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ABSTRACT 

 

The Finite Element Heterogeneous Multiscale Method (FE-HMM) is a numerical method designed 

to solve physical problems which are multiscale in nature. It comprises of solving the macro scale 

problem by adding contributions from the data at the microscopic scale. This dissertation 

implements the FE-HMM to solve multiscale problems in linear elasticity. The implementation is 

done in MATLAB and the routines for the various components of the FE-HMM algorithm are 

given. Lastly, results for the numerical experiments of two model problems are given and the 

theoretical error estimates are verified. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The dissertation deals with the computation of solutions for a certain class of problems known as 

multiscale problems. The term “multiscale” refers to a certain class of phenomenon that exhibits 

specific behaviour in different spatial or temporal scales. The multiscale phenomena can be 

witnessed not only in the physical world (as a physical phenomenon described by mathematical 

equations) but also in the psychological constructs of the physical phenomena as we experience 

them in our everyday. Time is organized in terms of days, months and years, the cause of which is 

the multiscale dynamics of the solar system in which the earth rotates on its own axis in a smaller 

scale which at the same time revolving around the sun in a larger scale. Even social structures 

exhibit this multiscale behaviour consisting of families, towns, states, countries and continents.  

From the viewpoint of physics, all matter is made up of atoms comprising of the nucleus and 

electrons that revolve around it and their structure and dynamics determine the entire behaviour of 

the material. Therefore, a detailed modelling of the atomistic level would allow us to compute all 

macroscopic behaviour, such as thermal or electrical conductivity, deformation, fracture, wave 

propagation etc. Physicists often use these type of atomistic level simulations to understand various 

material properties at the atomic level. However, attempting to determine the macroscopic 

behaviour using such an approach would result in an impossibly large system of equations, even 

for the most powerful supercomputers of today. Engineers and material scientists, on the other 

hand, whose interest lie solely in the macroscopic behaviour of a material, use macroscopic laws 

and continuum models such as the laws of thermodynamics, the Navier-Stokes equations, the 

Navier-Cauchy or elastostatic equations and so on. However, with the advancement of science and 

the development of technologies like nanotechnology, there arises a need to develop more realistic 

and efficient modelling techniques that can be used to predict the macroscopic behaviour while 

taking into account the microscopic or atomic properties.  

This general philosophy of modelling that exploits the microscopic information while determining 

the macroscopic behaviour is termed as “multiscale modelling”. Such multiscale models are useful 

in many areas of physical science, geoscience, environmental science and medical science or 

biology. In fact, almost all scientific problems involves multiscale characteristics, which may 
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tempt one (at least one specializing in multiscale modelling) to claim that multiscale modelling 

encompasses almost every aspect of modelling. 

The dissertation focuses on a multiscale problems modelled as elliptic multiscale partial 

differential equations belonging to the class of problems known as “homogenization problems”. 

By homogenization, we mean expressing the multiscale problem with highly oscillating material 

coefficients into an “averaged” version. Essentially, homogenization describes the microscopically 

heterogeneous system in terms of a “homogenized equation” in which the material coefficients are 

replaced by an “averaged” homogeneous version which is valid at the macroscopic level. 

Research in homogenization theory has been going on for the past few decades. However, the main 

difficulty in homogenization is that it is very difficult to find the explicit expressions of the 

homogenized coefficients. Assumptions such as periodicity are necessary in order to find explicit 

expressions of the homogenized coefficients. Multiscale methods, for example the finite element 

heterogeneous method, on the other hand does not require assumptions of periodicity and hence 

are applicable to a wider range of problems 

1.2 Outline of the Dissertation   

The chapters are organized as follows. 

• Chapter 2 includes a brief literature review of the various methods developed for solving 

multiscale problems. The dissertation deals with the Finite Element Heterogeneous 

Multiscale Method which is once such method (FE-HMM). 

• Chapter 3 presents a brief review of the preliminary theories of mathematical 

homogenization for linear elasticity and the (classical) Finite Element Method which are 

necessary for understanding the FE-HMM.  

• Chapter 4 then describes the Finite Element Heterogeneous Multiscale Method. The 

numerical algorithm, the macro and micro finite element spaces and their coupling 

conditions, and a priori error estimates are discussed. 

• Chapter 5 presents the work done in the dissertation, which is the MATLAB 

implementation of the FE-HMM for problems in linear elasticity. The various routines 

involved in implementing FE-HMM are explained in detail.  

• Finally, numerical experiments are conducted using the FE-HMM in Chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 The Multiscale Problem 

Multiscale problems can be modelled using a general class of PDEs written as 
����� = �, defined 

on a domain Ω ∈ ℝ� , 1 ≤ � ≤ 3, and having highly oscillating coefficients that depend on a small 

parameter � > 0 which represents the microscopic scale length of the material heterogeneity. The 

micro solution of these PDEs are given by �� ∶ � ⟶  ℝ which are defined over the entire domain. 

The purpose of this chapter is to present a brief glimpse of the various methods are that are used 

for finding approximate solutions to the solution �� of the multiscale problem are reviewed below. 

2.2 Homogenization 

The general idea behind mathematical homogenization theory is to find a limit denoted by �� to 

which the micro solutions converge as � → 0. The macro limit of the solution �� is called the 

homogenized solution if it is also the solution of a homogenized PDE 
����� = � therefore being 

independent of the micro scale �. Homogenization theory deals with finding the analytical 

homogenized solution �� of multiscale PDEs described above. The texts [12], [19] give the 

necessary introduction into the mathematical theory of homogenization in linear elasticity. A more 

detailed review of homogenization theory is done in Chapter 3.  

2.2 Numerical Homogenization Methods 

The homogenized form of a multiscale PDE takes a form  
����� = � with homogenized 

coefficients ��� �. This homogenized PDE can be solved using classical numerical methods. 

However, in order to apply classical numerical methods, an explicit expression for the 

homogenized coefficients ��� � is necessary. Such an explicit expression for ��� � is usually not 

obtainable. This difficulty led to the development of numerical homogenization methods, some of 

which are listed below. 

2.2.1 Multiscale Finite Element Method (MsFEM) 

The MsFEM is based on the ideas proposed in [9] in which the finite element space is modified in 

order to account for the microstructure of the problem. Special multiscale basis functions are used 
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for this purpose. This method was extend and a detailed description of the method can be found in 

[16].  

The method is aimed at obtaining the full sine scale solution and is therefore very costly 

computationally. Two other methods are listed below which are much cheaper computationally, 

but requires certain restrictions such as scale separation and self-similarity of the tensor involved 

in the multiscale PDE. 

2.2.2 Representative Volume Elements (RVE) 

The RVE is a well-known method for solving multiscale problems in engineering and structural 

mechanics. It relies on representative volume elements (RVEs) which simulate the microstructure 

of the composite. The simulation is then “upscaled” to obtain the effective macroscopic properties.  

2.2.3 Finite Element Heterogeneous Multiscale Method (FE-HMM) 

The Heterogeneous Multiscale Method (HMM) is a methodology for problems that exhibit scale 

separation. A detailed description of the HMM can be found in [14], [15]. 

The HMM consists of the following steps: 

• Step 1: A macroscopic model is constructed using data obtained from simulations at the 

microscopic level. 

• Step 2: The macroscopic solution is obtained for the macro model constructed in Step 1.  

• Step 3: The fine-scale information is recovered using a post-processing technique. 

In Steps 1 and 2, if the Finite Element Method is used to solve the micro and macro models, then 

the method is termed as the Finite Element Heterogeneous Multiscale Method (FE-HMM) 

A detailed description of the FE-HMM can be found in the papers [1]-[6]. The FE-HMM is 

described in more detail in Chapter 3 for problems in linear elasticity. 
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CHAPTER 3  

PRELIMINARY THEORY 

 

This chapter presents a brief review of the preliminary theory necessary for the Finite Element 

Heterogeneous Multiscale Method. Section 3.1 gives a brief review of homogenization theory in 

linear elasticity. Section 3.2 reviews the classical (single-scale) Finite Element Method. The main 

purpose of this chapter is to set the notations which shall be used throughout the dissertation.  

3.1 Homogenization in Linear Elasticity 

This section gives a brief review of homogenization and describe the asymptotic behaviour of the 

linear elasticity system as � → 0. A detail description of the theory and proofs of the theorems can 

be found in [12], [19].  

Noting that the Einstein summation convention is used throughout the thesis, we set the following 

notation. 

Notation 3.1.1. If ! = "#$%&'()*$,%,&,'*+ is a fourth-order tensor, and , = ",$%()*$,%*+ ,- =
",$%- ()*$,%*+ are second order tensors, represented by square matrices, we set 

 ! , = "�! ,�$,%()*$,%,&,'*+ = ."#$%&',&'($%/)*$,%,&,'*+  

 ! , ,- = #$%&',&',$%-                                                             (3.1.1) 

 

|,| = 1 2 ,$%�
+

$,%3) 4
)�                                                                  

 

Definition 3.1.2. Let 5, 6 ∈ ℝ, such that 0 < 5 < 6 and let 8 ∈ ℝ+ be an open set. Then we 

denote by 9:�5, 6, 8� the set of tensors ! = "#$%&'()*$,%,&,'*+ such that  

 ;�         #$%&' ∈ 
<�8�,                                    for any ;, C, D, ℎ = 1, … , G  

  ;;�        #$%&' = #$%'& = #%$&' = #&'$%, for any ;, C, D, ℎ = 1, … , G (3.1.2) 

  ;;;�      5|,|� ≤ !,,,                             for any symmetric matrix m   

  ;O�      |!,| ≤ 6|,|,                                        for any matrix matrix m  

a.e. on 8. 
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We define the linearized strain tensor Q defined by 

 Q�R� = .Q$%�R�/)*$,%*+ , Q$%�R� = 12 TUR$U % + UR%U $ W , ∀ ;, C = 1, … , G 
(3.1.3) 

for any R = �R), … , R+�.  Then, Hooke’s law gives us the strain tensor defined as, 

 Y$% = #$%&'Q&'�R� = #$%&' UR&U '  , (3.1.4) 

where we have used the symmetry property (3.1.2) (ii). We now introduce the reference cell  

Z =]0, ℓ)]× … ×]0, ℓ+] ,   
where ℓ), … ℓ+ are positive numbers.  

Definition 3.1.3. A function � define a.e. on ℝ+ is said to be Z-_Q`;a�;b iff 

�� + Dℓ$Q$� = �� �   a. e. on ℝ+ , ∀ D ∈ c, ∀; = 1, … , G, 
where dQ), … , Q+e is the canonical basis of ℝ+. 

Problem 3.1.4. Let Ω ⊂ ℝ+ , G = 1,2,3 denote an open, non-empty, bounded and connected 

Lipschitz domain with boundary UΩ, where the Dirichlet boundary conditions are prescribed on Γh ⊂ UΩ and the Neumann boundary conditions on Γ+ = UΩ ∖ Γh. If Ωj (the closure of Ω) is a 

region occupied by a linearly elastic material which is in static equilibrium under the action of the 

body forces k ∈ 
��Ω�+, surface traction l ∈ mnop�Γq�+, find �� ∈ m�)�Ω�+ such that  

− UU % T�$%&'� U�&�U 'W = �$            in Ω , 
                                �� = 0           on Γs , (3.1.5) 

             �$%&'� U�&�U '  t% = u$           on Γ+ , 
for ; = 1, … , G, where � represents the parameter characterizing the heterogeneity of the material, v = �t), … , t�� is the unit outward normal to ∂Ω and x�� � is a fourth order symmetric tensor 

such that x�� � = .�$%&'� � �/)*$,%,&,'*+ ∈ 9:�5, 6, Ω�. 
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Existence and uniqueness.  

We define the space y of admissible displacements as 

 y = m�)�Ω�+ ≔ d{ ∈ m)�Ω�+ ;  { = 0 on Γs e. (3.1.6) 

Then, due to the Poincaré Inequality, y can be equipped with the norm 

 

‖{‖y = 1 2 ‖∇O$‖�p�����+
$,%3) 4

)�, 
 

(3.1.7) 

for { = �O), … , O+� ∈ y, and is a Hilbert space for the scalar product 

��, {�y = 2�∇�$, ∇O$��p���
+

$3) . 
The variational form of (3.1.5) can then be written as follows. 

 Find �� ∈ y such that 
!���� , {� ≔ � x�� � Q���� Q�{� � �  

                   = � k ⋅ { � � + � l ⋅ {��
 �� = : ��{�,              ∀ { ∈ y    

 

 

(3.1.8) 

The bilinear form in (3.1.8) can be shown to be y-coercive by defining a norm on y 

 |||{||| = � |Q�{�|�� �  
(3.1.9) 

which is equivalent to (3.1.7). This can be done using the first Korn inequality 

  ‖{‖y ≤ b� T� |Q�{�|�� � W)�
 

(3.1.10) 

which holds for all { ∈ y. And since the bilinear form in (3.1.8) is bounded on y as x�� � ∈9:�5, 6, Ω�, we can apply the Lax-Milgram theorem to guarantee the existence and uniqueness of 

the solution of (3.1.5) and get the estimate 

 ‖��‖y ≤ � �‖k‖�p���� + ‖l‖��op������. (3.1.11) 
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In order to derive the homogenization results for the problem (3.1.5), we set  

 �$%&'� � � = �$%&' . �/  a. e. on ℝ+ , ∀ ;, C, D, ℎ = 1, … , G 
(3.1.12) 

and  

 x�� � = x . �/ = .�$%&'� � �/)*$,%,&,'*+  a. e. on ℝ+ (3.1.13) 

where x = x��� is a fourth-order tensor such that 

 �$%&' is Z-_Q`;a�;b,        ∀ ;, C, D, ℎ = 1, … , G (3.1.14) 

 x = "�$%&'� ()*$,%,&,'*+ ∈ 9:�5, 6, Z�. (3.1.15) 

Auxiliary periodic problems.  

In order to derive the homogenized equation for the linear elasticity system, we introduce corrector 

functions which are solutions to a family periodic boundary value problems posed on the reference 

cell Z.  

First we define, for any ℓ, , ∈ d1, … , Ge, the vector valued function �ℓ���� = .�&ℓ����/)*&*+by 

 �&ℓ���� = ���&ℓ      D = 1, … , G, (3.1.16) 

where �&ℓ is the Kronecker symbol. Then, we introduce the vector valued function �ℓ� ="�&ℓ�()*&*+, a solution of the system 

− UU % T�$%&' U"�&ℓ� − �&ℓ�(U ' W = 0           in Y, ; = 1, … , G 

 �&ℓ�    Z-_Q`;a�;b (3.1.17) 

    ℳ�"�&ℓ�( = 0          
where ℳ���� denotes the mean value of an integrable function �, defined by ℳ� = )|�| � ������� . 
The variational form of (3.1.16) is as follows.  

 Find �ℓ� ∈ ��:��Z� such that  
�x��� Q"�ℓ�( Q�{���� = �x��� Q"�ℓ�( Q�{����  , ∀ { ∈ ��:��Z� 

 

(3.1.18) 
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where the space ��:��Z� is defined as 

 ��:��Z� =  { ∈ m�:�) �Z�+;  ℳ��O$� = 0, ; = 1, … , G¡ 

 

(3.1.19) 

and m�:�) �Z� is the closure of ��:�< �Z� ⊂ �<�ℝ+�, the subset of Z-_Q`;a�;b functions, for the   

m)-norm. Using the Poincaré-Wirtinger Inequality and the Korn inequality for the periodic case, 

the existence and uniqueness for the problem (3.1.18) is given by the Lax-Milgram theorem.  

The following theorem gives the homogenized problem for (3.1.5). 

Theorem 3.1.5. Let k ∈ y′, £ ∈ mnop�Γ+�+and x� be given by (3.1.12) – (3.1.15). If �� ∈ y is the 

solution of (3.1.5), then 

;�         �� ⇀ �� ¥Q�D¦� ;t y.                                          ;;�        x� Q���� ⇀ x� Q���� ¥Q�D¦� ;t 
��Ω�+×+  
where �� = ��)�, … , �+� � is the unique solution in y of the homogenized system 

− UU % T�$%&'� U�&�U 'W = �$            in Ω , 
                                �� = 0           on Γs , (3.1.20) 

           �$%&'� U�&�U '  t% = u$           on Γ+ , 
for ; = 1, … , G. The tensor x� = "�$%&'� ()*$,%,&,'*+ is called the homogenized tensor and is 

constant, verifies the symmetry property (3.1.2) (ii) and satisfies the coerciveness condition for 

some constant 5�. The elements of x� are given  

 �$%&'� = 1|Z| ��$%&'���� �� − 1|Z| � �$%ℓ���� U�ℓ&'U�� ���� ��. (3.1.21) 

The variational formulation for the homogenized problem (3.1.20) is given by  

 Find �� ∈ y such that 
!���� , {� ≔ � x�� � Q���� Q�{� � � = ��{�, ∀ { ∈ y  
 

 

(3.1.22) 
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3.2 The Finite Element Method  

As mentioned in the introduction, the FE-HMM uses the finite element method to solve the macro 

and micro problems simulated in the HMM methodology. We therefore present a short review of 

the finite element method and mention the finite element error estimates which shall also be used 

in a priori error estimates for the FE-HMM. 

For a non-oscillatory (single-scale) version of problem (3.1.1) i.e. with a tensor x� � = �$%&'� � 

in place of �$%&' � , we write the variational formulation as: Find � ∈ y such that 

 Find � ∈ y such that 
!§:���, {� ≔ � x� � Q��� Q�{� � � = ��{�, ∀ { ∈ y 

(3.2.1) 

The existence and uniqueness of the solution for (3.2.1) is guaranteed in the same way as earlier 

by the Lax-Milgram theorem. 

The discretization of the variational form is done in the standard Galerkin framework. Let the 

domain be partitioned by a triangulation ̈ � consisting of either simplicial or quadrilateral elements 

with diameter m� and with m = max�∈ ©̈m� as the maximum diameter of the triangulation. 

Further, the triangular is assumed to be admissible and shape regular, i.e., 

• ⋃ «�∈ ¬̈ = Ωj and the intersection of two elements is either empty, a single shared vertex or 

single common edge/face (admissible),  

• ∃ ® > 0 such that m� ��⁄ ≤ °, where �� = supd� ∶ there is a circle of diameter � in «e 

(shape regular). 

The finite dimensional subspace of m�)�Ω�+ for the partition is defined by 

 y��Ω, �̈� = d{� ∈ m�)�Ω�+ ; {�|� ∈ ℛ��«�+, ∀« ∈ �̈e (3.2.2) 

Where ℛ��«� is either of the spaces ´��«� or µ��«� of polynomials for simplicial elements and 

quadrilateral elements respectively, with degree _ in each variable.  

The discretized problem is then, as follows.  

 Find �� ∈ y��Ω, �̈� such that !§:����, {�� = ��{��, ∀ {� ∈ y��Ω, �̈�. (3.2.3) 
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A priori error estimates for the solution �� can be derived from Céa’s Lemma which states that 

 ‖� − ��‖�o���� ≤ �¶  inf{©∈y·��, ©̈�‖� − {�‖�o���� , (3.2.4) 

which bounds the error � − �� by the interpolation error, implying that it depends on the degree _ of the space y��Ω, �̈�. 

If it is provided that the solution � has regularity � ∈ m�¸)�Ω�+ then there exists a constant � such 

that the errors in the m)-norm and 
�-norm are given by 

 ‖� − ��‖�o���� ≤ �m� |�|�¹ºo����   (3.2.5) 

and   

  ‖� − ��‖�p���� ≤ �m�¸) |�|�¹ºo����  (3.2.6) 

where |�|�¹ºo���� is the semi-norm given by  

|�|�¹ºo���� = »2‖∇�$‖�¹ºo�����+
$3) ¼

)�. 
Quadrature formula. The quadrature formula for a finite element is defined using a �)-

diffeomorphism, �� from each element « ∈ �̈ to the reference element «½ such that « = ��"«½(.  

If the quadrature formula on the reference element is given by d ¾ℓ, ¿Àℓeℓ3)ℒ , then the corresponding 

quadrature formula on an element « ∈ �̈ is defined as d ℓ, ¿ℓeℓ3)ℒ , where   ℓ are the quadrature 

points given by  ℓ = ���  ¾ℓ�, ℓ = 1, … , ℒ and ¿ℓ are the quadrature weights given by ¿ℓ =¿Àℓ|det�U���|, ℓ = 1, … , ℒ. We make the following assumptions in the quadrature formula: 

(Q1)   ∑ ¿Àℓ|∇Ã¾� ¾ℓ�|� ≥ ¶Å‖∇Ã¾‖�p�ÆÀ ℓ��ℒℓ3)  for  ¿Àℓ > 0, ℓ = 1, … , ℒ , ¶Å > 0 and  ∀ Ã¾� ¾� ∈ ℛ�"«½( 

(Q2)  � Ã¾� ¾�� ¾�½ = ∑ ¿ÀℓÃ¾� ¾ℓ�ℒℓ3) ,    ∀Ã¾� ¾� ∈ ℛÇ"«½( where Y = max�2_ − 2, _� for simplicial 

elements and Y = max�2_ − 1, _ + 1� for rectangular elements. 

For the numerical experiments conducted in this dissertation, we adopt the symmetric Gaussian 

quadrature rule for simplicial 2D (triangular) elements derived by Dunavant [13] (see also, [17]), 

as the problems considered are 2-dimensional and triangular Lagrange elements are used for the 

finite element discretization. 
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CHAPTER 4  

THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD 

FOR LINEAR ELASTICITY 

 

This chapter presents in detail, the Finite Element Heterogeneous Multiscale Method (FE-HMM) 

for linear elasticity. As described in Chapter 2 the Heterogeneous Multiscale Method (HMM) 

solves the multiscale linear elasticity system using a macro solver coupled with a micro solver that 

estimates the localized microscopic data. Choosing the Finite Element Method as both macro and 

micro solvers gives the numerical algorithm for the FE-HMM. 

4.1 The FE-HMM Algorithm 

We consider again the problem multiscale problem (3.1.5). The FE-HMM gives an approximate 

solution without requiring to compute the homogenized tensor x�. The algorithm comprises of the 

following components. 

Macro finite element space. The macro space is defined as 

 ys� �Ω, �̈� = d{� ∈ m�)�Ω�+ ;  {�|� ∈ ℛ��«�+,   ∀« ∈ �̈e (4.1.1) 

with macro elements « ∈ �̈ and admissibility and shape regularity are assumed on �̈. The macro 

mesh size m is allowed to be much larger than the scale length �.  

The following components within each macro element « ∈ �̈ are used in the FE-HMM algorithm: 

• integration nodes  ℓ,� ∈ «, 

• sampling domains «�" ℓ,�( =  ℓ,� + �È around each  ℓ,�, where È = .− )� , )�/+ and � ≥ �, 

• quadrature weights ¿ℓ,�. 

The quadrature formula for the macro finite element is given by (Q1) and (Q2), presented in 

Section (3.2). Also, as mentioned earlier, we shall use the symmetric Gaussian quadrature rule 

from [13]. 
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Macro bilinear form. The macro bilinear form for the FE-HMM is obtained by modifying the 

bilinear form !§:��⋅,⋅� given in (3.2.1) using micro functions obtained from the sampling domains. 

It is defined by 

 !��{�, É�� ≔ 2 2 ¿ℓ,�Ê«Ë" ℓ,�(Ê � x�� � Q"{ℓ,�Ì' ( Q"Éℓ,�Ì' (� �Ì"Íℓ,Î(
ℒ

ℓ3)�∈ ©̈
,  

(4.1.2) 

where {ℓ,�Ì'  and Éℓ,�Ì'  are micro functions defined on sampling domains «Ë" ℓ,�( and are obtained 

by solving the micro problem given in (4.1.3). Since the integrals are defined on «Ë" ℓ,�( instead 

of «, the quadrature weights are divided by a factor of Ê«Ë" ℓ,�(Ê which is the measure of the 

sampling domain «Ë" ℓ,�(. 

The variational form for the macro-problem is written as: 

 Find �� ∈ y��Ω, �̈�  such that !����, {�� = ��{��, ∀ {� ∈ y��Ω, �̈�.  

(4.1.3) 

The coupling between macro and micro problems is shown below in Figure 4.1. 

 

                       (a) macro-problem                              (b) micro-problem          (c) quadrature for the 

                                                                                                                                micro-problem 

Figure 4.1. Example of a macro FE space of triangular and quadrilateral elements with sampling 

domains at the integration nodes (a). Each sampling domain is discretized with a micro mesh as 

shown in (b). Quadrature points for the micro problem are depicted in (c). Picture taken from [3] 
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Micro problem. We let '̈ be the finite element discretization for the micro problem. Then, the 

microstructure information is added to the macro stiffness matrix for each macro element « by 

computing the micro functions {ℓ,�Ì'  (and Éℓ,�Ì' � on the sampling domain «Ë" ℓ,�( , ℓ = 1, … , ℒ 

such that .{ℓ,�Ì' − {Ï$Ð,"Íℓ,Î(� / ∈ ÑÒ"«Ë" ℓ,�(, '̈( and   

 � x�� � Q"{ℓ,�Ì' ( Q"Óℓ,�Ì' (� �Ì"Íℓ,Î( = 0, ∀Ó' ∈ ÑÒ"«Ë" ℓ,�(, '̈( 
(4.1.4) 

where 

 {Ï$Ð,"Íℓ,Î(� � � = {�" ℓ,�( + Q .{�" ℓ,�(/ " −  ℓ,�( (4.1.5) 

is the linearization of the macro function {� at the quadrature nodes  ℓ,� and the micro finite 

element space is given by  

 ÑÒ"«Ë" ℓ,�(, '̈( = ÔÓ' ∈ � .«Ë" ℓ,�(/ ; Õ'|Ö , ∈ ℛÒ�×�+ , × ∈ '̈Ø (4.1.6) 

where the choice of the Sobolev space � .«Ë" ℓ,�(/ determines the micro boundary conditions 

and the micro-macro coupling conditions. 

Coupling Conditions. The coupling conditions considered in the dissertation are 

• Periodic coupling, with 

 � .«Ë" ℓ,�(/ = ��:� .«Ë" ℓ,�(/  (4.1.7) 

and the micro space ÑÒ�«Ë , '̈� will be denoted by Ñ�:�Ò �«Ë , '̈�. 

• Dirichlet coupling, with  

 � .«Ë" ℓ,�(/ = y .«Ë" ℓ,�(/  (4.1.8) 

and the micro space ÑÒ�«Ë , '̈� will be denoted by Ñ�$�Ò �«Ë , '̈�.  

The Sobolev spaces y .«Ë" ℓ,�(/ and ��:� .«Ë" ℓ,�(/ are defined in (3.1.6) and (3.1.19) 

respectively. 
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4.2 A Priori Error Estimates for the FE-HMM 

The error estimate for the FE-HMM can be decomposed into three parts, viz. macro error, micro 

error and modelling error. We have, 

‖�� − ��‖ ≤ QÙÚÛ + QÙÜÛ + QÙÝs . 
We assume that the solutions �ℓ� for the equation (3.1.17) satisfy the following condition 

 ��ℓ� ∈ mÒ¸) .«Ë" ℓ,�(/+ and 
Þßà"��ℓ�(Þ�á.�Ì"Íℓ,Î(/ ≤ ��n|à|¸), for 5 ≤ Ã + 1, ℓ, , = 1, … , G. 

 

(4.2.1) 

 

Theorem 4.2.1. Let �� and �� are solutions of (3.1.22) and (4.1.3) respectively and assume that 

condition (4.2.1) holds. If �� ∈ m�¸)�Ω�+, for some ` > 0, then  

 ‖�� − ��‖�o���� ≤ � Tmâ + �ℎ���Ò + QÙÝs W , 
‖�� − ��‖�p���� ≤ � Tmâ¸) + �ℎ���Ò + QÙÝs W , � = ,;t�`, _�. 

 

(4.2.2) 

Further, if x� satisfies (3.1.12) – (3.1.15), then the modelling error is given by  

 QÙÝs = 0, �a` _Q`;a�;b ba�_¦;tu ¥;ãℎ � �ä ∈ G∗, 
QÙÝs = �� , �a` ß;`;bℎ¦Qã ba�_¦;tu ¥;ãℎ � > �  

 

(4.2.3) 

 

The a priori estimates are verified with numerical experiments in Chapter 6. 
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CHAPTER 5  

MATLAB IMPLEMENTATION OF THE FINITE ELEMENT 

HETEROGENEOUS MULTISCALE METHOD FOR PROBLEMS IN 

LINEAR ELASTICITY 

 

This chapter comprises of the main work of the dissertation. The FE-HMM described in Chapter 

4 is implemented in MATLAB and the various components and routines are explained within this 

chapter. We note that the FEM codes that form the basis for the FE-HMM codes presented here 

are based mainly on [17] while references were made to [7] and [8]. The FE-HMM routines itself 

(for linear elasticity problems) are based partly on the scalar FE-HMM codes from [5].  

5.1 Mesh Data Structure 

The finite element mesh for the macro and micro problems are generated using the FE-codes from 

[17]. We present here only the mesh data structure and refer the reader to [17] for more details. 

The routine MakeMeshElasticity creates a MATAB structure array struct that contains the 

following fields: (We note that X and Y in each field refer to x and y directions respectively) 

• Degree: The field storing the degree d of the basis functions. 

• Nodes: A Nv × 2 array (where Nv is the total number of nodes) which stores the x and y 

co-ordinates of the nodes. 

• Edges: An Nv × �d + 1� array which stores the nodes on each edge. 

• Elements: An Nt × 3 array which stores the three edges of each triangle. 

• FNodePtrsX(Y), CNodePtrsX(Y) and NodePtrsX(Y): which are pointers from the 

free nodes to Nodes, constrained nodes to Nodes, and the inverse mapping from Nodes 

to both the free and constrained nodes. 

• EdgeEls: A field that specifies whether an edge is free, constrained or interior. 

• FBndyEdgesX(Y): A pointer from the free boundary edges to Edges.  

• EdgeCFlags: A flag that specifies the curved boundary edges. 

• CBndyEdgesX(Y): This is an additional field that stores pointers from the constrained 

boundary edges to Edges.  
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This additional field CBndyEdgesX(Y) is redundant for a standard FEM code but is used in the 

FE-HMM code to pair the periodic nodes while enforcing periodic micro boundary conditions.  

The routine RefineMeshElasticity is used to perform a uniform refinement of the mesh. 

Elements with higher order Lagrange polynomial basis functions are generated using the routine 

GeneralLagrangeMeshElasticity. Both routines are also part of the finite element code from 

[17]. 

The micro mesh. The micro mesh is generated for the micro/sampling domain which is a square 

with having a side length �.  

The routine MakeMicroMeshElasticity is given below. 

 

function TMicro=MakeMicroMeshElasticity(qpt,delta,bctype,r,dmicro) 

if nargin<5 

    dmicro=1; 

end 

TMicro.Degree=1; 

TMicro.Nodes=[qpt(1)-delta/2 qpt(2)-delta/2 

    qpt(1)+delta/2 qpt(2)-delta/2 

    qpt(1)-delta/2 qpt(2)+delta/2 

    qpt(1)+delta/2 qpt(2)+delta/2]; 

TMicro.Edges=[1 2 

    2 4 

    1 4 

    3 4 

    1 3]; 

TMicro.Elements=[1 2 -3;3 -4 -5]; 

TMicro.EdgeCFlags=zeros(5,1); 

switch(lower(bctype)) 

    case{'periodic'} 

        % For enforcing periodic bc, we consider two of the edges as 

        % TMirco.FBndyEdges and the other two edges as T.CBndyEdges,  

        % which allows us to extract the periodic node pairs. 

        TMicro.EdgeEls=[1 -1 -1;1 -2 -1;1 2 2;2 0 0;2 0 0]; 

        TMicro.NodePtrsX=[-1;1;-2;-3]; 

        TMicro.NodePtrsY=[-1;1;-2;-3]; 

        TMicro.FNodePtrsX=2; 

        TMicro.FNodePtrsY=2; 

        TMicro.CNodePtrsX=[1;3;4]; 

        TMicro.CNodePtrsY=[1;3;4]; 

        TMicro.FBndyEdgesX=[1 2]; 

        TMicro.CBndyEdgesX=[4 5]; 

        TMicro.FBndyEdgesY=[1 2]; 

        TMicro.CBndyEdgesY=[4 5]; 

    case{'dirichlet'} 
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        TMicro.EdgeEls=[1 0 0;1 0 0;1 2 2;2 0 0;2 0 0]; 

        TMicro.NodePtrsX=[-1;-2;-4;-3]; 

        TMicro.NodePtrsY=[-1;-2;-4;-3]; 

        TMicro.FNodePtrsX=zeros(0,1); 

        TMicro.FNodePtrsY=zeros(0,1); 

        TMicro.CNodePtrsX=[1;2;4;3];         

        TMicro.CNodePtrsY=[1;2;4;3];         

        TMicro.FBndyEdgesX=zeros(0,1); 

        TMicro.FBndyEdgesY=zeros(0,1); 

        TMicro.CBndyEdgesX=[1 2 4 5]; 

        TMicro.CBndyEdgesY=[1 2 4 5];     

end    

% Refine micro mesh r times  

for i=1:r 

    TMicro=RefineMeshElasticity(TMicro); 

end 

TMicro=GeneralLagrangeMeshElasticity(TMicro,dmicro); 

  

% Create constraint nodes/node pairs for either bctype 

switch (lower(bctype)) 

    case{'periodic'}      

[TMicro.Npairs,TMicro.Dofpairs]=PeriodicNodePairsElasticity(TMicro); 

end 

end 

 

The function takes the following inputs: 

• bctype: The micro boundary condition; a string which is either 'periodic' or 

'dirichlet'. 

• epsilon: The size of the micro length scale �. 

• delta: The size of the sampling domain. 

• r: The number of refinement for the micro discretization. 

• dmicro: The degree for the micro discretization. 

For the Dirichlet boundary condition, the micro mesh is the same as that for a typical finite element 

mesh structure with pure Dirichlet boundary condition. For the periodic case, however, a new field 

becomes necessary that would store the pairs of “periodic” nodes, which are mirror images of each 

other. This is done by the routine PeriodicNodePairs which is given below. 

 

function [Npairs]=PeriodicNodePairsElasticity(T) 

d=T.Degree; 

Nv=size(T.Nodes,1); 

ne=length(T.FBndyEdgesX); 
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N=d*ne/2+1; % N gives the number of nodes along an edge. 

n=N+(N-1);  % N nodes along one edge and N-1 along the other  

            % ensuring no redundancy of last (3,4) node pair. 

Npairs=zeros(n,2); 

% The periodic node pairs are extracted by looping through  

% F.BndyEdgesX which comprises of the first pairs of periodic nodes. 

for i=1:ne 

    if i==ne/2  % The right-most bottom and top edge pairs. 

        for j=1:d 

            % Note that T.FBndyEdges and T.CBndyEdges have been 

            % created in MakeMicroMesh such that T.FBndyEdges(i)  

            % pairs with T.CBndyEdges(i). 

            Npairs(i+(j-1)*ne,:)=[T.Edges(T.FBndyEdgesX(i),j)... 

                           T.Edges(T.CBndyEdgesX(i),j)]; 

            % The right bottom corner and the top corner nodes are  

            % stored as the nth node pair. 

            Npairs(n,:)=[T.Edges(T.FBndyEdgesX(i),d+1)... 

                          T.Edges(T.CBndyEdgesX(i),d+1)]; 

        end 

    else 

        for j=1:d 

            Npairs(i+(j-1)*ne,:)=[T.Edges(T.FBndyEdgesX(i),j)... 

                           T.Edges(T.CBndyEdgesX(i),j)]; 

        end 

    end 

end 

end 

 

 

Npairs=
èé
éé
ê1 35 82 16 92 4ðñ

ññ
ò
 

 

 

 

Figure 5.1. An example micro mesh and the corresponding periodic node pairs. 

Figure 5.1 shows an example micro mesh created with a single refinement. The periodic node pairs 

are stored in the array Npairs.  
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The enforcement of boundary conditions are described in detail in a later section. For now, we 

only note that the pairs are mirror reflections of each other and one periodic node pair �4,3� is 

redundant as it is implicitly enforced by �1,3�, �2,1� and �2,4�. 

5.2 Macrostiffness Matrix 

This section describes the algorithm for the generation of the macrostiffness matrix. Since the 

macrostiffness matrix requires the micro functions which are obtained by solving the micro 

problem, it is preferable to refer to the routines for the micro problem while reading this section. 

Macro and micro basis functions. The first objective is to specify notations for the macro and 

micro basis functions. We note that the domain Ω is assumed to be 2D from here on. The notations 

are described as follows: 

• dó$�  e$3)+ôõ¸+ôö
 denotes the basis of the macro FE space y��Ω, �̈� defined in (3.1.2). G =

G§Í + G§÷ gives the total number of (free) nodes in the discretized macro domain. The basis 

functions are defined as 

 ó$� = �R$�, 0� , ó+ôõºø� = "0, R%�( ,    ; = 1, … , G§Í , C = 1, … , G§÷ (5.2.1) 

where R$� denote the usual basis functions for the scalar finite element space ù��Ω, �̈� and G§Í denote the number of free nodes in the 1st or   dimension. 

•  ú&,�Ì'   ¡&3)�Ð
denotes the basis of the micro FE space ÑÒ"«Ë" ℓ,�(, '̈( defined in (4.1.6). t 

gives the total number of nodes in the discretized micro domain. Similar to the macro space, 

the basis functions ú&' are defined as 

 ú&' = "û&' , 0( , úÐ¸&' = "0, û&'(     D = 1, … , t (5.2.3) 

where û&� denote the usual basis functions for scalar micro space  üÒ"«Ë" ℓ,�(, '̈(. It is also 

noted that for the micro space, the boundaries are considered to be entirely free. The required 

boundary conditions are enforced using Lagrange multipliers instead as will be described 

shortly. 

The superscripts m and ℎ are used throughout the dissertation to differentiate between the macro 

and micro finite element spaces.  
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Local macrostiffness matrix. This section describes the local macrostiffness matrix ý� for each « ∈ �̈. For macro basis functions ó$� ; = 1, … , ;s, (where ;s is the number of nodes per element) 

with non-zero support in «, the macrostiffness matrix is given by 

 ý� ≔ !�"ó$�, ó%�($,%3)�$þ  
       = »2 ωℓ,�Ê«Ë" ℓ,�(Ê � x�� � Q"óℓ,�Ì' ( Q"óℓ,�Ì' (� �Ì"Íℓ,Î(

ℒ
ℓ3) ¼

$,%3)
�$þ

 

 

(5.2.4) 

where ó$ℓ,ÎÌ'  and ó%ℓ,ÎÌ'  are micro functions obtained from solving the micro problem (4.1.4). 

Writing the micro functions ó$ℓ,ÎÌ'  and ó%ℓ,ÎÌ'  in terms of their basis functions as 

 ó$ℓ,ÎÌ' = 2 5&,ℓ$ ú&'       and�Ð
&3)      ó%ℓ,ÎÌ' = 2 5&,ℓ% ú&'

�Ð
&3)  

 

(5.2.5) 

we can write (8.1.2) as  

 ý� = 2 ωℓ,�Ê«Ë" ℓ,�(Ê ."�ℓ$ (Ö�ℓ,�Ì�ℓ%/ℒ
ℓ3)          

(5.2.6) 

 

where �ℓ$ = "5),ℓ$ , … , 5�Ð,ℓ$ (Ö
and �ℓ% = "5),ℓ% , … , 5�Ð,ℓ% (Ö

are the coefficients for the micro functions 

which shall be computed from the micro problem (4.1.4). 

�ℓ,�Ì′� are microstiffness matrices for the sampling domains «Ë"¿ℓ,�( around each quadrature 

point ¿ℓ,�. Each !ℓ,�Ì is computed in the similar manner as done for a classical finite element 

stiffness matrix. 

The MATLAB routine for computing the macrostiffness matrix MacroStiffnessElasticity 

is described at end. First, the computation of the micro functions ó$ℓ,ÎÌ'  and ó%ℓ,ÎÌ'  (or the vectors 

�ℓ$  and �ℓ$ ) is discussed. 

 



22 

 

5.3 The Micro Problem 

The micro boundary conditions are enforced weakly using Lagrange multipliers. The problem 

(4.1.6) is restated as a minimization problem: Find 

 óℓ,�Ì' = min 12 � x�� � Q�É'� Q�É'�� �Ì"Íℓ,Î(  
(5.3.1) 

over all functions É' ∈ Ñ��«Ë , �̈� satisfying the condition "É' − óÏ$Ð,ℓ,�Ì� ( ∈ ÑÒ�«Ë , '̈� which 

can be 

• "É' − óÏ$Ð,ℓ,�Ì� ( ∈ Ñ�:�Ò �«Ë , '̈� (periodic coupling) or 

• "É' − óÏ$Ð,ℓ,�Ì� ( ∈ Ñ�$�Ò �«Ë , '̈� (Dirichlet coupling). 

Periodic coupling. Micro boundary conditions are weakly enforced through Lagrange multipliers. 

We follow the procedure adopted in [6] to define the constraint functional. To define the constraint 

functional we first introduce the following notation. 

Let ÑÒ"U«Ë , �̈,'( be a finite element space of degree Ã defined on the micro boundary U«Ë with ��â'�â3)��  as the basis given by 

 �â' = ��â', 0� , �Ð¸â' = �0, �â'�     � = 1, … ,2,  (5.3.2) 

where ��' denote the usual basis functions for the scalar space üÒ"U«Ë" ℓ,�(, �̈,'(. The first 2m 

basis functions belong to the   dimension. These basis functions are ordered such that the first , 

nodes _� are on two edges of U«Ë that intersect. Then, for a node _� the node on the opposite edge 

by mirror symmetry is denoted by _Ç���. The remaining 2, basis are for the � dimension and are 

ordered similarly. 

The constraint functional is then defined by �"óℓ,�Ì' − óÏ$Ð,ℓ,�Ì� , �, 	( = 0, where � is given by 

 ��ú, �, 	� = 2 .ú�_�� − ú"_Ç���(/�
�3) ⋅ ��_�� + 	 ⋅ � ú� �Ì

 
 

(5.3.3) 

and � ∈ ÑÒ"U«Ë , �̈,'(, ú ∈ ÑÒ�«Ë , '̈� and 	 ∈ ℝ�.  
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The constraint allows the micro problem to be defined as a saddle point problem (see [6]): 

 Find  óℓ,�Ì' ∈ ÑÒ�«Ë , '̈� and �� ∈ ÑÒ"U«Ë , �̈,'(, 	� ∈ ℝ�  such that 
� x�� � Q"óℓ,�Ì' ( Q�ú�� �Ì"Íℓ,Î( + ��ú, ��, 	�� = 0,      ∀ú ∈ ÑÒ�«Ë , '̈�, 
�"óℓ,�Ì' − óÏ$Ð,ℓ,�Ì� , �, 	( = 0,     ∀� ∈ ÑÒ"U«Ë , �̈,'(,    ∀	 ∈ ℝ� .  

 

(5.3.4) 

Now, writing in terms of the basis functions, as 

 ó$,ℓ,�Ì' = 2 5&,ℓ$ ú&'
�Ð

&3) , and  �� = 2 ¶â�â'
��
â3)  

and noting that �â'�_�� = �1,0� and �Ð¸â' �_�� = �0,1� for � = ` or 2, + `, and 0 everwhere else, 

for D = 1, … ,2t, we have, 

2 � x�� � Q"5&
,ℓ$ ú&
' ( Q"ú&'(� �Ì"Íℓ,Î(
�Ð

&
3) + �"ú&', ��, 	�( = 0 

⇒ 2 "�ℓ,�Ì(&
&5&
,ℓ$�Ð
&
3) + 2 2 .ú&'�_�� − ú&'"_Ç���(/ ⋅ ¶â�â'�_����

â3)
�

�3) + � û&'� �Ì
= 0 

⇒ 2 "�ℓ,�Ì(&
&5&
,ℓ$�Ð
&
3) + 2 .ú&'�_�� − ú&'"_Ç���(/ ⋅ .¶���'�_�� + ¶��¸����¸�' �_��/�

�3)  

 + � û&'� �Ì
= 0 

(5.3.5) 

Now, for the second term can be written as 

2 �.ú&'�_�� − ú&'"_Ç���(/ ⋅ ¶���'�_�� + .ú&'�_�� − ú&'"_Ç���(/ ⋅ ¶��¸����¸�' �_����
�3)  

 and, for all D = 1, … ,2t can be written in the form  

èé
éé
éé
éé
ê .ú)'�_)� − ú)'"_Ç�)�(/ ⋅ �)'�_)� ⋯ .ú)'�_�� − ú)'"_Ç���(/ ⋅ ��' �_��⋮ ⋱ ⋮.úÐ'�_)� − úÐ'"_Ç�)�(/ ⋅ �)'�_)� ⋯ .úÐ'�_�� − úÐ'"_Ç���(/ ⋅ ��' �_��

.ú)'�_)� − ú)'"_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .ú)'�_�� − ú)'"_Ç���(/ ⋅ ���' �_��⋮ ⋱ ⋮.úÐ'�_)� − úÐ'"_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .úÐ'�_�� − úÐ'"_Ç���(/ ⋅ ���' �_��
.úÐ¸)' �_)� − úÐ¸)' "_Ç�)�(/ ⋅ �)'�_)� ⋯ .úÐ¸)' �_�� − úÐ¸)' "_Ç���(/ ⋅ ��' �_��⋮ ⋱ ⋮.ú�Ð' �_)� − ú�Ð' "_Ç�)�(/ ⋅ �)'�_)� ⋯ .ú�Ð' �_�� − ú�Ð' "_Ç���(/ ⋅ ��' �_��

.úÐ¸)' �_)� − úÐ¸)' "_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .úÐ¸)' �_�� − úÐ¸)' "_Ç���(/ ⋅ ���' �_��⋮ ⋱ ⋮.ú�Ð' �_)� − ú�Ð' "_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .ú�Ð' �_�� − ú�Ð' "_Ç���(/ ⋅ ���' �_�� ðñ
ññ
ññ
ññ
ò

 
èé
éé
éé
éé
ê ¶)⋮⋮¶�
¶�¸)⋮⋮¶�� ðñ

ññ
ññ
ññ
ò
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We denote this 2t × 2, matrix by ��Ö and partition it into four sub-matrices. Recalling the 

definitions of the basis functions ú&' (5.2.5), and since �â'�_�� = �1,0� and �Ð¸â' �_�� = �0,1�, � =1, … , , we can write ��Ö as 

 ��Ö = � �ß��,×t ]zeros],×t
]zeros],×t �ß��,×t

�
��×�Ð

 

 

(5.3.6) 

where, 

 ß�&� = ûDℎ"_`( − ûDℎ ._Y�`�/  ` = 1, … , ,. (5.3.7) 

 

Now, since the values of the micro basis functions evaluated at the periodic nodes _� can only be 

either 0 or 1, it follows that ß� will have values of either ß�&� = 1 if D = _� or ß�&� = −1 if D =_Ç��� and 0 otherwise. 

An example of ß� for the micro mesh shown in Figure (5.1) is 

ß� =
��
� 10−100

00101
−10000

0000−1
01000

00010
00000

0−1000
000−10 ��

�. 

Combining with the last term in (5.3.5) expressed as "� û)'Ö , … , � û�Ð'Ö ( = # = �#), … , #�Ð� we 

can write (5.3.5) as  

�ℓ,�Ì�ℓ$ + �Ö¶ = 0, 
where 

  � = �#) ⋯ #�Ð�� � , �ℓ$ = "5),ℓ$ , … , 5�Ð,ℓ$ (Ö and ¶ = �°�, ¶), … , ¶���Ö . (5.3.8) 

 

Now, for the second equation in (5.3.4), noting that � "ó$,ℓ,�Ì' − ó$,Ï$Ð,ℓ,�Ì� (� �Ì = 0 for periodic 

boundary conditions, we have, for ; = 1, … , ;s (recall that ;s is the number of nodes per element) 
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�"ó$,ℓ,�Ì' − ó$,Ï$Ð,ℓ,�Ì� , �, 	( = 0 

⇒ 2 ."ó$,ℓ,�Ì' − ó$,Ï$Ð,ℓ,�Ì� (�_�� − "ó$,ℓ,�Ì' − ó$,Ï$Ð,ℓ,�Ì� ("_Ç���(/ ⋅ .��'�_�� + ���¸�' �_��/�
�3)

+ � "ó$,ℓ,�Ì' − ó$,Ï$Ð,ℓ,�Ì� (� �Ì
= 0 

⇒ 2 .ó$,ℓ,�Ì' �_�� − "ó$,ℓ,�Ì' −("_Ç���(/ ⋅ .��'�_�� + ���¸�' �_��/�
�3)

= 2 .ó$,Ï$Ð,ℓ,�Ì� �_�� − ó$,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ .��'�_�� + ���¸�' �_��/�
�3)  

Expanding in terms of the basis functions we can write the above equation as, 

2 2 5&,ℓ$ �.ú&'�_�� − ú&'"_Ç���(/ ⋅ ��'�_�� + .ú&'�_�� − ú&'"_Ç���(/ ⋅ ���¸�' �_����Ð
&3)

�
�3)  

= 2 �.ó$,Ï$Ð,ℓ,�Ì� �_�� − ó$,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ��'�_�� + .ó$,Ï$Ð,ℓ,�Ì� �_�� − ó$,Ï$Ð,ℓ,�Ì� "_Ç���(/�
�3)

⋅ ���¸�' �_��� 

or, "��ℓ$ (% = �%$�. 

where, the matrix ��can be partitioned and written as 

 �� =
èéé
éê 0 ⋯ ⋯ 0���))�,×$þ ���)��,×$þ����)�,×$þ ������,×$þðññ

ñò
���¸)�×�$þ

 

 

(5.3.9) 

 

where the sub-matrices have the expressions 

 

 

 



26 

 

��)) 
=

èé
ééé
ê .ó),Ï$Ð,ℓ,�Ì� �_)� − ó),Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ �)'�_)� ⋯ .ó$þ,Ï$Ð,ℓ,�Ì� �_)� − ó$þ,Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ �)'�_)�

⋮ ⋱ ⋮
.ó),Ï$Ð,ℓ,�Ì� �_�� − ó),Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ��' �_�� ⋯ .ó$þ,Ï$Ð,ℓ,�Ì� �_�� − ó$þ,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ��' �_��ðñ

ñññ
ò
 

���)

=
èé
ééé
ê.ó),Ï$Ð,ℓ,�Ì� �_)� − ó),Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .ó$þ,Ï$Ð,ℓ,�Ì� �_)� − ó$þ,Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ ���¸)' �_)�

⋮ ⋱ ⋮
.ó),Ï$Ð,ℓ,�Ì� �_�� − ó),Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ���' �_�� ⋯ .ó$þ,Ï$Ð,ℓ,�Ì� �_�� − ó$þ,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ���' �_��ðñ

ñññ
ò
 

��)�

=
èé
ééé
ê .ó$þ¸),Ï$Ð,ℓ,�Ì� �_)� − ó$þ¸),Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ �)'�_)� ⋯ .ó�$þ,Ï$Ð,ℓ,�Ì� �_)� − ó�$þ,Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ �)'�_)�

⋮ ⋱ ⋮
.ó$þ¸),Ï$Ð,ℓ,�Ì� �_�� − ó$þ¸),Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ��' �_)� ⋯ .ó�$þ,Ï$Ð,ℓ,�Ì� �_�� − ó�$þ,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ��' �_��ðñ

ñññ
ò
 

����

=
èé
ééé
ê.ó$þõ¸),Ï$Ð,ℓ,�Ì� �_)� − ó$þõ¸),Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ ���¸)' �_)� ⋯ .ó�$þ,Ï$Ð,ℓ,�Ì� �_)� − ó�$þ,Ï$Ð,ℓ,�Ì� "_Ç�)�(/ ⋅ ���¸)' �_)�

⋮ ⋱ ⋮
.ó$þõ¸),Ï$Ð,ℓ,�Ì� �_�� − ó$þõ¸),Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ���' �_�� ⋯ .ó�$þ,Ï$Ð,ℓ,�Ì� �_�� − ó�$þ,Ï$Ð,ℓ,�Ì� "_Ç���(/ ⋅ ���' �_��ðñ

ñññ
ò
 

Now, from (4.1.5), we get, 

for 1 ≤ ; ≤ ;s 

ó$,Ï$Ð,ℓ,�Ì� � � = ó$�" ℓ,�( + Q .ó$�" ℓ,�(/ " −  ℓ,�( 

⇒ �ó$,Ï$Ð,ℓ,�Ì� � �)ó$,Ï$Ð,ℓ,�Ì� � ��� =  R$�" ℓ,�(
0 ! + � R$,Í� " ℓ,�( 1 2ä R$,÷� " ℓ,�(1 2ä R$,÷� " ℓ,�( 0 �   −  ℓ,�� − �ℓ,�! 

 

=  R$�" ℓ,�(
0 ! +

èé
éé
éê�" −  ℓ,�( 1 2ä "� − �ℓ,�(� �R$,Í� " ℓ,�(

R$,÷� " ℓ,�(�
�"� − �ℓ,�( 1 2ä " −  ℓ,�(� � 0

R$,÷� " ℓ,�(�ðñ
ññ
ñò , 

 

(5.3.10) 
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and for ;s < ; ≤ 2;s, 

�ó$,Ï$Ð,ℓ,�Ì� � �)ó$,Ï$Ð,ℓ,�Ì� � ��� = � 0
R$�" ℓ,�(� + � 0 1 2ä R$,Í� " ℓ,�(1 2ä R$,Í� " ℓ,�( R$,÷� " ℓ,�( �   −  ℓ,�� − �ℓ,�! 

 

= � 0
R$�" ℓ,�(� +

èé
éé
éê�1 2ä "� − �ℓ,�( " −  ℓ,�(�  R$,Í� " ℓ,�(

0 !
�1 2ä " −  ℓ,�( "� − �ℓ,�(� �R$,Í� " ℓ,�(

R$,÷� " ℓ,�(�ðñ
ññ
ñò . 

 

(5.3.11) 

 

Hence, we can write the expressions of the sub-matrices of �� as, 

��$�)) = »R$�" ℓ,�( + �" −  ℓ,�( 1 2ä "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ �_��

− »R$�" ℓ,�( + �" −  ℓ,�( 1 2ä "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ "_Ç���(,   

 1 ≤ ; ≤ ;s , 1 ≤ ` ≤ , (5.3.12) ��$��) = .1 2ä " −  ℓ,�(R$,÷� " ℓ,�(/ �_�� − .1 2ä " −  ℓ,�(R$,÷� " ℓ,�(/ "_Ç���(,   
 1 ≤ ; ≤ ;s , 1 ≤ ` ≤ , (5.3.13) 

 ��$�)� = .1 2ä "� − �ℓ,�(R$,Í� " ℓ,�(/ �_�� − .1 2ä "� − �ℓ,�(R$,Í� " ℓ,�(/ "_Ç���(,   
 ;s < ; ≤ 2;s , 1 ≤ ` ≤ , (5.3.14) 

��$�)) = »R$�" ℓ,�( + �1 2ä " −  ℓ,�( "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ �_��

− »R$�" ℓ,�( + �1 2ä " −  ℓ,�( "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ "_Ç���(,   

 ;s < ; ≤ 2;s , 1 ≤ ` ≤ , (5.3.15) 
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Now, we can finally express the saddle problem (5.3.4) in matrix form as 

 Find �ℓ$  such that �ℓ,�Ì�ℓ$ + �Ö¶ = 0 

     "��ℓ$ (% = �%$� 

 

(5.3.16) 

where �ℓ,�Ì , �ℓ$ , �, �� and ¶ are defined by (5.3.21) (5.3.8) and (5.3.9). 

The MATLAB routine for computing ��  and �� is given below. 

function [D_tilda BetaD]=MicroConstraintsPeriodicElasticity... 

                     (TMicro,Qpt,VQpts,grad,j) 

  

% The function MicroConstraintsPeriodic returns the matrices D_tilda  

% and BetaD. BetaD gives the right hand side of the constraint 

% equation. 

  

%Create the matrix D_tilda 

np=size(TMicro.Npairs,1); 

Nv=size(TMicro.Nodes,1); 

  

D_tilda=sparse(repmat(1:np,1,2),[TMicro.Npairs(:,1)... 

                TMicro.Npairs(:,2)],[ones(np,1);-ones(np,1)],np,Nv); 

 

D_tilda=[D_tilda sparse(np,Nv);sparse(np,Nv) D_tilda]; 

 

node1=TMicro.Nodes(TMicro.Npairs(:,1),:); 

node2=TMicro.Nodes(TMicro.Npairs(:,2),:); 

  

X11=zeros(size(node1)); 

X11_sigma=zeros(size(node1)); 

  

X21=zeros(size(node1)); 

X21_sigma=zeros(size(node1)); 

  

X12=zeros(size(node1)); 

X12_sigma=zeros(size(node1)); 

  

X22=zeros(size(node1)); 

X22_sigma=zeros(size(node1)); 

  

X1=node1-repmat(Qpt,size(node1,1),1); 

X2=node2-repmat(Qpt,size(node2,1),1); 

  

X11(:,1)=X1(:,1); 

X11(:,2)=X1(:,2)/2; 

X11_sigma(:,1)=X2(:,1); 

X11_sigma(:,2)=X2(:,2)/2; 
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X21(:,2)=X1(:,1)/2; 

X21_sigma(:,2)=X2(:,1)/2; 

  

X12(:,1)=X1(:,2)/2; 

X12_sigma(:,1)=X2(:,2)/2; 

  

X22(:,1)=X1(:,1)/2; 

X22(:,2)=X1(:,2); 

X22_sigma(:,1)=X2(:,1)/2; 

X22_sigma(:,2)=X2(:,2); 

  

% phi_lin and phi_lin_sigma give the values of the linearized Macro 

% basis functions at the periodic nodes pairs. 

  

phi_lin11=repmat(VQpts(j,:),size(X1,1),1) + X11*grad(:,:,j); 

phi_lin11_sigma=repmat(VQpts(j,:),size(X2,1),1) +... 

            X11_sigma*grad(:,:,j); 

  

phi_lin21= X21*grad(:,:,j); 

phi_lin21_sigma= X21_sigma*grad(:,:,j); 

  

phi_lin12= X12*grad(:,:,j); 

phi_lin12_sigma= X12_sigma*grad(:,:,j); 

  

phi_lin22=repmat(VQpts(j,:),size(X1,1),1) + X22*grad(:,:,j); 

phi_lin22_sigma=repmat(VQpts(j,:),size(X2,1),1) +... 

            X22_sigma*grad(:,:,j); 

  

BetaD11= phi_lin11 - phi_lin11_sigma; 

BetaD21= phi_lin21 - phi_lin21_sigma; 

  

BetaD12= phi_lin12 - phi_lin12_sigma; 

BetaD22= phi_lin22 - phi_lin22_sigma; 

  

BetaD=[BetaD11 BetaD12;BetaD21 BetaD22]; 

BetaD=[zeros(1,(size(BetaD,2)));BetaD]; 

 

end 

 

 

Dirichlet coupling. Dirichlet micro boundary conditions is enforced in a similar manner by 

changing the constraint functional. For Dirichlet coupling we have,  

 "óℓ,�Ì' − óÏ$Ð,ℓ,�Ì� ( ∈ Ñ�$�Ò �«Ë , '̈� (5.3.17) 
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Thus, we get 

 ��ú, �� = 2"ú�_��( ⋅��
�3) ��_�� 

(5.3.18) 

where ` in this case sums through all the 2, boundary nodes. The resulting constraint matrix � is 

given by 

 �&� = ú&'�_��   ` = 1, … 2,. (5.3.19) 

And the matrix �� for the Dirichlet case becomes 

 ��$� = ó$,Ï$Ð,ℓ,�Ì� �_�� (5.3.20) 

As before, we can write �� into four sub-matrices defined, in this case, by 

 ��$�)) = »R$�" ℓ,�( + �" −  ℓ,�( 1 2ä "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ �_��,

1 ≤ ; ≤ ;s , 1 ≤ ` ≤ , 
 

 

(5.3.21) 

 ��$��) = .1 2ä " −  ℓ,�(R$,÷� " ℓ,�(/ �_��, 1 ≤ ; ≤ ;s , 1 ≤ ` ≤ ,  (5.3.22) 

 ��$�)� = .1 2ä "� − �ℓ,�(R$,Í� " ℓ,�(/ �_��, ;s < ; ≤ 2;s , 1 ≤ ` ≤ ,, (5.3.23) 

 ��$�)) = »R$�" ℓ,�( + �1 2ä " −  ℓ,�( "� − �ℓ,�(� �R$,Í� " ℓ,�(
R$,÷� " ℓ,�(�¼ �_��,

;s < ; ≤ 2;s , 1 ≤ ` ≤ , 

 

(5.3.24) 

 

The MATLAB routine for computing � and �� for the Dirichilet boundary condition is given 

below. 

function [D BetaD]=MicroConstraintsDirichletElasticity(TMicro,Qpt,... 

               VQpts,grad,j) 

  

% The function MicroConstraintsDirichlet returns the matrices D and 

% BetaD. BetaD gives the right hand side of the constraint equation. 

  

%Create the matrix D 

ndirn=size(TMicro.CNodePtrsX,1); % No. of Dirichlet Nodes. 

Nv=size(TMicro.Nodes,1); 

  



31 

 

 

D=sparse(1:ndirn,TMicro.CNodePtrsX,ones(ndirn,1),ndirn,Nv); 

D=[D zeros(size(D));zeros(size(D)) D]; 

  

% bnodes imply boundary nodes 

  

bnodes=TMicro.Nodes(TMicro.CNodePtrsX,:); 

  

X11=zeros(size(bnodes)); 

X21=zeros(size(bnodes)); 

X12=zeros(size(bnodes)); 

X22=zeros(size(bnodes)); 

  

X=bnodes-repmat(Qpt,size(bnodes,1),1); 

  

X11(:,1)=X(:,1); 

X11(:,2)=X(:,2)/2; 

  

X21(:,2)=X(:,1)/2; 

  

X12(:,1)=X(:,2)/2; 

  

X22(:,1)=X(:,1)/2; 

X22(:,2)=X(:,2); 

  

BetaD11=repmat(VQpts(j,:),size(X,1),1) + X11*grad(:,:,j); 

BetaD21= X21*grad(:,:,j);  

BetaD12= X12*grad(:,:,j);  

BetaD22=repmat(VQpts(j,:),size(X,1),1) + X22*grad(:,:,j); 

 

BetaD=[BetaD11 BetaD12;BetaD21 BetaD22]; 

 

end 

 

Microstiffness matrix. The microstiffness �ℓ,�Ì is simply a finite element stiffness matrix for 

linear elasticity and hence, its computation is done in the same manner as for a classical finite 

element algorithm.  

The routine for computing the microstiffness based on [17]. However, minor improvements have 

been made which include: 

• Allows computation of stiffness for non-isotropic materials. 

• Vectorization of the codes which improves not only speed but makes the code more 

intuitive mathematically. 

• Adopts faster assembly method for sparse matrices. 
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The stiffness matrix �ℓ,�Ì is partitioned as follows. 

 �ℓ,�Ì =  !ℓ,�Ì))
!ℓ,�Ì�) !ℓ,�Ì)�

!ℓ,�Ì�� !     

(5.3.25) 

where, the sub-matrices !ℓ,�Ì)) , !ℓ,�Ì)� , !ℓ,�Ì�)  and !ℓ,�Ì��  are given by 

 "!ℓ,�Ì($%)) = 2 �x�� � Q"ú$'( Q"ú%'(� ÖÖ∈ ¬̈
, 1 ≤ ; ≤ t,   1 ≤ C ≤ t 

(5.3.26) 

  "!ℓ,�Ì($%)� = 2 �x�� � Q"ú$'( Q"ú%'(� ÖÖ∈ ¬̈
, 1 ≤ ; ≤ t,   t < C ≤ 2t 

(5.3.27) 

 "!ℓ,�Ì($%�) = 2 �x�� � Q"ú$'( Q"ú%'(� ÖÖ∈ ¬̈
, t < ; ≤ 2t,   1 ≤ C ≤ t 

(5.3.28) 

  "!ℓ,�Ì($%�� = 2 �x�� � Q"ú$'( Q"ú%'(� ÖÖ∈ ¬̈
, t < ; ≤ 2t,   t < C ≤ 2t 

(5.3.29) 

Recalling the definitions of the micro basis functions i.e. ú$' = "û$' , 0( , úÐ¸$' = �0, û$�� ,    ; =1, … , t, and writing in Voigt notation,  

"!ℓ,�Ì($%)) = "��)))) �))�� �)))����)) ����� ���)��)�)) �)��� �)�)�
� #û$,Í'

0û$,÷' $% ⋅ #û$,Í'
0û$,÷' $ 

 = "�))))û$,Í' + �)))�û$,÷' (û$,Í' + "�)�))û$,Í' + �)�)�û$,÷' (û$,÷'  (5.3.30) 

"!ℓ,�Ì($%)� = "��)))) �))�� �)))����)) ����� ���)��)�)) �)��� �)�)�
� #û$,Í'

0û$,÷' $% ⋅ � 0û$,÷'
û$,Í' � 

 = "���))û$,Í' + ���)�û$,÷' (û$,÷' + "�)�))û$,Í' + �)�)�û$,÷' (û$,Í'  (5.3.31) 

"!ℓ,�Ì($%�) = 1��)))) �))�� �)))����)) ����� ���)��)�)) �)��� �)�)�
� � 0û$,÷'

û$,Í' �4 ⋅ #û$,Í'
0û$,÷' $ 

 = "�))��û$,÷' + �)))�û$,Í' (û$,Í' + "�)���û$,÷' + �)�)�û$,Í' (û$,÷'  (5.3.32) 
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"!ℓ,�Ì($%�� = 1��)))) �))�� �)))����)) ����� ���)��)�)) �)��� �)�)�
� � 0û$,÷'

û$,Í' �4 ⋅ � 0û$,÷'
û$,Í' � 

 = "�����û$,÷' + ���)�û$,Í' (û$,÷' + "�)���û$,÷' + �)�)�û$,Í' (û$,Í'  (5.3.33) 

 

The component matrices of �ℓ,�Ì are evaluated using the equations (5.3.30) – (5.3.33). The 

integration is done using the symmetric Gaussian quadrature rule from [13] (see also, [17]) 

The MATLAB routine MicroStiffnessElasticity is given below. 

We note that in the routine below, we have used a few basic routines from [17] (but renamed). 

RefTriangle creates a reference triangle with �0,0�, �1,0� and �0,1� as vertices. QuadPts 

returns the quadrature points and weights which are based on [13]. getNodes returns the 

coordinates of the nodes in a triangle, in this case, for the reference triangle. 

BasisFcnVals(inodes,enodes) evaluates the values of the basis functions at enodes for a 

triangle having nodal coordinates inodes. Similarly, BasisFcnGradVals(inodes,enodes) 

evaluates the values of the gradients of the basis functions. We refer the reader to [17] for more 

details regarding these routines. 

function [AMicro,b]=MicroStiffnessElasticity(T,A_tensor,epsilon,Qpt) 

  

% Qpts are the coordinates of the MACRO quadrature nodes and 

% qpts are the coordinates of the MICRO quadrature nodes 

  

% Note: The function MicroStiffness returns the vector b along 

% with micro stiffness matrix Amicro. b is computed inside  

% MicroStiffness as it requires V, qwts and trans.j which  

% are already computed within the function. 

  

d=T.Degree; 

id=round((d+2)*(d+1)/2); 

Nt=size(T.Elements,1); 

Nv=size(T.Nodes,1); 

  

indexi=zeros(4*id*id*Nt,1); 

indexj=zeros(4*id*id*Nt,1); 

vals=zeros(4*id*id*Nt,1); 

  

TR=RefTriangle(d); 

[qpts_ref,qwts]=QuadPts(2*d-2); 

npts=length(qwts); 
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inodes=getNodes(TR,1);  

[Vs,Vt]=BasisFcnGradVals(inodes,qpts_ref); 

  

b=zeros(1,2*Nv); 

  

% Evaluate Basis function values at qpts, which are required 

% for computing b. 

  

V=BasisFcnVals(inodes,qpts_ref); 

  

 

for i=1:Nt 

     

   [coords,~,~,ll]=getNodesElasticity(T,i); 

  

   vert=coords(1:d:2*d+1,1:2); 

  

   trans=TransferToRefTri(vert); 

  

   Vx=trans.JinvT(1,1)*Vs + trans.JinvT(1,2)*Vt; 

   Vy=trans.JinvT(2,1)*Vs + trans.JinvT(2,2)*Vt; 

    

   qpts=repmat(trans.z1,npts,1)+(trans.J*(qpts_ref'))'; 

    

   A11=feval(A_tensor{1,1},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

   A12=feval(A_tensor{1,2},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

   A13=feval(A_tensor{1,3},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

   %A21=A12; 

   A22=feval(A_tensor{2,2},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

   A23=feval(A_tensor{2,3},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

   %A31=A13; 

   %A32=A23; 

   A33=feval(A_tensor{3,3},qpts(:,1)/epsilon,qpts(:,2)/epsilon,... 

                Qpt(1),Qpt(2)).*qwts*trans.j; 

    

   A11=sparse(diag(A11)); 

   A12=sparse(diag(A12)); 

   A13=sparse(diag(A13)); 

   %A21=A12; 

   A22=sparse(diag(A22)); 

   A23=sparse(diag(A23)); 

   %A31=A13; 

   %A32=A23; 

   A33=sparse(diag(A33)); 
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   % Compute the partitions of B 

   B11= (A11*Vx + A13*Vy)'*Vx + (A13*Vx + A33*Vy)'*Vy; 

   B12= (A12*Vx + A23*Vy)'*Vy + (A13*Vx + A33*Vy)'*Vx; 

   B21= (A12*Vy + A13*Vx)'*Vx + (A23*Vy + A33*Vx)'*Vy; 

   B22= (A22*Vy + A23*Vx)'*Vy + (A23*Vy + A33*Vx)'*Vx; 

       

   M=[B11 B12;B21 B22]; 

    

   ll=[ll;ll+Nv]'; 

   nll=length(ll); 

    

    

   tempi=repmat(ll,1,nll); 

   tempj=repmat(ll,nll,1); 

    

   indexi(1+(i-1)*4*id*id:i*4*id*id)=tempi(:); 

   indexj(1+(i-1)*4*id*id:i*4*id*id)=tempj(:); 

   vals(1+(i-1)*4*id*id:i*4*id*id)=M(:); 

    

   % Compute b, which shall be used to make the constraint matrix D 

    

   phivals=trans.j*V'*qwts; 

   b(ll)=[phivals;phivals]; 

end  

 

AMicro=sparse(indexi,indexj,vals); 

end 

 

 

5.4 Assembling the Macrostiffness Matrix  

We have finally computed the necessary components and can now compute and assemble the local 

macrostiffness matrix. We recall the expression for the macrostiffness matrix (5.2.4). 

x� = 2 ωℓ,�Ê«Ë" ℓ,�(Ê ."�ℓ$ (Ö!ℓ,�Ì�ℓ%/ℒ
ℓ3)  

The local macrostiffness matrix comprises of contributions from the sampling domain «Ë around 

each quadrature point. The MATLAB code given below computes contributions from each 

sampling domain and adds it to the the local macrostiffness matrix for the element. Then, the local 

stiffness matrices are assembled as usual for the finite element method to give the final 

macrostiffness matrix. 
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We also note the implementation of isoparametric finite elements for curved edges and the 

computation of their Jacobians (which is not constant). For elements with straight edges, the 

routine TransferToRefTri (also from [17]) is used to compute the Jacobian. 

The appropriate weights ¿ℓ,� for each macro quadrature point are also computed and stored in the 

array W. 

Finally we note that for periodic micro boundary conditions, solving the constrained equation for 

certain problems (such as Problem 1 of Chapter 6) results in a highly ill-conditioned system (with 

the condition number ranging from E+16 – E+22). This is a difficulty inherent in the problem and 

is overcome by forcefully increasing the precision number in MATLAB computations. The 

function vpa is used for this purpose which by default increases the precision number to 34 (or to 

any other degree using digits). This implies that although 12 − 20 digits are lost in the 

computation, the remaining digits are recovered. However, the main drawback is that the 

computational cost is highly increased. But despite the very large condition number, there doesn’t 

seem to be any problem with the formulation, as solving the ill conditioned system (versus solving 

against quadruple precision) produce almost exactly the same solution and error. This problem, 

however, does not occur while enforcing Dirichlet micro boundary conditions. 

The MATLAB routine MacroStiffnessElasticity is given below 

function AMacro=MacroStiffnessElasticity(T,A_tensor,bctype,... 

              epsilon,delta,r,dmicro) 

  

d=T.Degree; 

id=round((d+2)*(d+1)/2); 

Nt=size(T.Elements,1); 

NfX=length(T.FNodePtrsX); 

  

indexi=zeros(4*id*id*Nt,1); % Maximum size 

indexj=zeros(4*id*id*Nt,1); % Maximum size 

vals=zeros(4*id*id*Nt,1);   % Maximum size 

  

TR=RefTriangle(d); 

[Qpts_ref,Qwts]=QuadPts(2*d-2); 

Npts=length(Qwts); 

 

inodes=getNodes(TR,1);  

VQpts=BasisFcnVals(inodes,Qpts_ref); 

[Vs,Vt]=BasisFcnGradVals(inodes,Qpts_ref); 
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nllp0=0; 

 

for i=1:Nt 

     

    % By convention, it is made sure that all curved edges  

    % are the second edge in T.Elements. 

     

    CurvedEdge=T.EdgeCFlags(abs(T.Elements(i,2))) && d>1; 

     

    [coords,llx,lly,~]=getNodesElasticity(T,i);    

    vert=coords(1:d:2*d+1,1:2); 

     

    if CurvedEdge 

         

        Qpts=VQpts*coords; 

         

        Vsx=Vs*coords(:,1); 

        Vsy=Vs*coords(:,2); 

        Vtx=Vt*coords(:,1); 

        Vty=Vt*coords(:,2); 

        grad=zeros(2,id,Npts); 

         

        detJ=zeros(Npts,1); 

         

        for ii=1:Npts 

            J=[Vsx(ii),Vtx(ii);Vsy(ii),Vty(ii)]; 

            grad(:,:,ii)=J'\[Vs(ii,:);Vt(ii,:)]; 

            detJ(ii)=abs(det(J)); 

        end 

 

        %Calculate Macro weights: 

        W=detJ.*Qwts; 

    else 

         

        trans=TransferToRefTri(vert);  

        Qpts=repmat(trans.z1,Npts,1)+(trans.J*(Qpts_ref'))'; 

         

        Vx=trans.JinvT(1,1)*Vs + trans.JinvT(1,2)*Vt; 

        Vy=trans.JinvT(2,1)*Vs + trans.JinvT(2,2)*Vt; 

         

        grad=zeros(2,id,Npts);   

        grad(1,:,:)=Vx'; 

        grad(2,:,:)=Vy'; 

         

        %Calculate Macro Quadrature weights 

        W=trans.j*Qwts; 

         

    end 

    

    A=zeros(2*id,2*id); 

     



38 

 

 

    %Loop over each quadrature point     

    for j=1:Npts 

         

        TMicro=MakeMicroMeshElasticity(Qpts(j,:),delta,... 

                       bctype,r,dmicro); 

        [AMicro,b]=MicroStiffnessElasticity(TMicro,A_tensor,... 

                       epsilon,Qpts(j,:)); 

        switch(lower(bctype)) 

            case{'periodic'} 

                [D_tilda BetaD]=MicroConstraintsPeriodicElasticity... 

                             (TMicro,Qpts(j,:),VQpts,grad,j); 

                D=[b;D_tilda]; 

            case{'dirichlet'} 

                [D BetaD]=MicroConstraintsDirichletElasticity...  

                             (TMicro,Qpts(j,:),VQpts,grad,j); 

        end 

         

        AConstr=[AMicro D';D sparse(size(D,1),size(D,1))]; 

        RhsConstr=[zeros(2*size(TMicro.Nodes,1),2*id);BetaD]; 

                 

        switch(lower(bctype)) 

            case{'periodic'} 

                % digits(50); 

                % soln=vpa(AConstr)\vpa(RhsConstr); 

                soln=AConstr)\RhsConstr; 

            case{'dirichlet'} 

                soln=AConstr\RhsConstr; 

        end 

         

        alpha=soln(1:2*size(TMicro.Nodes,1),:); 

         

        %Calculate Weights for each Macro Qpt 

        K_macro=W(j); 

        K_micro=delta^2; 

         

        %Add contribution of each Qpt to A(2*id,2*id) 

         

        A= A + K_macro/K_micro *alpha'*AMicro*alpha;        

    end 

     

    %Assemble using llp for only Free Nodes 

 

    lly(lly>0)= lly(lly>0) + NfX; 

    ll=[llx;lly]'; 

    llp=ll(ll>0); 

     

    nllp=length(llp); 

    tempi=repmat(llp,1,nllp); 

    tempj=repmat(llp,nllp,1); 
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    indexi(1+nllp0:nllp0+nllp*nllp)=tempi(:); 

    indexj(1+nllp0:nllp0+nllp*nllp)=tempj(:); 

  

    A(ll<0,:)=[]; 

    A(:,ll<0)=[]; 

  

    vals(1+nllp0:nllp0+nllp*nllp)=A(:); 

  

    nllp0=nllp0+nllp*nllp; 

end 

  

% Delete extra rows from the initial estimated size 

indexi=indexi(1:nllp0,:); 

indexj=indexj(1:nllp0,:); 

vals=vals(1:nllp0,:); 

 

% Assemble the macrostiffness matrix 

AMacro=sparse(indexi,indexj,vals); 

  

end 

 

This ends Chapter 5 and the MATLAB implementation of the FE-HMM algorithm. The next 

Chapter presents the numerical experiments of multiscale problems in linear elasticity that are 

solved using FE-HMM. 
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CHAPTER 6  

NUMERICAL EXPERIMENTS 

 

We shall conduct numerical experiments for two problems within the dissertation. The first 

problem assumes that the material property varies along only one direction and that the composite 

is isotropic. Although this is practically not probable, it is done so that we can explicitly compute 

the homogenized solution. The second problem does not assume any isotropy (i.e. anisotropic) and 

the material property varies along both directions and is non-uniformly periodic.  

Before we give the results we first present an expression for the homogenized tensor for a linear 

elastic, isotropic composite material whose material property varies along only one direction. For 

more details we refer to [20]. 

Property 6.1. Consider the problem (3.1.4), where the tensor x� is assumed to represent a linear 

elastic isotropic material in plane strain condition. Further, assume that x� satisfy (3.1.12) – 

(3.1.15) and its coefficients vary along only one direction. Then, the coefficients of the 

corresponding homogenized tensor x� satisfying equation (3.1.20) is given by 

 �))))� = 1ℳ�"1 �))))ä ( , �)))� = �)��� = 0,  

 �))��� = ℳ�"�))�� �))))ä (ℳ�"1 �))))ä ( , �)�)�� = 1ℳ�"1 �)�)�ä (,  

(6.1) 

 ������ = ℳ�������� − ℳ� T�))����))))W + .ℳ�"�))�� �))))ä (/�
ℳ�"1 �))))ä ( .    

where the components of x���� are given by 

 �)))) = ����� = ��1 − &��1 + &��1 − 2&� , �))�� = �&�1 + &��1 − 2&�   

 �)�)� = �2�1 + &� , �)))� = �)��� = 0 
(6.2) 

and � = �����, & = &���� are the Young’s modulus and Poisson’s ratio of the material 

respectively. 
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Problem 1. Consider the problem (3.1.4), where the domain Ω is defined as a two dimensional 

region occupied by the points �0,0�, �4800,4400�, �0,4400�, �4800,6000�, where the units of 

distance is mm. Dirichlet boundary conditions are imposed at the end  = 0, and is body is 

subjected to a shearing load l = �0,5�N/mm� at the end  = 4800. The volume force k is 

assumed to vanish and the material is assumed to be linear elastic and isotropic. Further, x� is 

assumed to satisfy (3.1.12) – (3.1.15) and its coefficients vary along only one direction. Finally, 

the Young’s modulus and Poisson’s ratio are defined by the functions 

 ����� = 8.35 T1 + �0.2 + 0.1 cos�2(�����0.2 + 0.15 sin�2(���� W KN mm�⁄ , (6.3) 

 &���� = 0.2 + 0.1 cos�2(���. (6.4) 

 

We note that the ����� and &���� are chosen such that their values have the bounds 

max"�����( = 200.2631 KN mm�⁄  and min"�����( = 28.3971 KN mm�⁄  

max"&����( = 0.3  and min"&����( = 0.1 

The functions are chosen so that the material might be thought of as practically representing a 

composite consisting of M28 concrete and Fe415 steel.  

A plot of ����� is given below. 

 

Figure 6.1. Plot of ����� for Problem 1. 
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From (6.1), we get the homogenized coefficients and the tensor x� can be written (in Voigt 

Notation) as 

x� = »56.4099 14.6599 014.6599 83.2061 00 0 20.8750¼ 

 

The homogenized solution �� is obtained by solving the homogenized system with x� as given 

above. The error of the FE-HMM solution with respect to the homogenized solution is given in 

Figure 6.4. First we show the deformed mesh for the problem.  

Figures 6.2 and 6.3 show the deformed mesh (multiplied by a factor of 10) for the Problem 1. The 

colour tones depict the strain energy density across the domain. For a mesh with a larger degree 

of freedom, the effect of the oscillating material property of the composite (Figure 6.1) can be seen 

by the corresponding oscillation of the strain energy density.  

 

 

               a) Homogenized solution                                              b) FE-HMM solution 

Figure 6.2.  Deformed mesh for Problem 1 with 128 elements. 
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Figure 6.3. Deformed mesh with tones showing strain energy density across domain for 

homogenized solution vs. FE-HMM solution for a mesh with 8192 elements. 
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The estimates (4.2.2) imply linear and quadratic convergence rates for ℎ ∝ m) �⁄  or t ∝ G) �⁄  in 

the m)-norm and ℎ ∝ m or t ∝ G in the 
� norm respectively, where t and G are the total degree 

of freedoms of the micro and micro discretization. This can be seen using  �) macro and micro 

spaces for Problem 1 as shown in Figure 6.4. However, convergence rates for  �� macro and micro 

spaces cannot be seen as the solution �� is not smooth enough. 

 

 

Figure 6.4. Error between �� and �� for Problem 1. (H before refinement=6.5115m) 
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Problem 2. Consider the problem (3.1.4), where the domain is defined by Ω = �0,1� ×�1,0�\!�0,0.5�, where the units of distance is metres. Dirichlet boundary conditions in the x-

dimension are imposed at the end  = 0, and in the y-dimension at � = 0. The body is subjected 

to s shearing load l = �1E + 5,0�KN/m� at the end � = 1 and the volume force k is assumed to 

vanish and the material is assumed to be linear elastic and isotropic. Further, x� is assumed to 

satisfy (3.1.12) – (3.1.15) and that its coefficients are non-uniformly periodic. The coefficients of x� are given by 

�)))) = ����� = �3E + 7� T1.5 + sin�2( �⁄ �1.5 + sin�2(� �⁄ � + 1.5 + sin�2(� �⁄ �1.5 + cos�2( �⁄ � + sin�4 �� + 1W 

 �))�� = �1E + 7� T1.5 + sin�2(� �⁄ �1.5 + cos�2( �⁄ � + sin�4 ��W 
 

(6.5) 

�)�)� = �1E + 7� �2.1 + 21.5 + cos�2( �⁄ � + sin�4 ��� 

 

A plot of �)))),�))�� and �)�)� are given below. 

 

 

 

 

 

 

                                     

 

                                     (a) �))))                                                               (b) �)))) 3D view 
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                                      (c) �))��                                                                    (d) �)�)� 

Figure 6.5. Plot of tensor coefficients for Problem 2. 

 

The deformed mesh for Problem 2 is given in Figure 6.9 below. 

 

Figure 6.6. Deformed mesh for the FE-HMM solution of Problem 2. 
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Problem 2 is solved using a classical finite element with a mesh with a large degree of freedom of 

7.87968E+5. The energy and infinity norms of the fine scale solution is given below in Table 6.1. 

The energy and infinity norms of solutions using the FE-HMM by changing the macro and micro 

degree of freedoms, degree of spaces etc. are given in Table 6.2 and can be compared to the fine 

scale solution. 

 

fine scale solution N=7.87968E+5, p=4 ‖�‖. 42.4995 ‖�‖< 0.0124173 

 

Table 6.1. The energy and infinity norms for the fine scale solution. 

 

n=9 N=9 N=25 N=81 N=289 ‖�‖. 22.1207 30.5297 36.7621 39.6875 ‖�‖< 0.00405464 0.00733412 0.0100366 0.0112694 

(a)  

N=25 n=9 n=25 n=81 n=289 ‖�‖. 30.5297 30.8687 30.9272 31.2386 ‖�‖< 0.00733412 0.00753471 0.00756353 0.00773842 

(b) 

N=25, n=25 p=1,  q1 p=2, q=2 p=3, q=3 p=4, q=4 ‖�‖. 30.5297 39.7142 40.642 41.475 ‖�‖< 0.00733412 0.0114865 0.0118599 0.0120318 

(c) 

Table 6.2. The energy and infinity norms for the FE-HMM solutions. 
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CONCLUSION 

 

We have implemented the Finite Element Heterogeneous Multiscale Method for problems in linear 

elasticity. Two problems have been solved using the FE-HMM and their results have been 

compared with the homogenized and fine scale solutions. We have verified the convergence rates 

for the first problem as predicted by theoretical estimates. Future work in this area may include 

analysis and implementation of the FE-HMM for plate bending problems and problems in non-

linear elasticity. Also, ideas from the FE-HMM may also be adapted to develop a multiscale 

method for analyzing fracture and crack propagation in composite materials. 
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