y2m(k)) ≥ ε. (3.11)

For every even integer 2k, suppose that 2m(k) be the least positive integer exceeding

2n(k) satisfying (3.11) such that

d(y2n(k), y2m(k)−2) < ε. (3.12)
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From (3.11), we have

ε ≤ d(y2n(k), y2m(k))

≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k)).

Using (3.10) and (3.12) in the above inequality, we get

limk→∞d(y2n(k), y2m(k)) = ε. (3.13)

Also, by the triangular inequality,

|d(y2n(k), y2m(k)−1) + d(y2n(k), y2m(k))| ≤ d2m(k)−1,

|d(y2n(k)+1, y2m(k)−1) + d(y2n(k), y2m(k))| ≤ d2m(k)−1 + d2m(k). (3.14)

Using (3.10), we get

limk→∞d(y2n(k), y2m(k)−1) = limk→∞d(y2n(k)+1, y2m(k)−1) = ε (3.15)

From (ii), we have

ψ(d(Sx2n(k), Tx2m(k)−1)) ≤ ψ(m(x2n(k), x2m(k)−1))− φ(m(x2n(k), x2m(k)−1)), (3.16)

where

m(x2n(k), x2m(k)−1) = max{d(Ax2n(k), Bx2m(k)−1), d(Sx2n(k), Ax2n(k)),

d(Tx2m(k)−1, Bx2m(k)−1),

d(Sx2n(k), Bx2m(k)−1) + d(Tx2n(k), Ax2m(k)−1)

2
}

= max{d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

d(y2n(k)+1, y2m(k)−1) + d(y2n(k), y2m(k)−1)

2
}.

Letting limit as k → ∞ and using (3.15), we get ψ(ε) ≤ ψ(ε) − φ(ε), a contradiction,

since ε > 0. Thus,{y2n} is a cauchy sequence and so {yn} is a cauchy sequence.

Now, suppose that A(X) is a complete. Note that {y2n} is contained in A(X) and has

a limit in A(x), say u, that is, limn→∞y2n = u. Let v ∈ A−1u. Then Av = u. Now,

we shall prove that Sv = u. Let, if Possible, Sv 6= u, that is, d(Sv, u) = p > 0. Putting

x = v and y = x2n−1 in (ii), we have

ψ(d(Sv, Tx2n−1)) ≤ ψ(m(v, x2n−1))− φ(m(v, x2n−1)).
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Letting limit as n→∞, we have

limn→∞ψ(d(Sv, Tx2n−1)) ≤ limn→∞ψ(m(v, x2n−1))− limn→∞φ(m(v, x2n−1)), where

(3.17)

limn→∞m(v, x2n−1) = limn→∞[max{d(u, y2n−1), d(Sv, u), d(y2n, y2n−1),

d(Sv, y2n−1) + d(y2n, u)

2
}]

= max{d(u, u), d(Sv, u), d(u, u),
d(Sv, u) + d(u, u)

2
}

= d(Sv, u) = p.

Thus, from (3.17), we have

ψ(d(Sv, u)) ≤ ψ(p)− φ(p), that is ,

ψ(p) ≤ ψ(p)− φ(p), a contradiction, since p > 0.

Thus, Sv = u = Av.

Hence u is the coincidence point of the pair (A,S).

Since SX ⊆ BX, Sv = u, implies that, u ∈ BX.

Let w ∈ B−1u. Then Bw = u. By using the same arguments as above, one can easily

verify that, Tw = u = Bw, that is, u is the coincidence point of the pair (B, T ).

The same result holds, if we assume that BX is complete instead of AX.

Now, if TX is complete, then by (i), u ∈ TX ⊆ AX.

Similarly, If SX is complete, then u ∈ SX ⊆ BX.

Now, since the pairs (A,S) and (B, T ) are weakly compatible, so

u = Sv = Av = Tw = Bw, then

Au = ASv = SAv = Su. (3.18)

Bu = BTw = TBw = Tu.
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Now, we claim that Tu = u.

Let, if possible, Tu 6= u. From (ii), we have

ψ(s(u, Tu)) = ψ(d(Sv, Tu))

≤ ψ(m(v, u))− φ(m(v, u)), where

m(v, u) = max{d(Av,Bu), d(Sv,Av), d(Tu,Bu),
d(Sv,Bu) + d(Tu,Av)

2
}

= max{d(u, Tu), d(u, u), 0,
d(u, Tu) + d(Tu, u)

2
}

= d(u, Tu).

Thus, we thus

ψ(d(u, Tu)) ≤ ψ(d(u, Tu))− φ(d(u, Tu))

< ψ(d(u, Tu)), contradiction

So, Tu = u.

Similarly, Su = u.

Thus, we get Au = Su = Bu = Tu = u.

Hence u is the common fixed point of A,B, S and T .

Now, we claim that u = z.

Let, if possible, u 6= z.

ψ(d(u, z)) = ψ(d(Su, Tz))

≤ ψ(m(u, z))− φ(m(u, z))

= ψ(d(u, z))− φ(d(u, z)),

Sincem(u, z) = d(u, z) < ψ(d(u, z))), a contradiction.

Thus, u = z, and the uniqueness follows.



Chapter 4

Common Fixed Point Theorems

In Multiplicative Metric Space

Main Result

In this chapter, we prove some common fixed point theorems for weakly C-contractive

mapping in Multiplicative Metric Space.

Definition 4.1. A mapping T : X → X, where (X, d) is a multiplicative metric space is

said to be a C-contractive if there exist α ∈ (0, 12) such that for all x, y ∈ X the following

inequality holds:

d(Tx, Ty) ≤ [d(x, Ty).d(y, Tx)]α.

Definition 4.2. A mapping T : X → X, where (X, d) is a multiplicative metric space

is said to be a weakly C-contractive if for all x, y ∈ X,

d(Tx, Ty) ≤ [(d(x, Ty).d(y, Tx)]α − ϕ(d(x, Ty), d(y, Tx)),

where ϕ : [0,∞)2 → [0,∞) is a continuous function such that ϕ(x, y) = 0 if and only if

x = y = 1 .

Definition 4.3. Let T and S be two self mappings of a multiplicative metric space

(X, d). T and S are said to be weakly compatible if for all x ∈ X the equality Tx =

Sx⇒ TSx = STx.

Theorem 4.4. Let (X, d) be a complete multiplicative metric space and let E be a

non-empty closed subset of X. Let T, S : E → E such that,

d(Tx, Sy) ≤ [(d(Rx, Sy).d(Ry, Tx)]
1
2 − ϕ(d(Rx, Sy), d(Ry, Tx)), (4.1)

17
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for every pair (x, y) ∈ X ×X,where ϕ : [0,∞)2 → [0,∞) is a continuous function such

that ϕ(x, y) = 0 if and only if x = y = 1 and R : E → X satisfying the following

hypothesis:

(i) TE ⊆ RE and SE ⊆ RE.

(ii) The pairs (T,R) and (S,R) are weakly compatible.

In addition, assume that R(E) is a closed subset of X. Then, T and R and S have a

unique common fixed points.

Proof. Let x0 ∈ E be arbitrary. Using 4.1 there exist two sequences {xn}∞n=0 and {yn}∞n=0

such that y0 = Tx0 = Rx1, y1 = Sx1 = Rx2, y2 = Tx2 = Rx3..., y2n = Tx2n = Rx2n+1,

y2n+1 = Tx2n+1 = Rx2n+2,...

We complete the proof in three steps.

Step I. We will prove that limn→∞d(yn, yn+1) = 0.

Let n = 2k.Using condition (4.1), we obtain that

d(y2k+1, y2k) = d(Tx2k, Sx2k+1)

≤ [(d(Rx2k, Sx2k+1).d(Rx2k+1, Tx2k)]
1
2 − ϕ(d(Rx2k, Sx2k+1), d(Rx2k+1, Tx2k))

= [d(y2k−1, y2k+1).d(y2k, y2k)]
1
2 − ϕ(d(y2k−1, y2k+1), d(y2k, y2k))

≤ [d(y2k−1, y2k+1)]
1
2

≤ [d(y2k−1, y2k).d(y2k, y2k+1)]
1
2 (4.2)

Hence,d(y2k+1, y2k) ≤ d(y2k, y2k+1).

If n = 2k + 1, similarly we can prove that

d(y2k+2, y2k+1) ≤ d(y2k+1, y2k),

Thus d(yn+1, yn) is a decreasing sequence of non-negative real numbers and hence it is

convergent.

Assume that, limn→∞d(yn+1, yn) = r from the above argument we have,

d(yn+1, yn) ≤ (d(yn−1, yn+1)
1
2

≤ [d(yn−1, yn).d(yn, yn+1)]
1
2 (4.3)

If n→∞, we have

r ≤ limn→∞(d(yn−1, yn+1)
1
2 ≤ r.
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Therefore,limn→∞d(yn−1, yn+1) = r2. We have proved in (4.2)

d(y2k+1, y2k) = d(Tx2k, Sx2k+1)

≤ [(d(y2k−1, y2k+1).d(y2k, y2k)]
1
2 − ϕ(d(y2k−1, y2k+1), d(y2k, y2k)) (4.4)

Now, if k →∞ and using the continuity of ϕ we obtain

r ≤ r − ϕ(r2, 1),

and consequently, ϕ(r2, 1) = 0. This gives us that

r = limn→∞d(yn+1, yn) = 1 (4.5)

by our assumption about ϕ.

StepII. {yn} is cauchy sequence,

Since d(yn+1, yn+2) ≤ d(yn, yn+1),

It is sufficient to show that the subsequence {y2n} is a cauchy sequence.

Suppose that {y2n} is not a cauchy sequence. Then there exist ε > 0 for which we can

find subsequence {y2m(k)} and {y2n(k)} of {y2n} such that n(k) is the least index for

which n(k) > m(k) > k and d(y2m(k), y2n(k)) ≥ ε.
This means that

d(y2m(k), y2n(k)−2) < ε. (4.6)

From triangular inequality

ε ≤ d(y2m(k), y2n(k)) ≤ d(y2m(k), y2n(k)−2).d(y2n(k)−2, y2n(k)−1).d(y2n(k)−1, y2n(k))

(4.7)

Letting k →∞ and using (4.5) we conclude that

ε ≤ d(y2m(k), y2n(k))

≤ ε.1.1 = ε

Therefore

d(y2m(k), y2n(k)) = ε (4.8)
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Moreover, we have

|d(y2m(k), y2n(k)+1).d(y2m(k), y2n(k))| ≤ d(y2n(k), y2n(k)+1) (4.9)

and

|d(y2n(k), y2m(k)−1).d(y2n(k), y2m(k))| ≤ d(y2m(k), y2m(k)−1) (4.10)

and

|d(y2n(k), y2m(k)−2).d(y2n(k), y2m(k)−1)| ≤ d(y2m(k)−2, y2m(k)−1) (4.11)

using (4.5),(4.8),(4.9),(4.10) and (4.11) we get

limk→∞d(y2m(k)−1, y2n(k)) = limk→∞d(y2m(k)−1, y2n(k)−1)

= limk→∞d(y2m(k)−2, y2n(k))

= ε (4.12)

Now, from (4.1) we have

d(y2m(k)−1, y2n(k)) = d(Tx2n(k), Sx2m(k)−1)

≤ [d(Rx2n(k), Sx2m(k)−1).d(Rx2m(k)−1, Tx2n(k))]
1
2

− ϕ(d(Rx2n(k), Sx2m(k)−1), d(Rx2m(k)−1, Tx2n(k)))

= [d(y2n(k)−1, y2m(k)−1).d(y2m(k)−2, y2n(k))]
1
2

− ϕ(d(y2n(k)−1, y2m(k)−1), d(y2m(k)−2, y2n(k)))

≤ [d(y2m(k)−1, y2m(k)).d(y2m(k), y2m(k)+1)]
1
2 (4.13)

If k →∞ in the above inequality, from (4.12) and the continuity of ϕ, we have

ε ≤ [(ε.ε)]
1
2 − ϕ(ε, ε)

ε ≤ ε− ϕ(ε, ε)

ϕ(ε, ε) ≤ 0

ϕ(ε, ε) = 0

and from the last inequality ϕ(ε, ε) = 0. By our assumption about ϕ, we have ε = 1

which is contradiction (because ε < 1).

Step III. T, S and R have a common fixed point.

Since (X, d) is complete and {yn} is cauchy, there exist z ∈ X such that limyn→∞ = z.
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Since E is closed and {yn} is contained a sequence in E, we have z ∈ E. By assumption

R(E) is closed, so there exist u ∈ E such that z = Ru.

For all n ∈ N ,

d(Tu, y2n+1) = d(Tu, Sx2n+1)

≤ [d(Ru, Sx2n+1).d(Rx2n+1, Tu)]
1
2

− ϕ(d(Ru, Sx2n+1), d(Rx2n+1, Tu))

= [d(z, y2n+1).d(y2n, Tu)]
1
2 − ϕ(d(z, y2n+1), d(y2n, Tu) (4.14)

If n→∞,

d(Tu, z) ≤ [(d(z, z).d(z, Tu)]
1
2 − ϕ(d(z, z), d(z, Tu))

and hence

ϕ(1, d(z, Tu)) ≤ −[d(Tu, z)]
1
2 ≤ 0,

ϕ(1, d(z, Tu)) = 0

Therefore d(z, Tu) = 1. Therefore Tu = z.

Similarly Su = z. So Tu = Su = Ru = z. Since the pairs (R, T ) and (R,S) are weakly

compatible, we have Tz = Sz = Rz. Now we can have

d(Tz, y2n+1) = d(Tz, Sx2n+1)

≤ [d(Rz, Sx2n+1).d(Rx2n+1, T z)]
1
2

− ϕ(d(Rz, Sx2n+1), d(Rx2n+1, T z))

= [d(Rz, y2n+1).d(y2n, T z)]
1
2

− ϕ(d(Rz, y2n+1), d(y2n, Tu) (4.15)

If n→∞, since Tu = Su = Rz, we obtain

d(Tz, z) = [d(Tz, z) + d(z, Tz))]
1
2 − ϕ(d(Tz, z), d(z, Tz))

. Hence, ϕ(d(Tz, z), d(z, Tz)) = 1 and so d(Tz, z) = 1. Therefore Tz = z and from

Tz = Sz = Rz = z.

Uniqueness of common fixed point follows from (4.1).

Let u and z be two common fixed points of R,S and T .

∴ Ru = Tu = Su = u and

Rz = Tz = Sz = z
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from (4.1)

d(Tu, Sz) ≤ [(d(Ru, Sz).d(Rz, Tu)]
1
2 − ϕ(d(Ru, Sz), d(Rz, Tu))

d(Tu, z) ≤ [(d(u, z).d(z, u)]
1
2 − ϕ(d(u, z), d(z, u))

d(u, z) ≤ (u, z)− ϕ(d(u, z), d(z, u))

ϕ(d(u, z), d(z, u)) ≤ d(u, z)− d(u, z)

ϕ(d(u, z), d(z, u)) ≤ 0

ϕ(d(u, z), d(z, u)) = 0

d(z, u) = 0

u = z



Chapter 5

Fixed Point Results for

(ε, δ)-Uniformly Locally

Contractive mappings in

Multiplicative Metric Space

Definition 5.1. Let (M,d) be a multiplicative metric space and let f : M → M be a

mapping of M into itself.f is said to be (ε, λ)-uniformly locally contractive if

1 < d(x, y) < ε⇒ d(fx, fy) < d(x, y)α (5.1)

where ε > 1 and α ∈ [0, 1).

Definition 5.2. A multiplicative metric space M is said to be ε-chainable if for every

a, b ∈M there is a finite set of points a = x0, x1, ..., xm = b (m may depends on both a

and b) such that d(xi−1, xi) < ε(i = 1, 2, ...,m)

Theorem 5.3. Let (M,d) be a complete multiplicative metric ε-chainable space and let

f : M → M be an (ε, λ)-uniformly locally contractive self mapping on M . Then there

exist a unique point u ∈M such that fu = u.

Proof. Let x ∈M . Consider the ε -chain x = x0, x1, ..., xm = fx. Since d(xi−1,i, xi) < ε,

then by (5.1) we have

d(fxi−1, fxi) ≤ d(xi−1, xi)
α < εα < ε.

23
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Thus by (5.1) we get

d(f(fxi−1), f(fxi)) ≤ d(fxi−1, fxi)
α < εα

2
,

Continuing this process, we get

d(fnxi−1, f
nxi) ≤ d(fn−1xi−1, f

n−1xi)
α ≤ ... ≤ d(xi−1, xi)

αn < εα
n
.

Therefore by triangular inequality we get

d(fnx, fn+1x) ≤ Πm
i=1d(fnxi−1, f

nxi) < εmα
n
.

Hence, the sequence {fnx} is multiplicative cauchy.

Indeed, if p and q, (p < q) are any positive integer, then

d(fpx, f qx) ≤ Πq−1
i=pd(f ix, f i+1x)

≤ Πq−1
i=p ε

mαi

< Π∞i=pε
mαi

= εmα
p
.εmα

p+1
...

= εmα
p
(1 + ε+ ε2 + ...)

=
εmα

p

ε− 1
→ 1as q > p→∞

The completeness of M guarantees the existence of some point u ∈ M such that

limn→∞f
nx = u. Since any (ε, α)-uniformly locally contractive mapping is continu-

ous, it follows that

fu = f(limn→∞f
nx) = limn→∞f

n+1x = limn→∞f
nx = u.

Hence, u is a fixed point of f . Now, we show that u is the unique fixed point of f . On

the contrary, let us suppose that v 6= u such that fv = v and let u = x0, x1, ..., xk = v

be an ε-chain. Then we have

1 < d(u, v) = d(fnu, fnv)

≤ Πk
i=1d(fnxi−1, f

nxi)

≤ εkαn → 1 as n→∞ a contradiction.

Hence v = u

Definition 5.4. Let (M,d) be a multiplicative metric space. A self map f on M is

said to be a weakly multiplicative contractive if ∃ a function α : (1,∞) → [0, 1) with
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sup{α(c) : 1 < a ≤ c ≤ b} < 1 and such that

d(fx, fy) = d(x, y)α(d(x,y)). (5.2)

Theorem 5.5. Let (M,d) be a complete multiplicative metric space. Let f : M → M

be a weakly multiplicative mapping. Then f has a unique fixed point.

Proof. Let x ∈ M be arbitrary. Consider the sequence {fnx}. If d(fnx, fn+1x) = 1 for

some n, then ffnx = fnx i.e; fx is a fixed point of f and so the conclusion of theorem

follows. Suppose now that d(fnx, fn+1x) > 1 for all n ∈ N . Then, as α(c) < c for c > 1,

from (5.2) we have that f is multiplicative contractive. So we get

d(fnx, fn+1x) = d(ffn−1x, ffnx)

≤ d(fn−1x, fnx)α(d(f
n−1x,fnx))

< d(fn−1x, fnx).

Thus {d(fnx, fn+1x)} is a monotone decreasing sequence of reals and so it converges.

Let

limn→∞d(fnx, fn+1x) = r

Then r < d(fx, fn+1x) ≤ d(x, fx) for all n ≥ 0. We show that r = 1. Suppose

the contrary that r > 1 and set α = sup{α(c) : 1 < r ≤ c ≤ d(x, fx)} Then

α(d(fnx, fn+1x)) ≤ α for all n ≥ 0 and so we have

1 < r < d(fnx, fn+1x) ≤ d(fnx, fn−1x)α ≤ ..... ≤ d(x, fx)α
n → 1as n→∞

a contradiction. Therefore, r = 1.

Now, we show that {fnx} is a multiplicative cauchy sequence. Let ε > 1 and set

1 < α(ε) = sup{α(c) : ε
2 ≤ c ≤ ε}. Since limn→∞d(fnx, fn+1x) = 1 and α(ε) − 1 > 0,

there exist n0 ∈ N such that

d(fnx, fn+1x) < ε
α(ε)−1

2 for all n ≥ n0. (5.3)

Let n ≥ n0 be any fixed positive integer. We shall show, by induction, that

d(fnx, fmx) < ε for all m > n ≥ n0. (5.4)

for m = n+1, (5.4) follows from (5.3). Assume now that (5.4) holds for some m ≥ n+1.

If M(d(fnx, fmx)) ≥ ε
2 , then from (5.2) we have

d(ffnx, ffmx) ≤ d(fnx, fmx)α(ε) < εα(ε).
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Thus, by multiplicative triangular inequality and (5.3) we get

d(fnx, fm+1x) ≤ d(fnx, ffnx).d(ffnx, ffmx)

< ε
α(ε)−1

2 .εα(ε) < ε.

If d(fnx, fmx) < ε
2 , then by the multiplicative triangular inequality and (2.3) we get

d(fnx, fm+1x) ≤ d(fnx, fmx).d(fmx, fm+1x)

<
ε

2
.ε
α(ε)−1

2 < ε.

Therefore, d(fnx, fm+1x) < ε, which completes the induction from (5.4). We conclude

that {fnx} is a multiplicative cauchy sequence. The multiplicative completeness of f

guarantees that the existence of some point u ∈ M such that limn→∞f
nx = u. By

continuity of f , it follows :

fu = f(limn→∞f
nx = u) = limn→∞ff

nx = u

Multiplicative contractivity of f implies that the uniqueness of fixed point.
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