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ABSTRACT 

“Black and White is abstract: colour is not. Looking at a black and white photograph, you are 

looking at a strange world”- Joel Sternfeld 

 

Sparsity has evolved as an efficient technology, to make our system economically 

sound, in respect to the design complexity and computational cost. In practice, one often comes 

across systems having sparse impulse response. One example, of such systems is the network 

echo channel, which has a very small active region out of the total echo response,  thus 

removing the redundant coefficients. For most of these systems, the impulse response is not just 

sparse, but the degree of sparsity varies with time and context. A large number of experiments 

have demonstrated, that for an FIR filter the sparsity of filter coefficients is highly related to its 

filter order. The intent of this research is to provide an insight into the sparseness of the FIR 

filters, which will thereby provide cost effective solutions with reduced implementation 

complexity. First a linear-phase FIR filter is designed with the help of Haar wavelet method, 

after which the diverse attributes are calculated, to comment on the computational complexity. 

The second method is WLS, through which the filter coefficients are procured, and after that 

different algorithms are employed to make the filter quotients sparse. The various attribute 

values such as 𝑙o-norm, 𝑙1-norm, 𝑙2-norm, and 𝑙∞-norm are computed. The analysis is done on  

the basis of these attributes to comment on the computational complexity associated with the 

filter design. Experimental results depict which algorithm worked efficiently in the design 

procedure of the filter. 
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___________________1__________________ 
  INTRODUCTION 

“The last thing that we find in making a book is to know what we must put first.” -Blaise Pascal    

 

 

n this era, signal processing is a qualifying technology that circumscribe the underlying 

theory, applications, algorithms, experimentation, formulation utilized for the processing 

or transmission information contained in plethora of diverse physical, figurative, or intellectual 

formats predominately designated as signals. It employs numerical, statistical, computational, 

heuristic, linguistic depiction, concoction, and methodologies for representation, modeling, 

analysis, synthesis, extraction, recovery, sensing, acquisition, learning, or security. Digital 

signal processing became a traditional method of filtering signals, and the kindred hypothesis of 

discrete-time systems may frequently be utilized in a series of disciplines related to science and 

technology. Furthermore a lot of applications associated with DSP came into picture, such as, 

analyzing biomedical signals, picture processing, seismic signal analysis and audio analysis. 

A signal emanates information, and the grail of signal processing is to extricate useful 

details fetched by the signal. Signal processing involves the numerical entitlement of the signal 

and the algorithmic manoeuvre performed to extricate the details contained in it. The prompt 

progress of science and engineering relies on the eloquent breakthrough in digital system 

technology and integrated circuit manufacturing.  

In the year 1970, eminent pace digital systems were rapidly prospered and they were 

procured for managing the digital description of electrical waveforms. Accordingly, it became 

plausible to employ the simple established theoretical ideas of Fourier analysis, waveform 

sampling, Z-transforms, etc., in the delineation of digital filters. Consequently, with the 

development of computer technology the digital filtering of signals became a pragmatic reality. 

In the year 1965 the algorithm written by Cooley-Tukey got published, thereby promising an 

I 

https://en.wikipedia.org/wiki/Enabling_technology
https://en.wikipedia.org/wiki/Algorithms
https://en.wikipedia.org/wiki/Information
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essential contribution to the blooming of DSP field. Another noteworthy benefaction to the 

early procurement of digital filters was forged by James Kaiser, who used the concept of 

bilinear Z-transformation for delineating the digital filters. Nevertheless, these weren’t the only 

quintessential contributions, and form the beginning of mid 60s many benefaction to R & D of 

digital filters was been published. A signal is a ramification of independent quotients such as 

time, position, temperature, pressure and distance.  

With the evolving rate of computer technology, it is fairly possible that many traditional 

CT filter systems will get exchanged by identical digital filter systems. Also as the IC-

technology is evolving fast, thus the computational cost to develop digital filters will fairly get 

reduced. This decrease in the designing cost will render more practical applications in digital 

signal processing. Credence is reckoned to this prophecy when one considers the innate merits 

of digital filters, specifically 

i. can manage low frequency signals; 

ii. frequency response attributes can be formulated to approximate nearly to the 

ideal; 

iii. they can be procured with negligible insertion loss;  

iv. plausible linear phase characteristics; 

v. accuracy of filter can be fairly controlled; 

vi. Cost and availability is generally not an issue. 

 Digital filters are very expensive than an equivalent analog filter because of their 

increased complexity, but they actually make practical many designs, that are impractical or 

intractable as analog filters. When employed in the context for real-time-analog systems, digital 

filters sometimes have complicated latency (the contrast in time of the excitation and the 

response) due to the associated analog-to-digital and digital-to-analog transformation and anti-

aliasing filters, or may be due to delays in their implementation. A plethora of mathematical 

methods are employed to visualize the behavior of a digital filter. Many of these techniques are 

included in the filter design, which form the specification while the propounding of the filter. 

Typically, one characterizes filters by calculating how they will respond to a simple input such 

as an impulse. One can then extend this information to compute the filter's response to more 

complex-signals.

https://en.wikipedia.org/wiki/Analog-to-digital
https://en.wikipedia.org/wiki/Digital-to-analog
https://en.wikipedia.org/wiki/Anti-aliasing_filter
https://en.wikipedia.org/wiki/Anti-aliasing_filter
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The digital systems and analogous digital equipment of previous decades were 

extensive and expensive and, as a concomitant, their employment was scarce to comprehensive 

disconnected scientific operation and business related applications. Accordingly innumerable 

signal processing errand that was traditionally accomplished through analog systems is 

perceived today by cheap and usually more dependable digital hardware [1]. 

1.1 Filters used in Signal Processing 

Digital filters render a crucial mantle in DSP. Candor to be stated, their exceptional 

performance is one of the prime bases that DSP has transpired to be so favored. Filters possess 

two necessities: signal severance and signal refurbishment. Signal severance is entailed when a 

signal is actually adulterated with interference, Babel, or divergent signals. Such as, envisage a 

contrivance for gauging the electrical movement of an infant's heart (EKG) whilst still in 

womb. The crude signal will doubtless be debauch by the respiring and heartbeat of the mother. 

A filter perchance entailed to dismantle these signals with the key that they might be solely 

dilapidated and gauged. Signal refurbishment is entailed when a signal has been contorted 

somehow. Such as, an aural recording made with pauperized apparatus might be exuded to 

better enact the phonics as it legitimately occlude. Another illustration is the deblurring of an 

icon accomplished with an abhorrent concentrated lens, or a wobbly camera.  

 It is typical in DSP to enunciate that a filter's excitation and response signals fall under 

time domain. This is reckoned on the fact that the signals are usually composed by sampling at 

frequent span of time. Nevertheless, by all account this is not the only way sampling can occur. 

Another familiar process is doing sampling at equal intervals in space. This can be justified by 

considering an instance, such as, by taking successive readings from a muster of strain sensors 

clinked at one cm augments along the extent of an aircraft wing. Numerous disparate domains 

are plausible; nevertheless, time and space is well renowned. When you come across the phrase 

time domain in DSP, it actually refers to samples presumed control time. Each linear filter 

consists of a spectrum, i.e. an amplitude response and a frequency response. Each of these 

responses embraces cease information related to the filter, though in an interspersed form. For 

instance if one out of three is cited, the rest are reconciled and is meticulously calculated. Every 

representation is crucial, contrary to the fact that they portray how the filter will respond under 

various circumstances. The simplest form to enunciate a digital filter is by convolving the
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excitation signal with the digital filter's impulse response. Almost every possible linear filter 

can be contrived in this style.  

1.2 FIR Filter  

Filters can be categorized in various divergent genuses, depending on what benchmark 

are employed for classification. The two prime kind of digital filters are finite impulse response 

digital filters (FIR filters) and infinite impulse response digital filters (IIR filters). Both types 

possess some merits and demerits that must be diligently reviewed while delineating a filter. 

Apart from this, it is mandatory to consider all elementary attributes of signal to be sieved since 

they are prime factors while deciding which filter to use. Furthermore in most instances, there 

is solely one characteristic that truly matters and it is irrespective of the condition that filter 

possesses, it is checked whether such specifications relate to the linear phase symptoms or not. 

Speech signal, for instance, can be dealt in systems possessing non-linear phase attributes. The 

phase attributes of speech signal is not of concern and as such may be abandoned, which 

culminates the probability to wield much spacious ambit of systems management. 

There are instances where the phase attributes are of real concern. Typical examples 

include signals that are acquired from diverse sensors in industry. Therefore, it is mandatory 

that a filter must possess linear phase characteristic preventing the loss of essential information. 

When a signal that is to be filtered is scrutinized in such a way, it is facile to determine 

the perfect kind of digital filter that is to be employed. Consequently, if prime concern is the 

phase attributes, FIR filters should be employed since they possess linear phase characteristic.. 

FIR filters are termed as the digital filters possessing finite impulse response. Another 

abbreviation that is commonly used for FIR filters is non-recursive digital filters since they do 

not own any feedback (a recursive section of a filter), although recursive algorithms may be 

utilized for FIR filter accomplishment. 

FIR filters are delineated using divergent methods, but mostly are established through 

ideal filter approximation. The grail is not to attain ideal attributes, as it is difficult anyway, but 

to attain adequately good attributes of a filter. The FIR filter transfer function resembles the 

ideal with the increase in filter order, thus increasing complexity issues and quantity of duration 

required for processing input specimens of a signal.  
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1.3 Types of Filters  

1.3.1 Low-Pass 

A LPF advances low frequency quotients, and attenuates components with frequencies 

more than filter's cutoff frequency. Furthermore, the diverse approximations to the impervious 

ideal LP amplitude features take divergent forms, some having a continuous negative slope i.e. 

being monotonic, and others possessing ruffle in the passband along with the stopband. LPF are 

exploited wherever the high frequency quotients must be eliminated from a signal. An instance 

may be a light-sensing appliance employing a photodiode. 

1.3.2 High-Pass 

The converse of the LPF is the HPF, which attenuates signals lying under its cutoff 

frequency and allowing other frequencies to pass through. A high-pass filter can be made by 

rearranging the components. HPF is employed as an enactment, requiring the impairment of 

low-frequency quotients. An instance where HPF is employed is high-fidelity loudspeaker 

systems. In concurrence with a LPF for the low-frequency driver (and similarly different filters 

for various other drivers), the HPF is utilized as a chunk of what is called "crossover network". 

1.3.3 Bandpass 

There are five vital filter kinds (bandpass, notch, low-pass, high-pass, and all-pass). The 

amount of feasible bandpass response attribute is infinite; still they all share indistinguishable 

rudimentary form. The meander in the diagrams of bandpass may depict an "ideal" response, 

with absolutely persistent gain interior of the passband, zero gain exterior of the passband, and 

brisk partition between the two. This response attribute is intractable to accomplish in general, 

though it may be estimated to proliferate degrees of exactness by factual filters. On the 

contrary, some bandpass responses enunciates eminent mellow, other have ruffle (gain 

variations) in their passband and even in stopband.  

The BPF are predominantly exploited as a section of wireless communicator and recipient. The 

prime concern of such filters in a communicator is to bind the bandwidth of the response signal 

to the band allotted for transmission. This averts the communicator from impeding with variant 

stations. At the recipient end, a bandpass filter permits signals within a desired span of
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frequencies to be perceived or deciphered, while averting signals of unfavorable frequencies to 

get through. Apart from electronics and signal concoction, one exemplar of band-pass filters 

usage is dedicated to atmospheric sciences. 

1.3.4 Notch or Band-Reject 

A filter with efficaciously obverse purpose of the BP is the band-reject or notch filter. 

Notch filters are employed to eliminate undesirable frequency components from a signal, while 

other frequencies are left less affected. BR filters are universally exploited as a section of 

communication, instrumentation, control, and bio-remedial engineering, besides an emcee of 

divergent fields, to abolish clamor and power line intervention.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Frequency responses of the filters 

1.4 Sparse FIR Filter 

 What is meant by the term sparse? This question is most important because of its 

significance in the real world. The term sparse is referred as the measurable property of a 

vector. It means that a particular vector is in sense small but actually the length of the vector is
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not our real concern. Instead in Sparsity the number of non-zero entries in the vector is most 

important. Here the 𝑙0-norm is used to measure the sparsity of a vector [2]. While working with 

sparse vectors a lot of advantages are gained. A typical example is calculations involving 

multiplying a vector by a matrix will take less computational time in general if the vector is 

sparse. Also sparse vectors require less memory when being stored on a computer because here 

the space is required only to record the position and value of the entries. Over a decade now, 

Sparsity has evolved as one of the growing phenomenon in a wide range of signal-processing 

applications such as feature extraction, source separation, compressive sensing etc. Sparsity has 

also been a prevalent source in many theoretical and practical applications of mathematics such 

as statistical estimation, harmonic analysis and theoretical signal processing [2]. This area of 

research has grown very fast in recent years, with hundreds of interested researches, various 

workshops, sessions, and conferences, and an exponentially growing number of papers. 

Modeling of sources is the prime concern in signal and image processing. Initiating a 

good and efficient model helps one to accomplish various tasks such as denoising, restoration, 

interpolation and extrapolation, detection, recognition etc. [9]. Here Sparsity is the model which 

leads to fascinating and extraordinary results because of its theoretical base, superior 

performance, its versatility and flexibility in serving various data sources which make all the 

above signal processing tasks simple and clear. 

At the heart of this model lies a simple linear set of equations, which is studied in linear 

algebra. A full-rank matrix ‘𝐴’ with number of rows less than the number of columns generates 

an underdetermined system of linear equations 𝑏 = 𝐴𝑥  having infinite many solutions. The 

main objective is seeking its sparsest solution, i.e., a vector with the fewest nonzero entries [9]. 

Filters are employed to remove the unwanted glitches from the signal. This Unwanted 

constituent present in the signal is termed as noise. Thus the removal of the noise from the 

signal provides the accurate information of the system. FIR filters are enormously used in a 

wide range of applications on signal processing and communications [10]. If a set of 

specifications are given, traditional design method finds an FIR filter whose frequency response 

or magnitude response can best approximate the ideal one under some conditions. It is required 

to cast a convex optimization strategy and formulate efficient methods to overcome FIR filter 

design problems [11], [12]. Another problem faced by FIR filter is implementation complexity. 

With the rapid growth in sparse representation of signals, designers pay attention on designing
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 a filter with a majority of coefficients being zero. Designing a Sparse FIR filter is our main 

concern since it helps in lowering the implementation complexity. 

1.5 Type of Systems 

1.5.1 Underdetermined Linear Systems 

Many essential technological issues entail panacea to underdetermined framework of 

linear equations, i.e., mode of linear equations possessing fewer mathematical equations than 

unknowns. Instances appear in linear filtering, array signal handling, and inverse issues. For 

underdetermined framework of linear equations, existence of any solution, relates to infinitely 

many solutions. Thus, it is desired in numerous applications, “simplest” solution is greatly 

acceptable. This solution is grasped from the minimalist postulate of Occam’s razor. For 

instance, if the attributes of a system are being gauged then among all systems the one that 

describe the data competently, i.e. the system with the lesser amount of parameters is most 

prudent. The system with the minimum amount of attributes is, in reality, the sparsest solution. 

Thus in this exemplar, one is searching for the sparsest solution where coherence corresponds 

to sparseness. 

Consider a matrix 𝐴 ∈ 𝑅𝑛∗𝑚 with𝑛 < 𝑚, and define the underdetermined linear system 

of equations𝐴𝑥 = 𝑏. In particular this system has more number of unknowns than equations, 

and thus it has either no solution owing to the condition that ‘b’ is not in the span of the 

columns of the matrix A, or infinitely many solutions [2]. In order to overcome this anomaly of 

having no solutions, we assume A to be a full-rank matrix, implying that its columns span the 

entire space 𝑅𝑛. 

Several applications related to science and nature is imitated through underdetermined 

linear system which is designated using fewer expressions than unknowns. Therefore, realizing 

a solution for an underdetermined linear system is a predominant subject for a plethora of areas 

and applications. Some of the concerned domain include: Compressive Sensing (CS) [3, 4, 5, 6, 

7], error correction [8], least distance issues in coding theory, and numerous inverse problems. 

In many applications of signal and image processing we come across a lot of problems that are 

been formulated by an underdetermined linear systems of equations. 



Chapter 1 Introduction   Underdetermined Linear Systems 

Page | 9  
 

A typical example of this is from the field of image processing, where an unknown 

image faces a blur and scale-down situation, and the outcome obtained is lower quality and 

smaller image b. The matrix A is used as an asset for the degradation operations. Since the main 

grail is to reconstruct the original image x from the given measurements b. Although there are 

infinitely many possible images x that can possibly explain b but there is only little that may 

look better than others. 

 

 

 

 

 

 

 

 

Fig.1.2 Sparse solution of Underdetermined Linear System  

1.5.2 Overdetermined Linear Systems 

A system, in which the amount of equations is more than the number of unknowns, is 

known as an over determined system. In the linear case, such a system is given by a 

rectangular (𝑚 × 𝑛)matrix,𝑚 > 𝑛, where m is the number of equations and n is the number of 

unknowns. The main question for an over determined system is its solvability, expressed by 

compatibility conditions. 

For instance, an over determined system of linear algebraic equations 

∑ 𝑎𝑖𝑗
𝑚
𝑗=1 𝑥𝑗   1 ≤ 𝑖 ≤ 𝑛            (1.1) 

is solvable if and only if the rank of the matrix𝐴 = |𝑎𝑖𝑗|. 

          

   

           : non-zero 

m 

n 

X n = 

  x 

b 

m 

Matrix A 
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1.6 Regularization 

 As being discussed in the above example of image processing and a lot others that 

undertake the same formulation, the ultimate desire is of a single solution out of the infinitely 

many solutions. An additional criterion is needed for achieving the same and one of the best 

used ways to do so is regularization. In this a function 𝐽(𝑥) evaluates the desirability of a 

would-be solution 𝑥  and giving preference to the smaller values. A general optimization 

problem (𝑃𝑗) is defined as  

(𝑃𝑗):     min
𝑥

𝐽(𝑥) Subject to  𝑏 = 𝐴                              (1.2) 

The squared Euclidean norm ||𝑥||2
2 is the best choice of 𝐽(𝑥). Using the Lagrange multiplier we 

define the lagrangian as  

 £(𝑥) = ||𝑥||2
2 + 𝜆𝑇(𝐴𝑥 − 𝑏),                                                                        (1.3)                 

Where 𝜆 being the Lagrange multiplier for the constraint set. Now we take the derivative of 

£(𝑥)  with respect to  𝑥, we obtain the requirement  

 
  𝜕£(𝑥)

𝜕𝑥
= 2𝑥 + 𝐴𝑇𝜆                             (1.4) 

Thus an optimum solution is obtained as 

  𝑥𝑜𝑝𝑡 = −
1

2
𝐴𝑇𝜆                                                    (1.5) 

Putting this solution into the constraint 𝐴𝑥 = 𝑏 leads to 

  𝐴𝑥𝑜𝑝𝑡 = −
1

2
𝐴𝐴𝑇𝜆 = 𝑏 →  𝜆 = −2(𝐴𝐴𝑇)−1𝑏.                     (1.6) 

Substituting this in Equation (1.4) gives the well-known closed-form pseudo-inverse solution 

  𝑥𝑜𝑝𝑡 = −
1

2
𝐴𝑇𝜆 = 𝐴𝑇(𝐴𝐴𝑇)−1𝑏                                            (1.7)                    

Note that since we have assumed that 𝐴 is full-rank, the matrix 𝐴𝐴𝑇 is positive-definite and 

thus invertible. 

1.7 Sparse Decomposition 

 Consider a linear set of equations 𝑏 = 𝐴𝑥, where 𝐴 is an underdetermined n x m matrix 

with n < m and  𝑏 ∈  𝑅𝑛 ,𝑥 ∈  𝑅𝑚. ′𝐴′ is called as the dictionary or the design matrix which is 

been provided. The problem lies in the estimation of the signal x which is subjected to a
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constraint that it is sparse. Sparsity implies that only a few components of 𝑏 are non-zero and 

the rest are zero. Furthermore, b can be decomposed as a linear combination of only a few 𝑛 ×

1 vectors in 𝐴, named atoms. ′𝐴′  itself is an over complete matrix since n < m, thus termed as 

the basis.  

The sparse decomposition problem is represented as following, 

 min
𝑥∈𝑅𝑛

||x ||0 such that 𝑏 = 𝐴𝑥                 (1.7) 

Where ||𝑥 ||0 = #{𝑖: 𝑥𝑖 ≠ 0, 𝑖 = 1, … . , 𝑚} is a pseudo-norm𝑙0 , which counts the number of 

non-zero components of 𝑥 = [𝑥1, … . , 𝑥𝑚]𝑇 . This is NP-Hard problem and we can obtain its 

convex form by taking the standard 𝑙1 norm instead of the 𝑙0 norm. But there are conditions set 

for obtaining sparsity using the 𝑙1 norm. 

1.8 Need of Sparse Approximation 

 Finding a sparse approximation is far more than just an abstract mathematical problem. 

Sparse approximations have been recognized due to its use in wide variety of practical 

applications. As it is known that vectors are required to represent a large amount of data which 

can be difficult to store or transmit? By using the method of sparse approximation the amount 

of space needed to store the vector would be reduced to a fraction of what was originally 

needed. Sparse approximations can also be used for analyzing data by the view how column 

vectors in a given basis come together to produce the data. Areas of science and technology 

have immensely benefited from the advancement involving sparse approximations. Sparse 

approximations are used in denoising, in painting, feature extraction and gene micro array 

analysis. The prominent nature of sparse approximations has prompted great interest and a lot 

of researches have been made out of it. The sparse representation terminology is used in 

representative methodology of the LRBM and is proven an extraordinary powerful solution to a 

plethora of application fields, especially in signal processing, image processing, machine 

learning, and computer vision, such as image denoising, de-blurring, in-painting, image 

restoration, super-resolution, visual tracking, image classification and image segmentation.  
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1.9 Haar Wavelet 

The Haar wavelet is progression of rescaled functions which cooperatively form 

a wavelet  basis. Wavelet analysis resembles Fourier analysis as it allows a target function over 

a span to be expressed in the form of an orthonormal basis. Haar wavelet is a simplest form of 

DWT. The Haar sequence is recognized as the first known wavelet basis and extensively used 

as a teaching example. 

 Haar wavelet generates basis vectors for wavelet and scaling at different levels. In short 

Haar wavelet gives sum and difference after decompositions performed. The inverse Haar 

operation is very easy because it is orthonormal in nature and it can be explained by 

𝐻−1 = 𝐻𝑇                 (1.8) 

Where H is a transformation matrix and it possess columns as basis vector. 

The Haar wavelet possesses notable properties: 

 Any CT real function with compact support can be coarse-grained uniformly by 

the linear combination ∅𝑡 and their scaled versions. This expands to the function 

spaces, where the function considered can be approximated by continuous 

functions. 

 Any CT real function on [0, 1] range can be uniformly approximated on [0, 1] 

by the linear combination of wavelet function and their shifted version. 

 The wavelet function is orthogonal and orthonormal in nature. 

1.10 Weighted Least Square 

 Weighted least square method, is employed to display the characteristics of the random 

errors in any model. This method can be employed, with the functions having either linear or 

non-linear parameters. It toils by utilizing extra non-negative constants and weights. One of the 

main issues, related with WLS, is designing FIR filters with reduced computational complexity. 

By elucidating a linear operator, that is influenced, on the coefficient vector of the filter, the 

optimality constraint of the design issue is represented as a linear operator equation.  

***** 

https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Orthonormal_basis
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 LITERATURE REVIEW 

“I may not agree with what you say, but I'll defend to the death your right to say it”  

-Mr.Voltaire 

 

n the introduction to sparse FIR filter, the main objective underlined is to learn the basic 

fundamentals behind it and what all are the benefits regarding the designing of such a 

filter. Researchers developed various methods and used different algorithms in achieving the 

sparse version of the filter with an ease. Thus this section includes the researches carried out by 

far in order to design an efficient Sparse FIR filter. 

Aimin Jiang, Hon Keung Kwan, Yanping Zhu, Xianfeng Liu, Ning Xu and Yibin Tang 

(2015): In this tract, two novel algorithms are employed for optimizing the filter order and the 

sparsity of filter coefficients. The original sparse filter design problem is regularized in the 

objective function by using an extra term to penalize large filter lengths. The IRLS algorithm is 

employed with suitable moderation to resolve both weighted lo-norm minimization issue. 

Compared to traditional sparse FIR filter, the above proposed algorithm isolate the greedy 

strategy which leads to better designs in terms of the number of nonzero coefficients and the 

effective filter order [13].  

Yuhua Yang, Wei-Ping Zhu and Dalei Wu (2015): A new design technique is presented in 

this tract for delineating a sparse FIR filter. Since it is known that computational cost related to 

digital filter design greatly depends upon the amount of filter quotients, thus filters with sparse 

quotients are of appreciable engrossment. Here sparsity is obtained through two aspects i.e. one 

by utilizing 𝑙1  minimization stratagem and the other with approximation of sparse filter 

quotients attained through the minimax and the LS design criteria [14].  

I 
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V. Sowmya*, Neethu Mohan and K. P. Soman (2015): Image denoising based on sparse 

banded filter matrices is propounded in this paper. Since it is evident that noise is the 

quintessential element that demeans the image standards, therefore image denoising proves to 

be an efficient image enhancement technique. Here a LP-sparse banded filter matrices are 

employed for image denoising. Sparsity is considered as the prime concept in the filter 

delineation. Designed filter to denoise the image is formulated row-wise and column-wise. The 

proposed technique is examined on canonical test images liable to different noises with varying 

noise level. The potency of denoising acquired by our propounded technique is proved by the 

notable enhancement in canonical quality metric known as PSNR facilitated by the visual 

inspection [15]. 

Aimin Jiang, Hon Keung Kwan, Yibin Tang and Yanping Zhu (2014): In this tract, a novel 

method is developed to design sparse LP FIR filters. Conventional sparse FIR filter depiction 

procedure emphasize on how to increment the amount of zero-valued quotients, but overlook 

the influence of filter order on draft performance The design method focus on how to enhance 

the sparsity of filter coefficients under a set of specifications and thus describe the impact of 

filter orders on final designs. The design issue is then recasted as a lo-norm optimization, 

elucidated through an efficient method that is built on the IRLS algorithm. Thus this proposed 

method can be used to determine appropriate filter order of FIR filter automatically while 

improving the sparsity of the filter [16]. 

Aiming Jiang and Hon Keung Kwan (2013): In this exegesis, a novel algorithm for the 

delineation of sparse FIR filter is presented. The main grail about the sparse digital filter 

depiction is to lessen the non-zero filter quotients that are subjected to weighted least square 

(WLS) estimation error restraint. The propounded design procedure is inspired by IST 

algorithms, worn by the sparse and unnecessary description for signals. A comparison between 

the results obtained from the proposed algorithm and hard thresholding algorithm show that a 

much better designs can be obtained by the proposed algorithm as the original WLS design 

problem does not take the sparsity requirement into account. In future it can be applied to 

design variable fractional delay (VFD) FIR filters [17]. 
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Chien-Cheng Tseng and Su-Ling Lee (2012): In this it is delineated, the orthogonal matching 

pursuit (OMP) as the base to design the sparse constrained FIR filter. Further, two kinds of 

filters are studied. The advantages of the proposed design method are met through the tradeoff 

between sparsity of filter quotients and magnitude response errors. Numerical examples 

demonstrate the effectiveness of the propounded design method. Thus the above proffered 

method shows that it can be used in medical field to determine electrocardiogram (ECG) signal 

by neutralizing the consequence of 60-Hz power-line intervention [18]. 

Aimin Jiang, Hon Keung Kwan and Yanping Zhu (2012): In this tract, a novel algorithm is 

propounded to delineate sparse FIR filters. It is evident from the design methodology that the 

issue is exceptionally non-convex owing to the presence of lo-norm in the intended function of 

filter quotient vector. Thus an iterative procedure to find a potential sparsity pattern for the FIR 

filters is developed, which is then utilized to enumerate the end solution through the resolution 

of a convex optimization issue.  Analysis indicates that the proposed algorithm can efficiently 

and reliably deal with the 𝑙0- norm design problem with a multiple set of quadratic constraints. 

The future scope of this proposed algorithm is that it can be used to address any optimization 

task related to FIR filters [19]. 

Aimin Jiang, Hon Keung Kwan, Yanping Zhu, and Xiaofeng Liu (2012): In this tract, it is 

demonstrated that a sparse FIR filter can be propounded effectively using minimax design. It is 

capable of handling nonconvexity problem and develops an efficient iterative procedure to find 

sparse pattern. A sub problem is created in every repetition in an effortless way and we won’t 

solve sub problem directly. Rather it is expedient through their specific dual problems. The 

comprehensive iterative stratagem can coincide to optimal solution of the aboriginal draft 

problem. The actual minimax draft can then be obtained by purifying the FIR filter procured 

through the iterative procedure [20]. 

Dennis Wei and Alan V. Oppenheim (2011): In this exegesis, we propounded an algorithm 

established on branch-and-bound technique for delineating maximally sparse filters subject to a 

quadratic restraint on filter performance. Also an optimization method is utilized that either 

assure an optimal solution or furnish a sparse solution. Also to minimize the complexity of 

branch and bound, diverse techniques are initiated for limiting the filter’s computational cost. 
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The results obtained show that the complexity is reduced substantially by employing diagonal 

relaxations. The techniques in this paper make optimal design more accessible not only to the 

filter designers but also to developers of design algorithms. Future work is directed at using 

more sophisticated implementations of the branch-and-bound algorithm [21]. 

Thomas Baran, Dennis Wei and Alan V. Oppenheim (2010): In this tract two approaches are 

bestowed to delineate sparse FIR filters. Conventionally the delineation of discrete filters 

measured the computational cost on the basis of the span of impulse response. As it is known, 

that the system complexity greatly depends on the arithmetic operations been carried out while 

designing it, thus non-zero quotients are a metric of concern, which is effectively reduced, 

thereby omitting the arithmetic operations carried out on zero-valued quotients. This enhances 

the computational requirements a lot. First approach utilizes an impulse response which is 

successively thinned according to predefined rules and the remaining coefficients are 

recomputed after each thinning to minimize the error in the frequency domain. The second 

approach uses a minimal 1-norm to determine which coefficients are constrained to have zero 

value in subsequent optimizations aimed at increasing sparsity. This design method can be used 

to reduce the area and power consumed while implementing an Application Specific Integrated 

Circuit (ASIC) [22]. 

Wu-Sheng Lu and Takao Hinamoto (2010): In this tract, a new visualization aroused in the 

authors’ mind to examine half-band sparse FIR filters. Issue related to sparsity in the 

delineation of filter is discussed, along with its importance. Further, designing of digital filter 

with sparse impulse response is portrayed; owing to the fact that efficient implementation is 

attained with sparse version of the filter respective to its non-sparse analogue. Also there exist 

several techniques like frequency response masking technique that guarantees an efficient 

implementation of FIR filters [23]. 

Wu-Sheng Lu, Takao Hinamoto (2010): In this exegesis it is demonstrated that by employing 

a sparsity-assisting norm in a two-phase convex optimization scheme, a 2-D FIR filters with 

sparse coefficients can be prospered. Simulation reviews are dispensed to manifest that with 

suitable options of design attributes, predominantly the values of mew (µ) and epsilon (εt), 

optimal LS and minimax filters liable to a target quotient sparsity K, can be procured to 
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surmount their analogue nonsparse counterparts. A hitch of the classification of sparse filters 

measured in this tract is their colossal group delay respective to their nonsparse analogue. 

Therefore, studies should be carried out for sparse digital filters possessing low group delay. It 

is also perceived through the experiments that whilst optimized sparse filters render refined 

performance compared to their nonsparse analogue, the quantity of enhancement proliferates 

from case to case [24]. 

Allen Y. Yang, S. Shankar Sastry, Arvind Ganesh and Yi Ma (2010): This exegesis has 

given an insight to the five fast 𝑙1-minimization techniques, i.e. homotopy, GP, IST, PR, and 

elevated Lagrange multiplier. The algorithms are analyzed on the premise of complexity 

parameter pertaining to attain sparse signals and to strengthen the performance. In general the 

special CAB model can be used in applications like robust face recognition on real training 

images, using an already established sparse characterization framework that identifies or 

recuperate human characteristics from facial pictures that get ostentatious by occlusion, 

illumination alteration and facial camouflage [25]. 

Oscar Gustafsson, Linda S. DeBrunner, Victor Debrunner and Hakan Johansson (2007): 

In this exegesis, proposed design of linear-phase FIR filters is done with the use of few non-

zero multiplier coefficients. Relaxed specifications are formulated to design filters close to half-

band filters. It is noticed that the amount of non-zero filter quotients is diminished with the 

propounded design methodology. An increase in passband ripple is utilized to decrease the 

number of multiplications. For future work it is worth noticing that minimizing the 𝑙1- norm of 

the solution to a set of underdetermined equations will result in efficient sparse solution [26]. 

Joel A. Tropp and Anna C. Gilbert (2007): In this exegesis, it is manifested theoretically and 

factually that OMP can genuinely recuperate a signal with m nonzero entries through a certain 

random linear quantification. It is also inferred that the OMP is an effective alternative to BP 

for signal recovery from random measurements. There is a significant increase in performance 

obtained from OMP algorithms and it provides faster and easier way to implement problems for 

signal recovery [27]. 

Joel A. Tropp (2004): This paper provides an insight to the orthogonal matching pursuit 

(OMP) algorithm to solve sparse problems defined over random dictionaries. It guarantees an 
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adequate state in which both OMP and BP paradigm can recuperate the primal representation of 

absolutely sparse signal. This hypothesis proclaims that OMP and BP prosper for each sparse 

excitation signal occupied from a plethora of dictionaries. Also a progressive coherence 

function is established to fathom the rank of incoherence. These examinations amalgamate all 

recent outcomes on BP and expand them to OMP. Also the paper provides a sufficient 

condition under which OMP can identify atoms from an optimal approximation of a non-sparse 

signal. Therefore, it asserts that OMP quantifies to be an approximation algorithm under any 

sparse representation subject to a quasi-incoherent glossary [28]. 

Davide Mattera, Francesco Palmieri and Simon Haykin (2002): In this tract, a novel 

algorithm is propounded for sparse FIR filter design. Here the equivalence between the 

considered problem and the problem of determining a sparse solution of a linear system of 

equation is used as the base for design procedure. It is contrary to the earlier design methods 

that were employed that utilized brilliant forage over all plausible anatomy for sparse filter. The 

proposed method provides a good compromise between the computational complexity and the 

performance of the obtained filter [29].  

Young-Seog Song and Yong Hoon Lee (1997): The branch and bound algorithm used in this 

exegesis depicts an efficient manner to discover the deliberately zeroed tap positions and 

enables us to delineate a superlative sparse FIR filter under disparate optimization criterions. 

Future work of branch-and-bound algorithm is that it can be used to design unequally spaced 

antenna arrays. Design exemplar manifest that the propounded procedure entail less 

computation cost than the traditional optimization method [30]. 

John W. Adams and Alan N. Willson, Jr. (1983): In this exegesis, it is inferred that 

equalization has been quintessential in specific circumstances due to discoloration in diverse 

segments of a system. Here it is forced to remunerate for flawed amplifiers, transmission lines 

and so on. Furthermore, it is propounded to intentionally employ equalization concept in order 

to deal with the matter of computational complexity related to digital filters. It is manifested 

that at the cost off a minor increment in the quantity of delays, a cardinal diminution in the 

amount of multipliers and adders can be procured. Only linear phase FIR digital filters are 
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reviewed; evidently the technique could also be enacted on IIR filters which can be an area of 

exploration [31].  

***** 
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___________________3__________________ 

SCOPE OF STUDY AND OBJECTIVES 

“The formulation of the problem is often more essential than its solution, which may be merely 

a matter of mathematical or experimental skill.”            -Albert Einstein 

 

n the last chapter, after analyzing the parameters like filter order, number of zero value 

coefficients etc., researchers found different methods for designing sparse FIR filters. 

Algorithms like matching pursuit, orthogonal matching pursuit and IRLS method emerged 

as a solution to design the sparse version of an FIR filter. The performance on the basis of 

reduced filter coefficients that were achieved after applying these algorithms enhanced it to a 

large extent. Also the complexity issue that is faced while designing the linear phase FIR filters 

got minimized, after the design of the sparse version of the filter. In this research, WLS error 

constraint is used to delineate the FIR filter which is then made sparse using different greedy 

algorithms to examine all the restraints that lead to an efficient design of sparse FIR filter. 

3.1 Scope of Study 

 Over a decade of years, signal processing domain was implementing FIR filters i.e., 

finite impulse response. There are numerous techniques accessible for delineating linear phase 

FIR filters. Every propounded method has its own merits and demerits. In various signal 

processing applications like noise cancellation, equalization FIR filters are implemented at high 

sampling rates, but this increases the complexity of the system because of large number of non-

zero coefficients. Due to this Sparse FIR filters came into existence because of less number of 

non-zero valued coefficients and finally reducing the system complexity. These filters are based 

on Linear Programming. Sparsity of the filter quotients is related to the order of the filter i.e. as 

the order of the filter is increased the amount of sparsity is enhanced. In sparse FIR filters 

arithmetic operations are less which reduces the hardware requirement and this leads to less 

I 
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complexity and reduced computation cost. By optimizing filter length an efficient sparse FIR 

filter can be designed and various algorithms like IRLS, IST etc. try to optimize the filter length 

to reduce complexity. With the help of above knowledge, one can delineate two dimensional 

filters easily by employing of sparsity. 

3.2 Objective of the Study 

     The use of sparsity led to many reforms in the implementation of the linear-phase FIR 

filters. This designing of the filter was useful in many ways, but below are the underlying 

objectives that are to be achieved in this dissertation:   

i. Is to reduce the computational cost by decreasing the implementation complexity.  

ii. Generally for an FIR filter the Sparsity of filter coefficients is directly related to its filter 

order. While applying Sparsity to the FIR filter, if the filter order is high, less is the 

number of multiplication and additions to be done due to the presence of more zero 

valued coefficients. So a novel method is employed to achieve the lesser number of 

multipliers and adders in the design of the FIR filter.  

iii. Improve design efficiency along with algorithm’s stability as it owns to be a critical 

factor while delineating a filter. 

iv. Thus the underlining objective for delineation of sparse FIR filter is to provide a 

tradeoff between the two constraints i.e., implementation complexity and filter order. 

3.3 Workplan  

Different FIR filters are there in use but are implemented at a high cost. So sparsity has 

evolved which is an effective way to formulate results related to study FIR filters. 

Implementation complexity and computational cost is reduced to considerable amount by using 

the sparse algorithms. First, the delineation of sparse FIR filter was accomplished by employing 

the Haar wavelet method. Various factors are studied on the basis of which it is rendered that 

the sparse FIR filter does reduce the computational cost by minimizing the implementation 

complexity.  

At present, sparse FIR filter was accomplished through WLS error constraint for 

procuring the filter coefficients and then subjected to different algorithms to get the sparse 
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version of the filter. Also diverse factors are computed for each algorithm that is utilized while 

delineating the sparse FIR filter. The work plan that was carried out throughout this research is 

shown with the help of below flowcharts depicted in the fig.3.1 and fig.3.2. This was the whole 

approach that was carried out from the February of 2016 till the end of April 2017. 
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Fig.3.2 Designing of sparse FIR using Haar Wavelet 
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Fig.3.3 Designing of sparse FIR filter using WLS 
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__________________4___________________ 

RESEARCH METHODOLOGY 

“Get the habit of analysis; analysis well in time enables synthesis to become your habit of 

mind.”                             -Frank Lloyd Wright 

 

he objectives as underlined in the foregoing chapter i.e. minimization of the 

implementation complexity is been analyzed and fulfilled through the diverse methods 

employed. As it is mentioned in introduction, that while designing an FIR filter one need 

consider the ways by which the design procedure does not turn out to be cumbersome resulting 

in the increase of computational cost. Various studies are going on in the current period to 

overcome these problems. A perfect solution to this problem is done, by introducing the 

concept of sparsity, in the design procedure of the filter.  

4.1 Designing of Sparse FIR using WLS  

 The algorithms formulated are analyzed and data is well assembled in order to meet the 

specifications that are standardized in the objective section. This section outlines how to 

delineate LP FIR filters established upon square error criterion. Recollect that the interpolation 

method to filter design authorizes one to identify the frequency response described only at finite 

point of instances. Nevertheless, square error criterion can contain the complete frequency 

band. Here the design methodology of FIR filter is observed through the WLS method. The FIR 

filters that reduce the square error are formulated through the linear set of equations. 

 Since it is known that a weighted integral square fallacy (i.e. l2-error) is given by the 

equation, 

  𝜀2 = ∫ 𝑊(𝜔)(𝐴(𝜔) − 𝐷(𝑤))2𝑑𝜔
𝜋

0
                                                         (4.1) 

T 
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 The weighting function plays important role by assigning additional significance to 

specific portions of the frequency spectrum. After the order ′𝑁′  of the filter is procured by 

setting the values of different attributes like passband frequency, stopband frequency etc. the 

grail is to realize the filter quotients h (n) that minimizes𝜀2. 

Recollect that for a Type-1 FIR filter, 

𝐴(𝜔) = ∑ 𝑎(𝑛)cos (𝑛𝜔)𝑀
𝑚=0                                        (4.2) 

Where 

𝑎(0) = ℎ(𝑀),                      𝑎(𝑛) = 2ℎ(𝑀 − 𝑛),          1 ≤ 𝑛 ≤ 𝑀  

In order to procure the quotients 𝑎(𝑛)  to minimize error𝜀2, the derivatives are set to zero, 

 
𝑑𝜀2

𝑑𝑎(𝑟)
= 0,   0 ≤ 𝑟 ≤ 𝑀                                            (4.3) 

After solving the above equation, the following results are obtained 

𝑉(𝑟, 𝑛) =
1

𝜋
∫ 𝑊(𝜔)cos (𝑛𝜔)cos (𝑟𝜔)𝑑𝜔

𝜋

0
                    (4.4) 

And 

𝑏(𝑟) =
1

𝜋
∫ 𝑊(𝜔)D(ω)cos (𝑟𝜔)𝑑𝜔

𝜋

0
                   (4.5)      

The derivative conditions are written as 

 ∑ 𝑉(𝑟, 𝑛)𝑎(𝑛) = 𝑏(𝑟),        0 ≤ 𝑟 ≤ 𝑀                    𝑀
𝑛=0               (4.6) 

The above equality can be represented in the form of linear equations and it can be composed in 

matrix form as given below 

 [
𝑉(0,0) ⋯ 𝑉(0, 𝑀)

⋮ ⋱ ⋮
𝑉(𝑀, 0) ⋯ 𝑉(𝑀, 𝑀)

] × [

𝑎(0)
𝑎(1)

⋮
𝑎(𝑀)

] = [

𝑏(0)
𝑏(1)

⋮
𝑏(𝑀)

]                          (4.7) 

or simply 

 𝑉 × 𝑎 = 𝑏                                              (4.8) 

the type-1 FIR filter can simply be realized by calculating this linear set of equations, 

 𝑎 = 𝑉−1𝑏                  (4.9) 

The matrix 𝑉(𝑟, 𝑛)  is further broken into two matrices 𝑉1  and 𝑉2  where 𝑉1  represents a 

symmetric Toeplitz matrix and 𝑉2 represents a Hankel matrix. The Toeplitz matrix has constant 

values along its diagonal and the Hankel matrix has constant values along its anti-diagonals. 
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Consequently the matrices thus obtained require less memory storage i.e. (𝑀 + 1)  instead 

of(𝑀 + 1)2. The Toeplitz and the Hankel matrices thus eventually decrease the computational 

complexity from 𝑂(𝑀3) to 𝑂(𝑀2). 

After further manipulations with 𝑉(𝑟, 𝑛)  and 𝑏(𝑛)  we procure the value of 𝑎(𝑛)  stated as 

 𝑎(𝑛) =
2

𝜋
∫ 𝐷(𝜔) × cos(𝑛𝜔) 𝑑𝜔,          1 ≤ 𝑛 ≤ 𝑀

𝜋

0
                                  (4.10) 

This in turn gives the solution for the filter coefficients of FIR filter i.e. 

 ℎ(𝑛) =
1

𝜋
∫ 𝐷(𝜔) cos((𝑛 − 𝑀)𝜔) 𝑑𝜔,             0 ≤ 𝑛 ≤ 𝑁

𝜋

0
       (4.11) 

The weighting function 𝑊(𝜔) can be used to improve the FIR low-pass filter because 

i. It entitles to banish Gibbs phenomenon by erasing a neighborhood around the band 

edge, and 

ii. It entitles to allocate different weights to PB and SB. 

After formulation of the above listed equations and manipulations the value of the filter 

coefficients  ℎ(𝑛) are procured. Further, for making the FIR filter sparse diverse algorithms are 

implemented, which helps in reducing the computational complexity. Explanation of the 

algorithmic steps is properly stated in the near context, which will help in analyzing the 

problem effectively. 

4.2 Algorithms 

 In order to locate the sparse solution different algorithms are been employed which are 

standardized through a set of specifications. These set of algorithms are orthogonal matching 

pursuit (OMP), matching pursuit (MP), least-square orthogonal matching pursuit (LS-OMP), 

weak matching pursuit (MP) and hard thresholding, thus providing us the best sparse solution 

for the given filter coefficients. The steps involved in the various algorithms are stated below. 

4.2.1 Orthogonal matching pursuit 

Input: 

 Given a signal ′𝑏′ and matrix′𝐴′. 

 Ending criterion which symbolizes the level of accuracy. 

Output:  

 Approximation vector′𝑥′. 

Algorithm:
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 Undertake the residual 𝑅𝑜 = 𝑏, the time t=0 and the index set 𝑉𝑜 = ∅. 

 Set 𝑠𝑡 = 𝑖, 𝑎𝑖 gives the panacea of max <𝑅𝑡 , 𝑎𝑘> , here 𝑎𝑘 are the row vectors of D 

 Upgrade the set 𝑉𝑡  with 𝑠𝑡: 𝑉𝑡 = 𝑉𝑡−1 ∪ {𝑠𝑡}  

 Enumerate the recent  residual employing x 

𝑅𝑡 = 𝑅𝑡−1 − ∑ 𝑥(𝑠𝑗)

𝑡

𝑗=1

𝑎𝑣𝑗
 

 Augment the value of iteration. 

 Check the stopping criterion and if it is not satisfied return to step 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Initialize𝑅0 = 𝑦, 𝜓 = ∅, k=1, n, ε 

Solve optimization problem             

𝜇𝑘 = 𝑎𝑟𝑔 max
𝑖=1…𝑀

|〈𝑅𝑡−1, 𝐴𝑖〉| 

 

 

 

Update the index set  

𝑠𝑡: 𝜓𝑘 = 𝜓𝑘−1 ∪ {µ𝑘} 

𝐴𝑘 = [𝐴𝑘−1 𝐴𝜇𝑘
] 

 

Check is 𝑘 > 𝑛 or  

‖𝑅𝑘‖2 <  𝜖 

 

No 

Find the new residual value 

𝑅𝑘 = 𝑦 − 𝐴𝑘�̃�𝑘 

 

Yes 

Output �̃� 

Stop 

Let 𝐴 = Ф & Compute 𝑦 = 𝐴 ∗ ℎ 

Fig.4.1 Flowchart for Orthogonal Matching Pursuit                           
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Here the main zest is to produce the minimum error that is similar to the maximum 

absolute value of the inner product obtained between the residual and the normalized matrix A. 

4.2.2 Least-square orthogonal matching pursuit (LS-OMP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Flowchart for Least-Square Orthogonal Matching Pursuit
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𝑠𝑡: 𝜓𝑘 = 𝜓𝑘−1 ∪ {µ𝑘} 
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] 

 

Check is 𝑘 > 𝑛 
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𝑥

‖𝑦 − 𝐴𝑘𝑥‖2 
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Stop 

Let 𝐴 = Ф & Compute 𝑦 = 𝐴 ∗ ℎ 
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Input: 

 Given a signal ‘′𝑏′  and matrix′𝐴′. 

 Ending criteria which symbolize the level of accuracy. 

Output: 

 Approximation vector′𝑥′. 

Algorithm: 

 Begin by setting the residual 𝑅𝑜 = 𝑏, the time t=0 and the index set 𝑉𝑜 = ∅ 

 Assume 𝑠𝑡 = 𝑖, 𝑎𝑖gives the solution of max <𝑅𝑡 , 𝑎𝑘> here 𝑎𝑘 are the row vectors of D 

 Upgrade the set 𝑉𝑡 with 𝑠𝑡: 𝑉𝑡 = 𝑉𝑡−1 ∪ {𝑠𝑡} 

 Resolve the least-squares issue 

min
𝑐∈𝐶𝑉𝑡

||𝑦 − ∑ 𝑥(𝑠𝑗)𝑎𝑉𝑗

𝑡

𝑗=1

||2 

 Enumerate the recent residual using x 

𝑅𝑡 = 𝑅𝑡−1 − ∑ 𝑥(𝑠𝑗)

𝑡

𝑗=1

𝑎𝑣𝑗
 

 Set t←t+1  

 Check the stopping criterion and if it is not satisfied return to step 2. 

It is somewhat similar to the orthogonal matching pursuit (OMP), but it performs an 

additional step of least square that helps in trading higher accuracy level with simplified 

computation. Thus the error is significantly reduced in the case of least square OMP. 

4.2.3 Matching pursuit (MP) 

Input: 

 Given a signal ′𝑏′ and matrix′𝐴′. 

 Ending criteria which symbolize the level of accuracy. 

Output: 

 Approximation solution x: 𝑚𝑖𝑛𝑥||𝑥||0 subject to 𝐴𝑥 = 𝑏 

Initialization: Initialize iteration value k=0, and set 

 The starting solution 𝑥0= 0. 

 The starting residual𝑟0 = 𝑏 − 𝐴𝑥0 = 𝑏. 

 The starting solution support 𝑆0 = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡{𝑥0} = ∅ 
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Algorithm: 

 Sweep: Calculate the errors ∈ (𝑖) = 𝑚𝑖𝑛𝑧𝑖
||𝑎𝑖𝑧𝑖 − 𝑟𝑘−1||2

2 for all i with the optimal 

choice𝑧𝑖
∗ = 𝑎𝑖

𝑇𝑟𝑘−1/||𝑎𝑖||2
2. 

 Upgrade support: Locate a minimized value 𝑖0 of ∈ (𝑖): where1 ≤ 𝑖 ≤ 𝑚,∈ (𝑖0) ≤∈

(𝑖), and update the support 𝑆𝑘 = 𝑆𝑘−1 ∪ {𝑖0}. 

 Upgrade provisional solution: Set 𝑥𝑘 = 𝑥𝑘−1, and update the entry 𝑥𝑘(𝑖0) = 𝑥𝑘(𝑖0) +

𝑧𝑖
∗. 

 Upgrade residual: Compute 𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 = 𝑟𝑘−1 − 𝑧𝑖0

∗ 𝑎𝑖0
. 

 Ending rule: If ||𝑟𝑘||2 <∈0, then stop the iteration. Otherwise perform iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Let 𝐴 = Ф & Compute𝑦 = 𝐴 ∗ ℎ. 

Initialize𝑟0 = 𝑦,𝜓 = ∅, k=1, n, ∈0 

Solve optimization problem  𝑧𝑖
∗ = 𝑎𝑖

𝑇𝑟𝑘−1/||𝑎𝑖||2
2 

 

 

Stop 

Check 𝑘 > 𝑛 or  

 ||𝑟𝑘||2 <∈0 

 

No Yes 

Calculate the errors 

∈ (𝑖) = 𝑚𝑖𝑛𝑧𝑖
||𝑎𝑖𝑧𝑖 − 𝑟𝑘−1||2

2 & Update the index set  

𝑠𝑡: 𝜓𝑘 = 𝜓𝑘−1 ∪ {µ𝑘} 

 

Find the new residual value 

 𝑟𝑘 = 𝑏 − 𝐴�̃�𝑘 

Set �̃�𝑘 = �̃�𝑘−1 and update the 

entry �̃�𝑘(𝑖0) = �̃�𝑘(𝑖0) + 𝑧𝑖
∗ 

Output �̃� 

Fig.4.3 Flowchart for Matching Pursuit 



Chapter 4 Research Methodology   Weak Matching Pursuit 

 

Page | 32 
 

In this algorithm, main motive is to find an atom in the dictionary that best resembles 

the given input signal. After this the weighted value obtained for this atom is removed, and we 

again find an atom from the dictionary that completely resembles the remaining signal. This is 

continued till the end rule is satisfied. Since, it is clear from the sweep step, that we had already 

determined quotients that minimize residual error, so again reckoning the whole quotient vector 

is overkill. This algorithm aims at achieving accuracy in order to have simplified computation. 

The main drawback with matching pursuit relates to the computational complexity imposed by 

the design procedure.  

4.2.4 Weak matching pursuit (WMP) 

Input: 

 Given a signal ′𝑏′ and matrix′𝐴′. 

 Ending criteria which symbolize the level of accuracy. 

 Scalar′𝑡′ set within the range of 0 < 𝑡 < 1. 

Output: 

 Approximation solution x: 𝑚𝑖𝑛𝑥||𝑥||0 subject to 𝐴𝑥 = 𝑏 

Initialization: Initialize iteration value k=0, and set 

 The starting solution 𝑥0= 0. 

 The starting residual𝑟0 = 𝑏 − 𝐴𝑥0 = 𝑏. 

 The starting solution support𝑆0 = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡{𝑥0} = ∅. 

Algorithm: 

 Sweep: Calculate the errors ∈ (𝑖) = 𝑚𝑖𝑛𝑧𝑖
||𝑎𝑖𝑧𝑖 − 𝑟𝑘−1||2

2 for all i with the optimal 

choice 𝑧𝑖
∗ = 𝑎𝑖

𝑇𝑟𝑘−1/||𝑎𝑖||2
2 . Stop sweep criteria when |𝑎𝑖

𝑇𝑟𝑘−1|/  ||𝑎𝑖||2 ≥

𝑡. ||𝑟𝑘−1||2. 

 Upgrade support: Locate a minimized value 𝑖0 of ∈ (𝑖): where1 ≤ 𝑖 ≤ 𝑚,∈ (𝑖0) ≤∈

(𝑖), and update the support 𝑆𝑘 = 𝑆𝑘−1 ∪ {𝑖0}. 

 Renovate provisional solution: Set  𝑥𝑘 = 𝑥𝑘−1 , and update the entry  𝑥𝑘(𝑖0) =

𝑥𝑘(𝑖0) + 𝑧𝑖
∗. 

 Renovate Residual: Compute 𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 = 𝑟𝑘−1 − 𝑧𝑖0

∗ 𝑎𝑖0
. 

 Ending rule: If ||𝑟𝑘||2 <∈0, then stop the iteration. Otherwise perform iteration. 



Chapter 4 Research Methodology   Weak Matching Pursuit 

 

Page | 33 
 

This algorithm gives more simplifications in terms of approximation error as compared 

to the matching pursuit. The main advantage is that it reduces the sweep step so time consumed 

in formulating the error is comparatively shortened. 
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Fig.4.4 Flowchart for Weak Matching Pursuit  
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4.2.5 Hard thresholding 

Input: 

 Given a signal ′𝑏′ and matrix′𝐴′. 

 Ending criteria which symbolize the level of accuracy. 

 Number of atoms that are desired i.e. ′𝑘′. 

Output: 

 Approximation solution ′𝑥′: 𝑚𝑖𝑛𝑥||𝑥||0 subject to 𝐴𝑥 = 𝑏 

Algorithm: 

 Begin Evaluation: Calculate the errors ∈ (𝑖) = 𝑚𝑖𝑛𝑧𝑖
||𝑎𝑖𝑧𝑖 − 𝑏||2

2 for all i with the 

optimal choice𝑧𝑖
∗ = 𝑎𝑖

𝑇𝑏/||𝑎𝑖||2
2.  

 Upgrade support: Locate a minimized value of error by looking in the 𝑆 indices with 

cardinality𝑘: where𝑖 ∈ 𝑆, 𝜖(𝑗) ≤ 𝑚𝑖𝑛𝑗∄𝑆𝜖(𝑖). 

 Renovate provisional solution: Calculate 𝑥𝑘 minimized value of ||𝐴𝑥 − 𝑏||2
2. 

 End result: Thus the proposed solution obtained is′𝑥′. 

  

 

 

 

 

 

 

 

 

 

Fig.4.5 Flowchart for Hard Thresholding
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The thresholding algorithm is far simpler than the above mentioned matching pursuit 

algorithms. Here the sweep is computed once and then finally a k largest inner product value is 

chosen as the support. Error is computed using the formula stated in the algorithm steps. 

4.3 Designing of sparse FIR using Haar Wavelet  

 In general designing of the FIR filter using window technique, the filter quotients 

procured are made sparse using the Haar wavelet transform. While delineating the filter, the 

basic issue of computational complexity arises. This is because of the number of calculations 

performed are high. It is effectively removed, by the help of this method, as it reduces the 

number of non-zero coefficients, measured by the 𝑙0 -norm. Therefore, the number of 

calculations for the zero-valued coefficients is omitted. Also computational complexity 

measured through 𝑙2-norm is very less. The steps that are followed for obtaining this sparse 

version of the filter are stated below: 

4.3.1 Algorithmic Steps 

 Setting the value of different attributes like sampling frequency (Fs), passband ripple 

(δp), stopband ripple (δs), passband frequency (ωp), stopband frequency (ωs) and cutoff 

frequency (fc). 

 Calculate the order value ′𝑁′ by the use of above stated parameters. 

 Using window methods design the FIR filter for different order values. 

 Compute the filter coefficients through this method and store it in a variable i.e. h (n). 

 Apply the Haar wavelet method of DWT transform on these coefficients and store them 

in a variable x. 

 Then apply some predefined threshold to make the coefficients of x sparse. 

 The values thus obtained give us the sparse version of the filter, meaning the more 

information containing quotients are kept while the others are neglected.  

 Obtain the values of the attributes i.e. 𝑙0-norm, 𝑙1-norm, 𝑙2-norm and 𝑙∞-norm     

 Compare the attribute values of the nonsparse FIR filter and the one obtained using the 

Haar wavelet technique. 

 Computational complications are measured using these two attributes. 
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Fig.4.6 Flowchart of Haar Wavelet Method 
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___________________5__________________

  RESULTS AND DISCUSSIONS 

“The aim of argument, or of discussion, should not be victory, but progress.”   -Joseph Joubert 

he flowchart drawn in the foregoing chapter helps in delineating the numerous types of 

sparse FIR filters. The Haar transform method is discussed first, on the basis of which 

the procurement of sparse FIR filter is done. While delineation of the filter type various 

parameters are considered which help in analyzing the efficiency of the method. Further, the 

WLS technique for delineation of FIR filter is formulated. Consequently, a bunch of diverse 

algorithms are applied on the filter coefficients procured through the WLS method. Results 

obtained gave reduced implementation complexity, which is derived from the parameters 

considered while designing the filter.  In order to locate the sparse solution different algorithms 

are been employed which are standardized through a set of specifications. These set of 

algorithms are orthogonal matching pursuit (OMP), matching pursuit (MP), least-square 

orthogonal matching pursuit (LS-OMP), weak matching pursuit (MP) and hard thresholding, 

thus providing us the best sparse solution for the given filter coefficients.  

While formulating the above algorithms a random sensing matrix 𝐴 of size 𝑀 × 𝑁with 

normalized entries is created. Here 𝑁 is the order of the filter defined. For different values of 

𝑀and 𝑁 the random matrix 𝐴 is created. The columns of this matrix is normalized using the 𝑙2-

norm. The generated filter coefficients using the WLS method are then made sparse with the 

erratic supports of cardinalities. Iteration value specified is 1000 for every algorithm. The 

cardinality range is from 1 to 10 and the non-zero values to be drawn as arbitrary random 

uniform coefficients. Once the value of this signal x is computed, where x is the value of the 

filter coefficients i.e. ‘h’ which is derived through the use of the WLS method, formulation of 

b=Ax is done followed by the implementation of the above mentioned algorithms to seek for 

sparse value of x.  

T 
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5.1 Attributes for analysis 

 For the evaluation of the above algorithms and methods, diverse attributes were 

employed in order to measure the efficiency and effectiveness. Following are the list of 

attributes exploited: 

5.1.1 Number of states 

 The FIR number of states basically tells about the coefficient pairs involved. It also 

indicates the following 

 Memory requirement for designing of the filter. 

 Amount of calculations needed, and 

 Measure of filtering the filter can provide. 

5.1.2 Passband ripple (δp) 

 The filter passband and stopband may possess oscillations that are termed as 

ripples.  δp specify the value of passband ripple, which is equivalent to the max divergence from 

unity. 

𝑃. 𝐵. 𝑟𝑖𝑝𝑝𝑙𝑒 = −20 𝑙𝑜𝑔10(1 − 𝛿𝑝)                      (5.1) 

5.1.3 Stopband ripple (δs) 

 δs stipulate the value of stopband ripple, which is equivalent to the max divergence from 

the base value zero. 

𝑆. 𝐵. 𝑟𝑖𝑝𝑝𝑙𝑒 = −20 𝑙𝑜𝑔10(1 − 𝛿𝑠)              (5.2) 

5.1.4 Passband frequency (ωp) 

 A passband frequency is the part of frequency spectrum that is allowed by the filter to 

pass through. It is characterized by the least relative loss or extreme relative gain. 

5.1.5 Stopband frequency (ωs) 

 A stopband is the range of frequencies, within specified bounds, through which a filter, 

terminates signals to pass, or attenuation is beyond the prescribed stopband attenuation range. 

5.1.6 Sampling frequency (Fs) 

 The sampling frequency, Fs, is the average amount of samples procured in one second 

(i.e. samples per second). 

https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Attenuation
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5.1.7 Order (N) 

 When an excitation is given to a filter, response is computed using present inputs, 

previous inputs and past outputs. Past inputs and previous outputs are just the delayed 

excitation and delayed responses. Order of any filter is defined as the maximum measure of 

delay that is employed in the computation of any output. The filter order is directly proportional 

to the no. of calculations required or no. of elements requisite to procure the filter. 

5.1.8 l0-norm  

Norms quantify the length of vectors in a particular domain - but they also tell us about 

the distance functions i.e. the norm is applied to the difference of coefficients of any two 

vectors. The l0-norm is the measure of the amount of non-zero elements in a given vector. The 

l0-norm is widespread in the compressive sensing area which endeavors to procure the sparsest 

solution to an underdetermined set of equations. 

5.1.9 l1-norm  

 l1 –norm a.k.a Manhattan-norm alias least absolute deviations (LAD), least absolute 

errors (LAE) is usually utilized for miniaturizing the summation of absolute differences 

between the target value (𝑦𝑖)and the approximated values 𝑓(𝑧𝑖)  

||𝑥||1 = ∑ |𝑦𝑖 − 𝑓(𝑧𝑖)|𝑚
𝑖=1             (5.3) 

5.1.10 l2-norm  

 l2 -norm a.k.a Euclidean-norm alias least squares is basically employed for miniaturizing 

the summation of square of differences between the target value (𝑦𝑖) and the approximated 

values 𝑓(𝑧𝑖) 

||𝑥||2 = ∑ (𝑦𝑖 − 𝑓(𝑧𝑖))2𝑚
𝑖=1             (5.4) 

5.1.11 l∞-norm  

 The l∞-norm is basically used for computing the largest absolute value of the vector 

coefficients. Therefore the l∞-norm is just the measure of the maximum derivative quotient. 

||�̅�||∞ = max_𝑎𝑏𝑠 (�̅�)            (5.5) 

The LAD or the l1-norm is instable in nature, since for a slight adjustment in the data, 

the regression line has to move a large distance. There may be solutions that can give possible 

results for the data selected, but due to this long jump by the regression line, it passes over this 

region of solutions. Thus there is a considerable change in the slope obtained after this, which 
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deviates a lot from the previous ascent. In contrast, the euclidean-norm alias l2-norm is highly 

stable, since for a minor adjustment in the data point, there is only a slight movement of 

regression line. This states that regression attributes are continuous form of data.  

 The method of LAD i.e. l1-norm is much more robust than the l2-norm, since it does not 

bother about the outliers in data. Thus it turns to be effective in applications where outliers are 

effectively ignored. But as here the basic need is reducing computational complications thus it 

is desired to consider the outliers. Therefore, the l2-norm is most preferable in such cases. But 

still the l1-norm value will help us understand the robustness of the design procedure. 

 Another advantage of l2-norm over l1-norm is that it provides unique solutions. This is 

understood by the fact that l2-norm uses direct path to a solution i.e. unique minuscule trail. But 

the l1-norm has an in-built feature of selecting the useful coefficients from a given vector. Such 

as, if a filter has 100 coefficients out of which only 20 are non-zero quotients, then the l1-norm 

will utilize these 20 quotients without considering the effect of the rest. The l1-norm also bears 

the property of sparsity, i.e. only few quotients in a vector are non-zero, and producing a large 

amount of zero quotients. 

 Euclidean norm possess an important property of efficient computational solutions. The 

l1-norm does not possess any analytical approach to a particular solution. But the l1-norm does 

guarantees sparse solutions, thus allowing it to be employed along with the sparse algorithms 

like OMP, LS-OMP, MP, WMP, Thresholding and many more. This helps in achieving 

calculations which are much more computationally efficient.  

5.2 Designing of sparse FIR using Haar Wavelet  

The procurement of the sparse FIR filter is done with the Haar Wavelet method. The 

computation results are analyzed, through which the sparsity level of the FIR filter is judged. 

The main grail of computational complexity is measured with the help of the diverse attributes 

like 𝑙 o-norm,  𝑙 1-norm, 𝑙 2-norm, and 𝑙 ∞-norm, which portray the effectiveness of the applied 

methodology.  

The order of the filter is calculated by setting the values of passband ripple, stopband 

ripple, passband frequency, stopband frequency and sampling frequency. After this 

computation, the filter is designed using the three windows i.e. Kaiser, hamming and hanning. 

Haar wavelet is applied after procuring the filter coefficients. A predefined threshold value is
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set, and the coefficients obtained after implementing Haar wavelet are made sparse. Further, the 

value of attributes i.e. 𝑙 o-norm,  𝑙 1-norm, 𝑙 2-norm, and 𝑙 ∞-norm are computed. Table.5.1 

illustrates the value obtained for these parameters.  

Table.5.1 Various parameter values of passband frequency, stopband frequency, l0 (sparsity) l1-

error, 𝑙2-error, l∞ for Haar wavelet algorithm 

Algorithm 𝝎p 𝝎s Window N 𝒍o 

𝒍1 

Manhattan 

Norm (10^-2) 

𝒍2 

Euclidean 

Norm(10^-4) 

𝒍infinity 

Haar 

Wavelet  

0.0397pi 0.0596pi 

Kaiser 

30 9 3.19 13 0.0543 

0.0367pi 0.0489pi 50 12 2.124 6.7481 0.0397 

0.0227pi 0.0303pi 80 14 1.80 5.5818 1.4594 

0.0207pi 0.0276pi 88 14 1.79 5.6539 1.5944 

0.0122pi 0.0184pi 100 16 1.78 5.8281 1.7999 

0.0397pi 0.0596pi 

Hamming 

30 8 3.53 18 0.0668 

0.0367pi 0.0489pi 50 11 2.38 8.9497 0.0500 

0.0227pi 0.0303pi 80 13 1.77 5.8289 0.0487 

0.0207pi 0.0276pi 88 14 1.73 5.6511 0.0499 

0.0122pi 0.0184pi 100 15 1.63 5.3860 0.0520 

0.0397pi 0.0596pi 

Hanning 

30 7 3.79 22 0.0727 

0.0367pi 0.0489pi 50 10 2.38 9.5065 0.0533 

0.0227pi 0.0303pi 80 13 1.74 5.8349 0.0493 

0.0207pi 0.0276pi 88 14 1.69 5.5750 0.0500 

0.0122pi 0.0184pi 100 14 1.59 5.2428 0.0516 

 

Sparsity is always defined with the help of lo-norm. The value of sparsity shows a high 

increase in the count of zero-valued coefficients with the increase in order. Thus the notion that 

lo-norm defined for sparse representation issues is very convenient and intuitive, is true. 

The values of l1-norm actually give sparser results, providing unique solutions for a 

given problem. Here it is inferred that as the order value is increased the l1-norm value reduces 

greatly.  Thus the vector obtained, after application of Haar wavelet algorithm, has greater 

number of zeros, which are further increased by imposing l1-norm on it. Analytically the l1-

norm is not very effective for a particular solution, but still the sparse results obtained are due 

to this norm only. The non-zero quotients are less in case of higher order values which is due to 

the l1-norm. Note that when the order is 88 the value of l0-norm is 14, this signifies that the 

optimal solution of reduced computational complexity is achieved. The same value of sparsity 

is obtained for all the three windows. 
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The issue of reducing computational complication is accomplished by calculating the l2-

norm alias Euclidean-norm. There is a relation between the order and the value of l2-norm as 

depicted through the values procured i.e. there is considerable decrease in l2-norm value with 

the increase in the order (N). The norm is therefore defined as a global convex, smooth 

differentiable function. Note that the value of l2-norm is almost same for order 88, thus this 

denote that, one can select any a window among the three, for designing the filter. The values 

of different attributes can be easily analyzed through the graphs illustrated in the fig.5.1 to 

fig.5.4. 

 

Fig.5.1 l0-norm value for different windows using Haar wavelet method 

 The sparsity obtained for order 88, is almost same for all the three windows employed. 

This result represents that the order value does play an important role in procuring less number 

of non-zero coefficients. Also for an increase in order from 30 to 88, subsequently helps in 

reducing the computational complexity. For the Kaiser window the l0-norm value obtained for 

orders 30 to 100 is very high in comparison to the other three algorithms, therefore, the 

hamming and hanning window stands out to be more effective. The best out of the above 

windows for reducing computational complexity is hanning through which the designing of the 

filter is easier. 
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Fig.5.2 l1-norm value for different windows using Haar wavelet method 

For the different value set, the filter coefficients obtained through the Haar Wavelet 

Algorithm are penalized on the basis of the l1-norm. The l0-norm just gives us the zest of how 

many are the non-zero components present in the vector. From the above fig.5.2, the value of 

l1-norm decreases for any further increase in the order (N). Since the l1-norm provides solution 

by considering each and every quotients of the vector, therefore it ends up giving a solution 

with more number of zeroes.  Accuracy is not the aim with l1-norm, since we only need to find 

a sparser result for optimization. Therefore for analysis of filter spectrum is done on the basis of 

l1-norm values, which quite possibly resembles the non-sparse filter. Note that for order ranging 

from 30 to 100, the l1-norm values are smaller for hanning window in comparison to the other. 

 

Fig.5.3 l2-norm value for different windows using Haar wavelet method
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The l2-norm possesses the advantage of convexity, invariant rotation and analytical 

competency, therefore the issue of reducing computational complexity is accomplished by 

calculating the l2-norm alias Euclidean-norm. There exists a correlation between the order and 

the value of l2-norm as depicted through the values procured. A considerable decrease in l2-

norm value is estimated with the increase in the order (N).  Note for order ‘88’, all of the three 

windows have the same value for l2-norm as shown in the fig.5.3. Therefore, choosing any one 

out of the three windows will definitely reduce the complexity issues related to the filter design. 

But, as the order value is increased to 100 the Hanning window gave the best results for l2-

norm. Therefore, for the analysis of filter both the constraints are very important, since 

sparseness and reduced computational complexity are to be achieved effectively. 

 

Fig.5.4 l∞-norm value for different windows using Haar wavelet method 

 The maximum absolute value is obtained using the l∞-norm. From the fig.5.4, the l∞-

norm value is almost the same for Hanning and hamming window. While for the Kaiser 

window, it is maximum and changes for each order value.  

5.3 Designing of sparse FIR using WLS Method 

The FIR filter is delineated using the WLS method. Using the weighted function helps 

in eliminating the Gibbs phenomenon by effectively erasing the neighbourhood around the 

band edge, and it also allows setting different weights for the pass-band and stop-band. Here 

the weight value is set at the beginning defining the structure accordingly. 
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By the help of 𝑙0-norm, a sparse FIR filter designed in WLS sense can be manifested by the 

following expression 

     min ||ℎ||0     Subject to (s.t) 
 

        ∑ 𝑊(𝜔𝑖)|𝐻(𝑒𝑗𝜔𝑖) − 𝐷(𝜔𝑖)|2 ≤ 𝛿𝑑𝜔𝑖 ∈𝛺𝐼
                                       (5.6) 

Where 𝛺𝑖  denotes union of the frequency bands of heed, 𝐷(𝜔) represents the given 

ideal frequency response, and d, 𝑊(𝜔) represents the nonnegative weighting functions. Here 

ℎ = [ℎ0ℎ1 … ℎ𝑛]𝑇 for the obtained frequency response. The set of coefficients that minimizes 

the square error are obtained by solving a linear set of equations given by 

           𝑎 = 𝑄−1𝑏                                                                                                                                                                    (5.7) 
 

In order to minimize the error  ∈2, the derivative of the error with respect to the obtained 

coefficients 𝑎(𝑛)  is set to zero with n ranging from 0 to M. After further manipulations 

the  𝑄(𝑛, 𝑘) and 𝑏(𝑛) coefficients are formed given us a set of linear system of equations which 

is additionally depicted in the matrix form. Thus the FIR filter coefficients are obtained by 

regulating the 𝑎(𝑛) coefficient vector within the range defined. 

In order to locate the sparse solution different algorithms are been employed which are 

standardized through a set of specifications. These set of algorithms are orthogonal matching 

pursuit (OMP), matching pursuit (MP), least-square orthogonal matching pursuit (LS-OMP), 

weak matching pursuit (MP) and hard thresholding, thus providing us the best sparse solution 

for the given filter coefficients h(n). 

The filter quotients obtained through the WLS method are made sparse through the five 

algorithms, therefore optimizing them through the set of steps defined in the methodology. 

Table 5.2 depicts the values of diverse attributes employed while delineating the filter. In the 

literature survey, the attribute sparsity is always defined with the help of lo-norm. As the ||x||p is 

convex for the values of p greater than and equal to 1. Therefore it is more difficult to optimize 

the solution using lo-norm. But still the lo-norm can be considered as a very convenient and 

effective attribute for sparse representation issues. It signifies the standard for obtaining a filter 

with reduced computations. 

As p value increases, the value of norm moves toward the maximum functions. This 

effectively penalizes the largest argument in the set. But the l1-norm donate similar penalty to
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all attributes, thus enforcing sparsity. Thus the vector obtained after application of l1-norm on 

the different algorithms has greater number of zeros. 

Table.5.2 Various parameter values of passband frequency, stopband frequency, l0 (sparsity) l1-

error, 𝑙2-error, l∞ for different algorithms 

Algorithms     M              𝝎p           𝝎s            N 𝒍o 

𝒍1 

Manhattan 

Norm (10^-2) 

𝒍2 

Euclidean 

Norm(10^-4) 

𝒍infinity(10^-2) 

OMP  

20 0.0397pi 0.0596pi 30 14 4.6447 7.0148 7.0878 

30 0.0367pi 0.0489pi 50 24 1.7514 0.7144 7.8617 

70 0.0227pi 0.0303pi 80 39 0.3062 0.7728 1.6716 

60 
0.0207pi 0.0276pi 88 

14 0.5956 0.7482 2.7224 

70 20 0.6081 0.7498 3.2075 

90 0.0122pi 0.0184pi 100 45 0.2039 0.1137 0.9908 

LS-OMP 

20 0.0397pi 0.0596pi 30 14 2.2944 6.5988 5.6232 

30 0.0367pi 0.0489pi 50 23 1.6543 0.9115 8.2046 

70 0.0227pi 0.0303pi 80 36 0.2676 0.7734 1.5038 

60 
0.0207pi 0.0276pi 88 

14 0.2945 0.1667 1.0811 

70 20 0.6494 0.8829 3.2075 

90 0.0122pi 0.0184pi 100 44 0.1984 0.0975 0.6586 

MP 

20 0.0397pi 0.0596pi 30 25 4.2565 4.6266 3.9095 

30 0.0367pi 0.0489pi 50 38 1.9165 2.7833 4.9652 

70 0.0227pi 0.0303pi 80 64 0.4395 1.1859 2.9630 

60 
0.0207pi 0.0276pi 88 

14 0.7813 0.9861 2.4835 

70 20 0.6730 0.9502 3.5047 

90 0.0122pi 0.0184pi 100 70 0.4785 0.4077 2.2673 

WMP 

20 0.0397pi 0.0596pi 30 26 4.2565 4.6266 26.39 

30 0.0367pi 0.0489pi 50 40 1.9319 1.3508 13.70 

70 0.0227pi 0.0303pi 80 67 0.5302 1.1859 1.942 

60 
0.0207pi 0.0276pi 88 

14 0.7813 0.9861 2.483 

70 20 0.6468 0.7763 2.722 

90 0.0122pi 0.0184pi 100 71 0.4785 0.4077 1.814 

Thresholding 

20 0.0397pi 0.0596pi 30 19 4.2706 129.020 20.39 

30 0.0367pi 0.0489pi 50 37 2.0807 64.281 26.31 

70 0.0227pi 0.0303pi 80 65 2.1317 139.477 18.06 

60 
0.0207pi 0.0276pi 88 

14 3.6791 26.8502 14.67 

70 20 1.4717 4.0035 6.62 

90 0.0122pi 0.0184pi 100 85 2.7904 6.7347 6.15 

 

Here, the results obtained through l1-norm are more robust and reduces with the increase 

in order. Since the l1-norm is diamond shape therefore it is not appropriately differentiable.
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Therefore, analytically the l1-norm is not very effective. The issue of reducing 

computational complexity is accomplished by calculating the l2-norm alias Euclidean-norm. 

There is a considerable decrease in l2-norm value with the increase in the order (N). The values 

of different attributes can be easily analyzed through the graphs illustrated in the fig.5.5 to 

fig.5.8. 

 

Fig.5.5 l0-norm value for different order using different algorithms 

 The l0-norm obtained for the various algorithms in fig.5.5 show that the, number of non-

zero coefficients are considerably reduced for an increase in the order. The LS-OMP algorithm 

stands out, to be the best for each order value. Note that for order 88 the sparsity level was set 

at 14 and 20 for each algorithm. For all other order, the l0-norm is computed through the steps 

of the different algorithms, for an iteration value of 200. 
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The values of l1-norm actually give sparser results, providing unique solutions for a 

given problem. As the order value is increased the l1-norm value reduces greatly nullifying the 

tradeoff between the order and sparsity. Since the main issue is computational efficiency, 

therefore the overall process includes only scalar operations. Note that for each order value, as 

depicted in the fig.5.6, the l1-norm is least for the LS-OMP followed by the OMP algorithm. 

The sparser results obtained for these two algorithms are far better than the other three 

algorithms. 

 

Fig.5.7 l2-norm value for different order using different algorithms 

 The l2-norm procured is considerably less for every increase in the order. The LSOMP 

and OMP algorithm has the least value among the other algorithms, as seen from the fig.5.7. 

Note that for order 88 the LSOMP procure the least value, thus the computational complexity is 

resolved best with this algorithm. Therefore for the analysis of filter both the constraints i.e. l0-

norm, l2-norm are very important, since sparseness and reduced computational complexity are 

to be achieved effectively. For the thresholding algorithm, the l2-norm value is large enough i.e. 

almost close to zero, therefore the issue of reducing computational complexity, cannot be 

accomplished properly and successfully. Thus it can be stated that the thresholding algorithm 

will work efficiently if minimum number of observations are to be considered. Its performance 

is nearly uniform as it depends only on the sparsity level and the sampling attributes, but since 

here the sparseness obtained is very less, therefore, it isn’t suitable to consider this method for 

filter designing. 
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Fig.5.8 l∞-norm value for different order using different algorithms 

The l∞-norm gives the maximum absolute value for the given vector, obtained from 

different algorithms. From the fig.5.8, the l∞-norm value is almost the same and least for 

LSOMP and OMP algorithm. While for the thresholding algorithm, the l∞-norm values are 

much higher than the other algorithms. 

5.4 Comparison of WLS and Haar wavelet for designing of FIR filter 

 The designing of sparse FIR filter is done with the help of two methods i.e. WLS and 

Haar wavelet. The results obtained on the basis of different parameters such as l0-norm, l1-

norm, l2-norm and l∞-norm show that the WLS method give far better result than Haar. The two 

algorithms are further compared on the basis of their magnitude response obtained. Here two 

examples are considered in order to demonstrate the effectiveness of the two approaches. 

A. Example 1 

The first example compares the magnitude responses obtained by the two 

methods. For the WLS method using different algorithms i.e. LSOMP, OMP, MP, 

WMP and thresholding, the order considered is 50 and the number of iterations is set to 

10. For the same order value the magnitude response for Haar wavelet method is 

plotted. In each design, the LSOMP and the OMP algorithm shows far better results. 

The fig.5.9 shows the spectrum obtained for the various algorithms considered, while 

designing the sparse FIR filter using WLS. 
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Fig.5.9 Magnitude response for various algorithms using WLS 

The magnitude response obtained for the Haar wavelet method is shown in 

fig.5.10. The order considered is 50 same as that employed for the WLS method. The 

level of decomposition is set to 1, as the number of quotients would reduce considerably 

after imposing thresholding on it. The window considered while the design procedure is 

kaiser and the thresholding used is hard, with the value of 0.03. 

 

Fig.5.10 Magnitude response using Haar wavelet 
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procedure of WLS.  The gain value conveniently proclaims to start from the initial 0 dB 

mark in the case of WLS for different algorithms employed. The stopband ripple 

magnitude is also less in the WLS method. The Haar method may have fewer ripples 

but still their gain values are really high as compared to the filter spectrum obtained 

through the algorithms employed in WLS method. The cut-off frequency is at the same 

point in the case of WLS, but for Haar wavelet method it shifts from 0.08 to 0.18 as 

shown in the fig.5.10. From all the algorithms employed, during WLS sparse filter 

design, LSOMP gives better result in lieu to the magnitude response plotted. LSOMP 

also gives better result than Haar wavelet approach for the order 50.  

B. Example 2

The second example illustrates, the design procedure of sparse FIR filter, using 

the combination of WLS and Haar wavelet. Here the order taken is 120 and the iteration 

value is set at 100. The l2-norm value obtained for different algorithms i.e. LSOMP, 

OMP, MP, WMP and thresholding are in the range of 10-23. The l0-norm value obtained 

is from 18 to 20 for the five algorithms. Therefore, the reduction in computational 

complexity for design of the filter is very high. The LSOMP still holds the lesser value 

of l0-norm and l2-norm among the three algorithms. Hence, the efficient and effective 

results for computational complexity are procured, using the conjunction of the above 

method. 

***** 
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___________________6__________________ 
  CONCLUSION AND FUTURE SCOPE 

“I think and think for months and years. Ninety-nine times, the conclusion is false. The 

hundredth time I am right.”                  -Albert Einstein 

 

 

n this research, a comprehensive study of sparse FIR filter is procured with the help of two 

different approaches i.e. Haar wavelet method and the WLS square criterion error. The 

conclusion drawn on the basis of the two methods is stated below. Further, the future scope of 

research is expounded.  

6.1 Conclusion 

The methods i.e. Haar wavelet and WLS help in finding a sparse solution for an 

underdetermined linear system of equations, where the sensing matrix used is random in nature. 

Thorough description is provided for both the methods. The Haar wavelet method used gave a 

reduction in the computational complexity which was based on the sparsity attributes obtained. 

Also, spectrum analysis was done for the original filter and its sparse version, due to which the 

various attribute values were examined like the cut-off frequency, ripple in stopband and 

passband. The WLS method used a different set of formulation while constructing the filter 

quotients of the filter. All the steps related to the WLS approach were clearly discussed in the 

foregoing chapters. The algorithms used for giving the sparse approximation solution for the 

filter coefficients obtained using this method were OMP, LS-OMP, MP, WMP and 

thresholding algorithm. The OMP, LS-OMP, MP and WMP algorithms were based on l0-norm 

minimization while the thresholding algo was based on l1-norm minimization. Even though the 

approaches were based on different minimizations, they all followed the underlining greedy 

I 

http://thinkexist.com/quotation/i_think_and_think_for_months_and_years-ninety/221218.html
http://thinkexist.com/quotation/i_think_and_think_for_months_and_years-ninety/221218.html
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iterative approach. They all build a sparse solution hinged on interrelation between columns of 

the random matrix ′𝐴′ and the current residual vector′𝑏′. Finally they converge to a solution 

whenever the norm of residual vector approaches zero. 

 The various attribute values related to the greedy algos are examined. Through the 

analysis, it is proclaimed that the design of FIR filter using WLS criterion gives better results 

by using LS-OMP algo, as the values of l2-norm is least in this case only. Therefore, the main 

grail of achieving reduced computational complexity is efficiently achieved. Also the values of 

l0-norm, l1-norm and l∞-norm are least in the case of LS-OMP.  Thus sparsity is achieved which 

thereby enhances the design of FIR filter. The only drawback in the above study is higher group 

delay w.r.t its nonsparse version. Therefore this should encourage the study of low-group delay 

sparse FIR filters. Although the sparse FIR filter provides efficient performance over the non-

sparse version on the basis of implementation complexity, still the amount of effectiveness 

varies from algorithm to algorithm. 

While describing the success of the above approximation algorithms, there are several 

ways to identify the extent between the solutions it propounds i.e. the sparse vector and the 

ideal coefficient matrix obtained through WLS. It is contemplated, through the measure of 𝑙2-

norm. The 𝑙2-norm is shown in the fig.6.1, and is calculated using the formula given below 

 ||𝑥 − ẋ||2/ ||𝑥||2                                       (6.1)   
                                                                                                                                  

 

Fig.6.1 Average and Relative 𝑙2-norm for different algorithms 
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As expected, the prime algorithm is the LS-OMP, which is closely followed by the 

OMP. This is basically demonstrated with the help of 𝑙2 -norm that is calculated for the 

algorithms. The MP and the weak matching pursuit (WMP) algorithms differ by a slight 

contrast. The algorithm that performs the worst is the thresholding algorithm, and it is the 

poorly rated among the other four algorithms. The error value obtained for thresholding 

algorithm is very high in comparison to the various other algorithms and thus the solution 

obtained is not perfectly reconstructed.   

6.2 Future Scope 

 With respect to future scope, these techniques could be effectively applied to 2D-filters. 

Different set of criterions can be defined for developing convex optimization anatomy. With 

appropriate employment of parameters subjected to a specific sparsity level, can efficiently 

outperform its non-sparse version of the filter. For more efficient design procedure, one could 

use the concept of mutual coherence, R.I.P and Null space related to the sensing matrix. 

***** 
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