

EFFECT OF BRACHING & VECTORIZATION ON PROCESSING SPEED OF
VLIW PROCESSOR

A DISSERTATION PROPOSAL

Submitted by

BHARAT SHARMA

(11307683)

TO

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LOVELY PROFESSIONAL UNIVERSITY

PHAGWARA, PUNJAB

In Partial Fulfilment of the requirement for the

Award of the Degree of

Master of technology in Computer Science

Under the guidance of

Mr Deepak Kumar

(April 2015)

 Abstract

Since the microprocessor was invented from that time the major work researchers are doing is
to improve performance of the microprocessor. The improved performance can be gained by
so many ways includes increase in clock cycle speed, less power consumption, applying
multiple processors in one CPU, implementing parallel processing techniques and new
technique like adding multiple cores to the same chip either having shared memory cache or
dedicated memory cache. Parallel processing is the unbeatable technique gives more
processing speed without increasing cost of hardware so much. We propose an idea of
implementing an array based VLIW processor having both instruction level parallelisms
(ILP) and data level parallelism (DLP). Also we examine the test results with compiler and
simulation framework TRIMARAN. This approach can be very useful for high performance
computing (HPC) applications like video conferencing, speech processing, weather
forecasting and military applications where huge amount of data is needed to be processed
very fast.

 CERTIFICATE

This is to certify that Bharat Sharma has completed M.Tech dissertation titled Effect Of
Branching and Vectorization on processing speed of VLIW processor Under my
guidance and supervision. To the best of my knowledge, the present work is result of his
original investigation and study. No part of the dissertation is fit for the submission and the
partial fulfillment of the conditions for the award of M.Tech computer science and
engineering.

Date : 29/04/2015 Signature of Advisor

 Name : Deepak kumar

 UID:17647

Acknowledgement

I would like to express my deepest appreciation to all those who provided me support to
complete this report. A special gratitude I give to my guide Mr. Deepak Kumar (assistant
professor) whose contribution in stimulating suggestions and encouragement helped me to
coordinate my project especially in writing this report.

Furthermore I would also like to acknowledge with much appreciation the crucial role of all
faculty members and HOD Mr. Dalwinder Singh for their comments and advices. And also
thank to my friends who helped me in small but important improvements in the report.

 DECLARATION

I hereby declare that the dissertation entitled, Effect of Branching and Vectorization on
processing speed of VLIW Processorsubmitted for the M.Tech Degree is entirely my
original work and all ideas and references have been duly acknowledged. It does not contain
any work for the award of any other degree or diploma.

Date : 29/04/2015 Bharat Sharma

 Regn. No. 11312842

Table of contents

1. Introduction

2. Literature review

3. Present work

4. Implementation

5. Performance evaluation and results

6. Conclusion and future works

7. references

 List of Figures page no.

Figure 1: Pipeline Design of Scalar Processor …………………………….…3

Figure 2: Pipeline Design of Vector Processor …………………………….…3

Figure 3: Addition done By Scalar Processor …………………………………4

Figure 4: Addition done By Vector Processor …………………………………5

Figure 5: VLIW Processor Internal Design ……………………………………6

Figure 6: A Simple VLIW Pipeline Design……………………………………8

Figure 7: Trimaran Internal working Architecture ……………………………18

List of Tables

Table 1: Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of Total Execution Cycle.

Table 2: Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of IPC.

Table 3: Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of branch taken.

List of Graphs

Graph 1: : Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of Total Execution Cycle.

Graph 2: Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of IPC.

Graph 3: Comparison of Scalar, VLIW & Array Based VLIW Processor Speed in

 terms of branch taken.

Effect of branching and Vectorization on processing speed of VLIW processor

1

 Chapter 1

 Introduction

The processor also called the microprocessor or a CPU (central processing unit) , is the brain of

the personal computers. Processor is responsible for all general computing tasks and

coordinating done by memory and other devices. This CPU is a very complex chip that applies

directly on the motherboards of most of the PCs.

Processor design

A processor in the sequence is more or less a program processor executes a function that is a

group of low-level commands, operating systems and user applications, such as programs

implemented. How to efficiently and effectively execute its micro-architecture processor

instruction called interior design, is up. CPU micro-architecture CPU executes instructions that

determines how fast. The exterior design of the processor, especially those in its external

interface external cache, main memory, chipset, and other system components can communicate

with the information that determines how fast.

 floating-point unit (FPU): - The logic unit can do much faster than general-purpose non-

integer calculations adapted to perform a logical unit.

 Primary cache: - also called Level 1 or L1 cache, the same pace as the primary cache of

CPU that is a small amount of very fast memory.

 Bus Interfaces: - Bus interfaces that connect the processor to memory and other

components are way.

Processor performance

The turnaround time taken by a computing (PC) system to execute a particular program is

determined by these factors:-

Effect of branching and Vectorization on processing speed of VLIW processor

2

 The processor clock cycle time,

 The number of micro-processor instructions required to perform that application

 In million instruction per second (MIPS).

 The average number of processor cycles required to execute an instruction (CPI).

Improved system performance or reduce one or more of these factors are of increasing. In

general, the clock cycle time in a better way to implement parallelism technology and memory

hierarchy can be reduced. The number of instructions the compiler design and software design,

and the average number of cycles per instruction (CPI) through the processor and system

architecture design is reduced through adaptation is reduced.

Vector processors

One important aspect of vector processor architecture basic data types a specific word processor

word size, where the N word, conventional scalar processors .in multiple data sets (SIMD)

architecture on the same instructions, and the instruction set is made up of different Words that

work instructions.Now the vector architecture, it uses vector data types, and Vector N-bit vector

array is a collection of length, and Cray was invented in architecture, which is a vector file is not

registered, as before vector machine operates on vectors stored in the main memory.

Effect of branching and Vectorization on processing speed of VLIW processor

3

 Figure 1: pipeline design of scalar processor

 Figure 2: pipeline design of vector processor

The processor can work on just one instruction in the vector is a vector, the vector instructions to

complete the operand vectors are not the only elements that means. It reduces the number of

instruction are fetched as fetch and decode I reduces bandwidth. Vector processor complex

scientific and data-level parallelism in today's multimedia applications shows. Based on these

two parts of the instructions to register and register for memory-to-memory bring into.

Effect of branching and Vectorization on processing speed of VLIW processor

4

Pros of vector processors

 They bring pressure on I-command at least the same amount of work required to specify

the means.

 Check all the dependences on the data set predictive branches very simple hardware

means reduced the number of branches.

 Create more effective means of instruction memory accesses vector load and store

instructions use the memory as high latency is reduced using a regular pattern specifies.

 A vector instruction stream execution, only the functional units (FU) and needed to be

operated or buses, unit, means the unit starts to decode a bar •, can be locked with the

power to reorder buffers.

• The program is used to reduce the size of the reduced number of instructions; It is also directed

to executing a loop hides many branches.

 Require that each data item is used by the processor to use as cache memory because •

Vector is no wastage.

 Figure 3: addition done by scalar processor

Effect of branching and Vectorization on processing speed of VLIW processor

5

Figure 4 : Addition done by vector processor

VLIW processors

Superscalar processor composed of several operations similar to these processors by
implementing a long instruction word similarity reflects the level of education. This very long
instruction word too many math, logical and control operations which included multi-ops, as the
saying goes. Each of these functions can be executed on perhaps simple RISC processor that
person is involved in the operation. VLIW composed of several operations by executing a long
instruction word of instruction-level parallelism (ILP) tries to achieve that is a type of
microprocessor architecture.

Effect of branching and Vectorization on processing speed of VLIW processor

6

 Figure 5: VLIW processor internal design

Both can apply for a program instruction level parallelism, the VLIW architecture, superscalar

processor architecture compared to the very high performance at low cost offers. VLIW

architecture-based processors, superscalar processors but mostly in terms of the dynamic

scheduling and operations nor again do not follow orders because simple control logic that is

why it is very low complexity and cost, that is. The main target hardware complexity, less design

time, improved performance is to reduce the small clock cycle time.

The compiler such as some standards should be complex enough to support:

• It should detect threats and hide latency.

• The structural risk should handle.

• No two operations at the same time should be given to FU.

VLIW processor architecture is mainly generalized from two well established concepts

which are: horizontal micro-coding and superscalar processing. A typical VLIW processor

machine has instruction words of hundreds of bits in length, multiple functional units are

used simultaneously working with use of a common large register file. Operations can be

Effect of branching and Vectorization on processing speed of VLIW processor

7

executed by multiple functional units together which are synchronized in a VLIW instruction

like 256 or 1024 bits per instruction word, implemented in multi-flow computer models.

The VLIW concept is mainly borrowed from horizontal micro-coding. Different fields of the

long instruction word carries the op-codes dispatched to different functional units. Some

programs written in conventional short instruction words like 32 bits must be compacted

together from the VLIW instructions. That code compaction must be done by a compiler

which should be able to predict branch outcomes using elaborate heuristics or run-time

statics.

Pros of VLIW processors

 Superscalar processor architecture compared to the very high performance at low cost.

 Because no dynamic scheduling and operations is very low complexity and cost of a re-

ordering.

 The direction has been the creation of a separate machine operation

 These instructions can start in parallel

 Several parallel functional units and large register set

Pipelining in VLIW processor

The execution of the instructions by an ideal VLIW processor was shown in figure 6. Each

instruction specifies multiple operations, the effective CPI will be according to the degree of

the VLIW processor like if degree is 3 the CPI will be 0.33. VLIW machines behave much

like superscalar processor machines with three differences which are:

First, the decoding part of VLIW instructions is easier than of superscalar processor

instructions. Second, the code density of the superscalar processor machine is better when the

available instruction level parallelism is less than that is exploitable by VLIW processor

machines. This is because the fixed VLIW format includes bits for non-executable

operations, while the superscalar processor issues executable instructions only. Third, a

Effect of branching and Vectorization on processing speed of VLIW processor

8

superscalar machines can be object code compatible with a larger family of non – parallel

machines, but the VLIW machines exploit different amount of parallelism would require

different instruction sets.

 Figure 6: A simple VLIW pipeline design

Motivation

This is a good thing that instruction level parallelism (ILP) and data level parallelism (DLP) are

both can be used to make fast processor that rely on the high performance computing (HPC).

Two main strategies to make the processor speed faster are first improve the semiconductor

technology and another is use of parallel processing techniques in an efficient way. the VLIW

and the superscalar are two basic architecture designs those uses the parallel processing. The

VLIW processor architecture does multiple issues of instructions statically by compiler where in

Effect of branching and Vectorization on processing speed of VLIW processor

9

superscalar processor architecture does multiple issues of instructions but in dynamic way by

extra hardware. That’s why the hardware complexity and the cost is much more in superscalar

processor architecture as compared to VLIW processor architecture and performance is more in

VLIW than superscalar due to this less hardware complexity. Very long instruction word or

VLIW is a one kind of processor design that tries to achieve high level of parallelism by

executing long instruction word composed by multiple operations.

Now a day's computer system for DSP and multimedia applications are major workloads. 3D

graphics, video conferencing, military applications, weather forecast, speech processing, speech

recognition and mobile multimedia applications such as VLIW or superscalar processors as

processing speed than conventional multi-thread processor demands. Some of the rich

applications of DSP vector processing needs. Instruction-level parallelism as well as data-level

parallelism, both to provide an architecture that can be made, then that type of architecture for

such application can provide sufficient computing speed. Single instruction and multiple data

stream display always I (SIMD) support as well as education levels, which promotes the concept

of array-based VLIW processors have given .in my thesis is a major issue in processor design.

Array-based VLIW long instruction word (Multi-OP) are all operand vector, is made up of many

operations that have killed, is just an extension of the VLIW processor design. This research

trimaran tool I use some of the standard array-based VLIW processor performance evaluated.

Instruction Level Parallelism (ILP)

ILP is concerned with equality between independent instruction. The primary goal of parallel

processing to reduce the execution time of a program in order to improve the performance of the

microprocessor independent hardware units is to execute multiple operations simultaneously.

ILP parallel processing is slightly different. Individual machine operation (MUL, add load),

although some of the different processors and each task is to get all together and are executed in

parallel with the processing concern is the question of overlap with the ILP. Instruction-level

parallel processing sequential instructions to identify and independent with a stream of

instructions executed by a comprehensive program to reduce the execution time is a combination

of software and hardware technologies. Even through instruction-level parallelism connected

Effect of branching and Vectorization on processing speed of VLIW processor

10

through functional units (3-integer unit, 2-load / store unit, 2-arm unit, etc.) may require more

number of machines for example with ILP demands more hardware complexity, improve system

performance, single / cluster register file.

High level sentence as a sample:

p = q * r – s/t + u * v – w % x;

The operator% in C modulus operator here the remainder of the division of X by W yields. * -

And + operators respectively, subtract and addition operators are multiplied. The right hand side

of the tree can be represented by the following expression is expression. The tree-top level four

operations provided several math units can be carried out in parallel to the inspection. The results

of these actions can be done in parallel again that actions are investing. However, here are two of

a number of independent operations. Present day processors to support this kind of equality in

fact many math units. Equality of this kind exists at the level of instruction, because the

instruction level parallelism (ILP) is called. Hardware compiler technology available in several

functional units for parallel execution instructions and schedule to perceive the similarity is quite

advanced.

Dependency among Instructions

A program that can be exploited by the amount of similarity can be determined in a cycle that

depends on the number of independent directions. So ILP is limited due to the dependencies

between instructions.

Dependence with 4 types of programs may exist between instructions.

1.Name dependence

One. Output dependency: instruction i and j write the same register or memory location. To order

or to leave the correct value should be protected.

Like: i= add r7,r4,r3

J=r7,r2,r8

Effect of branching and Vectorization on processing speed of VLIW processor

11

B. Anti-dependency: that education instruction reads a register or memory location j i writes.

I= add r6,r5,r4

J= sub r5,r8,r11

2.Data dependence

I hold both the instruction following an instruction j is dependent on the data:

Instruction by instruction I j I or II may be used that produces a result. Jammu and Kashmir

instructions instruction is data dependent, and instruction K instruction i is dependent data

3. Control dependence

I correct program instructions can be executed in order, so that a control with respect to the

dependence of a branch instruction, an instruction I order restricted

Ex: If P1 {

S 1;

};

If P2 {

If S2;

};

Here is dependent on S1 P1 and S2 P2 and S2 P1 can not be earlier than scheduled, can not be

scheduled before the S1 is up to P2.

Dependence directive imposes control two barriers

Depending on the instructions of a branch instruction control, then I, then education can not be

executed before the branch instruction.

Effect of branching and Vectorization on processing speed of VLIW processor

12

II. Depending on the instructions of a branch instruction does not control, the instruction after the

branch instruction can not be executed.

4.Resource dependence

It is still used by a previously issued instructions being who requires a hardware resource is

dependent on an instruction resource is on a previously issued instructions.

Ex: -

div R1, R2, R3

div R4, R2, R5

ILP Architecture

ILP's ultimate target is required to make a decision .before the hardware to the compiler about

the program by independent operation or a series of instructions to perform independently. ILP-

based methods for equality hardware architecture of the information transmitted by the compiler

can be three types of

1. sequential architecture

This is clearly directed between hardware and instructions are determined it is not indicative of

dependence between .dependencies the compiler architecture. Although the compiler to exploit

hardware parallelism within the program instruction to facilitate re-organize. Dependency and

the issue of instructions is dynamically by both finding hardware.

Ex: - superscalar processor architecture exhibition like this

2. Dependence Architecture

This type of architecture ILP compiler identifies dependencies between instructions and

hardware to express it. An instruction will be free to determine at what time and in order to

Effect of branching and Vectorization on processing speed of VLIW processor

13

release them accordingly. The main objective of this type of architecture operand and resources

(functional unit) are available when a directive as soon as possible to schedule.

Ex: - Dataflow processor architecture are such.

3. Freedom Architecture

Statically compiler to exploit parallelism in the program is responsible. Hardware on the issue of

multiple independent instruction does not need to take a decision. Compiler, the cycle needs to

be issued special instructions, which may specify the functional unit

Ex: - VLIW processor number of independent operation by the compiler are bundled together

into a single instruction, the ILP is based on this type of architecture.

Data Level Parallelism (DLP):-

Data convergence of computing across multiple processors in parallel computing environment is

a form of parallelization. Data parallelism is focused on distributing the data across different

parallel computing nodes. It is another form of equality as sameness to act contrasts.

Data-level parallelism (D) instruction-level parallelism is more than a special case. DLP is

working together to take action on several units. DLP is a classic example of each pixel

processing (such as brightening) is independent of the people around it, which is performing an

operation on an image. Vector data processing level is an example of equality.

Effect of branching and Vectorization on processing speed of VLIW processor

14

Chapter 2

 Review of Literature

The main focus on the possibility of Vectorization on the VLIW processor architecture to gain

the advantage of both instruction level parallelism (ILP) and data level parallelism (DLP) in an

application program. This effort is done already to some extend but a lot of areas are remaining

untouched.

The efforts which are already been made are as follows in these research papers and articles.In

research paper [11] it has shown that instruction level parallelism and data level parallelism both

can be merged together into a single architecture to execute the vectorizable code with more

efficient way. That architecture exploits high performance equivalent to 10 issue superscalar

processors means the execution is that much faster according to speedup of the machine with

comparison to ILP only architecture machine. The highest instruction per cycle (IPC) rate can be

achieved is 10 by this research work.

Research paper [18] says that DLP has some drawbacks like it’s not truly general purpose

method that can be used in any application, and also says about the future challenges in this ILP

and DLP combination machine like memory access time and wire delays. Research paper [12]

says about the Micro-architecture of a superscalar processor, having more capability of executing

more than one instruction in one clock cycle by converting an sequential program into a parallel

principle and constraints. the conclusion and future work says that now the time of extension of

super scalar processors is almost over, so the next comes VLIW processor architectures to

implement ILP.

Research paper [6] shows a new efficient architecture clustered organization for decoupled

execution (CODE) to remove or overcome some existing limitations in conventional vector

processors up to some extends. These limitations are, first is the complexity and size of vector

register file limits the number of functional units(FU), second is that the precise executions for

Effect of branching and Vectorization on processing speed of VLIW processor

15

vector instructions(VI) are difficult to implement, third is vector processors requires an

expensive on-chip memory system of high capacity storage that support high bandwidth at low

access latency. This CODE architecture is 26% faster than a vector processor with a centralized

register file, with a disadvantage of 5% performance degrade.

Research paper[5] says, vector processors can be made scalable for embedded systems unlike

superscalar and VLIW processors which are not fit for data level parallelism applications. A new

compiler VIRAM (with help of IRAM research group) is introduced to evaluate the multimedia

benchmarks.

Second are the basic and other related works in this field which are essential for students to take

a small knowledge about this field of microprocessor working.

Research paper [22] says Most of the wire pipelines are edge triggered flip-flops based. The study

on these wire pipelines is necessary because of increasing wire delay, shrinking clock period and

growth in chip size. The main thing is that the use of level sensitive latches has advantages of latency

and area, cost and comparison in flip-flop based and register based software pipelines can be done

easily.

Research paper [21] gives a new architecture and compiler approach that will help in I –fetch that is a

instruction register file (IRF) ,frequently occurring instructions can be placed in this register file.

Multiple entries in this register file can be referenced by a simply single packed instruction in ROM

or L1 instruction cache .The experimental results shows improvements in space and power when

using 32 entries. It is difficult to enhance one parameter by not negating the other connected

parameter. Like if we increase clock frequency to enhance the performance then it also enhances

the power consumption,code compression techniques will enhance the complexity of the code

means density of code will be more .so the main focus is on I-fetch operations which takes 36%

power of processor of the total program in embedded systems. It is inefficient in information

content of instruction encoding.

Research paper [1] gives a new proposed method for defining instruction level energy estimation

frame-work for mainly VLIW processorsto define an effectiveness energy-aware Software

optimization for instruction level parallelism (ILP) is the key issuethis approach claims to reduce the

Effect of branching and Vectorization on processing speed of VLIW processor

16

complexity of characterized problem of VLIW processor for exponent values ,with respect to no. of

parallel instructions and operations.

The given approach says that it results with an average error of 19 % with using standard dev. Of

5.8%, so it provides the average energy saving 12%.

Conclusion: the basic and specific study which is required to get knowledge for research work is

presented here in form of the literature review.

Effect of branching and Vectorization on processing speed of VLIW processor

17

 Chapter 3

 Present work: objectives and methodology

Objectives

 The main Objective of this research is to design and measure the performance of a statically
multi issue processor by taking the advantages of vector processing .The design of new
processor can be called as a “array based VLIW processor”.

 Another objective is to compare the performance of “array based VLIW processor” with
Vector and VLIW processor architecture. One major aim is to exploit both ILP and DLP
from application program in order to enhance the performance.

 This “array based VLIW processor” can be one of the promising architecture in High
Performance Computing (HPC) application. It can be widely used in dynamic Multimedia
application where a huge amount of data needs to be processed in very short period of time.

 The effect of branching on the processing speed of a processor, how the program execution is
done with and without branching.

Methodology

 The base of the proposal of combining two techniques those are already very much efficient to
perform a specific kind of task is that if two best approaches are mixed two use it in a specific
manner they will form a better approach to perform those specific tasks. Simply says “two
heads are better than one “. The framework to be used to test results and compare the total execution
time taken by a processor to execute a single program having multiple different type of instructions is
TRIMARAN version 4.0 a compiler and simulator infrastructure for research in embedded system and

EPIC architecture. Because the TRIMARAN framework is best suitable for this kind of research as it
has inherently built in tool for compiling and simulating and also it can target variety of ILP
processor.

The main components of the framework are as follows:

1. Open-IMPACT compiler
2. Elcor compiler
3. Simu simulator
4. SUIF (vectorizer)
5. Mdes (Machine description)
6. Example benchmarks

Effect of branching and Vectorization on processing speed of VLIW processor

18

Effect of branching and Vectorization on processing speed of VLIW processor

19

Proposed array based architecture: introduction

Array based VLIW processor can be mainly made to exploit ILP and DLP both. This thing can
be implemented by following architecture.

Effect of branching and Vectorization on processing speed of VLIW processor

20

Some main points of this architecture are as follows:

1. multiple functional units are attached with a single global register file.

2. compiler itself dynamically issues the long instruction word.

3. each instruction consists of multiple parallel operations which are independent.

4. each operation requires statically known number of cycles to execute.

Architecture shows the execution and flow of the data and instructions for all four operations: I-
fetch, Decode and rename, execution and write-back.

Effect of branching and Vectorization on processing speed of VLIW processor

21

 Chapter 4

 Implementation

Introduction

The performance is evaluated by TRIMARAN compiler and simulation framework. By use of

the simulation framework it can generate the control flow graph (CFG) and data flow graph

(DFG). For different benchmarks there will be different dependencies arises and corresponding

to that data flow and control flow is shown in the diagrams in TRIMARAN.

CFG and DFG

Instruction-level parallelism maximum but it can be minimized to some standard data flow and
control flow dependencies between instructions should be. Program flow systems: conventional
computer program execution order can be clearly stated in the user programs are based on the
mechanism by which the flow of control. Data flow computer data operand data to be driven by
the availability, which allows the execution of an instruction to operate the system are based.
Data Computer fine grain level of education emphasizes a high degree of similarity flow.
Reduction of demand for computers other computations based on its results of operation, which
are based on a demand-driven system.

Control flow graphs (CFG): control flow graphs in computer science and technology are
representation of all paths that might be traversed through a program during its execution using
graph notation. In a control flow graph all nodes in the graph represented by a basic block and
directed edges used for jumps from one node to another. A straight line code has no jump and
execution will be smoother. Like a→ b → c→ d is for straight line. Or may be of this type.

Effect of branching and Vectorization on processing speed of VLIW processor

22

Analysis of CFG and DFG:

CFG program to almost mechanical view is a very simple graph. CFG in each block within an

instruction block to execute all instructions if such instructions executed corresponds to the

linear block. The last instruction in the block will continue to block a jump instruction. The basic

block is a unique entry code and zero or more exit edges between nodes represent the flow of

control represent. Being so simple CFG excellent for both the control flow graph based

optimization (unreachable code elimination and cross-linking) and whose structure is the target

code to create exact duplicates of CFG's. Although other program counter CFG does not give

any details on the progress of the computation compared.

CFG trimaran multiple compiler optimization and static analysis tool to control flow graph and

dataflow graph Elcor component analysis is required for the various modules.

Flow control modules provide the following further analysis of CFG.

Vectorization

Vectorization displays and SIMD architecture, with support for the efficient execution of a

program which is a technique to exploit the data-level parallelism. Trimaran as the technique is

called selective vectorization. This is in order to improve resource utilization and performance

scalar and vector processing units by distributing computing between education creates highly

efficient schedule. This type of technology is mostly applied to multimedia applications.

Vectorization by default, one at a time on a single thread application program, a series of actions

that are modified to act, which is a special case of parallelization. Vectorization a vector

processing instruction in both traditional computers and modern supercomputer is a key feature

where a process conducted over several operands. Vectorization a vectorized compiler without

human assistance programs that allow a process to convert scalar functions. Exploiting data-level

parallelism from the application program.

Multi-thread processor vectorization for high performance computing applications are yet to find

out. We are array-based VLIW processor architecture VLIW infrastructure in order to realize the

many standard vectorize. In this type of architecture known as vector directions of each

instruction operates on the array of numbers where a single cycle are issued. Array-based VLIW

Effect of branching and Vectorization on processing speed of VLIW processor

23

processor vectorization s2lc used for the purpose we combine the advantages of VLIW processor

and vectorization process. Open space of the impact of automatic vectorization stage S2lc.

vectorization function of a vector instruction set processor that utilizes a parallel version is to

convert a sequential loop. The shift operation is a major rearrangement.

HPL-PD and machine details

HPL-PD, especially in relation to the amount of equity offering, the separate structure and scale

machines believe that is a parametric architecture. BE the compiler can be controlled so that

HPL-PD architecture visible compiler executable resources and made hibernating. Code

generators in HPL-PD (scheduler and register allocator) target epic architecture requires the

following information.

Registration file structure. The number of register files and for each one, in that the number of

registers and bit width is also included.

• Operation repertoire. An action consists of an opcode and a register per each tuple-an operand

register. Instead of addressing mode operand opcode as part as part of the machine is supported

by the target. An operand is a literal or a target machine does not have a register. Several

instances of an operation that can perform operations that are consistent with the presence of

several functional units machine. Operation repertoire each opcode, it can use the register set of

files, opcode and specifies the repertoire. Implicitly, the more directly useful to a compiler that is

in a way, it specifies the functional connectivity between units and register files.

• Clearly scheduled resources. The compiler two operations at the same time, do not attempt to

use the same resources, it must ensure that the management of resources is set. Etc. Such

functional units, buses, instruction areas, as

• Each operation of the resource use behavior. Compiler use the same resource is such that once

the issue of any of the two operations, the use of resources relative to one another that they will

not end up together to ensure that this information should be used. This operation may be issued

with a set of the processor which determines.

Effect of branching and Vectorization on processing speed of VLIW processor

24

• latency descriptors. Every operation, each source operand is read and written to each

destination operand, the operation is issued that is relative to the time that specifies a latency

descriptors. HPL-PD architecture within the space or files, log files to register a set of functional

units, and a hierarchical memory system consist of a set. A special machine control register file,

except for one or more of each type of register file can have. Each machine has a control register

file no. Similarly, the operation of a particular machine HPL-PD in the repertoire of each

operation can be one or more instances. Many examples of the many examples that the operation

of an operation, ie, the machine can perform this operation in several functional units, which can

be issued in parallel means. Vector processing as many similar functions are executed

simultaneously. Parameters above all in order to target a specific architecture of Trimaran MDES

may be specified in the file. The goal of our project architecture is array-based VLIW processor

architecture.

Array-based VLIW architecture for VLIW processors, we have to specify all the parameters and

all operand vector liner array of numbers that will be called as such action has been taken in

vectorized mode. MDES vector potential target architecture are specified in the file. All vector

register file or the file must be where the vector must be able to host each register within a

register file. VLIW architecture based on our target array by changing some or all of the above

mentioned parameters describe the high-level machine can be specified in the file. It may be that

the low level of a script in the file conversion for the court using the compilation (*. Lmdes)

would be understood by the compiler.

Machine description file structure are given below. All parameters of the target architecture is

hmdes2 extended four files (* .hmdes2) use are described. One of these four files in the file it

P.hmdes2.where P Our goal is to be considered as the processor architecture. P.hmdes2 file other

3 files (structure_pristine.hmdes2, hpl_pd_pristine.hmdes2 and hpl_pd_elcor.hmdes) are

included. Elcor compiler MDES P.hmdes2 file present in the module corresponds to the main file

which is hpl_pd_std.hmdes2. File P.hmdes2 (hpl_pd_std.hmdes2).

Effect of branching and Vectorization on processing speed of VLIW processor

25

Machine description for array based VLIW processor

$def !num_clusters 4

// Register File sizes

$def !gpr_static_size 64
$def !gpr_rotating_size 64

$def !fpr_static_size 64
$def !fpr_rotating_size 64

$def !pr_static_size 64
$def !pr_rotating_size 64

$def !cr_static_size 64
$def !cr_rotating_size 64

$def !btr_static_size 64

// SLARSEN: Vector register files
$def !vir_static_size 64
$def !vir_rotating_size 64

$def !vfr_static_size 64
$def !vfr_rotating_size 64

$def !vmr_static_size 64
$def !vmr_rotating_size 64

// HPL-PD 2.0 Extn
// Literal Register File sizes

$def !short_lit_size 7
Vector length and functional units
$def !vec_length 4
$def !vec_integer_units 4
//$def !vec_float_units 4
$def !vec_integer_perm_units 4
//$def !vec_float_perm_units 4
$def !vec_integer_xfr_units 2
//$def !vec_float_xfr_units 2

// RMR: issue slots
$def !issue_slots 6

$def !memory_lit_size 10
$def !branch_lit_size 10
$def !long_lit_size 16

Effect of branching and Vectorization on processing speed of VLIW processor

26

$def !unrestricted_lit_size 32

// Per-cluster Functional Units

$def !integer_units 1
$def !float_units 1
$def !memory_units 1
$def !branch_units 1
Vector length and functional units
$def !vec_length 4
$def !vec_integer_units 1
//$def !vec_float_units 1
$def !vec_integer_perm_units 1
//$def !vec_float_perm_units 1
$def !vec_integer_xfr_units 2
//$def !vec_float_xfr_units 2

List of bench marks taken to check the performance

1. If then : to apply if then conditional statement

2. Fact2: to find factorial of a number

3. Fib: to find the Fibonacci series

4. Nested : to apply the nested loops

5. Sqrt: to find the square root of a number

6. Strcpy : to copy a string a no. of times

7. Eight : to run a code having eight variables

Statistics measured for a bench mark fact2:

1. When taken the scalar processor machine to run the code.

Function _main {

total_cycles...63
compute_cycles...63 (100.00)
 stall_cycles.....................................0 (0.00)
 total_dynamic_operations.........................31
 total_static_operations..........................79
 total_committed_operations.......................31 (100.00)
 total_speculated_operations......................0 (0.00)
 total_notrapping_operations......................0 (0.00)
 total_exceptions_encountered.....................0 (0.00)

 average_issued_ops/total_cycles..................1.17

Effect of branching and Vectorization on processing speed of VLIW processor

27

 average_issued_ops/compute_cycles................1.17

ialu: 9 (29.03) dynamic 26 (32.91).....static
falu: 0(0.00)..... dynamic 0 (0.00).....static
load: 0 (0.00).....dynamic 14 (17.72).....static
store: 0 (38.71)....dynamic 14 (17.72).....static
cmp: 0 (0.00).....dynamic 1 (1.27).....static
pbr: 3 (9.68).....dynamic 6 (7.59).....static
branch: 1 (3.23).....dynamic 6 (7.59).....static
icm: 6 (19.35).....dynamic 12 (15.19).....static
vialu: 0 (0.00).....dynamic 0 (0.00).....static
vfalu: 0 (0.00).....dynamic 0 (0.00).....static
vload: 0 (0.00).....dynamic 0 (0.00).....static
vstore: 0 (0.00).....dynamic 0 (0.00).....static
vxfr: 0 (0.00).....dynamic 0 (0.00).....static
vperm: 0 (0.00).....dynamic 0 (0.00).....static

spills_restores: 24 (77.42).....dynamic 52 (65.82).....static
caller_save: 21 (87.50).....dynamic 10 (19.23).....static
callee_save: 3 (12.50).....dynamic 42 (80.77).....static

}

2. When taken the VLIW processor machine to run the code.

Function _main {

total_cycles...55
compute_cycles...55 (100.00)
 stall_cycles.....................................0 (0.00)
 total_dynamic_operations.........................31
 total_static_operations..........................79
 total_committed_operations.......................31 (100.00)
 total_speculated_operations......................0 (0.00)
 total_notrapping_operations......................0 (0.00)
 total_exceptions_encountered.....................0 (0.00)

 average_issued_ops/total_cycles..................1.64
 average_issued_ops/compute_cycles................1.64

ialu: 9 (29.03) dynamic 26 (32.91).....static
falu: 0(0.00)..... dynamic 0 (0.00).....static
load: 0 (0.00).....dynamic 14 (17.72).....static
store: 0 (38.71)....dynamic 14 (17.72).....static
cmp: 0 (0.00).....dynamic 1 (1.27).....static
pbr: 3 (9.68).....dynamic 6 (7.59).....static
branch: 1 (3.23).....dynamic 6 (7.59).....static
icm: 6 (19.35).....dynamic 12 (15.19).....static
vialu: 0 (0.00).....dynamic 0 (0.00).....static
vfalu: 0 (0.00).....dynamic 0 (0.00).....static
vload: 0 (0.00).....dynamic 0 (0.00).....static

Effect of branching and Vectorization on processing speed of VLIW processor

28

vstore: 0 (0.00).....dynamic 0 (0.00).....static
vxfr: 0 (0.00).....dynamic 0 (0.00).....static
vperm: 0 (0.00).....dynamic 0 (0.00).....static

spills_restores: 24 (77.42).....dynamic 52 (65.82).....static
caller_save: 21 (87.50).....dynamic 10 (19.23).....static
callee_save: 3 (12.50).....dynamic 42 (80.77).....static

}

3. When taken the array based VLIW processor machine to run the code.

Function _main {

total_cycles...10
compute_cycles...10 (100.00)
 stall_cycles.....................................0 (0.00)
 total_dynamic_operations.........................31
 total_static_operations..........................79
 total_committed_operations.......................31 (100.00)
 total_speculated_operations......................0 (0.00)
 total_notrapping_operations......................0 (0.00)
 total_exceptions_encountered.....................0 (0.00)

 average_issued_ops/total_cycles..................3.10
 average_issued_ops/compute_cycles................3.10

ialu: 9 (29.03) dynamic 26 (32.91).....static
falu: 0(0.00)..... dynamic 0 (0.00).....static
load: 0 (0.00).....dynamic 14 (17.72).....static
store: 0 (38.71)....dynamic 14 (17.72).....static
cmp: 0 (0.00).....dynamic 1 (1.27).....static
pbr: 3 (9.68).....dynamic 6 (7.59).....static
branch: 1 (3.23).....dynamic 6 (7.59).....static
icm: 6 (19.35).....dynamic 12 (15.19).....static
vialu: 0 (0.00).....dynamic 0 (0.00).....static
vfalu: 0 (0.00).....dynamic 0 (0.00).....static
vload: 0 (0.00).....dynamic 0 (0.00).....static
vstore: 0 (0.00).....dynamic 0 (0.00).....static
vxfr: 0 (0.00).....dynamic 0 (0.00).....static
vperm: 0 (0.00).....dynamic 0 (0.00).....static

spills_restores: 24 (77.42).....dynamic 52 (65.82).....static
caller_save: 21 (87.50).....dynamic 10 (19.23).....static
callee_save: 3 (12.50).....dynamic 42 (80.77).....static

}

Conclusion:
This is clear that the TRIMARAN framework is very much suitable for this kind of research so

these parameters are to be passes into the framework and the results are shown in next phase.

Effect of branching and Vectorization on processing speed of VLIW processor

29

 Chapter 5

 Performance evaluation and results

Parameters for different architectures are passed to the framework and the results coming in the

following way.

Performance matrices

The improved performance can be gained by so many ways like increase in clock cycle speed, less power

consumption, applying multiple processors in one CPU, implementing parallelism techniques and new

technique like adding multiple cores to the same chip either having shared memory cache or dedicated

memory cache. Parallel processing is the unbeatable technique without increasing cost of hardware so

much.

1. IPC : instructions per cycle

Meaning of IPC is that the number of executed instructions by a processor within single

cycles. It is generally calculated in terms of million instructions per cycle(MIPS rate).

2. TCC: total compute cycles

Meaning of the TCC is that the number of cycles taken by a processor to execute one

single program.

Performance measurement and results

For some benchmarks here shown the graph and the table for TCC.

0

5000

10000

15000

20000

25000

ifthen nested sqrt strcpy eight fact2 fib

TCC (TOTAL COMPUTE CYCLE)

SCALAR VLIW ARRAY BASED VLIW

Effect of branching and Vectorization on processing speed of VLIW processor

30

S.NO.

BENCHMARK

SCALAR

VLIW

ARRAY

BASED VLIW

PERFORMANCE

INCREASES WITH

COMPARE TO

SCALAR

 (%)

VECTOR

 (%)

1. Ifthen 4112 3216 3103 24.53 3.51

2. Fact2 63 55 10 88.33 81.81

3. Fib 46 46 12 73.91 73.91

4. Nested 22020 16041 3884 82.36 75.57

5. Sqrt 3171 2950 3189 0.056 0.81

6. Strcpy 21468 17461 15434 28.10 11.60

7. eight 4344 4336 4013 7.61 7.44

From the above table it is shown that the total compute cycles in three different

processors are calculated by the TRIMARAN framework. It is clear that the performance

is increased for almost all benchmarks, array based VLIW Processor with comparison to

scalar and VLIW processor.

IPC Measurements

Now taking in consideration of IPC measures. The table below is the instruction per cycle

count of the benchmarks. And the graph shows the variations of the IPC values for

different benchmarks.

Effect of branching and Vectorization on processing speed of VLIW processor

31

S.NO. BECNHMARK SCALAR VECTOR ARRAY BASED VLIW

1. Ifthen 1.03 1.63 0.87

2. Fact2 1.17 1.64 3.10

3. Fib 2.50 2.50 2.90

4. Nested 2.04 1.57 1.52

5. sqrt 2.60 2.77 3.00

0

0.5

1

1.5

2

2.5

3

3.5

IFTHEN FACT2 FIB NESTED SQRT

IPC (INSTRUCTION PER CYCLE)

SCALAR VLIW ARRAY BASED VLIW

Effect of branching and Vectorization on processing speed of VLIW processor

32

BRANCHING Effect:

Branching is the problem in program execution, can delay the execution of a program.

It is beneficial to eliminate branches which are hard to predict. Branch prediction is a

strategy in computer architecture design to eliminate the branches.

BRANCH OUTCOMES IN PROCESSING BENCH MARKS

S.NO. BENCHMARK SCALAR VLIW WITHOUT
VECTOR

VLIW WITH
VECTOR

1. Fact2 15 15 1

2 Fib 16 16 1

3. Ifthen 901 902 901

4. Nested loop 1214 4906 1214

5. Sqrt 1 18 3

6. Strcpy 23 19 29

7. Eight 735 668 735

Effect of branching and Vectorization on processing speed of VLIW processor

33

The above Table shows the branch taken values in the program execution of same

benchmarks. Branch taken causes the delay in program execution. Jump statements are

the kind of branches that moves the address pointer from one location to another location.

If one branch is taken then the instructions which are followed by that branch will be

made useless and they will wait that when the pointer will come back to that instruction.

Effect of branching and Vectorization on processing speed of VLIW processor

34

 Chapter 6

 Conclusion and future works

conclusion

Array based VLIW processor is feasible to be made and should be more efficient to execute the

programs in less time by using two types of parallelism ILP and DLP. Array based VLIW

processor have which takes advantages of both VLIW and Vector processor architecture.

However, the compiler is critical for achieving maximum benefit because complete benefit of

this processor cannot be realized unless the compiler can schedule the instructions in parallel

efficiently. So Complier needs to more complex and should able to schedule the multiple

instructions in an effective way. Branching problem is still remained as it is, not resolved like

VLIW processor branch prediction mechanism.

Future works

This array based VLIW processor has a lot of possibilities of improvements in many areas like

efficient branch prediction and less access time on-chip memory. It can be a very good and

efficient architecture for multimedia programs.

 Chapter 7

 List Of References

1. Reference book:

[1] Kai Hwang (2001) “Advanced Computer Architecture”, edition first, Tata McGraw Hill
publications Ltd. New Delhi.

[2] Kai Hwang and Naresh Jotwani (2010) “Advanced Computer Architecture”, edition second,
Tata McGraw Hill publications Ltd. New Delhi.

2. Research Papers and Articles:

1. A. Bona, M.Samit, D.Sciutot, C.silvanog (2006), “energy estimation and optimization of
embedded VLIW processor based on instruction clustering”, ACM, page: 886-891.

2. Mohammad Suaib, Abel Palaty, Kumar Sambhav Pandey(2011), “Architecture of SIMD
Type Vector Processor”, International journal of computer applications.

3. Andrea Lodi, Mario Toma, Fabio Campi, Andrea Cappelli, Roberto Canegallo, and
Roberto Guerrieri (2003), “A VLIW Processor With Reconfigurable Instruction Set for
Embedded Applications”, IEEE.

4. Anju S. Pillai, Isha T.B.(2013), “Factors Causing Power Consumption in an Embedded
Processor - A Study”, IJAIEM.

5. Christoforos E., Kozyr David A. pattersonakis (2003), “scalable vector processors for
embedded systems”, IEEE.

6. Christos Kozyrakis, David Patterson “Overcoming the limitations of conventional vector
processors”, Department of Electrical Engineering Stanford University.

7. Christoforos Kozyrakis, David Patterson (2002), “Vector Vs. Superscalar and VLIW
Architectures for Embedded Multimedia Benchmarks”, IEEE.

8. Carlos Carvalho (2012), “The Gap between Processor and Memory Speeds”, ICCA.
9. Erkan Diken, Roel Jordans, Lech J´o´zwiak and Henk Corporaal (2014), “Construction

and Exploitation of VLIW ASIPs with Multiple Vector-Widths”, 3rd Mediterranean
Conference on Embedded Computing MECO.

10. Eric Spangle, Doug Carmean (2002), “Increasing Processor Performance By
Implementing Deeper Pipelines”, IEEE.

11. Francisca Quintana, Roger Espasat, Mateo Valero (1998), “A Case for Merging the ILP
and DLP Paradigms”, IEEE.

12. James E. Smith, Guindar singh sohi (1995), “Micro-architecture of superscalar
processors”, IEEE, page: 1609-1623.

13. Kourosh Gharachorloo, Anoop Gupta, and John Hennessy, “Two Techniques to Enhance
the Performance of Memory Consistency Models”.

14. Khoi-Nguyen Le-Huu, Diem Ho, Anh-Vu Dinh-Duc, Thanh T. Vu (2014), “Towards a
RISC Instruction Set Architecture for the 32-bit VLIW DSP Processor Core”, University
of Information Technology – VNUHCM Ho Chi Minh City, Vietnam.

15. Mikhail Smelyansky, Gary S.Tyson and Edward S.Davidson (2000),” Register Queues:
A new hardware/software approach to efficient software pipelining”, IEEE, page: 3-12.

16. Mostafa I. Soliman, Al-Madinah Al-Munawwarah 2898, Saudi Arabia (2013), “A VLIW
Architecture for Executing Multi-Scalar/Vector Instructions on Unified Datapath”, IEEE.

17. M.priyanka, K.Niranjan Reddy (2014), “VLIW-Based Processor for Executing Multi-
Scalar/Vector Instructions”, IJIREC.

18. Roger Espasa, Mateo Valero(1997), “Simultaneous Multithreaded Vector Architecture:
Merging ILP and DLP for High Performance”, IEEE.

19. Rekha Halkatti, Veeresh Pujari(2014), “FPGA BASED 128-BIT CUSTOMISED VLIW
PROCESSOR FOR EXECUTING DUAL SCALAR/VECTOR INSTRUCTIONS”,
IJRET.

20. Deepak Kumar, Ranjan Kumar Behera, K. S. Pandey (2013), “Concept of a Supervector
Processor: A Vector Approach to Superscalar Processor, Design and Performance
Analysis”, IJER.

21. Stephen Hines, Joshua Green, Gary Tyson and David Whalley (2005) “Improving
program efficiency by packing instructions into registers” IEEE.

22. Vikram Seth, Min Zhao, Jiang Hu (2004), “Exploiting level sensitive latches in wire
pipelining” IEEE, page: 283-290.

23. Venkata Ganapathi Puppala (2014), “A VLIW-Vector Co-processor Design for
Accelerating Basic Linear Algebraic Operations in Open-CV”, IEEE.

24. Yuan Xie, Wayne Wolf Lekatsas (2001), “A code decompression architecture for VLIW
processors”, IEEE, page: 66-75.

25. Yangzhao Yang, Naijie Gu, Kaixin Ren, Bingqing Hu (2014), “An Approach to Enhance
Loop Performance for Multicluster VLIW DSP Processor”, ARCS.

26. Yonghua Hu, Shuming Chen, Jie Huang (2012), “Preprocessing scheme of intelligent
assembly for a high performance VLIW DSP”, IEEE.

3. WebPages and Websites:

1. http://trimaran.org/documentation.shtml

2. http://www.cs.nmsu.edu/~rvinyard/itanium/branching.htm

3. http://www.technologyreview.com/view/421186/why-cpus-arent-getting-any-faster/

4. http://cacm.acm.org/magazines/2011/5/107702-the-future-of-microprocessors/fulltext

	front page
	bharat sharma 11312842
	references

