

IMPROVEMENT IN AUTOMATED MODEL BASED

TESTING BY NATURAL LANGUAGE APPROACHES

A Dissertation

Submitted By

Priyanka Nanda

to

Department of Computer Science and Engineering

In partial fulfilment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

Under the guidance of

Mr. Makul Mahajan

(May 2015)

i

ABSTRACT

Models in particular finite state machine models – provide an invaluable source of

information for the derivation of effective test cases. However, models usually

approximate part of the program semantics and capture only some of the relevant

dependencies and constraints. As a consequence, some of the test cases that are derived

from models are infeasible. The primary objective is to generate model-based system and

acceptance test cases considering Natural Language requirements deliverables. The

generation of Executable Test Cases which predicted behaviours that did not exist in the

expert’s approach.. Model Checking combined with k permutations of n values of

variables and specification patterns were used to address this goal. Models in particular

finite state machine models – provide an invaluable source of information for the

derivation of effective test cases. However, models usually approximate part of the

program semantics and capture only some of the relevant dependencies and constraints.

As a consequence, some of the test cases that are derived from models are infeasible. We

will use NLP-MBT tool in which different test case will execute according to N-gram

statistics.

ii

CERTIFICATE

 This is to certify that Priyanka Nanda has completed M.Tech dissertation titled

“IMPROVEMENT IN AUTOMATED MODEL BASED TESTING BY NATURAL

LANGUAGE APPROACHES” under my guidance and supervision. To the best of my

knowledge, the present work is the result of her original investigation and study. No

part of the dissertation has ever been submitted for any other degree or diploma.

The dissertation is fit for the submission and the partial fulfillment of the

conditions for the award of M.Tech Computer Science & Engg

Date: (Mr. Makul Mahajan)

Assistant Professor in CSE

Department of Computer Science &

Engineering

Lovely Professional University,

Phagwara

iii

ACKNOWLEDGEMENT

I would like to take this opportunity to express my deep sense of gratitude to all who

helped me directly or indirectly during dissertation-work.

Firstly, I would like to thank my advisor Mr. Makul Mahajan (Assistant Professor in

CSE) for being great mentor and best adviser I could ever have. His advice,

encouragement and critics are sources of innovative ideas, inspiration and cause behind

the successful completion of this dissertation. I am highly obliged to all faculty members

of computer science and engineering department for their support and encouragement.

I would like to express my sincere appreciation and gratitude towards my friends for their

encouragement, consistent support and invaluable suggestions at the time I needed the

most.

I am grateful to my family for their love, support and prayers.

 PRIYANKA NANDA

 Regd no. 11312562

iv

DECLARATION

 I hereby declare that the dissertation entitled, "IMPROVEMENT IN

AUTOMATED MODEL BASED TESTING BY NATURAL LANGUAGE

APPROACHES" submitted for the M.Tech Degree is entirely my original work

and all ideas and references have been duly acknowledged. It does not contain any

work for the award of any other degree or diploma.

Date: (Priyanka Nanda)

 Reg. No. 11312562

v

Table of Contents

INTRODUCTION .. 1

1.1 Software Engineering ... 1

1.1.1Software Engineering Phases: .. 2

1.2 Software Testing ... 3

1.2.1 Types of Software testing: ... 3

1.2.2 Model Based Testing: .. 4

1.2.3 Model Based testing approaches ... 4

1.3 Natural Language Processing ... 6

1.3.1 NLP Terminology .. 6

1.3.2 Parse Tree .. 7

1.4 N-Gram ... 7

1.5 Python Language .. 9

REVIEW OF LITERATURE ... 10

PRESENT WORK ... 14

3.1 PROBLEM FORMULATION ... 14

3.1.1 Model base testing ... 14

3.1.2 N-Gram Approaches .. 14

3.1.3 Problem statement ... 14

3.2 OBJECTIVES .. 16

3.3 PROPOSED METHODOLOGY .. 17

RESULTS AND DISCUSSIONS... 19

4.1 Parameters for testing results: .. 19

4.2 Feasibility with all test cases in Flexi- store software .. 20

4.3Feasibility with all test cases in Cyclos software: ... 26

4.4 Feasibility with all test cases inthe OrganizerSoftware .. 32

4.5 Feasibility with all test cases in the TaskFreaksoftware ... 38

4.6 Feasibility with all test cases in the Hit List software .. 44

4.7 Comparison between Existing and Proposed Methodology ... 50

CONCLUSION AND FUTURE SCOPE .. 51

REFERENCES ... 52

vi

LIST OF FIGURES

Figure

No.
Title Page No.

1.1 SDLC Phases 3

1.2 Graphical view of Model Based Testing 4

1.3 Offline Model Based Testing 5

1.4 Online Model Based Testing 6

3.1 Problem Statement of proposed work 15

3.2 Flow Chart of research methodology 17

4.1 Feasibility Vs total no of test sequences in flexi-store 21

4.2 Coverage Vs total number of test sequences in flexi-store 22

4.3 Size of test cases Vs total number of test sequences in flexi-store 23

4.4 Length of test cases Vs total number of test sequences in flexi-store 24

4.5 Ratio between all test case Vs total test sequences in flexi-store 25

4.6 Feasibility Vs total test sequences in cyclos 27

4.7 Coverage vs total test sequences in cyclos 28

4.8 Size of test cases Vs total test sequences in cyclos 29

4.9 Length of test cases Vs total test sequences in cyclos 30

4.10 Ratio between all test cases Vs total test sequences in cyclos 31

4.11 Feasibility Vs Total test sequences in organizer 33

4.12 Coverage Vs total test sequences in organizer 34

4.13 Size of test cases Vs total test sequences in organizer 35

4.14 Length of test case Vs total test sequences in organizer 36

4.15 Ratio between total test cases and total test sequences in organizer 37

4.16 Feasibility Vs total test sequences in task freak 39

4.17 Coverage Vs total test sequences in task freak 40

4.18 Size of test cases Vs total test sequences in task freak 41

4.19 Length of test cases Vs total test sequences in task freak 42

4.20 Ratio between total test case Vs total test sequences in organizer 43

4.21 Feasibility Vs total test sequences in Hit list 45

4.22 Coverage Vs total test sequences in Hit list 46

4.23 Size of test cases Vs total test sequences in Hit list 47

4.24 Length of test cases Vs total test sequences in Hit list 48

4.25 Ratio between total test cases Vs total test sequences in Hit list 49

vii

\ CHAPTER 1

INTRODUCTION

1.1 Software Engineering

Software engineering is the learning and presentation of engineering to the plan, progress

and keep of software. It is an engineering reprimand that is concerned with all facets of

software creation. Software engineering is a great, multifaceted, and nonfigurative

subject it is problematic to hypothesis vigorous learning trainings that build on the

student’s basic knowledge of programming and tranquil teach elementary software

engineering ideologies. It is also the case that launch students stereotypically know how

to build small programs, but they have petite skill with the procedures necessary to

harvest consistent and continuing maintainable components. It mainly focus on step-by-

step that points students toward the structure of exceedingly reliable trivial components

using well known, greatest-applies software engineering performances[21]. Software

progress is a speedily varying, knowledge-rigorous business involving many people

working in different segments and events. In software development, every person

involved regularly makes technical or managerial decisions. Most of the time, team

associates make decisions based on personal knowledge and skill or knowledge gained

using casual links. This is viable in small administrations, but as establishments grows

and knobs a larger volume of information, this process becomes inept. Large

organizations cannot rely on casual sharing of employees’ personal information.

Individual information must be shared and leveraged at project and association levels.

Administrations need to define processes for sharing information so that employees

throughout the organization can make accurate decisions. [24]

 Software engineering is a covered knowledge, referring to figure 1.1. It is the procedure

that grasps the knowledge layers together and enables balanced and appropriate

development of computer science. Software process defines a basis that must be

recognized for actual transmission of software engineering [23].

1.1.1Software Engineering Phases:

Software Development Life Cycle is classified into different stages which determined of

better scheduling and organization. SDLC can be divided into ten phases. They are:

 Requirements specification: Analysis, specification, and authentication

of requirements for software.

 Software design: The process of defining the building, mechanisms, boundaries,

and other features of a system.

 Software coding: The process of coding, verification, unit testing integration

testing and corrections is to be done

 Software testing: The process of defining the behaviour of system and check

whether the system is to be work properly.

 Software maintenance: The process where how the system is maintained properly

so that unauthorized persons cannot corrupt the systems. One of the most

important considerations is cost in software maintenance.

 Software configuration management: The documentation of the configuration of a

system at separate points in time for the purpose of systematically monitoring

changes to the configuration, and maintaining the integrity of the configuration

throughout the system life cycle.

 Software engineering management: The process which defines following

activities like planning, coordinating, , monitoring, controlling, and reporting.

 Software engineering process: The process where meaning, operation, calculation

of the software life cycle process is included.

 Software engineering tools and methods: The process where some tools used like

computer aided design such ad Auto-Cad, Corel Draw, etc.

 Software quality management: The process which fulfills the customer needs and

giving good quality to them. [25].

http://en.wikipedia.org/wiki/Requirements_engineering
http://en.wikipedia.org/wiki/Requirements
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_construction
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_configuration_management
http://en.wikipedia.org/w/index.php?title=Software_engineering_management&action=edit&redlink=1
http://en.wikipedia.org/wiki/Software_engineering_process
http://en.wikipedia.org/w/index.php?title=Software_engineering_tools_and_methods&action=edit&redlink=1
http://en.wikipedia.org/wiki/Software_quality_management

Figure 1.1 SDLC Phases

1.2 Software Testing

Software testing is a learning showed quality of the product. The process of defining the

behaviour of system and check whether the system is to be work properly. In software

testing, following are the different properties specify the degree to which the component

or system under test:

 meets the requirements that focused its design and development,

 replies properly to all kinds of inputs,

 performs its functions within an suitable time [26].

1.2.1 Types of Software testing:

 Black box testing – Internal system design is not measured in this type of testing.

Tests are built on requirements.

 White box testing – This testing is built on information of the internal logic of an

application’s code. It is also known as Glass box Testing. Internal software and

code working should be recognized for this type of testing.

 Unit testing – Testing of different software components or modules. It is typically

done by the programmer

 Integration testing – In this, all the modules are combined to perform integration

testing. This type of testing is particularly applicable to client/server and

distributed systems.

 System testing – In this testing, entire system is to be tested as per the

requirements [27].

1.2.2 Model Based Testing:

Model-based testing is used for designing model-based and executes artifacts that are to

perform software testing or system testing. Models are used to represent testing

approaches. In a model based testing, a model concerning a SUT which is typically an

abstract that defines the behavior of system under test.[8][11].

Figure 1.2 Graphical view of Model Based Testing

1.2.3 Model Based testing approaches

Model based testing offers a system for automatic generation of test cases using models

mined from software artifacts. MBT approach has three essentials:

 Software comportment

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/System_testing

 Measures

 Generate supporting substructure for the tests.

Basically, MBT has two main approaches:

1. Offline MBT

2. Online MBT

Offline MBT:

 It permits automate test execution in third party test execution platform.

 It makes possible to create a tool chain.

 It yields determinate sets of tests and executes [28].

Figure 1.3: Offline Model Based Testing

Online MBT:

 It produce test case which are in performance.

 It stimulating non-deterministic system.

 In it, infinite test suite is repeatedly [28].

Figure 1.4: Online Model Based Testing

1.3 Natural Language Processing

Natural language is defined to the language spoken by people, e.g. English, Japanese, as

different to artificial languages, like C++, Java, etc.

Natural Language Processing is the field of computer science and phonology which is

concerned with the communications between computers and human languages. In the

term of theory, we can say that natural-language processing is a very attractive method of

human-computer interaction. Natural-language is sometimes stated to as an AI-complete

problem, because natural-language recognition appears to require wide knowledge about

the outside world and the ability to manipulate it [24].

1.3.1 NLP Terminology

The vocabulary of NLP includes tokens, sentence, tokenization, corpus, part-of-Speech

(POS) Tag, and parsing, it can be described as follows [25].

 Token: The process of breaking input text into linguistic units such as words,

punctuation, numbers or alpha numeric, is known as tokenization. These units are

known as tokens.

 Sentence: The sentence is well-defined as an ordered sequence of tokens.

 Tokenization: It is well-defined as the process of breaking a sentence into its

constituent tokens.

 Corpus: It is well-defined as a body of text that typically contains a large number

of sentences.

 Part-of-speech (POS) Tag: A word can be categorized into one or more of a set

of lexical or part-of-speech categories such as Nouns, Verbs, Adjectives and

Articles.

1.3.2 Parse Tree

A parse tree is well-defined as a tree that represents the syntactic structure of the sentence

as defined by a formal grammar.

Following are some mutual tasks that are performed by NLP which is as given below:

 POS Tagging: The process of categorizing words into their parts of speech and

labelling them accordingly is known as part-of-speech tagging[4].

 Computational Morphology: Computational morphology is well-defined which

is concerned with the discovery and analysis of the internal structure of words

using computers [4].

 Parsing: Parsing is a process of examining a sentence by taking each word and

determining its structure from its module parts [7].

1.4 N-Gram

An n-gram model is a type of probabilistic language model for predicting the next item in

a sequence (n-1). N-gram models are widely used in probability, computational

linguistics During the last fifty years, we have witnessed a significant increase of

embedded HW-SW components in critical systems. Clearly, this trend goes along with

increased software size and complexity, and strongly impacts critical systems’ safety and

reliability. Currently, many researchers are focusing on how to achieve the safety and

reliability levels required for these systems. Some approaches to deal with such a

problem rely on Model Based Testing (MBT) techniques. However, these techniques

usually take as input models (e. g., state diagrams) that are usually not yet available in the

very beginning of the system development project. In the initial phases, only high-level

and textual requirement descriptions are usually available. Therefore, the use of MBT is

postponed.

To enable early MBT, we propose NAT2TESTIM R —an approach to generate test cases

from requirements described in Controlled Natural Language (CNL) based on the RT-

Tester3 Internal Model Representation (IMR)[12]. The requirements can describe

temporal properties besides functional behaviour. We opt for receiving textual

requirements as input instead of a graphical notation because the former is usually

available first and in some industries it is required to have textual descriptions for

certification purposes.

Initially, our approach parses the textual system requirements to evaluate their

conformance with the CNL structure. Our CNL (the System Requirement-CNL) is a non-

ambiguous and precise subset of the English language. After parsing, our approach

provides a semantic interpretation for the requirements, using verb case frames as

semantic representation[12]. This idea was first developed by the authors in a previous

work [5] , and this paper extends our original ideas. From the case frames, the

requirements’ semantics are mapped into an internal model representation whose formal

semantics is given by means of a transition relation. Based on this model, our approach

generates test vectors with the support of the RT-Tester and its SMT solver. This whole

process is fully automated by supporting tools.

The tests generated by NAT2TESTIM R provide means for early testing/simulation of

models at design level. To evaluate our proposal, we applied it to four examples from

different domains: (i) a Vending Machine (a toy example); (ii) a control system for Safety

Injection [15] in a Nuclear Power Plant (publicly available); (iii) one example provided

by Embraer4 (a Brazilian aircraft manufacturer); and (iv) part of the Turn Indicator

System [16] of today’s Mercedes vehicles (publicly available5).

The NAT2TESTIM R approach was evaluated from three perspectives:

(i) performance

(ii) automatically generated versus manually written test vectors (by Embracer)

(iii) Mutant-based strength analysis.

Within seconds, our approach generated 94% of the test vectors manually written by

Embracer specialists. Moreover, considering a mutant-based strength analysis, our

approach yielded a mutation score between 54% and 98%.Therefore, the main

contributions of this work are: [2] an MBT approach for generating tests from textual

requirements, [4] a formal representation of case frames by means of a transition

relation, and [4] empirical evaluations of our approach considering four examples from

different domains.

1.5 Python Language

Python is a new kind of scripting language, and most scripting languages it is constructed

about an interpreter. Many outdated scripting and interpreted languages have forwent

syntactic lucidity to simplify parser building; consider e.g. the tender grammar needed to

compute the value of modest expressions like a+b*c in Lisp, Smalltalk or the Bourne

shell. Others, e.g. APL and Perl, provision arithmetic expressions and other

conveniences, but have made cryptic one-liners into a sculpture form, turning program

keep into a nightmare. Python programs, on the other hand, are neither stiff to neither

write nor stiff to read, and its expressive power is comparable to the languages said

above. Yet Python is not big: the entire interpreter fits in 200 kilobytes on a Macintosh,

and this even comprises a windowing interface Python is used or planned as an

application development language and as an extension language for non-expert

programmers by several profitable software vendors. It has also been used successfully

for numerous large non-commercial software projects [22].

CHAPTER 2

REVIEW OF LITERATURE

A.Pretschneret al (2012)proposed that the models of system under test which are

depends on model based testing that develop test cases for the system. Here authors

discussed the classification of main features that cover the model based testing methods

that show that how to classify so that it should be considerate the comparisons and

modification of model based testing methods. In this paper, authors have discussed

different tools and methods to improve the scalability which increase the performance of

test generation [1].

H.Samihet al (2014)proposed a Model based testing for PL-usage models has proposed

to reinforce model based testing that provides automatic test case generation which

furnish with variability information. , it show a supported tool that allow model based

testing which generate test cases for not only one product but different developments

[111

Bernhard Rumpe(2014) proposed to check what properties a modelling UML

sequentially support extreme programming technique well. It uses XP which is an

explicit reaction to the complexity of today’s modelling methods like the Unified

Process, the Open Toolbox of techniques are needs to make UML suitable for an extreme

modelling approach [3].

CyrillaArthoet al (2013) proposed to display test sequences of application programming

interface calls which engross model based testing with different system configuration. It

proposed to try SAT solvers techniques which used for verification back-ends that

generates sequences of valid API for progressive feature of SAT solvers [5].

Julien Botella et al (2013) proposed the procedures of model based testing has proposed

that where some application is done in the scene of a qualification testing phase made by

at autonomous designers, developers and sponsors of the cryptographic components under

test appeal on security cryptographic components. It will work upon the bid of MBT

techniques which use MBT for pure functional testing that is the test generation model and

the test selection criteria [12].

Mark Harmanet al (2013) proposed to use the slant of Oracle automation that is the main

key to isolate present constriction which hampers unstinting general automation for tests

and Oracle automation includes modeling, specifications, contract driven development and

metamorphic testing. This paper also tells the ample report of Oracles in software testing

which describe implied attitude that gives some endowment for the lack of Oracle [15].

Briand et al (2012) have proposed commonly used FSM model which is use in UML,

class and sequence diagram. Here author can represent the values of class attributes and

the graphical objects. Here author discussed how to represent abstract and concrete

applications where each FSM represents Authors discussed different transitions in FSM

which signifies action or event related to an application. Here mainly work depends on

how to perform event or action in an application and how to call method so that

application state can change during execution. [2].

Dudekula Mohammad Rafi et al (2012) have proposed that how space is near between

both views by inspecting in respect of the advantage and bound of test automation. This

paper builds analysis of some advantages and drawback of software test automation in

educational information. This tells how to unify actor view of software test automation

[8].

Mohamed Mussaet al (2012) have proposed that how to brings some idea based on

model based performances that use UML2 Testing Profile for generating integration test

cases from unit test models and how to construct integration test model that use for UTP

models [16].

Petra Broschet al (2012) have proposed that how to use of overlapping information

which innate in multiple views of models for automatic testing has proposed. The authors

have proposed to use multi-view modeling languages like UML that offer different

diagram types to lower the complexity of re-counting software systems where each

diagram allowing for splitting a complex model into various areas of concern. So, in that

way, the diagrams are complemented with one another, that work together to provide a

holistic representation of the system. Here we find that how the information can be used

as test data [17].

Yoav Bergneret al (2012) have proposed that how collaborative filtering is applied to

use dichotomously scored student response data and find optimal parameters for each

student and item based on cross-validated prediction accuracy. To use CF, it is fast,

stretchy and firm [20].

Cristran Cadaret al (2011) proposed to use symbolic executions which is a program

analysis performance used for solving restraint in technology that increased availability

of computational power. In this paper, it become able to all plainly that how modern

symbolic execution slant empower organized testing for bug finding and symbolic

execution used for handle the expanding number of paths in the code [6].

Gervaziet al (2011)proposed a formal framework for identifying, analysing and

managing inconsistency in natural language requirements derived from multiple

stakeholders. In this article, a particular inconsistency namely logical contradiction (any

situation in which some fact α and its negation ¬α can be simultaneously derived from

the same specification) was concentrated [10].

Dias Netoet al (2011)proposed to define the behaviours which are appropriate for

measuring the testing. In this phase is also known as group related to test. Here authors

take an example of FSM models which is used as an test case which showing output that

involves sow to classify an events [7].

ChristelBaieret al (2010)proposed the checking of Model.Gervazi also proposed a

methodology for the lightweight validation of natural language requirements. In this

paper it tells validation as a decision problem [4].

Kedian Muet al (2008)proposed the priority -based scoring vector, which participates the

measure of the degree of inconsistency with the measure of the significance of

inconsistency. Here author discussed for checking the inconsistencies in natural language

requirements [14].

El-Far et al (2007)proposed the model-based testing which is an method that bases

common events of the software testing process such as test case generation and test

results evaluation [9].

Uttinget al (2006) proposed a model-based testing which consists of a test strategy in

which test cases are derived completely from a model that describes some feature of

software. In this paper authors discussed the behaviour or structure of the software which

has been formalized by means of models with well-defined rules such as UML diagrams.

Here authors also discussed that a model-based testing technique can be applied to any

type of testing (functional, structural, etc[19].

Sarmaet al (2005)In this paper, authors proposed that the technique which are depend on

the source based on UML show system state graph where use case models, sequence

diagrams, and State chart models represent. In this paper, authors discussed to cover the

transition path coverage Here authors discussed that how the work can interact with users

during the process.[18].

Jurafskyet al (2004)proposed to differentiate six categories of the knowledge of

language that is needed to engage in complex language behaviour: Phonetics and

Phonology, Morphology, Syntax, Semantics, Pragmatics, and Discourse. Here authors

discussed that how to use a novel semantic encoding of the CNL behaviour in the form of

a timed transition relation [13].

CHAPTER 3

PRESENT WORK

3.1 PROBLEM FORMULATION

3.1.1 Model base testing

In model-based testing, various types of models can be used in automated models which

is to define the appropriate subclass of application behaviours that is to be considered for

testing and this stage is termed group related to test.

3.1.2 N-Gram Approaches

• This is prediction model using the n gram for prediction.

• NLP uses in sentence derivation which is use for prediction of sentences, which have

many

possibilities.

• If we resemble above give point and model based testing is the same because model

based

 testing have many test cases which can use any point but some test cases is useful ,so we

can use n gram statics for predicting these useful test cases.

• N-gram approach useful for reduce the complexity of model based testing and

increasing

the feasibility of model based testing.

3.1.3 Problem statement

The model based testing have many way to select the test cases but some test cases is

useful, so we can say model-based testing is non deterministic approach, we can reduce

this by N-gram statistics of test cases and reduce the complexity of model based testing.

Whatever generation has to come, we have to avoid these all generation of infeasible test

sequences and expect the feasible sequences by using N-Gram approach and it is same as

sentences. N-gram statistics can also be used in same way as in NLP to achieve such

purpose. NLP also generate event sequences that contain N-gram previously observed in

real executions, the probability that such sequences will in turn be executable is

increased.

Figure 3.1 Problem Statement of proposed work

3.2 OBJECTIVES

Objectives is to comprehensive study of Natural Language Processing and Model based

testing by using the N-gram Approach on Model based testing so that it reduce the

complexity of model based testing by predict feasible transition of states event. In this

model-based system and acceptance test case generation, and particularly taking into

account NL requirements documents, identification of scenarios, their respective models

and test case generation are used. There are many benefits related to formal methods,

such approaches are not largely adopted for software development in general. On the

other hand, NL is still widely used to develop software requirements specifications.

 To implement N-Gram approach on model-based testing.

 To reduce the possibility of occurrence of different transitions.

 To convert non-deterministic approach to deterministic approach

3.3 PROPOSED METHODOLOGY

N -gram statistics play important role in prediction next test cases in test suite. But it is

important to using this in model based testing

1. Probabilistic model for prediction next word in sentence same as model based testing

predict best test cases in test suite

2. N-gram statistics best possible combination of states in test suite.

3. N-gram Statistics reduce the event sequences by prediction approach. Avoiding the

generation of infeasible event sequences is very similar to avoiding the derivation of

sentences.

4. Depending on the application the most appropriate among these three data collection

methods may different.

Figure 3.2: Flow Chart of research methodology

Figure 3.2: shows a high level view of the proposed approach. While graph visit test case

generation algorithms (Random, Depth first and Breadth first) require just one input (i.e.,

the model), N-Gram based test case generation needs two inputs: model and N-gram

statistics. The model can be defined manually by the user; it can be inferred automatically

from execution traces using state abstraction or event sequence abstraction or a mixed

approach can be followed, in which the model is first inferred and then it is manually

refined by the user.

Tools Used: Model based NLP MBT

Model-based testing (MBT) is application of model-based design for designing and

optionally also executing artifacts to perform testing or system testing. Models can be

used to represent the desired behaviour of a System Under Test (SUT), or to represent

testing strategies and a test environment. A model describing a SUT is usually an

abstract, partial presentation of the SUT's desired behaviour. Test cases derived from

such a model are functional tests on the same level of abstraction as the model. These test

cases are collectively known as an abstract test suite. An abstract test suite cannot be

directly executed against an SUT because the suite is on the wrong level of abstraction.

An executable test suite needs to be derived from a corresponding abstract test suite. The

executable test suite can communicate directly with the system under test. This is

achieved by mapping the abstract test cases to concrete test cases suitable for execution.

In some model-based testing environments, models contain enough information to

generate executable test suites directly. In others, elements in the suite must be mapped to

specific statements or method calls in the software to create a concrete test suite. This is

called solving the "mapping problem". In the case of online testing (see below), abstract

test suites exist only conceptually but not as explicit artifacts.

http://en.wikipedia.org/wiki/Model-based_design
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Abstract_test_suite
http://en.wikipedia.org/wiki/Executable_test_suite
http://en.wikipedia.org/w/index.php?title=Concrete_test_suite&action=edit&redlink=1

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Parameters for testing results:

 Feasibility: This is the Ratio between feasible test sequences and total number of

test sequences generated by each test strategy.

 Coverage: This is the Ratio between covered transitions and total number of

transitions in the model.

 Size of test cases: this is the Number of test sequences in the test suite. (Test suite

size)

 Length of test: This is the Average number of events in the test (Test case

Length) sequences added to each test suite.

4.2 Feasibility with all test cases in Flexi- store software

 Feasibility Coverage

(%)

Size of

test cases

Length of

test case

Depth first 2% 58 4 25.34

Breadth first 11% 87 34 3.38

Random 72% 65 4.5 55.01

Ngram-2 65% 88 4 47.73

Ngram-3 4% 73 4.3 49.66

Ngram-4 27% 88 5 45.48

Interpolated3 39% 79 14.33 54.15 Flexi-store

Interpolated4 78% 89 13 53.41

Interpolated5 57% 8 12 51.27

Interpolated6 81% 89 10 55.95

Interpolated7 46% 8 9.7 53.63

Interpolated8 71% 88 9 55.01

Interpolated9 43% 8 8.39 57.18

Interpolated10 86% 87 8 56.5

4.2.1

 Feasibility

Depth first 2%

Breadth first 2%

Random 11%

Ngram-2 72%

Ngram-3 65%

Ngram-4 4%

Interpolated3 27%

Interpolated4 39%

Interpolated5 78%

Interpolated6 57%

Interpolated7 81%

Interpolated8 46%

Interpolated9 71%

Interpolated10 43%

Figure 4.1(Feasibility Vs total no of test sequences in flexi-store)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (INTERP), it will increase when increase N-gram value

of n. It show prediction increase when N-gram increase.

0%
20%
40%
60%
80%

100%

Feasibility

4.2.2

 Coverage
(%)

Depth first 58

Breadth first 87

Random 65

Ngram-2 88

Ngram-3 73

Ngram-4 88

Interpolated3 79

Interpolated4 89

Interpolated5 8

Interpolated6 89

Interpolated7 8

Interpolated8 88

Interpolated9 8

Interpolated10 87

Figure 4.2(Coverage Vs total number of test sequences in flexi-store)

Here step by step feasibility of Breadth first, Depth first and Random approaches

increases when N-Gram value increase and simultaneously N-Gram approaches

(interpolated) increases.

0
10
20
30
40
50
60
70
80
90

100

Coverage (%)

4.2.3

 Size of
test cases

Depth first 4

Breadth first 34

Random 4.5

Ngram-2 4

Ngram-3 4.3

Ngram-4 5

Interpolated3 14.33

Interpolated4 13

Interpolated5 12

Interpolated6 10

Interpolated7 9.7

Interpolated8 9

Interpolated9 8.39

Interpolated10 8

Figure4.3(Size of test cases Vs total number of test sequences in flexi-store)

Feasibility of Breadth first, Depth first and Random Approaches more than N-gram and

interpolated N-gram approaches (INTERP).where N-gram decrease when increase

interpolated N-gram value of n.

0

5

10

15

20

25

30

35

40

Size of test cases

4.2.4

 LENTH

Depth first 25.34

Breadth first 3.38

Random 55.01

Ngram-2 47.73

Ngram-3 49.66

Ngram-4 45.48

Interpolated3 54.15

Interpolated4 53.41

Interpolated5 51.27

Interpolated6 55.95

Interpolated7 53.63

Interpolated8 55.01

Interpolated9 57.18

Interpolated10 56.5

Figure 4.4(Length of test cases Vs total number of test sequences in flexi-store)

Feasibility of Breadth first, Depth first approaches less and Random Approaches

increases and simultaneously interpolated N-gram approaches (Interpolated) will

increase, it will increase when increase N-gram value of n. It show prediction increase

when N-gram increase.

0

10

20

30

40

50

60

70

LENGTH OF TEST CASES

4.1.5

 Feasibility Coverage

(%)

Size of

test cases

Length of

test case

Depth first 2% 58 4 25.34

Breadth first 11% 87 34 3.38

Random 72% 65 4.5 55.01

Ngram-2 65% 88 4 47.73

Ngram-3 4% 73 4.3 49.66

Ngram-4 27% 88 5 45.48

Interpolated3 39% 79 14.33 54.15

Interpolated4 78% 89 13 53.41

Interpolated5 57% 8 12 51.27

Interpolated6 81% 89 10 55.95

Interpolated7 46% 8 9.7 53.63

Interpolated8 71% 88 9 55.01

Interpolated9 43% 8 8.39 57.18

Interpolated10 86% 87 8 56.5

Figure 4.5 (Ratio between all test case Vs total test sequences in flexi-store)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (Interpolated), it will increase when increase N-gram

value of n. It show prediction increase when N-gram increase.

0%
1000%
2000%
3000%
4000%
5000%
6000%
7000%
8000%
9000%

10000%

4.3Feasibility with all test cases in Cyclos software:

 Feasibility

(%)

Coverage

(%)

Size of

test cases

Length of

test case

Depth first 53 36 5.61 6.22

Breadth first 74 78 14 2.86

Random 64 34 7.36 5

Ngram-2 72 94 5.61 6

Ngram-3 32 99 7.11 5.40 Cyclos

Ngram-4 73 94 7.22 5.60

Interpolated3 34 56 5.73 7.02

Interpolated4 67 94 5.79 6.92

Interpolated5 77 57 5.63 6.90

Interpolated6 80 94 5.71 6.94

4.3.1

 Feasibility

(%)

Depth first 53

Breadth first 74

Random 64

Ngram-2 72

Ngram-3 32

Ngram-4 73

Interpolated3 34

Interpolated4 67

Interpolated5 77

Interpolated6 80

Figure 4.6(Feasibility Vs total test sequences in cyclos)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (Interpolated), it will increase when increase N-gram

value of n. It show prediction increase when N-gram increase.

0

10

20

30

40

50

60

70

80

90

Feasibility (%)

4.3.2

 Coverage (%)

Depth first 36

Breadth first 78

Random 34

Ngram-2 94

Ngram-3 99

Ngram-4 94

Interpolated3 56

Interpolated4 94

Interpolated5 57

Interpolated6 94

Figure 4.7 (Coverage vs total test sequences in cyclos

Feasibility of Breadth first, Depth first and Random Approaches increases step by step

and to meet the N-gram and interpolated N-gram approaches (Interpolated).

0

20

40

60

80

100

120

Coverage(%)

4.3.3

 Size of

test cases

Depth first 5.61

Breadth first 14

Random 7.36

Ngram-2 5.61

Ngram-3 7.11

Ngram-4 7.22

Interpolated3 5.73

Interpolated4 5.79

Interpolated5 5.63

Interpolated6 5.71

Figure 4.8(Size of test cases Vs total test sequences in cyclos

Feasibility of Breadth first, Depth first and Random Approaches more than N-gram and

interpolated N-gram approaches (INTERP), it will increase when decrease N-gram value

of n.

0

2

4

6

8

10

12

14

16

Size of test cases

4.3.4

 Length of

test case

Depth first 6.22

Breadth first 2.86

Random 5

Ngram-2 6

Ngram-3 5.40

Ngram-4 5.60

Interpolated3 7.02

Interpolated4 6.92

Interpolated5 6.90

Interpolated6 6.94

Figure 4.9(Length of test cases Vs total test sequences in cyclos)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (INTERP), it will increase when increase N-gram value

of n. It show prediction increase when N-gram increase.

0

1

2

3

4

5

6

7

8

Length of test case

4.3.5

 Feasibility

(%)

Coverage

(%)

Size of

test cases

Lengthof

test case

Depth first 53 36 5.61 6.22

Breadth first 74 78 14 2.86

Random 64 34 7.36 5

Ngram-2 72 94 5.61 6

Ngram-3 32 99 7.11 5.40

Ngram-4 73 94 7.22 5.60

Interpolated3 34 56 5.73 7.02

Interpolated4 67 94 5.79 6.92

Interpolated5 77 57 5.63 6.90

Interpolated6 80 94 5.71 6.94

Figure 4.10(Ratio between all test cases Vs total test sequences in cyclos)

0

20

40

60

80

100

120

4.4 Feasibility with all test cases in the Organizer Software

 Feasibility Coverage Size of

test cases

Length of

test case

Depth first 22 90 20 11

Breadth first 23 98 51 3

Random 16 93 18 16

Ngram-2 13 99 16 16.12

Ngram-3 70 94 15 15.77

Ngram-4 80 98 15.63 16

Interpolated3 76 96 16.18 16.15

Interpolated4 30 99 15.61 17.18

Interpolated5 55 98 15.33 17.67

Interpolated6 81 34 15.27 18.28

Interpolated7 38 97 15.43 17

Interpolated8 66 99 15.19 18.58

Interpolated9 88 97 15.28 18

Interpolated10 40 99 15.1 18.60

4.4.1

 FEASIBILITY

Depth first Feasibility

Breadth first 22

Random 23

Ngram-2 16

Ngram-3 13

Ngram-4 70

Interpolated3 80

Interpolated4 76

Interpolated5 30

Interpolated6 55

Interpolated7 81

Interpolated8 38

Interpolated9 66

Interpolated10 88

Figure 4.11(Feasibility Vs Total test sequences in organizer)

Feasibility of BFV, DFV and RAND Approaches less than N-gram and interpolated N-

gram approaches (INTERP), it will decrease when increase N-gram value of n. It show

prediction increase when N-gram increase.

0

50

100

FEASIBILITY

4.4.2

 Coverage(%)

Depth first 90

Breadth first 98

Random 93

Ngram-2 99

Ngram-3 94

Ngram-4 98

Interpolated3 96

Interpolated4 99

Interpolated5 98

Interpolated6 34

Interpolated7 97

Interpolated8 99

Interpolated9 97

Interpolated10 99

Figure 4.12(Coverage Vs total test sequences in organizer)

Here step by step feasibility of Breadth first, Depth first and random approaches increases

when N-Gram value increase and simultaneously N-Gram approaches (Interpolated)

increases.

0
20
40
60
80

100
120

Coverage(%)

4.4.3

 Size of

test cases

Depth first 20

Breadth first 51

Random 18

Ngram-2 16

Ngram-3 15

Ngram-4 15.63

Interpolated3 16.18

Interpolated4 15.61

Interpolated5 15.33

Interpolated6 15.27

Interpolated7 15.43

Interpolated8 15.19

Interpolated9 15.28

Interpolated10 15.1

Figure 4.13(Size of test cases Vs total test sequences in organizer)

Feasibility of Breadth first, Depth first and Random Approaches more than N-gram and

interpolated N-gram approaches (INTERP), it will increase when decrease N-gram value

of n. It show prediction decrease when N-gram decrease.

0

20

40

60

Size of test cases

4.4.4

 Length of

test case

Depth first 11

Breadth first 3

Random 16

Ngram-2 16.12

Ngram-3 15.77

Ngram-4 16

Interpolated3 16.15

Interpolated4 17.18

Interpolated5 17.67

Interpolated6 18.28

Interpolated7 17

Interpolated8 18.58

Interpolated9 18

Interpolated10 18.60

Figure 4.14(Length of test case Vs total test sequences in organizer)

Feasibility of Breadth first, Depth first and Random Approaches increases when N-gram

and interpolated N-gram approaches (INTERP) will increases.

0
5

10
15
20

Length of test case

4.4.5

 Feasibility Coverage Size of

test cases

Length of

test case

Depth first 22 90 20 11

Breadth first 23 98 51 3

Random 16 93 18 16

Ngram-2 13 99 16 16.12

Ngram-3 70 94 15 15.77

Ngram-4 80 98 15.63 16

Interpolated3 76 96 16.18 16.15

Interpolated4 30 99 15.61 17.18

Interpolated5 55 98 15.33 17.67

Interpolated6 81 34 15.27 18.28

Interpolated7 38 97 15.43 17

Interpolated8 66 99 15.19 18.58

Interpolated9 88 97 15.28 18

Interpolated10 40 99 15.1 18.60

Figure 4.15(Ratio between total test cases and total test sequences in organizer)

0

20

40

60

80

100

120

4.5 Feasibility with all test cases in the Task Freak software

 Feasibility(%) Coverage(%) Size of

test cases

Length of

 test case

Depth first 72 91 7.40 15.2

Breadth first 82 34 38 3.11

Random 98 94 6 33.

Ngram-2 98 100 7.38 39.68

Ngram-3 50 96 7 39.64

Ngram-4 92 100 7.73 34.15

Interpolated3 88 99 7.6 39.32 TaskFreak

Interpolated4 99 56 7.39 40.05

Interpolated5 90 98 7.28 38.31

Interpolated6 80 75 7.2 40.

Interpolated7 90 96 7.07 40.58

Interpolated8 34 76 7.4 40.45

Interpolated9 82 98 7.22 39

Interpolated10 94 76 7.1 39

4.5.1

 Feasibility (%)

Depth first 72

Breadth first 82

Random 98

Ngram-2 98

Ngram-3 50

Ngram-4 92

Interpolated3 88

Interpolated4 99

Interpolated5 90

Interpolated6 80

Interpolated7 90

Interpolated8 34

Interpolated9 82

Interpolated10 94

Figure 4.16(Feasibility Vs total test sequences in task freak)

Feasibility of Breadth first, Depth first increases and Random Approaches decreases

when N-gram and interpolated N-gram approaches (INTERP) increases.

0
20
40
60
80

100
120

Feasibility(%)

4.5.2

 Coverage(%)

Depth first 91

Breadth first 34

Random 94

Ngram-2 100

Ngram-3 96

Ngram-4 100

Interpolated3 99

Interpolated4 56

Interpolated5 98

Interpolated6 75

Interpolated7 96

Interpolated8 76

Interpolated9 98

Interpolated10 76

Figure 4.17(Coverage Vs total test sequences in task freak)

Here step by step feasibility of Breadth first, Depth first and Random approaches

increases when N-Gram value increase and simultaneously N-Gram approaches

(Interpolated) increases.

0
20
40
60
80

100
120

Coverage(%)

4.5.3

 Size of

test cases

Depth first 7.40

Breadth first 38

Random 6

Ngram-2 7.38

Ngram-3 7

Ngram-4 7.73

Interpolated3 7.6

Interpolated4 7.39

Interpolated5 7.28

Interpolated6 7.2

Interpolated7 7.07

Interpolated8 7.4

Interpolated9 7.22

Interpolated10 7.1

Figure 4.18(Size of test cases Vs total test sequences in task freak)

Feasibility of Breadth first, Depth first and Random Approaches more than N-gram and

interpolated N-gram approaches (INTERP), it will increase when decrease N-gram value

of n.

0
10
20
30
40

D
e

p
th

 f
ir

st

B
re
ad

th
…

R
an

d
o

m

N
gr

am
-2

N
gr

am
-3

N
gr

am
-4

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

In
te
rp
o
la
…

Size of test cases

4.5.4

 Length of

test case

DFV 15.2

Depth first 3.11

Breadth first 33.

Random 39.68

Ngram-2 39.64

Ngram-3 34.15

Ngram-4 39.32

Interpolated3 40.05

Interpolated4 38.31

Interpolated5 40.

Interpolated6 40.58

Interpolated7 40.45

Interpolated8 39

Interpolated9 39

Figure 4.19(Length of test cases Vs total test sequences in task freak)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (INTERP), it will decrease when increase N-gram value

of n. It show prediction increase when N-gram increase.

0
10
20
30
40
50

Length of test case

4.5.5

 Feasibility(%) Coverage(%) Size of

test cases

Length of

test case

Depth first 72 91 7.40 15.2

Breadth first 82 34 38 3.11

Random 98 94 6 33.

Ngram-2 98 100 7.38 39.68

Ngram-3 50 96 7 39.64

Ngram-4 92 100 7.73 34.15

Interpolated3 88 99 7.6 39.32

Interpolated4 99 56 7.39 40.05

Interpolated5 90 98 7.28 38.31

Interpolated6 80 75 7.2 40.

Interpolated7 90 96 7.07 40.58

Interpolated8 34 76 7.4 40.45

Interpolated9 82 98 7.22 39

Interpolated10 94 76 7.1 39

Figure 4.20(Ratio between total test case Vs total test sequences in organizer)

0

20

40

60

80

100

120

4.6 Feasibility with all test cases in the Hit List software

 Feasibility(%) Coverage

(%)

Size of

test cases

Length of

test case

Depth first 20 70 6 11

Breadth first 28 72 15 5.4

Random 7 75 3.6 32

Ngram-2 42 96 4 31.78

Ngram-3 70 66 3 35

Ngram-4 40 95 3.38 31 Hit List

Interpolated3 46 76 4.5 24

Interpolated4 50 76 3.98 24.20

Interpolated5 38 70 3.99 24.85

Interpolated6 60 54 3.65 26.58

Interpolated7 19 75 3.78 24.08

Interpolated8 60 56 3.82 25.1

Interpolated9 68 75 3.82 23.49

Interpolated10 93 50 3.67 25

4.6.1

 Feasibility(%)

Depth first 20

Breadth first 28

Random 7

Ngram-2 42

Ngram-3 70

Ngram-4 40

Interpolated3 46

Interpolated4 50

Interpolated5 38

Interpolated6 60

Interpolated7 19

Interpolated8 60

Interpolated9 68

Interpolated10 93

Figure 4.21(Feasibility Vs total test sequences in Hit list)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (INTERP), it will increase when increase N-gram value

of n. It show prediction increase when N-gram increase.

0
20
40
60
80

100

Feasibility(%)

4.6.2

 Coverage(%)

Depth first 70

Breadth first 72

Random 75

Ngram-2 96

Ngram-3 66

Ngram-4 95

Interpolated3 76

Interpolated4 76

Interpolated5 70

Interpolated6 54

Interpolated7 75

Interpolated8 56

Interpolated9 75

Interpolated10 50

Figure 4.22(Coverage Vs total test sequences in Hit list)

Feasibility of Breadth first, Depth first and Random Approaches remain same as N-gram

and interpolated N-gram approaches (INTERP).

0
20
40
60
80

100
120

Coverage(%)

4.6.3

 Size of

test cases

Depth first 6

Breadth first 15

Random 3.6

Ngram-2 4

Ngram-3 3

Ngram-4 3.38

Interpolated3 4.5

Interpolated4 3.98

Interpolated5 3.99

Interpolated6 3.65

Interpolated7 3.78

Interpolated8 3.82

Interpolated9 3.82

Interpolated10 3.67

Figure 4.23(Size of test cases Vs total test sequences in Hit list)

Feasibility of Breadth first, Depth first and Random Approaches more than N-gram and

interpolated N-gram approaches (INTERP), it will increase when decrease N-gram value

of n. It show prediction increase when N-gram decrease.

0
5

10
15
20

Size of test cases

4.6.4

 Length of

test case

Depth first 11

Breadth first 5.4

Random 32

Ngram-2 31.78

Ngram-3 35

Ngram-4 31

Interpolated3 24

Interpolated4 24.20

Interpolated5 24.85

Interpolated6 26.58

Interpolated7 24.08

Interpolated8 25.1

Interpolated9 23.49

Interpolated10 25

Figure 4.24(Length of test cases Vs total test sequences in Hit list)

Feasibility of Breadth first, Depth first and Random Approaches less than N-gram and

interpolated N-gram approaches (INTERP), it will increase when increase N-gram value

of n. It show prediction increase when N-gram increase.

0

10

20

30

40

D
e

p
th

 f
ir

st

B
re
ad

th
…

R
an

d
o

m

N
gr

am
-2

N
gr

am
-3

N
gr

am
-4

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

In
te
rp
o
la
t…

Length of test case

4.6.5

 Feasibility

(%)

Coverage

(%)

Size of

test cases

Lengthof

test case

Depth first 20 70 6 11

Breadth first 28 72 15 5.4

Random 7 75 3.6 32

Ngram-2 42 96 4 31.78

Ngram-3 70 66 3 35

Ngram-4 40 95 3.38 31

Interpolated3 46 76 4.5 24

Interpolated4 50 76 3.98 24.20

Interpolated5 38 70 3.99 24.85

Interpolated6 60 54 3.65 26.58

Interpolated7 19 75 3.78 24.08

Interpolated8 60 56 3.82 25.1

Interpolated9 68 75 3.82 23.49

Interpolated10 93 50 3.67 25

Figure 4.25(Ratio between total test cases Vs total test sequences in Hit list)

0

20

40

60

80

100

120

4.7 Comparison between Existing and Proposed Methodology

S.No. Existing Proposed

1. Graph based algorithm have used for

finding the path between test cases.

NLP algorithms use for finding

the n-grams like naive bayes,

which we have used.

2. Graph based algorithm used LIFO and

FIFO queue for implementing the test case

sequences ,but itis not reduce of test cases

N-gram statistics find the

deterministic path for test case

with the help of n gram.

3. The recursion used by randomized test case

finding algorithm ,Depth first and breadth

first algorithm with the help of LIFO and

FIFO data structure.

Using the probabilistic

approach and N-gram statistics.

4. Depth first and breadth first search iterative

check the source that's why increase the

complexity

Avoiding the generation of

infeasible solution by finding

the deterministic path with the

help

of N-gram statistics

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

In this thesis we have working on statics of N-gram because we resemble these two

problem one of prediction of word in sentence by using of previous words and second

one model based testing in which predict the path of next test case by using previous test

cases by n gram approaches.

We have check four metrics for analysis our results, these are coverage, feasibility, length

of test cases, number of test cases in one test suite. We have compare with previous

approach like depth first, Breadth first and random .N-gram approach given significance

difference from previous approaches.

In future we can use the N gram approach to web application and verification of

hardware because in both cases same problem as model based test cases , so we can

generalize our model.

REFERENCES

[1] A. Pretschner, M.Utting (2012) “A taxonomy of model based testing approaches”

[2] Andrews, J.H, Briand, L.C.Labiche, Y, (2012) “Is mutation an appropriate tool for testing

experiments? In: International Conference on Software Engineering.” , pp. 402–411. ACM, New

York, NY, USA

[3] Bernhard Rumpe , (2014) “ Executable Modelling with UML- A vision or a nightmare”.

 [4] ChristelBaier, Joost–Pieter Katoen, (2010) ” Invariant-based automatic testing of modern web

applications. IEEE Transactions on Software Engineering”, 38(1):35–53.

[5] Cyrilla Artho, Armin Biere, Martina Seide, (2913) “Model-Based Testing for verification Back-

ends”.

 [6] Cristran Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu,, Kaushik Sen, Willeam

Visser, (2011) “Symbolic execution for Software Testing in Practice”.

[7] Dias Neto, Vorobev, E., Lapschies, FZahlten, (2011) “Automated model-based testing with RT-

Tester.”, Tech. rep., Universit ̈t Bremen

[8] Dudekula Mohammad Rafi, Katem Reddy, Kiran Moses, Kai Petersen, (2012). “Benefits and

limitations of Automated Software Testing: Literature Review & practitioner survey”.

[9] El-Far, Whittaker, (2007) “Word sense disambiguation: A survey. ACM Computing Surveys”, v.

41, n. 2, p. 1–69.

[10] Gervazi, Zowghi, (2011) “Testing Web Applications by Modelling with FSMs. Software and

System Modelling”, Vol 4, n. 3, pages 326–345.

[11] H.Samih, H. Lguen, R. Bogushk, (2014) “Deriving Usage Model Variants for Model-Based

Testing”.

 [12] Julien Botella, Fabrice Bouquet, Jean Francois, Capuron, Franck Lebeau, Bruno Legard, Florence

Schadle, (2013) “Model-Based Testing of Cryptographic components lessons learned from

experience”.

 [13] Jurafsky, Martin, (2004) “Principles of model checking” . Cambridge, MA, USA: The MIT Press,.

975 p.

[14] KedianMu, ZhiJin, Ruqian Lu, Weiru Li, (2008).”Combining model-based and combinatorial

testing for effective test case generation. In Process of the ACM International Symposium on

Software Testing and Analysis (ISSTA”), pages 100–110.

[15] Mark Harman, Phil Mcminn, Muzammil Shahbaz, Shin Yoo (2013) “A comprehensive survey of

Trends in oracle For Software Testing”.

 [16] Mohamed Mussa, Ferhat Khandek, (2012) “Towards a Model Based Approach for Integration

Testing”.

 [17] Petra Brosch, U. Egly, Schastian Gabmeyer, Yerti Kappel, Martina Seisi, Hans Compits,

Magdalena Widl, Maneel Wimmer, (2012) “Towards scenario-based testing of UML Diagrams”

 [18] Sarma, Mall, (2005)“Using model checking to generate tests from specifications”.

[19] Utting, Legear, (2006)“Formal methods in industry: achievements, problems”, future. In:

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 28, Shanghai,

China. Proceedings... New York, NY, USA: ACM, 2006. P.761–768.

[20] YoavBergner, Stefan Droschler, Gerd Kortemeyer, Saif Rayyan, Daniel Seaton , (2012)

“Collaborative filtering Analysis of Student Response Data: Machine- Learning Item Response

Theory”

 [21] Ackerman, A.F, (2014) “An Introduction to Software engineering”,

 Software Engineering Education and Training (CSEE&T), 2014 IEEE 27th Conference on

 DOI: 10.1109/CSEET.2014.6816803.

[22] G Van Rossum, (1993) “An Introduction to python for UNIX/C programmers

 [23] RS Pressman, (2005) “Software engineering: a practitioner’s approach”

 [24] V Ambriola, G Tortora, (1993) “An Introduction to Software Architecture, Advances in Software

 Engineering and Knowledge Engineering”, Volume I

Websites

[25] http://en.wikipedia.org/wiki/Software_engineering

[26] http://en.wikipedia.org/wiki/Software_testing

[27] http://www.softwaretestinghelp.com/types-of-software-testing/

[28] http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf

[29] http://en.wikipedia.org/wiki/Model-based_testing

[30] http://www.tutorialspoint.com/python/

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6811097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6811097
http://dx.doi.org/10.1109/CSEET.2014.6816803
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_testing
http://www.softwaretestinghelp.com/types-of-software-testing/
http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf
http://en.wikipedia.org/wiki/Model-based_testing
http://www.tutorialspoint.com/python/

