DISSERTATION Il REPORT
ON

COMPARATIVE ANALYSIS OF FAST MULTIPLIERS
FOR DSP APPLICATIONS

Submitted in partial fulfilment of the requirement for the award of the degree of

MASTER OF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGINEERING
Submitted by

Srinivas Pappala
Reg.no0:11502777

Under the Guidance of

Dr. Ravi Shankar Mishra
Associate professor of ECE

2 OVELY
PIROFESSIONAL
JNIVERSITY

LOVELY PROFESSIONAL UNIVERSITY

Department of Electronics & communication Engineering
Lovely Professional University
Phagwara-144411, Punjab (India)

April 2017

INDIA = LARGEST UHIVERSITY TOPIC APPROVAL PERFORMA
=22 [MOVELY

| P ROFESSIONAL School of Electronics and Electrical Engineering
W=/ UNIVERSITY

Trareorming Edveation, Trarorming tnaia Program: P175::M.Tech. (Electronics and Communication Engineering) [Full Time]
COURSE CODE: ECE521 REGULAR/BACKLOG : Regular GROUP NUMBER: EEERGDO0256
Supervisor Name : Dr. Ravi Shankar UID : 19053 Designation : Associate Professor
Mishra

Qualification : Research Experience :

SR.NO. NAME OF STUDENT REGISTRATION NO [BATCH SECTION CONTACT NUMBER

1 Pappala Srinivas 11502777 2015 E1514 9849303284

SPECIALIZATION AREA : VLSI Design Supervisor Signature:

PROPOSED TOPIC : Comparative analysis of fast multiplier for DSP Applications

Qualitative Assessment of Proposed Topic by PAC

Sr.No. Parameter Rating (out of 10)

1 Project Novelty: Potential of the project to create new knowledge 8.00

2 Project Feasibility: Project can be timely carried out in-house with low-cost and available resources in 7.67
the University by the students.

3 Project Academic Inputs: Project topic is relevant and makes extensive use of academic inputs in UG 8.00
program and serves as a culminating effort for core study area of the degree program.

4 Project Supervision: Project supervisor’s is technically competent to guide students, resolve any issues, 7.67
and impart necessary skills.

5 Social Applicability: Project work intends to solve a practical problem. 7.67

6 Future Scope: Project has potential to become basis of future research work, publication or patent. 7.67

PAC Committee Members

PAC Member 1 Name: Anshul Mahajan UID: 11495 Recommended (Y/N): Yes
PAC Member 2 Name: Dushyant Kumar Singh UID: 13367 Recommended (Y/N): NA
PAC Member 3 Name: Cherry Bhargava UID: 12047 Recommended (Y/N): Yes
PAC Member 4 Name: Anshul Mahajan UID: 11495 Recommended (Y/N): Yes
DAA Nominee Name: Manie Kansal UID: 15692 Recommended (Y/N): NA

Final Topic Approved by PAC: Comparative analysis of fast multiplier for DSP Applications

Overall Remarks: Approved

PAC CHAIRPERSON Name: 11211::Prof. Bhupinder Verma Approval Date:

4/27/2017 2:18:11 PM

08 Oct 2016

ABSTRACT

Multiplier is an essential functional block of a microprocessor because multiplication
is needed to be performed repeatedly in almost all scientific calculations. Therefore, design of
fast and low power and area of binary multiplier is very important particularly for Digital
Signal Processors. A typical processor central processing unit devotes a considerable amount
of processing time in performing arithmetic operations, particularly multiplication operations.
Multiplication is one of the basic arithmetic operations and it requires substantially more
hardware resources and processing time than addition and subtraction. In fact, 8.72% of all
the instruction in typical processing units is multiplication. In this paper, comparative study
of different multipliers is done for low power requirement and high speed and area. The paper
gives information of Vedic multiplier, Wallace tree multiplier and Baugh wooley multiplier.
These are utilized for multiplication to improve the speed, area and power parameters of

multipliers for Digital Signal Processors.

Depending upon the parametric analysis these fast multipliers have utilized in MAC

unit in DSP application.

CERTIFICATE

This is to certify that Srinivas Pappala have completed objective formulation of his
Dissertation-11 titled “Comparative Analysis of Fast Multipliers for DSP Applications”
under my guidance and supervision. To the best of my knowledge, the present work is the
result of his original study and research. No part of the project has ever been submitted for
any other degree at any University.

The project is fine for the submission and fulfilment of the condition for the award of degree

of Master of Technology in Electronic and Communication Engineering.

Dr. Ravi Shankar Mishra
Associate Professor

Lovely Professional University
Phagwara-144411, Punjab.
Date:

ACKNOWLEDGEMENT

I would like to thank Lovely Professional University for giving me opportunity to use their
resource and work in such a challenging environment. | am grateful to the individuals whom

contributed their valuable time towards my dissertation.

I wish to express my sincere and heart full gratitude to my guide “Dr. Ravi Shankar
Mishra” Associate professor, who guides me to take up this dissertation in sync with global

trends in scientific approach.

Finally, 1 also express our sincere thanks to all our colleagues and friends for their

suggestions and encouragement during the session.

Srinivas Pappala
Reg. n0:11502777

DECLARATION

| student of M. TECH under ECE Discipline at LOVELY PROFESSIONAL UNIVERSITY ,
Phagwara; hereby declare that the Dissertation-I1 report entitled on “Comparative Analysis
of Fast Multipliers for DSP Applications”, is an authentic record of my own work carried
out as the requirements for the award of degree of Master of Technology on “Electronic and
Communication” at Lovely Professional University, Phagwara; under the guidance of “Dr.
Ravi Shankar Mishra”, an Associate professor of Deportment of Electronics and

Communication Engineering, during January to May,2017.

Srinivas Pappala
Reg.n0:11502777
Date:

It is certified that the above statement is correct to the best of my knowledge and belief.

Dr. Ravi Shankar Mishra

Associate Professor

Lovely Professional University
Phagwara-144411, Punjab.
Date:

CONTENTS

Title
Abstract
Certificate
Acknowledgement
Declaration
Table of Contents
List of figures
List of Tables
CHAPTER 1
INTRODUCTION
1.1 Basic multiplication
1.2 Main objective of multiplier
1.3 Classification of multipliers
1.3.1 Serial multiplier
1.3.2 Parallel Multiplier
1.3.3 Array multiplier
1.3.4 Booth multiplier
1.3.5 Combinational multiplier

CHAPTER 2
LITERATURE REVIEW

CHAPTER 3
COMPLEX MULTIPLIERS

3.1 Vedic multiplier
3.1.1 Urdhva Tiryakbhyam sutra
3.1.2 Vedic 2 bit multiplier
3.1.3 Vedic 4 bit multiplier
3.1.4 Vedic 8 bit multiplier
3.2 Wallace tree multiplier
3.2.1 Wallace tree 4 bit multiplier

3.2.2 Wallace tree 8 bit multiplier

Page No.

vii

viii

co o O A W W WD PR

14

14
14
15
16
17
18
18
20

3.3 Baugh Wooley multiplier
3.3.1 Baugh Wooley 4 bit multiplier
3.3.2 Baugh Wooley 5 bit multiplier
3.3.3 Baugh wooley 8 bit multiplier

CHAPTER 4
OBJECTIVE AND SCOPE OF STUDY

4.1 objective of the study
4.2 Tools/software is used
4.3 Technologies used
4.4 Scope of the study

CHAPTER 5
RESEARCH METHODOLOGY

CHAPTER 6
RSULTS AND DISCUSSION
6.1 Vedic multiplier
6.1.1 Vedic 4bit multiplier
6.1.2 Power Synthesis Results for 4bit Vedic
6.1.3 Delay and Timing Synthesis Results of 4bit Vedic
6.1.4 Vedic 8bit multiplier
6.1.5 Power Synthesis Results for 8bit Vedic
6.1.6 Delay and Timing Synthesis Results of 8bit Vedic
6.2 Wallace tree multiplier
6.2.1 Power Synthesis Results for 4bit Wallace tree
6.2.2 Delay and Timing Synthesis Results of 4bit Wallace tree
6.2.3 8bit Wallace tree multiplier
6.2.4 Power Synthesis Results for 8bit Wallace tree
6.2.5 Delay and Timing Synthesis Results of 8bit Wallace tree
6.3 Baugh Wooley multiplier
6.3.1 Baugh Wooley 4bit multiplier
6.3.2 Power Synthesis Results for 4bit Baugh wooley

21
21
22
23

24

24
24
24

24

25

25
26
26
27
29
31
32
34
36
37
39
41
42
44
46
46
47

6.3.3 Delay and Timing Synthesis Results of 4bit Baugh Wooley
6.3.4 8bit Baugh Wooley multiplier
6.3.5 Power Synthesis Results for 8bit Baugh Wooley
6.3.6 Delay and Timing Synthesis Results of 8bit Baugh wooley
6.4 Performance evaluation of 4-bit multiplier
6.5 Performance evaluation of 8-bit multiplier
CHAPTER 8
CONCLUSION AND FUTURE SCOPE

REFERENCE

49
o1
52
54
56
S7

58

Fig no.

11
1.2
13
1.4
1.5
1.6
1.7
1.8
1.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

LIST OF FIGURES

Name of the figure

Basic multiplication structure
Classification of digital multipliers
Serial multiplier

Parallel multiplier

Basic array multiplier

Circuit diagram of Array multiplication
Right and left shift arithmetic

Right and left shift circular
Combinational multiplier

Vertical and Crosswise algorithm

Example for the Vertical and Crosswise algorithm

2-bit Vedic multiplication method

Block diagram of 2-bit VVedic multiplier
Block diagram of 4-bit Vedic multiplier
Block diagram of 8-bit Vedic multiplier
Wallace tree algorithm

4bit Wallace tree algorithm

Block diagram of 4-bit Wallace tree multiplier
Block diagram of 8-bit Wallace tree multiplier
Architecture of 4bit Baugh wooley multiplier
Sbit Baugh wooley 2’s complement multiplier
Example of the Baugh wooley multiplier
Architecture of 8bit Baugh wooley multiplier
4-bit Vedic Multiplier

RTL view of 4-bit Vedic Multiplier

Output waveform of 4-bit Vedic multiplier
8-bit Vedic Multiplier

RTL view of 8-bit VVedic Multiplier

Output waveform of 8-bit VVedic multiplier
Wallace tree 4-bit Multiplier

RTL view of 4-bit Wallace tree Multiplier

Page No

coO oo o o1 o0 B~ BB W0 DN

W W W W W RN RN RN DNDDNDDMNDDNDDN R R P R R R R R
O O N P P N O 0O W NDNP O © © 0o N O o o o o

Fig no.

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Name of the figure

Output waveform of 4-bit Wallace multiplier

8-bit Wallace tree Multiplier

RTL view of 8-bit Wallace tree Multiplier

Output waveform of 8-bit Wallace tree multiplier
4-bit Baugh Wooley Multiplier

RTL view of 4-bit Baugh Wooley Multiplier
Output waveform of 4-bit Baugh Wooley multiplier
8-bit Baugh Wooley Multiplier

RTL view of 8-bit Baugh Wooley Multiplier
Output waveform of 8-bit Baugh Wooley multiplier

Vi

Page No

37
41
41
42
46
46
47
51
51
32

Table no.

11

6.1

6.2

LIST OF TABLES

Name of the tables Page No

Basic Booth table 7

Comparison between the parameters of 4bit Vedic 56
Wallace, Baugh wooley multiplier
Comparison between the parameters of 8bit Vedic 57
Wallace, Baugh wooley multiplier

vii

CHAPTER 1
INTRODUCTION

Now a day, Multipliers plays an essential part in digital signal processing (D.S.P) and several
other applications. In the high-performance systems like micro-processor, DSP etc.
multiplication and addition is an important fundamental function and mostly used arithmetic
logic operations. Basically, addition and multiplication are used in microprocessors and DSP
iIs more than 68% instructions. So, the addition, multiplication operations control the
execution time. That’s while there is need of high speed multiplier. Having with the advanced
Technology, for designing a good multiplier, so many researchers have tried and trying.

Multipliers are used basically for multiplication.

Usually shift and add method is not that much good multiplier and it is not appropriate for the
VLSI implementation. The time delay point of also this multiplier is not good. There is some
basic methods are proposed in the literature for the speed multiplication in the VLSI. Those
are Wallace tree multiplier, Vedic multiplier and Baugh-Wooley multiplier. In this report we
are present the several techniques to implement those multipliers. Basically In any VLSI
circuit’s implementation is depends on the basic terms those are the speed, power, and time
delay. The high speed and less power consumption VLSI circuits can be possible with several
logic methods. In any VLSI design we seen three types most important factors, they are cell
space, delay of the circuit and power consumption. Previously there are many methods for the
speed and the power consumption and each method have the pros and cons for the VLSI
circuit in terms of power and speed. The basic common multiplication method is adding&
shift method. Basically, in the parallel multipliers, partial products are added are the
important factors that can be deciding the multiplier whole performance. To reduce, this
partial product to added, Booth multiplier is one of the better multiplier. For the speed

purpose, Wallace tree method is better because the sequential adding steps.

And also we have, serial and parallel multipliers are there, in the area and power consumption
factor also, it is good, in the speed factor this multiplier is not good. This serial and parallel
multipliers are basically depends on the nature of the application. In this report, we are
explained the multiplication algorithms and those method of architecture and comparing
those methods in terms of the time delay, power, cell area, and speed of the multipliers.

1.1 Basic multiplication:-

As we all know multiplication basically having two terms, multiplicand and multiplier and
output is product. Consider multiplicand is A(a0,al,a2,a3) and multiplier is X(x0,x1,x2,x3)
the output product is P=(yo, Y1, Y2, Y3, Y4, Y5, V6, ¥7)-

- = = = A
- - - - w X
- ® = =
- ®» e =
- ® o =
- * e =
- ® o o o o o = |,

Fig.1.1. Basic multiplication structure
We have so many techniques to perform the binary multiplication. In that we choose based on
the factors such as area, latency, design complexity, throughput. An efficient approach is use
the array or full-adders tree to sum partial products. In, now a day we are using some
standard designs used to implement the binary multipliers, those are suitable for the VLSI

circuits.

Multiplier is performing multiplication process multipliers are mainly used in DSP

application. Fast multipliers are mainly based on cell area, speed, power and accuracy.

e Area: In the multiplier cell area should be less
e Speed: the speed of multiplier should be fast.
e Power: the power should be less.

e Accuracy: the multiplier should give the correct result.

In any multiplication, there are mainly three steps:-

» Generation of the partial products.
» Reduction of the partial products.
» And final addition.

1.2 Main objectives of multipliers:-

e The good multiplier must be compact with the high speed and low power dissipation,
timing delay.
e Mostly the designing a multiplier in VLSI based on these four factors only (time,

speed, area, accuracy).

1.3 Classification of digital multipliers:-

Digital multipliers

Y

A J

Serial multipliers Parallel multipliers

v v
Array multipliers Tree multipliers

‘ 1. Binary tree
2

Wallace tree

Y v
Unsigned multiplication Sioned multiplication
I. Braun multiplier 1. Booth’s multiplier
2. MBE
3. Baugh Wooley

Fig.1.2. Classification of digital multiplier
1.3.1 Serial multipliers:-

Where the power and area is given importance and the delay is tolerated there the serial
multiplier is used. Here they are used one simple adder to add the partial products. The circuit
diagram is shown below for the 4bit multiplier. Multiplier and Multiplicand are the inputs
have to arrange in a manner and synchronized with the behaviour of the circuit. And here
two clocks are used, one of the clock for reset and another one for data. The first order of the

time delay is U(x,y). in the circuit the time delay is Tp =[(x+1)y+1] ts..

gofojofo

Serial Register

CLK CLK/N+1)

Fig.1.3. Serial multipliers

Here the separate partial products are formed individually. And the additions of the partial
products are achieved by way of the intermediate values of partial products addition are put
in storage in D-flip flop. This method is not proper for the large number of bits(X and Y).

1.3.2 Parallel multiplier:-

The basic architecture of the parallel multiplier is one of the best multipliers. First operand is
served to the next circuit in the parallel. The partial products are made in each and every
cycle. In each cycle can do the addition of multiplication of X*Y partial products. The last
results are should be stored in the output register after X+Y cycles. And the area essential is
Y-1 for X=Y.

AND AND AND AND
2 [] ot
e — .
FA FA FA FA -

(e D) U (s

Fig.1.4. Parallel multiplier

The parallel multipliers are basically two types, they are

» Array multiplier

> Tree multipliers(Binary tree and Wallace tree)

1.3.3 Array Multiplier:-

The array multiplier is the well-known multiplier because of its basic structure. This
multiplier is mainly based on the Add and shift algorithm. And the partial products are
produced by the one bit multiplier is with multiplicand multiplication. The PP terms are

shifted to the adder bits and after that should be added.

A a3 a2 al aO(multiplicand)
B b3 b2 bl bO(multiplier)
b0a3 b0a2 bOal b0a0
bla3 bla2 blal bla0
b2a3 b2a2 b2al b2a0
b3a3 b3a2 b3al b3a0

P7 P6 PS5 P4 P3 P1 PO
Fig.1.5 Basic array multiplier

In the array multiplier the partial product terms can be add by the simple carry propagate
adder. If the N is the length of the multiplier we need N-1 adders. And here we use number of

adders are x, full adders are x(y-2), the total number of adders are x(y-1).

a0 b0
| A A
HA FA] FA [HA
| | il
FA fe—| FA I+ FA v HA| e (Critical Path 1
: st Critical Path 2
| A A
~—FA feeeed FA fpooreed FA Jieeeed HA
7]
} W
P6 PS P4 P3 P2 P1 r;n

Fig.1.6. Circuit diagram of array multiplier

5

The array multiplier further divided into two types

» Signed multiplication
» Un Signed multiplication

In the signed multiplication booth and baugh wooley multipliers are the best multipliers.

1.3.4 Booth multiplier:-

The Booth multiplication is the one of the multiplication which multiplying the binary

numbers in the 2’s complement signed array representation.

Before doing the booth multiplier we need to know the right shift arithmetic (RSA) and right
sift circular (RSC).

Right shift arithmetic (RSA):- it is a shift operator. It is defined, when we are adding two
binary numbers and the result is shift to the one bit position. Let’s take the resultant bit is
1010. Now we can apply RSA then the result is 11010. In RSA there are two basic types 1.
Right shift arithmetic and 2. Left shift arithmetic.

o | -1 MSB
= o LSE
o - MSE

Q|

o| o
o] w
] =
o] w
i
| -
ofw
R
o] w
=
==
| o LSB

y
lofofofofufofufa]

1

[ofoTaTo[a]1 1 o}e{0]

Fig.1.7. Right shift arithmetic Left shift arithmetic

Right shift circular(RSC):- It is simple shifting the bit, in RSC also two types they are Right
circular shift and Left circular shift. Let’s take one sequence 01011 and the RSC of the

sequence is 01011.

ChatGats AT,

Fig.1.8. Right shift circular Left shift circular

A O |~ MSB
—+~| o L5B

655 4 321
loJofe]o]a]a]
L W W N WA

Steps to implement the booth algorithm:-
Step 1:-

Create the Booth Table: In this table, we will take the 4columns for the one is for the
multiplier(X), and one is for the previous bit of multiplier(X-1), and other two for partial
products (U and V).

Tablel.1. Basic Booth table

First we choose multiplier X and the multiplicand is Y.

And next to do the 2’s complement for the multiplicand Y.

Load X value, and X-1 value is kept =0.

And the U and V values initially taken as 0, these will have the product of the X & Y
at the last resultant.

YV V V

Step 2:-

In the table, the LSB nit of the X and the single bit in the X-1, is to be analyse that will have
fallowing actions.

If the action is = “00” then there is no action.

If the action is = “01” then add Y and U, the result is Right shifts.

If the action is = “10” then subtract Y from U and do the result is right shifts.

If the action is = “11” then right shift the value in U one bit position.

Step 3:-

Right shift circular of X. Go to step 2 and repeat the method till the X has been right shift

circular to its original position. Finally we get the product of X and Y.

1.3.5 Combinational multiplier:-

The combinational multipliers are the, two unsigned binary numbers multiplication.
And this multiplier is done with the two signed number multiplication also. Every bit in the
multiplier is multiplied to the multiplicand. The final product is come when we add the partial

products and then it form a final result.

This multiplier main advantage is the generation of the partial products are easy compare to
other multipliers. The basic circuit diagram shown below, in there partial products can be
adding by using AND gate. And here using half adder and full adder also and finally we get
the result of the combinational multiplier.

AyBy|AyBy Ao Byl AoBy AgBy ABy| AyBy AyBy AyB, ARy A8y Ay AgBy| ABy ABy|ABy

HA (4 HA

=
[.

FA

g sk
11 | l B

% &

e
.

Fig.1.9. combinational multiplier

This multiplier good in terms of the power consumption and it can need fewer components.
But in terms of time delay factor this multiplier is not good. It requires large number of logic
gates so area is also high. It is a less economical multiplier and faster multiplier but high

hardware complexity.

CHAPTER 2
REVIEW OF LITERATURE

The chapter is focused on the review of literature about different fast multipliers designs. To
conclude this topic so many journals, articles and conference papers have been studied. Some

of them have been described below as.

R. Raju, S.Veerakumar (2016), “Design and Implementation of Low Power and High
Performance Vedic Multiplier” [1]In this paper authors, main aim is to designing and
developing a high speed, less power dissipation of al6bit vedic multiplier by using basic 8bit
vedic multiplier, 4bit vedic multiplier and the basic 2bit multiplier. For adding the partial
products here author used ripple carry adder to decrease the time delay in the multiplier. Here
the 16bit Vedic multiplier is done by using “Urdhva Tiryakbhyam Sutra” from ancient Indian
Vedic mathematics. Author mainly focused on, to reduce the logic levels thus reducing the
logic delays. The entire process is done by using Xilinx-ISIM and synthesis done by using
Xilinx XST. And the total execution is done in the FPGA (Spartan-kit). Finally the author
concluded even though Urdhva Tiryakbhyam Sutra fast and area efficient. But the large
number of partial products occurs by using of 2bit and 4bit and so on. And also large fan-out
for input signals x and y. by using the other algorithms in 4x4 multipliers then faster

multiplication is possible.

Rakesh Kumar, Pradeep Kumar (2014), “An Efficient Baugh-Wooley Multiplication
Algorithm for 32-bit Synchronous Multiplication” [2]In This paper, all about the effective
and high speed 32bit synchronous Baugh wooley multiplier. In this paper mainly the
multipliers partial products can be added by the fast speed and area less adder named as BK
(Brent-kung) adder. By using this adder not only improves speed of adder performance but
also improves the multiplier. Codeing in VHDL and synthesis was done by using Xilinx
ISIM and synthesized by Xilinx XST for the both synchronous and asynchronous Baugh
wooley multiplier. Finally the author concluded that the Look up tables (LUT’s) are less in
asynchronous as compared to the synchronous BW multiplier. But synchronous multiplier is
faster than the asynchronous BW multiplier. The path delay in the synchronous BW
multiplier is 6.496ns, it is good result when compared to the other multipliers. Finally he
resulted that the combination of synchronous BW multiplier and Brent-kugh adder, gives the

better speed and less area compared to the all other multipliers.

Kokila Bharti Jaiswal, Nithish Kumar V, Pavithra Seshadri (2015): “Low Power
Wallace Tree Multiplier Using Modified Full Adder” [3]Authors main aim to designing a
less power consumption of multiplier, here they are taken Wallace tree multipliers with
modified fulladder using multiplexer. The whole process is done in Verilog HDL and
simulation is done by using Quatus Il. And the whole process is synthesized by using
SAED90nm CMOS technology in Synopsys Design complier. Finally author concluded In
the ASIC synthesis of the Wallace tree Multiplier by using mux based fulladder the results
shows in terms of power consumption average reduction is 37.45%, in terms of area 45.75%
and the time delay average reduction is 17.65% compared to the all current methods finally
the proposed Wallace tree multiplier is good for the application which we need less power

and lesser area applications.

Indrayani Patle, Akansha Bhargav, Prashant Wanjari(2013): “Implementation of
Baugh-Wooley Multiplier Based on Soft-Core Processor” [4]the author says in this paper,
they done execution of 16bit Baugh wooley multiplier in Verilog HDL. And the multiplier
based on the soft core processor. This is embedded soft core processor with high performance
by XILINX Company. This soft core processer is high configurable and the designer to
design required own hardware platform. Baugh wooley multiplier is using in this processer to
utilized fast and efficient processing capacity. Finally they are concluded increasing the speed
of the custom hardware of multiplier block designed and interface with MicroBlaze
processor. And also power optimized in the 16bit baugh wooley multiplier is optimized, and
the power is 163mW. And they are planning to implement 32, 16, 8-bit FFT by using this fast

and less power Baugh wooley multiplier.

Ms. G. R. Gokhale, Mr. S. R. Gokhale, (2015) “Design of Area and Delay Efficient
Vedic Multiplier Using Carry Select Adder” [5]In this paper authors, main aim is to
designing and developing a less area, less delay of a vedic multiplier. For adding the partial
products here author used carry select adder, to decrease the time delay in the multiplier. The
carry select adder(CLSA) is used because the less number of gates used compared to the
binary to excess one convert(BEC) carry select adder and modified carry select

adder(MCSLA). The resultant in terms of area, carry select adder is 21% small area than

10

modified carry select adder and 44% small area than binary to excess one convert carry select
adder. The Vedic Multiplier is 43% small area than Booth multiplier. And in terms of time
delay 15% less compared to booth multiplier. In the parameter, area and time delay the
proposed Vedic Multiplier is similar to the booth multiplier. Finally author says proposed

Vedic multiplier is better in area, speed and delay.

Soniya, Suresh Kumar, (2013) “A Review of Different Type of Multipliers and
Multiplier-Accumulator Unit” [6]In this paper authors discuss about fast speed, less power
multiplier accumulator unit, and several types of multipliers those are used in the DSP
applications(FFT, FIR, Convolution)etc. in this authors explain several multipliers array ,
Wallace tree, booth, sequential and combinational multipliers. In those multipliers several
types of techniques applied to check the multiplier is speed and less power consumption. The
applied techniques are pipelined technique, Spurious Power Suppression Technique (SPST)
technique and block enabling technique. In the pipelined technique is used in booth
multiplier to decrease the time delay in every stage. In the SPST Tech. is used to remove the
useless portion of data for decrease the power. Enabling technique is also used to reducing
the power. Finally authors concluded in terms of speed, pipeline technique is better for booth
and Spurious Power Suppression Technique (SPST) and enabling technique is better in terms

of less area and power.

Abhishek Mukherjee, Abhijit Asati, (2013) “Generic Modified Baugh Wooley
Multiplier” [7]in this paper, they are done with the HDL code of Baugh Wooley multiplier.
The main aim of the author is comparing the conventional Baugh Wooley multiplier and
simple default multiplier and modified multiplier. In conventional Baugh-Wooley multiplier
they are added partial products using ripple carry adder, and it can be replace again in
modified Baugh- Wooley multiplier with the carry select adder, and the calculate the
parameters are the area, power, speed of the multiplier. And the whole process is done is
done by synthesis results and they are taken operand size ranging N is (4 to 60) using in
90nm technology. Finally the author concluded the modified Baugh Wooley multiplier is
better speed than the conventional multiplier and as well in terms of area and power similar to

the conventional and simple default multiplies according to the synthesis report.

11

Sumit Vaidya, Deepak Dandekar, (2010) “Delay-Power Performance Comparison of
Multipliers in VLSI Circuit Design” [8]In this paper, they described the comparisons of the
Vedic multiplier with the other multiplier like Wallace tree multiplier and array multiplier.
And the Vedic multiplier is done with two sutras “Urdhva Tiryakbhyam” algorithm and
another sutra is “Nikhilam Sutra”. The author briefly explained about Wallace tree and array
multiplier. Here also compared the multipliers are in terms of speed, area, time delay and
power factors. By using the nikhilam sutra we can get the faster multiplication than the
Urdhva Tiryakbhyam algorithm of the multipliers, because the speed of the multiplier is
increasing by reducing the number of iterations. The time delay comparison is done with
array and booth multiplier in 8 bit and also in 16 bit, in the array multipliers time delay is
47ns, 92ns and in booth multiplier 117ns, 232ns and in the vedic multiplier in 8bit 27ns and
in 16bit 39ns. And they are compared multiplier in three different logics. They are CMOS

and complementary pass transistor and pass transistor logics.

Pramodini Mohanty, (2013) “An Efficient Baugh-Wooley Architecture for Signed &
Unsigned Fast Multiplication” [9]This paper presents the good, efficient, and high speed
multiplier with the method shift & add method for Baugh-wooley multiplier. In this baugh
wooley multiplier we are suing less adder and then we can iterative steps are less. The area is
also less compared to the serial multipliers. This multiplication good because in the
fabrication the chips, and the good systems need less components circuits. The results are
saying the proposed circuit is correct performance and less hardware components and low
power. The dynamic power they get 15.3mW and the timing delay is 3.912ns. they get best
results compare to their base paper, For improving the multiplier characteristics they are

using pipelining resistor technique.

Amrita Nanda, Shreetam Behera, (2014) “Design and Implementation of Urdhva-
Tiryakbhyam Based Fast 8x8 Vedic Binary Multiplier” [10]in this paper , author design a
high speed 8bit multiplier by using the Indian ancient Vedas, vedic mathematics, there so
many multiplication techniques, one of that is Urdhva-Tiryakbhyam sutra from the vedic
mathematics. First he proposed 4bit Vedic multiplier by using the four bit adder to reduce the
time delay. And using this 4bit Vedic multiplier, authors designed a 8bit vedic multiplier with

using the fast adders. The time delay is good in this multiplier compare to the array, booth

12

multiplier. The multiplier is done by, VHDL coding. And the synthesis is done by using the
Xilinx ISE14.4 Software. Finally they applied this code in FPGA Spartan 3e board. Finally
author says that the designed multiplier is good in terms of time delay.

Taye Girma, (2013) “Designing and Synthesizing a Wallace Tree Multiplier for High
Speed Performance”[15] In this paper, describes the designing and synthesis of the 8bit
Wallace tree multiplier. Theses multipliers are used basically in DSP applications and
microprocessors. The basic operation of the Wallace tree multiplier is addition of partial
products. Here a new algorithm for the Wallace tree multiplier. 3stages to do this multiplier
they are PP matrix generated, and next stage is reduce the PP terms by using the fulladder and
half adder. And here author used carry look-ahead adder. The time delay is reducing, due to
the route, logic gates. Finally the author concluded that the presented method is efficient for
speed multiplication.

Pramod S. Aswale, Mukesh P. Mahajan, Manjul V. Nikumbh, Omkar S. Vaidya,
(2015), “Implementation of Baugh-Wooely Multiplier and Modified Baugh Wooely
Multiplier Using Cadence (Encounter) RTL” [16]In this paper, authors describe the less
power and speed is high by using the shift and add algorithm using of baugh wooley
multiplier. And here done with 5bit baugh wooley multiplier using cadence RTL compiler.
And he concluded that the modified baugh wooley is better than the conventional baugh
wooley multiplier, and the 5bit BW multiplier operating frequency is 160Mhz. this multiplier
depends upon the required application. The author concluded that the modified baugh wooley
is 109 x speeds than the conventional array multiplier. And 102x speeds than the

conventional baugh wooley multipler

13

CHAPTER 3
COMPLEX MULTIPLIERS
3.1 VEDIC MULTIPLIER
Vedic multiplier is comes from the Vedic mathematics and It is the ancient Indian
method of mathematics. This was reconstructed from Vedas by Sri Bharati Krishna Tirthaji
(1884-1960) after his 8years of analysis on Vedas. He proposed Vedic mathematics is mostly
depends on sixteen sutras, in one of that is Urdhva-Tiryakbhyam sutra.

Sixteen sutras in Vedic mathematics:-

1. Yaavadunam (At all the extent of its lack).

2. Vyashtisamanstih (Share and Complete).

3. Urdhva-Tiryakbhyam (Vertically and crosswise).

4. Sopaantyadvayamantyam (The critical and double the penultimate).

5. Shunyam Saamyasamuccaye (if the sum is the same then the sum is zero).
6. Sankalana-vyavakalanabhyam (by addition& by subtraction).

7. Shesanyankena Charamena (The remainders by the last digit).

8. Paraavartya Yojayet (Transposeing & adjust).

9. Puranapuranabyham (it is the completion / Non-completion).

10. Gunitasamuchyah (The POS is equal to the SOP).

11. Nikhilam Navatashcaramam Dashatah (All from nine & last from ten).
12. Ekanyunena Purvena (By one < the before one).

13. Gunakasamuchyah (all The factors of the sum = sum of the factors).
14. Chalana Kalanabyham (Differences & Similarities).

15. Ekadhikina Purvena (By one higher than the before one).
16. (Anurupye) Shunyamanyat (If one thing in ratio, the other should be zero).

3.1.1 Urdhva-Tiryakbhyam Sutra:-

The Vedic multiplier is mainly depends on Urdhva Tiryakbhyam sutra from the Vedic
mathematics. This sutra is also called (vertical and crosswise) sutra. This sutra is basically
used for the multiplication of two decimal numbers. And this method used for binary
numbers also. The process of vertical and crosswise algorithm is firstly the least significant
bits(a0,b0) are multiplicand which gives the least significant bit of the end
product(Vertical).Carry will add to the second multiplicand. In second step a0, bl act as
crosswise multiplicand and al, b0 act as vertical multiplicand. Here also carry will add to
third step. In every step the carry will add to the next step of the algorithm. This process is
going on till we get the final product.

14

a3s al al a0

b

Fig.3.1. Vertical and crosswise algorithm

STEP| STEP-I STEPII
A3 A2 A1 AD A3 A2 Al AD A3 A2 A1 AD
B3 B2 B1 80 B3 B2 B1 80 83 B2 8180

€0 R(0) CLR(1) QRQ2)

STEP-IV STEP-V STEP-VI STEP-VII
A3 A2 Al A0 A3 A2 AL A0 A3 A2 A1 AD A3 A2 AL A0
83 82 81 80 83 B2 81 B0 83 82 B1 80 83 B2 81 80

GRB) C4 R(4) €5 R(S) R(7) R(6)

Fig.3.2 Example for the vertical and crosswise algorithm

By using half adder and full adder we can add the partial product terms. The Basic gate-level
architecture of Vedic Multiplier

3.1.2 Vedic 2x2 bit Multiplier:-

In the 2bit Vedic Multiplier let us take two bit numbers y and z; here y is (al, a0) and z is (b1,
b0). In this multiplication firstly the LSB bit is multiplied and it gives the LSB of the final
product in vertical. And multiplicand is multiplied with the highest bit of the multiplier and
that can be included with the result of least significant of multiplier and the coming bit of
multiplier of crosswise. This process we can do until get the final product of the multiplier.

Sum= a0b0; Carrylsuml= (alb0 + aObl) ; Carry2sum2= (c1+ albl)

The final product will be P= (carry2.sum2.sum1.sumo).

al al al al al al

b1 bl bl b0 b1 b

Fig.3.3 2bit Vedic multiplication method

15

albl albl albi alb0

L

| Half Adder ‘

v lcl

I Halt Adder |

Lo Vo

c2 g2 gl 50

Fig.3.4. Block diagram of 2bit Vedic multiplier

3.1.3 Vedic 4bit Multiplier:-

In the 4bit Vedic multiplier let us take two bit numbers y and z; here y is (as, a,, a1, ap) and z
iS (bs, by, b1, bp). In this multiplication firstly the LSB bit is multiplied and it gives the LSB of
the final product in vertical. And multiplicand is multiplied with the highest bit of the
multiplier and that can be included with the result of least significant of multiplier and the
coming bit of multiplier of crosswise. This process we can do until get the final product of the
multiplier.

The final product will be P= (p7, ps, Ps, P4, P3, P2, P1, Po)

AB, AB .'\;3-,\.3~v\s;,\~sv.\.3-.\1-.\3» AB A AB, AB: AB AB
' HA " FA ‘ FA ’ FA " HA ‘

HA || HA || HA || FA || HA

e

FA el FA | FA l HA

Fig.3.5. Block diagram of 4bit Vedic multiplier

16

3.1.4 Vedic 8x8 multiplier:-

In the 4bit Vedic multiplier let us take two bit numbers y and z; here y is (a7, as, as, as, as, az,

a1, ap) and z is (b7, be, bs, bs, b3, by, b1, bp). In this multiplication firstly the LSB bit is

multiplied and it gives the LSB of the final product in vertical. And multiplicand is multiplied

with the highest bit of the multiplier and that can be included with the result of least

significant of multiplier and the coming bit of multiplier of crosswise. This process we can do

until get the final product of the multiplier.

The final product will be P= (p1s, P14, P13, P12, P11, P10, Po, Ps, P7, Pe, P, P4, P3, P2, P1, Po)

AsBa
ATBs AsBr ABi A

Ash: Al AsB: Ak AdBz
a

AakEz AzBz

AiBa

A

O o ¥ i S ¥ A ¥ e A ¥ S ¥ e A W
HA FA FA FA FA FA FA FA FA FA FA FA HA
P AVAPEivEiviivdivdivdsvdsvdsvdsval
HA HA HA FA FA FA FA FA FA FA FA FA HA
A A VA Pdsvdivdivdsvdsvdsvdsvdl
HA HA HA HA FA FA FA FA FA FA FA HA
PAVAPAVEPELdsvatvdevdsv iy
HA HA HA HA HA FA FA FA FA FA HA
PAPAPaPravrarasvasrydivd
HA HA HA HA HA HA FA FA FA HA
PAPAPAPabababdaid
HA HA HA HA HA HA HA FA HA
171 /1 /1 /71 /1 /1
FA | FA FA FA & FA ¢ FA F FA F HA
il
I
Pl15] P[14] P[13] P[12] P[11] P[10] P[9] P[8] Pl7] Pl6] PIs] Pl4] P[3] Plz2] Pl1] PlO]

Fig.3.6. Block diagram of 8bit Vedic multiplier

17

3.2 WALLACE-TREE MULTIPLIER

A Wallace tree multiplier is unique and one of the best method to design a digital
circuit that multiplies two digital numbers. Wallace tree multiplier is based on Wallace tree
algorithm. In 1964 Australian scientist ChirsWallace introduced this Wallace tree algorithm.
Wallace tree multiplier is basically done by three steps.

e Stepl is Generating of partial products,
e Step2 is grouping and reducing a partial product,

e Step3 is Final addition.

-'."-?
e & & s 8 8 8
- & & & & 8 @ i
|]
" & & ®* & & @ '
- & & @ ® * @ .
& @& ® & & ® 8 E
. & 8 & & 8 ® -
e
- & & * ® ® & &
.« e &8 * » i
. ® ® ® ® & & ® ®
s & & & & ® ® '
.- 8 ® & ® 8 =]
—
. 8 ® o » 8 8 & i
.l
- e ® o s & e ! |
* ® @ & & & & & & » ::
.l
& & &% & & & -
b
@ ¥
I s 0
- T ¥ W - @ s 0
s 0
& & B & @& l--'-::
1
- - . - '::
P
it
® ® o ® ® 8 % e & 9 5) o
l'.l
‘*ltl.'.ip.:r:
¥ g 3
YYYY
3210

Fig.3.7. Wallace- Tree algorithm

3.2.1 Wallace tree 4x4 bit multiplier:-

The Wallace tree algorithm is the three single bit signals are added by the full-adder
and output sum is given to the following stage fulladder of same bit and the output carry is
given to the following stage fulladder of a one bit higher position. In 4x4 multiplier, lets
taken multiplicand as a (as, a2, a1, ap), and multiplier as b (bs, by, b1, bg). The Final output
(multiplication) is P= (y7, Ys, Ys, Ya, Y3, Y2, Y1, Yo).

18

A "\ asdo té:bn\ 15¢\ Gokp
HoA N b SN PR)Q ") -
-—_ may > 3 =2 = e —a
T fagbM aibg | cata k,qa, —_— HA
N 2 \ 3 g >ty \\
a a a o]
= ., v -~ .
A
ny (G fc, Y [\ fa\ s ack
VAT A2 (""’" XY —
S == HoA
—*ra
o) @\ [\ fos
Cuf| c: || G c> Y Si isp Tade
Sl \sef - \sa s-
re P Ps o5 Pa P3 e P P
Fig.3.8. 4bit Wallace tree algorithm
=29 50-72
R:=~”-:"= — " 5'==I:
Ry=8p 3, — 0 | -2 52=0:
Ryma: 5y 52 TL——— 2o E:
Re=0.5. — 5 - 0.
Ra=ty 0y — i 5y
R=n b, —] 5, FA P.
FA
Re=0:0; — s C. = g
Q‘-c~5
Rr=c=ba ;: b
Fa [——
Ryt | 3 o G
|
Q“-‘. o, — FA cn ‘.,‘
2263, — : o =
Riz=s. 9, — HA 3. I S Pa
Ruussab — = S
X rs
A
T2e=C:0; <z
CJJ
-
HA =z

Fig.3.9. Block diagram of 4bit Wallace tree multiplier

After generation of partial products, we will do the grouping and reduction. The grouping of
partial products and they are adding by using full adder and half adder. We can continue the
process until we get the result P= (g7, g6, 95, 04, 93, 92, J1, do)-

19

3.2.2 Wallace tree 8x8 bit multiplier:-

The Wallace tree algorithm is the three single bit signals are added by the full-adder
and output sum is given to the following stage fulladder of same bit and the output carry is
given to the following stage fulladder of a one bit higher position. In 8x8 multiplier, lets
taken multiplicand as a (ay, as, as, a4, as, ay, ai, ao), and multiplier as b (b7, bg, bs, by, bs, b, by,
bo). The Final output (multiplication) is P= (pis, P14, P13, P12, P11, P10, Po, Ps, P7, Ps, Ps, Pa, P3,
P2, P1, Po)-

1l 11
FA FA : FA
s <Bs ssTsl

FA

FA

P[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8] P[7] P[o] P|5] P[4] P[3] P[2] P[1] P[O]

Fig.3.10. Block diagram of 8bit Wallace tree multiplier

20

3.3 BAUGH WOOLEY MULTIPLIER

This was proposed by Baugh and Wooley which is the method for direct 2's
complement Array multiplication. The indications of all summands are positive this is the
main advantage of this method, therefore permitting the array to be developed completely
with the normal full adders.

i 0011 =-13
o 1 1 i =13 x
i1 011 =-5
x oo 101 =5
ooo 11
g 1 1 2 1
oo 0 1 1
o o 0 O 0
1 d Q 0 O
o1 1 0 1
i 0011
o o o000 O Q0
o011 00
10 0 0 O o 1
1 o + 1 1
+ 1 O
o241 00D0O0CCO0CODODA1T =B
o021 0 Q230 0O 1 =65
For unsigned numbers For signed numbers

This uniform structure is exceptionally attractive for VLSI. Baugh-Wooley Multiplier
is utilized for the both signed unsigned numbers. The Signed Number operands which are
spoken to in 2's complemented form. Incomplete Products are balanced with the end step that
negative sign move to last stride, which thusly augment the consistency of the multiplication
exhibit. Baugh-Wooley Multiplier works on signed operands with 2's complement
representation to ensure that the indications of every fractional are positive.

3.3.1 Baugh wooley 4x4 multiplier:- In the 4bit multiplier The Signed Number operands
which are spoken to in 2's complemented form. Incomplete Products are balanced with the
end step that negative sign move to last stride, which thusly augment the consistency of the
multiplication exhibit. Baugh-Wooley Multiplier works on signed operands with 2's
complement representation to ensure that the indications of every fractional are positive.

5

Fig.3.11. Architecture of 4bit baugh wooley multiplier

21

3.3.2 Baugh Wooley 5x5 Multiplier:

Fig.3.12. 5x5 bit Baugh-Wooley 2’s complement multiplier

o110 1 =13

119011 =-5
X 11011 =-5 X o 1 o 1 =13
o1 o1 o101 1
o1 1 0 1 1 000 O
o 0000 o101 1
o o0 101 o010 11
100 1 0O o 1 00
o o 1 1
+ 1 1 + 1 o
i1 1201 11 1 1 1 =-55 1 1 1 31 1 1 1 1 1 =-55
o1 1 0 1 =13 1 00 1 1 =-13
x 00101 =5 > 11011 =-5
o o1 1 1 oo 0 11
O 0000 o0 o 11
o1 1 0 1 i 000 0
(T T« T T o a0 o 1 1
10000 o 1 0 0
1 o o 1
+ 1 o + 1 1
000100000 1 =65 000100000 1 =65

Fig.3.13. Example of the Baugh-wooley multiplier

22

3.3.3 Baugh wooley 8x8 multiplier :-

In the 8x8 bit multiplier The Signed Number operands which are spoken to in 2's
complemented form. Incomplete Products are balanced with the end step that negative sign
move to last stride, which thusly augment the consistency of the multiplication exhibit.
Baugh-Wooley Multiplier works on signed operands with 2's complement representation to

ensure that the indications of every fractional are positive.

A7Bo AsB1 AcBo AsB1 AsBo A4B1 A4Bao AsB1 AsBo A:B1 A:Bo A1B1 A1Bo AoBo AcBo

HA HA HA HA HA HA HA
ATF;T;: AgB:/ lml: lA_lm lA:LB: lmlng AsBz
FA FA FA FA FA FA FA
T T T T T T T
FA FA FA FA FA FA FA
FA FA FA FA FA FA FA
T T T T R T I
FA FA FA FA FA FA FA
Jov vV asvasvasval
FA FA FA FA FA FA FA
o ABe - - - - - -
LB: J'A‘le la.‘LBw lmlsr mle lAZLB? J'Allﬂw AulB1
FA FA FA FA FA FA FA FA
p L 11 /1 /1
FA FA =— FA ~— FA FA — FA ~— FA =~— FA
P[15] P[L] PLS] P[12] P[L] P—[‘l[] P[L p[L] P[7] P[6] PI5] Pl4] P[3] P[2]1 P[1] P[O]

Fig.3.14. Architecture of 8bit baugh wooley multiplier

23

CHAPTER 4
OBJECTIVE AND SCOPE OF STUDY

4.1 Objective of the study:-

e To design 4,8-bit Vedic multiplier, Wallace tree multiplier, Baugh wooley multiplier.

e Todesign Verilog code i.e., main module and test bench for all the three multipliers.

e To implement the code in Xilinx and Cadence NCsim and generate the waveform and
RTL on different technologies.

e To analysis the Timing, Area, Power on 45nm, 90nm, 180nm technologies.

e To compare the different parameters for different technologies.

4.2 Tools/ Software are used:
Xilinx, Cadence NCsim

4.3 Technologies used:
45nm, 90nm, 180nm.

4.4 Scope of the study:-

In the digital world, Multipliers are the most important components of the central
processing unit. Multipliers are required in Athematic and logical unit (ALU)s. For the
calculating memory address and the floating point calculation in the multiplication.
Multipliers are also very important components in the digital signal processing (DSP),
microprocessors. As day by day, digitalization is increasing in every application, so that the
speed of the processors is increasing. So, to fulfil the demand of digitalization we need adders

which provide us accurate outputs with very less consumption of the constraints given below.

The speed and the accurate results of a digital system are mostly influenced by the
operation of respective multipliers. The main constrain for the designing of multiplier are the

area, power, speed, time delay.

So, multipliers with optimized area, power efficient i.e., consumes very much less

power, high speed and also performing the operation using the less number of cells.

24

CHAPTER 5
RESEARCH METHODOLOGY
5.1 PROBLEM FORMULATION:

As day by day digitalization is increasing in every application and so that the speed of
processors are increasing. So, to fulfil the demand of digitalization we need multipliers which
provide us accurate outputs with very less consumption of the constraints given below.

The speed and the accurate results of a digital system are mostly influenced by the
operation of respective multipliers. The main constrain for the designing of multiplier are the

area, power, speed, time delay.

5.2 DESIGN APPROACH:

For designing fast multipliers, extensive literature survey was done. To implement
them we need Verilog code i.e., main module and test bench. After getting the module for
respective multiplier we tried to simulate the module in Xilinx and cadence NCsim tool, at
this time we get the simulation result for different input combination. For synthesis of delay
and power we use fast.lib and slow.lib where we check the delay and power at 45nm, 90nm,
180nm technologies. So, finally our main aim is to compare these techniques at the different

technologies.

25

CHAPTER 6

RESULTS AND DISCUSSION

Simulation and Synthesis Results of Multipliers: -

6.1 VEDIC MULTIPLIERS:-

6.1.1 Vedic 4bit Multiplier:-

Vedic multiplier has been implemented in Xilinx and NC simulation using gate level

modelling for verification we have taken the results and verified with industry standard

cadence tools.

— at

— a2

— a3

—F— b0

—F— b1

—F— b2

p0O
p1
p2
p3
p4
p5
p6

p7

Fig.6.1. 4bit Vedic multiplier

- |
|
| o 1

Fig.6.2.RTL View of 4bit Vedic Multiplier

26

24 Kilire - ISE - CAKilim@2i\vedicmulivedicmul.ise - [Simulation]
[File Edit View Project Source Process Test Bench Simulation Window Help
DRPES L B X 2R 2 EOEE TN W= ~]E & | T e
| sr| § & %@ I G= b X |[1000 S [S]i4 » | T2 = 2| 8% % % 03
Sources for: | Behavioral Simulation ~|| current Simulation
S vediomul Time: 16 ns o i 4| B‘]
= 1 xa95%-~ 2N po 1
w1 [vediemul (vedicmul v) N p1 =
[+] vedicmutth (vedicmul w) =
2N p2 o [
SI% Sources gy Snapshots [P Libraries 3N p3 1
M ps 1
2N ps o
~
L] o
= #i§ vedicmultb - vedicmukb BN e
2o 2N p7 o
BMp 2N a0 1 |
ez 2 an 0] |
gpj 2N az 0
P
N5 2N a3 i | |
2Mes N bo 1 |
EMe7 20N b1 1
gaﬂ 2N b2 0
a1
b3 o
2N=2 el
2Maz -
< > < » < >
S Whancssses [Sim Hiersrchy -ve | pm g tation [7] vedicmui v
Stopped at time : 16.000 ns : File "C:/Xilinx92i/vedicmul/vedicmul.v"™ Line 88
Stopped at line=88 file name=C:/Xilinx892i/vedicmul/vedicmul.wv
=
<
[E] Console @ Emors B, Wamings B Tl Shell [6 Findin Fles [Sim Console - vedicmuttb

Fig.6.3. Output waveform of 4bit Vedic multiplier.
6.1.2 Power Synthesis Result for 4bit vedic multiplier:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for
45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

A. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14. Generated by: Encounter (R) RTL Compiler RC14.
vl4.10-p008_1 v14.10-p008_1
Generated on: Zpr 26 2017 02:12:50 pm Generated on: Zpr 26 2017 02:18:54 pm
Module: vedicml Module: vedicmul
Technology library: gpdk045wc Technology library: gpdk045be
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Lrea mode: timing library ZArea mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Power (nW) Power (nW) Power (nW)
vedicmul 31 11.700 &205.750 6221.44% vedicmul 31 3.800 4310.416 4314.216
f1 1 0.675 385.150 285.82¢ hl 1 0.181 107.884 108.065
£2 1 0.675 370.834 371.50% h2 1 0.181 155.243 155.424
£3 1 0.675 435.141 435.817 h3 1 0.181 115.094 115.275
f4 1 0.675 404 .882 405.557 h4 1 0.181 365.864 366.045
£5 1 0.675 250.618 251.253 h5 1 0.181 1%9.502 159.683
fe 1 0.675 290.805 291.481 hé 1 0.181 137.084 137.265
£7 1 0.675 263.773 264.448 h7 1 0.181 125.553 125.734
hil 1 0.566 1e2.398 162.964 £1 1 0.1le8 248.108 248.276
h2 1 0.566 295.183 299.750 £2 1 0.1c8 236.509 237.077
h3 1 0.566 175.679 176.245 £3 1 0.168 281.651 281.8189
h4 1 0.566 565.044 569.610 f4 1 0.1le8 260.367 260.535
h5 1 0.566 305.255 305.821 £5 1 0.1le8 187.858 188.025
hé& 1 0.566 212.6%6 213.262 fe 1 0.1le8 186.714 1l86.882
h7 1 0.566 191.645 132.211 £7 1 0.168 172.713 172.881

Power synthesis report for 4bit Vedic multiplier using 45nm

27

A. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compil: Generated by: Encounter (R) RTL Compi.
v14.10-p008_1 w14.10-p008_1
Generated on: Bpr 26 2017 02:14:37 @ Generated on: Apr 26 2017 02:20:27
Module: wedicmil Module: vedicmul
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)
Wireload mode: enclosed - Wireload mode: enclosed
Lrea mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Power (nW) Power (nW) Power (nwW)
vedicmul 31 2824.956 13307.630 16132.585 vedicmul 31 1674.854 9125.65%7 10800.550
hl 1 156.633 273.534 430.167 hl 1 BE.962 187.693 274.655
h2 1 156.633 520.424 677.057 h2 1 86.562 353.130 440.152
h3 1 156.633 304.779 461.412 h3 1 86.962 205.1%98 2%2.160
h4 1 156.633 971.05% 1127.692 he 1 86.562 638.454 725.416
h5 1 156.633 529.214 685.847 h3 1 86.962 364.137 451.09%
hé 1 156.633 378.375 535.008 hé 1 86.362 247 .950 334.912
h7 1 156.633 332.486 489.119 h7 1 86.962 223.833 310.815
£1 1 135.794 961.382 1097.176 £1 1 84.476 632.967 717.443
£2 1 135.794 531.512 1067.306 £2 1 84.476 612.316 656.753
£3 1 135.794 1095.565 1235.353 £3 1 84.47¢6 723.427 807.203
£4 1 135.794 1018.49% 1154.293 4 1 84.476 670.208 754 .685
£5 1 135.794 B820.913 956.707 £5 1 84.476 S528.43% €12.3515
£6 1 135.794 794.667 930.461 £e 1 84.476 S515.282 585.758
£7 1 124.380 563.297 687.677 £7 1 84.476 504.505 588.581

Power synthesis report for 4bitVedic multiplier using 90nm

A. Using 180nm Technology:

Fast.lib: Slow.lib:
Generated by: Encounter (R) RTL Compiler Generated by: Encounter (R) RTL Comp:
v14.10-p008_1 v14.10-p008_1
Generated on: Apr 26 2017 02:16:03 pm Generated on: Zpr 26 2017 02:21:51
Module: vedicmul Module: vedicmul
Technology library: tsmcl8 1.0 Technology library: tsmcld 1.0
Cperating conditions: fast (balanced_tree) Operating conditions: slow (balanced tree)
MWireload mode: enclosed Wireload mode: enclosed
Lrea mode: timing library Lrea mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Power (nW) Power (nW) Powexr (nW)
vedicmul 31 34.701 87580.807 87615.507 vedicmul 31 46.736 53312.084 53358.821
f1 1 2.555 9423.383 9425.982 f1 1 3.517 5600.860 5604.778
£2 1 2.59% 7932.467 7935.066 £2 1 3.917 4708.317 4712.235
£3 1 2.59% 9979.254 9981.853 £3 1 3.917 5544.980 5548.8958
f4 1 2.59% 8210.789% B8213.388 4 1 3.917 4857 .896 4861.813
£3 1 2.59% 10e85.763 10688.362 £5 1 3.917 6024.351 6028.308
fe 1 2.55%% 5565.734 5572.333 f6 1 3.517 3237.763 3241.680
£7 1 2.585% 4336.837 4335.425 £7 1 3.917 3052.374 3096.252
hl 1 1.223 2066.203 2067.426 hl 1 1.424 1307.534 1308.958
h2 1 1.223 2644.5%6 2646.218 hZz 1 1.424 1655.269 1656.693
h3 1 1.223 1878.028 1879.251 h3 1 1.424 1166.958 1168.381
h4 1 1.223 4109%.521 4111.143 ha 1 1.424 2578.952 2580.376
h3 1 1.223 2158.793 2200.01¢ hS 1 1.424 1353.190 1354.6132
hé 1 1.223 1453.389 1454.¢12 h& 1 1.424 53295 853 941 .277
h7 1 1.223 2048.758 20495.%81 hT 1 1.424 12732.045 1274.468

Power synthesis report for 4bit Vedic multiplier using 180nm

28

6.1.3 Delay and Timing Synthesis Results of 4bit vedic multiplier:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib

at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology

and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Generated by: Encounter (R) RTL Compiler RC14.
vl4.10-p008_1
Generated on: Bpr 26 2017 02:12:50 pm
Module: vedicmal
Technology library: gpdk045wc
Operating conditions: fast (balanced tree)
Wireload mods: enclossd
Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival
(£F) (ps=) (p=) (ps)
b0 in port 4 2.8 1] +0 0R
gl07/a +0 0
glo7/¥ AND2XL 1 2.7 37 +37 37T R
£2/p
g57/2 +0 27
g57/8 ADDFXTL 1 2.0 35 +92 130 F
£2/sum
£4/rin
g57/cI +0 120
g57/3 ADDFXL 1 1.7 32 +8% 213 R
£4/sum
h7/q
gl7/B +0 218
gl7/co ADDHX1 1 2.0 22 +41 260 R
h7/carry
£5/p
~ET ST +n 2En

Slow.lib

Generated by: Encounter (R) RTL Compiler RC14.1
v14.10-p008_1
Generated on: Zpr 26 2017 02:18:54 pm
Module: vedicmul
Technology library: gpdk045be
Operating conditions: slow (balanced_tree)
Wireload mode: enclosed
Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival
(£F) (p=) (p=) (p=)
b0 in port 4 2.4 o +0 0 R
glo7/a +0 0
glo7/% BND2X2 1 2.5 54 +136 126 R
£2/p
aST /B +0 136
g37/8 ADDFXL 1 1.8 1 +308 444 F
£2/sum
fa/rin
g57/CT +0 444
g37/8 ADDFXL 1 1.6 80 +295 728 R
£4/sum
hl/g
gl7/B +0 728
gl7/co ADDHX1 1 1.8 55 +138 876 R
h7/carry
£5/p
~ET ST +n a7ea

Timing Synthesis Report for 4bit Vedic multiplier using 45nm

A. Using 90nm Technology

Fast.lib

Slow.lib

Generated by: Encounter (R} RTL Compiler RC14.1
w1l4.10—p008_1
Generated on: Rpr 26 2017 02:14:37 pm
Module: vedicmual
Technology library: fast
Operating conditions: fast (balanced trees)
Wireload mode: enclosed
Area mode: timing library
Pin Type Fanout Load Slew Delay Arriwval
(£F) (ps) (p=) {ps=)
b0 in port 4 7.6) +0 oF
glo7/a +0 o
g107/Y AND2X1 1 6.6 18 +32 32 F
£2/p
g&3/B +0 3z
g63/8 ADDEX1 1 5.1 26 +112 144 R
£2/=um
£f4/rin
g&3/CT +0 144
g&3/s ADDFX1 1 4.7 z7 +52 23e F
£4/sum
h7/g
gl7/B +0 236
gl7/co ADDHXTL 1 5.1 20 +36 273 F
h7/carzy
£5/p
P an 27

Generated by:
v14.10-p008_1
Generated on:

Module:

Technology library:
Cperating conditions:

Wireload

mode :

Area mode:

Encounter (R} RTL Compiler RC14.10

Zpr 26 2017
vedicmul
slow

slew (balanced_tree)
enclosed

timing library

02:20:27 pm

Pin Type Fanout Load Slew Delay Arriwal
(£F) (ps) {p=) {p=)
bo in port 4 7.2 o] +0 oR
glo7/n +0 o
glo07/Y IAND2X1 1 6.2 81 +151 151 ®
£2/p
g&3/B +0 151
gE3/s ADDFX1 1 4.9 100 +381 532 F
£2/sum
f4/rin
g63/cT +0 532
g63/s ADDFX1 1 4.4 25 4405 237 R
£4/sum
h7/q
gl7/B +0 937
gl7/co ADDHXL 1 4.9 25 +1el 1098 R
h7/carry
£5/p
~E2 LT +n inaa

Fig.6.8. Timing Synthesis Report for 4bit Vedic multiplier using 90nm

29

A. Using 180nm Technology:

Fast.lib Slow.lib

Generated by: Encounter (B} RTL Compiler RC14.10 Generated by: Encounter (R) RTL Compiler RC14.1C
v14.10-p008_1 v1l4.10-p008_1
Generated on: Epr 26 2017 02:16:03 pm Generated on: Epr 26 2017 02:21:51 pm
Module: vedicmul Module: vedicmul
Technology library: tsmecll8 1.0 Technology library: tsmcld 1.0
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced_tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Area mods: timing library
Pin Type Fanout Load Slew Delay Arriwval Pin Type Fanout Leoad Slew Delay Arrival
(£F) (ps) (ps) (ps) (£F) (p=) (p=) (p=)
b0 in port 4 8.4 o +0 0 R b0 in port 4 8.0 o +0 0R
gl04/B +0 0 gl04/B +0 o
glo4/Y ANDZX1 1 7.0 69 +86 86 R gloa/Y BND2X1 1 6.8 13% +18%2 152 r
f1/p £f1/p
g63/B +0 86 g63/B +0 152
g&3/co ADDFX2 1 7.2 63 +258 344 R gb3/co ADDFX2 1 6.% 126 +581 773 R
fl/carry fl/carry
fa/q £4/q
g63/n +0 344 g63/n +0 773
ge3/s ADDFX2 1 6.1 &9 +202 546 F gb3/8 ADDFXZ2 1 5.5 149 +520 1283 F
£4/sum £4/sum
h7/g h7/q
gl7/B +0 546 gl7/B +0 1253
gl7/co BDDHXL 1 6.5 51 +90 €37 F gl7/cCc ADDHXL 1 5.2 9% +201 1494 F
h7/carry h7/carry
£5/p £5/p
~E2 T an -] rem 2 ST -0 laca

Timing Synthesis Report for 4bit VVedic multiplier using 180nm

30

6.1.4 Vedic 8bit Multiplier:-

Vedic multiplier has been implemented in Xilinx and NC simulation using gate level
modelling for verification we have taken the results and verified with industry standard

cadence tools.

—_1 =0 o
—] a1l o1 —
—_— = o= —
- == s
_— = ot
— =5 o5 —
—_—] 3 oS
—_—aT o7
— 1 = oS —
—_— o1 o=
—_— = o130 —m
PR o111 —
e o112 b—-
—_—] 5 o155
JE—— . T o1& —
[EES— o015 b——

Fig.6.4. 8bit Vedic multiplier

i = S Sy =3}
:_I! !_:j_ — H—3 I__E:}-
I = }—._—_;, L = | l—::]_n
| | ﬁ;__ =
- 1 ! | ==
P T ;TI | g | I 2;
= |Tr= %‘”1:;' —
- 1_]1’]::1:3— I'—--l:.s-—l-_T ||| |4.21=1—-
F — R I—ra—lr!:—:jn-l_ "-m Mg 3::'-.
I : = e
= 1 1
== T =
=
'—:E:

Fig.6.5. RTL view of 8bit vedic multiplier

31

5 Kilin - ISE - C:\Xilinx02i\Bbitvedic\Sbitvedic.ise - [Simulation]

[File Edit View Project Source Process TestBench Simulation Window Help

DPEHI L DX R IPAPKEMBAREDNT AR MNE CIE S @ A
< | = LA (w40 H BN EpE0 e Mk ahhEE0 | AATHBR
< 0]
Current Simulation
(=)~ vedicBbit ~ Time: 16 ns 0 4]
ft | | |
0 M p10 1 |
11
f12 et 0 |
13 2 p12 0
14 M pi3 T 1]
f15
15 Hll p14 L
f7 v A p15 0
=i§ Source g Snapshe E Librarie B2 Design & po 0 |
2 p1 0 |
- 20 p2 1
No flow available. M p3 0 |
20 p4 0 |
N ps 1 |
N pe fvedicmultb/pd
7 1 N
A0 g 1 I 1
< >c| 2
B Processee] sbizadyayed vedicbity [Smuation [] vedicBhit ngr
Design Objects of Properties
Top Level Symbol No object is sele
Name Type Name Value
vedicBbit Instance:

Fig.6.6. Output waveforms of the 8bit vedic multiplier
6.1.5 Power Synthesis Result of 8bit vedic multiplier:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for
45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

B. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compile Generated by: Encounter (R) RTL Compiler
v14.10-p008_1 wvl4.10-p008_1
Generated on: Bpr 27 2017 12:19:44 pm Generated on: Ipr 26 2017 02:27:17 pm
Module: vedic8bit Module : vedicBbit
Technoleogy library: gpdk045we Technology library: gpdk045bc
Operating conditions: fast (balanced_tree) Cperating conditions: =s=low (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Power (nW) Power (nW) Power (nW)
vedicB8bit 143 59.500 42964.179 43023.680 vedic8bit 142 12.074 28895.786 285%14.861
£43 1 0.816 378.260 3739.076& £43 1 0.302 236.035 236.337
£1 1 0.675 425.461 426.136 hi 1 0.181 115.275 115.557
£10 1 0.675 281.332 282.007 h10 1 0.181 180.118 180.299
£11 1 0.675 365.196 365.871 hil 1 0.181 82.054 82.235
£12 1 0.€75 400.685 401.361 hilz 1 0.181 188.026 188.207
£13 1 0.675 476.323 476.599 h13 1 0.181 355.741 355.922
£14 1 0.€75 517.731 518.406 hil4 1 0.181 332.985 253.16€6
£15 1 0.675 518.825 519.500 hl5 1 0.181 222.869 224.050
fle 1 0.€75 569.733 570.408 hlé& 1 0.181 165.312 165.493
£17 1 0.675 542.700 543.375 hil7 1 0.181 71.5832 T1.764
f18 1 0.€75 595.172 5995.847 hils 1 0.181 240.322 240.503
£19 1 0.675 351.842 352.517 his 1 0.181 4g1.129 481.310
£2 1 0.€75 424.65¢ 425.371 hZ2 1 0.181 135.961 136.142
£20 1 0.675 455.213 455.888 h20 1 0.181 392.395 392.577
£21 1 0.675 457.560 458.635 h21 1 0.181 286.321 286.502
£22 1 n a5 T47T 1672 747 AET noa 1 no104 an1 a7 202 189

Power synthesis report for 8bit Vedic multiplier using 45nm

32

B. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compiler RC Generated by: Encounter (R} RTL Compi
w14.10-p008_1 v14.10-p008_1
Generated on: Zpr 26 2017 02:24:17 pm Generated on: Zpr 26 2017 02:28:16
Module: vedicBbit Module: vedic8bit
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mods: enclosed
Area mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Powexr (nW) Instance Cells Power (nW) Power (nW) Powsxr (nW)
vedicBbit 145 14018.985 95559.430 109978.418 vedic8bit 145 8278.355 63679.433 71%57.78%
£43 3 184.533 871.067 1055.600 fa3 3 88.570 275.262 4632.832
hl 1 156.6332 309.320 465.5953 hl 1 Be.262 211.300 258 .262
hl0 1 156.633 485.713 642.346 hlo 1 B6.962 326.338 413.300
hll 1 156.633 218.284 374.917 hil1 1 B6.962 146.270 232.932
hlz 1 156.6332 498.289 654.522 hl2 1 BEe.262 225.150 422.112
hl3 1 156.633 Se7.862 1124.4595 hiz 1 Be.262 &50.022 736.584
hl4 1 156.633 1058.813 1215.446 hils4 1 86.962 T1l1.660 758.622
hl5 1 156.633 602.517 755.550 hil5s 1 B6.962 405.430 452.352
hle 1 156.6332 444 .957 €01.550 hile 1 B6.962 2%99.129 386.0%91
h1l7 1 156.633 152.714 349.347 hl7 1 8E.962 125.509 216.471
hls 1 156.633 635.159 791.792 hlg 1 86.9&62 428 .146 515.108
hl9 1 156.6332 1254.183 1410.81¢ hls 1 86.962 842.115 9259.077
h2 1 156.633 360.749 517.382 h2 1 86.962 245.253 332.215
h20 1 156.633 1057.301 1213.934 h20 1 86.962 T10.685 757 .647
h21 1 156.6332 7E9.825 526.458 h21 1 8E.962 517.658 &604.620
m29 1 1Es £33 A12 a2s sca nel hoo 1 as oaso =as n7a £22 nan

Power synthesis report for 8bit Vedic multiplier using 90nm

B. Using 180nm Technology:

Fast.lib: Slow.lib:

Generated by: Encounter (R) RTL Compiler I Generated by: Encounter (R) RTL Compiler RC
wl4.10-p00B 1 v14.10-p008_1
Generated on: Bpr 26 2017 02:25:47 pm Generated on: Zpr 26 2017 02:25:24 pm
Module: vedicibit Module: vedicfbit
Technology library: tamcl8 1.0 Technology library: tsmcl8 1.0
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)
Wireload mode: enclosed - Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power(nW) Power (nW) Instance Cells Power (nW) Power(nW) Power (nW)
vedicBbit 143 182 .528 E6EB0G6.588 EE6985.516 vediclbit 143 250.319% 357763.51% 3%8013.838
£f1 1 2.5%% 10745.5%53 10748.552 f1 1 3.917 6370.963 6374.881
£10 1 2.558%9 6773.107 6775.706 f10 1 3.917 3%85.082 3953.000
£11 1 2.5599 8477.586 8480.185 f11 1 3.917 5024.463 5028.380
£12 1 2.59% 8942.196 A544.75%5 fiz 1 3.917 3273.783 5277.701
£13 1 2.59%9 8084.556 8087.155 £13 1 3.517 4758.638 4802.556
fl4 1 2.59%9 9386.371 9388.970 f14 1 3.917 3534.066 5537.584
£15 1 2.59% 5808.847 9811.44¢ f15 1 3.917 5752.833 5796.753
fle 1 2.5%% 11209%.162 11211.761 fle 1 3.917 6625.411 6629.329
£17 1 2.59% 10837.85%6 10840.455 £17 1 2.917 6393.¢68¢6 6397.6032
£18 1 2.599% 11145.551 11148.150 f18 1 3.917 6603.527 6607 .444
£15 1 2.59% T017.446 T020.045 £19 1 3.917 4125.591 4125%.908
f2 1 2.59% 8926.25% 8928.858 £2 1 3.917 5291.69%9 52595.617
£20 1 2.5595 10421.143 10423.742 £20 1 3.917 6171.415 6175.333
£f21 1 2.55% 5473.401 5476.000 £21 1 3.917 3594.412 5598.329
£22 1 2.5%% 1277&6.773 1277%5.372 £22 1 3.917 7567.582 7571.500
£33 1 7 BGG 12070 571 12001 170 £272 1 2 G117 T127 ANE 7121 222

Power synthesis report for 8bit Vedic multiplier using 180nm

33

6.1.6 Delay and Timing Synthesis Results:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib

at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology

and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:

B. Using 45nm Technology

Fast.lib

r
Generated by:
v1l4.10-p008_1
Generated on:
Module:
Technology library:
Operating conditions:
Wireload mode:
Area mode:

Encounter (R} RTL Compiler RCl4
Apr 27 2017
vediclbit
gpdk045we
fast (balanced_tres)
enclosed

timing library

12:15:43 pm

Slow.lib

Generated by:
v14.10-p00D8_1

Generated on:

Meodule:

Technology library:

Cperating conditions:

Wireload mode:

Area mode:

Encounter (R) RTL Compiler RCl14.
Bpr 26 2017
vedicibit
gpdk045be
slow (balanced tree)
enclosed

02:27:17 pm

timing library

Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival
(£F) (ps) (ps) (p=) (£F) (ps) (ps) (ps)

bl in port 8 5.6 o +0 oR bl in port 8 4.8 o +0 0 R
g430/n +0 0 g430/a +0 0
g430/¥ AND2XL 1 2.7 37 +37 37 R g430/% AND2X2 1 2.5 54 +136 136 R
f6/p £6/p

g57/n +0 37 g57/a +0 136

g57/8 ADDFXL 1 2.0 35 +92 130 F g57/8 ADDFXL 1 1.8 51 +308 444 F
£6/sum £6/sum
fl16/q fle/q

gs7/cI +0 130 g57/CT +0 444

g57/8 ADDFXL 1 2.0 36 +91 220 R gS7/s BADDFXL 1 1.8 a5 +297 741 R
£16/sum £16/sum
f24/q f24/q

gs7/CI +0 220 g57/cT +0 741

g57/s8 ADDFXL 1 2.0 35 +68 308 F g57/8 ADDFXL 1 1.8 92 +292 1033 F
£24/sum £24/sum
£30/q £30/g

+n ana ~ET T +n 1022

~ET ST

Timing Synthesis Report for 8bit Vedic multiplier

B. Using 90nm Technology

Fast.lib

Slow.lib

using 45nm

f
Generated by:
v14.10-p00&_1
Generated on:
Module:
Technology library:
Cperating conditions:
Wireload mode:
Area mode:

Encountex (R

Zpr 26 2017
vedicBbit
fast

fast (balanced_tree)
enclosed

timing library

02:24:17 pm

RTL Compiler RC14.10

Pin Type Fanout Load Slew Delay Arriwval
(£F) (ps) (ps) (p=]
bl in port 8 15.2 0 +0 oF
g430/a +0 0
g430/¥ AND2X1 1 6.6 18 +32 32 F
£6/p
g63/B +0 EH]
g&3/8 ADDEFX1 1 5.1 26 +112 144 ®m
£6/sum
fl6/g
g63/CT +0 144
g6€3/s ADDEFX1 1 5.1 28 +93 237 F
£16/sum
£24/q
g6&3/CT +0 237
gE3/8 ADDEX1 1 5.1 26 +110 3247 ®
£24/sum
£30/g

£ ST

+n

Generated by: Encounter (R} RTL Compiler RC14.10
v1l4.10—p008_1
Generated on: Apr 26 2017 02:28:16 pm
Module: vedicfbit
Technology library: slow
Operating conditions: slow (balanced tree)
Wireload mode: enclosed
Zrea mode: timing library
Pin Type Fanout Load Slew Delay &rrival
(£F) (ps) (p=) (os)
bl in port 8 14.4 o +0 oF
g430/n +0 o
g430/% AND2X1 1 6.2 62 +106 10e F
£6/p
g63/B +0 106
g&3/s ADDFX1 1 4.9 55 +414 520 R
£6/sum
£16/q
g&3/CT +0 520
g63/8 ADDFX1 1 4.5 100 +374 854 F
£16/sum
£24/q
g&3/cT +0 894
g63/8 ADDFX1 1 4.9 95 +40% 1303 R
£24/ sum
£30/qg

~ER LT

+n 12n=2

Timing Synthesis Report for 8bit Vedic multiplier using 90nm

34

B. Using 180nm Technology:

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compiler RC14.10 - Generated by: Encounter (R) RTL Compiler RC14.10 -
v14.10-p008_1 v14.10-p008_1

Generated on: Ap[lzﬁ ?Dl? 02:25:47 pn Generated on: Zpr 26 2017 02:2%:24 pm

Module: . vedicbit Module: vedicBbit

Techn.o]l.ogy llb];a];y: temclf 1.0 Technology library: tsmeclB 1.0

Cperating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)

wireload mode: enclosed Wireload mode: enclosed -

Area mode: timing library rea mode: timing library

Pin Type Fancut Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival

(£F) (ps) (ps} (ps) (£F) (ps) (p=) (ps)

b2 in port 8 l6.8 0 +0 0R b2 in port 8 16.0 0 +0 0R
gq447/B +0 0 q447/8 +0 0
g447/Y AND2X1 1 7.0 &3 <86 8 R q447/v ZND2X1 1 6.8 139 +192 192 R
£1/p fi/p

g63/8 +0 86 q63/B +0 192

gé3/co ADDFX2 1 7.2 &3 +238 344 R g63/CcO ADDFX2 1 6.9 126 +581 773 R
f1/carry fl/carry
£12/rin fl2/rin

g63/a +0 344 g63/a +0 773

ge3/co LDDFX2 1 7.2 63 +227 5T1 R gé3/co ADDFX2 1 6.9 126 +515 1288 R
f12/carry f12/carry
£21/rin f21/rin

g63/n +0 571 g63/n +0 1288

ge3/co ADDFX2 1 7.2 63 +227 758 R gé3/co ADDFX2 1 6.9 126 +515 1803 R
f21/carry f21/carry
£28/rin £28/rin

~E2/T +n Tan ~E217 +0n 1an3

Timing Synthesis Report for 8bit Vedic multiplier using 180nm

35

6.2 WALLACE TREE MULTIPLIER

4bit Wallace tree

The multiplier has been designed in Xilinx and NCsim using gate level modelling for

verification we have taken the results and verified with industry standard cadence tools.

— al

— a2

— a3

— b0

— b1

— b2

p0 ——

Pl

p2 ——

[

L

- T 1.

= iy _= J | .

— sl

—]

= i p—
—

Fig6.8. RTL View of Wallace tree 4bit multiplier

36

w24 Xilirue - ISE - C: emulise - |] -] *
[File Edit View Project Source Process TestBench Simulation Window Help @ X
DREHF L UREX 2R PPXXP RABEDD: AR MR CIEEE SV
v |2 A% % RO e & EY DG X0 [[
17.6
Sources for: | Behavioral Simulation || | Current b . 2
& wallacemui Time: 25 ns | | I |
= £ %295~ M po 1
@[] wallacemul (wallacemul v) Mot 1
[wallacemultb fwallacemul.v} r ‘
M o2 0
1§ Sources o) Snapshots [Libraries Ml o2 ! |
M ps L |
M5 0
= 8 0 \
=)- wallacemuith - wallacemutb el
Hpt o7 ©
Mot M a0 1 \ [
ez Hat 0]
%Dj a2 0 [1
P
s =2 7 |
s oo 1 |
MNe7 o1 1
%BD N b2 0
al
b3 0
Maz a;n
Ma v
S 2 < 2 < >
Rk [5m Hierarhy - e walacemuly [Simulation
Stopped at time : 25.000 ns File "C:/Xilinx92i/wallacemul/wallacemul.v" Line 838 ~
Stopped at line=g8 file name=C:/Xilinx92i/wallacemul/wallacemul.v
*
v
< >
[5|Conscle @FEmors gy Wamings (@ Tl Shell g Findin Fles [IF] Sim Consols - wallacemuth

Fig.6.9. Output waveform of Wallace tree 4bit multiplier.
6.2.1 Power Synthesis Result:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for
45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

A. Using 45nm Technology

Fast.lib: Slow.lib:

Generated by: Encounter (R} RTL Compiler RC14.1(Generated by: Encounter (R) RTL Compiler 1
v14.10-p008_1 v14.10-p00B_1
Generated on: Bpr 26 2017 01:56:06 pm Generated on: Apr 26 2017 02:05:34 pm
Module: baughmul Module: baughmul
Technology library: gpdk045we Technology library: gpdk045be
Operating conditions: fast (balanced_tree) Operating conditions: slow (balanced_tree)
Wireload mode: enclosed Wireload mode: enclosed
hrea mode: timing library Erea mode: timing library
Leakags Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (niW) Instance Cells Power (nW) Power (nW) Power (n)
baughmul 31 13.218 7574.549 7587.767 baughmul 31 4.124 5125.400 51322.524
£4 1 1.637 520.766 522.403 £4 1 0.514 328.359 328.873
£10 1 0.675 419.436 420.111 £1 1 0.181 127.713 127.855
£11 1 0.675 462.335 463.010 £2 1 0.181 236.195 236.376
£12 1 0.675 453.692 454.367 £3 1 0.181 211.383 211.544
f13 1 0.675 3%96.970 397 .645 £10 1 0.1e8 265.3227 265.505
£14 1 0.675 48%5.422 450.0398 £11 1 0.168 297.801 257 _9869
£5 1 0.€73 405.588 410.263 £12 1 0.168 252_643 252_811
fe 1 0.€73 282.172 282.847 £13 1 0.168 255.196 255.3264
£7 1 0.€75 353.278 393.953 £14 1 0.168 315.774 315.942
fa 1 0.675 423.214 423.882 £5 1 0.168 255.857 260.025
£2 1 0.675 270.646 271.321 fe 1 0.168 17%.828 179.996
f1 1 0.566 153.640 124.207 £7 1 0.168 249.436 249.604
£2 1 0.566 366.471 367.038 £8 1 0.168 270.080 270.248
£2 1 0.366 325.166 325.732 £9 1 0.168 172.850 173.018
£1s 1 0.367 275.575 275.3%42 £15 1 0.111 184.5328 184.650

Power synthesis report for 4bit Wallace tree multiplier using 45nm

37

A. Using 90nm Technology

Fast.l

ib

Slow.lib

R f
Encounter (R) RTL Compile: Generated by:

Generated by: Encounter (R) RTL Compiler
v14.10-p008_1 v14.10-p008_1

Generated on: Bpr 26 2017 02:01:37 pm Generated on: hpr 26 2017 02:08:22 pm

Module: baughmul Module: baughmul

Technology library: fast Technology library: =low

Operating conditions: fast (balanced_tree) Cperating conditions: slow (balanced tree)

Wireload mode: enclosed Wireload mode: enclosed

Area mode: timing library Area mode: timing library

Leakage Dynamic Total leakage Dynamic Total

Instance Cells Power (nW)

Power (nW) Powexr (nW)

ba

ughmul 3
£f1

£2

£3

£10

£11

£1z

£13

£14

NRNHERRRRHEBERBPHERERE W

2632.077
156.633
156.633
156.633
135.754
135.754
135.794
135.7594
135.7594
135.794
135.794
135.794
135.7%94
135.794

49.967
41.827

Instance Cells Powexr (nW)

Powexr (ni)

Power (nW)

16109.422 18741.499 baughmul a3
295.647 452.280 £1 1
488.555 645.188 £2 1
557.748 714.381 £3 1

1041.109 1176.903 £10 1
1327.013 1462.807 11 1
1255.072 1390.866 12 1
1102.599% 1238.393 13 1
1374.210 1510.004 £1a4 1
1008.565 1144.359 £s 1
€90.743 826.537 6 1
961.938 1097.732 £7 1
1036.122 1171.916 £a 1
6395.562 775.356 £9 1
146.229 196.196 £4 >
351.479 433.306 £15 >

1583.827 10772.037 12355.865

BEe.562
BEe.562
BEe.562
B4.476
84.476
84.476
B4.476
B4.476
B4.476
B4.476
84.47¢6
84.47¢6
84.47¢6
27.932
18.018

201.988
332.050
378.527
683.653
B58.8626
811.701
713.881
850.419
663.404
455.179
632.506
£82.829
419.965
104.139
307.601

288.950
419.012
465.489
Te8.129
943.102
896.177
798.357
974.895
747 .880
539.656
T716.982
767.306
504.442
132.071
325.619

Power synthesis report for 4bit Wallace tree multiplier using 90nm

A. Using 180nm Technology:

Fast.l

ib:

Slow.lib:

Generated by: Encounter (R) RTL Compiler RC Generated by: Encounter (R) RTL Compiler
vl4.10-p008_1 v14.10-p008_1

Generated on: Dpr 26 2017 02:03:37 pm Generated on: Zpr 26 2017 02:09:55 pm

Module: baughmal Module: baughmul

Technology library: tsmel8 1.0 Technology library: tsmcl8 1.0

Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)

Wireload mode: enclosed Wireload mode: enclosed

Area mode: timing library Area mode: timing library

Leakage Dynamic Total Leakage Dynamic Total

Inztance Cells Power (nW)

Power (nW) Power (ni)

Instance Cells Power (nW)

Power (nW)

Power (nW)

baughmul 32 37.525 112236.484 112274.008 baughmul 32
£10 1 2.59% 9525.018 9531.617 £10 1
£11 1 2.59% 10901.603 10504.202 £11 1
£12 1 2.59% 9797.73% 9800.338 £12 1
£13 1 2.59% B8262.633 B8265.232 £13 1
£14 1 2.59% 14378.473 14381.072 £14 1
£5 1 2.59% 7753.805 7756.404 £5 1
£6 1 2.59% 5689.787 5692.386 £6 1
£7 1 2.59% 7730.814 7733.413 £7 1
£8 1 2.59% 9023.751 9026.350 £8 1
£9 1 2.599% 5408.542 5411.141 £9 1
f1 1 1.223 1782.861 1784.083 £1 1
£2 1 1.223 2459.812 2461.034 £2 1
£3 1 1.223 2B815.044 2816.267 £3 1
£4 2 0.440 667.801 668.242 £4 2
£15 1 0.406 1254.4680 1254.874 £15 1

53.446 ©67414.541 67467.587

3.917
3.917
3.917
3.917

5816.565
6460.659
53770.3535
4815.819
8439.224
4507.788
3380.105
4534.343
5264.025
3215.664
11231.552
1554.24¢6
1755.052

418.338

T797.988

5820.483
6464.576
3774.272
4815.736
8443.141
4511.705
33B4.022
4538.261
5367.947
3215.581
1122.976
1555.670
1760.476

415.133

798.566

Power synthesis report for 4bit Wallace tree multiplier using 180nm

38

6.2.2 Delay and Timing Synthesis Results:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib
at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology
and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compiler RC14. Generated by: Encounter (R) RTL Compiler RC14.1
v14.10-p008_1 v14.10-p008_1
Generated on: Bpr 26 2017 01:56:06 pm Generated on: Bpr 26 2017 02:05:34 pm
Module: baughmal Module: baughmal
Technology library: gpdk045wc Technolegy library: gpdk045bc
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced_tree)
Wireload mode: enclosed Wireload mode: enclosed
Zrea mode: timing library Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival
(£F) (ps) (ps) (p=) (£F) (p=) {p=) =)
=1 in pert 2 2.1 o +0 o R bO in port 2 1.8 o +0 o0 R
g7a/a +0 o g7Tin +0 o
g78/Y AND2XTL 1 1.4 232 +31 31 R giTiY END2X2 1 1.6 47 +132 132 »
£3/p £2/q
g22/n +0 31 g22/B +0 132
g22/8 ADDHHL 1 2.0 23 +58 8s ¥ g22/c0 ADDHX1 1 2.2 62 +131 263 R
£3/sum £2/carry
£5/rin £5/q
g57/CcT +0 89 gs57/B +0 263
g57/8 ZDDEXL i 2.0 3e +a8 177 R g57/8 ADDFXL 1 1.8 S1 +306 570 F
£5/ 3um £5/ sum
£7/zin £7/rin
g57/CT +0 177 g57/cT +0 570
g57/s ADDEXL 1 2.0 35 +a8 2ed F g57/8 ADDFXL 1 1.8 85 +237 867 R
£7./sum £7/sum
£11/p £11/p
~ET AT a0 264 ~5T LT +n RET

Timing Synthesis Report for 4bit Wallace tree multiplier using 45nm
B. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compiler RCO14.1 Generated by: Encounter (R) RTL Compiler RC14.1
vl4.10—p008_1 v1l4.10-p008_1
Generated on: Ipr 26 2017 02:01:37 pm Generated on: Zpr 26 2017 02:08:22 pm
Module: baughmual Module: baughmul
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Erea mode: timing library Zrea mode: timing library
Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival
(£F) (ps) (ps) (os) (£F} (ps) (ps) os)
bl in port 3 5.7 [s] +0 o R bl in port 3 5.4 o +0 oOR
g7B/n +0 o g78/n +0 o
g78s/xY BEND2KXK1 1 4.0 1s +34 24 R g7as/x BNDZ2X1 1 2.8 62 +133 1322 R
£3/p £3/p
g22/n +0 34 gzz2/n +0 133
g22/s ADDHXL 1 5.1 25 +&0 sS4 F g22/s3 ADDHXT 1 4.3 51 +z21 354 F
£3/sum £3/sum
£5/rin £5/rin
g&3/CcI +0 Sa g&3/cT +0 354
g&3/ss ADDFX1 1 5.1 2e +10% 202 R ge€3/s ADDEFX1 1 4.9 99 +40¢ 7el R
£5/ sum £5/sum
£f7/rin £7/rin
g€é3/cI +0 203 ge3/cI +0 Tel
g&3/s ADDFERL 1 5.1 28 +93 296 F g6&3/8 ADDFEX1 1 4.3 100 +374 1134 F
£7/ sum £7/ sum
£11/p £11/p
~Ea ST an cae ~EA ST an 1194

Timing Synthesis Report for 4bit Wallace tree multiplier using 90nm

39

C. Using 180nm Technology:

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14.10 Generated by: Encounter (R) RTL Compiler RC14.10 -
v14.10-p008_1 v14.10-p008_1
Generated on: Apr 26 2017 02:03:37 pm Generated on: Bpr 26 2017 02:09:55 pm
Module: baughmul Module: baughmul
Technology library: temelé 1.0 Technology library: tsmcld 1.0
Cperating conditions: fast (balanced tree) Operating conditlons: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed B
Area mode: timing library Zrea mode: timing library
Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps) (£F) (ps) (ps) (p=)
bl in port 3 6.3 0 +0 0 R bl in port 3 6.0 0 +0 0F
g79/B +0 0 g79/8 +0 o
g75/Y END2X1 1 4.8 36 +739 79 R g79/Y AND2¥1 1 4.6 87 +198 188 F
£2/p £2/p
g22/a +0 79 g22/n +0 198
g22/s ADDEXL 2 3.2 170 4115 154 R g22/3 ADDHXL 2 3.0 360 +260 459 R
£2/sum f2/sum
f4/rin f4/rin
g33/80 +0 154 g33/B0 +0 455
g33/% ORIZIAL 1 2.7 36 424 218 F g33/Y CAI2IXL 1 2.6 137 +128 586 F
932/B0 +0 218 g32/80 +0 586
g32/Y ORIZEBLXL 1 7.2 100 +71 288 R g32/Y OARTZBBIXL 1 6.9 193 +151 738 R
f4/carry f4/carry
£1/q £1/q
g63/a +0 288 ge3/h +0 738
c_jssfs ADDFX2 1 65 70 +205 45¢ F g63/3 ADDFX2 1 6.2 150 +531 1265 F
£7 [orem £/ avmn

Timing Synthesis Report for 4bit Wallace tree multiplier using 180nm

40

6.2.38BIT WALLACE TREE:-

The multiplier has been designed in Xilinx and NCsim using gate level modelling for
verification we have taken the results and verified with industry standard cadence tools.

u— 1 oa p—
EE— T
——] =
—_—Ja= oz b—
— =2 os b—
— == o5 b—
— J== o5 b—
E— o7 b——
— Joa os |—
— =1 o= |
— == R T-1 SR
— == 211 f—
— = 1z f—
—]=s 1= —
— Jos I
— =7 s

Fig.6.10. 8bit Wallace tree multiplier

: == ; 1
i i e 'ﬁ". =T = ETI -
=2l ! B et ===
=Eio | |- H —r
T 1 = T 3
M ﬂi} —r— HH —|—_,.—| —
T 3 — —3
1 -+ —r
} | | — — |
= /- | _
: EEr T ——
= 3 o L
T E=am =
NS E e
- = il ==t
=T
E:-_ ——

Fig.6.11. RTL view of 8bit Wallace tree multiplier

41

5 Xilinx - ISE - C:\Xilink92i\8bitwallace\Bbitwallace.ise - [Simulation]
[File Edit View Project Source Process TestBench Simulation Window Help
DAEHA L I LREX v RIEAXX B RIAZTIDNT AR MG JER @&
(v |22 anH RO e T GBI G E[m Ks M| T ona%Ea A
12
Current Simulation
= wallce 8o ~ Time: 16 ns 4 8
-1 | | |
10 A po] \
-1
T 12 et 0 |
#-f13 M p2 0
#-f14 u p3 0
#-f15
£-16 Hpd >
+-f17 v A ps 1
Ef§ Source [l Snapshec @ Librarie T8 Design u pé 0
7 0
. A ps 1
No flow available. Moo I ‘
M p1o 0 |
al p1 0
M p12 0
M p1z 0
Ml 14 0
< >l >
P i -wall
E_t focesses DSm §] Bhrtwa\lcev D Simulation BwallceBhn ngr

Fig.6.12. Output waveforms of the 8bit Wallace tree multiplier
6.2.4. Power Synthesis Result:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for
45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

C. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14. Generated by: Encounter (R) RTL Compiler RCI
v14.10-p008_1 v14.10-p008_1
Generated on: Zpr 26 2017 02:14:321 pm Generated on: Bpr 26 2017 02:05:16 pm
Module: wallce8bit Module: wallce8bit
Technology library: gpdk045Swc Technology library: gpdk045be
Cperating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclozed
Area mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW) Instance Cells Power(nW) Power(nW) Power (nW)
wallce8bit 115 47.132 35136.516 35183.648 wallcefbit 115 14.500 23587.025 23601.526
£1 1 0.675 280.06%9 280.745 hl 1 0.181 125.229 125.410
£10 1 0.675 255.018 255.692 h2 1 0.181 153.865 154.046
£11 1 0.e75 226.777 337.452 h3 1 0.181 167.853 168.034
£1z2 1 0.e75 217.244 217.9138 h4 1 0.181 217.721 217.%02
£13 1 0.6e75 123.587 194.263 h5 1 0.181 310.672 310.853
£14 1 0.675 370.9%10 371.586 hé 1 0.181 412.832 413.013
£15 1 0.675 463.0%96 463.771 h7 1 0.181 317.089 217.271
fle 1 0.675 362.542 363.217 h8 1 0.181 346.255 246.476
£17 1 0.675 442.521 443.19¢6 £f1 1 0.1le8 180.046 180.214
fl8 1 0.675 391.637 392.312 £10 1 0.1le8 1e2.472 162.640
£19 1 0.875 442.657 443.332 £11 1 0.1le8 214.711 214.872
£2 1 0.875 314.553 315.228 £1z2 1 0.1leB 138.707 138.875
f£20 1 0.875 463.925 464.600 £13 1 0.1leB 126.253 126.421
£21 1 0.875 61%5.504 ©20.179 £14 1 0.1leB 237.5%93 237.761
f£22 1 0.875 514.594 315.270 £15 1 0.leB 277.0%91 277.25%
£92 1 nog75 817 nes 517 741 fie 1 no1ea 220 a7a 231 144

Power synthesis report for 8bit Wallace multiplier using 45nm

42

C. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Ccmpiler Generated by: Encounter (R) RTL Compiler RCI
v14.10-p008_1 v14.10-p008_1
Generated on: Ipr 26 2017 02:15:43 pm Generated on: Apr 26 2017 02:11:44 pm
Module: wallceBbit Module: wallcefBbit
Technology library: fast Technology library: slow
Cperating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)
Wireload mode: enclosed - Wireload mode: encloszed
Area mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW) Instance Cells Power(nW) Power(nW) Power(nwW)
wallceBbit 115 10391.033 82227.137 92618.171 wallcefbit 115 £333.706 54534.515 €0868.620
hl 1 156.633 321.274 477.907 hl 1 86.962 215.765 306.731
h2 1 156.633 391.745 548.378 h2 1 B6.962 266.088 353.050
h3 1 156.633 431.628 588.261 h3 1 B6.962 293.081 380.043
h4 1 156.633 573.240 725,873 h4 1 86.962 398.694 485.656
h5 1 156.633 798.348 954.981 h3 1 B6.962 535.341 626.303
hé 1 156.633 1054.361 1210.9394 hé 1 B6.962 711.845 758.807
h 1 156.633 B36.686 993.319 by 1 B6.962 565.518 652.480
ha 1 156.633 911.3974 1068.607 hé 1 B6.962 615.241 702.203
f1 1 135.794 700.867 836.661 f1 1 84.476 461.058 545.534
£10 1 135.794 £24.944 760.738 £10 1 84.476 411.870 456.346
£11 1 135.794 826.312 962.106 f11 1 B4.476 544.340 628.816
£12 1 135.794 508.975 644.769 f12 1 B4.476 333.964 418.440
£14 1 135.794 934.810 1070.604 £14 1 84.47¢ el4.215 658.6351
£15 1 135.794 1132.422 1268.216 £15 1 84.476 745.700 830.176
£16 1 135.794 B90.292 1026.086 fle 1 84.476 586.353 £70.830
£17 1 145 764 10749 67 1715 4£1 £ 1 RA_ATE F11_0AL 785 522

Power synthesis report for 8bit Wallace multiplier using 90nm

C. Using 180nm Technology:

Fast.lib: Slow.lib:

Generated by: Encounter (R} RTL Compiler RI Generated by: Encounter (R} RTIL Compiler R
v14.10-p008_1 v14.10-p008_1
Generated on: Apr 26 2017 02:16:53 pm Generated on: Bpr 26 2017 02:13:02 pm
Module: wallcefibit Module: wallesfbit
Technology library: tamcld 1.0 Technology library: tsmclB 1.0
Operating conditions: fast (balanced_tree) Operating conditions: slow (balanced_tree)
Wireload mode: enclosed Wireload mode: enclosed
Zrea mode: timing library Area mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power(nW) Power (nW) Powsr (nW) Instance Cells Power(nW) Power(nW) Powesxr (nW)
wallceBbit 115 160.411 616555.870 &16756.281 wallceBbit 115 230.956 370344.835 370375.791
f1 1 2.559% 6662.650 6665.245 f1 1 3.517 3551.610 3955.528
f10 1 2.599 4239.235 4241 .834 £10 1 3.517 2532.65% 2536.617
£11 1 2.559% T776.770 T775.369 £f11 1 3.517 4580.672 4584 .55%0
f12 1 2.599 5061.766 5064.365 fi2 1 3.917 2995.649 2999.567
£14 1 2.58% 6685%.464 6E52.063 f14 1 3.517 3014.%¢62 2018.87%
f15 1 2.59%9 92535.734 9258.333 £15 1 3.917 5512.308 5516.225
fle 1 2.58% 7954.318 7856.5917 fle 1 3.917 46832.910 4687 .827
£17 1 2.595 10542.848 10545.447 £17 1 3.917 6518.075 6521.593
fis 1 2.58% 5455.452 5458.051 fi8 1 3.917 5654.435 5658.352
£19 1 2.5%5% 10728.148 10730.747 £19 1 3.917 63596.428 6400.345
£2 1 2.599 6465.169 6467.768 £2 1 3.917 3852.605 3856.522
£20 1 2.59% 9563.756 $566.355 £20 1 3.917 5692.708 5656.626
£21 1 2.599 13427.913 13430.512 £21 1 3.917 759B85.836 7589.754
£22 1 2.59% 10300.455 10303.05%4 f£22 1 3.917 6115.798 6115.716
£23 1 2.599 11246.973 11245.572 £23 1 3.517 6705.028 6708 .946
£94 1 5 caa Tecd £o4 Te£7 99 £2a 1 2 a17 aaan &11 aas2 5249

Power synthesis report for 8bit Wallace multiplier using 180nm

43

6.2.5 Delay and Timing Synthesis Results:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib
at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology
and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:
C. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14. Generated by: Encounter (R) RTL Compiler RC14.10 -
v1i4.10-p008_1

+14.10-p008_1

Generated on:

Epr 26 2017 02:14:31 pm

Generated on:

Zpr 26 2017 0©02:0%:16 pm

Module: wallce@bit Module: wallcefbic
Technology library: gpdk045wc Technology library: gpdk045bo
operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)

Wireload mode:
Area mode:

enclosed
timing library

Wireload mode:
Area mode:

enclosed
timing library

Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay RArrival
(£F) (p=) (p=) (p=) (£F) (p=) (p=) (p=)
b1 in port & a.2 o +0 o bl in port & 3.6 0 +0 0 R
g360/2 +0 o g360/2 +0 e
g360/% AND2XTL. 1 1.7 26 432 as g360/¥ END2X2 1 1.6 47 +132 132 R
hl/g hl/q
g17/B +0 a2 gl7/B +0 122
gi7/co ADDHX1 1 2.0 23 +40 72 gl7/co ADDHX1 1 1.8 55 +127 260 R
hl/carry hl/carry
£1/xin £1/xrin
g57/cT +0 73 g57/cT +0 260
g57/Co ADDFXL 1 2.0 37 +E0 132 g57/00 ADDFXL 1 1.8 86 +201 460 R
f1/carry £l/carzy
£2/rin £2/rin
gs7/0T +0 132 g57/CcT +0 2€0
957/C0 ADDFXL 1 2.0 a7 E4 1ss g57/0C BDDFXL 1 1.8 86 +211 672 R
£2/carry £2/carry
£3/rin £3/rin
~S5T LT +n 1as ST LT ==t Lo

Timing Synthesis Report for 8bit Wallace multiplier using 45nm

C. Using 90nm Technology

Fast.lib

Slow.lib

Generated by: Encounter (R} RTL Compiler RC14.10 Generated by: Encounter (R) RTL Compiler RC14.10 -
w14.10-p00B_1 +14.10-p008_1
Generated on: Zpr 26 2017 02:15:43 pm Generated on: Bpr 26 2017 02:11:44 pm
Module: wallceBbit Module : walleeBbit
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced_tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Lrea mode: timing library
Pin Type Fanout Load Slew Delay Zrriwval Pin Type Fanout Load Slew Delay Arrival
(£F) (ps) (ps) (p=) (£F) (ps) (ps) (ps)
Lo in port € 11.4 o +0 o bl in port 6 10.8 o +0 oR
g380/a +0 o g360/a +0 [s]
g380/% AND2X1 1 4.0 13 +28 28 g360/Y BNDZ2X1 1 4.4 67 +138 138 R
hl/p hl/qg
gl7/n +0 28 gl7/B +0 138
gl7/co ADDHXL 1 5.1 20 +35 &3 gl7/co ADDHXTL. 1 4.9 94 +155 293 R
hl/carry hl/carry
£1/xin £1/rin
g63/CT +0 63 g63/CT +0 253
g&3/co LDDFX1 1 5.1 27 +68 131 g€3/cO ADDFX1 1 4.9 94 +234 527 R
£fl/carry £1/carry
£2/rin f2/rin
g&3/CT +0 131 g&3/CcT +0 527
g€3/co ADDFX1 1 5.1 27 +&5 200 g&3/38 ADDFX1 1 6.7 112 +383 910 F
£2/carry £2/aum
£3/xrin £fl4/g
~E2 0T - 2mn ~ERAT e al a1n

Timing Synthesis Report for 8bit Wallace multiplier using 90nm

44

C. Using 180nm Technology:

Fast.lib Slow.lib

I
Generated by: Encounter (R] RTL Compiler RC14.10 - Generated by: Encounter (R) RTL Compiler RC14.1

v14.10-p008 1 v14.10-p008_1
Generated on: Apr 26 2017 02:16:53 pm Generated on: pr 26 2017 02:13:02 pm
Module: wallecefbit Module: wallceBbit
Technology library: tsmclf 1.0 Technology library: tsmclt 1.0
Operating conditions: fast (balanced_tree) Operating conditions: alow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival
(£F) (p=) (ps) (p=) (£F) (ps) (ps) (ps)
b0 in port 612.6 0 +0 0F Egaom in port §12.0 0 ig g F
33:33 awpaxt 1 4.8 45 +gg ag F ii?m AND2A1 1o4.6 BT +138 198 ®
P
hlﬁvm +0 as gli/a +0 138
g17/CO ADDHXL 1 6.5 51 491 176 F gl7/cO ADDHXL 1 6.2 2% +189 397 F
hl/carry }gi[c.larry
f1/rin frin
g€3/cI + 176 gs/e 0 3%
63/C0 ADDFX2 1 6.5 5% +130 306 F g63/co BDDFX2 1 6.2 145 +337 734 F
El?carry flfc‘?rry
- f2/rin
£2/rin g&3/cI +0 734
g63/cI 0 306 g63/CO ADDFXZ 1 6.2 145 +348 1082 F
ge3/co ADDFX2 1 6.5 65 +134 440 F f2/carry
f2/carry £3/rin
£3/rin ~ER AT +n 1082
~E T +n aan

Timing Synthesis Report for 8bit Wallace multiplier using 180nm

45

6.3 BAUGH WOOLEY MULTIPLIER
6.3.1. Baugh wooley 4bit multiplier

The multiplier has been designed in the Xilinx, Ncsim using gate level modelling for

verification we have taken the results and verified with industry standard cadence tools.

— bZbar

(|

[npeg

B3

[te8

'::——1..)— [_L")_ =1 — T,

== M= M| e

T ’:D) — : |

B — |] 1T .
i

Fig6.14. RTL View of Baugh wooley 4bit multiplier

46

=4 Xilinx - ISE - C:\Xilinx82i\baughmul\baughmul.ise - [Simulation]
[File Edit View Project Source Process TestBench Simulation Window Help
DRFPEHA L X s PP XHMRA|I A BE DD A7 00E DI R o o o e R
1P S22 ABRADMN | A H QN S WT|[100 s K| e B0 SR AAN BB -
Py Current Simulation
- - Time: 16 ns o i g E
11 | | | |
=-f10 &M po 1
- f11
w12 M p L
=113 2 p2 0 |
® 114
p3 0
115 &
-2 ~ M pa 1
< > 2N p5 1 [
=3 Sourc 5 Snapst [Librar I Desigr B ps g |
2N p7 0
2 a0 1
No flow available. N at o T 1
2N a2 0
2N a3 1
2N o 1 [
2N o1 1
2N o2 0
Moz 0
< > < >
P -bz
Ff Processes [[Em ey [V]baughmuly [Smulstion [2] baughmul.ngr
Design Objects of
Top Level Symbol
Instances Pins Signials Hame
baughmul
[E] Console @ Emors §\Wamings @ TciShel [pg Fndin Fles [Sim Consle -baughmuth F] View by Category 5 View by Name

Fig6.15. Output waveform of Baugh wooley 4bit multiplier
6.3.2 Power Synthesis Result:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for
45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

A. Using 45nm Technology

Fast.lib Slow.lib

Vlf??g:;zg ?Y' Encounter (R} RIL Compiler Generated by: Encounter (R) RTL Compiler RC14.
Generated on: npr 26 2017 01:56:06 pm " Lo-10P008 1
Generated on: Apr 26 2017 02:05:24 pm
Module:) baughmual Module : baughmul
Technology library: gpdk045Swe Technology library: gpdk045bc
OPerat:Lng conditions: fast (balanced tree) Cperating conditions: slow (balanced tres)
Wireload mode: enclosed Hireload mode: enclosed -
Area mode: timing library Arsa mods: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (niW) Instance Cells Powexr (nW) Powexr (nW) Powex (nW)
baughmul 31 13.218 7574.54% 7587.767 baughmul 31 4.124 5125.400 5133.534
£4 1 1.637 520.766 522.403 £4 1 0.514 228.355 228.873
£10 1 0.675 415.426 420.111 £1 1 0.181 127.713 127.855
£11 1 0.675 462.335 463.010 £2 1 0.181 236.155 236.376
£12 1 0.675 453.6392 454.367 £3 1 0.181 211.363 211.544
£13 1 0.675 396.970 397.645 £10 1 0.168 265.337 265.505
£14 1 0.€75 4B85.422 450.0398 £11 1 0.1ea 257.801 287.3&9
fil2 1 0.168 292 .643 292.811
e 1 olers 2e2.372 282847 1 ol 2sslise 255.363
£7 1 0.675 393.278 393.953 £14 t 0-168 315.774 315.942
s 1 0 e75 423.214 423 889 £5 1 0.168 259.857 260.025
£9 1 0.675 270.646 271.321 8 t 0-168 175.828 175.396
£7 1 0.168 249.436 249.604
£1 1 0.566 153.640 194.207 P I o.les 270.080 270048
£2 1 0.566 366.471 367.038 o 1 o les 172.850 173 o1
£3 L 0.566 325.166 323.732 £15 1 0.111 184.538 184.650
£15 1 0.287 279.575 279.942

Power synthesis report for 4bit Baugh wooley multiplier using 45nm

47

B. Using 90nm Technology

Fast.lib

I
Generated by:

vl4.10-p008_1
Generated on:
Module:

Technology library:
Cperating conditions:

Wireload mode:
Zrea mode:

Encounter (R) RTL Compiler R

Bpr 26 2017 02:01:37 pm

baughmal
fast

fast (balanced tree)

enclosed

timing library

Ieakages

Instance Cell=s Power (nW)

Dynamic
Power (ni)

Total
Power (nW)

baughmul E}
£1
£2
£3
£10
£11
£12

rh
=
w

N e N N e i)

2632.077
156.633
156.633
156.633
135.754
135.754
135.7954
135.754
135.794
135.794
135.754
135.754
135.7954
135.794

49 .967
41.827

161095.422
2%5.647
488.555
557.748

146.229
391.479

18741.499
452.280
645.188
714.381

1%6.196
433.3206

Slow.lib

Generated by:

wv1l4.10-p008_1

Generated on:
Module:

Technology library:
Cperating conditions:

Wireload mode:
Lrea mode:

Encounter (R) RTL Compile

Bpr 26 2017 02:08:22 pn

baughmul
=low

slow (balanced_tree)

enclosed

timing library

Teakage

Instance Cells Power (nW)

Dynamie
Power (nW)

Total
Power (nW)

3
1
1
1
1
1
1
£13 1
1
1
1
1
1
1
b
b

1583.827 10772.037 12355.865

B6.%62
BE.9&62
BE.9&62
84.476
84.476
B4.476
B4.476
84.47¢6
84.476
84.476
84.476
84.476
84.476
27.932

201.288
332.050
378.527
683.653
858.626
811.701
713.881
890.419
663.404
455.179
632.506
682.825
419.965
104.133
3207.601

288.950
419.012
465.489
768.129
$43.102
8%96.177
798.357
574.895
747.880
539.656
Tle.982
767.206
504.442
13z.071
325.6153

Power synthesis report for 4bit Baugh wooley multiplier using 90nm

C. Using 180nm Technology:

Fast.lib:

Slow.lib:

f
Generated by:

v14.10-p008_1
Generated on:
Module:

Technology library:
Cperating conditions:

Wireload mode:
Area mode:

Encounter (R) RTL Compiler RC

Apr 26 2017 02:03:37 pm

baughmual
tsmclB8 1.0

fast (balanced tree)

enclosed

timing library

Ge
vli4.
Ge:
Mo

nerated by:
10-p00B8_1
nerated on:
dule:

Technology library:
Operating conditions:

Wi
Lr

reload mode:
ea mode:

Encounter (R) RTL Compil

Apr 26 2017 02:09:35 p

baughmul

tsmecl8 1.

0

s=low (balanced tree)

enclosed

timing library

Leakage

Instance Cells Powexr (nW)

Dynamic
Power (nW)

Total
Power (nW)

baughmul 32
£10
f11
f12
£13
f14
£5
£6

]
-
I e e e e e e e e R al a

£15

37.525 112236.484

2.59%
2.559
2.59%
2.59%
2.59%
2.59%
2.59%
2.59%
2.59%
2.59%
1.223
1.223
1.223
0.440
0.406

9529.018
10501.603
9797.739
8262.633
14378.473
7753.805
5685.787
7730.814
9023.751
5408.542
1782.861
2455.812
2815.044
667.801
1254.468

112274.008
9531.617
10504.202
9800.338
8265.232
14381.072
7756.404
56592.38¢6
7733.413
9026.350
5411.141
1784.083
2461.034
2816.267
668.242
1254.874

Leakage
Instance Cells Powsr (nW)

Dynamic
FPower (nW)

Total
Power (nW)

baug!
f1
f1
f1
f1
f1
£5
bl <)

hmul
0
1
2
3
4

W
[

[Rl e e e e e e S e e

53.446
3.917
3.917
3.917
3.917
3.517
3.917
3.917
3.917
3.917
3.917
1.424
1.424
1.424
0.755
0.578

67414.541
5816.565
6460.659
3770.355
4815.819
8439.224
4507.788
3380.105
4534.343
5364.0259
3215.664
1131.552
1554.246
1759.052

418.338
797.588

67467.987
5820.483
6464.576
3774.272
4819.736
8443.141
4511.705
3384.022
4538.261
3367.547
32159.581
1132.376
1555.670
1760.476

415.133
T9B.566

Power synthesis report for 4bit Baugh wooley multiplier using 180nm

48

6.3.3 Delay and Timing Synthesis Results:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib
at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology
and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib Slow.lib

" Generated by: Encounter (R} RTL Cempiler RC14 Generated by: Encounter (R) RTL Compiler RC14.7
v14.10-p008_1 v14.10-p008_1
Generated on: Bpr 26 2017 01:56:06 pm Gensrated on: Apr 26 2017 02:05:34 pm
Module = baughml Module: . baughmul
Technology library: gpdk045we Technology library: gpdk045bc
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed - Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Pin Type Fanout Load Slew Delay Arriwal Fin Type Fanout Load Slew Delay Arrival
(£F) (ps) (ps) (p=) (£EF) (ps) (ps) (ps)
bl in port 3 2.1 o +0 or b0 in port 3 1.8 o +0 oORrR
g78/A +0 o g77/R +0 o
g78/Y BEND2XL 1 1.4 23 +31 31 R g77/x AND2X2 1 1.6 47 +132 132 R
£3/p £2/q
g22/n +0 a1 g22/B +0 139
g22/8 ADDEX1 1 2.0 23 +58 8s F g22/co ADDHX1 1 2.3 62 +131 263 R
£3/sum £2/carry
£5/rin 5/
g57/CT +0 as g57/B +0 263
g57/3 ADDFXTL 1 2.0 36 +aa 177 R g57/8 ADDFXL 1 1.8 51 +306 570 F
£5/sum £5/sum
£7/rin £7/xin
g57/CcT +0 177 g57/cI +0 570
g57/8 ADDFXL 1 2.0 35 +88 264 F gs7/8 ADDFXL 1 1.8 85 +297 867 R
£7/ sum £7/sum
£11/p £f11/p
~aT e -0 sea ~S7 i n .

Timing Synthesis Report for 4bit Baugh wooley multiplier using 45nm

B. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RIL Compilsr RCL14.1t Generated by: Encounter (R) RTL Compiler RC14.1¢
v14.10-p008_1
v14.10-p00E_1 _
Generated on: Ipr 26 2017 02:01:37 pm Generated on: Bpr 26 2017 02:08:22 pm
Module: baughmal Module: baughmul
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)
Hireload mode: : cnclosed - Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival Fin Type Fancut Load Slew Delay Arzival
(£F) (ps) (p=) =) (£F) (ps) (ps) (es)
b1 in pozt 2 5.7 o o o R bl in port 3 5.4 0 +0 0 R
g78/n +0 o g78/R +0 o
g78/Y AND2X1 1 4.0 18 +24 a4 m g78/ % AND2X1 1 3.8 62 +133 133 R
° £3/p
£3/
glgjzfA) 34 g22/a +0 133
g22/3 ADDHXL 1 5.1 25 +60 oz & g22/8 ADDHXL 1 4.5 91 +221 354 F
£3/sum) £3/sum
£5/rin £5/rin
g&3/CT +0 Sa g63/cI +0 354
ge3/s ADDFXR1 1 5.1 26 +108 203 R ge3/s ADDEXR1 1 4.9 995 +406 761 R
£5/sum £5/sum
£7/rin £7/rin
g6&3/cI +0 203 gé3/cI +0 761
ge3/a ADDFX1 1 5.1 28 492 see = g63/8 ADDFXE1 1 4.5 100 +374 1134 F
£7/ sum . £7/sum
£11/ £11/p
;f,(.‘.‘. n P ~E2 ST +n 1124

Timing Synthesis Report for 4 bit Baugh wooley multiplier using 90nm

49

C. Using 180nm Technology:

Fast.lib Slow.lib

Generated by: Encounter (R} RIL Compiler RC14.10 - Generated by: Encounter (R) RTL Compiler RC14.10 -
v14.10-p008_1 v14.10-p008 1

Generated on: Bpr 26 2017 02:03:37 pm Generated on: Zpr 26 2017 02:09:55 pm

Module: baughmul Module: baughmul

Technology library: tsmclf 1.0 Technology library: tsmcl8 1.0

Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)

Wireload mode: enclosed Wireload mode: enclosed

Area mode: timing library Area mode: timing library

Pin Type Fanout Load Slew Delay Arrival Pin Type Fanout Load Slew Delay Arrival

(fF) (ps) (p3) (ps) (£F) (p=) (p=) (ps)

bl in port 3 6.3 0 +0 0 R bl in peort 3 6.0 0 +0 0F
g73/B +0 0 g79/B +0 0
g78/Y AND2X1 1 4.8 56 +7% 73 R q79/% AND2X1 1 4.6 87 +188 158 F
£2/p f2/p

g22/a +0 73 g22/a +0 198

g22/s ADDHXL 2 3.2 170 +11s 134 R g22/s ADDHXL 2 3.0 360 +260 459 R
£2/sum £2/3um
f4/rin f4/rin

g33/80 +0 134 g33/80 +0 453

g33/Y ORIZIXL 1 2.7 58 +24 218 ¥ g33/y ORIZ21XL 1 2.6 137 +128 586 F

g32/B0 +0 218 g32/80 +0 586

g32/¥ ORIZBBLXL 1 7.2 100 +71 288 R g3z/y ORIZBB1XL 1 6.9 193 +151 738 R
£4/carry f4/carry
£1/q £7/q

gé3/a +0 288 g63/n +0 738

'363/5 ADDFX2 1 6.5 70 +205 4%¢ ¥ g63/3 ADDFX2 1 6.2 150 +531 1265 F
Ll £7 { anm

Timing Synthesis Report for 4bit Baugh wooley multiplier using 180nm

50

6.3.4 Baugh wooley 8bit Multiplier:-

The multiplier has been designed in Xilinx and NCsim using gate level modelling for
verification we have taken the results and verified with industry standard cadence tools.

]

1
i
L O T T O T

PR

[T]

Fig.6.16. 8bit Baugh Wooley multiplier

T e} -
! !__zzzl_.
3| ?qEED:]_-
= .[=|:,~— = L T
ﬂ]] i i _':l::]l] — 10
| — HH 'i
i D:FM 1
iuliasan I;[j;ix =
i | —
= 3T =3 P H
:J—_.:_h__jﬂz:_l:; iz]__
=53 i { T -
- Lo = :
T = = 1 |
=1 =N =
i J__I:,_ :
=

Fig.6.17. RTL view of 8bit Baugh Wooley multiplier

51

5 Hilinx - 1SE - C:AXilinx921\8bitbaugh'8bitbaugh.ise - [Simulation]
[File Edit View Project Source Process Test Bench Simulation Window Help
ODPEHI L& LBEX D QPP XA B A BB DDA N MR I & E
> [ZLE (AN D R[] F Q0 6= X000 [V [V k| 0> <% 0a| K BB
[2.0]
- Current Simulation
E1- bitbaugh ~ Time: 16 ns o 4 g
=1 | | | |
%10 2 po 0 |
=-f11 1 0
4F12 allp
w13 2 p2 0 l—l—
-f14 a'l p3 0 ,—
#-f15
=16 Bl o4 i |
17 v 20 p5 L .
&g Source gy Snapshe [Librarie M3 Design &M ps v —l——,—l—
&0 p7 0
5 20 pa 1
No flow available. 2 po 4
& pio /baughBmulth/pd)
&M p11 1 I—,—
20 p12 1
2 pi3 1
AN 14 1 [
< > < >
Pi - bauw
7 Frocesses [[EniEEEyEy sotbeughv [Smulsion [} bt@saugh nar

Fig.6.18. Output waveforms of the 8bit Baugh Wooley multiplier
6.3.5 Power Synthesis Result:
For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm
technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for

45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown

below:

D. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R} RTL Compiler RC Generated by: Encounter (R} RTL Compiler
vl4.10-p00B_1 vl4.10-p008_1
Generated on: Epr 26 2017 01:432:55 pm Generated on: Apr 26 2017 01:51:00 pm
Module: bit8baugh Module: bit8baugh
Technology library: gpdk045we Technology library: gpdk045bc
Cperating conditions: fast (balanced_tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wirelcad mode: enclosed
Area mods: timing library Lrea mode: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Powsr(nW) Power (nW) Power (nW)
bit8baugh 121 50.325 40225.252 40275.581 bit8baugh 121 15.562 26269.291 26584.853
£21 1 1.637 528.83%9 530.475 f21 1 0.514 333.686 334.200
£1 1 0.675 284.00% 284 .684 £43 1 0.181 173.135 173.320
£10 1 0.675 444 .629 445.304 hl 1 0.181 €4.505 65.0%0
f11 1 0.675 494,223 494 .898 h2 1 0.181 184.852 185.034
£12 1 0.675 578.015 578.630 h3 1 0.181 217.820 218.001
£132 1 0.675 490.349 4%1.025 h4 1 0.181 169.665 165.850
f14 1 0.675 266.37% 267.055 h5 1 0.181 183.695 183.876
£15 1 0.675 342.151 342.826 hé 1 0.181 1la4.611 184.753
fle 1 0.675 540.866 541.541 h7 1 0.181 156.463 196.645
£17 1 0.675 445.926 446.601 f1 1 0.1e8 183.594 183.761
f£l8 1 0.675 657 .330 €38.005 £10 1 0.1e8 282.445 282.613
fi9 1 0.675 590.625 591.300 £11 1 0.les 313.758 313.52¢
£2 1 0.675 317.220 317.835 f1z 1 0.les 366.551 366.719
£20 1 0.675 532.559 523.234 £13 1 0.1e8 312.78S 312.357
f22 1 0.675 411.368 412.043 £14 1 0.les 169.%07 170.075
£22 1 n &7s EEY LYY 721 220 £15 1 n 1za 291 528 291 Ine

Power synthesis report for 8bit Baugh wooley multiplier using 45nm

52

D. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Ccmpiler RC Generated by: Encounter (R) RTL Compile:
v14.10-p008_1 v14.10-p008 1
Generated on: Ipr 26 2017 01:46:37 pm Generated on: Zpr 26 2017 01:53:5% pm
Module: bit8baugh Module : bitB8baugh
Technology library: fast Technology library: slow
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced_ tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Leakags Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power (nW) Power (nW) Instance Cells Power (nW) Power (nW) Powexr (nW)
bitf@baugh 123 10763.908 949A4.470 105748.377 bit8baugh 1232 &£563.080 €2851.758 €5454.838
£43 1 156.633 447.088 £03.721 £43 1 B6.962 209.543 356.505
nl 1 156.633 164.342 320.975 hl 1 86.962 112.815 133.777
h2 1 156.633 451.740 648.373 h2 1 86.562 333.406 420.368
h3 1 156.633 582.179 738.812 h3 1 BEe.262 3%94.223 481.185
h4 1 156.633 454 2218 610.861 ha 1 86.962 307.584 354.54¢6
ns 1 156.633 490.284 £46.917 hs 1 86.562 332.074 415.036
hé 1 156.633 451.433 648.066 he 1 86.962 333.128 420.050
n7 1 156.632 S16.808 672241 h7 1 8E6.962 350.986 437.948
£1 1 135.754 828.273 964.067 £1 1 84.476 534.040 6l8.516
£10 1 135.794 1094.474 1230.268 f10 1 84.476 720.6595 805.135
£11 1 135.7%4 1218.782 1354.576 £11 t 84.476 B02.702 887.179
£12 1 135.794 1423.983 1555.777 £12 1 g4.476 937.256 1021.732
£13 1 135.794 1197.814 1333.608 £13 1 84.476 788.773 873.250
f14 1 135.794 620.756 756.550 £14 1 B4.476 408.202 492.8678
£15 1 g84.476 636.200 720.676
£15 1 135.794 986.616 1122.410 i " na ame s s T he
F1 e 1 1235 7G4 12231 4a7 1487 288

Power synthesis report for 8bit Baugh wooley multiplier using 90nm

D. Using 180nm Technology:

Fast.lib: Slow.lib:

Generated by: Encounter (R) RTL Compiler RC14.10 - Generated by: Encounter (R) RTL Compiler RC14.10 -
+14.10-p008_1 ¥14.10-p008_1
Generated on: Apr 26 2017 01:45:26 pm Generated on: Zpr 26 2017 01:55:05 pm
Module: bitBbaugh Module: bit8baugh
Technology library: tamclf 1.0 Technology library: tsmcl8 1.0
Operating conditions: fast (balanced tree) Operating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Lrea mods: timing library Area mods: timing library
Leakage Dynamic Total Leakage Dynamic Total
Instance Cells Power (nW) Power(nW) Power (nW) Instance Cells Power (W) Power(nW) Power (o)
bitBbaugh 122 165.183 703010.112 703175.23¢ bitBbaugh 122 238.149 420294.228 420532.377
£1 1 2.58% 7176.772 7175.371 f1 1 3.917 4056.067 4059.985
£10 1 2.59% B606.855 B603.434 £10 1 3.917 5087.082 5091.000
£11 1 2.598 9322.012 5324.611 f11 1 3.917 5500.106 5504.023
fl2 1 2.59% 11232.%86 11235.585 £12 1 3.917 6631.949 6635.066
f13 1 2.599 10521.860 10524.45% £13 1 3.917 6268.466 6272.383
£14 1 2.5%5 6330.674 6333.273 £14 1 3.917 3739.885 3743.802
£15 L 2.553 8325.508 8528.507 £15 1 3.917 5204.323 5208.240
fle 1 2.599 11042.477 11045.07¢ £16 1 3.917 6524.055 £527.973
£17 1 2.583 7422.843 7425.442 £17 1 3.917 4385.080 4388.937
£18 1 2.555 11975.975 11878.574 18 1 3.917 7075.424 7079.341
£19 1 2.559 11423.937 11426.536 £19 1 3.917 €820.821 GB24.738
£2 L 2.533 7246.033 7248.632 £2 1 3.917 4190.479 4194.336
£20 1 2.535 10057.896 10060.495 £20 1 3.817 046183 6050.101
£22 1 2535 9383.030 9365.685 £23 1 3.517 5421.546 5425.464
£23 1 2.539 13110.830 13113.429 23 1 3817 7758.355 7762.27€
£04 1 2 5GG 14101 240 141032 626 cna : 7 @17 manc nes mana a1

Power synthesis report for 8bit Baugh wooley multiplier using 180nm

53

6.3.6 Delay and Timing Synthesis Results:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib
at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology
and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for

fast.lib and slow.lib are shown below:

D. Using 45nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14.1 Generated by: Encounter (R) RTL Compiler RCl4.
v14.10-p008_1 v14.10-p008_1
Generated on: Zpr 26 2017 01:43:55 pm Generated on: 2Apr 26 2017 01:51:00 pm
Module: bit@baugh Module:) bitf@baugh
Technology librarw: gpdk045we Technology library: gpdk045Sbe
Operating conditions: fast (balanced tree) Cpesrating conditions: slow (balanced tree)
Wireload mode: enclosed - Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival Fin Type Fanout Load Slew Delay aArrival
(£EF) (ps=) (ps) (os=) (£F) (p=) {ps=) (ps)
bl in port 7 4.9 o o 0 R bObar in port 1 0.6 o +0 o R
g338/n +0 0 g37/2 +0 o
g338/Y LND2XL 1 1.4 23 +31 21 ® g37/¥ AND2X2 1 1.6 47 +132 132 ®
h7/p h7/g
gl7/n +0 31 g17/B +0 132
gl7/s ADDHX1 1 2.0 23 +58 a9 = gli/s ADDHX1 1 1.8 56 +165 297 F
h7/sum h7/sum
£6/gq £6/q
g57/CIT +0 a9 g57/cT +0 257
g57/8 ADDFXL 1 z.0 26 +88 177 = g57/8 ADDFXL 1 1.8 85 +286 583 R
£6/sum £6/ sum
£12/g £12/g
g57/cT +0 177 gs7/cT +0 582
g57/s ADDFXL 1 2.0 as +88 264 F gS57/8 ADDFXL 1 1.8 92 +292 876 F
£12/sum £12/sum
£18/q £18/q
~ET AT an sEa ~ST 40T +n a7e

Timing Synthesis Report for 8bit Baugh wooley multiplier using 45nm

D. Using 90nm Technology

Fast.lib Slow.lib

Generated by: Encounter (R) RTL Compiler RC14.10 -

v14.10-p008 1 Generated by: Encounter (R) RTL Compiler RC14.10 —
Generated on: Apr 26 2017 01:46:37 pm v14.10-p00B 1
Modoles bitBbaugh Generated on: Zpr 26 2017 01:53:58 pm
Technology library: fast M“d;le;_ Lib : hitabaugh
Operating conditions: fast (balanced tree) Technalogy library: =Low
e T o emed — Operating conditions: slow (balanced_tree)
Area mode: timing library mireload mode: enclosed
Area mods: timing library
Pin Type Fancut Load Slew Delay Arrival . .
(£7) (o) (pe) (=) Pin Type Fanout Load Slew Delay Arrival
=1 P P (£F) (ps) (p3) ps)
i . +
2;38/1-\ in pore 7133 o +g g = b1 in port 7 12.8 o +0 o R
g338/2 +0 0
. +
if’ji/y D2l 1ot 18 34 3R 9338/ 2ND2R1 1 3.8 62 +133 133 &
gri/a o 3 hwﬁ?/g +0 133
g
. +
m?;l/ns ADDHEL 151 28 &0 s4 F g17/8 ADDHEXT. 1 4.5 81 4221 352 ®
£6/q h7/sum
g63/cT +0 94 fwgs/ o 254
gea/s ADPDER1L 1 5.1 26 +10% 203 » ges/ct
P Sy ges/s 2ADDFX1 1 4.5 95 +406 761 R
£1279 £6/sum
£12/g
g63/cT +0 203
g&3/CcT +0 FEe1
63/8 2ADDFR1 1 5.1 28 +33 256 F
Elg/sim ge3/s 2DDFXL 1 4.5 100 +374 1134 F
£1879 £12/aum
&R ST an cas £f18/q
~E2LSOT +N 1124

Timing Synthesis Report for 8bit Baugh wooley multiplier using 90nm

54

D. Using 180nm Technology:

Fast.lib Slow.lib
Generated by: Encounter (R) RTL Compiler RC14.10 - Generated by: Encounter (R) RTL Compiler RC14.10 -
v14.10-p008_1 v14.10-p008_1
Generated on: Apr 26 2017 01:45%:26 pm Generated on: Zpr 26 2017 01:55:05 pm
Module: bit8baugh Module: bit8baugh
Technology library: tsmcl8 1.0 Technology library: tsmcl8 1.0
Operating conditions: fast (balanced tree) Cperating conditions: slow (balanced tree)
Wireload mode: enclosed Wireload mode: enclosed
Area mode: timing library Area mode: timing library
Pin Type Fanout Load 8lew Delay Arriwval Pin Type Fanout Load Slew Delay Arriwval
(fF) (ps) (p=) (p2) (fF) (p=) (ps) (p=)
bl in port 7 14.7 0 +0 0R bl in port 7 14.0 0 +0 0R
g307/B +0 0 g307/B +0 0
g307/¥ AND2¥1 1 6.1 63 +83 83 R g307/Y ANDZX1 1 5.9% 129 +185 183 R
hl/q hl/q
g17/B +0 e3 q17/B +0 185
gl7/co ADDEXL 1 7.2 86 +%0 113 R gl7/cO ADDHXL 1 6.9 168 +206 351 R
hl/carry hl/carry
f1/rin £1/rin
g63/a +0 173 g63/n +0 391
g63/co ADDFX2 1 7.2 &3 +225 402 R g63/CC ADDFX2 1 6.9 126 +522 913 R
f1/carry £1/carry
f8/rin £8/rin
g63/2 +0 402 g63/a +0 913
g63/cO ADDFX2 1 7.2 &3 227 €23 R g63/CO RDDFX2 1 6.3 126 +515 1428 R
f8/carry £8/carry
f15/rin £15/rin
B2/ +n £99 eain n 1 a5n

Timing Synthesis Report for 8bit Baugh wooley multiplier using 180nm

55

6.4. Performance Evaluation for 4x4 multipliers:-

Here we are comparing the synthesis of the taken multiplier, 4bit Vedic, Wallace tree
multiplier and baugh wooley multipliers in terms of area and power and time delay.

Comparative analysis of fast multipliers for 4bit
Total
r:ajlttipliers o %% | Type | cells | Power E?atlil(ps)
(nW)

45nm Fast 31 |6221.449 512

Slow 31 4314.216 1720

Vedic 90nm Fast 31 16132.59 553

multiplier Slow 31 10800.55 2164

180nm Fast 31 87615.51 1094

Slow 31 |53358.82 2658

45nm Fast 31 | 6076.655 466

Slow 31 4215.107 1579

Wf‘r'égce 90nm Fast | 31 | 16127.1 509

. Slow 31 10591.51 1902
multiplier

180nm Fast 31 86606.6 1096

Slow 31 |52815.12 2702

45nm Fast 31 7587.767 590

Slow 31 512.534 1947

V?/é‘;?:y 90nm Fast | 33 | 187415 638

multiplier Slow 33 12355.87 2396

180nm Fast 32 112274 1116

Slow 32 | 67467.99 2818

multiplier

56

Table6.1. Comparison between the parameters of 4-bit Vedic, Wallace, Baugh wooley

6.5. Performance Evaluation for 8x8 multipliers:-

Here we are comparing the synthesis of the taken multiplier, 8bit Vedic, Wallace tree
multiplier and baugh wooley multipliers in terms of area and power and time delay.

Comparative analysis of Fast multipliers 8 bit
Total
r:ajlttipliers o %% | Type | cells | Power E?atlil(ps)
(nW)

45nm Fast 143 | 43023.68 1036

Slow 142 | 28914.86 3457

Vedic 90nm Fast 145 | 109978.4 1122

multiplier Slow 145 | 71957.79 4194

180nm Fast 143 | 666989.5 2419

Slow 143 | 398013.8 5813

45nm Fast 115 | 35183.65 1471

Slow 115 | 23601.53 4876

Wf‘r'égce 90nm Fast | 115 |9261817| 1574

. Slow 115 |60868.62 5843
multiplier

180nm Fast 115 | 616756.3 3068

Slow 115 | 370575.8 7690

45nm Fast 121 | 40275.58 1214

Slow 121 | 26984.85 3944

V%ﬁ‘;?: 90nm Fast 123 | 102748.4 1297

oley Slow | 123 |69454.84 4854
multiplier

180nm Fast 122 | 703175.3 2675

Slow 122 | 420532.4 6494

Table6.2. Comparison between the parameters of 8-bit Vedic, Wallace, Baugh wooley
multiplier

57

CHAPTER 7
CONCLUSION AND FUTURE SCOPE

Vedic, Wallace tree, Baugh wooley multipliers has been implemented using Verilog
in cadence. For simulation, cadence NCsim and for synthesis Encounter RTL compiler has
been used. As a result, it has been concluded that 4-bit and 8-bit multipliers gives result in all
three Technologies 180nm, 90nm, and 45nm. As per analysis of three multipliers conclusion
can be drawn and suggestion can be made with reference to area, power and speed. By
adopting these types of like Vedic, Wallace, Baugh-wooley multiplier accurate performance
can be achieved when compared to the existing techniques. In terms power dissipation
Wallace tree multiplier is better, in terms of time delay and area Vedic multiplier is better.
And combination of these all (power, time delay, and area) Baughwooley is better comparing
with Vedic and Wallace tree multiplier. Multipliers have proven effective in DSP, other

applications, to increase speed of the DSP, Microprocessor chips and digital communication.

In future, we will further compare with these Vedic, Wallace tree, Baugh wooley
multipliers with other multipliers for different parameters such as area, power and delay as
well as total number of cells used to give the reduced number of output bit steam as
compared to these three multiplies. So these three multipliers which will be more efficient in
terms of area, power And delay should give a reduced bit stream outputs as compared to

these three multiplies will be the efficient multipliers Techniques.

Depending upon the parametric analysis these fast multipliers have utilized in MAC

unit in DSP application

58

REFERENCES

[1] R.Raju, S.Veerakumar, “Design and Implementation of Low Power and High
Performance Vedic Multiplier” International Conference on Communication and Signal
Processing,978-1-5090-0396-9/16/$31.00 © April 6-8, 2016 IEEE.

[2] Rakesh Kumar, Pradeep Kumar, “An Efficient Baugh-Wooley Multiplication Algorithm
for 32-bit Synchronous Multiplication” International Journal of Advanced Engineering
Research and Science (IJJAERS) [Vol-1, Issue-2, July 2014] ISSN: 2349-6495

[3] Kokila Bharti Jaiswal, Nithish Kumar V, Pavithra Seshadri, “Low Power Wallace Tree
Multiplier Using Modified Full Adder” 3rd International Conference on Signal Processing,
Communication and Networking (ICSCN),978-1-4673-6823-0/15/$31¢.2015 IEEE.

[4] Indrayani Patle, Akansha Bhargav, Prashant Wanjari, “Implementation of Baugh-Wooley
Multiplier Based on Soft-Core Processor” IOSR Journal of Engineering (IOSRJEN) e-I1SSN:
2250-3021, p-ISSN: 2278-8719 Vol. 3, Issue 10 (October. 2013), ||V3|| PP 01-07

[5] Ms. G. R. Gokhale, Mr. S. R. Gokhale, “Design of Area and Delay Efficient Vedic
Multiplier Using Carry Select Adder” International Conference on Information Processing
(ICIP) Vishwakarma Institute of Technology. 978-1-4673-7758-4/15/$31.00 © Dec 16-19,
2015 IEEE

[6] Soniya, Suresh Kumar, “A Review of Different Type of Multipliers and Multiplier-
Accumulator Unit”, International Journal of Emerging Trends & Technology in Computer
Science (IJETTCS), Volume 2, Issue 4, July — August 2013.

[7] Abhishek Mukherjee, Abhijit Asati, “Generic Modified Baugh Wooley Multiplier”
International Conference on Circuits, Power and Computing Technologies [ICCPCT-2013]
978-1-4673-4922-2/13/$31.00 ©2013 IEEE

[8] Sumit Vaidya, Deepak Dandekar, “Delay-Power Performance Comparison of Multipliers
in Vlsi Circuit Design” International Journal of Computer Networks & Communications
(1JCNC), Vol.2, No.4, July 2010

[9] Pramodini Mohanty, “An Efficient Baugh-Wooley Architecture for Signed & Unsigned
Fast Multiplication” NIET Journal of Engineering & Technology, Vol. 1, Issue 2, 2013

[10] Gaurav Sharma, Arjun Singh Chauhan, Himanshu Joshi, Satish Kumar Alaria,”Delay
Comparison of 4 by 4 Vedic Multiplier based on Different Adder Architectures using
VHDL” International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-
0181 Vol. 3 Issue 3, March - 2014

[11] Taye Girma, (2013) “Designing and Synthesizing a Wallace Tree Multiplier for High
Speed Performance” International Journal of Artificial Intelligence and Mechatronics
Volume 2, Issue 3, ISSN 2320 — 5121

[12] Amrita Nanda, Shreetam Behera, (2014) “Design and Implementation of
UrdhvaTiryakbhyam Based Fast 8x8 Vedic Binary Multiplier” International Journal of
Engineering Research & Technology (IJERT), ISSN: 2278-0181 Vol. 3 Issue 3, March — 2014

[13] M Pradhan, R Panda, S K Sahu, " MAC Implementation using Vedic Multiplication
Algorithm," International Journal of Computer Applications (0975 — 8887), Vol- 21, No.7,
May 2011

[14] Premananda B.S, Samarth S. Pai, Shashank B, Shashank S.Bhat, “ Design And
Implementation of 8-bit Vedic Multiplier”, IJAREEIE,Vol.2,Issue 12,ISSN:2320-3765,Dec-
2013.

[15] Taye Girma, “Designing and Synthesizing a Wallace Tree Multiplier for High Speed
Performance”, International Journal of Artificial Intelligence and Mechatronics Volume 2,
Issue 3, ISSN 2320 — 5121,2013.

[16] Pramod S. Aswale, Mukesh P. Mahajan, Manjul V. Nikumbh, Omkar S. Vaidya,
(2015), “Implementation of Baugh-Wooely Multiplier and Modified Baugh Wooely
Multiplier Using Cadence (Encounter) RTL” International Journal of Science, Engineering
and Technology Research (IJSETR), Volume 4, Issue 2, February 2015 ,293 ISSN: 2278 —
7798

