DESIGN OF LOW POWER AND HIGH SPEED ADDER

DISSERTATION II

Submitted in partial fulfillment of the Requirement for the award of the

Degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

Submitted By

S SHIVA KESHAV

Under the guidance of

Dr. RAVI SHANKAR MISHRA

(School of Electronics and Electrical Engineering)

Lovely Professional University

Phagwara, Punjab

April 2017

TOPIC APPROVAL PERFORMA

School of Electronics and Electrical Engineering

Program : P175::M.Tech. (Electronics and Communication Engineering) [Full Time]

COURSE CODE :	ECE521	REGUL	AR/BACKLOG :	Regular	GROUP NUMBER	EEERGD0257
Supervisor Name :	Dr. Ravi Shankar Mishra	UID :	19053		Designation :	Associate Professor
Qualification :				Research Experienc	e:	

SR	.NO.	NAME OF STUDENT	REGISTRATION NO	ВАТСН	SECTION	CONTACT NUMBER
1		Shakkari Shiva Keshav	11512441	2015	E1514	8699659202

SPECIALIZATION AREA : VLSI Design

Supervisor Signature:

PROPOSED TOPIC :

Design of Low power and high speed adder

Qualitative Assessment of Proposed Topic by PAC		
Sr.No.	Parameter	Rating (out of 10)
1	Project Novelty: Potential of the project to create new knowledge	8.00
2	Project Feasibility: Project can be timely carried out in-house with low-cost and available resources in the University by the students.	7.67
3	Project Academic Inputs: Project topic is relevant and makes extensive use of academic inputs in UG program and serves as a culminating effort for core study area of the degree program.	8.00
4	Project Supervision: Project supervisor's is technically competent to guide students, resolve any issues, and impart necessary skills.	7.67
5	Social Applicability: Project work intends to solve a practical problem.	8.00
6	Future Scope: Project has potential to become basis of future research work, publication or patent.	8.00

PAC Committee Members			
PAC Member 1 Name: Anshul Mahajan	UID: 11495	Recommended (Y/N): Yes	
PAC Member 2 Name: Dushyant Kumar Singh	UID: 13367	Recommended (Y/N): NA	
PAC Member 3 Name: Cherry Bhargava	UID: 12047	Recommended (Y/N): Yes	
PAC Member 4 Name: Anshul Mahajan	UID: 11495	Recommended (Y/N): Yes	
DAA Nominee Name: Manie Kansal	UID: 15692	Recommended (Y/N): NA	

Final Topic Approved by PAC: Design of Low power and high speed adder

Overall Remarks: Approved

PAC CHAIRPERSON Name: 11211::Prof. Bhupinder Verma

Approval Date: 08 Oct 2016

DECLARATION

I student of M. TECH under ECE Discipline at LOVELY PROFESSIONAL UNIVERSITY, Phagwara; hereby declare that the Dissertation-II report entitled on "Design Low Power High Speed Adder", is an authentic record of my own work carried out as the requirements for the award of degree of Master of Technology on "Electronic and Communication" at Lovely Professional University, Phagwara; under the guidance of "Dr. Ravi Shankar Mishra", an Associate professor of Deportment of Electronics and Communication Engineering, during January to April,2017.

S Shiva Keshav Reg.no:11512441 Date:

It is certified that the above statement is correct to the best of my knowledge and belief.

Dr. Ravi Shankar Mishra

Associate Professor Lovely Professional University Phagwara-144411, Punjab. Date:

CERTIFICATE

This is to certify that the Dissertation II entitled "**Design of Low power and high speed Adder**" is a record of bonafied work carried out by **S Shiva Keshav** under my guidance and supervision for the partial fulfillment of the degree of Master of Technology in Electronics and Communication Engineering during the academic session January 2017 – April 2017 at Lovely Professional University – Phagwara.

To the best of my knowledge, the results embodied in this Dissertation work have not been submitted to any university or institute for the award of any degree or diploma.

Dissertation Supervisor

.

Dr. Ravi Shankar Mishra Associate Professor Department of ECE Lovely Professional University Phagwara

ACKNOWLEDGEMENT

I take this opportunity to acknowledge the co-operation, good will and both moral and technical support extended by several individuals out of which this Dissertation II has evolved. I always cherish my association with them.

I express my sincere and deepest regards to my supervisor **Dr. Ravi Shankar Mishra** for his valued guidance during this period of my Dissertation. This Dissertation work was enabled and sustained by his vision and ideas. His scholarly guidance and invaluable suggestions motivated me to complete my Dissertation work successfully.

I owe a great many thanks to **Dr. Ravi Shankar Mishra** for spending his valuable time. I considered my-self extremely fortunate to have this opportunity of associating with him.

I express my sincere thanks to the head of the department (ECE) and the members of Department of Electronics and Communication Engineering, Lovely Professional University for their cooperation.

I would like to express my deep gratitude to my parents. Their continuous love and support gave me strength for pursuing my dream. Last but not the least; I am thankful to my friends who have been a source of encouragement and inspiration throughout the duration of this Dissertation.

Title	Page No.
Chapter 1: INTRODUCTION	1
1.1 Half Adder	2
1.2 Full Adder	3
Chapter 2: COMPLEX ADDER'S	5
2.1 Ripple Carry Adder	5
2.2 Carry Look Ahead Adder	6
2.3 Carry Select Adder	7
2.4 Carry Skip Adder	8
2.5 Carry Save Adder	9
Chapter 3: REVIEW OF LITERATURE	11
Chapter 4: SCOPE OF STUDY	16
4.1 Objectives of study	16
4.2 Tools/Software used	16
4.3 Technologies used	16
Chapter 5: PROPOSED RESEARCH OBJECTIVE	17
5.1 Problem Formulation	
5.2 Design Approach	
Chapter 6: RESULTS AND DISCUSSIONS	
6.1 Simulation and synthesis results of 4bit fast ad	ders18
6.1.1.1 Carry Select Adder	
6.1.1.2 Power synthesis result	20
6.1.1.3 Delay and timing synthesis results	21

LIST OF CONTENTS

6.1.2.1 Carry Skip Adder	23
6.1.2.2 Power synthesis result	.25
6.1.2.3 Delay and timing synthesis results	.26
6.1.3.1 Carry Save Adder	.28
6.1.3.2 Power synthesis result	.30
6.1.3.3 Delay and timing synthesis results	.31
6.1.4 Performance Evolution	33
6.2 Simulation and synthesis results of 8bit fast adders	37
6.2.1.1 Carry Select Adder	.37
6.2.1.2 Power synthesis result	.39
6.2.1.3 Delay and timing synthesis results	.41
6.2.2.1 Carry Skip Adder	44
6.2.2.2 Power synthesis result	.46
6.2.2.3 Delay and timing synthesis results	.48
6.2.3.1 Carry Save Adder	.50
6.2.3.2 Power synthesis result	.52
6.2.3.3 Delay and timing synthesis results	.54
6.2.4 Performance Evolution	57

Chapter 7: CONCLUSION AND FUTURE SCOPE	61
-	
Chapter 8: REFERENCES	62

LIST OF FIGURES

FIGURE NO	FIGURE NAME	PAGE NO
Figure 1:	Half Adder	2
Figure 2:	Full Adder	3
Figure 3:	Full Adder using Half Adder	3
Figure 4:	Ripple Carry Adder	5
Figure 5:	Carry Look Ahead Adder	6
Figure 6:	Carry Select Adder	8
Figure 7:	Carry Skip Adder	9
Figure 8:	Carry Save Adder	10
Figure 9:	Output waveform of Carry select adder	
Figure 10:	Carry select adder	19
Figure 11:	RTL view of carry select adder	19
Figure 12:	RTL view of full adder	19
Figure 13:	RTL view of multiplexer	19
Figure 14:	Power synthesis report for Carry select adder u	sing 45nm20
Figure 15:	Power synthesis report for Carry select adder u	sing 90nm20
Figure 16:	Power synthesis report for Carry select adder u	sing 180nm21
Figure 17:	Timing Synthesis Report for Carry select adder	using 45nm21
Figure 18:	Timing Synthesis Report for Carry select adder	using 90nm22

Figure 19:	Timing Synthesis Report for Carry select adder using 180nm22
Figure 20:	Output waveform of Carry Skip Adder23
Figure 21:	Carry skip adder24
Figure 22:	RTL view of carry select adder24
Figure 23:	RTL view of full adder24
Figure 24:	RTL view of OR gate
Figure 25:	Power synthesis report for Carry skip adder using 45nm25
Figure 26:	Power synthesis report for Carry skip adder using 90nm25
Figure 27:	Power synthesis report for Carry skip adder using 180nm26
Figure 28:	Timing Synthesis Report for Carry skip adder using 45nm26
Figure 29:	Timing Synthesis Report for Carry skip adder using 90nm27
Figure 30:	Timing Synthesis Report for Carry skip adder using 180nm27
Figure 31:	Output waveform of Carry Save Adder
Figure 32:	Carry save adder
Figure 33:	RTL view of carry save adder
Figure 34:	RTL view of full adder
Figure 35:	RTL view of XOR Gate
Figure 36:	Power synthesis report for Carry save adder using 45nm

Figure 37:	Power synthesis report for Carry save adder using 90nm
Figure 38:	Power synthesis report for Carry save adder using 180nm
Figure 39:	Timing Synthesis Report for Carry save adder using 45nm31
Figure 40:	Timing Synthesis Report for Carry save adder using 90nm32
Figure 41:	Timing Synthesis Report for Carry save adder using 180nm32
Figure 42:	Comparison of Total No. of Cells Graph34
Figure 43:	Comparison of Total No. of Cells Graph34
Figure 44:	Comparison of Total Power Consumption Graph35
Figure 45:	Comparison of Total Power Consumption Graph35
Figure 46:	Comparison of Total Delay Graph
Figure 47:	Comparison of Total Delay Graph
Figure 48:	Output waveform of Carry select adder
Figure 49:	Carry select adder
Figure 50:	RTL view of carry select adder
Figure 51:	RTL view of full adder
Figure 52:	RTL view of multiplexer
Figure 53:	Power synthesis report for Carry select adder using 45nm
Figure 54:	Power synthesis report for Carry select adder using 90nm

Figure 55:	Power synthesis report for Carry select adder using 180nm40
Figure 56:	Timing Synthesis Report for Carry select adder using 45nm41
Figure 57:	Timing Synthesis Report for Carry select adder using 90nm42
Figure 58:	Timing Synthesis Report for Carry select adder using 180nm43
Figure 59:	Output waveform of Carry Skip Adder44
Figure 60:	Carry skip adder44
Figure 61:	RTL view of carry select adder45
Figure 62:	RTL view of full adder45
Figure 63:	RTL view of OR gate45
Figure 64:	Power synthesis report for Carry skip adder using 45nm46
Figure 65:	Power synthesis report for Carry skip adder using 90nm47
Figure 66:	Power synthesis report for Carry skip adder using 180nm47
Figure 67:	Timing Synthesis Report for Carry skip adder using 45nm48
Figure 68:	Timing Synthesis Report for Carry skip adder using 90nm49
Figure 69:	Timing Synthesis Report for Carry skip adder using 180nm49
Figure 70:	Output waveform of Carry Save Adder50
Figure 71:	Carry save adder
Figure 72:	RTL view of carry save adder51

Figure 73:	RTL view of full adder51
Figure 74:	RTL view of XOR Gate51
Figure 75:	Power synthesis report for Carry save adder using 45nm
Figure 76:	Power synthesis report for Carry save adder using 90nm53
Figure 77:	Power synthesis report for Carry save adder using 180nm53
Figure 78:	Timing Synthesis Report for Carry save adder using 45nm54
Figure 79:	Timing Synthesis Report for Carry save adder using 90nm55
Figure 80:	Timing Synthesis Report for Carry save adder using 180nm56
Figure 81:	Comparison of Total No. of Cells Graph58
Figure 82:	Comparison of Total No. of Cells Graph58
Figure 83:	Comparison of Total Power Consumption Graph59
Figure 84:	Comparison of Total Power Consumption Graph59
Figure 85:	Comparison of Total Delay Graph60
Figure 86:	Comparison of Total Delay Graph60

LIST OF TABLES

TABLE NO	TABLE NAME	PAGE NO
Table 1:	Truth Table of Half Adder	2
Table 2:	Truth Table of Full Adder	4
Table 3:	Comparison between the parameters of Carry Select adder,	
	Carry Skip adder, Carry Save adder of 4bit	
Table 4:	Comparison between the parameters of Carry Select adder,	
	Carry Skip adder, Carry Save adder of 8bit	57

ABSTRACT

Adders are commonly found in the critical path of many building blocks of the microprocessors and also digital signal processing chips. Adders are essential for not only addition, but also essential for subtraction, multiplication, and division. Addition is one of the fundamental arithmetic operations. A fast and accurate operation of the digital system is mostly influenced by the performance of the respective adders. The most important constraints of the adder designs are the area, power, speed, timing, number of cells and delay.

As day by day digitalization is increasing in every application and so that the speed of processors are increasing. So, to fulfil the demand of digitalization we need adders which provide us accurate outputs with very less consumption of the constraints given above.

In this we have validate different types of adders like ripple carry adder, carry look ahead adder, carry select, carry skip and carry save on the bases of area, power and delay. The simulation and synthesis is done on industry standard tool Cadence on which we have worked on different technologies like 45nm, 90nm, 180nm.

Depending upon the parametric analysis these fast adders have utilized in Multiplier Accumulator Unit (MAC) in DSP application.

Adders are the vital components of the CPU (central processing unit) in today's Digital world. They are used in floating point calculations, ALUs, also in order to compute addresses of memory. In other applications like microprocessors and digital signal processors (DSP) architectures full - adders plays important role. The real revolution came into existence when reduction of operating voltage and continuous scaling of the transistor size has led to a predominant enhancement of the integrated circuits(IC). They play important role in the packaging of FPGA device and fast performing devices with low power consumption, high speed and smaller area. In Digital Signal Processing (DSP) and Central Processing Unit (CPU) adders are the most normally used arithmetic block, hence optimizing power is of most importance. Speed of a circuit increases rapidly with scaling technology to the depth of sub-micron and also power consumption increases significantly per chip with respect to increase in the density of the chip. Further, High-speed and low power are the two important factors that needs to be considered in realizing modern (VLSI) Very Large Scale Integration circuits. In case of circuits' design, the low-power adders with high-performance can be given at various different levels, such as in the process technology, the logic style, architecture and layout,.

The composition of large number of single-bit full adders becomes ripple carry adder. The architecture of the carry ripple adder circuit is easy. but speed of the circuit is slow because every adder start's operating only when previous output carry signal becomes ready. More complex than ripple carry adder is that which consumes high power but high speed in operating like the carry skip adder, carry look- ahead adder, carry select adder and carry increment adder.

What actually is an adder?

The adder is a circuit which performs the summation of two given inputs termed in digital electronics. In order to perform any operation this is the basic circuit. The adder's are not only used in the different parts of the processor but also used as the part of the ALU(s), where they is need to table lists, compute addresses, and many more.

The operation of an adder is carried out like : 0+0=0 0+1=1 1+0=1 1+1=10Different types of adders:

They are of two type of adders:

- Full Adder
- Half Adder

1.1 Half Adder:

It is the one which performs summation of two single individual binary bits' x and y is an Half adder. It will generate two outputs, carry [C] and sum [S]. When two multiple bits are added the excess which goes into the next bit is the carry signal. For ex, in the above case when both inputs are entered as 1 then it resulted in 10 i.e., here 1 get's shifted to next bit the sum would be 0 and hence carry would be only 1. The pictured below is the normal half-adder design, in which for generating the sum we use xor gate and for generating carry we use and gate. The half adder will generate output of a carry and sum by adding two single digit input.

The half adder circuit is as follows:

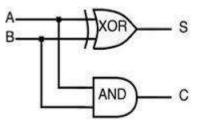


Fig 1. Half-Adder

Table 1. The truth	table of	the Half-Adder:
--------------------	----------	-----------------

Input	Х	0	0	1	1
	Y	0	1	0	1
Output	Sum	0	1	1	0
	Carry	0	0	0	1

1.2 Full Adder:

The one which sums the binary digits and notes the digits that are carried in and also out is known as full adder. In case of full adder the summation operation is done for three one-digit numbers, which are written as X, Y, and Cin. X and Y can be called as operands, and input Cin is a bit which is sent from previous digit. Which actually generates a two bits as output, which are sum and carry that are given as the Cout that is carry out and sum signal output as S.

The full adder circuit is as follows:

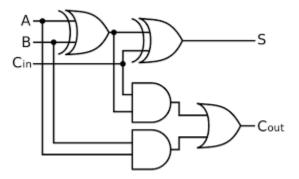


Fig 2. Full-Adder

It is also done with the help of two half adders to which A and B as input of one half adder, and output is the sum of it is given as an input to the next half adder, and Cin is provided as second input to same half adder and or the two carrys which results a Full Adder. The circuit using half adder is as shown below.

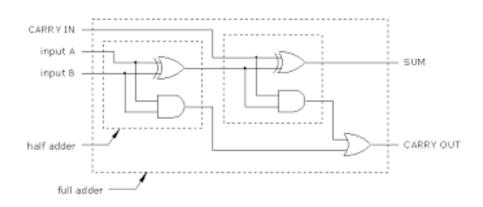


Fig 3. Full-Adder using Half-Adder

	А	0	0	0	0	1	1	1	1
Inputs	В	0	0	1	1	0	0	1	1
	Carry in	0	1	0	1	0	1	0	1
Outputs	Sum	0	1	1	0	1	0	0	1
	Carry out	0	0	0	1	0	1	1	1

Table 2. The truth table for the full adder is:

It usually a part of complex adders, that add 8, 16, 32, etc. binary digits. Many different types of complex adder's can be implemented by using these Full adders and Half adders.

Complex Adders are the one that are combination of full adders and half adders. Many complex adders are out in our digital world out of which some of them are given below:

- Ripple Carry Adder
- Carry Look Ahead Adder
- Carry Select Adder
- Carry Skip Adder
- Carry Save Adder

2.1 Carry Ripple Adder:

As word specifies this adder is the one that ripples the carry to next stage which is sent from the previous bit. It is combination of n full adders. So, the full adder output carry would be provided to the preceding full adder as input. Drawback of this adder is that it must wait for all the previous carry to generate the final carry. The circuit of the carry ripple adder as given below

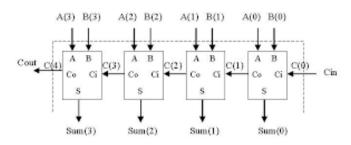


Fig 4. Carry Ripple Adder

Operation of carry ripple adder:

In the above example we are considering 4bit Ripple carry adder. In which we require 4 full adders. Let inputs are A, B then first bit of A and B are given to first full adder, and third input for the first full adder is Cin. Later carry and sum is generated. Further Carry out of first full adder is provided as input bit to second full adder and second bit of inputs as inputs to the second full adder then the outputs carry and sum have been processed and it goes on till n bits.

2.2 Carry look ahead adder:

It is another complex adder. Which uses concept of generate the carry and propagate the carry. However, the concept of operation of generating carry and propagating carry is as the following.

For carry generate we use G = A * B.

For carry propagate we use P = A xor B.

The circuit diagram for carry look a-head adder is given below:

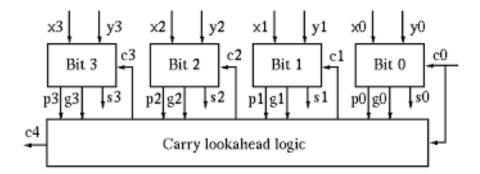


Fig 5. Carry Look Ahead Adder

Procedure of carry look ahead adder:

To generate carry propagate and carry generate, the addition digit is carried out then the summation would be generated else the least significant bit(LSB) carries and summation is propagated. If the expression is represented, as C_i is carry in digit of the bit *i*, then P_i is propagate, G_i is the generate bit of bit *i*,

$$C_{i+1} = G_i + (P_i * C_i)$$

The summation of every digit of the sequence, the Carry Look Ahead Logic shall provide either the digit pair will propagate the carry or generate the carry. Which will allow the operation to "pre-process" the summation of input digit pairs which provide the time of carry ahead. Further, when original summation is processed, then there would be no delay for the carry ripple effect. Above given is generalized 4-bit Carry Look Ahead block which is combination of 4-bit Carry ripple adder with the few adjustments:

For sample given, logic of carry generates (g) and carry propagates (p) equations are provided following. Out of which numbers in below equations are the input signals, initiating from 0 least significant bit to 3 most significant bit:

$$\begin{split} C_1 &= G_0 + (\ P_0 \ast C_0 \) \\ C_2 &= G_1 + (\ P_1 \ast C_1 \) \\ C_3 &= G_2 + (\ P_2 \ast C_2 \) \\ C_4 &= G_3 + (\ P_3 \ast C_3 \) \end{split}$$

Further keeping C1 in C2, then C2 in C3 and C3 in C4 we get $C_1 = G_0 + (P_0 * C_0)$ $C_2 = G_1 + (P_1 * G_0 + (P_1 * P_0 * C_0))$ $C_3 = G_2 + (P_2 * G_1 + (P_2 * P_1 * G_0 + (P_2 * P_1 * P_0 * C_0)))$ $C_4 = G_3 + (P_3 * G_2 + (P_3 * P_2 * G_1 + (P_3 * P_2 * P_1 * G_0 + (P_3 * P_2 * P_1 * P_0 * C_0))))$

2.3 Carry Select adder:

It is another complex adder which is a conditional sum adder. It is constructed with sharing of logic values commonly for sum generation. For sharing them commonly, a inverter with a xor gate are used to perform addition outputs which are given below figure. When input carry-in is be ready, then it can generate accurate sum depending on the input carry-in signal. Further for the output carry, It should use one and gate & one or gate to find out possible input carry values

before generating. Finally when the carry-in bit would be ready, it can find out the accurate output carry out based on the input carry-in bit.

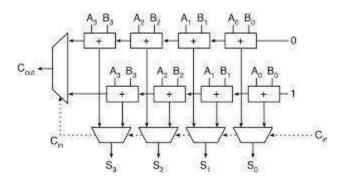


Fig 6. Carry Select Adder

Operation of Carry select Adder:

It uses a pair of ripple carry adders & a single multiplexer. Summation of the pair of n-digit numbers of it would be performed using the both adders in order to do the operation two times, once by taking the carry in (Cin) as one and the other time taking the carry in (Cin) as zero. When both the results are evaluated, then the correct carry out and also the actual sum is generated with the help of multiplexer once the original carry in is known.

2.4 Carry Skip adder:

It is also known as Carry Bypass Adder which is another type of complex adder. The operation of this adder has reduced the delay over ripple carry adder than the other adder. The enhancement of least delay is done using many carry skip adders combine to form a single carry skip-adder block. It has created to increase the operation through summing produced carry digit to the whole adder. The resultant circuit [1] is given in following figure for a 4bit adder. The input carry-in digit is provided as Ci and further the adder produces the output carry-out digit (Ci+4) by itself. Carry skip circuit utilizes a pair of logic gates. The (and) gate is utilized to use the carry-in then finally compares with the propagate signal group.

$$P_{(i,i+3)} = P_{i+3} * P_{i+2} * P_{i+1} * P_{i+3}$$

With help of above results, the generated output of (and) gate provided as input to (or) gate with Ci+4 to generate final Carry out.

$$Carry = C_{i+4} + P_{(i,i+3)} * C_i$$

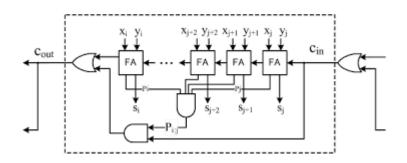


Fig 7. Carry Skip Adder

Operation of carry skip adder:

From the above circuit, when P(i, i+3) = 0, which results in output group carry out is controlled using (Ci+4) value. Further, when P(i,i+3)' = 1, further input carry digit is Ci. = 1, then input carry-in block would be consequently sent to the following adders group. This adder's named as "carry skip adder" due to the P(i,i+3)*Ci condition. If it is valid and then it skips the entire block.

2.5 Carry Save adder:

It is the one with low spread delay [4] (basic way), however it either of summing both input bits to an individual output sum, it sums the three input bits to a two output bits. At last, then its outputs are added to a conventional carry ripple adder or carry look ahead, which will generate the entire inputs output as sum.

While summing at least three bits together, the sequence of carry-save adders [2] is been ended by a individual carry-look ahead adder that gives much preferable propagation delays over the sequence of carry look a-head adder. Specifically, it's spread delay is not influenced by the width of the bits being included.

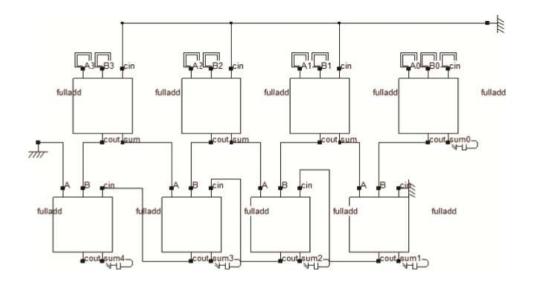


Fig 8. Carry Save Adder

Operation of carry save adder:

It is the complex adder which is completely combination of array of parallel full adder, with each of three input bits A, B, and cin which are loaded into each full adder's as inputs. Every full adder output, Sum is then associated with respective individual output bit, and then output of it (Cout) is associated with output of upcoming significant bit of the output second and also the most reduced one of output second is then provided by the Cin input of carry-save.

The chapter is focused on review of literature of different fast adder designs. To conclude this topic many journals, articles, conference papers have been studied. Some of them are described as below.

Pooja Kansliwal, Mahendra vucha, Rashmi Solanki, Prashant Gurjar (2011) [1]: This paper tells about the equipment usage of the different high speed adders. That are like full adder, carry-look a-head adder, carry_skip adder, carry ripple adder, carry select adder, these are integrated & recreated in the Xilinx-ISE 9.2i stage, whose output parameters caught like region and speed are thought for 16-bit and 8–bit adders.

Reena Rani, Laxmi Kanth Singh, Neelam Sharma (2009) [2]: In this paper numeric operations are performed with the help of a greater radix system, for example, Quaternary Signed Digit (QSD). They rely of Quaternary stamped digit structure. In QSD, every bit is addressed by a bit between 3 to -3. Pass on development, intensive operation on broad number of bits, for instance, 64, 128, and higher shall completed using unfaltering deferral, less diserse quality. FPGA instruments are used for Hardware implementation of these circuits. The arrangements mirrored using modalism programming and joined with the help of Leonardo Spectrum.

Nuno Roma, Tiago Dias, Leonel Sousa (2012) [3]: In this paper a point by point connection examination of the couple of fast adder structures for prevalent VLSI configuration is done. The appraisal of those structures is firstly finished in perspective of a clear gate check show range and input concede unit of time. The results gained with such model were then endorsed by using two totally uncommon real execution improvements, specifically CMOS consolidated circuits and Field Programmable Gate Arrays (FPGA). Test comes to exhibit that among the showed and evaluated topologies, the adder configuration in perspective of the radix-2 repetive association converter offered the slightest defer when realized with any of the considered advances. Regardless, it was in like manner the topology that required the most elevated measure of component. The presented results can be seen as a critical resource in the assurance of the most reasonable adder used to perform the operation in specific technology.

Jasbir Kaur, Lalith Sood (2015) [4]: In this paper, the execution of the different adders, for example, the Carry skip adder, the Carry increment adder, Ripple carry adder, the Carry look a-head adder, the Carry select adder , the Carry save adder are talked about, they are analyzed in the premise of their execution parameter's, for example speed, power circulation and area..

Akash Kumar, Deepika Sharma (2013) [5]: This paper tells about the comparative evaluation of the delay and speed of different varieties of adder just like the carry by-pass adder, the carry ripple adder, carry-look a-head adder, the carry select adder to generate high pace 32-bit MAC unit. The design is simple for carry ripple adder but it is well appropriate for just addition of the less width operand due to the postpone which is increasing linearly with width of operands. The carry bypass adder calls is hardly ever large than the area required by using the ripple carry adder. Postponement of the carry look a-head adder is much less as examine to other. A ripple carry adder would be slow than carry-look adder however carry look adder require comparingly large area. For high-speed multiplication and accumulation, we can use carry-look ahead adder for 32-bit MAC unit. In reality, the multiplier of carry-look a-head adder is two times of velocity of multiplier.

George Joseph, Anand N. Jayakrishnan, P. Johny S Raj (2012) [6]: In this paper usage of carry ripple adder, Kogge Stone-adder, carry select with Kogge Stone-adder have been performed in Virtex five FPGA device x5vlx20t and the use of Xilinx, generation delay have been calculated of the adder systems. The Kogge Stone adder is small delay than the alternative adder systems. As a result carry select of Kogge Stone adder good result, may be used as a high speed processors for speed carry community of adder circuit. Combining carry select to the Kogge Stone adder, may leads to a good and efficient adder for super speed processor which is carried and utilized for high velocity compute application.

R. P. P Singh, Praveen Kumar, Balwinder Singh (2009) [7]: In this paper, the overall performance analysis of the exceptional fast adders has been accomplished. The evaluation started on the premise of the following parameter performances i.e. Power consumption, area, and speed. However they'd presented a layout technique for the hybrid carry skip adders/carry look ahead. The usage of each fix and the variable block length has changed carry bypass adder. In conventional carry bypass adder, to generate carry for subsequent block each having ripple carry adder & skip logic has performed after every block. The velocity of depends upon at the

carry forward from the preceding block to the subsequent block. In carry by-pass adder, we use the bring appearance in advance common sense in every block for generating the deliver to further blocks. Then changed carry by-pass adder's with the fixed circuit require greater CLB's due to the deliver appearance of Carry look ahead logic, whereas the circuit chematic, location would be carried out.

José Luís Güntzel, Jucemar Monteiro, Luciano Agostini (2011) [8]: This paper implemented the 2 different version for add-one carry select adder (A1CSA), that is enhanced under the bases of cell of Very Large Scale Integration layout flow. Those architectures, at the side of the CRA were synthesized for the 45nm technology TSMC fixed cell libraries used from Synopsys layout Compiler under Topographical mode along with other conventional adder architecture (CLA and CSA). (A1CSA and A1CSAH) are the two less energy dissipation add-one carry select adder appropriate for standard-cells synthesis. On common, 22.2% less amount of area compared to that of carry-select Adder hence synthesis effects has given that A1CSA is the smallest fast adder requiring, on. Also, they confirmed that an average, 10.8% quicker, 3.4% more strength-efficient over that of the carry-look ahead Adder for the A1CSAH , similar to the high-quality choice for the excessive efficiency, pace are addition.

Kiran.M, Pavan Kumar.M.O.V (2013) [9]: In this paper it has defined that the comparative overall performance for fast implementing adders inclusive of Advanced CSLA, CSLA, PPA, Kogge stone structure, Ling adder on the excellent working frequencies. The results shows that parameters of power and area the Ling adder has a good deal better. There s a variation in the area and power which is reduced to 75% for 71MHz operating frequency. In 45nm technology these designs are performed using CADANCE layout tools . It's showed low power and low area for the Ling adder architecture designed. It is efficient and easy for VLSI hardware implementation.

Ramanath J Nayak, Ravikumar A Javali, Manjunath C Lakkannavar, Ashish M Mhetar (2014) [10]: In this paper after evaluating the timing consequences comparison for the carry save adder by carry ripple adder, carry look ahead adder for convey appearance in advance adder they have told that the performed design i.e. carry save adder with carry look a-head adder has set 27.5% quicker. Hence this CSA far utilized for Fast Fourier transform (FFT), Digital signal Processing (DSP) and also for different packages for which timing constraints have critical in

which they have able to capable of meeting time necessities, progress in performance and also on the bases of a few energy and area.

S. Salivahanan, V. Kavinilavu, Samiappa Sakthikumaran, V. S. Kanchana Bhaaskaran, C. Vinoth and B. Brindha (2011) [11]: In this paper, they have proposed the design which is less complicated result for enhancing rate of carry select adder. The CSA has the drawback of having high chip location, that triumph over use of the generated 4-bit incrementor unit. The generated unit is likewise located to use much less energy. It may be used to speed the very last summation in parallel multiplier design and different architecture that makes use of adder design. The shape that is synthesized with the help of Synopsys front-end package deal the usage of SAED 90nm generation.

Rajwinder Kaur, Amit Grover (2015) [12] : In this paper, the prevailing carry select adder and its designing technique in the VLSI design has been defined. Even though those diverse designing approach which defined above are proved to make more talented carry select adder having less power utilization and less area than the opposite adders. More recent modification can focus on reaching extra advanced power-area-delay carry select adder for processor processing processor in very large scale integration layout.

Laxman Shanigarapu, Bhavana P. Shrivastava (2013) [13]: A uique method that has been derived in this paper to decrease the location, energy and delay for SQRT CSLA architecture. Which indicates layout for carry select adder implemented by the use of D-Latch and in comparison with normal CSA and modified CSA(BEC and without the usage of Multiplexer). Which are applied on Spartan XC3S500E FPGA device and the overall performance is verified. Area and power is calculated with the aid of the use of synopsys RTL tool. This paper having higher outcomes when as compared to CSA and changed techniques.

Aamir A. Farooqui, Vojin G. Oklobdzija ()[14]: They had proposed layout and implementation of MAC unit, which could carry out 32x32, 32x16, and pair of 16x16 multiplication, resulting a throughput of two, 1, and 1 cycle. In which multiplier, Booth encoding & 3-dimensional (TDM) method has been used, to result high speed multiplier. Unique circuit has generated to house all types of operands (sign or unsigned) also to deal with sign extension.

Changed booth algorithm combined with TDM and sign correction circuit effects for multiplier, with a delay (ppa) equal to six xor gates.

Abdelgawad (2013) [15]: They have designed a quick and less energy consuming multiply accumulate (MACC) Unit. Whose outcome shows that designed approach the other merging techniques. Final results indicates as the proposed 32-bit MAC unit reduces 5.5% of the location, 9% of the power, and delay by means of 13%. Finally, they like to emphasis the novelty and simplicity of that MAC unit to be utilized in DSP for WSNs future nodes.

David B. Roberts and Yuyun Liao (2002) [16]: In this paper, to satisfy the high requirement of almost high level DSP packages, a performance high and energy low 32-bit mac unit was designed. Which reaches 600 MHz in 1.3 V and 150 MHz at zero.7 V, further 800 MHz in 1.6 V. The excessive throughput rate is completed through utilizing a mixing length-encoding scheme & brand-new multiply accumulator structure which is more suitable DSP. The less energy intake is performed by the use of CPL at the critical data paths, static COMS on the relaxation of the MAC for numerous power reduction techniques.

Ohsang Kwon, Kevin Nowka, Earl E. Swartzlander, Jr. (2002) [17]: In this paper, a new rapid 5:3 compression approach is derived from a quick 2-bit adder cell. It has the delay of 2 _xor whilst a brand new logical decomposition is used. Further, its one-level dynamic CMOS circuit is proposed for exceedingly customized layout methodology. For the partial product reduction of a sixteen-bit with the aid of 16-bit MAC, the use of the brand new 5:3 compressor cell ends in 14.3% speed development in the form of xor delay. In distinctly custom designed dynamic CMOS circuit implementation, 11.7% speed development is determined with 8.1% much less power consumption in 0.225 μm bulk CMOS technology.

Adders are the most basic components of the CPU (central processing unit) in today's Digital world. They are used in floating point calculations, ALUs, also in order to compute addresses of memory. In other applications like microprocessors and digital signal processors (DSP) architectures full - adders plays important role.

As day by day digitalization is increasing in every application and so that the speed of processors are increasing. So, to fulfill the demand of digitalization we need adders which provide us accurate outputs with very less consumption of the constraints given below.

The accuracy of the digital devices is mostly determined by the operation of respective adders. The most reviewed constraints for designing the adder are area, power, speed, timing, number of cells and delay. So, Adders with optimized area, power efficient i.e., consumes very much less power, high speed and also performing the operation using the less number of cells.

4.1 Objectives of study:

- To design 4-bit and 8-bit Carry Select Adder, Carry Skip Adder and Carry Save Adder.
- To design Verilog code i.e., main module and test bench for all the three adders.
- To implement the code in Xilinx and Cadence NCsim and generate the waveform and RTL on different technologies
- To analysis the Timing, Area, Power on 45nm, 90nm, 180nm technologies.
- To compare the different parameters for different technologies.

4.2 Tools/ Software's used:

Xilinx, Cadence NCsim

4.3 Technologies used:

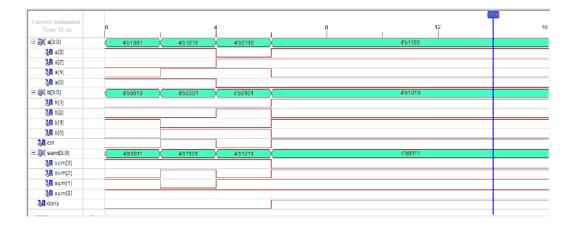
45nm, 90nm, 180nm.

5.1 PROBLEM FORMULATION:

As day by day digitalization is increasing in every application and so that the speed of processors are increasing. So, to fulfil the demand of digitalization we need adders which provide us accurate outputs with very less consumption of the constraints given below.

The high speed and the exact operation of the digital devices is mostly derived by the accuracy and speed of the respective adder. The most noted constraints for the adder designs are the area, power, speed, timing, number of cells and delay.

5.2 DESIGN APPROACH:


To design these fast adders, we have studied various papers. To implement them we need Verilog code i.e., main module and test bench. After getting the module for respective adders we tried to simulate the module in Xilinx and cadence NCsim tool, at this time we get the simulation result for different input combination. For synthesis of delay and power we use fast.lib and slow.lib where we check the delay and power at 45nm, 90nm, 180nm technologies. So, finally our main aim is to compare these techniques at the different technologies.

6.1 SIMULATION AND SYNTHESIS RESULTS OF 4BIT FAST ADDERS:

6.1.1.1 CARRY SELECT ADDER:

Carry select adder has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

Fig 9. Output waveform of Carry select adder

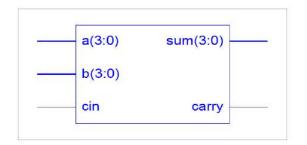


Fig 10. Carry select adder

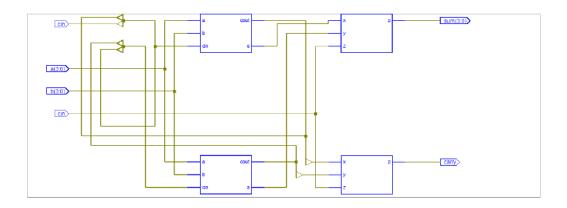


Fig 11. RTL view of carry select adder

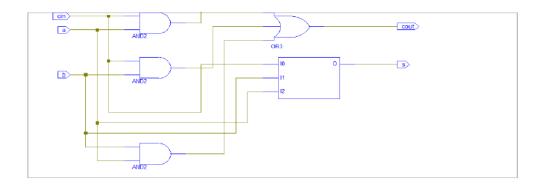


Fig 12. RTL view of full adder

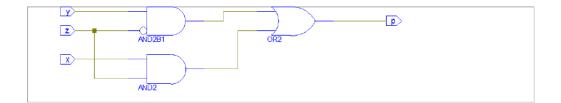


Fig 13. RTL view of multiplexer

6.1.1.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Slow.lib

Generated I Generated I Module: Technology Operating Wireload mu Area mode:	on: library conditio ode:	De ca v: gp ons: fa en		(T)	Gener Gener Modul Techr	ated e: ology ting oad m	on: libra condit node:	Di cry: gi ions: s ei		01:18:39 p	v14.10-p008_1
Instance (.eakage ower(nW)	Dynamic Power(nW)	Total Power(nW)	Insta	nce	Cells		Dynamic Power(nW)		
carryselect	4	2.701	1651.886	1654.587	0102/00	1t		0.670	1055 000	1056 100	
fl	1	0.675	328.540	329.215	carryse	tect	4		1055.820		
f2	1	0.675	342.083	342.758	71		1	0.168		211.792	
		0.675	293.643	294.318	f2		1	0.168		220.661	
f3								0.168	189,793		
f3 f4	1	0.675	273.800	274.476	f3		1	0.168	178.761	189.960 178.929	

Fig 14. Power synthesis report for Carry select adder using 45nm

B. Using 90nm Technology

Fast.lib

Slow.lib

Generated by: Generated on: Module: Technology libra Operating condit Wireload mode: Area mode:	D ry: f ions: f e	ec 05 2016 arryselect	01:36:15 pm ced_tree)	RC14.10 - v14.10-p008_1	Generated by Generated or Module: Technology l Operating co Wireload moo Area mode:	i: ibrary: nditions: le:	Dec 05 2016 carryselect slow	ced_tree)	 v14,10-p008_1
Instance Cells		Dynamic Power(nW)			Instance Ce		ge Dynamic nW) Power(nW)		
	531.762	4096.013	4627.775		carryselect		470 2652.611		
arryselect 4					f1		476 601.294	685.770	
arryselect 4	135.794	925 487	1061.281						
	135.794		1061.281				476 630.160	714.636	
tarryselect 4 f1 1 f2 1 f3 1 f4 1	135.794 135.794 135.794	972.852	1108.646		f2 f3 f4	1 84		714.636	

Fig 15. Power synthesis report for Carry select adder using 90nm

C. Using 180nm Technology:

Fast.lib:

Slow.lib:

Generated b Generated o Module: Technology Operating o Wireload mo Area mode:	on: librar conditi ode:	Di Ci y: t ons: fa ei		01:39:14 pm ced_tree)	4.10 - v14.10-p008_1	Generated Generated Module: Technolog Operating Wireload Area mode	on: y libra condi mode:	D c ary: t tions: s e		01:24:58 pr	- v14.10-p008_
Instance (Dynamic Power(nW)			Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)		
Instance (ower(nW)		Power(nW)		Instance carryselect		Power(nW)		Power(nW)	
		ower(nW)	Power(nW) 35383.496	Power(nW)				Power(nW) 15.385	Power(nW)	Power(nW) 21659.847	
arryselect fl		ower(nW) 10.386	Power(nW) 35383.496 8834.085	Power(nW) 35393.882 8836.684				Power(nW) 15.385 3.917	Power(nW) 21644.462	Power(nW) 21659.847 5340.612	
arryselect		ower(nW) 10.386 2.599	Power(nW) 35383.496 8834.085 9004.646	Power(nW) 35393.882 8836.684				Power(nW) 15.385 3.917 3.917	Power(nW) 21644.462 5336.695	Power(nW) 21659.847 5340.612 5411.912	

Fig 16. Power synthesis report for Carry select adder using 180nm

6.1.1.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Slow.lib

Module: Technolo Operatio Wireload Area mod	Generated on: Dec 03 2016 01:25:52 pm Module: carryselect Technology library: gpdK045wc Operating conditions: fast (balanced_tree) Mireload mode: enclosed Area mode: timing library								Generated by: Encounter(R) RTL Compiler RC14.10 Generated on: Dec 05 2016 01:18:39 pm Module: carryselect Technology library: gpdk0456 Operating conditions: slow (balanced_tree) Wireload mode: enclosed Area mode: timing library						
Pin	Туре	Fanout				(ps)		Pin	Туре			(ps)	(ps)	Arrival (ps)	
f1/a	in port	1	2.7	8	+8	6 1		a[0] f1/a	in port	1	2.5	8	+6	G R	
g57/A g57/C0 f1/cout f2/cin	ADDFXL	1	2.0	39	+0 +63	63 I		g57/A g57/C0 f1/cout f2/cin	ADDFXL	1	1.8	91	+0 +199		
g57/C1 g57/C0 f2/cout f3/cin	ADDFXL	1	2.0	39	+8 +67	63 131		g57/C1 g57/C0 f2/cout f3/cin	ADDFXL	1	1.8	90	+0 +213	199 412 R	
g57/C1 g57/C0 f3/cout	ADDFXL	1	2.0	39	+8 +67	131 198 (g57/C1 g57/C0 f3/cout	ADDFXL	1	1.8	90	+8 +213	412 625 R	
f4/cin g57/C1 g57/S f4/s	ADDFXL	1	0.0	14	*0 *81	198 279 F		f4/cin g57/C1 g57/S f4/s	ADDFXL	1	0.0	40	+0 +268		
Timing sl	out port ack : UNCO nt : a(0)		ED		+0	279 6		sum[3] Timing sl Start-poi		ONSTRAIN	ËD		+0	892 F	

Fig 17. Timing Synthesis Report for Carry select adder using 45nm

B. Using 90nm Technology

Fast.lib

Slow.lib

Generat Module: Technol Operati Wireloa Area mo	Technology library: fast Operating conditions: fast (balanced_tree) Wireload mode: enclosed Area mode: timing library Pin Type Fanout Load Slew Delay Arrival							Generat Generat Module: Technol Operati Wireloa Area mo	Encounter(R) RTL Compiler RC14.10 - Dec 05 2016 01:22:25 pm carryselect slow slow (balanced_tree) enclosed timing library							v14.10-p	08_					
Pin	Туре	Fano				ps)	(ps)	(ps)			Pin	Туре	Fanout					Arriva (ps)				
a[0] f1/a	in port		1	6.6	8	θ	+0	Ð	F		a[0] f1/a	in port	1		6.2	8	+0		6 F			
g63/8 g63/C0 f1/cout f2/cin	ADDFX1		1	5.1		28	+0 +68	0 68	F		g63/8 g63/C0 f1/cout f2/c1n	ADDFX1	1		4.9	96	+0 +243	24	0 3 F			
g63/CI g63/C0 [2/cout	ADDFX1		1	5.1		28	+0 +70	68 138	F		g63/C1 g63/C0 f2/cout f3/cin	ADDFX1	1	i.	4.9	96	+0 +250		3 3 F			
3/cin g63/CI g63/C0 3/cout 4/cin	ADDFX1		1	5.1		28	+0 +70	138 207	F		g63/CI g63/CO f3/cout f4/cin	ADDFX1	1	83	4.9	96	+0 +258		3 3 F			
4/cin g63/CI g63/S 4/s	ADD FXL		1	0.0		11	+0 +84	207 291			963/C1 963/S f4/s	ADDFXL	1	į.	0.0	50	+0 +314		3 7 R			
sum[3]	out port						+0	291	R		sum[3]	out port					+0	105	7 R			
		ONSTRA	INE	D		210						ack : UNC nt : a[0] : sum[:		ED)							

Fig 18. Timing Synthesis Report for Carry select adder using 90nm

C. Using 180nm Technology:

Fast.lib

Slow.lib

Module: Technolo Operatio Wireload Area mod	Generated on: Dec 05 2016 01:39:14 pm Module: carryselect Technology library: tsmcl8 1.0 Operating conditions: fast (balanced_tree) Mireload mode: enclosed Area mode: timing library					- v14.10-p008_1	De ca ti ns: si er ti	carryselect tsmc18 1.0									
Pin	Туре		(fF)	(ps)	(ps)	(ps)			Pin	Туре		(fF)	(ps)	(ps)	Arrival (ps)		
[0] 1/a	in port			8			F		a[0] f1/a	in port	1		8	+6		F	
g63/8 g63/C0 1/cout 2/cin	ADDFX2	1	6.5	69	+0 +201		F		g63/8 g63/C0 f1/cout f2/c1n	ADDFX2	1	6.2	143	+0 +496	0 496	F	
g63/C1 g63/C0 2/cout 3/cin	ADDFX2	1	6.5	69	+0 +134				g63/C1 g63/C0 f2/cout f3/c1n	ADDFX2	1	6.2	143	+0 +348	496 844		
g63/C1 g63/C0 3/cout 4/cin	ADDFX2	1	6.5	69	+0 +134		E.		g63/CI g63/C0 f3/cout f4/cin	ADDFX2	1	6.2	143	+8 +348	844 1192		
g63/C1 g63/S 4/s	ADOFX1.	1	0.0	34	+0 +128				g63/C1 g63/S f4/s	ADDFXL.	1	0.0	73	+0 +292	1192 1484		
um[3]	out port				+0	597	R		sum[3]	out port				+0	1484	R	

Fig 19. Timing Synthesis Report for Carry select adder using 180nm

6.1.2.1 CARRY SKIP ADDER:

Carry skip adder has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

Fig 20. Output waveform of Carry Skip Adder

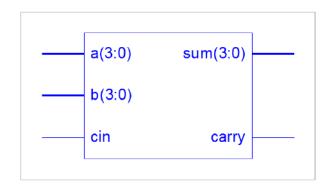


Fig 21. Carry skip adder

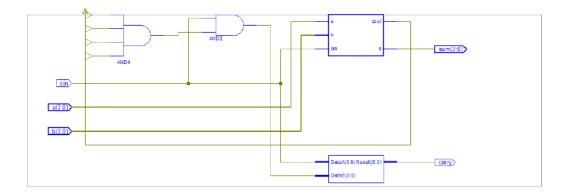


Fig 22. RTL view of carry select adder

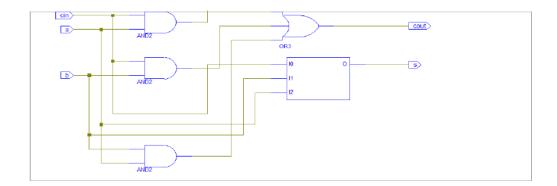


Fig 23. RTL view of full adder

DataB	Data(0) Result	Result
DataA	Data(1)	

Fig 24. RTL view of OR gate

6.1.2.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib:

Slow.lib:

Generated Generated Module: Technolog Operating Wireload Area mode	l on: ny lib n cond mode:	rary: itions:	Dec 05 20 carryskip gpdk045wc	16 01:50:13 p anced_tree)	v14.10-p008_1	Generate Generate Module: Technolo Operatin Wireload Area mod	d on: gy lit g cond mode:	orary: litions:	Dec 03 20 carryskip gpdk045bc	16 02:01:48 anced_tree)	- v14.10-p008
Instance C	ells	Leakage Power(nW)				Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	
carryskip	6		3392.861	. 이 전쟁이 가장이 잘 했다?		carryskip	6	1.723		2240.899	
fl	1	0.675	442.983	443.658		f1	1	0.168	310.151		
12	1	0.675	366.882			f2	1	0.168	318.421	318.589	
0.00		0.675	425.034	425.789		f3	1	0.168	256.155	256.323	
f2 f3 f4		0.675	467.961	468.636							

Fig 25. Power synthesis report for Carry skip adder using 45nm

B. Using 90nm Technology

Fast.lib

Generated Generated Module: Technolog Operating Wireload Area mode	on: y lib cond: mode:	rary: itions:			-p008_1 Generated Generated Module: Technolog Operatin Wireload Area mod	d on: gy lib g cond mode:	rary: itions:	Dec 05 201 carryskip slow	(R) RTL Compile 16 01:43:53 pm anced_tree) brary	v14.10-p008_
Instance C	ells i	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	
carryskip	6	607.289	4537.992	5145.281	carryskip	6	373.027	2945.682	3318.709	
fl	1	135.794	874.588	1010.382	f1	1	84.476	565.303	649.779	
f2 f3	1	135.794	727.796	863.590	f2	1	84,476	27. D. C. C. C. C. C. C.		
£3	1	135.794	827.164	962.958	13	ĩ	84.476		617.319	
1.2		135.794	878.081	1013.875			84,476			

Fig 26. Power synthesis report for Carry skip adder using 90nm

C. Using 180nm Technology:

Fast.lib:

Slow.lib:

Generated Generated Module: Technolog Operating Wireload Area mode	d on: gy libr g condi mode:		Dec 05 20 carryskip tsmc18 1.	anced_tree)	Generated Generated Module: Technolog Operating Wireload Area mode	on: y libr condi mode:		Dec 05 20 carryskip tsmc18 1.0	0 anced_tree)	v14.10-p008_1
Instance (Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	Instance C		Leakage ower(nW)	Dynamic Power(nW)	Total Power(nW)	
		Power(nW)	Power(nW)	Power(nW)	Instance C carryskip		ower(nW)		Power(nW)	
carryskip		Power(nW) 10.904	Power(nW) 36784.338	Power(nW) 36795.242		ells P	ower(nW)	Power(n₩)	Power(nW) 19339.202	
carryskip fl		Power(nW) 10.904 2.599	Power(nW) 36784.338 8656.442	Power(nW) 36795.242 8659.041	carryskip fl	ells P	ower(nW) 15.504	Power(nW) 19323.699	Power(nW) 19339.202 4392.851	
carryskip		Power(nW) 10.904	Power(nW) 36784.338 8656.442	Power(nW) 36795.242 8659.041 7195.995	carryskip	ells P	ower(nW) 15.504 3.632	Power(nW) 19323.699 4389.218	Power(nW) 19339.202 4392.851 3664.672	

Fig 27. Power synthesis report for Carry skip adder using 180nm

6.1.2.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Operati	ed on: ogy library ng conditio	D c s ns: f	ec 05 arrys pdk04 ast (2016 kip 5wc balan		1:13 pm	.10 - v14.10-p008_1	Module: Technol Operati Wireloa Area mo	ed on: ogy library ng conditio d mode:	: gr ns: s t:	ec 03 arrys odk04 low (nclos iming	2016 kip 5bc balan ed libr	02:0 ced_tr ary	1:48 pm ee)	14.10 - v14.10
Wireloa Area mo		t		libra				Pin	Туре	Fanout		(ps)	(ps)		
	5.00542.5							a[0] f1/a	in port	1	2.5			0 R	
Pin	Type	Fanout	Load	Slew	Delay	Arrival		g57/A					+0	0	
			(fF)	(ps)	(ps)	(ps)		g57/C0	ADDFXL	2	7.2	223	+269		
								fl/cout							
[3]	in port	1	2.5	0	+0	0 R		f2/cin g57/CI					+8	269	
4/b	10000 A. 6 6 6 6							g57/C0	ADDFXL	2	7.2	223	+328		
g57/B					+0	θ		f2/cout							
g57/C0	ADDFXL	1	6.1	81	+82	82 R		f3/cin g57/CI					+0	597	
4/cout	ADDIAL	÷	0.1	01	102	02 K		q57/C0	ADDFXL	2	7.3	226	+329		
					+0	82		f3/cout							
2/A	NUMBER OF							f4/cin g57/C1					+0	925	
2/Y	NAND4X8	1	0.6	50	1120 1774	124 F		a57/C0	ADDFXL.	1	5.4	179	+305		
38/B			22745		+0	124		g57/C0 f4/cout							
38/Y	AND2XL	1	0.0	6		150 F		943/A 943/Y	NAND4X8		0.6	135	+160		
arry	out port				+0	150 F		043/1	mAnt/4A8	-	0.0	132	+100	1390 P	
								938/Y	AND2XL	1	0.0	17	+90	1480 F	
iming sl	ack : UNCO	NSTRAIN	ED					carry	out port				+0	1480 F	
tart-poi		C1000000000000000000000000000000000000	19627-					Timing al	ack UNCO	NSTRATM	ED				
nd-point									nt : a[0]	1211031200	100° ::				
a porne	. curry							End-point	: carry						

Fig 28. Timing Synthesis Report for Carry skip adder using 45nm

B. Using 90nm Technology

Fast.lib

Slow.lib

Generat Module: Technol Operati Wireloa	ed by: ed on: ogy library ng conditio d mode: de: ================================	Di Ci Ins: fi e	ec 05 arrys ast ast (nclos	2016 kip balan ed	01:59 ced_tro	9:32 pm	10 - v14.10-p008_1	Generat Module: Technol Operati Wireloa	ed by: ed on: ogy library ng conditio d mode: de:	De ca v: si ons: si ei	ec 05 arrys low low (nclos	2016 kip balan	01:43 ced_tre	3:53 pm	RC14.10	- v14.10-p008_
Pin	Туре	Fanout				Arrival (ps)		Pin	Туре	Fanout				Arrival (ps)		
n[1] f2/a	in port	1	6.6	θ		0 F		a[2] f3/a	in port	1	6.2	0			R	
g63/B g63/CO f2/cout	ADDFX1	1	1.6	21	+0 +59	0 59 F		g63/B g63/C0 f3/cout	ADDFX1	1	1.5	64	+0 +197	0 197		
139/A					+0	59		g39/A					+0	197		
39/Y 38/B	NAND4XL	1	1.8	23	+24 +0	83 R 83		g39/Y g38/B	NAND4XL	1	1.7	159	+152 +0	349 349		
j38/Y	AND2XL out port	1	0.0	7	+23 +0	106 R 106 R			AND2XL out port		0.0	24	+94 +0	44 4 44 4		
	ack : UNCO nt : a[1]		ED		+0	106 R		Timing sl	ack : UNCO nt : a[2]	NSTRAIN	ED		+0	444	F 	

Fig 29. Timing Synthesis Report for Carry skip adder using 90nm

C. Using 180nm Technology:

Fast.lib

Type Fanout Load Slew Delay Arrival (fF) (ps) (ps)
in port 1 6.8 0 +0 0 R
+0 0 0 ADDFXL 1 3.1 130 +510 510 R
+0 510
NAND4XL 1 1.9 128 +130 640 F +0 640
AND2X1 1 0.0 59 +189 829 F outport +0 829 F

Fig 30. Timing Synthesis Report for Carry skip adder using 180nm

6.1.3.1 CARRY SAVE ADDER:

Carry save adder has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

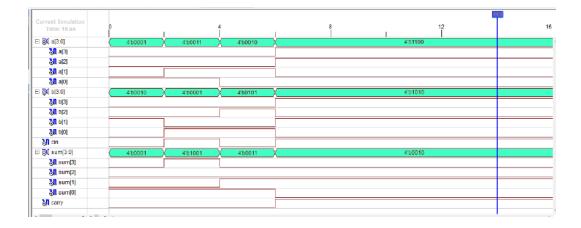


Fig 31. Output waveform of carry save adder

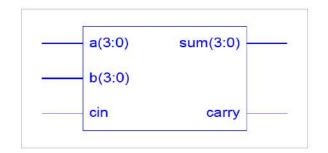


Fig 32. Carry save adder

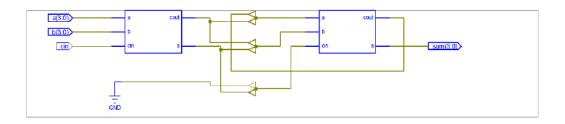


Fig 33. RTL view of carry save adder

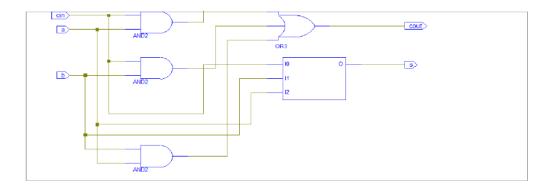


Fig 34. RTL view of full adder

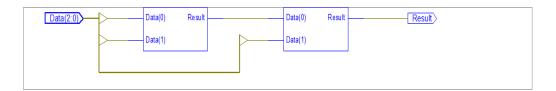


Fig 35. RTL view of XOR Gate

6.1.3.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Slow.lib

Module: Technology Operating Wireload r	enerated on: Dec 0 lodule: Carry echnology library: gpdk0 perating conditions: fast fireload mode: enclo rea mode: timin		Dec 03 201 carrysave gpdk045wc	R) RTL Compiler RC14. 6 01:52:03 pm inced_tree) inary	Generat Module Technol	ed on: logy li log con id mode	brary: ditions: :	Encounter Dec 05 20 carrysave gpdk045bc slow (bala enclosed timing lif	10 - v14.10-p008_1	
Instance Co	ells		Dynamic Power(nW)	Total Power(nW)	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	
arrysave	8	6.088	4191.574	4197.663	carrysave	8	1.693	2676.264	2677.958	
fl	1	1.637	793.432	795.069	f1	1	0.514	499.599	500.113	
f2	1	0.675	366.882	367.557	f5	1	0.181	295.092	295.273	
f3	1	0.675	457.278	457.953	f2	1	0.168	235.652	235.820	
f4	- ĩ	0.675	446.616	447.292	f3	1	0.168	291.400	291,568	
f6	1	0.675	498.739	499.415	f4	1	0.168	285.519	285.687	
f7	ĩ	0.675		383.100	f6	1	0.168		322.331	
	1	0.566		454.538	f4 f6 f7	1	0.168			
f2 f3 f4 f6 f7 f5					f8					

Fig 36. Power synthesis report for Carry save adder using 45nm

B. Using 90nm Technology

Fast.lib

						are the last two we are the sectors of						22 C		
Generated Module: Technolog Operating Wireload	Generated on: Module: Technology library: Operating conditions: Wireload mode:		Dec 05 20 carrysave fast	anced_tree)	10 - v14.10-p008_1	Generat Module: Technol Operati Wireloa	Generated on: Module: Technology library: Operating conditions: Wireload mode:			Encounter(R) RTL Compiler RC14.10 - Dec 05 2016 01:06:13 pm carrysave slow slow (balanced_tree) enclosed timing library				
Instance C	ells			Total Power(nW)		Instance	Cells		Dynamic Power(nW)	Total Power(nW)				
carrysave f5	9	1042.203 156.633		8958.592 940.564		carrysave f5	9	624.237 86.962	5208.457 527.185					
f8	1	156.633				18	î	86.962						
f2	1	135.794				f2	ī	84.476						
f3	ĩ	135.794				f3	1	84.476	724.129	808.605				
f3 f4	1	135.794	1109.047	1244.841		f4	1	84.476						
f6 f7	1	135.794	1397.862	1533.656		f6	1	84.476						
f7	1	135.794				f7	1	84.476						
f1	2	49.967	275.505	325.473		f1	2	27.932	201.016	228.947				

Fig 37. Power synthesis report for Carry save adder using 90nm

C. Using 180nm Technology:

Fast.lib:

Slow.lib:

Module: Technolo Operatir Wireload	enerated on: Dec 05 2016 01:11:33 pm				Generat Module Techno	ed on: .ogy li .ng con id mode	brary: ditions: :	Encounter(R) RTL Compiler RC14.10 - v14.10- Dec 05 2016 01:14:07 pm carrysave tsmc18 1.0 slow (balanced_tree) enclosed timing library				
Instance	Cells	Leakage Power(nW)		Total Power(nW)	Instance	cells	Leakage Power(nW)	Dynamic Power(nW)				
carrysave	0	15 881	57331 643	57347.523	carrysave	9	23.229	34707.440	34730.669			
f2	1			7985.427	f2	1	3.917	4875.636	4879.554			
f3	î			8937.460	f3	1	3.917	5462.482	5466.399			
F.A.	î			8851.761	f4	1	3.917	5403.705	5407.622			
f4 f6 f7	ŝ			12411.350	fő	1	3.917	7270.560	7274.477			
FT	1			8814.248	f7	1	3.917	5174.081	5177.998			
f5	1			3674.498	f5	1	1.424	2278.231	2279.654			
f8	1				f8	1	1.424	1423.744	1425.167			
	1			2348.833	fl	2	0.795	828.832	829.627			
fl	2	0.440	1228.023	1228.464								

Fig 38. Power synthesis report for Carry save adder using 180nm

6.1.3.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

A. Using 45nm Technology

Fast.lib

Operati Wireloa Area mo	ed on: ogy library ng conditio d mode: de:	: 0: ns: 1: t	ec 03 arrys odk04 ast (nclos iming	2016 ave 5wc balan ed libr	01:53 ced_tre ary	2:03 pm	- v14.10-p008_1	Operatir Wireload Area mod	ed on: ogy library ng condition d mode: de:	on: Dec 05 2016 12:53:14 pm carrysave y library: gpdk045bc conditions: slow (balanced_tree) mode: enclosed						- v14.10-p0
Pin	Туре	Fanout			Delay (ps)	Arrival (ps)		Pin	Туре	Fanout		Slew (ps)		Arrival (ps)		
[1] 2/b	in port	1	2.5	0	+0	0 F		b[1] f2/b	in port	1	2.3	0	+8	0		
g57/B g57/S 2/s 5/b	ADDFXL	1	1,7	32	+0 +87	0 87 R		g57/8 g57/5 f2/s f5/b	ADDFXL	1	1.6	79	+0 +276	0 276	R	
g22/B g22/C0 5/cout 5/a	ADDHX1	1	2.0	23	+0 +41	87 128 R		922/8 922/C0 f5/cout f6/a	ADDHX1	1	1.8	55	+0 +138	276 414	R	
g57/CI g57/CO 6/cout 7/a	ADDFXL	1	2.0	37	+0 +60	128 188 R		957/CI 957/CO 16/cout 17/a	ADDFXL	1	1.8	86	+0 +201	414 615	R	
g57/C1 g57/C0 7/cout 8/a	ADDFXL	1	1.6	33	*8 *61	188 250 R		957/CI 957/C0 17/cout 18/a	ADDFXL	1	1.5	78	+0 +207	615 822	R	
g22/B g22/S s/s	ADOHXL	1	0.0	10	+0 +48	250 298 F		g22/8 g22/5 f8/s	ADDHXL	1	0.0	25	+0 +157	822 979	F	
	out port ack : UNCO nt : b[1] : sum[3				+8	298 F		sum(3)			ED		+0	979		

Fig 39. Timing Synthesis Report for Carry save adder using 45nm

B. Using 90nm Technology

Fast.lib

Slow.lib

Generate Module: Technolo Operatin Wireload Area mod	chnology Library: fast erating conditions: fast (balanced_tree) reload mode: enclosed ea mode: timing library				RC14.10 - v14.10-p008_1	Generat Generat Module: Technol Operati Wireloa Area mo	ogy library ng conditio d mode: de:	E Di ci sins: s e t	Dec 05 2016 01:06:13 pm carrysave slow s: slow (balanced_tree)						
Pin	Туре	Fanout				(ps)		Pin	Туре	Fanout				Arrival (ps)	

a[1] f2/a	in port	1	6.6	8	+0	6	Proj.	a[1] f2/a	in port.	1	0.2	8	+8	0 F	
g63/B					+0	0		g63/8					+0	0	
g63/5	ADOFX1		4.6		+109			963/5	ADDFX1	÷	4.4	98			
g03/5 f2/s	ADDLYT	*	4,0	24	+103	10.8		12/5	MODIAL			90	43.94	334 W	
f5/b								15/b							
g22/8					+0	109		422/8					+0	394	
g22/6 g22/C0	ADDHXL		5.1	30				g22/0	ADOHXL		4.9	95	+162		
f5/cout	ADDRAC		3.1	30	*42	121	R	f5/cout	ADDRAL	÷	4.9	93	4105	330 H	
15/ COUL 16/a								16/a							
q63/CI					+0	151		g63/CI					+8	556	
	ADDFX1		5.1	25			0	g63/C0	ADDFX1		4.9	0.4	+234		
f6/cout	ADDLYT	+	3.1	2.2	*28	210	R.	f6/cout	ADDLAT	+	4.2	34	12.24	1.900 R	
10/cout 17/a								17/a							
063/CI					10	216		a63/CI					+0	790	
g63/C1 g63/C0	ADDFX1		4.6	1.44	+0	267		g63/C1 g63/C0	ADDFX1		4.4	98			
17/cout	ADULXT	- ÷	4.0	24	+31	207		f7/cout	ADDEAL		4.4			1020 R	
f8/a								17/cout 18/a							
g22/8						267								1020	
	ADDHXL		0.0		+0		F	922/8	ADDLINE		0.0		+0		
g22/5 f8/s	ADDMAL	1	0.0	. 9	+38	300		g22/5 f8/s	ADDHXL	1	0.0	31	+120	11/0 P	
18/s sum[3]	1000 Barris				+0	306	r.	ta/s sum[3]					+8	1170 F	
	out port					360			out port					11/0 F	

Fig 40. Timing Synthesis Report for Carry save adder using 90nm

C. Using 180nm Technology:

Fast.lib

Generated by: Generated on: Module: Technology library: Operating conditions Wireload mode: Area mode:	E D C t t e	ncou ec 0 arry smcl ast nclo	nte 5 2 sav 8 1 (ba sed	r(R) 2016 re L.O Elanc	RTL C 01:11 ed_tre	Compiler .:33 pm		v14.10-p008_1	Generate Generate Module: Technolo Operatis Wireload Area mod	ed on: ogy library ng conditio 5 mode:	E Du ci ti ti ti ti	ncoun ec 05 arrys smc18 low (nclos iming	ter(R 2016 ave 1.0 balan ed libr) RTL (01:14 ced_tro	Compiler 4:07 pm ee)	RC14.10 - v14.10-
Pin Type F						Arrival			Pin	Туре	Fanout			(ps)		
anomento mento me		(fF) (ps)		(ps)			a[1]	in port	1	6.8	0		0	
[1] in port	1	7.	0	Ø	+0	0			f2/a g63/8 g63/5	ADDFX2	1	5.0	149	+0	0 554	F
g63/B g63/C0 ADDFX2 2/cout	1	7.	0	59	+0 +248	0 248	R		12/s 15/b 922/8 922/C0	ADDHXL		6.2		+0	554 755	
6/b g63/B g63/C0 ADDFX2 6/cout	1	6.	5	61	+0 +255	248 503	R		f5/cout f6/a g63/C1 g63/C0	ADDFX2			145	+0	755	
7/a g63/CI g63/CO ADDFX2 7/cowt	1	6.	1	60	+0 +124	503 627	R		f6/cout f7/a g63/C1 g63/C0	ADDFX2	2			+0	1092	
8/a g22/B g22/CO ADDHXL	1	0,	0	30	+0 +55	627 682			f7/cout f8/a g22/8 g22/5	ADDHXL		2000	ane de	+0	1439	
f8/cout carry out port					+0	682	R		f8/s sum[3]	out port		0.0	143	+1/3		

Fig 41. Timing Synthesis Report for Carry save adder using 180nm

6.1.4 PERFORMANCE EVALUATION:

Table 3. Comparison between the parameters of Carry Select adder, Carry Skip adder, CarrySave adder.

Fast	Technology	Туре	Cells	Total Power (uW)	Total Delay(ps)
Adders	used				
	45nm	Fast	4	1654.587	279
		Slow	4	1056.492	892
Carry	90nm	Fast	4	4627.775	291
Select		Slow	4	2976.080	1057
Adder	180nm	Fast	4	35393.882	597
		Slow	4	21659.847	1484
	45nm	Fast	6	3398.523	150
		Slow	6	2240.899	1480
Carry Skip	90nm	Fast	6	5145.281	106
Adder		Slow	6	3318.709	444
	180nm	Fast	6	36795.242	362
		Slow	6	19339.202	829
	45nm	Fast	8	4197.663	298
		Slow	8	2677.958	979
Carry Save	90nm	Fast	9	8958.592	306
Adder		Slow	9	5832.694	1170
	180nm	Fast	9	57347.523	682
		Slow	9	34730.669	1612

Comparison of Total No. of Cells:

Fast

Fig 42. Comparison of Total No. of Cells Graph

Slow

Fig 43. Comparison of Total No. of Cells Graph

Comparison of Total power consumption (in uW):

Fast

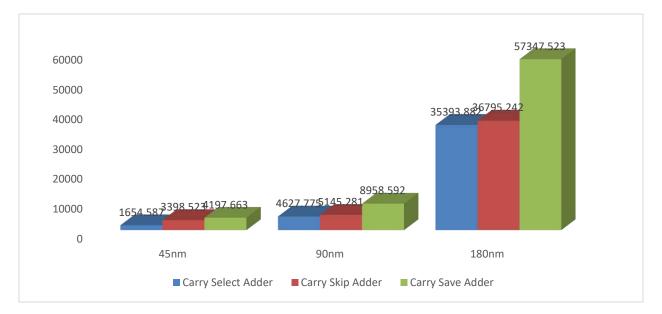
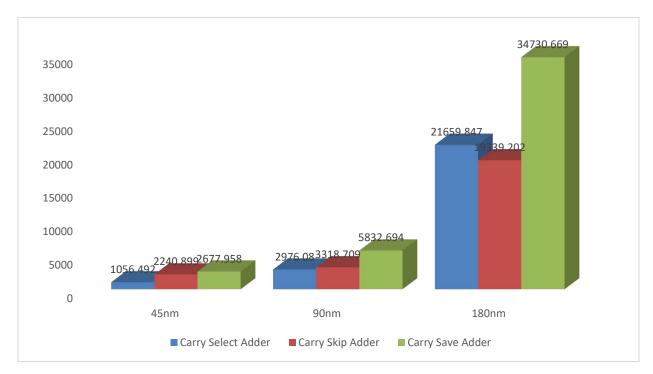
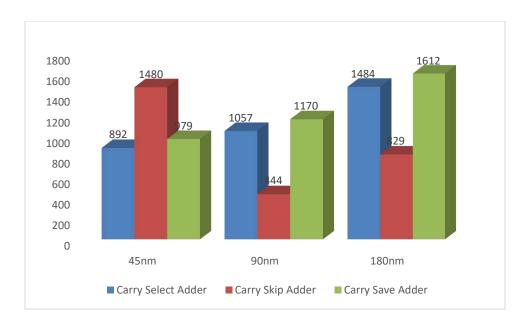


Fig 44. Comparison of Total Power Consumption Graph

Slow




Fig 45. Comparison of Total Power Consumption Graph

Comparison of Total Delay (in ps):

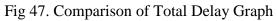


Fig 46. Comparison of Total Delay Graph

Slow:

6.2 SIMULATION AND SYNTHESIS RESULTS OF 8BIT FAST ADDERS:

6.2.1.1 CARRY SELECT ADDER:

Carry select adder has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

Fig 48. Output waveform of Carry select adder

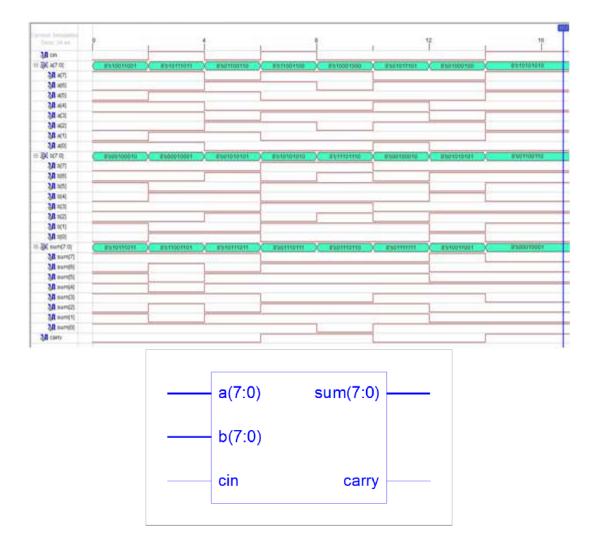


Fig 49. Carry select adder

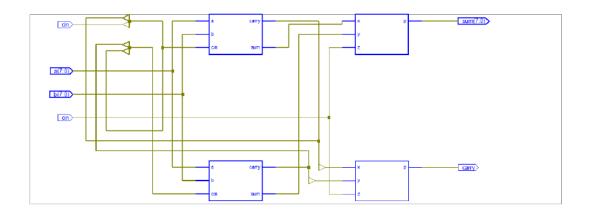


Fig 50. RTL view of carry select adder

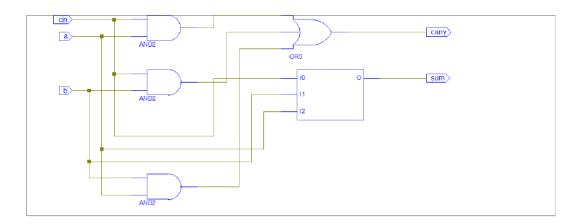


Fig 51. RTL view of full adder

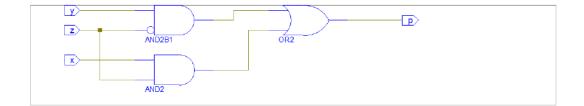


Fig 52. RTL view of multiplexer

6.2.1.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

D. Using 45nm Technology

Fast.lib

Slow.lib

Generated Generated Module: Technology Dperating Wireload m Area mode:	on: library conditio mode:	A c /: g ns: f e			88_1 Generated Generated Module: Technolog Operatin Wireload Area mode	i on: yy libra y condit: mode:	Aj ca ry: gj ions: s ei		01:45:41 pm ced_tree)	r RC14.10 - v14.10-p008_1
Instance			Dynamic Power(nW)	Total Power(nW)	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(n₩)	
arryselect	8	5.402	3776.114	3781.515	carryselect	8	1.343	2413.459	2414.802	
f1	1	0.675	313.315	313.990	f1	1	0.168	201.691		
f2	1	0.675	375.387	376.062	f2	1	0.168	241.316		
f3	1	0.675		435.249	f3	ĩ	0.168	279.841		
f4	1	0.675		435.249		1	0.168	279.841	280.009	
f5	1	0.675		435.249	f5	ĩ	0.168	279.841	280,009	
f6	1	0.675		386.922	f6	1	0.168	249.222	249.390	
f1 f2 f3 f4 f5 f6 f7 f8	1	0.675		318.538	f4 f5 f6 f7	ī	0.168	205.143	205.310	
f8	1	0.675	288.241	288.916	f8	1	0.168	188.134	188.302	

Fig 53. Power synthesis report for Carry select adder using 45nm

E. Using 90nm Technology

Fast.lib

Slow.lib

Generated b Generated o Module: Technology Operating c Wireload mo Area mode:	y: n: library onditio de:	Er Ap ca r: fa ons: fa er ti	counter(R) r 14 2017 rryselect st st (baland closed ming libra	01:57:01 pm ed_tree) ry	14.10 · v14.10-p008_1	Generated Generated Module: Technolog Operating Wireload Area mode	on: / libra condit node:	Aj ci ary: s tions: s e t.	pr 14 2017 arryselect low low (baland nclosed iming libra	01:49:45 p ced_tree) ary	ler RC14.10 - v14.10- pm	008
Instance C	l	eakage	Dynamic	Total		Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)		
arryselect	8	074.938	9711.988	10786.926		carryselect	8	658.374	6284.016			
fl	1	135.794	878.063	1013.857		f1	1	84.476	570.832	655.308		
		135.794	1044.228	1180.022		f2	1	84.476	678.188	762.665		
f2								84.476	799.050	883.527		
f2 f3	1	135 794	1233 269	1369 063		f3		1700 To 31000				
f2 f3 f4	1	135.794	1233.269	1369.063 1369.063		f4	î	84.476	799.050	883.526		
f2 f3 f4	1 1	135.794	1233.269	1369.063		f4 f5	1	84.476 84.476	799.050 799.050	883.526 883.526		
f2 f3 f4 f5 f6	1 1 1	135.794 135.794	1233.269 1233.269	1369.063 1369.063		f4 f5 f6	1 1 1	84.476 84.476 84.476	799.050 799.050 720.694	883.526 883.526 805.171		
f2 f3 f4 f5 f6 f7	1 1 1	135.794	1233.269	1369.063		f4 f5	1 1 1 1	84.476 84.476	799.050 799.050	883.526 883.526		

Fig 54. Power synthesis report for Carry select adder using 90nm

F. Using 180nm Technology:

Fast.lib:

Generated Generated Module: Technology Operating Wireload m Area mode:	on: libra condit. ode:	A cry: t ions: f e		ced_tree)	v14.10-p008_1	Generated Generated Module: Technolog Operating Wireload Area mode	on: y libra condit mode:	ary: tions:		01:51:13 pr	v14.10-p008_1
Instance	Cells	Leakage Power(nW)		Total Power(nW)		Instance	Cells	Leakage Power(nW	Dynamic) Power(nW)	Total Power(nW)	
arryselect	8	20.782	79122.225	79143.007		carryselect	8	31.05	4 47913.803		
f1	1	2.599	8130.999	8133.598		f1	1	3.91		4917.089	
f2	1	2.599	8469.050	8471.649		f2	1	3.91	7 5093.047	5096.964	
f3	1	2.599	10687.116	10609.715		f3	1	3.91	7 6342.824	6346.741	
f4	1	2.599	10610.727	10613.326		f4	1	3.91	7 6344.737	6348.654	
f4 f5	1	2.599	10612.016	18614.615		f5	1	3.91	7 6345.525	6349,442	
f6	1	2.599	10476.806	10479.405		f6	1	3.91	7 6259.363	6263,280	
f7	1	2.599		8930.133		f7	1	3.91	7 5359.963	5363.880	
f8	1	2.589		6385.982		f8	1	3.63	4089.492	4093.124	

Fig 55. Power synthesis report for Carry select adder using 180nm

6.2.1.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

D. Using 45nm Technology

Fast.lib

Generated by: Generated on: Module: Technology library Operating condition Wireload mode: Area mode:	Ar ca phs: fa er ti	or 14 irryse odk045 ost (1 octose iming	2017 elect Swc balanc ed libra	01:38 ced_tre		Generat Module Technol Operati Mirelow Area mu	ogy librar ng conditi d mode: de:	A c ons: s e t	pr 14 arrys pdk04 low (nclos iming	2017 elect 5bc balanc ed libra	01:45 ced_tre	Compiler RC14.18 5:41 pm re)	
Pin Type	Fanout			Delay (ps)	Arrival (ps)	Pin	Туре	Fanout			Delay (ps)	Arrival (ps)	
[0] in port L/a	1	2.7	0	*0	0 F	a[0] f1/a	in port	1	2.5	θ	+0	0.8	
g57/A g57/CO ADDFXL //carry 2/cin	1	2.0	39	+0 +63	63 F	957/A 957/C0 fl/carry f2/cin	ADDFXL	1	1.8	91	+0 +199	0 199 R	
g57/CI g57/C0 ADDFXL //carry //cin	1	2.0	39	+0 +67	63 131 F	g57/CI g57/C0 f2/carry	ADDFXL	1	1.8	90	+0 +213	199 412 R	
g57/CI g57/CO ADDFXL /carry	1	2.0	39	*0 +67	131 198 F	f3/cin g57/CI g57/C0 f3/carry	ADDFXL	1	1.8	90	+8 +213	412 625 R	
/cin g57/CI g57/CO ADDFXL /carry	1	2.0	30	+0 +67	198 265 F	f4/cin g57/CI g57/C0 f4/carry	ADDFXL		1.8		+0 +213	625 837 R	
/cin j57/CI j57/CO ADDFXL /carry /cin	1	2.0	39	*0 +67	265 332 F	15/cin g57/C1 g57/C0 f5/carry		1	1.8		+0 +213	837 1050 R	
g57/CI g57/C0 ADDFXL /carry /cin	1	2.0	39	*0 +67	332 400 F	f6/cin g57/CI g57/C0 f6/carry	ADDFXL	1	1.8	98	*0 +213		
g57/CI g57/CO ADDFXL /carry /cin	1	2.0	39	*0 +67	400 467 F	f7/cin g57/c1 g57/c0 f7/carry	ADDFXL	1	1.8	90	+0 +213	1263 1476 R	
g57/CI g57/S ADDFXL /sum m(7) outport	1	0.0	14	*0 +81 +0	467 548 R 548 R	f8/cin g57/C1 g57/S f8/sum	ADDFXL	1	0.0	40	+0 +268		
um[7] out port		12.2		+0	348 K	sum[7]	out port				+0	1743 F	

Fig 56. Timing Synthesis Report for Carry select adder using 45nm

E. Using 90nm Technology

Fast.lib

Slow.lib

Generati Generati Module: Technolo Operati Wireloa Area mo	ed on: ogy librar ng conditi d mode:	r: f ons: f t	ncon pr 1 arry ast ast nclo imin	unte 14 1 (be osec ng 1	er(R) 2017 Lect alance f Libra	RTL Co 01:57 ed_tree	e)	RC14.10	- v14.10-p068_1	Generat Generat Module: Technol Operati Wireloa Area mo	ed on: ogy librar ng conditi d mode:	y: s ons: s t	ncoun pr 14 arrys low low (nclos iming	balan 1 John) RTL 01:4 ced_tr ary	Compiler 9:45 pm ee)	RC14.10	- v14.10-p008_
Pin	Туре	Fanout				Delay ((ps)	Arrival (ps)			Pin	Type		Load	Slew		Arrival (ps)		
a[0] f1/a	in port	1	6	6	0	+0	6	F		a[0] f1/a	in port	1	6.2	0	+0	0		
g63/8 g63/C0 f1/carry	ADDFX1	1	5	1	28	+0 +68	68	F		963/8 963/C0 fl/carry	ADDFX1	1	4.9	96	+0 +243			
f2/cin g63/CI g63/C0 f2/carry	ADDFX1	1	5	1	28	+0 +70	68 138			f2/cin g63/CI g63/C0 f2/carry	ADDFX1	1	4.9	96	+0 +250			
f3/cin g63/CI g63/CO f3/carry	ADDFX1	1	5	1	28	+8 +70	138 207	F		f3/c1n g63/CI g63/C0 f3/carry	ADDFX1	1	4.9	96	+0 +250		F	
f4/cin g63/C1 g63/C0 f4/carry	ADOFX1	1	5	1	28	+0 +70	207 277			f4/cin g63/CI g63/C0 f4/carry	ADDFX1	1	4.9	96	+0 +250			
f5/cin g63/CI g63/C0 f5/carry	ADDFX1	a	5	.1	28	+0 +70	27 34			f5/cin g63/CI g63/C0 f5/carry	ADDFX1	1	4.9	96	+0 +250			
f6/cin g63/CI g63/C0 f6/carry	ADDFX1		5	.1	28	*0 *70	34 41	F		f6/cin g63/CI g63/C0 f6/carry	ADDFX1	1	4.9	96	*0 *250		F	
f7/cin g63/CI g63/C0 f7/carry f8/cin	ADDFX1	1	5	.1	28	+0 +70	410 485			f7/cin g63/C1 g63/C0 f7/carry	ADDFX1	1	4.9	96	*0 *250			
g63/CI g63/S f8/sum	ADDFXL	1	0	.0	11	*0 +84	485 569			f8/cin g63/CI g63/S f8/sum	ADDFXL	1	0.0	50	+0 +314		R	
sum[7]	out port					+0	56			sum[7]	out port				+0			
Timing sl	ack : UNC nt : a[0] ; sum[ONSTRAIN								Timing sl Start-point	ack : UNC nt : a[0] ; sum[ONSTRAIN		*****			(4.6	

Fig 57. Timing Synthesis Report for Carry select adder using 90nm

F. Using 180nm Technology:

Fast.lib

Slow.lib

Generat Generat Module: Technol Operati Wireloa Area mo	ed on: ogy librar ng condition d mode:	y: ons:	Encou Apr 1 Carry tsmc1 fast Enclo timir	inter(4 201 select 8 1.6 (bala sed ig lib	(R) RTL 17 01:5 ct anced_tr brary	Compiler 8:39 pm ee)	RC14.10 - v14	Generati Generati Module: Technoli Operatin Wireloan Area mon	ed on: ogy librar ng condition d mode:	E A c t t t t t	ncoun pr 14 arrys smc18 low (nclos iming	teriR 2017 elect 1.0 balan ed libra	01:51 ced_tre	ompiler 13 pm e)	RC14.10	- v14.10-p
Pin	Туре	Fanou) (ps	s) (ps)			Pin	Type				Delay (ps)	Arrival (ps)		
[0] 1/a	in port		7.	0		0		a[0] f1/a	in port		6.8	0	*0	0		
g63/B g63/C0 1/carry	ADDFX2		L 6.	5 6	+0 59 +201	201	F	g63/B g63/C0 f1/carry f2/cin	ADDFX2	1	6.2	143	+0 +496	0 496	F	
2/cin g63/CI g63/CO 2/carry	ADDFX2		6.	5 6	+0 59 +134			g63/CI g63/C0 f2/carry	ADDFX2	1	6.2	143	*0 *348	496 844	F	
3/cin g63/CI g63/CO 3/carry	ADDFX2		L 6.	5 6	*0 69 +134			f3/c1n g63/CI g63/C0 f3/carry	ADDFX2	1	6.2	143	*0 +348	844 1192	F	
4/cin g63/CI g63/C0 4/carry	ADDFX2)	L 6.	5 6	+0 59 +134			f4/cin g63/CI g63/CO f4/carry	ADDFX2	1	6.2	143	+0 +348	1192 1540	F	
5/cin 063/CI 063/CO 5/carry	ADDFX2	3	16	5 6	+0 69 +134			f5/cin g63/CI g63/CO f5/carry	ADDFX2	3	6.2	143	+0 +348	1540 1888		
6/cin g63/CI g63/C0 6/carry	ADDFX2		16	5 6	+6 69 +134			f6/cin g63/CI g63/C0 f6/carry	ADDFX2	1	6.2	143	+0 +348	1888 2237		
7/cin g63/CI g63/C0 7/carry	ADDFX2		1 6	5 (+6 69 +134			f7/cin g63/C1 g63/C0 f7/carry	ADDFX2	1	6.2	143	+0 +348			
8/cin g63/CI g63/S 8/sum	ADDFXL	ŝ	1 0	0 3	+6 34 +128			f8/cin g63/CI g63/S f8/sum	ADDFXL	a	0.0	73	+0 +292	2876		
um[7]	out port				+8			sum[7]	out port		1.00		+0			
g63/CI g63/S f8/sum sum[7] Timing sl	out port ack : UNC int : a[0]	ONSTRAI			34 +128 +0	1133 1133	R	g63/CI g63/S f8/sum sum[7] Timing sl	out port ack : UNC nt : a[0]	ONSTRAIN			+292 +0		2876	2876 R 2876 R

Fig 58. Timing Synthesis Report for Carry select adder using 180nm

6.2.2.1 CARRY SKIP ADDER:

It has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

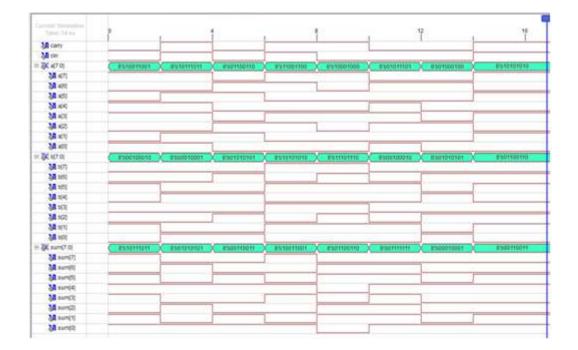


Fig 59. Output waveform of Carry Skip Adder

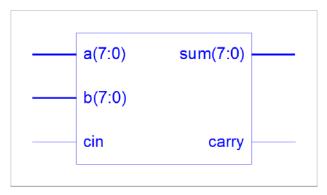


Fig 60. Carry skip adder

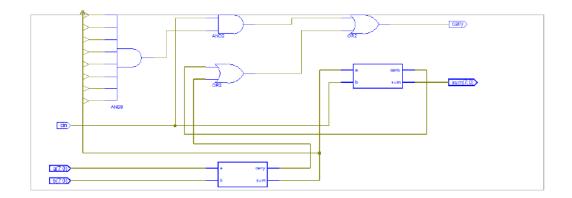


Fig 61. RTL view of carry skip adder

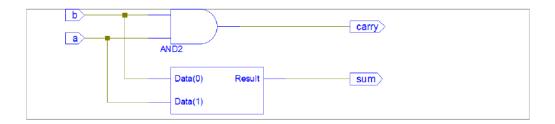


Fig 62. RTL view of half adder

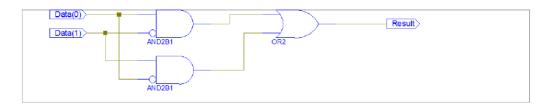


Fig 63. RTL view of XOR gate

6.2.2.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

D. Using 45nm Technology

Fast.lib:

Wireload	d on: gy lib g cond mode:	rary: itions:	Apr 14 20 carryskip gpdk045wc	anced_tree)	- v14.10-p008_1	Generated Generated Module: Technolog Operating Wireload Area mode	I on: yy libr condi mode: }:	ary: tions:	Apr 14 20: carryskip gpdk045bc slow (bala enclosed timing li	17 02:18:53 pr anced_tree)	n	- v14.10-p808_
	c.11.		Dynamic	Total				Leakage	Dynamic	Total		
			Power(nW)			Instance (ells P	ower(nW)	Power(nW)	Power(nW)		
carryskip	21	13.318				carryskip	20	2 451	3491.664	2405 115		
f1	1	0.719		444.277		f1	1	0.271				
f10	1	0.719	498.480	499.200		f11	1	0.271	265.180	265.451		
f11	ī	0.719	458.085	458.804		f13	1	0.271	232.033	232.304		
f12	1	0.719	543.806	544.526		f3	1	0.271	234.167	234.438		
f13	1	0.719	480.824	401.544		15	1	0.271	265.180	265.451		
f14	1	0.719	499.925	500.644		17	1	0.271	265.180	265.451		
f2	1	0.719	498.443	499.162		f9	1	0.271	265.180	265.451		
f3	1	0.719	397.646	398.366		f15	1	0.181	160.968	161,149		
f4	1	0.719	499.916	500.636		f16	ī	0.181	181.152	181.334		
f5	1	0.719	454.453	455.172		f10	1	0.126	125.773			
f6	1	0.719	543.796	544.516		f12	ī	0.126	137.207	137.333		
f7	1	0.719	454.453	455.172		f14	ĩ	0.126	127.592	127.717		
f8	1	0.719	498.480	499.200		f2	ī	0.126	125.773	125.899		
f9	1	0.719	454.453	455.172		f4	ī	0.126	127.587	127.713		
f15	1	0.566	285.937	286.503		f6	ī	0.126	137.207	137.333		
f16	1	0.566	336.429	336.995		f8	ī	0.126	125.773	125.899		

Fig 64. Power synthesis report for Carry skip adder using 45nm

E. Using 90nm Technology

Fast.lib

Slow.lib

Generate Generate Module: Technolo Operatin Wireload Area mod	ed on: ogy lik ng cond d mode de:	ditions: :	Apr 14 20 carryskip fast fast (bal enclosed timing li	anced_tree)	Generat Module: Technol Operati Wireloa Area mo	ed on: ogy li ng con d mode de:	brary: ditions: :	Apr 14 20 carryskip fast	anced_tree) brary	- v14.10-p008_1
Instance				Total Power(nW)	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)	
arryskip				10532.678	carryskip	21	2226.393	8306.285	10532.678	
f15	1	156.633			f15	1	156.633			
f16	1	156.633	471.426	628.059	f16	1	156.633	471.426	628.059	
f1	1	128.734	493.323	622.057	fl	1	128.734	493.323	622.057	
f11	1	128.734	493.323	622.057	f11	1	128.734	493.323	622.057	
f13	1	128.734	429.548	558.282	f13	1	128.734	429.548	558.282	
f3	1	128.734	429.548	558.282	f3	1	128.734	429.548	558.282	
f5	1	128.734	490.912	619.646	f5	1	128.734	490.912	619.646	
f7	1	128.734	488.502	617.236	f7	1	128.734	488.502	617.236	
f9	1	128.734		619.646	f9	1	128.734	490.912	619.646	
f10	1	127.375			f10	1	127.375	390.086		
f12	1	127.375	425.696		f12	1	127.375	425.696	553.071	
f14	1	127.375			f14	1	127.375	390.415	517.790	
f2	1	127.375	390.222		f2	1	127.375	390.222	517.597	
f4	1	127.375			f4	1	127.375	390.415	517.790	
f6	1	127.375			f 6	1	127.375	425.549		
f8	1	127.375	389.951	517.326	f8	1	127.375	389.951	517.326	

Fig 65. Power synthesis report for Carry skip adder using 90nm

F. Using 180nm Technology:

Fast.lib:

Generat Generat Module: Technol Operati Wireloa Area mo	ed on: ogy li ng con d mode	brary: ditions: :	Apr 14 20 carryskip slow	anced_tree)	Generat Module: Technol Operati Wireloa Area mo	ed on: ogy li ng con d mode de:	brary: ditions: :	Apr 14 20 carryskip tsmc18 1. fast (bal enclosed timing li	0 anced_tree) brary
Instance	Cells		Dynamic Power(nW)	Total Power(nW)	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)
carryskip	21	1241 085	6228 682	7469.767	carryskip	21	20.534	41879.132	41899.666
f15	1	86.962			f1	1	1.277	1987.970	1989.246
f16	1	86.962			f10	1	1.277	2301.313	2302.590
fl	1	72.543			f11	1	1.277	1979.654	1980.930
f10	1	72.543			f12	1	1.277	2449.316	2450.593
f11	1	72.543			f13	1	1.277	1710.786	1712.063
f12	ĩ	72.543			f14	1	1.277	2225.436	2226.713
f13	1	72.543		367,196	f2	1	1.277	2229.371	2230.647
f14	1	72.543			f3	1	1.277		1762.801
f2	1	72.543			f4	1	1.277		2283.478
f3	1	72.543			f5	1	1.277		2022.351
f4	1	72.543			f6	1	1.277	2455.850	
f5	1	72.543			f7	1	1.277		
f6	1	72.543		449.661	f8	1	1.277	2243.590	
f7	1	72.543			f9	1	1.277		1997.530
f8	1	72.543		418.234	f15	1	1.223		
f9	ī	72.543			f16	1	1.223	2836.898	2838.120

Fig 66. Power synthesis report for Carry skip adder using 180nm

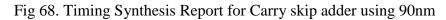
6.2.2.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

B. Using 45nm Technology

Fast.lib

1		(fF)	(ps)	(ps)	(ps)	R	
	1	0.6	6) +0) 0	R	
	ै	0.0	<u> </u>				
200				+0	0		
2	2	1.8	63	+200	200	R	
				+0			
1	1	0.6	74	+269			
				+0			
1	1	0.6	74	+241			
1	1	0.0	18	+79			
				+0	790	R	
				010000		0.00	
C	1	1 CONSTRA	1 0.0 CONSTRAINED	1 0.0 18 CONSTRAINED	1 0.0 18 +79 +6	+0 711 1 0.0 18 +79 790 +0 790	+0 711 1 0.0 18 +79 790 R +0 790 R


Fig 67. Timing Synthesis Report for Carry skip adder using 45nm

C. Using 90nm Technology

Fast.lib

Slow.lib

Generate Module: Technolo		Aj ci : fi ns: fi ei	pr 14 arrys ast ast (nclos	2017 kip baland	02:14	4:49 pm		Genera Module Techno Operat Wirelo	ted by: ted on: : logy library ing conditio ad mode: ode:	A C : s ins: s e	pr 14 arrys low low (nclos	2017 kip baland	02:2	1:18 pm	RC14.10 - v14.10-p06
Pin	Туре	Fanout				Arrival (ps)		Pin	Туре	Fanout				Arrival (ps)	
[7]	in port	1	4.0	Θ	+0	Θ	R				(m)	(ha)	(he)	(be)	
15/b					11325	12		b[1]	in port	1	18	Ø	+0	0	F
g17/A	1001021			20	+0	0		f3/b	an parts						
g17/S	ADDHXL	2	6.3	29	+61	61	F						+0	Θ	
f15/sum f16/a								q11/Y	CLKX0R2X1	2	5.1	80	+211		
g17/B					+0	61		f3/sum							
g17/C0	ADDHXL	1	1.8	11	+28	90		q102/A					+0	211	
16/carry	PEDDINCE	() *	1.0	**	120	50	- CO C	g102/Y	NAND4XL	1		159			F
103/B					+0	90		g100/A2		-	3		+0	365	-
103/Y	NOR2XL	1	1.8	23	+22	111		g100/Y	0AI31XL	1	0.0	102	+110		R
100/B0	a star weeks	12		07.0	+0	111		carry	out port		(374.6)	0.0220	+0	475	
100/Y	0A131XL	1	0.0	14	+13	124	F		· · · · · · · · · · · · · · · · · · ·						
arry	out port				+0	124		south the second s	lack : UNCO						

D. Using 180nm Technology:

Fast.lib

Generated by: Generated on: Module: Technology Library: Operating conditions: Wireload mode: Area mode:		ry: lons:	Encounter(R) RTL Compiler RC14.10 - v14.10-p008_1 Apr 14 2017 02:16:38 pm carryskip tsmc18 1.0 fast (balanced_tree) enclosed timing library							Generated by: Generated on: Module: Technology library: Operating conditions: Wireload mode: Area mode:			slow (balanced_tree) enclosed					- v14.10-p008_1
Pin	Туре	Fanout					Arrival (ps)			Pin	Туре	Fanout				Arrival (ps)		
a[0] f1/a	in port	1	2.	2	0	+0	0 F			a[3] f7/a	in port	1	2.1	0	+0	0 R		
g11/8 g11/Y f1/sum	X0R2XL	2	5.	5	73 +	+0	158 P			gll/B gll/Y f7/sum	XOR2XL	2	5.6	154	+0 +359	0 359 R	l	
3101/8 3101/Y 3100/A1	NAND3XL		3.			+0 +41 +0	158 199 F 199			f8/a gl1/B gl1/Y	XOR2XL	1	0.0	65	+0 +342	359 702 R		
arry	0AI31XL out port		0.	9 1	108	+94 +0	293 R 293 R			f8/sum sum[3]	out port				+8	702 R		
	lack : UNG int : a[0] t : carr	1	NED					₩Ĵ		Timing s	lack : UNC int : a[3] t : sum[ONSTRAI	NED				÷	

Fig 69. Timing Synthesis Report for Carry skip adder using 180nm

6.2.3.1 CARRY SAVE ADDER:

It has been implemented in Xilinx and Ncsim using gate level modeling for verification we have taken the results and verified with industry standard cadence tools.

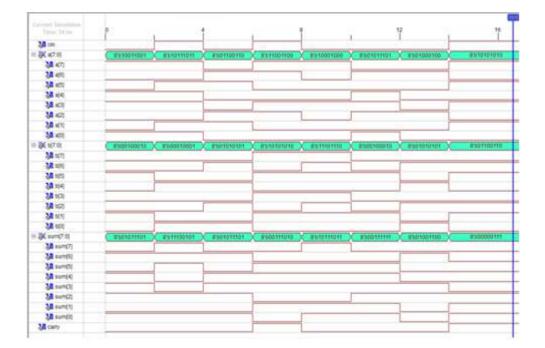


Fig 70. Output waveform of carry save adder

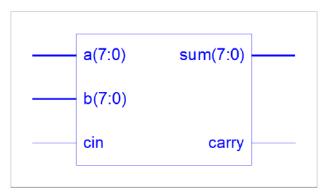


Fig 71. Carry save adder

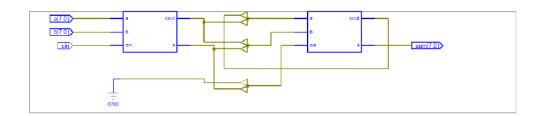


Fig 72. RTL view of carry save adder

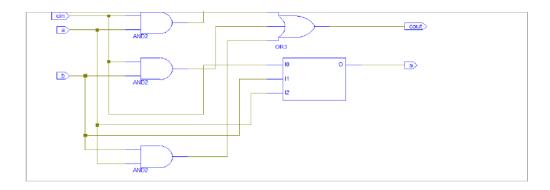


Fig 73. RTL view of full adder

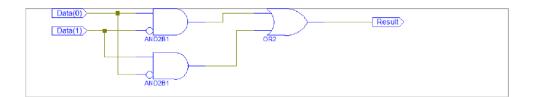


Fig 74. RTL view of XOR Gate

6.2.3.2 POWER SYNTHESIS RESULT:

For the synthesis, here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

B. Using 45nm Technology

Fast.lib

Slow.lib

Senerated by: Encounter(R) RTL Compiler RC14.10 - Senerated on: Apr 14 2017 12:46:44 pm Kodule: carrysaveadder Fechnology library: gpdK045wc Dperating conditions: fast (balanced_tree) Wireload mode: enclosed Area mode: timing library				14.10 - v14.10-p008_1	Generated by Generated on Module: Technology L Operating co Wireload mode Area mode:	Apr carry gpdki is: slow encle	14 2017 13 /saveadder 045bc (balanced	C14.10 -	v14.10-p008_			
Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)		Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)		
	16	11.490	8567.282	8578.772		carrysaveadder	16	3.037	5468.980	5472.017		
arrysaveadder fl	10	1.637	751.471	753.107		fl	1	0.514	473.165	473.679		
f10	1	0.675				f9	1	0.181	252.844			
	1			500.886 571.677		f10	1	0.168	323.119			
f11	1	0.675		497.888		f11	1	0.168	367.736	367.904		
f12	1	0.675				f12	1	0.168	320.701	320,869		
f13	1	0.675		481.099		f13	1	0.168	310.949			
f14	1	0.675		366.744		f14	1	0.168	236.522			
f15	1	0.675		421.636		f15	ī	0.168	273,910	274.078		
T2	1	0.675	499.773	500.448		f2	ī	0.168	320.589	320.757		
T3	1	0.675		512.018		f3	ĩ	0.168	325.861	326.029		
14	1	0.675		457.953		f4	ĩ	0.168	291.400	291.568		
f2 f3 f4 f5 f6	1	0.675		430.467		f5	î	0.168	273.865	274.033		
10	1	0.675		484.531		16	î	0.168	308.327	308,495		
f7	1	0.675		457.953		f7	1	0.168	291.400	291.568		
f8	1	0.675		425.255		f8	î	0.168	271.330	271.498		
f9 f16	1	0.566		388.538 237.756		f16	ī	0.158	156.582			

Fig 75. Power synthesis report for Carry save adder using 45nm

C. Using 90nm Technology

Fast.lib

Slow.lib

Generated by: Encounter(R) R Generated on: Apr 14 2017 C Module: Carrysaveadder Technology library: fast (balanced Wireload mode: enclosed Area mode: timing library			14 2017 O ysaveadder (balanced osed	1:01:57 pm _tree)	10 · v14.10-p608_1	Generated by Generated on Module: Technology l Operating co Wireload mod Area mode:	Apr carr slow ns: slow encl	14 2017 0 ysaveadder (balanced osed	- v14.10-p008_1			
Instance		Power(nW)	Dynamic Power(nW)			Instance	Cells	Leakage Power(nW)		Total Power(nW)		
carrysaveadder			18994.712			carrysaveadder	17	1300.046	12419.960	13720.006		
f16	1/	156.633				f16	1	86.962				
f9	1	156.633		826.500		f9	ĩ	86.962				
f10	1	135.794				f10	1	84.476				
f11	-	135.794				f11	1	84.476				
		135.794				f12	î	84.476	902.830			
f12	-					f13	î	84.476				
f13	1		1373.672			f14	î	84.476				
f14	1	135.794		1166.641		f15	î	84.476				
f15	1		1194.558			f2	1	84.476	798.900			
f2	1		1211.119			f3	÷	84.476				
f3	1	135.794		1360.275		f4	-					
f4	1	135.794		1231.686			1	84.476				
f5	1	135.794				f5	1	84.476	682.192			
f6	1	135.794		1296.556		f6	1	84.476	767.084			
f7	1	135.794		1231.686		f7	1	84.476				
f8	1	135.794		1188.345		f8	1	84.476				
f1	2	49.967	243.059	293.027		f1	2	27.932	176.706	204.638		

Fig 76. Power synthesis report for Carry save adder using 90nm

D. Using 180nm Technology:

Fast.lib:

Generated by: Encounter(R) RTL Compiler RC14.10 - Generated on: Apr 14 2017 01:09:26 pm Module: carrysaveadder Technology library: tsmc18 1.0 Operating conditions: fast (balanced_tree) Wireload mode: enclosed Area mode: timing library				v14.10-p008_1	1 Generated by: Generated on: Module: Technology library: Operating conditions: Wireload mode: Area mode:			14 2017 0 ysaveadder 18 1.0 (balanced osed ng library	v14.10-p008_		
Instance			Dynamic Power(nW)			Instance		Power(nW)	Dynamic Power(nW)	Letter research the restore	
carrysaveadder			149037.400			carrysaveadder			89611.553		
f10	1	2.599				f10	1			7903.488	
f11	1	2.599	12716.807	12719.406		f11	ĩ	3,917	7467.321		
f12	ī	2.599		11849.808		f12	1	3,917	6932.679		
f13	1	2.599	13449.046	13451.645		f13	1	3.917	7881.353	7885.270	
f14	1	2.599	9689.696	9692.295		f14	1	3,917	5685.410	5689.327	
f15	1	2.599	10014.757	10017.356		f15	1	3.917	5894.672	5898.590	
f2	1	2.599	9031.052	9033.651		f2	1	3.917	5525.870	5529.788	
f3	1	2.599	9779.578	9782.177		f3	1	3.917	5980.196	5984.114	
f4	1	2.599	8934.861	8937.460		f4	1	3.917	5462.482	5466.399	
f5	1	2.599	8863.281	8865.880		f5	1	3.917	5416.023	5419.940	
f 6	1	2.599	9708.112	9710.711		f6	1	3.917	5933.723	5937.640	
f7	1	2.599	8934.772	8937.371		f7	1	3.917	5462.496	5466.413	
f8	1	2.599	8800.157	8802.756		f8	1	3.917	5372.267		
f16	1	1.223	2698.744	2699.966		f16	1	1.424	1651.205	1652.629	
f9	1	1.223	3571.218	3572.441		f9	1	1.424	2147.961	2149.385	
f1	2	0.440	1088.286	1088.727		f1	2	0.795	732.090	732.885	

Fig 77. Power synthesis report for Carry save adder using 180nm

6.2.3.3 DELAY AND TIMING SYNTHESIS RESULTS:

Same as in case of power synthesis, here we are using here we are using fast.lib and slow.lib at supply voltage = 1.8 V for 180nm technology, supply voltage = 1.1 V for 90nm technology and supply voltage = 1.3 V for 45nm technology. As to these supply voltages the results for fast.lib and slow.lib are shown below:

B. Using 45nm Technology

Fast.lib

Generated by: Encounter(R) RTL Compiler RC14.10 Generated on: Apr 14 2017 12:45:44 pm Podule: carrysavadder Technology Library: gpdKN5%c Operating conditions: fast (balanced_tree) Wireload mode: enclosed Area mode: timing Library				Ger Mor Opr W1 Art	Generated by: Generated on: Module: Technology library: Operating conditions: Wireload mode: Area mode:			r 14 rrysa dk045 ow (b close ming	RC14.10 - v14.10-p0					
Pin Type Facout	. (fF) (ps)	(ps)	Arrival (ps)	Par		ype F		Load (fF)			Arrival (ps)	
		2.5	0	+0	0 F	b[1] f2/b	10	port	1	2.3	0	+0	0	F
1/5		1.7	32	*0 *87	0 87 Я	95) 95) 12/s	7/S ADI	DFXL	1	1.6	79	+0 +276	0 276	
		2.0	23	+0 +41	87 128 R		278 2700 AD	DHX1	1	1.8	55	+0 +138	276 414	
//cout 0/a g57/C1 g57/C0 ADOFXL 1		2.0	37	+0 +60	128 188 R		a 7/CI	DFXL	1	1.8	86	*0 +201	414 615	
0/cout 1/a g57/C1				-0	188	f10/ f11/4 g5	cout a 7/CI		12			+0	615	
g57/C0 ADDFXL 1 11/cow1 12/e		1.0	37	+64	252 R	f11/ f12/	cout	DFXL	1	1.8	86	+211	826	
g57/C1 g57/C0 ADDFXL 1 12/cout 13/a		0.1	37	+0 +64	252 315 R		cout	DFXL	1	1.8	86	*0 *211	826 1037	
g57/CI g57/C0 ADOFXL 1 L3/Cout		0.5	37	+0 +64	315 379 R	95 95 13/	7/CI 7/CO AD cout	DFXL	1	1,8	86	*0 *211	1037 1248	
14/cout		0.1	37	+0 +64	379 442 R	05 f14/	7/CI 7/CO AD cout	DFXL	1	1.8	86	*0 *211	1248 1460	R
15/a g57/C1 g57/C0 ADDFXL 1 15/cout		1.6	33	+0 +61	442 504 R		7/CI 7/C0 AD	DFXL	1	1.5	78	*0 *207	1460 1667	
6/a g22/8 g22/5 ADDHXL 1 6/5		0.0	10	+0 +48	504 552 /	f16/. 02: 02:	8 2/8 2/5 AD	DHXL	1	0.0	25	+0 +157	1667 1824	
un[7] out port				+0	552 F	f16/		t port				+0	1824	F

Fig 78. Timing Synthesis Report for Carry save adder using 45nm

C. Using 90nm Technology

Fast.lib

Generated by: Encounter(R) RTL Compiler RC14.10 - Generated on: Apr 14.2017 01:01:57 pm Module: carrysaveadder Technology library: fast Operating conditions: fast (balanced_tree) Wireload mode: enclosed Area mode: timing library				Genera Module Techno Operat Wirelo Area m	Generated by: Generated on: Module: Technology library: Operating conditions: Wireload mode: Area mode:			Encounter(R) RTL Compiler RC14.10 - Apr 14 2017 01:05:00 pm carrysaveadder slow slow (balanced_tree) enclosed timing library									
Pin	Type		(11) (p	is)	(ps)	Arrival (ps)		Pin	Туре	Fanout		Slew (ps)		Arrival (ps)		
[1] 2/a	in port		6.	2002	0	+0	0	R	a[1] f2/a	in port	1	6.2	0	+0	0		
g63/8 g63/5 l/s l/b	ADDFX1	3	4.	7	28	+0 +91	0 91		g63/B g63/S f2/s f9/b	ADDFX1	1	4.4	95	+0 +363	0 363	F	
g22/8 g22/C0 /cout	ADDHXL	1	5.	1	20	+0 +37	91 128		g22/8 g22/C0 f9/cout f10/a	ADDHXL	1	4.9	76	+0 +128	363 490	F	
g63/CI g63/C0 0/cout 1/a	ADDFX1	1	5.	1	27	+0 +68	128 195		g63/C1 g63/C0 f10/cout f11/a		1	4.9	96	+0 +244	490 735	F	
g63/CI g63/C0 11/cout 12/a	ADDFX1	1	5.	1	27	+0 +69	195 265	F	g63/C1 g63/C0 f11/cout f12/a		1	4,9	96	+0 +250	735 985	F	
g63/C1 g63/C0 L2/cout L3/a	ADDFX1		15	.1	27	+0 +69	26 33	F	g63/C1 g63/C0 f12/cout f13/a	ADDFX1	1	4.9	96	+0 +250	985 1235	F	
963/CI 963/CO 13/cout	ADDFX1		15	.1	27	+0 +69	33 40	F	g63/C1 g63/C0 f13/cout f14/a	ADDFX1	1	4.9	96	+0 +250	1235 1485	F	
g63/CI g63/C0 4/cout 5/a	ADDFX1		1 5	.1	27	+8 +69	48- 47.	i F	963/C1 963/C0 f14/cout f15/a	ADDFX1	1	4.9	96	+0 +250	1485 1734	F	
g63/C1 g63/C0 15/cout 16/a	ADDFX1		1 4	.7	27	+0 +69	0.00	F.	g63/C1 g63/C0 f15/cout f16/a	ADDFX1	1	4.4	92	+0 +246	1734 1980	F	
g22/B g22/S 16/s	ADDHXL		1 0	.0	8	+8 +36	54 57	2 3 R	922/8 922/5 f16/s	ADDHXL	1	0.0	30	+0 +129	1980 2109		
um[7]	out port					+8	57	R	sum[7]	out port				+0	2109	R	

Fig 79. Timing Synthesis Report for Carry save adder using 90nm

D. Using 180nm Technology:

Fast.lib

Slow.lib

Generated by: Encounter(R) RTL Compiler RC14.10 - v14.10-p008_1	Generated by: Encounter(R) RTL Compiler RC14.10 + v14.10-pt
Generated on: Apr 14 2017 01:09:26 pm	Generated on: Apr 14 2017 01:12:52 pm
Module: carrysaveadder	Module: carrysaveadder
Technology library: tsmc18 1.0	Technology library: tsmc18 1.0
Operating conditions: fast (balanced_tree)	Operating conditions: slow (balanced_tree)
Wireload mode: enclosed	Wireload mode: enclosed
Area mode: timing library	Area mode: timing library
Pin Type Fanout Load Slew Delay Arrival	Pin Type Fanout Load Slew Delay Arrival
(1F) (ps) (ps) (ps)	(fF) (ps) (ps) (ps)
1] in port 1 7.0 0 +0 0 R	a[1] in port 1 6.8 0 +0 0 R
//a	f2/a
063/5 ADDFX2 1 6.1 69 +224 224 F /s	963/8 +0 0 963/5 ADDFX2 1 5.9 149 +554 554 F 12/5
/b +0 224 g22/6 ADDHXL 1 6.5 51 +90 315 F //cout	19/b 922/8 +0 554 922/CO ADDHXL 1 6.2 99 +201 755 F 19/cout
074	f10/a
963/CI +0 315	g63/CI +0 755
963/C0 ADDFX2 1 6.5 69 +130 445 F	g63/C0 ADDFX2 1 6.2 145 +337 1992 F
0/cout	f10/cout
1/a	f11/a
963/CI +0 445	g63/CI
963/CO ADDFX? 1 6.5 69 +134 579 F	g63/C0 ADDFX2 1 6.2 145 +349 1440 F
11/cout	f11/cout
12/a 963/C1 +0 579 963/C0 ADDFX2 1 6.5 69 +134 713 F 12/Cout 13/a	f12/a g63/CI +0 1440 g63/CO ADDFX2 1 6.2 145 +349 1789 F f12/cout
963/CI +0 713	f13/a
963/C0 A00FX2 1 6.5 69 +134 847 F	g63/CI +0 1789
13/cout	g63/CO ADDFX2 1 6.2 145 +349 2137 F
14/a	f13/cout
963/CI +0 847	f14/a
963/CO A00FX2 1 6.5 69 +134 982 F	g63/CI +0 2137
14/cout	g63/CO ADDFX2 1 6.2 145 +349 2486 F
15/4	f14/cout
+0 982	f15/a
963/C0 ADD#X2 1 6.1 69 +114 1115 F	g63/CI +0 2486
15/cout	g63/CO ADDFX2 1 5.9 144 +348 2833 F
16/a	f15/cout
922/8 +0 1115	f16/a
922/5 ADDHXL 1 0.0 65 +72 1187 F	g22/8
16/5	g22/S ADDHXL 1 0.0 143 +173 3006 F
um[7] out port +0 1187 F	f16/s sum[7] out port +0 3006 F

Fig 80. Timing Synthesis Report for Carry save adder using 180nm

6.2.4 PERFORMANCE EVALUATION:

Table 4. Comparison between the parameters of Carry Select adder, Carry Skip adder, CarrySave adder.

Fast Adders	Technology used	Туре	Cells	Total Power (uW)	Total Delay (ps)
	45nm	Fast	8	3781.515	548
		Slow	8	10786.93	569
Carry Select	90nm	Fast	8	79143.01	1133
Adder		Slow	8	2414.802	1743
	180nm	Fast	8	6942.391	2057
		Slow	8	47944.86	2876
	45nm	Fast	21	8276.512	204
		Slow	21	10532.68	124
Carry Skip	90nm	Fast	21	41899.67	293
Adder		Slow	20	3495.115	790
	180nm	Fast	21	7469.767	475
		Slow	21	26365.73	702
	45nm	Fast	16	8578.772	552
		Slow	17	21123.27	578
Carry Save	90nm	Fast	17	149074.1	1187
Adder		Slow	16	5472.017	1824
	180nm	Fast	17	13720.01	2109
		Slow	17	89666	3006

Comparison of Total No. of Cells:

Fig 81. Comparison of Total No. of Cells Graph

Fig 82. Comparison of Total No. of Cells Graph

Comparison of Total power consumption (in uW):

Fast

Fig 83. Comparison of Total Power Consumption Graph

Slow

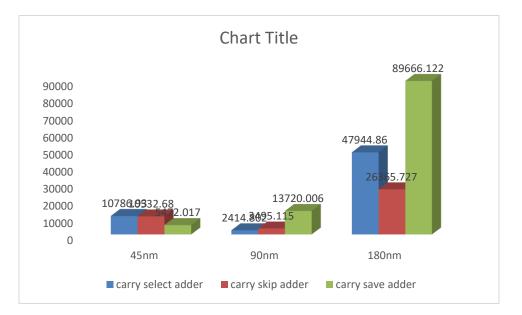


Fig 84. Comparison of Total Power Consumption Graph

Comparison of Total Delay (in ps):

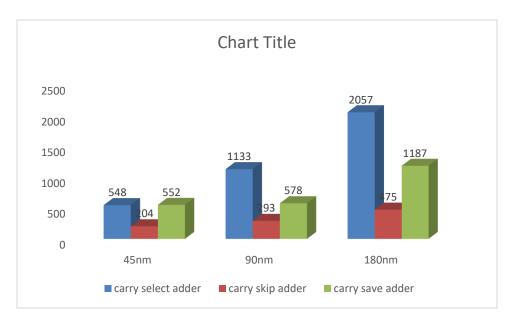
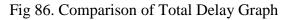



Fig 85. Comparison of Total Delay Graph

Slow:

Carry Select adder, Carry Skip Adder and Carry Save Adder each one of 4-bit and 8-bit has been implemented using Verilog in CADENCE. For simulation we have used Xilinx, NCsim and for synthesis we have used RTL compiler v14.10 have been used. As a result, it has been concluded that 4-bit and 8-bit Carry Select Adder gives the optimized result as compared to Carry Skip Adder and Carry Save Adder in all the technologies 45nm, 90nm, 180nm. When coming to the No. of cells Carry Select Adder uses less number of Cells when compared to Carry Skip and Carry Save Adder. While coming to total power consumption Carry Select Adder consumes less power compared to Carry Skip and Carry Save Adder. As per Delay parameter is concerned Carry skip adder is efficient manner in case of 4-bit and 8-bit Adders.

Depending upon the parametric analysis these fast adders have utilized in Multiplier Accumulator Unit (MAC) in DSP application.

In future, we compare with other Fast Adders and to will try to reduce the power consumption and delay by reducing the components and getting the optimal result.

[1] Prashant Gurjar, Rashmi Solanki, Pooja Kansliwal, Mahendra Vucha, "VLSI Implementation of Adders for High Speed ALU" *International Journal of Computer Applications, September 2011.*

[2] Reena Rani, Laxmi Kanth Singh, Neelam Sharma, "FPGA Implementation of Fast Adders using Quaternary Signed Digit Number System" 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009)

[3] Nuno Roma, Tiago Dias, Leonel Sousa, "Fast Adder Architectures: Modeling and Experimental Evaluation" *Portuguese Foundation for Science and for* Technology under the research project *Configurable and Optimized Processing Structures for Motion Estimation* (COSME) POSI/CHS/40877/2001.

[4] Jasbir Kaur, Lalith Sood, "Comparison Between Various Types of Adder Topologies" *InternatIonal Journal of Computer SCIenCe and technology IJCST Vol. 6, ISSue 1, Jan - MarCh 2015*

[5] Akash Kumar, Deepika Sharma, "Performance Analysis of Different Types of Adder for High Speed 32 Bit Multiply And Accumulate Unit" International Journal of Engineering Research and Applications (IJERA) Vol. 3, Issue 4, Jul-Aug 2013, pp.1460-1462

[6] Anand N, George Joseph, Johny S Raj, Jayakrishnan .P, "Implementation of Adder Structure with Fast Carry Network for High Speed Processor", 2013 InternationalConference on Green Computing, Communication and Conservation of Energy (ICGCE)

[7] R. P. P Singh, Praveen Kumar, Balwinder Singh, "Performance Analysis Of Fast Adders Using VHDL" 2009 International Conference on Advances in Recent Technologies in Communication and Computing

[8] Jucemar Monteiro, José Luís Güntzel, Luciano Agostini, "A1CSA: An Energy-Efficient Fast Adder Architecture for Cell-Based VLSI Design" *supported by the Brazilian Council for Scientific and Technological Development (CNPq).*

[9] Pavan Kumar.M.O.V, Kiran.M, "Design Of Optimal Fast Adder" International Conference on Advanced Computing and Communication Systems (ICACCS-2013)

[10] Ravikumar A Javali, Ramanath J Nayak, Ashish M Mhetar, Manjunath C Lakkannavar

"Design of high speed carry save adder using carry lookahead adder" *Proceedings of International Conference on Circuits, Communication, Control and Computing* (I4C 2014)

[11] Samiappa Sakthikumaran, S. Salivahanan, V. S. Kanchana Bhaaskaran, V. Kavinilavu "A Very Fast and Low Power Carry Select Adder Circuit" *Institute of Electrical and Electronics Engineers-2011*.

[12] Rajwinder Kaur, Amit Grover "Different Techniques used for Carry Select Adder – A Review" International Journal of Computer Applications Volume 116 – No. 3, April 2015

[13] Laxman Shanigarapu, Bhavana P. Shrivastava "Low-Power and High Speed Carry Select Adder" *International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013.*

[14] Aamir A. Farooqui, Vojin G. Oklobdzija "General Data-Path Organization of MAC unit for VLSI Implementation of DSP Processors"

[15] A.Abdelgawad "Low Power Multiply Accumulate Unit (MAC) for Future Wireless Sensor Networks" *Institute of Electrical and Electronics Engineers-2013*.

[16] Yuyun Liao and David B. Roberts "A High-Performance and Low-Power 32-bit Multiply-Accumulate Unit with Single-Instruction-Multiple-Data (SIMD) Feature" *IEEE Journal Of Solid-State Circuits, Vol. 37, No. 7, July 2002*

[17] Ohsang Kwon, Kevin Nowka, Earl E. Swartzlander, Jr. "A 16-Bit MAC Design Using Fast5:3 Compressor Cells" *Journal of VLSI Signal Processing 31*, 77–89, 2002.