Performance improvement of data transmission through DVB-T2 based Wireless system

DISSERTATION-II

Submitted in partial fulfillment of the Requirement for the award of the Degree of

MASTER OF TECHNOLOGY

IN

Electronics & Communication Engineering

by

Manpreet Kaur

Under the Guidance of

Mr. Amanjot Singh

(Assistant Professor)

PHAGWARA (DISTT. KAPURTHALA), PUNJAB

School of Electronics and Electrical Engineering
Lovely Professional University Punjab
May, 2017

TOPIC APPROVAL PERFORMA

School of Electronics and Electrical Engineering

Program: P175::M.Tech. (Electronics and Communication Engineering) [Full Time]

COURSE CODE: ECE521 REGULAR/BACKLOG: Regular GROUP NUMBER: EEERGD0019

Supervisor Name: Amanjot Singh **UID**: 15848 **Designation**: Assistant Professor

Qualification: Research Experience:

SR.NO.	NAME OF STUDENT	REGISTRATION NO	ВАТСН	SECTION	CONTACT NUMBER
1	Manpreet Kaur	11508056	2015	E1514	9464245202

SPECIALIZATION AREA: Communications systems Supervisor Signature:

PROPOSED TOPIC: Performance Improvement of the data transmission through DVB based wireless system.

	Qualitative Assessment of Proposed Topic by PAC							
Sr.No.	r.No. Parameter I							
1	Project Novelty: Potential of the project to create new knowledge	7.00						
2	Project Feasibility: Project can be timely carried out in-house with low-cost and available resources in the University by the students.	7.00						
3	Project Academic Inputs: Project topic is relevant and makes extensive use of academic inputs in UG program and serves as a culminating effort for core study area of the degree program.	7.00						
4	Project Supervision: Project supervisor's is technically competent to guide students, resolve any issues, and impart necessary skills.	7.50						
5	Social Applicability: Project work intends to solve a practical problem.	7.00						
6	Future Scope: Project has potential to become basis of future research work, publication or patent.	7.50						

PAC Committee Members							
PAC Member 1 Name: Rajeev Kumar Patial	UID: 12301	Recommended (Y/N): Yes					
PAC Member 2 Name: Lavish Kansal	UID: 15911	Recommended (Y/N): Yes					
PAC Member 3 Name: Dr. Gursharanjeet Singh	UID: 13586	Recommended (Y/N): NA					
DAA Nominee Name: Amanjot Singh	UID: 15848	Recommended (Y/N): NA					

Final Topic Approved by PAC: Performance Improvement of the data transmission through DVB based wireless system.

Overall Remarks: Approved

PAC CHAIRPERSON Name: 11106::Dr. Gaurav Sethi Approval Date: 05 Oct 2016

CERTIFICATE

This is to certify that the Dissertation-II titled "Performance improvement of data transmission

through DVB-T2 based Wireless System" that is being submitted by "Manpreet Kaur" is in

partial fulfillment of the requirements for the award of MASTER OF TECHNOLOGY

DEGREE, is a record of bonafide work done under my guidance. The contents of this

Dissertation-II, in full or in parts, have neither been taken from any other source nor have been

submitted to any other Institute or University for award of any degree or diploma and the same is

certified.

Mr.Amanjot Singh

(Assistant Professor)

Dissertation-II

LPU

Objective of the Dissertation-II is satisfactory / unsatisfactory

Examiner I

Examiner II

i

ACKNOWLEDGEMENT

With great pleasure and deep sense of gratitude, I express my indebtedness to my supervisor Mr.

Amanjot Singh for his invaluable guidance and constant encouragement at each and every step of

my thesis work. He exposed me to the intricacies of relevant topic through proper counseling and

discussions and always showed great interest in providing timely support and suitable

suggestions. I am greatly indebted to my head of departments for inspiring and motivating me to

develop new ideas and implementing them. I am grateful to him for his invaluable guidance and

encouragement throughout this work. He has been the true torch bearer. I would like to take this

opportunity to express my sincere and profound gratitude to him for the pains he has taken to

accomplish this project.

I express my gratitude towards all the people associated with Internet, IEEE and the plethora of

technical websites, forums, & groups which have helped me with the study materials for my

work. I would also like to express my heartfelt gratitude to my parents, brother, sister and friends

who have always supported and encouraged me to pursue my dreams.

Place: LPU, Jalandhar

Manpreet Kaur

Date: May, 2017

Reg.No:11508056

ii

APPROVAL

This is to certify that I Manpreet Kaur bearing Registration no. 11508056 has completed

objective formulation of Dissertation II title titled, "Performance Improvement of Data through

DVB-T2 based Wireless System" under my guidance and supervision. To the best of my

knowledge, the present work is the result of her original investigation and study. No part of the

thesis has ever been submitted for any other degree at any University.

The thesis is fit for submission and the partial fulfillment of the conditions for the award of

MASTER OF TECHNOLOGY DEGREE.

Signature and Name of the Research Supervisor

Designation-II

School

Lovely Professional University

Phagwara, Punjab.

Date:

iii

DECLARATION

I, Manpreet Kaur, student of M-Tech Electronics and communication under Department of Electronics and communication of Lovely Professional University, Punjab, hereby declare that all the information furnished in this Dissertation-II report is based on my own intensive research and is genuine.

This thesis does not, to the best of my knowledge, contain part of my work which has been submitted for the award of my degree either of this university or any other university without proper citation.

Date: Manpreet Kaur

RegistrationNo.-11508056

ABSTRACT

DVB-T2 is the world's most developed DTT framework offering higher effectiveness, robustness and adaptability. DVB-T2 is a system that transmits compressed digital audio, video and other data in PLP using OFDM with concatenated coding channel and Interleaver. The problem studying in our research work is due to the noise, interferences and loss rates are high. The system has been designed to solve a problem for repetitive change in the used location at high speeds the users can not always be fixed as per the problem. We have analysis the performance of random data through a terrestrial channel with OFDM techniques based DVB-T2. We have been used two different modulation techniques to calculate the BER performance with the help of BCH encoding as well as LDPC encoding which are the part of DVB-T2 standard. The Simulation shows that error calculation is less in 16 QAM over Nakagami (with Filter) channel as compared to other modulation with OFDM. From all the channels, Nakagami channel achieves better performance with 16 QAM modulations. In the case of 16 QAM, complexity of the system is less.

.

TABLE OF CONTENTS

Certificate	1
Acknowledgement	II
Approval	III
Declaration	IV
Abstract	V
List of contents	VI
List of figure	X
List of table	XI
CHAPTER 1: INTRODUCTION	1
1.1 INTRODUCTION	2
1.2 WIRELESS MOBILE COMMUNICATION	2
1.3 OFDM	3
1.3.1 Advantages	4
1.3.2 Disadvantages	4
1.4 DVB	4
1.4.1 Extensions of DVB	5
CHAPTER 2: TERMINOLOGY	6
CHAPTER 3: LITERATURE REVIEW	8
CHAPTER 4: RATIONALE AND SCOPE OF STUDY	19
4.1 PURPOSE OF DVB- T2 SYSTEM	19
4.2 SCOPE OF DVB- T2 SYSTEM	20
CHAPTER 5: OBJECTIVE OF THE STUDY	21
5 1 PROBLEM FORMULATION	21

5.2 PROPOSED WORK	21
5.3 OBJECTIVES OF THE STUDY	21
CHAPTER 6: RESEARCH METHOLOGY	23
CHAPTER 7: DVB-T2 STSTEM	25
7.1 DVB-T2	25
7.1.1 Terrestrial Broadcasting	25
7.1.2 HDTV Signals	25
7.1.3 Specification of DVB-T2	26
7.14 Single Frequency Network	26
7.1.5 Physical Layer Pipe (PLP)	26
7.1.6 Block Diagram of DVB-T2 System	27
7.1.7 Standard of DVB-T2	29
7.1.8 Advantages of DVB-T2	30
7.1.9 Disadvantages of DVB-T2	30
7.2 WORKING MODEL OF DVB-T2 SYSTEM	30
7.2.1 Proposed DVB-T2 System without filter	30
7.2.2 Proposed DVB-T2 System with filter	31
CHAPTER 8: RESULTS AND DISCUSSION	33
8.1 SIMULATION RESULTS WITH AND WITHOUT FILTER	35
8.1.1 Various Graph Plotted between BER and CNR without Filter	35
8.1.2 Various Graph Plotted between BER and CNR with Filter	37
8.1.3 Various Graph Plotted between BER and CNR with and without Filter	39
CHAPTER 9: PERFORMANCE EVALUATION	44
9.1 COMPARISON OF CNR VALUES OF NAKAGAMI CHANNEL	44
9.2 COMPARISON OF CNR VALUES OF WEIBULL CHANNEL	44
9.3 COMPARISON OF CNR VALUES OF RICIAN CHANNEL	45

REFERENCES	48
10.2 FUTURE SCOPE	47
10.1 CONCLUSION	47
CHAPTER 10: CONCLUSION AND FUTURE SCOPE	47
9.4 COMPARISON OF CNR VALUES OF RAYLEIGH CHANNEL	45

LIST OF FIGURES

Figure: 6.1	Research methodology Algorithm	24
Figure: 7.1	high level M-PLP T2 Block Diagram	27
Figure: 7.2	DVB-T2 Modulator	28
Figure: 7.3	Working model of DVB-T2 System without Filter	31
Figure: 7.4	Working model of DVB-T2 System with Filter	31
Figure: 8.1	BER Performance of 16 QAM Model	33
Figure: 8.2	BER Performance of 256 QAM Model	34
Figure: 8.3	Comparison BER Performance using 16 QAM & 256 QAM	34
Figure: 8.4	BER Performance with all channels in 16 QAM without Filter	35
Figure: 8.5	BER Performance with all channels in 32 QAM without Filter	36
Figure: 8.6	BER Performance with all channels in 64 QAM without Filter	36
Figure: 8.7	BER Performance with all channels in 256 QAM without Filter	37
Figure: 8.8	BER Performance with all channels in 16 QAM with Filter	37
Figure: 8.9	BER Performance with all channels in 32 QAM with Filter	38
Figure: 8.10	BER Performance with all channels in 64 QAM with Filter	38
Figure: 8.11	BER Performance with all channels in 256 QAM with Filter	39
Figure: 8.12	BER Performance with all channels in 16 QAM	39
	(With and Without Filter)	
Figure: 8.13	BER Performance with all channels in 32 QAM	40
	(With and Without Filter)	
Figure: 8.14	BER Performance with all channels in 64QAM	40
	(With and Without Filter)	
Figure: 8.15	BER Performance with all channels in 256 QAM	41
	(With and Without Filter)	

Figure: 8.16	BER Performance with all modulations in Nakagami Channel	41
Figure: 8.17	BER Performance with all modulations in Weibull channel	42
Figure: 8.18	BER Performance with all modulations in Rician channel	42
Figure: 8.19	BER Performance with all modulations in Rayleigh channel	43

LIST OF TABLES

Table 7.1	Difference b/w DVB-T & DVB-T2 Parameters	32
Table 9.1	Comparison of CNR values of Nakagami Channel	44
Table 9.2	Comparison of CNR values of Weibull Channel	44
Table 9.3	Comparison of CNR values of Rician Channel	45
Table 9.4	Comparison of CNR values of Rayleigh Channel	45

INTRODUCTION

1.1 INTRODUCTION

Wireless Communication is specific communication system that conveys multimedia and alternative data services to the customer having smart gadget able to provide wireless link [1]. Nowadays wireless system which is based on communication system standards are able to broadcasting and bring services related to audio, images, videos and other services essentially globally. User equipped along several kinds of wireless communication devices raising the need of tag with the network and need to pick up multimedia data, sending the file and message. Making progress in television broadcasting services day by day has approached the broadcasting technology among digitally. It has large numbers of standards that terminate by various world associations in its accomplished. Today, OFDM has become more an attractive system that is used for the transmission purpose. Previously, the survey has been done on the various problems of OFDM and got interest to do work on one of application of DVD-T2. DVB (Digital Video Broadcasting) was introduced in 1993 by ETSI (European Telecommunication standard institute) and is the standard option for broadcasting in lots of nations in Europe. The standards of DVB are: DVB-S, DVB-T & DVB-H. My work is based upon the DVB-T. DVB-T is an application of the OFDM. DVB-T is a designation specified to transmission system. DVB-T2 means digital video broadcasting -second generation terrestrial. It is the world's most developed DTT framework offering higher effectiveness, robustness and adaptability. This system is used to transmit compacted digital sound, video resources and information which is in "physical layer pipe", utilizing OFDM modulation with connected different encoding techniques and interleaving. It is a system that offered higher bit rate, with respect to its antecedent DVB-T. It also makes a system which is suitable for conveying HDTV signal on the earthbound TV channel. It enormously builds the channel transmission ability to meet HD and 3D bandwidth requests and offers adaptability through a scope of business model utilizing various Physical Layer Pipe (M-PLP) technologies, which gives services particular strength.

As the part of DVB-T2 system, different modulation scheme has been used to calculate the BER performance with hybrid encoding techniques which is a part of the DVB-T2 system. LDPC and BCH encoding techniques has been used to calculate the performance of the system with OFDM

using different modulation scheme and DVB-T2 are used four modulation schemes that is QPSK, 16QAM, 64QAM, 256QAM over the different channels.

1.2 WIRELESS MOBILE COMMUNICATION

Wireless communication is a communication that delivers voice and data to mobile user. The quantity of remote cell phones is expanding all around. Clients equipped with convenient PCs, PDAs (individual advanced aides), and an variety of little remote specialized gadgets progressively need to associate with corporate systems, perform database queries, transfer messages, exchange documents, and even take part in shared processing [3]. In the meantime, the remote system is accomplishing higher information rates to support Internet and other information related applications. The most up to date mobile communication are focusing on data rates as high as 2 Mbits/sec. Orthogonal frequency Division Multiplexing (OFDM) is executed in the remote wireless communication where the high bit rate over the frequency selective channel is ensured to some extent. OFDM is a multi-carrier modulation method where information symbol modulate a sub-bearer which is taken from orthogonally isolated subcarriers with a division of fk inside every sub-bearer. The spectra of sub-transporter are covered if there should be an occurrence of OFDM and the sub-carriers are likewise orthogonal to each other so by which the bandwidth use is more proficient with comparing other modulation methods. In wireless communication, Digital Video Broadcasting is a tremendous area. In 1991 establishment of the ELG (European Launching Group) goal is improvement of computerized TV in Europe and 1993 renaming into DVB goal is presentation of digital TV based on transmission of satellite, Cable network based and terrestrial network based. Cellular systems offer various features:

- More limit than a single large transmitter, since a similar frequency can be utilized for various connections as long as they are in various cells.
- Cell phones utilize less power than with a single transmitter or satellite since the cellular towers are nearer.
- Bigger coverage area than a single earthbound transmitter, since extra cell towers can be included inconclusively and are not constrained by the horizon.

1.3 OFDM

OFDM stands for Orthogonal Frequency Division Multiplexing [2]. It is one type of modulation technique which is mostly used to permits digitally information proficiently. It dependably transmitted on a radio channel and performs well also inside the multi-path situations with reduced receiver complexity. Utilizing ODFM, it is possibility to misuse the time domain, the space domain, the recurrence space and even the code space to enhance radio channel utilization. OFDM transmits information by utilizing an extensive number of narrow band subcarriers. These subcarriers are routinely divided into frequency and blocks of spectrum are formed. The recurrence dividing and time synchronization of the subcarriers is picked in a manner that the subcarriers are orthogonal, implying that they don't make interference each other. This is regardless of the subcarriers overlapping each other in the frequency domain. The name "OFDM" is gotten from the way that the digital information is sent utilizing numerous subcarriers, each of an alternate frequency (Frequency Division Multiplexing), which are orthogonal to each other, thus Orthogonal Frequency Division Multiplexing. OFDM can be utilizing Fast Fourier Transforms (FFT) and DFT is a main part of the DSP. In advanced interchanges, data is in the form of bits. The term symbol refers to a gathering, in different sizes, of bits. OFDM information are created by taking images in the spectral space utilizing M-PSK, QAM, and so on, and change over the spectra to time area by taking the Inverse Discrete Fourier Transform (IDFT). Since Inverse Fast Fourier Transform (IFFT) has more cost effectively to execute, it is generally utilized. OFDM is used to reduce the complexity of the receiver and reduces bit error rate and PAPR and also improve the performance of the system. The features of a reasonable OFDM system are as per the following:

- Processing parts are completed on the basis of input information. Example, coded data for correction of error, bits interleaving is also done into symbol. A case of mapped data used is QAM.
- Orthogonal sub-carrier is generated when symbols are modulated. These whole processes are finished by using IFFT.
- When transmission of the channel is going on, that time Orthogonality of OFDM is keeping up. The experts can added a cyclic prefix which gives to the OFDM frame for sending purpose. The CP includes N frame that is duplicated and insert inside the beginning of the frame. This frame should be greater than impulse response.

- Synchronization: CP may be used to recognize start of each frame. It is done by using the process which is N first and last bits of data are similar and in this manner corresponded.
- The FFT is used for demodulation of received signal.
- Channel equalization: channel 3 could be fixed by using a preparation arrangement as pilot symbols that is predefined sub-bearers.
- Demodulation and de-interleaving are done at the end.

1.3.1 Advantages

- The main advantage of OFDM is robustness over multi path propagation.
- It eliminates ISI through utilizing of a cyclic prefix.
- OFDM is a more efficient technique.
- It provides better protection against fading and noise.
- Channel equalization gets to be distinctly less difficult than by utilizing adaptive equalization technique methods with single carrier system.

1.3.2 Disadvantage

- More sensitive to carrier frequency offset and drift than single carrier system.
- Synchronism accuracy is more.

1.4 DVB

DVB is a set of standards that define digital broadcasting using existing satellite, cable and terrestrial infrastructure [2]. The main objective of DVB was to join and physical TV advances and development and synchronization of these. The DVB was introduced in 1993 by the ETSI (European Telecommunication standard institute). Numerous DVB broadcast services are available in countries like Europe, North and South America and Asia. The advance television system committee is a standard committee which is digital broadcasting standard and used in US. It is a standard that are mainly maintain by DVB project that contains more than 270 employees and are published by joint technical committee of ETSI. The DVB structure is in position of view of coding of the photo and sound by MPEG-2. The MPEG (TS) includes in a group with modified length which allows to country and large no. of standard organizations sound and data in the same

plot. The length of a pack has 188 bytes which generally including with 1 byte of synchronization

and 3 bytes of standards and data is of 184 bytes.

1.4.1 Extensions of DVB

DVB proposes merits in terms of greater efficiency in terms of spectrum consumption and power usage. The digital TV requires fewer frequencies than analog TV DVB system dispenses data

using a diversity of approaches.

Terrestrial Television: DVB-T, DVB-T2.

Cable: DVB-C, DVB-C2.

5

TERMINOLOGY

DVB Digital Video Broadcasting

DVB-T Digital Video Broadcasting-Terrestrial

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak to the average power ratio

FFT Fast Fourier Transformation

IFFT Inverse Fast Fourier Transformation

QAM Quadrature Amplitude Modulation

AWGN Adaptive White Gaussian Noise

BCH Bose Choudhari Hocquenghem

LDPC Low density Parity Check

DTT Digital Terrestrial Television

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

BER Bit Error Rate

SFN Single Frequency Network

LTE Long Term Evolution

SNR Signal to Noise Ratio

FEF Future Extension Frame

SC-FDMA Single Carrier–Frequency Division Multiple Access

FEC Forward Error Control

BBFRAMEs Base Band Frames

MI Modulator Interface

DWT Discrete Wavelet Transform

IDWT Inverse Discrete Wavelet Transform

PLP Physical Layer Pipe

REVIEW OF LITERATURE

After studied different research papers, the summary of literature review is following as:

	Author	Year	Title	Approach	Result	Future work
Sr.						
No.						
1	Khaizuran	2007	Performance of	In this paper,	At the end of	In future more
	Abdullah		Fourier-Based	authors have	this paper,	advance
	and Zahir		and Wavelet-	analyzed have	the author	wavelet would
	M. Hussain		Based	compared	concluded	be taken into
			OFDM for	different types	that AWGN	system and it
			DVB-T	based OFDM	channel has	would also
			Systems	using different	given better	improve the
				channel that is	result than	efficiency of
				AWGN and	Rayleigh	the system.
				Rayleigh	channel by	
				channel.	using Haar	
				AWGN	wavelet. The	
				channel has	SNR of	
				given better	AWGN	
				result by using	channel is	
				Haar wavelet	above 5db.	
				instead of FFT-		
				OFDM [5].		
2	Uwe	2007	Terrestrial DVB	In this paper,	DVB-T is	In future
	Ladebus ch,		(DVB-T): A	authors	taken into	DVB-T
	Claudia A.		Broadcast	introduced	consideration	standards

	Liss		Technology for	those cases of	in many	would become
			Stationary	stationary and	countries.	more advance
			Portable an	l mobile user.	The results	and upgraded
			Mobile Use	The concept	that by using	channel
				channel	the concept	estimated
				estimation	of channel	techniques
				removes the	estimation	and advance
				problem of	we can attain	LC-IDDICI
				reception of	the strength.	would be
				signal at		launched to
				receiving end.		provide finest
				It estimates the		service on
				nature,		every place.
				characteristics		
				of the channel.		
				In DVB-T		
				receiver it		
				becomes		
				difficult to		
				attain proper		
				signal strength		
				especially in		
				the case of		
				mobile user		
				[4].		
3	B.Sathish 20	2009	An efficier	In this paper,	The author	Adaptive
	kumar		Inter Carrie	the author has	showed that	Digital FIR
	,K.R.Shanka		Interference	done	with	filter method
	r		Cancellation	comparative	proposed	could be used
	Kumar,R.Ra		scheme fo	r study on	method mean	to decrease
	dha		OFDM system.	different	value and the	the problem of

	Krishnan			methods in	standard	PAPR. In the
				terms of BER	deviation for	future, higher
				and it tells the	the PAPR is	Order digital
				three methods	much lower	filter FIR
				that are ICI self	than the	filter to
				cancellation,	original data	improve the
				Maximum	by using	system
				Likelihood	proposed	performance.
				estimation, and	scheme that	
				Extended	is adaptive	
				Kalman Filter	digital FIR	
				(EKF) method	filter.	
				[6].		
4	J Morgade,	2010	3 DTV Roll-	The author	The authors	In the future,
	Usandizaya,		Out scenarios a	have described	have	Ultra High
	Pangueria,		DVB-T2	of DVB-T2 to	concluded	services and
	A.Arrinda,		approach	provide 3D TV	that DVB-T2	4k will be
	M.vellz,			services for	standard has	conveyed
	Ordiales			both mobile	the enough	through the
				and portable	capacity to	DVB-T2 and
				devices with	transmitted	also proper
				the help of	high	network
				proper network	definition	planning is
				planning high	and 3D	needed for the
				definition	services in	network setup.
				services also	the efficient	
				possible [7].	way for	
					different	
					Roll-Out	
					cases.	
5	Stylianos	2011	Performance	Authors have	In this paper,	In future,

	Papaharalab	Comparisons	presented the	authors	channel
	os, David	and	concept of	concluded	coding
	Benmayor,	Improvements	different	that coding	method would
	P. Takis	of Channel	channel coding	rate of	be used to
	Mathiopoul	Coding	techniques i.e.	CCSDS	design of
	os, Pingzhi	Techniques for	3GPP2 codes,	turbo codes	mobile
	Fan	Digital Satellite	CCSDS turbo	was high &	satellite
		Broadcasting to	codes, DVB-	DVB-RCS	broadcasting
		Mobile Users.	RCS turbo	turbo codes	system.
			codes and	was more	
			LDPC codes to	powerful	
			increase the	than 3GPP2	
			efficiency of	codes.	
			the system and		
			also done the		
			comparison		
			between the		
			different		
			channel coding		
			techniques [8].		
6	Y. Alafta, P. 2012	High	In this paper,	The Author	In future, the
	Johnson	performance of	the author	concluded	delay, SNR,
		OFDM system	described	that DWT	BER, PAPR
		for digital video	transmission of	system with	would be
		broadcasting.	digital data	QAM	decreased and
			with very high	modulation	also increase
			spectral	shows 7	the overall
			efficiency and	times best	efficiency of
			low value of	result than	the system.
			BER, PAPR	DCT with	
			can be	QAM.	

				achieved by	64DAPSK	
				implemented	modulation	
				DWT-DAPSK	shows better	
				technique in	result over	
				the DVB-T2	DCT-OFDM	
				system [9].	& Conditions	
					remains	
					same.	
7	Edmond	2012	Image	In this paper,	Authors	Future work
	Nurellari,		transmission	the author	concluded	to achieve the
	Erhan A.		over Gilbert-	introduced the	that BER	lowest bit
	Ince		Elliot and ITU	concept of	performance	error rate
			fading channel	digital image	over	below the
			using DVB-T2	transmission	Gillbert-	value of SNR
			channel coding	with the help	Elliot	is 5db achieve
			and QPSK-	of Bose	channel	the overall
			OFDM.	Choudhari	introduced	efficiency.
				Hocquenghem	burst error	
				(BCH) code,	and with	
				LDPC codes	LDPC,	
				on the channel	BCH-LDPC	
				Gilbert-Elliot,	achieve low	
				& Rayleigh	bit rate at	
				channel and	SNR of 5 db.	
				technique used	LDPC with	
				is FEC and	½ code rate	
				OFDM [10].	with BCH	
					give best	
					performance.	
8	Gary J.	2012	Overview of the	In this paper,	Authors	Future
	Sullivan,		High Efficiency	author	concluded	extension of

	Jens-Rainer	Video Coding	introduced an	that	HEVC in
	Ohm, Woo-	(HEVC)	overview of	utilization of	JCT-VC
	Jin Han,	Standard.	technical	decoding	would be
	Thomas		features and	part which	examined.
	Wiegand		characteristics	contains	
			of HEVC	complexity	
			standard [11].	of HEVC	
				that was not	
				major	
				burden.	
9	Nicolas,Cor 201	2 Performance of	In this paper,	The author	In the future,
	nille,Matthi	DVB-T2 system	the author has	concluded	possible of 3D
	eu	in a single	introduced the	that digital	MIMO
	Crussiere,	frequency	performance of	video	services with
	Jean	network:	DVB-T2	broadcasting	SFN would
	Francois,	Analysis of the	through the	service	obtain better
	Helard	distributed	SFN. The	integrated	result.
		Alamouti	concept of	with multi	
		scheme.	MIMO as well	antenna	
			as SISO	through	
			introduced by	Alamouti	
			using two	scheme and	
			transmitting	improved	
			Antenna and	overall	
			one receiving	efficiency of	
			antenna	the system.	
			implemented		
			these scheme		
			with the help		
			of Alamouti		
			Scheme [12].		

10	Aleksandar	2012	DVB-T2	Authors	The author	In future
	Sugaris and		technology	described the	concluded	work, when
	Irini Reljin		improvements	some	that high	the number of
			challenge	advancement	profitability	users would
			current	of DVB-T2	advance	be decreased.
			strategies	over the first	network	Capacity of
			planning of	generation by	achieved in	the DVB-T2
			Ubiquitous	taking the	the	would be
			media	concept of	completion	increased and
			networks.	multi	of 2 years	Noise,
				disciplinary	when digital	interference
				approach. Cost	video	would be
				effective and	broadcasting	decreased.
				economical	terrestrial	
				analysis carried	scheme	
				out with the	would be	
				help of Bass	used in	
				model [13].	future.	
11	Doaa H	2013	Improved	In this paper,	The Authors	In future the
	Sayed,		synchronization	the author	concluded	modified CFO
	Maha Elsa		, channel	introduced a	that	stages would
	Brouty,		estimation,	algorithm in	improved	be used to
	Ahmed F		and simplified	signal	performance	improve the
	Shalash		LDPC decoding	processing	of advanced	accuracy of
			for the physical	chain to	integrated	the system.
			layer of the	improve the	standard and	
			DVB-T2	mobile	also provides	
			receiver	operation for	better result.	
				DVB-T2 [14].		
12	K.Aperna,	2013	MIMO based	The author	The author	The future
	R.Divya		advanced	described that	concluded	scope would

	Bharathi		transmission in	Carrier	that	be used
			DVB-T2.	frequency	transmission	64QAM
				Offset (CFO)	of random	modulation to
				in the DVB-T2	data send	achieve high
				transmission	with the help	data rate and
				system.	of QAM	also reduce
				Multiple	modulation	the
				CFO's	and MIMO	interference
				estimated with	technology is	which is
				the help of	used which	introduced
				MIMO	has given	due to the
				technology	benefit for	multiple
				which has	the number	antennas.
				given to multi	of users to	
				mode	achieve	
				application in	HDTV	
				DVB-T2	services.	
				system [15].		
13	Yasir	2013	Peak-To-	In this paper	The author	In the future,
	Rahmatallah		Average Power	the author tells	concluded	Designer
	, Seshadri		Ratio Reduction	about the high	that when we	would be
	Mohan		in OFDM	PAPR	increased	needs to
			Systems: A	existence due	BER then	design such a
			Survey And	to power	PAPR	system that
			Taxonomy	amplifier and	reduced and	gives efficient
				also introduced	there was	tradeoff
				the several	always	between BER
				methods to	tradeoff	and PAPR,
				mitigate the	between	high data rate.
				effects of	PAPR and	
				PAPR by using	BER, no one	

				different	technique	
				techniques	was best. It	
				[16].	depends	
					upon the	
					application	
					in which	
					OFDM is	
					used.	
14	N.S.	2015	Mobile TV	In this paper,	In results, the	In future
	Sugiharto,		Interactive in	the author has	last section	work, DVB-T
	Iskandar, T.		DVB-T	developed an	of this paper,	would
	Hendrawan,		Broadcast	application	it is	improve
	and N.		Network Hybrid	which is based	considered	overhead for
	Rachmana		with Wi-Fi.	on the smart	the	controlling the
				phone and this	application	data packet.
				smart phone	services that	
				received the	permits user	
				program &	to develop	
				transmitted a	interactively	
				request to	connected	
				server and also	with client	
				developed the	server	
				system that	through the	
				converts DVB	ECG server.	
				signal to Wi-		
				Fi-IP based		
				protocol [17].		
15	Ladislav,	2015	Study of co-	In this author	In this paper,	In the future,
	Lukas		existence	have presented	the author	would shift
	Klozer,		between indoor	the new	has	our proposed
	Ondrey		LTE femtocell	generation	concluded	coexistence

	Kaller, Jiri	and Outdoor-to	system for the	that indoor	model with
	sebesta,	indoor DVB-T2	transmission of	reception of	different kind
	Martin	lite reception in	Superior	the signal	of parameter
	slannia,	a shared	quality based	has more	such as fading
	Tomas	frequency band.	multimedia	immune than	channel,
	Kratochvil		applications	the fixed	Doppler shift,
			such as video	Outdoor	and power
			resources,	reception.	levels.
			audio, images	The	
			transmitted	performance	
			over DVB-T2	of DVB-T2	
			with the help	system	
			of LTE (Long	highly	
			Term	depends	
			Evolution)	upon the	
			techniques for	overlapping	
			the indoor and	of the	
			outdoor	channel.	
			environment		
			[18].		
16	Jong Gyu	A convergence	In this paper,	The author	In future
	Oh, Yong 2016	broadcasting	author used		work, it will
	Yu Won, Jin	transmission of	FER	that FER	employ LDM
	Sub Seop	fixed 4K UHD	multiplexing	Multiplexing	techniques in
	Lee, Joon	and mobile HD	technique	technique	ATSC-3.0
	Tae Kim	services through	through a	had better	system,
		a single	single	result than	performance
		terrestrial	terrestrial	M-PLP	& occurrence
		channel by	channel for	technique.	of terrestrial
		employing FEF	DVB-T2.Here,		fixed 4k UHD
		multiplexing	the author also		& Mobile HD

	technique	in	done	convergence
	DVB-T2		comparison	broadcasting
			b/w M-PLP	services
			technique and	through a
			FER	single channel
			multiplexing	would be
			technique [19].	examined.

RATIONALE AND SCOPE OF DVB-T2

4.1 PURPOSE OF DVB-T2 SYSTEM

- The purpose of DVB-T2 system is to provide higher data rates and signal strength.
- It is one type of digital terrestrial television which provides HD and UHD signal at receiver end and LDPC coding provides effective error protection
- Moving to DVB-T2 design infers the adding of the T2 Gateway at the head-end and also upgrade of DVB-T modulators to DVB-T2 modulators and in addition the replacing of STB or iTV with the new DVB-T2 front-end.
- DVB-T2 permits a finer utilization of the spectral assets by coordinating edge cutting signal processing techniques. The anticipated additions provide for up to half extra bit rate in the same frequency bandwidth system.
- A DVB-T Amplifier could be utilized to communicate DVB-T2 by updating its DVB-T modulator by a DVB-T2 one. DVB-T2 standard has characterized another new protocol interface i.e. T2-MI (T2-Modulator Interface). It is used to convey between the T2 Gateway and the Modulators.
- The design remains same for either Single PLP or M-PLP modes [20]. T2 Gateway goes for encapsulated the approaching MPEG-2 TS into frames and embedding synchronization data for SFN broadcasting, regulating modulators setup, setup M-PLP broadcasting and also the TFS distribution. T2 Modulators get design from the T2 Gateway. It performs the encoding techniques by including the FEC data, construct T2 outlines and modulate the signal before transmit it by the air.
- DVB T2 standard takes likewise consideration from claiming transmitter setup. It also created high power peaks are created inside the 32k particularly and also reduces amplifier effectiveness. An uncommon characteristic is called PAPR decrease need been incorporated in the standard determinations on limit these peaks control without losing data.
- With expand those ability to DTT multiplex is a standout amongst those way profits of DVB-T2 standard.

4.2 SCOPE OF DVB-T2 SYSTEM

The present study tells about the transmission of the data in DVB-T2 using OFDM. It decides definitely those channel coding, modulation systems proposed to HDTV terrestrial benefits. The following scopes are:

- It tells about brief description of DVB-T2 system for DTT.
- It describes the performance requirements and features of DVB-T2 system.
- It provides an extensive technological scope.

OBJECTIVE OF THE STUDY

5.1 PROBLEM FORMULATION

DVB-T2 is a best technology for digital television broadcasting compared with other digital terrestrial television broadcasting system. Due to which several researchers have focused on providing higher broadcasting data rates as well as great signal robustness. In the traditional transmission system structure, FEC encoder and FEC decoder has been using which provides high implementation complexity, low SNRs and high decoding latency. Furthermore, DVB-T2 system is based on the OFDM technique which adopts FFT maximizing the data transmission capacity. But, it has seen that Fourier based system requires addition of cyclic prefix which is decreasing the efficiency of the bandwidth. Owing to these factors, a new encoding and transformation technique has to be proposed for improved scalability and flexibility.

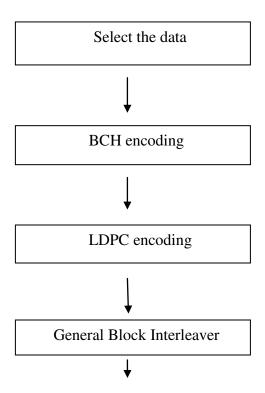
5.2 PROPOSED WORK

From the problem formulation it has concluded that traditional systems provide efficiency but it also suffers from robustness, flexibility and other parameters. In order to improve traditional systems, it has upgraded with the LDPC coding rather than FEC encoding in the proposed work. LDPC decoding algorithm has more parallelization, low implementation complexity, low decoding latency and no error-floors at high SNRs as well. LDPC codes are considered for all next generation communication standards due to its relatively simple decoding algorithm. In addition, FFT system will be replaced by the Discrete Wavelet Transformation i.e. DWT as DWT based OFDM system do not require cyclic prefix because of overlapping nature and thus increasing the bandwidth efficiency.

5.3 OBJECTIVES

Above section concluded main objectives for the proposed work are:

To study and analysis the use of OFDM in application of DVB-T2.


- To compare the system with different modulations over various channels for enhancement the performance of the system.
- To improve the performance of the system by the use of filter.
- To analyze the BER and the system performance using different modulation techniques with OFDM in DVB-T2 system.

RESEARCH METHODOLOGY

Random data is transmitted over DVB-T2 System through various channels with the help of different modulation techniques. These techniques are used to evaluate the performance of the system.

- 1. Study of the DVB-T2 based wireless System.
- 2. Analysis of various modulation techniques with the help of BCH and LDPC encoding techniques.
- 3. Performance Analysis of different modulation techniques in the DVB-T2 System over the various channels (Without Filter).
- 4. Performance analysis of different modulation techniques in the DVB-T2 System over the various channels using Digital Filter.
- 5. Comparison of the results of DVB-T2 System using Filter with previous one and find the best channel and modulations.

The procedure of Research Methodology followed is:

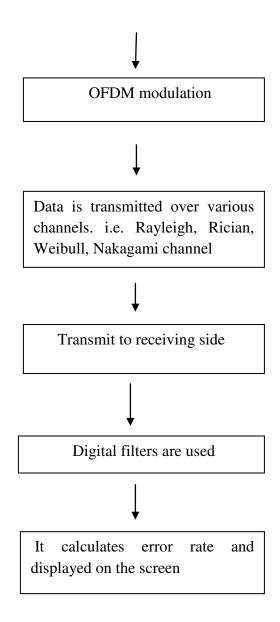


Figure 6.1: Research methodology Algorithm

CHAPTER 7

DVB-T2 SYSTEM

7.1 DVB-T2

DVB-T2 (digital video broadcasting-second generation terrestrial) which is a part of television standard of DVB-T [2]. It is issued by association of DVB. This technology has great success on DVB-T which provides extra efficiency and category, highlights in accordance with the creating DTT (digital terrestrial television). DVB-T2 is systems that transmit compressed digital audio, video resources and different types of data in PLP by utilizing OFDM with different coding channel and Interleaver. This is wanted to deal with it besides the recently DVB-T organization for a number of years and to develop the alteration to DVB-T2. It provides additional features like enable the broadcasters, to offer new and decent services.

7.1.1 Terrestrial Broadcasting

terrestrial TV or communicate TV is a kind of TV broadcasting in which the TV signal is transmitted by radio waves from the earthbound (Earth based) transmitter of a TV channel to a TV recipient having a reception antenna [3]. Earlier, there was only one TV channel was being transmitted by single transmitter which was operating on same frequency, this means only analog transmission is used. Terrestrial broadcasting has many advantages: radio frequency spectrum is used very efficiently, upright image sound and quality, viability of high definition picture (HDTV).

7.1.2 HDTV Signals

DVB-T2 guides' high definition television signals.HD means high resolution, more clarity power and quality. Features of HDTV signal are listed below:

- It guides up to 1080 horizontal lines of boldness while that of SDTV was 525.
- It is one of the most suitable improvements over the SDTV.
- It is always digital system and it removes the analog interference that is caused by the electrical currents and magnetic fields.
- HDTV having more boldness over the SDTV.
- HDTV makes image look more representational and clear.

7.1.3 Specification of DVB-T2

DVB –T2 standard was developed by DVB steering board on 26 June 2008, which was published on the DVB home page. European telecommunication standard institute by DVB which was handled the DVB-T2 standards on 20 June 2008. ETSI process was adopted on 9 September 2009. This process contained many phases but the main modification were text clarification. The day when physical layer of DVB-T2 was completed, no further technical enhancement was made in physical layer of DVB-T2.

7.1.4 Single Frequency Network

DVB-T2 permits single frequency systems (SFN) operation inside a given geological range, where at least two transmitters conveying similar information work on a similar frequency. In such cases the signals from every transmitter in the SFN should be precisely time-adjusted, which is finished with synchronization data in the T2MI stream included by the T2 Gateway [20]. The DVB-T2 standard additionally incorporates Multiple Input Single Output (MISO) based on Alamouti coding mode. The key advantage originating from the MISO SFN is seen by less degradation in term of least receiver input control, while a degradation of a few dB is measured in SISO-SFN.

7.1.5 Physical Layer Pipe (PLP)

The PLP idea is acquired from the DVB-S2 standard. It permits benefit particular robustness. Each PLP can have its own modulation scheme, FEC code rate and interleaving. All PLPs are communicated over a similar frequency that it is considered as a DVB-T2 channel only [20]. DVB-T2 multiplex can convey a solitary PLP, characterized as information mode A, or various PLP, characterized as input mode B of the T2 System. A T2 system can communicate a greatest of 255 PLP per multiplex. There are 3 standards of PLP: regular PLP of type 0 that conveys data extricated from the other information PLP. For example, program control, or other basic information.PLP sort 1 contains 1 slice for each T2 frame while type 2 contains a few slice to convey the genuine data. The information PLP of sort 1 can be utilized for administrations that require a decent power saving. The information PLP of sort 2 is conveyed in various sub-slices per T2 frames expanding time diversity qualities and afterward giving better robustness to mobile services. The quantity of sub-cuts ought to be as vast as possible. In M-PLP mode, the demodulator should get in the meantime the normal PLP and information of PLP to have the

capacity to manufacture the MPEG-2 Transport Stream as it is gotten at the input of the PLP developer. The demodulator can be tuned to the fancied PLP on account of the data removed from the SI tables or recovered from the filtering.

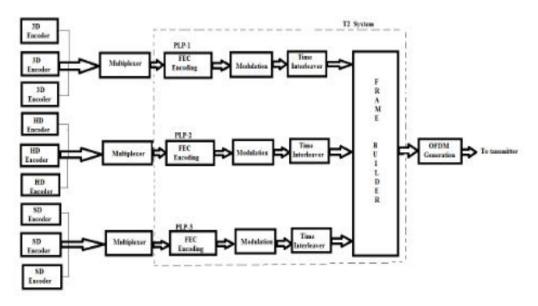


Figure: 7.1 high level M-PLP T2 Block Diagram

As the demodulator should read just a single PLP at a given time there is no confinement in the recipient side on the quantity of upheld PLP. In a standard DVB-T system only a single MPTS can be communicate per DVB-T channel. In a DVB-T2 system each PLP must contain predictable TS. So an improved T2 framework can be viewed as a few MPTS having a similar channel without the need of multiplexing these MPTS together at the head-end. The PLP idea permits an extensive variety of business model. Administrators can separate effectively benefits on a PLP premise with an offering that differs as per the robustness level. M-PLP gives most extreme adaptability, with no disadvantage or overhead. Network equipment is accessible and conveyed. There is likewise no extra unpredictability in the system, when we are compared with single PLP arrangement. DVB-T2 chipsets are now M-PLP consistent and end-client receivers are presently accessible without additional cost for the support of M-PLP. On account of the progressing organizations one can expect that the new receiver available will all supports M-PLP as a standard feature.

7.1.6 Block Diagram of DVB-T2

Digital video broadcasting (DVB-T2), it is a designation specified to the terrestrial transmission system. DVB system is used to choose as a study choices in March, for an overhauled DVB-T

standard [5]. A review assembles called as TM-T2 which is discovered in June 2006. It built up by the DVB Group to build up advanced modulation plan which might be received by a 2nd generation digitally earthbound TV standard, which is called as DVB-T2.

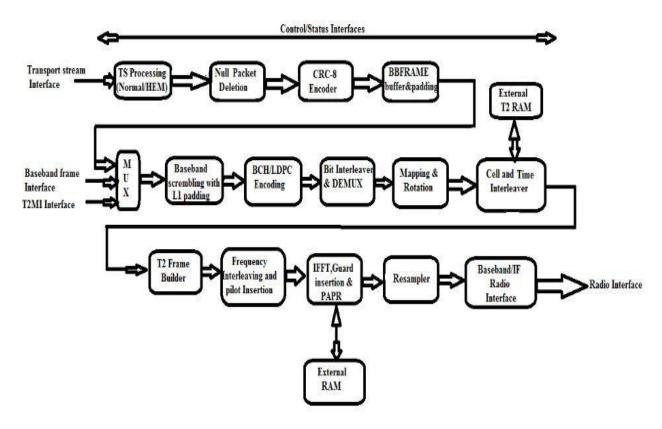


Figure: 7.2 DVB-T2 Modulator [23]

This system splits into several parts: Input processing for input mode 'A' and Input processing for input mode 'B'. At the input, PLP (physical layer pipe) is used. PLP are consistent channels conveying at least one advantage having modulation plan and strength specific which is indivisible. At input processing, null packet deletion and CRC-8 are used. The groups of Information are collected called Base Band Frames (BBFRAMEs) having dimension of K_{BCH} bits defined as modulation and coding (MODCOD) specification. The DVB-T2 standard has characterized another protocol interface the T2-MI (T2-Modulator Interface) to convey between the T2 Gateway and the Modulators. The T2-MI packets convey the information encapsulated into BB Frames, accommodate synchronization data when broadcasting over SFN and incorporate all the signaling data for the transmission [21]. All the PLP, TFS, SFN components are planned from the T2 Gateway and depicted inside particular T2-MI packets. Multiplexer is a device that converts

the one or more input signals into one output line. The entire BBFRAME should be randomized. The randomization sequence of data should be synchronous with the BBFRAME, beginning from the MSB and completion after K_{bch} bits. The scrambling succession might be created by feedback shift register. Padding might be connected in conditions when the user information accessible for transmission which is not adequate to totally fill a BBFRAME, or when a whole number of UPs must be allocated in a BBFRAME.

Two types of encoding techniques are used i.e. LDPC and BCH [10]. LDPC are a linear correcting method that is used for transmitting the data over noisy transmission channel.BCH and LDPC encoding are used multiple error correcting and error detecting purpose. LDPC code further sent to the BCH codes. Interleaving is further two types: Parity bits block interleaving and Twist column interleaving [22]. The output of the LDPC encoder should be bit interleaved that comprises parity interleaving took after by second type of interleaving. The parity Interleaver output is meant by U and the column twisted Interleaver output by V. Demultiplexer is used to convert the bit into cell word. Rotation means constellations might be inclined encircling by a measure of up to 30 degree. Besides, the matched parts of the units are consistently moved by one unit. Frame builder is a one frame in which transmitted braches are sorted out in super frame that is formed by T2 frame and Future Extension Frame parts and Mapping of these units to OFDM symbols. The Pseudo Random Cell Interleaver (CI), might consistently spread the cells in the FEC codeword, to guarantee in the sink end an uncorrelated circulation of channel contortions and conflict within the FEC codeword's, and should in an unexpected way "turn" the interleaving grouping in each of the FEC system of one Time Interleaver Block. The time Interleaver (TI) should work at PLP level. The parameters of the time interleaving might be diverse for various PLPs inside a T2 system. After the frame builder, IFFT and Guard insertions are used and also used the cyclic prefix that is inserted before the IFFT. Especially in the case of 32k, where the powerful peaks are produced and in this way minimize the Amplifier efficiency (or can even harm it). A unique feature named as PAPR (Peak Average Power Ratio) decrease has been incorporated into the standard details to restrict these powerful peaks without losing data [21]. At the end of the system, T2 signal is converted into analog baseband signal.

7.1.7 Standard of DVB-T2

Modulation of COFDM with QPSK, 16-QAM, 64-QAM and 256- QAM constellations.

- Modes of OFDM are 1k, 2k, 4k, 8k, 16k and 32k.
- FEC is concatenated LDPC and BCH codes with the rates of ½, 3/5, 2/3, 4/5 and 5/6.
- Here, some pilots are also there which are in 8 different pilot pattern and equalization that may be based upon RAI CD 3 system.
- For 32k mode, 8MHz standard is the larger part of channel that can be used for adding extra capability about 2%.
- The range of DVB-T2 channel is 1.7, 5, 6, 7, 8 and 10 MHZ bandwidth.
- So MIMO will not be used and MISO can be used in DVB –T2.

7.1.8 Advantages of DVB-T2

- It is most advance digital terrestrial television [DTT] in the world.
- More flexible and robustness and 50% more efficient than other DTT system
- Enhances or increase the performance of the system.
- Better sound quality.
- For transporting HDTV signals, DVB-T2 is more preferable.
- With comparison to DVB-T, DVB-T2 offers higher bit rate.

7.1.9 Disadvantages

• Cost is too high to afford.

7.2 WORKING MODEL OF DVB-T2

7.2.1 Proposed DVB-T2 System without filter

Digital video broadcasting (DVB-T2) is a designation specified to the terrestrial transmission system. In this system, we are using the random data for convergence broadcasting transmission purpose. The random data is in 0 or 1 form. Buffer is used to convert scalar samples to a frame output at a lower rate. After the buffering, it sends to the padding block. Padding provides Append or prepend a constant value to the input along the specified dimensions. In DVB-T2 model, we are use BCH encoding as well as LDPC encoding to encrypt the data. Interleaving is used for reorder the elements of the input signal. After the interleaving part, we use the different QAM modulator that is 16 QAM, 256 QAM, and 64 QAM with OFDM modulation over AWGN channel and Multipath Rayleigh fading channel and transmits the data to the receiver side. At the last, we have calculated the error ratio for 16 QAM and 256 QAM.

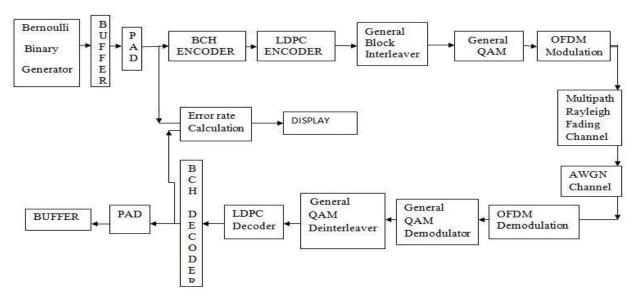


Figure 7.3: Working model of DVB-T2 System without Filter

7.2.1 Proposed DVB-T2 System with filter

In DVB-T2 using filter based system, the entire working is same as DVB-T2 System without filter. There have a two encoding techniques that is LDPC and BCH. This system has designed only

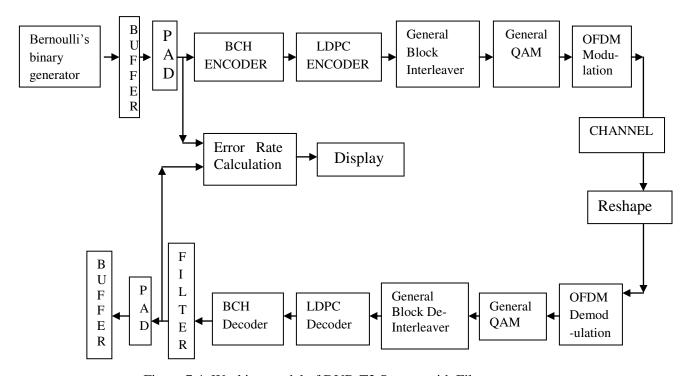


Figure 7.4: Working model of DVB-T2 System with Filter

QAM modulation. In my research work, DWT (Discrete Wavelet Transform) technique is used in OFDM and digital filters are also used for reducing the BER performance in the system. A discrete wavelet change (DWT) may be whatever wavelet convert for which those wavelets would discretely samples. Likewise with other wavelet transforms, a way playing point it need over Fourier transforms may be transient resolution: it captures both Frequency and Furthermore area data. Digital Filters would utilize to two all purposes: (1) detachment of signal that has been combined (2) rebuilding of signals that have been bended somehow. It consists of A to D converter that is used for sampling of the input signal. It accomplished by peripheral elements for example such that memory with store information. Digital filters might make more costly over analog filters because of their expanded complexity; anyhow they make useful a lot of people outlines than analog filters.

Table 7.1 Difference b/w DVB-T & DVB-T2 Parameters

Parameter	DVB-T	DVB-T2
Input Interface	Single transport Stream	Multiple transport stream and
		GSE
Encoding Techniques	Convolutional codes + Reed	LDPC + BCH
	Solomon encoding	
Modulation Scheme	QPSK,16QAM,64QAM	QPSK,16QAM,64QAM,256QAM
PLP	No	Yes
Guard Interval	1/4,1/8,1/16,1/32	1/4,1/8,1/16,1/32,19/128,19/256,1/128
Modulation	OFDM	OFDM
FFT Size	2k	32k
Modes	Constant coding +	Variable coding + Modulation
	Modulation	
Continual Pilot	2.6%	0.35%
Scattered Pilot	8%	1%,2%,4%,8%
Bandwidth	Standard	Extended

CHAPTER 8

RESULT AND DISCUSSION

As the part of analysis, two different modulation techniques are used to calculate the BER performance with the help of BCH encoding as well as LDPC encoding which are the part of DVB-T2 standard. DVB-T2 works on different modulation techniques. i.e. 16 QAM, 64 QAM, and 256 QAM, but I have used only 16 QAM and 256 QAM. BER value is increasing as order of signal to noise ratio increasing. The simulated results are showing that error calculation is less in the case of 16 QAM as compared to 256 QAM with OFDM over an AWGN channel and multipath Rayleigh fading channel.

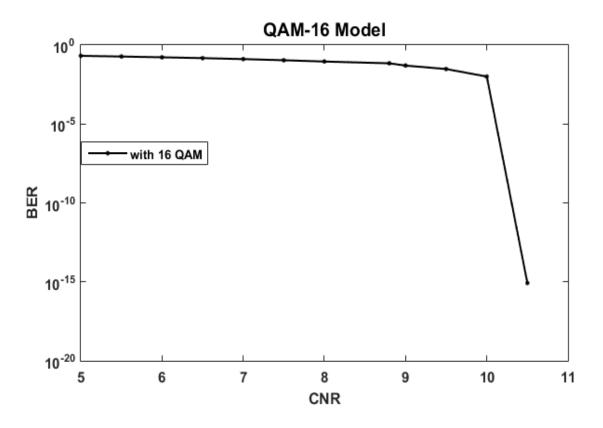


Figure: 8.1 BER Performance of 16QAM Model

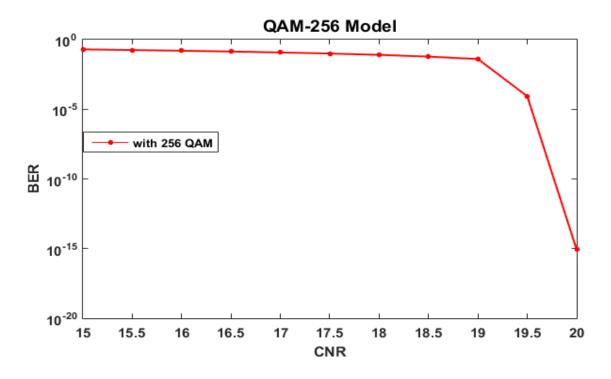


Figure: 8.2 BER Performance of QAM256-Model

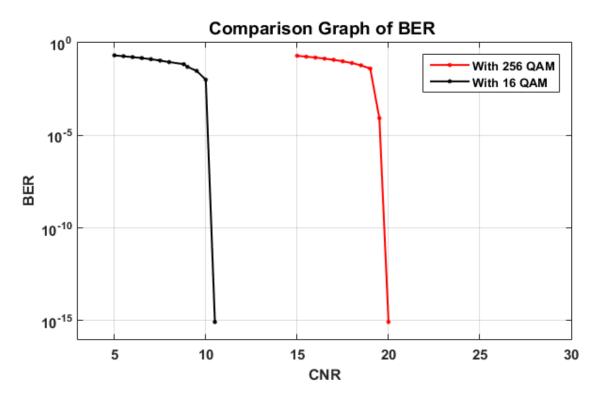


Figure: 8.3 Comparison BER Performance using 16 QAM & 256 QAM

8.1 Simulation Result With and Without Filter

From the Simulation part, different modulation techniques are used in various channels to calculate the BER performance with the help of BCH encoding as well as LDPC encoding that are the part of DVB-T2 standards. Different modulation techniques.i.e.16 QAM, 32 QAM, 64 QAM, and 256 QAM are used in DVB-T2 system. Various channels like Nakagami, Weibull, Rician, Rayleigh uses different QAM modulation which is a part of OFDM based DVB-T2 system. Using Simulation model calculates the error rate with different channel and find out which channel is best. Digital filter are used for improving the performance of the system and it also reduces the error rate. At the last, I have done the comparison of different modulation techniques over various channels with filter and without filter. It showed Nakagami channel gives better results for all the modulation because error rate is less and performance of the system is better as compared to other fading channels with the help of different encoding techniques.

8.1.1 Various Graph Plotted between BER and CNR with different modulation over different channels without Filter:

The figure 8.4 shows the comparison of 16 QAM modulations over various channels without filter. In 16 QAM modulations, Nakagami (without filter) channel gives better result. When the value of BER is 10-10 then CNR value is 7.6776 which is less than other channels.

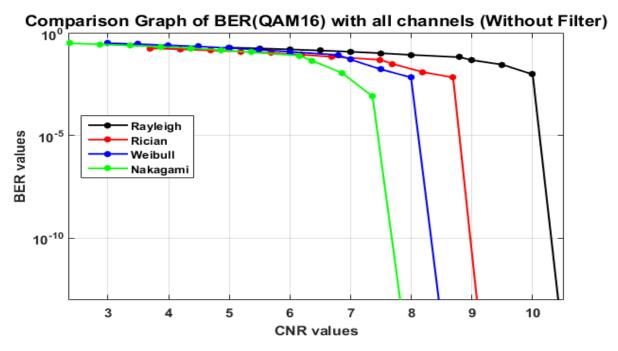


Figure 8.4: BER Performance with all channels in 16 QAM

The figure 8.5 tells about the comparison of 32 QAM modulations over different channels without filter. In 32 QAM, Nakagami (Without filter) provides good result as compared to other channels because CNR value is 10.379 which is less than Weibull channel.

Figure 8.5: BER Performance with all channels in 32 QAM

The figure 8.6 shows the comparison of 64 QAM modulations over various channels without filter. In 64 QAM modulations, Nakagami (without filter) channel gives better result. When the value of BER is 10⁻¹⁰ then CNR value is 11.684 which is less than other channels.

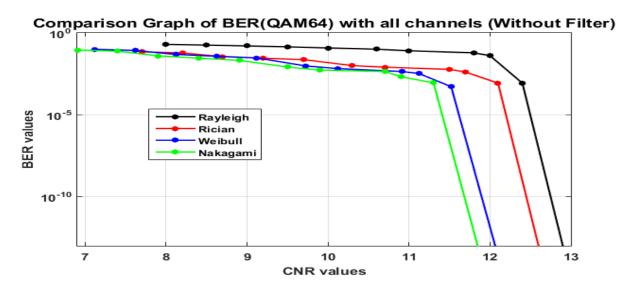


Figure 8.6: BER Performance with all channels in 64 QAM

The figure 8.7 shows the comparison of various channels in 256 QAM modulations without filter. In 256 QAM, Nakagami gives better result because CNR value is less than all other channels.

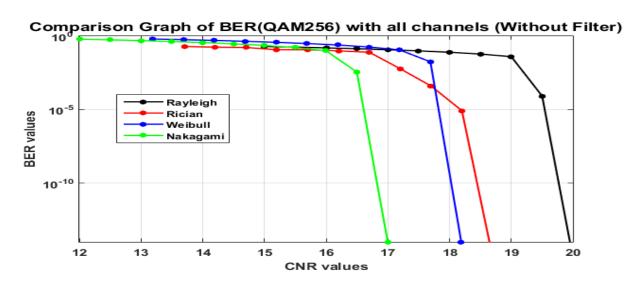


Figure 8.7: BER Performance with all channels in 256 QAM

8.1.2 Various Graph Plotted between BER and CNR with different modulation over different channels using with Filter:

The figure 8.8 tells about the comparison of different channels in 16 QAM modulations with filter. In this graph, Nakagami (with filter) provides good result as compared to other channels because CNR value is 7.6464 which is less than others channels.

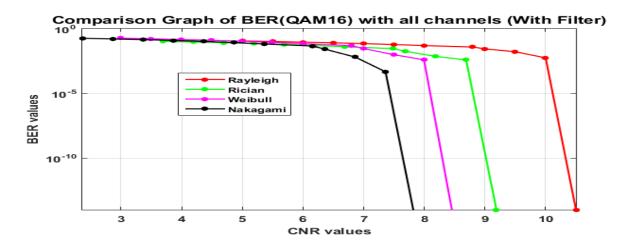


Figure 8.8: BER Performance with all channels in 16 QAM

The figure 8.9 described the comparison of 32 QAM modulations over different channels with filter. In the case of Nakagami having 32 QAM modulations, the value of CNR is 10.3617 when we set the value of BER is 10⁻¹⁰ and it indicates that Nakagami is better.

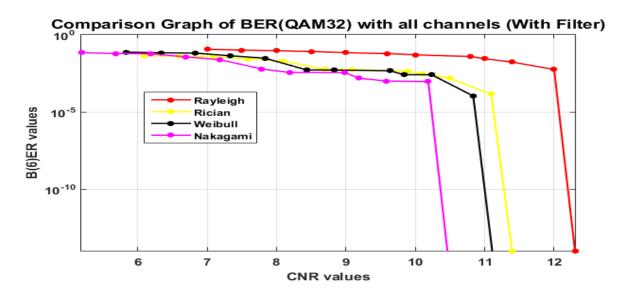


Figure 8.9: BER Performance with all channels in 32 QAM

The figure 8.10 described the comparison of different channels having 64 QAM modulations with filter. In this graph, Rayleigh channel provides worst result as compared to other channels. In the case of 64 QAM, the value of CNR in Nakagami and Weibull is 11.647 and 11.86.so, it means Nakagami offering better result.

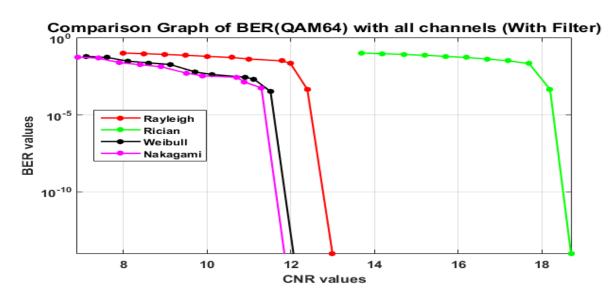


Figure 8.10: BER Performance with all channels in 64 QAM

The figure 8.11 tells about the comparison of various channels in 256 QAM modulations with filter. According to this graph, when we set the value of BER is 10^{-10} , the value of CNR in Nakagami, Weibull, Rician and Rayleigh channels are 16.788, 17.992, 18.446 and 19.769. This value indicates that Nakagami is better because CNR value is less.

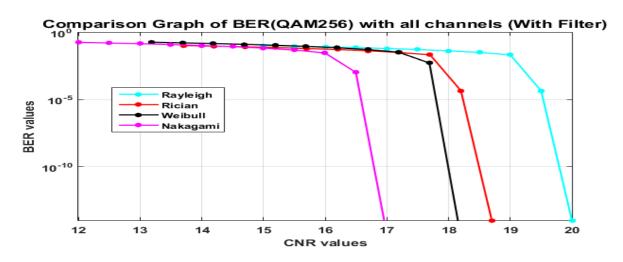


Figure 8.11: BER Performance with all channels in 256 QAM

8.1.3 Various Graph Plotted between BER and CNR with different modulation over various channels with and without using Filter:

The figure 8.12 clearly indicates the comparison of various channels in 16 QAM modulations with and without filter. At fixed point of BER value is 10⁻¹⁰, the value of CNR in Nakagami (with filter) is 7.6464 and in Nakagami (Without Filter) is 7.6776. These value shows that Nakagami (with filter) is good.

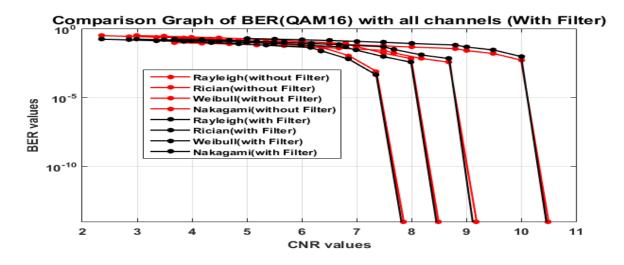


Figure 8.12: BER Performance with all channels in 16 QAM (With and Without Filter)

The figure 8.13 shows the comparison of various channels in 32 QAM modulations with and without filter. If we set the value of BER is 10^{-10} , the value of CNR is minimum in Nakagami (with filter) than Weibull (with filter).

Figure 8.13: BER Performance with all channels in 32 QAM (With and Without Filter)

The figure 8.14 describes the comparison of various channels in 64 QAM modulations with and without filter. In 64 QAM, Nakagami channel (With Filter) offering superior result than Weibull, Rician, Rayleigh channels (with and without filter).

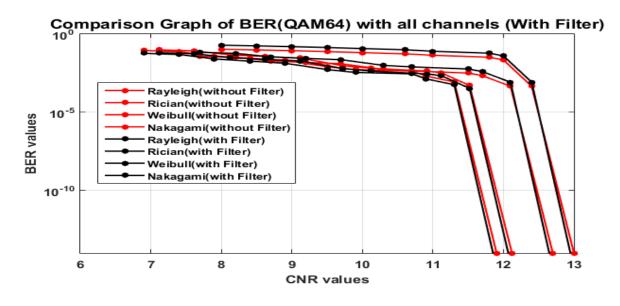


Figure 8.14: BER Performance with all channels in 64QAM (With and Without Filter)

The figure 8.15 describes the comparison of various channels in 256 QAM modulations with and without filter. In 256 QAM, Nakagami channel (With Filter) provides good result because CNR value is 16.788 which are less than Nakagami (without filter) is 16.823.so, these values proves that Nakagami (with filter) channel achieves the optimum result.

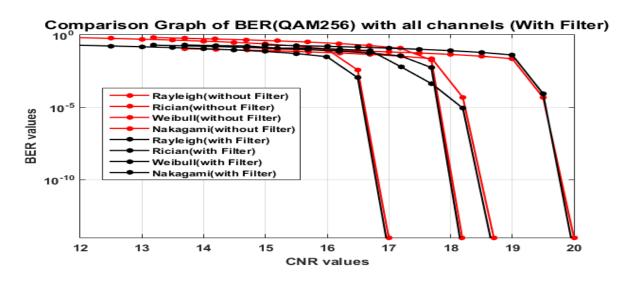


Figure 8.15: BER Performance with all channels in 256 QAM (With and Without Filter)

The figure 8.16 describes the comparison of various modulations in Nakagami channel with and without filter. In Nakagami channel, 16 QAM (with filter) gives better result than other modulations because CNR value is 7.6464 which is less than others values at the BER is 10⁻¹⁰.

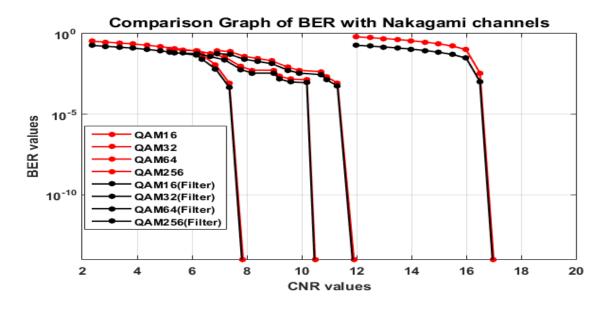


Figure 8.16: BER Performance with all modulations in Nakagami Channel

The figure 8.17 shows the comparison of various modulations in Weibull channel with and without filter. In the case of 16 QAM, the values of CNR are 8.295 and 8.3254 in Weibull (with filter) and Weibull (without filter). These value indicates that Weibull with filter is better in 16 QAM modulation.

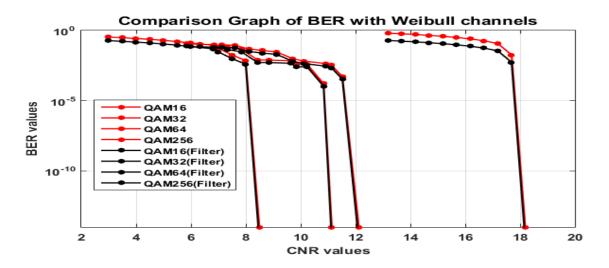


Figure 8.17: BER Performance with all modulations in Weibull channel

The figure 8.18 shows the comparison of various modulations in Rician channel with and without filter. In Rician channel, 16 QAM (with filter) achieves optimum result because CNR value is 8.973 which is less than other values.

Figure 8.18: BER Performance with all modulations in Rician channel

The figure 8.19 shows the comparison of various modulations in Rayleigh channel with and without filter. In Rayleigh channel, 16 QAM (with filter) is more superior to other modulations because CNR value is 10.307 which is less than other values.

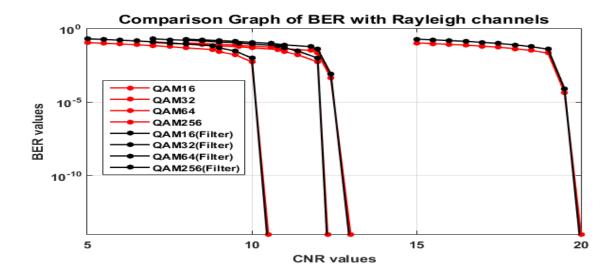


Figure 8.19: BER Performance with all modulations in Rayleigh channel

CHAPTER 9

PERFORMANCE EVALUTION

9.1 COMPARISON OF CNR VALUES OF NAKAGAMI CHANNEL

In this table, we calculate the value of CNR in different-2 modulations over the Nakagami channel with and without filter. In the 16 QAM, value of CNR is 7.6464 in NAKAGAMI channel with filter is best as compared to other modulations.

Table 9.1 Comparison of CNR values of Nakagami Channel

BER VALUE	MODULATION	NAKAGAMI WITH FILTER (CNR VALUE)	NAKAGAMI WITHOUT FILTER (CNR VALUE)
10-10	16 QAM	7.6464	7.6776
10 ⁻¹⁰	32 QAM	10.3617	10.379
10 ⁻¹⁰	64 QAM	11.6476	11.684
10 ⁻¹⁰	256 QAM	16.788	16.823

9.2 COMPARISON OF CNR VALUES OF WEIBULL CHANNEL

In this table, we calculate the value of CNR in different-2 modulations over the Weibull channel with and without filter. In the 16 QAM, value of CNR is 8.295 in Weibull channel with filter is best as compared to other modulations.

Table 9.2 Comparison of CNR values of Weibull Channel

BER VALUE	MODULATION	WEIBULL WITH	WEIBULL
		FILTER	WITHOUT
		(CNR VALUE)	FILTER
			(CNR VALUE)
10 ⁻¹⁰	16 QAM	8.295	8.3254
10 ⁻¹⁰	32 QAM	10.998	11.0167

10 ⁻¹⁰	64 QAM	11.86	11.896
10-10	256 QAM	17.9928	18.026

9.3 COMPARISON OF CNR VALUES OF RICIAN CHANNEL

In this table, we calculate the value of CNR in different-2 modulations over the Rician channel with and without filter. In the 16 QAM, value of CNR is 8.973 in Rician channel with filter is best as compared to other modulations.

Table 9.3 Comparison of CNR values of Rician Channel

BER VALUE	MODULATION	RICIAN WITH	RICIAN WITHOUT
		FILTER	FILTER
		(CNR VALUE)	(CNR VALUE)
10 ⁻¹⁰	16 QAM	8.973	9.016
10 ⁻¹⁰	32 QAM	11.363	11.2758
10 ⁻¹⁰	64 QAM	12.448	12.475
10 ⁻¹⁰	256 QAM	18.446	18.493

9.4 COMPARISON OF CNR VALUES OF RAYLEIGH CHANNEL

In this table, we calculate the value of CNR in different-2 modulations over the Rayleigh channel with and without filter. In the 16 QAM, value of CNR is 10.307 in Rayleigh channel with filter is best as compared to other modulations.

Table 9.4 Comparison of CNR values of Rayleigh Channel

BER VALUE	MODULATION	RAYLEIGH WITH	RAYLEIGH
		FILTER	WITHOUT
		(CNR VALUE)	FILTER
			(CNR VALUE)
10 ⁻¹⁰	16 QAM	10.307	10.328
10 ⁻¹⁰	32 QAM	12.185	12.197

10 ⁻¹⁰	64 QAM	12.7485	12.775
10 ⁻¹⁰	256 QAM	19.7693	19.794

CHAPTER 10

CONCLUSION AND FUTURE WORK

10.1 CONCLUSION

The digital video broadcasting system is used for high range data transmission and reception through different encoding techniques and encrypted environment using a high bandwidth channel which can transmit higher data rate than the conventional system which works on lower data rates. The proposed system was designed to solve a problem for repetitive change in the used location at high speeds the users can not always be fixed as per the problem. This system is used to reduce the loss in data and also reduce the noise and interference. The Simulation shows that error calculation is less in 16 QAM over Nakagami (with Filter) channel as compared to other modulation with OFDM. From all the channels and modulations, Nakagami channel achieves better performance with 16 QAM modulations. In the case of 16 QAM, complexity of the system is less.

10.2 FUTURE SCOPE

- DVB-T2 would be used using the concept of MIMO-OFDM.
- Satellite media can be used to provide high data rates and fast reception of system.

REFERENCES

- [1] Han, S. H., & Lee, J.H (2005) "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," IEEE Wireless Communications, 12(2), 56–65.
- [2] N.Lasorte, W. Barnels and H. Refai, "The History of OFDM," IEEE Comm., 2008.
- [3] linktionary.com/w/wireless_mobile.html.
- [4] Uwe Ladebus ch, Claudia A. Liss (2007) "Terrestrial DVB (DVB-T): A Broadcast Technology for Stationary Portable and Mobile Use," Proceedings of the IEEE, Vol. 94, No. 1.
- [5] Khaizuran Abdullah and Zahir M.Hussain (2007) "Performance of Fourier-Based and Wavelet-Based OFDM for DVB-T Systems," SMIEEE School of Electrical & Computer Engineering.
- [6] B.Sathish kumar, K.R.Shankar Kumar, R.Radha Krishnan (2009) "An efficient Inter Carrier Interference Cancellation scheme for OFDM system," International Journal of Computer Science and Information Security, Vol. 6, No. 3.
- [7] J Morgade, Usandizaya, Pangueria, A.Arrinda, M.vellz, Ordiales (2010) "3 DTV Roll-Out scenarios a DVB-T2 approach," IEEE transaction on broadcasting.
- [8] Stylianos Papaharalabos, David Benmayor, P. Takis Mathiopoulos & Pingzhi Fan (2011) "Performance Comparisons and Improvements of Channel Coding Techniques for Digital Satellite Broadcasting to Mobile Users," IEEE Transactions On Broadcasting, Vol. 57, No. 1.
- [9] Y. Alafta, P. Johnson (2012) "High performance of OFDM system for digital video broadcasting," International Journal of engineering Trends and Technology, Vol. 4.
- [10] Edmond Nurellari, Erhan A. Ince (2012) "Image transmission over Gilbert-Elliot and ITU fading channel using DVB-T2 channel coding and QPSK-OFDM," IEEE Signal Processing and Communications Applications Conference(SIU).

- [11] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand (2012) "Overview of the High Efficiency Video Coding (HEVC) Standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22, No. 12.
- [12] Nicolas, Cornille, Matthieu Crussiere, Jean Francois, Helard (2012) "Performance of DVB-T2 system in a single frequency network: Analysis of the distributed Alamouti scheme," Institute for Electronics and Telecommunications of Rennes (IETR) INSA.
- [13] Aleksandar Sugaris and Irini Reljin (2012) "DVB-T2 technology improvements challenge current strategies planning of Ubiquitous media networks," EURASIP Journal on Wireless Communications and Networking.
- [14] Doaa H Sayed, Maha Elsabrouty and Ahmed F Shalash (2013) "Improved synchronization, channel estimation and simplified LDPC decoding for the physical layer of the DVB-T2 receiver," EURASIP Journal on Wireless Communications and Networking.
- [15] K.Aperna, R.Divya Bharathi (2013) "MIMO based advanced transmission in DVB-T2," International Journal of Science and Research (IJSR) ISSN: 2319-7064.
- [16] Yasir Rahmatallah, Seshadri Mohan (2013) "Peak-To-Average Power Ratio Reduction in OFDM Systems: A Survey and Taxonomy" IEEE Communications Surveys & Tutorials.
- [17] N.S. Sugiharto, Iskandar, T. Hendrawan, and N. Rachmana (2015) "Mobile TV Interactive in DVB-T Broadcast Network Hybrid with Wi-Fi," IEEE Comm.
- [18] Ladislav, Lukas Klozer, Ondrey Kaller, Jiri sebesta, Martin slannia, Tomas Kratochvil (2015) "Study of co-existence between indoor LTE femtocell and Outdoor-to indoor DVB-T2 lite reception in a shared frequency band," EURASIP Journal on Wireless Communications and Networking.
- [19] Jong Gyu Oh, Yong Yu Won, Jin Sub Seop Lee, Joon Tae Kim (2016) "A convergence broadcasting transmission of fixed 4K UHD and mobile HD services through a single terrestrial channel by employing FEF multiplexing technique in DVB-T2," Department of Electronic Engineering.

- [20] ETSI EN 302 755 V1.3.1"Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)".
- [21] searchmobilecomputing.techtarget.com/definition/Digital-Video-Broadcasting.
- [22] ETSI TS 102 831 V1.2.1 "Digital Video Broadcasting- Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2)".
- [23]https://www.altera.com/solutions/partners/partner-profile/commsonic-ltd/ip/dvb-t2-modulator.html.