ENHANCEMENT IN THE EFFICIENCY OF
REGRESSION TESTING TECHNIQUE

A Dissertation submitted

By

Atul Kumar Pal
To
Department of computer science and engineering

In partial fulfillment of the Requirement for the
Award of the Degree of

Master of Technology in computer science

Under the guidance
of

Mr. Makul Mahajan
(Assistant Professor)

(May 2015)

PAC FORM

Mo, [Lrs BLLE Bt Je

DISSERTATION TOPIC APPROVAL PERFORMA

afthe Student: &“‘Lﬁﬁﬂw thmumNo..)..Ou..E./..o .&d \

W (W ES RN Roll No AR

parsntssrton.JSa 006
Dullr\anon:.wn (¢

Lok

Research Experionce .iy. '
. . 7
SARIAGY f’ (plek from st of provided specialization areas by DAA)

Rantin 04k 0. Andocnce.. .. LLGKEAM 837
/A.g‘,m EMMVQI b edwﬁ;,up \.M . 7)
wl. TM*&y TR B s R TR e S

'ﬁh Araeae

Qualification: .

Stgnature of i;va‘bi?r $ 8

3 P i
NP R
‘\oC} Slgnature! Dater

& mloplcau\ of three proposed topics and putup forapproval Wefore Project Approval

roval will e retained by the ctudent and must he attached Inthe
(d/) anquﬂ .
“lede sM'u‘ [l " 4
Mofie Hacm Bl (|

Regeanck e r o4 ko /5.;;7(3
o b 29/) 14

kg f.fv‘ﬂ'

S ind o T
"

Abstract

The idea is to improve APSC algorithm by using adaptive genetic algorithm for test case ordering
in regression testing. Regression testing is an expensive process used to validate new software
versions. The cost of regression testing accumulates from the time and resources spent on running
the tests. To improve the cost-effectiveness of regression testing, typically two fundamentally
different approaches have been utilized: test case selection techniques or test case ordering. An
important issue in regression testing is how to select reusable test cases of original program for
modified program. One of the techniques to tackle this issue is called regression test selection
technique. The aim of this research is to test case ordering like this we can cover all statements of
the code as well we can give the priority to each test cases through which we can present the test-
case execution by providing the execution order to all test cases before programmer to start running
test cases. In this research basically we focused on test-case ordering and statement coverage by
Applying APSC (Average Percentage Statement Coverage) and GA (Genetic Algorithm) this is
extended work on APFD technique (Average Percentage Fault Detection). We take hundred test-
case of apache server and evaluate hundred test-cases in this research. We used java eclipse
environment for coding and run the test cases. First we apply APSC (Average Percentage of
statement coverage) technique for ordering test-cases as well measure the APSC. We got good
results but this technique not sufficient to cover maximum statement. So, we applied Genetic
Algorithm with APSC and run all test-cases until all statement not covered. We found the ordering
to each test cases from which we can found that on which order we can run the test cases as well
which test case will cover maximum statements. Our approach gives us better results than single
APSC technique.

CERTIFICATE

This is to certify that Atul Kumar Pal has completed M.Tech dissertation proposal titled
“ENHANCEMENT IN THE EFFICIENY OF REGRESSION TESTING
TECHNIQUE” under my guidance and supervision. To the best of my knowledge, the
present work is the result of his original investigation and study. No part of the dissertation
proposal has ever been submitted for any other degree or diploma. The dissertation proposal
is fit for submission and the partial fulfillment of the conditions for the award of M. Tech

Computer Science & Engineering.

Date: Makul Mahajan
UID: 14575

Acknowledgement

I would like to express the deepest appreciation to my Mentor Asst. Professor Mr. Makul
Mahajan, you have been a tremendous mentor for me. I would like to thank you for
encouraging my research work and for allowing me to grow as a research scientist. Your
advice on both research as well as on my career have been priceless. He has shown the
attitude and the substance of a genius he continually and persuasively conveyed a spirit of
adventure in regard to research and scholarship, and an excitement in regard to teaching.

Without his supervision and constant help this research would not have been possible.

DECLARATION

| hereby declare that the dissertation entitled, “ENHANCEMENT IN THE

EFFICIENY OF REGRESSION TESTING TECHNIQUE ” submitted for the M.Tech
Degree is entirely my original work and all ideas and references have been duly

acknowledged. It does not contain any work for the award of any other degree or diploma.

Atul kumar Pal
10810621

Date :

Table of Contents

Page No

CHAPTER 1: INTRODUCTION. ..ottt seenenn s 8
1.1 Classification of Testing TECANIQUEccveiveiiieieiieie e 10
1.1.1 Static and DYNAMIC TESINGeeveruiiieeieieieie et 10

1.2 Black box VS White BOX TESHING ...ccvveieiieiiieieeie ettt st 11
1.3 Manual and Automated TeSHING.......ccveieiiieiieie e 12
1.4 Activities Take Place in Software MaintenancCeccocuveeeerereneneseseseseeeenee e, 12
1.5 Test-Case Prioritization.ouinieiei e 12
1.5.1 General Test-Case Prioritization..............cooeiuiiiiiiiiei e, 13

1.5.2 AdaptiVe PrOCESS. ...ttt et 14

1.6 Genetic AIQOrItNMS.o 14
1.6.1 Elements of Genetic Algorithms......... ..., 15
CHAPTER 2: ReVIeW Of LITEIratUreccveieiieiiee e 16
CHAPTER 3: PreSeNt WOFK......ccoieiiiiiie ittt st 23
3.1 Problem FOrmMUILIONooiiiiiiee e 23
3.2 Problem Objective of the STUAY ... 24
3.3 Research Methodologycccieiiiiiiieee e 25
3.3.1 Adaptive APPIOACHccviiiice et e 29

3.3.2 PAreNt GENEIALION.ocuiiiiiiiitieieeieeie ettt sttt ne e e nee e 31

G T O (01 0= RSP TROTRTPP 32

KR 0 1] - [o USSR 33

3.3.5 IMEBASUIE APSC ...t 34

3.3.6 EXECULION THMEeiuiiiiiiitieie ettt sttt .35
CHAPTER 4: ReSUlts and DISCUSSIONScccueiieriiiieiiieiesie et sie e snes 36
CHAPTER 5: Conclusion and FULUIE SCOPEcvvierieiiiiiiisiesiieeeie e 49
CHAPTER 6: REIEIENCEScviiiieiieeie ettt ae e ste e e esreeneanes 50
(4 0 VAN el I =Y o A AN o] o T o | PRSPPSO 51

List of Table

Table No. Page No.
Table 4.1 Adaptive Approach by different p, g factor value.oo 35
Table 4.2 Adaptive Genetic hybrid Approach by different p, q factor value................ 46

List of Figures

Figure No. Page No.
Figure 1.1: Activities Take Place During Software Maintenance and Regression Testing....12
Figure 2.1: Overview of the Reusable Constraint APProach............cccceevreneienininineienene. 16
Figure 2.2: Methodology of Control Call Graph Proposed Approach............ccocceovvveveiiennene. 17
Figure 2.3: Overview of the Clustering APProach...........ccccocceeveieiieiiese e 18
Figure2.4: Comparison between Test case prioritization approach and adaptive approach....19
Figure 3.1: Flow chart to reach the problem in researchccooooeiiiiciiinnccne 25
Figure 3.2: Algorithm1 (Adaptive Genetic Hybrid Algorithm)............................oel. 27
Figure 3.3: Flow Chart of our Proposed Approach................ccooiiiiiiiiiiiiiiiiiin 28
Figure 3.4: Random Parent Selection Algorithm. ... 31
Figure 3.5: Algorithm 3 CroSS OVENouinie it 32
Figure 3.6: EXample 0f CrosS OVEL.ouiirie i e, 33
Figure 3.7: Example of MULatioN..........oooviiiiii e 33
Figure 3.8: Algorithm 4 Mutation Algorithm............o 34
Figure 4.1: Graph of APSC according to Different Q values in Adaptive Approach.........37
Figure 4.2: Graph of Execution Time according to Different Q values in Adaptive

ADPIOACN . .o e 37
Figure 4.3: Snapshot of Adaptive Approachatvalueg=0and p=1....................cooeneen. 38
Figure 4.4: Snapshot of Adaptive Approach at value g=0.20 and p=0.80........................ 39
Figure 4.5: Snapshot of Adaptive Approach at value q=0.40 and p=0.60........................ 40
Figure 4.6: Snapshot of Adaptive Approach at value g=0.60 and p=0.40........................ 41
Figure 4.7: Snapshot of Adaptive Approach at value g=0.80 and p=0.60. 42
Figure 4.8: Snapshot of Adaptive Approach at value g=1.00 and p=0.00........................ 43
Figure 4.9: Snapshot of our proposed Approach at value g=0.00 and p=1.00.................. 44
Figure 4.10: Snapshot of our proposed Approach at value g=0.20 and p=0.80................ 44
Figure 4.11: Snapshot of our proposed Approach at value g=0.40 and p=0.60................. 45
Figure 4.12: Snapshot of our proposed Approach at value g=0.60 and p=0.40................. 45
Figure 4.13: Snapshot of our proposed Approach at value q=0.80 and p=0.20................. 46

Figure 4.14: Graph of APSC according to Different Q values in proposed Approach...... 47
Figure 4.15: Graph of Execution Time according to Different Q values in Proposed

A PPIOACN . . 47
Figure 4.16: APSC Comparison of Adaptive and proposed Approach........................... 48

Figure 4.17: Comparison of Execution Time among Adaptive and Proposed Approach......48

Chapter 1
INTRODUCTION

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software .It is also defined as a systematic
approach to the analysis, design, assessment, implementation, testing, maintenance and
reengineering of software .Software testing is an important activity in software development.
It recognizes defects and problems, and evaluates and improves product quality. Software
testing has been a serious research topic since the late 1960s. Software testing may represent
more than 40%-60% of a software development budget. Moreover, approximately 50% of the
elapsed time is expended in testing software being developed. Software maintenance refers to
the modifications of software after delivery. Other terms suggested for maintenance are
software support, software renovation, continuation engineering and software evolution [9]
At the point when building up a product framework, it is imperative that the obliged level of
value is attained to. Indeed, even little lapses in the framework can be lamentable and
excessive to right after the item has officially sent. In this way, testing is an imperative
perspective in the item advancement task of programming framework. To discover blames
and issues in the item outline as right on time as would be prudent, trying is done in
numerous stages. Software Testing Play an important role in assuring the software quality of
the system. However many research papers proved and state that more than half of cost in
software is used in testing and maintenance of the software. So many researchers already had
done a lot research in to reducing the cost of software testing. But as well we have need to
take care of their will be no effect on the quality while we apply many approach in reducing
the cost of testing ex: we can detect fault properly, we can cover overall statements of the
code, we can provide ordering to each test case in which sequence we run test case that we
cover all statements of the code.

While this exploration has gained critical ground in relapse testing regions, one imperative
issue has been unnoticed. As frameworks develop, the sorts of support exercises that are

connected to them change. Contrasts between forms can include diverse sums and sorts of

9

code adjustments, and these progressions can influence the expenses and advantages of
relapse testing methods in distinctive ways. In this way, there may be no single relapse
testing system that is the most practical procedure to use on every variant. For example, as
we saw from our study, Test-case requesting procedure that works best changes crosswise
over forms. In this research we focused on Adaptive approach and extend this approach by
applying Genetic Algorithms through this approach we found that we got better result of
APSC then existing approaches. The adaptive test-case ordering approach computes the
fault-detection capability of each test case based on the faulty potential (which measures to
what extent a statement is likely to contain faults) of its executed statements. During
regression testing, as soon as a selected test case finishes running, the adaptive approach
modifies the faulty potential of all the statements executed by this test case based on its
output, and then modifies the fault detection capability of all unselected test cases. The
adaptive approach selects a test case with the largest fault-detection capability and
programmers run the selected test case. The preceding process repeats until all the test cases
are selected and run. Generally speaking, the adaptive approach schedules test cases and
executes test cases simultaneously. This is also the main difference between the adaptive

approach and existing test-case prioritization approaches.

A large software system is usually divided into many subsystems, and a subsystem is further
divided into smaller modules. Software testing can then be separated into four phases:
1.Unit/Module Testing,

2. Integration Testing,

3. System Testing and

4. Acceptance Testing.

As programming advancement includes changes to the code as an aftereffect of mistakes, or
new usefulness being included, experience has demonstrated that these alterations can bring
about beforehand living up to expectations usefulness to come up short. To check
programming's trustworthiness against this sort of surprising deficiencies, relapse testing is
used. Relapse testing can be finished on each of the four aforementioned testing stages, and
is in a perfect world performed each time code is changed or utilized as a part of the new

environment. However, relapse testing is an immoderate methodology used to approve new

10

programming forms. The expense of relapse testing gathers from time and assets spent on
running the tests. Case in point, it can take up to seven weeks to run the whole test suite
produced for a certain piece of a product comprising of 20,000 lines of code. It has been
evaluated that relapse testing may represent just about one-a large portion of the expense of
the general programming upkeep.

Regression testing is lavish however a key movement in programming upkeep. Relapse
testing endeavors to approve adjusted programming and guarantee that the changed parts of
the system don't present startling lapses. The time used for regression testing can be assumed
approximately half of the software maintenance activities. Improvements in the regression
testing process will help to lower the elapsed time and the expenses of making changes to
software.[22]

1.1 Classifications of Testing Techniques
The classifications of testing techniques are divided into three parts. These are:
1. Static and dynamic testing
2. Black-box and white-box testing

3. Manual and automated testing

1.1.1 Static and dynamic testing

1.1.1.1 Static Testing

Static testing does not involve actual program execution. Usually, the developer who wrote
the code uses this type of testing in isolation. Static testing is mostly used in requirements,
design and coding phases. For instance, in static testing, specifications are compared with
each other to verify that errors have not been introduced during the process.

1.1.1.2 Dynamic Testing
Dynamic testing is a process of software execution on some test cases and examining the
results to check whether it operated as expected . It is also the process to confirm that the

software functions according to its specification.

11

1.2 Black-box vs White-box Testing
1.2.1 Black Box Testing

Black-box testing expect the product as a black box with no learning of interior execution.
Experiments got from the project detail are called discovery strategies. In addition, black-box
testing techniques are sometimes referred as functional or specification-based testing. The
only information that is used in the functional approach is the specification of the program.
There are two distinct advantages of functional based testing. First, they are independent of
how the program is implemented, so the test cases will not be effected if the implementation
changes. Second, the development of test cases can follow in parallel with the
implementation. This can reduce the overall project development time. On the other hand,
functional test cases usually face two problems. Firstly, there can be significant redundancies
amongst test cases. Secondly, some parts of the tested software may not be tested by
functional test cases because the testers do not know the real code of that software. To
enhance the expense adequacy of relapse testing, ordinarily two on a very basic level diverse
methodologies have been used: test determination strategies or test computerization. By and
large, test determination procedures mean to diminish the quantity of tests to run in view of
code-assessment (e.g. discovering un-introduced variables). Numerous studies have been
made identified with test determination strategies. In the vast majority of the studies, new
calculations are created intending to investigate the code and identify the dangerous
territories of the program more viably than some time recently. Furthermore, one work
proposes a test choice procedure that means to organize experiments taking into account
hazard examination. This strategy assesses the danger of an experiment by utilizing

information of the current slips and their expenses.

1.2.2 White Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing,
and structural testing) is a technique for testing programming that tests inside structures or
workings of an application, instead of its usefulness (i.e. discovery testing). In white-box

testing an inner viewpoint of the framework, and also programming aptitudes, are utilized to

12

plan experiments. The analyzer picks inputs to practice ways through the code and focus the

fitting yields.
1.3 Manual and Automated Testing

Manual software testing is the procedure of testing software that is conceded out by an
individual or group. Manual software testing uses additional time and labor than automated
testing. Automated software testing is a procedure of making test scripts, which can then be
run consequently, tediously through a few cycles. Robotized programming testing is
additional time productive.

1.4 Activities take place in Software Maintenance

Despite the fact that regression testing is typically connected with framework testing after a
code change, relapse testing can be done at unit, reconciliation or framework testing levels.
The grouping of exercises that happen amid the upkeep stage after the arrival of a product is

indicated in Figure 1.

Unresolved
issues

a-oiware Change uﬂ-d& Resolution Regression Mew software
release fE&d-Gdl requinemems modrﬁcaums testing testing version release

- Riagression _
BITors -

Figure 1.1: Activities take place during software maintenance and Regression Testing[21].

The figurel demonstrates that after programming is discharged, the disappointment reports
and the change demands for the product are assembled, and the product is adjusted to roll out
important improvements. Determination tests are completed to confirm the straightforwardly
adjusted parts of the code, while relapse experiments are done to test the unaltered parts of
the code that may be influenced by the code change. After the testing is finished, the new

form of the product is discharged, which then experiences a comparative cycle [24].

13

1.5 Test-Case Prioritization

Contingent upon whether the produced organized test suite is general for all the altered
variants of P or its particular changed rendition P’, Rothermel et al. [26] partitioned the
current experiment prioritization approaches into two classifications: general experiment
prioritization methodologies and variant particular experiment prioritization approaches. We
assemble the current experiment prioritization approaches into these two classes and quickly

audit the methodologies of every test cases.

1.5.1 General Test-Case Prioritization

Most broad experiment prioritization methodologies plan the request of experiments taking
into account some basic scope (e.g., explanation scope and branch scope) of experiments on
the past system. To assess the viability of experiment prioritization on different basic scope,
Rothermel et al. [6], [7] led an exact study contrasting a few methodologies on proclamation
scope, branch scope, and approximated shortcoming uncovering potential. Besides, Elbaum
et al. [6] led a few a progression of exact studies to examine other examination inquiries, for
example, the viability of fine granularity and coarse granularity experiment prioritization
approaches. Later, Jones and Harrold proposed changed condition/decision extension
(abbreviated as MC/DC) based investigation prioritization approach.MC/DC is a stricter type
of branch scope and consequently the experiment prioritization methodology in view of
MC/DC is normal and has been assessed to be successful. As the previous methodologies
overlooked imperatives (e.g., time and asset limitations) in genuine programming
improvement, numerous experiment prioritization approaches have been proposed by
considering as far as possible. As of late, Bo et al. proposed a versatile irregular experiment
prioritization, which chooses experiments by computing the separation between chose
experiments and staying unselected experiments in view of their auxiliary scope. Their
methodology is near to the extra approach, and some of the time is measurably equivalent to
the extra approach. As the aggregate and extra methodologies are two ordinary reciprocal
experiment prioritization approaches, Zhang et al. presented models to bring together the
aggregate methodology and extra approach and afterward produces a range of experiment
prioritization approaches. Our methodology is like their methodology, since both of the two
methodologies adjust the weights of unselected experiments amid experiment prioritization

in view of the most recent chose experiment. In any case, their methodology changes the

14

weight in light of the scope of the most recent select experiment on the past system, while
our methodology alters the weight taking into account the yield of the most recent chose

experiment on the current project.[3]

1.5.2 Adaptive Process

Generally speaking, most existing test-case prioritization approaches schedule the execution
order of test cases based on the execution information of the previous program, which occurs
before running test cases on the current program. In the application of the existing test case
ordering approaches, test-case prioritization and test-case execution are two separated
phrases and test-case prioritization occurs before test-case execution. Moreover, the existing
test-case prioritization approaches give the complete execution order of test cases all at once.
Therefore, although the execution information of the previous program may have much
difference from that of the current program, the existing test-case ordering approaches

mainly rely on the former since the latter is not available.[3]

1.6 Genetic Algorithms

Genetic algorithms (GAs) were considered by John Holland in the 1960s and were produced
via Holland and his understudies and partners at the University of Michigan in the 1960s and
the 1970s. Conversely with advancement methods and developmental writing computer
programs, Holland's unique objective was not to outline calculations to take care of particular
issues, yet rather to formally mull over the sensation of modification as it happens in nature and
to generate routes in which the modules of characteristic modification may be smuggled into
PC frameworks. GA is a system for moving from one people of “chromosomes" (e.g.,
arrangement of ones and zeros, or "bits") to another masses by using a kind of "trademark
determination”" together with the genetics—inspired executives of mixture, change, and
inversion. Each chromosome contains "qualities™ (e.g., bits), each quality being an illustration
of a particular "allele” (e.g., 0 or 1). The determination executive picks those chromosomes in
the masses that will be allowed to reproduce, and all around the fitter chromosomes make more
family than the less fit one. Hybrid skills subparts of two chromosomes, generally emulating
natural recombination between two single—chromosome ("haploid") living beings; change

arbitrarily changes the allele estimations of a few areas in the chromosome; and reverse turns

15

around the request of an adjoining area of the chromosome, accordingly revamping the request
in which qualities are showed. (Here, as in a large portion of the GA writing, "hybrid" and

"recombination” will mean the same thing).[16]

1.6.1 Elements of Genetic Algorithms

It states out that there is no hard meaning of "genetic algorithm" acknowledged by all in the
Transformative calculation group that separates GAs from other developmental reckoning
strategies. Nonetheless, it can be said that most techniques called "GAs" have in any event
the accompanying components in like manner: populaces of chromosomes, determination as
per wellness, hybrid to deliver new posterity, and irregular transformation of new posterity
The chromosomes in a GA populace regularly take the type of bit strings. Every locus in the
chromosome has two conceivable alleles: 0 and 1. Every chromosome can be considered as a
point in the hunt space of competitor arrangements. The GA forms populaces of
chromosomes, progressively supplanting one such populace with another. The GA regularly
obliges a wellness work that allocates a score (wellness) to every chromosome in the current
populace. The wellness of a chromosome relies on upon how well that chromosome tackles

the current issue [16].

16

Chapter 2

Review of Literature

Md. Hossain et al.(2014) says those Companies that deliver web applications services need
to execute regular regression testing because companies often encounter various refuge
attacks and frequent feature update burdens from users. Typically, these applications require
regression testing procedures that require slight test effort because they have already been
arrayed and used in the field. Discuss the overview methodology process used in the research
In Figure 2.1, the database for version v0 at the bottom of the figure contains these two sets
of information. First, the test paths for the new version are generated. To do so, two
consecutive versions of PHP files are analyzed to identify program slices by identifying code
changes, and then, the test paths required for the new version are generated. Second, sets of
test paths (the previous and current versions) are compared to collect the same variables that
are used in both versions. Then, the constraints for those variables and the corresponding
input values that can be reused for the new paths are identified by analyzing variable

definitions and uses.

Griginall Test Case Generation
Source () Exooutabia
Prmm
8 Tost Exocution Tast
Engine Cases
Modrfad
Source (w1)
Humaric Rousania Aousabia
Constraints lnput ingut W s
Valuos
I dentification
PHE CHOCO inpat
Valuoss
Coomns fraint
HIR ot Shing Coolleot ons”
wiand v Constraims Resolution
HaMmFl Tast Faths
Tast Paths
Impact Amalysis Test Path
[E——— Generaton
{Program SH oss)

Tost History w0

Figure 2.1: Overview of Reusable Constraint Approach[14].

While research experiment results showed that this approach can be efficient in equivalent
the cost of regression testing by reducing the number of test paths essential for the modified

program, also learned that determining input constraints requires a lot of exertion[14].

17

Nicolas et al(2013), says no broad arrangement has been advanced since no relapse test
choice method could perhaps react enough to the intricacy of the issue and the considerable
differences in necessities and preconditions in programming frameworks and improvement
associations. The enhancement of the regression testing process aims mainly to reduce the
cost of maintenance. The developed tool (1) Identifies the Control Call Paths potentially
impacted by changes, (2)Selects, from an existing test suite, the appropriate test cases, and
(3) generates new JUnit test cases for control call paths that are not enclosed by existing tests
(new ones, or those whose structure has been modified after changes). In figure 2.2 the

methodology of process proposed in research is represented.

(Control call paths

[! _
compaction

Identification of I
impacted control

call paths

i .) T T
Classification of Generation of o I
test cases new test cases

Pand P' | Change impact M
analysis

(Criginal test suite

Figure 2.2: Methodology of the Controll call Graph proposed approach[18]

Along these lines, the methodology underpins an incremental redesign of the test suite. The
chose JUnit experiments, including the new ones, are naturally implemented. Three solid
contextual investigations are accounted for to give confirmation of the practicality of the

methodology and its advantages regarding lessening of relapse testing exertion [18].

Md. Junaid Arafeen(2013) says consolidating prerequisites data into the current testing
practice could help programming specialists recognize the wellspring of deserts all the more
effortlessly, approve the item against necessities, and keep up programming items in a
comprehensive manner. Exploration research whether the prerequisites based grouping
approach that consolidates customary code examination data can enhance the adequacy of
experiment prioritization strategies. To research the viability of proposed methodology,

performed an experimental study utilizing two Java programs with numerous forms and

18

necessities archives. Result results demonstrate that the utilization of prerequisites data amid
the experiment prioritization methodology can be valuable. In Figure 2.3 the overview of

approach is represented in research.

Figure 2.3: Overview of the Clustering Approach[15]

Their outcomes demonstrate that the necessities based grouping methodology which fuses
customary code examination data can enhance the viability of experiment prioritization
procedures, yet the outcomes differ by the group sizes. The outcomes propose that, by
gathering experiments connected with a comparative or related arrangement of necessities
[15].

Dan Hao et al.(2013) says that prioritization of test-case is to arrange the execution order of test
cases like that we can concentrate on some destinations like ahead of schedule flaw
identification in the code before execute the experiments. They connected the versatile
approach in existing experiment prioritization approach. The proposed methodology separate
the procedure of experiment prioritization and the execution transform by giving the execution
request to every single test case before run the experiments. As the implementation data of
adjusted code is not available for existing experiment prioritization these methodologies rely
on upon the past Program execution data before changes in the Program. To conquer this issue,
they show a multipurpose investigate prioritization approach, which chooses the
implementation request of experiments at the same time amid the execution of experiments.

The versatile methodology chooses experiments in light of their flaw identification ability,

19

which is computed in view of the produce of chose experiments. When an experiment is
chosen and runs, the deficiency recognition ability of every unselected experiment is changed
by yield of the most recent chose experiment. To assess their proposed methodology they
perform this methodology on eight C language Program and four java language Program.
Their experimental results prove the Adaptive approach is significantly better than the existing

test case prioritization. In figure 2.4: comparison of both approach is shown [3].

Execution Information of Execution Information of
the Previous Progrom the Previous Progmm

(_F_-_ Pricritizing Test Cnses _-_-_-) [l B Pricritizing Test Cnses _h___'_‘,l -

| Fricritized Test Suite |

____l _____

(,':_ Running Test Cnses _:b t::_ Running Test Case t -

(___—-'Trl;i?:;i-ilif‘ !tumﬁﬁe-’,"--___ Mo

e Al Tt Coses? o

—

ia) Existing Test Case by sudaptive Test Cose
Frioftizotion &ppronches Friontizotion &ppronch

Figure 2.4: Comparison between Test case prioritization approach and adaptive approach.[3]

Mithun Acharya(2012) says nowadays clients alter framework performs are getting to be
increasingly boundless acknowledged. Testing a configurable structure with every single possible
design is tremendously lavish and frequently unrealistic due substantial and complex coding. For
a private variant of a configurable structure, examining methodologies exist that select a subset of
setups from the full arrangement planetary for testing. Not with standing, when a configurable
structure deviations and grows, existing methodologies for relapse testing select all arrangements
that are utilized to test the old adaptations for testing the new form. As showed in the
investigations, retest-all methodology for relapse testing configurable frameworks ends up being
exceptionally excess. To address this repetition, Proposed a design choice methodology for
relapse testing. Formally, given two adaptations of a configurable framework, S (old) and S'
(new), and given an arrangement of designs CS for testing S, their methodology chooses a subset
CS' of CS for relapse testing S'. Their study comes about on two open source frameworks and a
vast modern structure demonstrate that, contrasted with the retest-all approach, the methodology

disposes of 15% to 60% of setups as repetitive. The proposed approach likewise spares 20% to

20

55% of the relapse testing time, while continue proceed with the same flaw location capacity and

code scope of the retest-all approach[13].

Prof. A. Ananda Rao(2011) says regression testing is an expensive and rapidly executed
maintenance activity used to revalidate the modified software. Any lessening in the expense
of relapse testing would help to decrease the product upkeep cost. In the exploration
proposed a way to deal with test suite lessening for relapse testing in discovery environment.
As per exploration given methodology has not been utilized before as a part of relapse
Testing. The decreased relapse test suite has the same bug discovering capacity and spreads
the same usefulness as the first relapse test suite. The proposed methodology is connected on
four constant contextual investigations which is done in the examination work. Exploration
found that the decrease in expense of relapse testing for every relapse testing cycle is running
somewhere around 19.35 and 32.10 percent. Since relapse testing is done all the more often
in programming support stage, the general programming upkeep expense can be decreased

significantly by applying the proposed methodology [20].

Yu-Chi Huang et al.(2011) give brief history detail on test-case prioritization technique for
regression testing and applied Genetic Algorithms process to cover statement of the code .
They perceived that during testing, the experiment is a couple of data and expected yield, and
various experiments will be executed either successively or haphazardly. The procedures of
experiment prioritization generally timetable experiments for relapse testing in a request that
endeavors to expand the proficiency. In any case, the expense of experiments and the
strictness of shortcomings are generally shifted. In their paper, they propose a method of
expense aware experiment prioritization taking into account the utilization of past records.
They accumulate the past records from the most recent relapse testing and afterward propose
a hereditary calculation to choose the best request. Some very much requested analyses are
performed to assess the viability of our proposed system. Assessment results show that their
proposed methodology has enhanced the deficiency discovery adequacy. It can likewise been
discovered that organizing experiments in light of their authentic data can give high test
adequacy amid testing [27].

21

J. Offutt focus et al.(1995) focused on the test suite reduction technology. In exploration
attempt to forever disposing of experiments from the test suite so that the expense without
bounds relapse testing will be diminished and the extent of test suite can be controlled. Case in
point, shows a strategy to choose an agent set of experiments from a test suite which gives the
same scope as the entire unique test suite. The utilized of information stream procedure to
dissect the scope. The main distinguish experiments into three classes valuable, repetitive and
out of date, and after that kill the excess and old experiments in the test suite. The rest delegate
experiments supplant the first test suite. Also, accordingly, a conceivably littler test suite is
created [10].

R.Lewis et al.(1989) focus on the problem of test suite management. At whatever point
changes happen, a piece of the experiments will be chosen from the first experiments, a piece
of the experiments is outdated and need to be erased, and for the new usefulness, new
experiments ought to be included. Every one of these progressions ought to be overseen amid
the relapse testing procedure. Proposed a specific retesting instrument. The device has a test
library which stores the experiments and test information, and it would consequently get input
as to the effect of the progressions of programming, including a complete reanalysis of the
target framework and the extraction of reusable experiments from the current test library, and
the determination of a subset of test information to revalidate the given changes. In addition,
the device would give, if fundamental, proposals as to any extra tests that may be obliged to
practice the improvements or new information. The device will restore all the adjusted or new
experiments and information into the test library. At the point when the system is altered, by
and large the analyzers have two principle methodologies to test the adjusted project. One is
that select piece of the experiments from the first test suites keeping in mind the end goal to
lessen the expense. The other is to rerun all the first experiments which is known as retest-all

procedure. [22]

S.Elbaum et.al address the problem of the test case prioritization technology. The request
(organize) the experiments by specific measures. At that point in the relapse testing cycling, the
experiments will be utilized to test the changed system P' as per the request, so that the "better"

experiments can run first. The objective of the prioritization is to build the rate of deficiency

22

recognition (how rapidly the test suite can recognize the flaws amid the test process), or,
expand the rate of code scope (how rapidly the test suite can expand the scope of the project).
Case in point, let t1, t2, t3 be the three experiments. Likewise accept that t1 has the scope of
75%, t2 has the scope 25% and t3 has the scope of 50%. As indicated by the second objective,
the aftereffect of apply such innovation is to run the experiments in the request of t1,t3, t2.
Furthermore, likewise, as indicated by the first objective, the request of the three experiments

will rely on upon their capacity to uncover the flaw [23].

Hoffman et al.(1989) address the issue of test situations and robotization of the relapse testing
procedure. The objectives are to enhance framework quality and support costs through
deliberate relapse testing. In examination attempted to characterize a general relapse test
methodology and attempted to utilize scripts to robotize experiments and execution. For
instance, specialist characterizes the own test script dialect which can be utilized to portray the
experiments. At that point they utilize the test project originator PGMGEN to produces test
drivers in the C language[4].

23

Chapter 3
Present Work

The study of Regression Testing argues some of the conceivable future direction in the field
of regression testing techniques to improve its efficiency. This study state that maximum
researchers done lot of work on test suite minimization, Regression test selection (RTS),
control call graph techniques and test case prioritization. These all approaches used to reduce
cost and time consumed during regression testing.

The research on software testing never wear off from the software industries because all
software needs software testing before launched in the market. Without good testing,
software cannot be reliable for the uses for the users even the software developers cannot
give surety software will work efficiently without testing process done by testers.

Study state that these days overall software industries believe in updating of the software
products they release their software updating versions time to time and its very important for
them to survive in the industry and users also move on that products who release updating

regularly. However, it is supposed that there are extra zones that may be synergetic.

3.1 Problem Formulation

The existing test-case ordering approaches Dan Hao et al.[23] present an adaptive test-case
prioritization approach, which determines the implementation order of test cases concurrently
during the execution of test cases. In particular, the adaptive approach selects test cases based
on their fault detection capability, which is calculated based on the output of selected test
cases. As soon as a test case is selected and runs, the fault-detection capability of each
unselected test case is modified according to the output of the latest selected test case. The
adaptive approach is better than the additional approach on some subjects (e.g, replace and
schedule).

When we apply this approach by taking hundred apache server test cases in java. we found
that only 31 test cases cover near about 98 percent statements coverage but what about left
test cases how we provide them order that we can cover maximum statements, so to improve
this problem we applied Genetic Algorithm approach with adaptive approach on left test
cases only and we found that this Adaptive Genetic Algorithm is better than simple adaptive

approach we cover 99.6 percentage approx. statements cover by our proposed approach .

24

3.2 Objective of the Study
The Objective of this research to improve the efficiency of statement coverage by providing
test cases ordering before run the test cases. During Software Development 50% - 70% cost
included in software is only used in software maintenance and software testing in which
regression testing play a major role. Regression testing take long time during testing due to
large number of codes. So , if we able to improve any problem or increase the efficiency of
regression testing it will directly effect on the cost of regression testing. So, the goal of this
research to explore the technique and approaches used to increase the efficiency of regression
testing and by improving these methodology we can reduce the cost and time consumed during
regression testing.
In this research goal to enhancement in the efficiency of regression testing technique by test
case ordering like this we can cover maximum statements of the Programme . In this research ,
we proposed adaptive Genetic algorithm technique to improve the average percentage of
statement coverage by test case ordering.
We can achieve these goals in this research after study:

1. Improve Average Percentage of Statement Coverage.

2. Compared Execution time also of existing and proposed approach.

25

3.3 Research Methodology

In this research we proposed an Adaptive Genetic Algorithm approach to an enhancement in

the average percentage of statement coverage in test case ordering. We extend the research

done on adaptive test case prioritization in regression testing in figure 3.1: flow chart represent

how we able to reach that problem.

Literature Survey

A 4

\ 4

Software Engineering

\ 4

\ 4

Software Life Cycle Models

Software testing

Software Complexity metric and
Cost Estimation Models

[NO]

[YES]

> Select <

[NO]

Domain

Literature on various software testing

A 4

Regression Testing

A 4

Reuse test cases approach

A 4

Test Case Prioritization
Adaptive Approach

v

A 4

Control call graph techniques and
cluster prioritization approach

Problem: A genetic algorithm based
average percentage statement coverage
technique for Test Case Ordering

Figure 3.1: Flow chart to reach the problem in research.

26

Algorithm of Adaptive Genetic Hybrid proposed Approach

Input: Test Suite T
Output: Tyrearest(A test case which has largest fitness value in population of final generation).
APSC (Measure Adaptive Percentage of Statement Coverage)
Declaration:
Ts: represent the latest selected test case .
N : number of test cases
M : statements
P: population size .
G: number of generation.
Cp: Crossover Point.
Mp : Mutation Point.
Ltc : Left Test cases after Adaptive Approach ordering .
Adaptive Process :
1. Begin
for each testcasetinT.
calculate initial priority(t).
End for .
Select the test case (ts) with the largest priority in T.
Addtsto T’
T « T-{ts}.

Run ts.

© © N o g bk~ DN

While T is not empty do.

[EY
o

. ForeachtestcasetinT.

[EEN
[N

. Change priority(t) based on the output of ts.

. End for

. Select the test case(ts) with largest priority which cover statement.
.Addtsto T.

. T« T-{ts}.

. Runts.

e e T e o
o O~ W N

27

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

End while

Return Ltc : left test case from T those not cover statement.

Genetic Algorithm Process :

Begin :

Input: Ltc

P1 . generate population (Ltc,P,fl,fsl).
For i=1to g.

F1 < evaluateFitness (P;, t.,fl,fsl)

Pi+1 < addTwoBest(F;, P;)

For j=3to P.

Parent; «— RandomSelectParent(P;)
Parent, — RandomSelectParent(P;)
Childy,child; < CrossOver(Parent; , Parent,,C,)
Child; « Mutation(Child;, mp)
Child; < Mutation(Child,, mp)
Pi+1<— addChildren(Child;,childy)
Fg+1 < EvaluateFitness(Pg.1,tc,fl,fsl)
Treatest < SelectBest Child(Fg+1,Pg+1)
Return Tgyreatest

Measure APSC :

Cen*m (nLts)

No<«2*n

Si«—sum/c (sum=0)

S,1/(2*n)

Apsc—1-(51+Sy)

Apsc—Apsc*100

Return Apsc

Figure 3.2: Algorithm1 (Adaptive Genetic Hybrid Algorithm)

28

Flow Chart of our Proposed Approach

Execution Information of Previous Programme

Prioritizing Test Case

Test case 1

Running Test Case t Output of t

Complete all test case
run ? Assign Priority
to all test case .

Take Left Test cases as input in
Genetic Algorithm Process

\ 4

Parent Generation apply five generation
to find top five fitness from Ly,

\4
Cross Over Phase

v

Mutation Phase

A 4

Measure APSC

Compared APSC of Adaptive Approach with our
Adaptive Genetic Hybrid Approach: Our Approach
Result better than simple Adaptive Approach.

Figure 3.3 : Flow Chart of our Proposed Approach

29

Adaptive Genetic Algorithm Hybrid proposed test-case prioritization approach in this approach
we ordering the test case and find the average percentage of statement coverage for hundred
test cases in java . First we measure the APSC of adaptive approach and ordering the test case.
in adaptive approach we order the test case like until our statement not cover if test cases left or
we can say failure test cases those are unable to cover any statement its means the statement
coverage is not done perfectly . We take that Left test cases after applying adaptive approach
and perform genetic algorithm on these test case. In Genetic algorithm we apply three main
techniques to order the test case like this our APSC improved as compared to adaptive
approach. We apply these techniques in genetic algorithm to giving the order to each test case
1. Adaptive Approach

2. Parent Generation

3. Cross Over

4. Mutation

5. Measure APSC

6. Execution time

3.3.1 Adaptive Approach

In this Research Methodology, we first present the adaptive process of the existing test-case
prioritization approach by showing its basic difference with our proposed approach adaptive
genetic hybrid approach and then give the details of the adaptive genetic hybrid approach in
below sections. For ease of exhibition, we present the adaptive genetic hybrid test case
ordering approach in terms of statement coverage, which can also be implemented on other
adaptive approach also. In figure 8: the dark area of flow chart represent the adaptive approach
methodology the rest for flow chart is further methodology of Genetic algorithm. The overall
flowchart figure 8. Represent the our adaptive genetic hybrid approach methodology.

We take hundred apache server test cases Antloader package of test cases in java IDE Eclipse.

First we set each test case priority 1.
Priority (t) = 2 Potential(S) ----------- (1)

Where potential(s) represent how likely statement covered by the existing selected test case.

Potential(S) of any statement S in which scope [0,1].

30

r
If test case(t’) passed then,

Potential(s) , s is not executed by t’.
Potential(S) = < Potential(s)*q, s is executed by t’
If test case(t’) failed then,

9 Potential(s)*P , s is executed by t’
P and q are two non-negative constants whose values are between O and 1. In our
implementation process while all test case priority set 1 in initial than, we run all test case those
test case cover statement we provide “G” to that test case. Those test case gain maximum
number of G their priority must be high. so according to this process we found that in this
approach by running hundred test cases few test cases cover the statements on that bases we
calculate APSC of this approach.

The effect of passed/failed output on the Potential(s) of any statement s is measured by g/p in
the earlier equation. Moreover, when p=g=0, the adaptive approach becomes the additional
statement-coverage based test-case prioritization approach, whereas when p=g=1, the adaptive
approach becomes the total statement-coverage based test case ordering approach. That is, the
total or additional statement-coverage based test-case ordering approach can be viewed as an
instance of the adaptive approach. The existing research on test-case prioritization has fully
evaluated the effectiveness of the total approach and the additional approach. Although p and g
in the preceding equation are two independent variables, to facilitate evaluation of the proposed
adaptive approach, currently we assume p+q = 1 in this research and evaluate the effectiveness
of the adaptive approach by setting g=0, 0.2, 0.4, 0.6, 0.8, or 1,

Than we calculate APSC for adaptive approach by applying APSC formula .

APSC=1- TS1#+TS2t i, Tsm + 1/2*n

31

3.3.2 Parent Generation : This is the first step of genetic algorithm of parent selection we
apply this process only on the remaining test cases after adaptive approach for the selection of
five top parents we set priority to each test case according to the statement coverage we
calculate fitness In our proposed algorithm 1 Pg + 1, is produced, the fitness value of each
chromosome is determined on line 33 in Algorithm1 , and the chromosome whose fitness value
is the greatest is selected to be the test order. We select parent randomly Algorithm 2 show that

how parent selection process going on .

Algorithm 2: Random Parent Selection Algorithm

Input : P; the population of the i generation.

output : Parent chromosome selection

1. FitnessSum« calculate fitnessSum of chromosome(P;)
2. r— generate random number(FitnessSum)
3.forK=1toP

4. r— r-fitof Chromosomey

5.ifr<0

6. Break

7. Parent<— chromosomey

8. Return Parent

Figure 3.4: Random Parent Selection Algorithm.

As the above Figure 3.4 Algorithm 2 states that first we input the population of the rest of test
cases after adaptive approach inlst generation we apply five generation in our experiment.
According to above algorithm first we take randomly chromosomes. We take two highest
priority test cases from previous adaptive approach as Parentl and Parent 2. While we calculate
the fitness and the highest fitness test case become the next parents of nest generation. Like this
process we got five highest parents with high fitness value. After performing first generation
we not consider that highest parent fitness in second generation. Same like this after getting
second highest fitness value we don’t consider that test case in third so on until we not
complete all process for each test case.

Fitness =1 - TS1H+TSo Foeeeei e, Tsm + 1/2*n

3.3.3 Cross Over

After completion of first step of Genetic algorithm we get two Parents of high fitness value
now we will perform cross over operation in our proposed approach. Crossover is ordinarily a
recombination transform that consolidates the portions of one chromosome with the sections of
another. The new chromosomes framed by hybrid acquire a few qualities from both folks. The
calculation of the hybrid administrator is given in Fig. 3.5. The calculation is the single point
hybrid. In the first place, an arbitrary number, r, which extends from 0 to 100, is created on line
1. On the off chance that r is not exactly the hybrid likelihood, cp, the recombination procedure
will start on line 3. Something else, the kid is the copy of the guardian. At the point when
hybrid is connected, the calculation chooses hybrid focuses, p1 and p2, for parentl and parent2,
separately, on lines 3 and 4. On lines 5 and 6, the subsequences before the hybrid point are then
duplicated from both folks. The joined capacity on lines 7 and 8 creates a tyke by consolidating
the duplicated subsequence of one guardian with the qualities of another guardian that are not

in the replicated subseguence.

Input: Parent; : selective Chromosome from population
Parent;, : Another Selective chromosome from population
C,: CrossOver Point
Output: Children;, Children; (two new chromosomes produced by algorithm)
. n— generateRandomNumber(100)
ifn<C,
. P1 < select Crosspoint(Parent;)
. P« select CrossPoint(Parenty)
. Segment; < fragment(Py,Parent;)
. Segment; < fragment(P,,Parent,)

~N o oA oW N =

. children;«— join(Segment; , Parent,)
8. children,« join(Segment, Parent;)
9. else

10. children;«— Parent;

11. childreny«— Parent,

12. Return children; children,

Figure 3.5: Algorithm 3 Cross over

33

Chromosome A crossover Point

| 6 7 3 4 5

Chromosome B

3 5 |7 4 |6

Crossover Point

Chromosome B

Childi: | g|7(3 5|4 [« 617 | *|3|ls|7|4

Childz: 3TsT7161a |« 3lsl7] T 16 4
A
Chromosome A

Figure 3.6: Example of Cross Over.

For example, considering the chromosomes in Fig 3.6 demonstrates their hybrid process. The
hybrid purposes of An and B are at positions 2 and 3, individually. Child1 gets the subsequence
before the hybrid point from An, and the rest from B. Since 6 and 7, which are qualities of B,
are additionally in the subsequence duplicated from A, they are not added to the childl. So
also, child2 acquires the subsequence before the hybrid point from B, and the qualities that are

not in that subsequence from A.
3.3.4 Mutation

Mutation is performed on the chromosomes got by the hybrid process First, the transformation
(childrenc, mp) creates a number, n, which goes from 0 to 100 on line 1. On the off chance that
n is not exactly the change likelihood, mp, the calculation chooses two qualities of childrenc
arbitrarily and swap their positions, as demonstrated in Fig.3.7. Something else, the

transformation administrator would not be connected.

Before Mutation

Child;: +— 6/ 7|3 |5 |4
Mg‘l Mp;, ¢—¢
Child:e— 65]3] 7] 4 ¢ 6| 7]3|5]4
After Mutation Swap Gene 7 and 5

Figure 3.7 : Example of Mutation

34

Algorithm 4: Mutation
Input: Children, chromosome produced by crossover .

M, Mutation Point
Output: Children,, chromosome produced by algorithm
1. N« GenerateRandomNumber(100)
2. if N<M,
3. Mp:, Mp; «—select Mutation Points
4.Childreny, < SwapPosition(Mp; . Mpy, Children,)
5. else
6.Childrenmy«— Childreng
7. Return Childrenp,

Figure 3.8: Algorithm 4 Mutation Algorithm

In Mutation phase of genetic algorithm paper we take both children chromosome generated by
the crossover operator. We show in figure 3.8, how the children change after applying
mutation operator. First we take children; and randomly generate number for two different
mutation points . as in example Mp1 ang Mp2 indicate gene 7 and 5 in above example. We
simply swap these genes and got childreny; . ang Childrenn, . same process going on for each
chromosomes we received after cross over operator/phase . The mutation (childc, my) also

gives those test cases a chance to get a higher priority for test case ordering .

3.3.5 Measure APSC
The fifth step of our methodology is measuring the average percentage of statement coverage
which will show our experimental work, the result of APSC represent how our approach is
better than adaptive approach. The general formula to measure APSC.

APSC=1- TS1HTSpFeieiiiiiiiiiiiiiiieeeae Tsm + 1/2*n

n*m

but in our experimental coding we apply this formula like .
APSC =1-sum/c + 1/ 2*n

Where , n=number of test case (L left test cases after adaptive approach)

35

M= statements

C=n*m

S1=sum/n*m , sum/C .

S, =1/(2*n)
APSC=1-S; +S;.

We take all high order test cases to evaluate the apsc for our proposed approach, we tak
summation of each test-case priority calculate by our algorithm 1. On the basis of that prority
reading we measure APSC and our results shows that our proposed approach is better than the
previous adaptive approach. We are able to increase the efficiency of average percentage of

statement coverage. Our results show in graphical form in the chapter Result and Analysis.

3.3.6 Execution time

The last parameter measures in this research is execution time .we calculate how much
execution time should be taken by existing approach and proposed approach .and we found that
execution time is high in our proposed approach because this is generally clear as well it should
take more time than adaptive approach because we execute adaptive approach as well genetic
algorithm process in which five parent generation , crossover and mutation operators
processing in our proposed approach .we also found that execution time depend on the system
configuration also . while we process this approach on high configuration system it take less
time while we process on law configuration system it take a lot of time . so we conclude this
parameter in our future scope we can improve APSC as well time execution if we apply any

other approach/technique further .

36

Chapter 4
Result and Discussion

In this chapter we will discuss about the result obtained by us of both existing approach as well
our proposed approach. In existing approach of adaptive test-case prioritization we calculate
APSC (average percentage of statement coverage) and execution time also by vary the g and p
value .

The existing research on test-case prioritization has fully evaluated the effectiveness of the total
approach and the additional approach. Although p and g in the preceding equation are two
independent variables, to facilitate evaluation of the proposed adaptive approach, currently we
assume p+q = 1 in this research we evaluate the effectiveness of the adaptive approach and
proposed approach by setting q=0, 0.2, 0.4, 0.6, 0.8, and 1 . We focus on Q factor value just
because the g factor value multiply only when test case is pass. Same like that we calculate
the execution time for the adaptive approach and proposed approach by setting q=0, 0.2, 0.4,
0.6,0.8,and 1.

Table 4.1 Adaptive Approach by different p, g factor value.

Q p APSC Execution
time
0 1 97.6097052 1343 ms
0.2 0.8 98.6940925 1047 ms
0.4 0.6 98.6645584 859 ms
0.6 0.4 98.6645584 969 ms
0.8 0.2 98.6645584 1214 ms
1 0 98.61392425 1191 ms

As it shown in table number 4.1 while we take different p, q factor values we get different
average percentage of statement coverage and execution time. We found that the highest APSC
is at g=0.2, p=0.8 value while the minimum time taken at g=0.4, p=0.6. so from this table we
analyses we can change the factor value according to our need in which we have need to focus.
If our focus on to statement coverage we take best value of p, g in which we get highest APSC.

While we have needed to focus on execution time we will select p, g value according to the

37

low executions time value.

APSC Result of Adaptive Approach

Different q factor value

100.0
a9.5

99.0
98.69409205,664555898.66455898.66455802.513024

08.5
98.0
B7.609705
g97.5

a97.0

APSC (in Percentage)

96.5

06.0

05.5

895.0
0.00 0.20 0.40 0.60 0.80 1.00

Values of Q factor

Figure 4.1: Graph of APSC according to Different Q values in Adaptive Approach.

Execution time of Adaptive Approach
Different q factor value

1500
1450
1400
1350 (1343
1300
1250 1214

1200 1
1150
1100
1050
1000
950

Execution Time (in milliSeconds)

850

0.00 0.20 0.40 0.60 0.80 1.00
Values of Q factor

Figure 4.2: Graph of Execution Time according to Different Q values in Adaptive Approach

38

Snapshots of Adaptive Approach Results

Test 1 : ExecuteJavaTest.java(t47) with priority 187 Test 28 : GetTest.java(t54) with priority 0.0

Test 2 : DispatchTaskTest.java(tl) with priority 35.0 Test 29 : DynamicTest.java(t57) with priority 0.0

Test 3 : EscapeUnicodeTest.java(t10) with priority 0.0 Test 30 : ConcatTest.java(t44) with priority 0.0

Test 4 : DirSetTest.java(t92) with priority 0.0 Test 31 : ProjectHelperRepositoryTest.java(t8) with priority 0.0
Test 5 : PropertyTest.java(t22) with priority 0.0 Test 32 : ConcatFilterTest.java(t16) with priority 0.0

Test 6 : FilterTest.java(t37) with priority 0.0 Test 33 : UntarTest.java(t30) with priority 0.0

Test 7 : JAXPUtilsTest.java(t74) with priority 0.0 Test 34 : LineOrientedOutputStreamTest.java(t83) with priority 0.0
Test 8 : SQLExecTest.java(t32) with priority 0.0 Test 35 : ImportTest.java(t55) with priority 0.0

Test 9 : BZip2Test.java(t52) with priority 0.0 Test 36 : PropertyFileCLITest.java(t9) with priority 0.0

Test 10 : DirectoryScannerTest.java(t2) with priority 0.0 Test 37 : TStampTest.java(t63) with priority 0.0

Test 11 : LoadFileTest.java(t20) with priority 0.0 Test 38 : UnzipTest.java(t29) with priority 0.0

Test 12 : PreSetDefTest.java(t23) with priority 0.0 Test 39 : StripJavaCommentsTest.java(t12) with priority 0.0

Test 13 : ReplaceTokensTest.java(t17) with priority 0.0 Test 40 : TypeAdapterTest.java(t33) with priority 0.0
Test 14 : ManifestClassPathTest.java(t59) with priority 0.0 Test 41 : GzipTest.java(t41l) with priority 0.0
Test 15 : ProjectComponentTest.java(t7) with priority 8.0 Test 42 : JarTest.java(t28) with priority 0.0

Test 16 : MoveTest.java(t60) with priority 0.0 Test 43 : FlexIntegerTest.java(t90) with priority 0.0

Test 17 : AvailableTest.java(t46) with priority 0.0 Test 44 : ReplaceTest.java(t18) with priority 0.0

Test 18 : InputTest.java(t45) with priority 0.0 Test 45 : DOMElementWriterTest.java(t78) with priority 0.0
Test 19 : NiceTest.java(t61) with priority 0.0 Test 46 : AntClassLoaderPerformance.java(t@) with priority 0.0
Test 20 : ZipExtraFieldTest.java(t53) with priority 0.0 Test 47 : ImmutableTest.java(t4) with priority 0.0

Test 21 : FilelistTest.java(t84) with priority 0.0 Test 48 : XMLFragmentTest.java(t76) with priority 0.0

Test 22 : StringUtilsTest.java(t82) with priority 0.0 Test 49 : DeweyDecimalTest.java(t79) with priority 0.0
Test 23 : ManifestTest.java(t56) with priority 0.0 Test 50 : WarTest.java(t48) with priority 0.0

Test 24 : AntStructureTest.java(t34) with priority 0.0 Test 51 : GlobPatternMapperTest.java(t67) with priority 0.0
Test 25 : TokenFilterTest.java(t1l) with priority 0.0 Test 52 : IsFileSelected.java(t95) with priority 0.0

Test 26 : FileSetTest.java(t86) with priority 0.0 Test 53 : PackageNameMapperTest.java(t68) with priority 0.0
Test 27 : FileUtilsTest.java(t72) with priority 0.0 Test 54 : MkdirTest.java(t25) with prioritv 0.0

Test 55 : IncludeTesE.ja\‘/a(té) with ppiopj:[y 0.0 Test 82 : LazyFileQutputStreamTest.java(t81) with priority 0.0

Test 56 : ZipTest.java(t26) with priority 0.0 Test 83 : ExecTaskTest.java(t27) with priority 0.0

Test 57 : TouchTest.java(t19) with priority 0.0 Test 84 : ReaderInputStreamTest.java(t77) with priority 0.0
Test 58 : XmlnsTest.java(t51) with priority 0.0 Test 85 : RedirectorElementTest.java(t93) with priority 0.0
Test 59 : DeleteTest.java(t39) with priority 0.0 Test 86 : ExecutorTest.java(t3) with priority 0.0

Test 60 : IsReferenceTest.java(t94) with priority 0.0 Test 87 : ZipFileSetTest.java(t85) with priority 0.0

Test 61 : ResourceUtilsTest.java(t65) with priority 0.0 !|Test 88 : AntLikeTasksAtTopLevelTest.java(t50) with priority 0.0
Test 62 : PatternSetTest.java(t87) with priority 0.0 Test 89 : XnlPropertyTest.java(t21) with priority 0.0

Test 63 : UnPackageNameMapperTest.java(t66) with priority 0.0 | Test 99 : Macro[.)ef'!'est.java(t.%) with priority 0.0

Test 64 : LinkedHashtableTest.java(t71) with priority 0.0 | Test 91 : DynamicFilterTest.java(t14) with priority 0.0

Test 65 : ExecuteWatchdogTest.java(t62) with priority 0.0 | Test 92 : LoaderUtilsTest. java(t80) with priority 0.0

Test 66 : HeadTailTest.java(t15) with priority 0.0 Test 93 : Resour‘ceOutput'Test.Java("c88) w%th'prlor‘lty 0.0

Test 67 : SleepTest.java(t43) with priority 0.0 Test 94 : ParallelTest..]ava(tBI).w1th priority 0.0

Test 68 : AddTypeTest.java(t89) with priority 0.0 Test 95 : EqualsTest. java(t98) with priority 6.0

Test 69 : PathConvertTest.java(t38) with priority 0.0 Test 96 : DescriptionTest.java(t9l) with priority 0.0 o
Test 70 : ClasspathUtilsTest.java(t70) with priority 0.0 Test 97 : LayoutPreservingPropertiesTest.java(t73) with priority 0.0

Test 98 : ContainsTest.java(t96) with priority 0.0
Test 99 : EchoXMLTest.java(t58) with priority 0.0
Test 100 : IsReachableTest.java(t99) with priority 0.0
APSC Measure

Test 71 : VectorSetTest.java(t69) with priority 0.0
Test 72 : MultiMapTest.java(t24) with priority 0.0
Test 73 : ProjectTest.java(t6) with priority 0.0

Test 74 : ConditionTest.java(t49) with priority 0.0
Test 75 : BUnzip2Test.java(t40) with priority 0.0
Test 76 : DateUtilsTest.java(t64) with priority 0.0
Test 77 : UpToDateTest.java(t35) with priority 0.0
Test 78 : DeltreeTest.java(t42) with priority 0.0
Test 79 : LineContainsTest.java(t13) with priority 0.0
Test 80 : SymlinkUtilsTest.java(t75) with priority 0.0
Test 81 : AntVersionTest.diava(197) with nrioritv 0.0

197.60970519855618
|Max :46

EXECUTION TIME:: (ELER
APSC of LEFT TEST CASES::95.28441783040762

Figure 4.3: Snapshot of Adaptive Approach at value =0 and p=1.

39

Test 1:
Test 2 :
Test 3 :
Test 4 :
Test 5 :
Test 6 :
Test 7 :
Test 8 :
Test 9 :

Test 10 :
Test 11
Test 12 :
Test 13n:
Test 14 :

Test 15

Test 16 :
Test 17 :
Test 18 :
Test 19 :
Test 20 :
Test 21 :
Test 22 :
Test 23 :
Test 24 :
Test 25 :
Test 26 :
Test 27

ExecuteJavaTest. java(t47) with priority 187
DispatchTaskTest. java(tl) with priority 59.400063
AntClassLoaderPerformance. java(t0) with priority 14.399989
TypeAdapterTest. java(t33) with priority 3.0399964
AvailableTest.java(t46) with priority 0.48319945
PropertyTest.java(t22) with priority 0.05855994
AddTypeTest.java(t89) with priority 0.044479966
LineContainsTest. java(t13) with priority 0.00966399
StripJavaCommentsTest.java(t12) with priority 0.0039808056
TokenFilterTest.java(t11) with priority 8.985586E-4
EscapeUnicodeTest. java(t10) with priority 3.558402E-4
PropertyFileCLITest.java(t9) with priority 1.8175982E-4
ProjectHelperRepositoryTest.java(t8) with priority 3.7171143E-5
ProjectComponentTest. java(t7) with priority 1.42336E-5

: ProjectTest.java(t6) with priority 1.42336E-5
IncludeTest.java(t5) with priority 7.18848E-6

InmutableTest. java(t4) with priority 2.502658E-6{
ExecutorTest. java(t3) with priority 9.666554E-7
DirectoryScannerTest. java(t2) with priority 2.3003138E-7
AntLikeTasksAtTopLevelTest.java(t50) with priority 9.10957E-8
ConditionTest.java(t49) with priority 4.7579046E-8

WarTest. java(t48) with priority 7.628402E-9
InputTest.java(t45) with priority 1.8402517E-9

ConcatTest. java(t44) with priority 3.0932998E-10
SleepTest.java(t43) with priority 7.360997E-11
DeltreeTest.java(t42) with priority 1.522533E-11
GzipTest.java(tdl) with priority 3.1121752E-12

= Tese e

Test 55 :
Test 56 :
Test 57 :
Test 58 :

Test 59

Test 60 :
Test 61 :
Test 62 :

Test 63

Test 64 :
Test 65 :
Test 66 :
Test 67 :
Test 68 :

Test 69

Test 70 :
Test 71 :
Test 72 :

Test 73
Test 74

Test 75 :
Test 76 :

Test 77

Test 78 :
Test 79 :
Test 80 :
Test 81 :

. UCWCYUCULIIGL €5 L, Java\ L/) WL Pi 101 1Ly L.JZ0JZLIL-LH
DOMElementhriterTest. java(t78) with priority 1.5283221E-24
ReaderInputStreanTest.java(t77) with priority 1.5283221E-24
XMLFragmentTest.java(t76) with priority 1.5283221E-24
SymlinkUtilsTest.java(t75) with priority 6.575065E-25

: JAXPUtilsTest.java(t74) with priority 3.0566427E-25
ParallelTest.java(t31) with priority 3.0566427E-25
UntarTest.java(t30) with priority 1.5964903E-25
UnzipTest.java(t29) with priority 3.0874315E-26

: JarTest.java(t28) with priority 5.3304352E-27
ExecTaskTest. java(t27) with priority 1.2349733-27
ZipTest.java(t26) with priority 2.132172-28

MkdirTest. java(t25) with priority 9.7812487E-29
MultiMapTest.java(t24) with priority 4.9398842E-29
XmlnsTest.java(t51) with priority 4.025097E-30

. FlexIntegerTest.java(t90) with priority 7.8249946E-31
DynamicTest. java(t57) with priority 1.4524112E-31
TsReachableTest. java(t99) with priority 3.1525222E-32
DirSetTest.java(t92) with priority 4.908927E-33

. ManifestClassPathTest.java(t59) with priority 4.548639E-33
: MoveTest.java(t6@) with priority 4.548639E-33
ManifestTest.java(t56) with priority 9.097268E-34
ImportTest.java(t55) with priority 2.9003206E-34

: GetTest.java(t54) with priority 1.8194567€-34
ZipExtraFieldTest.java(t53) with priority 1.8194567E-34
BZip2Test.java(t52) with priority 1.8194567E-34
DescriptionTest.java(t91) with priority 5.8006353E-35

Test 28
Test 29 :
Test 30 :
Test 31 :
Test 32 :
Test 33 :
Test 34
Test 35 :
Test 36 :
Test 37
Test 38
Test 39 :
Test 40 :
Test 41 :
Test 42 :
Test 43 :
Test M :
Test 45 :
Test 46 :
Test 47 :
Test 48 :
Test 49 :
Test 50 :
Test 51 :
Test 52 :
Test 53 :
Test 54 :

- BlinzipITest. java(tdh) with priority 5.88879%6-13

DeleteTest. java(t39) with priority 1.1777616E-13
PathConvertTest. java(t38) with priority 4.66486E-14
FilterTest.java(t37) with priority 2.3823632E-14
XnlPropertyTest. java(t21) with priority 4.9257863E-15
LoadFileTest. java(t20) with priority 4.8533737E-16

: TouchTest. java(t19) with priority 1.9858922E-16

ReplaceTest. java(t18) with priority 3.253442E-17
ReplaceTokensTest. java(t17) with priority 1.4924997¢-17

: ConcatFilterTest.java(t16) with priority 7.709458¢-18
: HeadTailTest. java(t15) with priority 1.2498339E-18

MacroDefTest. java(t36) with priority 3.8150713E-19
UpToDateTest. java(t35) with priority 6.1675834E-20
AntStructureTest. java(t34) with priority 2.387998E-20
SQLExecTest. java(t32) with priority 9.861220E-21
DynamicFilterTest. java(t14) with priority 2.357075E-21
PreSetDefTest. java(t23) with priority 1.9103991E-22
ResourceutputTest. java(t88) with priority 3.8208017-23
PatternSetTest. java(t87) with priority 3.8208017¢-23
FileSetTest. java(t86) with priority 3.8208017€-23
TipFileSetTest. java(t85) with priority 1.9516343¢-23
FilelistTest.java(t84) with priority 7.641615E-24
LineOrientedOutputStreanTest. java(t83) with priority 3.9472474E-24
StringUtilsTest. java(t82) with priority 1.5283221€-24
LazyFileQutputStreanTest. java(t81) with priority 1.5283221€-24
LoaderUtilsTest. java(t80) with priority 1.5283221E-24
DewieyDecimalTest. java(t79) with priority 1.5283221E-24

Test 82 :
Test 83
Test 84
Test 85
Test 86 :
Test 87 :
Test 88 :
Test 89 :
Test 90
Test 91 :
Test 92 :
Test 93
Test 94 :
Test 95 :
Test 96
Test 97 :
Test 98
Test 99
Test 100 :

FileUtilsTest.java(t72) with priority 7.2778196E-36

: LinkedHashtableTest.java(t71) with priority 7.2778196E-36
: ClasspathUtilsTest.java(t70) with priority 7.2778196E-36
: VectorSetTest.java(t69) with priority 6.124898E-36

PackageNameMapperTest. java(t68) with priority 5.822259E-36
GlobPatternMapperTest.java(t67) with priority 5.822259E-36
UnPackageNameMapperTest. java(t66) with priority 5.822259E-36
ResourceUtilsTest.java(t65) with priority 5.822259E-36

: DateUtilsTest.java(t64) with priority 5.822259E-36

TStampTest. java(t63) with priority 5.822259E-36
ExecutellatchdogTest.java(t62) with priority 5.822259E-36

: NiceTest.java(t61l) with priority 5.822259E-36

EchoXMLTest.java(t58) with priority 1.1644505E-36
RedirectorElementTest.java(t93) with priority 2.3289009E-37

: IsReferenceTest.java(t94) with priority 4.6116805E-38

IsFileSelected.java(t95) with priority 9.592282E-39

: AntVersionTest.java(t97) with priority 0.0
: ContainsTest.java(t96) with priority 0.0

EqualsTest.java(t98) with priority 0.0

APSC Measure

98.69409250095487

Max :39

EXECUTION TIME:: (ZZyMIE
APSC of LEFT TEST CASES::97.82458040863276

Figure 4.4 : Snapshot of Adaptive Approach at value q=0.20 and p=0.80.

40

LavoutPreservineProoertiesTest.iava(t73) with oriority 1.217774E-35

Test 1:
Test 2 :
Test 3 :
Test 4 :
Test 5 :
Test 6 :
Test 7 :
Test 8 :
Test 9 :

Test 10 :
Jest 11 &
Testdd ¢
: ProjectHelperRepositoryTest.java(t8) with priority 0.023383232

Test 13

Test 14 :
Test 15 :
Test 16 :
Test 17 :
: ExecutorTest.java(t3) with priority 0.0019881004
Test 19 :
Test 20 :
Test 21 :
Test:22 &
: InputTest.java(t45) with priority 5.6306948E-5

Test 18

Test 23

Test 24 :
Test 25 :
Test 26 :
Test 27 :

Test 28 :
Test 29 :
Test 30 :
» FilterTest.java(t37) with priority 9.288675E-8
Test 32 &
Test 33 ¢
Test 34 :
Test 35 ¢
Test 36 :
Test 37 :
» HeadTailTest. java(t15) with priority 3.389596E-10
Test 39 :
Test 40 :
Test 41 :
Test 42 .
Test 43 :
Test 44 :
: ResourceQutputTest. java(t88) with priority 9.846119E-13
Test 46 :
Test 47 :
Test 48 :
Test 49 :
Test 50 :
Test 51 :
» LazyFileOutputStreanTest. java(t81) with priority 1.5753837E-13
Test 53 &
Test 54 :

Test 31

Test 38

Test 45

Test 52

ExecuteJavaTest.java(t47) with priority 187
AvailableTest.java(t46) with priority 85.0001
DispatchTaskTest.java(tl) with priority 31.359976
AntClassLoaderPerformance.java(t@) with priority 14.719995
TypeAdapterTest.java(t33) with priority 6.143997
PropertyTest.java(t22) with priority 1.4387189
AddTypeTest. java(t89) with priority 1.4233589
LineContainsTest.java(t13) with priority 0.58777547
StripJavaCommentsTest.java(t12) with priority 0.33341503
TokenFilterTest.java(t1l) with priority 0.14319593
EscapeUnicodeTest. java(t10) with priority 0.09109509
PropertyFileCLITest.java(t9) with priority 0.05767174

ProjectComponentTest.java(t7) with priority 0.014575207
ProjectTest.java(t6) with priority 0.014575207
IncludeTest.java(t5) with priority 0.009164554
ImmutableTest.java(t4) with priority 0.0044207936

DirectoryScannerTest.java(t2) with priority 8.797959E-4
AntLikeTasksAtTopLevelTest.java(t50) with priority 5.5968825E-4
ConditionTest.java(t49) with priority 3.5916647E-4
WarTest.java(t48) with priority 1.262719E-4

ConcatTest.java(t44) with priority 2.0358113E-5
SleepTest.java(t43) with priority 9.0091335E-6
DeltreeTest.java(t42) with priority 3.6778713E-6
GzipTest.java(t4l) with priority 1.4909353E-6

Blnzip?Test. ava(t48) with priority 5. 76584867
DeleteTest. java(t39) with priority 2.3063333E-7
PathConvertTest. java(t38) with priority 1.4671879E-7

XnlPropertyTest. java(t21) with priority 3.7914663E-8
LoadFileTest. java(t20) with priority 9.693995E-9
TouchTest. java(t19) with priority 5.944746E-9
ReplaceTest. java(t18) with priority 2.1671347E-9
ReplaceTokensTest. java(t17) with priority 1.5024029E-9
(oncatFilterTest. java(t16) with priority 9.576442E-10

UpToDateTest. java(t35) with priority 6.128932¢-11
AntStructureTest. java(t34) with priority 3.846147€-11
SQLExecTest. java(t32) with priority 2.1527361E-11
DynamicFilterTest. java(t14) with priority 9.540648E-12
PreSetDefTest. java(t23) with priority 2.4615377-12

)

MacroDefTest. java(t36) with priority 1.5114789E-10
)
(

PatternSetTest. java(t87) with priority 9.846119E-13
FileSetTest.java(t86) with priority 9.846119€-13
ZipFileSetTest.java(t85) with priority 6.2335163E-13
FilelistTest.java(t84) with priority 3.9384552€-13
LineOrientedOutputStreanTest. java(t83) with priority 2.510409E-13
StringUtilsTest.java(t82) with priority 1.5753837€-13

LoaderUtilsTest. java(t80) with priority 1.5753837E-13
DeweyDecimalTest. java(t79) with priority 1.5753837-13

|Test 55
Test 56 :

Test 57

Test 60

|Test 63

Test 65
Test 66

Test 72
Test 73

|Test 75

Test 77

Test 85
Test 87
Test 89

|| Test 91

Test 97
Test 98

Max :39

- DOWELenentliviterTest. java(t78) with priority 1.5753837E-13

ReaderInputStreamTest.java(t77) with priority 1.5753837E-13

. XMLFragmentTest.java(t76) with priority 1.5753837E-13

Test 58 :
|Test 59 :

SymlinkUtilsTest.java(t75) with priority 9.0216016E-14
JAXPUtilsTest.java(t74) with priority 6.3015145E-14

: ParallelTest.java(t31) with priority 6.3015145E-14

Test 61 :
Test 62 :

UntarTest.java(t30) with priority 4.043858E-14
UnzipTest.java(t29) with priority 1.5848996E-14

: JarTest.java(t28) with priority 5.817353E-15

Test 64 :

ExecTaskTest. java(t27) with priority 2.535842€-15

. ZipTest.java(t26) with priority 9.307754E-16
: MkdirTest.java(t25) with priority 6.452757E-16

|Test 67 :
Test 68 :
Test 69 :
Test 70 :
|Test 71 :

MultiMapTest.java(t24) with priority 4.0573453E-16
XmlnsTest.java(t51) with priority 1.04358244E-16
FlexIntegerTest.java(t90) with priority 4.1297713t-17
DynamicTest.java(t57) with priority 1.5330635E-17
IsReachableTest. java(t99) with priority 5.4667403E-18

: DirSetTest.java(t92) with priority 1.9775337E-18
: ManifestClassPathTest.java(t59) with priority 1.920489E-18

Test 74 :

MoveTest. java(t60) with priority 1.920489E-18

: ManifestTest.java(t56) with priority 7.681971E-19

Test 76 :

ImportTest. java(t55) with priority 3.7573177E-19

: GetTest.java(t54) with priority 3.0727865E-19

Test 78 :
|Test 79 :
Test 80 :
Test 81 :
Test 82 :
Test 83 :
Test 84 :

TipExtraFieldTest.java(t53) with priority 3.0727865E-19
BZip2Test.java(t52) with priority 3.0727865E-19
DescriptionTest.java(t91) with priority 1.5029282E-19
LayoutPreservingPropertiesTest.java(t73) with priority 6.157735E-20

FileltilsTest. java(t72) with priority 4.9164504E-20
LinkedHashtableTest. java(t71) with priority 4.9164504E-20
(lasspathUtilsTest.java(t70) with priority 4.9164504E-20

: VectorSetTest. java(t69) with priority 3.3587666E-20

Test 86 :

PackagelameMapperTest. java(t68) with priority 2.9498763E-20

. GlobPatternMapperTest. java(t67) with priority 2.9498763E-20

| Test 88 :

UnPackageNameMapperTest. java(t66) with priority 2.9498763E-20

» ResourceltilsTest.java(t65) with priority 2.9498763E-20

1/ Test 90 :

DateUtilsTest.java(t64) with priority 2.9498763E-20

: TStampTest.java(t63) with priority 2.9498763E-20

1| Test 92 :
Test 93 :
Test 94 :
Test 95 :
Test 9 :

ExecuteatchdogTest. java(t62) with priority 2.9498763E-20
NiceTest.java(t61) with priority 2.9498763E-20
EchoXMLTest. java(t58) with priority 1.17994834E-20
RedirectorElementTest.java(t93) with priority 4.719802E-21
IsReferenceTest. java(t94) with priority 1.8692268E-21

» IsFileSelected.java(t95) with priority 7.589545-22
. AntVersionTest.java(t97) with priority 0.0

Test 99 :
Test 100 : EqualsTest.java(t98) with priority 0.0
APSC Measure

ContainsTest.java(t96) with priority 0.0

98.66455839946866

EXECUTION TIME:: {ERRIE
APSC of LEFT TEST CASES::97.82458040863276

Figure 4.5: Snapshot of Adaptive Approach at value g=0.40 and p=0.60.

41

Sy

g

SIEHTINALEU > AUPUVE_TESILAMEVIUEIITY (1) [Javd APRILAUUI LAFIUYIAIT THESAVAYIE 1.OU_D 1\UINYjdVaw.Exe (AL

Test 1 : ExecutelavaTest.java(t47) with priority 187

Test 2 : AvailableTest.java(t46) with priority 111.99986

Test 3 : DispatchTaskTest.java(tl) with priority 62.760025

Test 4 : AntClassLoaderPerformance. java(t@) with priority 40.32001
Test 5 : TypeAdapterTest.java(t33) with priority 25.055992

Test 6 : PropertyTest.java(t22) with priority 10.860481

Test 7 : AddTypeTest.java(t89) with priority 10.808641

Test 8 : LineContainsTest.java(t13) with priority 6.578499

Test 9 @ StripJavaCommentsTest.java(t12) with priority 4.693595
Test 10 : TokenFilterTest.java(tll) with priority 2.9281285

Test 11 : EscapeUnicodeTest.java(t10) with priority 2.334663

Test 12 : PropertyFileCLITest.java(t9) with priority 1.7635969
Test 13 : ProjectHelperRepositoryTest.java(t8) with priority 1.0662204
Test 14 : ProjectComponentTest.java(t7) with priority 0.8404788
Test 15 : ProjectTest.java(t6) with priority 0.8404788

Test 16 : IncludeTest.java(t5) with priority 0.63247573

Test 17 : ImmutableTest.java(t4) with priority 0.3214383

Test 18 : ExecutorTest.java(t3) with priority 0.14366768

Test 19 : DirectoryScannerTest.java(t2) with priority 0.09107651
Test 20 : AntLikeTasksAtTopLevelTest.java(t50) with priority 0.07261741
Test 21 : ConditionTest.java(t49) with priority 0.05527286

Test 22 : MWarTest.java(t48) with priority 0.0309068

Test 23 : InputTest.java(t45) with priority 0.019672552

Test 24 : ConcatTest.java(t44) with priority .011171585

Test 25 : SleepTest.java(t43) with priority 0.00708211

Test 26 : DeltreeTest.java(t42) with priority 0.004298021

Test 27 : GzipTest.java(t41) with priority 0.0025983066

RO =

Test 28 : BUnzip2Test.java(t40) with priority 0.0015297376
Test 29 : DeleteTest.java(t39) with priority 9.1784314E-4
Test 30 : PathConvertTest.java(t38) with priority 7.31818E-4

Test 31 : FilterTest.java(t37) with priority 5.52812E-4

Test 32 : XmlPropertyTest.java(t21) with priority 3.3547755E-4

Test 33 : LoadFileTest.java(t20) with priority 1.6034694E-4

Test 34 : TouchTest.java(t19) with priority 1.19407065E-4

Test 35 : ReplaceTest.java(t18) with priority 6.809627E-5

Test 36 : ReplaceTokensTest.java(t17) with priority 5.6906083E-5

Test 37 : ConcatFilterTest.java(t16) with priority 4.3150325E-5

Test 38 : HeadTailTest.java(t15) with priority 2.4219851E-5

Test 39 : MacroDefTest.java(t36) with priority 1.5416214E-5

Test 40 : UpToDateTest.java(t35) with priority 9.320488E-6

Test 41 : AntStructureTest.java(t34) with priority 7.375017E-6

Test 42 : SQLExecTest.java(t32) with priority 5.210266E-6

Test 43 : DynamicFilterTest.java(t14) with priority 3.304435E-6

Test 44 : PreSetDefTest.java(t23) with priority 1.5930041E-6

Test 45 : ResourceQutputTest.java(t88) with priority 9.558041E-7

Test 46 : PatternSetTest.java(t87) with priority 9.558041E-7

Test 47 : FileSetTest.java(t86) with priority 9.558041E-7

Test 48 : ZipFileSetTest.java(t85) with priority 7.220094E-7

Test 49 : FilelistTest.java(t84) with priority 5.7348217E-7

Test 50 : LineOrientedOutputStreamTest.java(t83) with priority 4.348568E-7
Test 51 : StringUtilsTest.java(t82) with priority 3.4408959E-7

Test 52 : LazyFileQutputStreanTest.java(t81) with priority 3.4408959E-7
Test 53 : LoaderUtilsTest.java(t80) with priority 3.4408959E-7

Test 54 : DeweyDecimalTest.java(t79) with priority 3.4408959E-7

A,

e my mgems e gy = e ey

|| Test 55

"|Test 61 :
| Test 62 :
|/ Test 63 :
|| Test 64
| Test 65 :

: DOMElementliriterTest. java(t78) with priority 3.4408959E-7
Test 56 : ReaderInputStreanTest.java(t77) with priority 3.4408959€-7
Test 57 : XiLFragnentTest.java(t76) with priority 3.4408959E-7

Test 58 : SymlinkUtilsTest.java(t75) with priority 2.4606084E-7
Test 59 : IAXPUtilsTest.java(t74) with priority 2.064534E-7

Test 60 : ParallelTest.java(t31) with priority 2.064534E-7
UntarTest. java(t30) with priority 1.5714221E-7

UnzipTest. java(t29) with priority 9.321594-8
JarTest.java(t28) with priority 5.336309E-8

ExecTaskTest. java(t27) with priority 3.3557797€-8
ZipTest.java(t26) with priority 1.92167E-8

MkdirTest. java(t25) with priority 1.6053827E-8

Test 67 : MultitlapTest.java(t24) with priority 1.2080808E-8

Test 68 : XmlnsTest.java(t51) with priority 5.8071006E-9|

Test 69 : FlexIntegerTest.java(t90) with priority 3.4676244E-9

Test 70 : DynamicTest.java(t57) with priority 1.930893E-9

Test 71 : DirSetTest.java(t92) with priority 9.609576E-10

Test 72 : ManifestClassPathTest.java(t59) with priority 9.070723E-10
Test 73 : MoveTest.java(t60) with priority 9.070723t-10

Test 74 : ManifestTest.java(t56) with priority 5.4424276E-10

Test 75 : ImportTest.java(t55) with priority 3.588771E-10

Test 76 : GetTest.java(t54) with priority 3.265458E-10

Test 77 : ZipExtraFieldTest.java(t53) with priority 3.265458E-10
Test 78 : BZip2Test.java(t52) with priority 3.265458E-10

Test 79 : DescriptionTest.java(t91) with priority 2.1532616E-10
Test 80 : LayoutPreservingPropertiesTest.java(t73) with priority 1.3674758E-10
Test 81 : FileUtilsTest.java(t72) with priority 1.1755637E-10

Test 66 :

Test 82

Test 83
Test 84
Test 85
Test 86
Test 87

| Test 88

Test 89
Test 90
Test 91
Test 92
Test 93
Test 94
Test 95
Test 96
Test 97
Test 98
Test 99

- Muupuve_i, vty (1) puve npp T TUYIUHT T I UYL iU LU Wi

'+ LinkedHashtableTest.java(t71) with priority 1.1755637E-10

: ClasspathUtilsTest.java(t70) with priority 1.1755637E-10

: VectorSetTest. java(t69) with priority 6.168804E-11

: PackageNameMapperTest. java(t68) with priority 4.7022528E-11
: GlobPatternMapperTest.java(t67) with priority 4.7022528E-11
: UnPackageNameMapperTest.java(t66) with priority 4.7022528E-11
: ResourceUtilsTest.java(t65) with priority 4.7022528E-11

: DateUtilsTest.java(t64) with priority 4.7022528E-11

: TStampTest.java(t63) with priority 4.7022528E-11

: ExecuteWatchdogTest.java(t62) with priority 4.7022528E-11

: NiceTest.java(t61) with priority 4.7022528E-11

: EchoXMLTest.java(t58) with priority 2.821356E-11

: RedirectorElementTest.java(t93) with priority 1.6928141E-11
: IsReachableTest.java(t99) with priority 1.0123351E-11

: IsReferenceTest.java(t94) with priority 6.114242E-12

: IsFileSelected.java(t95) with priority 3.6444107E-12

: AntVersionTest.java(t97) with priority 0.0

: ContainsTest.java(t96) with priority 0.0

Test 100 : EqualsTest.java(t98) with priority 0.0
APSC Measure

98. 66455839946866

Max :39

EXECUTION TIME:: 969 ms

APSC of

LEFT TEST CASES::97.82458040863276

Figure 4.6: Snapshot of Adaptive Approach at value g=0.60 and p=0.40.

42

Test 55

S

DOME LementhiriterTest. java(t78) with priority 0.007217297

[P —

Test 1 : ExecuteJavaTest.java(t47) with priority 187

Test 2 : AvailableTest.java(td6) with priority 139.00015 Test 56 : ReaderInputStreamTest.java(t77) with priority 0.007217297
Test 3 : DispatchTaskTest.java(tl) with priority 104.639946 Test 57 : XilFragnentTest. java(t76) with priority 0.007217297

Test 4 : AntClassLoaderPerformance.java(t@) with priority 84.47999 Test 58 SymllnlfUtllsTeft.Java(t75? w1th‘pr%or1ty 0.061892155

Test 5 : TypeAdapterTest.java(t33) with priority 69.631996 Test 59 : JAXPUtilsTest. java(t74) ".”Eh priority 0.005773835

Test 6 : PropertyTest.java(t22) with priority 45.629406 Ezt gi : E:E:g:ﬂejzvg?gé?ﬂt:limg:ﬁ;l;yogsggzgim

Test 7 : AddTypeTest.java(t89) with priority 45.547485 s £ : S

Test 8 : LineContainsTest.java(t13) with priority 36.6346 Fst Zi l]an;pT:sF‘]a\(/:%Q)ﬁth ?rl‘letz Z@g?‘;ﬁ;gg”

Test 9 : StripJavaCommentsTest.java(t12) with priority 31.404835 T:zt & : Ez;:sk%:‘s’: s ("37) f:;l:zrlriorit P

Test 10 : TokenFilterTest.java(t11) with priority 25.543303 o ,ava&%) i Pior'i’t aegzeﬁlam

Test 11 : EscapeUnicodeTest.java(t10) with priority 23.320343 Test 66 : MksirTe;i sova(t25) witE prior{ty.e B018019687

Test 12 : PropertyFileCLITest.java(t9) with priority 20.468218 Test 67 : MultiMath;_st sava(t24) ith prior‘it; 00016578543

Test 13 : ProjectHelperRepositoryTest.java(t8) with priority 16.428236 Test 68 XmlnsTest.ja\./a(tf}l) 0 0.06i21304

TesEd4 & Proeciompanenties Javi(ly) Wiy ripily 10205010 Test 69 : FlexTntegerTest.java(t90) with priority 9.686874-4

Test 15 : ProjectTest. java(t6) with priority 14.925012 Test 78 : DynamicTest. java(ts7) with priority 7.191992E-4

Test 16 : IncludeTest. java(ts) with priority 13.078176 Test 71 : DirSetTest. java(t92) with prionity 4.6051084¢-4

Test 17 : InnutableTest. java(t4) with priority 6.167577 Test 72 : NenifestClassPathest. java(t59) with priority 4.504756E-4
Test 18 : ExecutorTest.java(t3) with priority 2.0444026 Test 73 : NoveTest. java(t66) with priority 4.504756E-4

Test 19 : DirectoryScannerTest.java(t2) with priority 1.674007 Test 74 : NanifestTest.java(ts6) with priority 3.603803-4

Test 20 : AntLikeTasksAtTopLevelTest.java(t50) with priority 1.5283216 Test 75 : InportTest.java(tss) with priority 2.990084E-4

Test 21 : ConditionTest.java(t49) with priority 1.345802 Test 76 : GetTest.java(t54) with priority 2.8830394€-4

Test 22 : WarTest. java(td8) with priority 1.0449758 Test 77 : ZipExtraFieldTest.java(ts3) with priority 2.8830394E-4

Test 23 : InputTest.java(td5) with priority 0.85709 Test 78 : BZip2Test.java(t52) with priority 2.8830304E-4

Test 24 : ConcatTest.java(t44) with priority 0.669911 Test 79 : DescriptionTest.java(t91) with priority 2.3920689E-4

Test 25 : SleepTest.java(t43) with priority 0.5485386 Test 80 : LayoutPreservingPropertiesTest.java(t73) with priority 1.9227884E-4
Test 26 : DeltreeTest.iava(t42) with orioritv 0.44099253 Test 81 : FileUtilsTest.java(t72) with priority 1.8451455E-4

Test 28 : BUnzip2Test. java(t40) with priority 0.28085142 Test 82 : LinkedHashtableTest. java(t71) with priority 1.8451455E-4
Test 29 : DeleteTest.java(t39) with priority 0.22468121 Test 83 : ClasspathUtllsTest.]ava(t?e) w1?h ;.amomty 1.8451455E-4
Test 30 : PathConvertTest.java(t38) with priority 0.20512752 FS: gg : \;ec;orsﬁﬂe;t-]av?(t?). WIEZGS;lori;y 6:75?1t1117<35Ef-i;m3E :
Test 31 : FilterTest.java(t37) with priority 0.18004 s + rackageliameliapperiest.java with priority >5. i
Test 32 : XmlProperty%estFjavZ(tn) \Sith pr)i/ority 0.14474058 Test 86 : GlobPatternMapperTest.java(t67) with priority 3.690293E-5
Test 33 : LoadFileTest.java(t20) with priority .10559207 Test 87 : UnPackagellametlapperTest. java(t66) with priority 3.690293€-5
Test 34 : TouchTest.java(t19) with priority 0.09218068 Test 88 : ResourceUtilsTest.java(t65) with priority 3.690293E-5
Test 35 : ReplaceTest.java(t18) with priority 0.07217286 Test 89 : DateltilsTest.java(t64) with priority 3.690293€-5

Test 36 : ReplaceTokensTest.java(t17) with priority 0.06721621 Test 90 : TStampTest.java(t63) with priority 3.690293E-5

Test 37 : ConcatFilterTest.java(t16) with priority 0.05909228 Test 91 : ExecutellatchdogTest. java(t62) with priority 3.690293E-5
Test 38 : HeadTailTest.java(t15) with priority 0.045958582 Fs: gg : gi;e;;i?jivq(tﬂsg;thg;ior@ty.i.sgo;g;g;; .

Test 39 : MacroDefTest.java(t36) with priority 0.037695274 es : EchoAfiLTest.java with priority 2. 5

Test 40 : UpToDateTest.java(t35) with priority 0.030255254 Test 94 : RedirectorElementTest.java(t93) with priority 2.3617862E-5
Test 41 : AntStructureTest.java(t34) with priority 0.027531743 Test 95 : IsReachableTest.java(t99) with priority 1.8753984E-5
Test 42 : SQLExecTest.java(t32) with priority 0.023491168 Test 96 : IsReferenceTest.java(t94) with priority 1.5040589E-5
Test 43 : DynamicFilterTest.java(t14) with priority 0.019236576 Test 97 : IsFileSelected.java(t95) with priority 1.2002547E-5

Test 44 : PreSetDefTest.java(t23) with priority 0.014096257 Test 98 : AntVersionTest.java(t97) with priority 0.0

Test 45 : ResourceQutputTest.java(t88) with priority 0.011277016 Test 99 : ContainsTest.java(t96) with priority 0.0

Test 46 : PatternSetTest.java(t87) with priority 0.011277016 Test 100 : EqualsTest.java(t98) with priority 0.0

Test 47 : FileSetTest.java(t86) with priority 0.011277016 APSC Measure

Test 48 : ZipFileSetTest.java(t85) with priority 0.009897828

Test 49 : FilelistTest.java(t84) with priority 0.009021627 ||-======-=---

Test 50 : LineOrientedOutputStreamTest.java(t83) with priority 0.07931241 98.66455839946866

Test 51 : StringUtilsTest.java(t82) with priority 0.007217297 Max :39

Test 52 : LazyFileQutputStreamTest.java(t81) with priority 0.007217297

Test 53 : LoaderUtilsTest.java(t80) with priority 0.007217297 EXECUTION TIME::

Test 54 : DeweyDecimalTest.java(t79) with priority 0.007217297 APSC of LEFT TEST CASES::97.82458040863276

Figure 4.7: Snapshot of Adaptive Approach at value g=0.80 and p=0.60.

43

B L R I o T R A e

s g e s

Test 55 :

A T AR YA 1y 1 LMY £ MR e EAg e s e

Test 1 : ExecuteJavaTest.java(t47) with priority 187 : Glo?Patt;rnM;ppg;Test.jéva§t673 Witﬁ priority 0.0
Test 2 : AvailableTest.java(t46) with priority 166.0 || Test 56 : IsFileSelected. java(t95) with priority 6.6
Test 3 : DispatchTaskTest.java(tl) with priority 157.0 Test 57 : PackageNamgMapperTest:]ava(F68? with priority 0.0
Test 4 : TypeAdapterTest.java(t33) with priority 156.0 Test 58 : MkderesF.Java(tZS).w1th priority 0.0
Test 5 : AntClassLoaderPerformance.java(t@) with priority 152.0 IZ;: 22 f %;EIE;Z;ia;zsz?i;g?lxgtzrgﬁgztgts’g 5
Test 6 : PropertyTest.java(t22) with priority 139.0 | 2 & Z S 3
Test 7 : AddTypeTest.java(t89) with priority 139.0 Rest Bl s omlusiest javaltal) Wadl prigkasy 9.9
Test 8 : LineContainsTest.java(t13) with priority 139.0 I:z: g§ : 2:&2;:1:;:;%::2(§23;(¥;§? S;tgréﬁzogigy 0.0
Test 9 : StripJavaCommentsTest.java(t12) with priority 139.0 Test 64 ; ResourceUtilsTe;t.java(t65) with priority-e.e
Testele & TokenFilFerTest.jaYa(tll) With pri°fit¥ 139.2 ‘Test 65 : PatternSetTest.java(t87) with priority 0.0
Test 11 : EscapeUnl?odeTest.Jaya(tle) Wth pr19r1?y 139.0 Test 66 : UnPackageNameMapperTest.java(t66) with priority 0.0
Test 12 : PropertyFileCLITest.java(t9) with priority 139.0 Test 67 : LinkedHashtableTest.java(t71) with priority 0.0
Test 13 : ProjectHelperRepositoryTest.java(t8) with priority 139.0 Test 68 : ExecutellatchdogTest.java(t62) with priority 0.0
Test 14 : ProjectComponentTest.java(t7) with priority 139.0 ‘Test 69 : HeadTailTest.java(t15) with priority 0.0
Test 15 : Proiethest.javaEtG; wit: priority 139.0 Test 70 : SleepTest.java(t43) with priority 0.0
Test 16 : IncludeTest.java(t5) with priority 139.0 Test 71 : PathConvertTest.java(t38) with priority .0
Test 17 : ImmutableTest.java(t4) with priority 55.0 ||Test 72 : ClasspathUtilsTest.java(t70) with priority 0.0
Test 18 : Di;SetTest.javaEt92§ wit: priority 0.0 Test 73 : VectorSetTest.java(t69) with priority 0.0
Test 19 : FilterTest.java(t37) with priority 0.0 Test 74 : MultiMapTest.java(t24) with priority 0.0
Test 20 : JAXPUtilsTest.java(t74) with priority 0.0 Test 75 : ConditionTest.java(t49) with priority 0.0
Test 21 : SQLExecTest.java(t32) with priority 0.0 || Test 76 : BUnzip2Test.java(t40) with priority 0.0
Test 22 : BZip2Test.java(t52) with priority 0.0 Test 77 : DateUtilsTest.java(t64) with priority 0.0
Test 23 : DirectoryScannerTest.java(t2) with priority 0.0 Test 78 : UpToDateTest.java(t35) with priority 0.0
Test 24 : LoadFileTest.java(t20) with priority 0.0 Test 79 : DeltreeTest.java(t42) with priority 0.0
Test 25 : PreSetDefTest.java(t23) with priority 0.0 || Test 80 : SymlinkUtilsTest.java(t75) with priority 0.0
Test 26 : ReplaceTokensTest.java(t17) with priority 0.0 Test 81 : AntVersionTest.java(t97) with priority 0.0
Test 27 : ManifestClassPathTest.java(t59) with priority 0.0
e L TR T T e P e B R T e
Test 28 : MoveTest.java(t60) with priority 0.0 Test 82 : LazyFileOutquStreamTest:java(FSI? with priority 0.0
Test 29 : InputTest.java(tds) with priority 0.0 Test 83 : ExecTaskTest.java(t27) with priority 0.0
Test 30 : NiceTest.java(t61) with priority 0.6 Test 84 : Rea@erInputStreamTest.java(t77) w@th pr%or@ty 0.0
Test 31 : ZipExtraFieldTest.java(t53) with priority 0.0 Test 85 : RedlrectorElementTest.Jﬁva(t9§) wlth priority 0.0
Test 32 : FilelistTest.java(t84) with priority 0.0 Test 86 : ExecutorTest. java(t3) with priority 0.0
Test 33 © StringUtilsTest.java(t82) with priority 0.0 it LipFileSetTest. java(t85) with priority 0.0
Test 34 : ManifestTest.java(t56) with priority 0.0 | Test 88 AntL1keTasksAtTopLevelTest.qava(t?@)‘w1th priority 0.0
Test 35 : AntStructureTest. java(t34) with priority 0.8 |[Test 82 : XalPropertyTest. java(t21) with priority 9.0
Test 36 : FileSetTest. java(t86) with priority 0.0 Test 90 : MacroDefTest. java(t36) with priority 0.0
Test 37 : FileUtilsTest.java(t72) with priority 0.0 | Test 91 : DynamlcF}lterTESF.]ava(t14).w1th priority 0.8
Test 38 : GetTest. java(tS) with priority 0.0 | Test 92 : LoaderUtllsTest.]av§(t80) w1th.pr10r%ty.0.0
Test 39 : DynamicTest.java(t57) with priority 0.0 Test 93 : ResoTECEOutquTest.]ava(FSﬁ) w%th.pr10r1ty 0.0
Test 40 : ConcatTest.java(td4) with priority 0.0 ;es: gé : Earal ; T:SF'JaV:;;31),¥;t Prl9zltz g'a
Test 41 : ConcatFilterTest.java(t16) with priority 0.0 Test % : una ; :5 .%av:(l) :;1 p?iﬁ“l y :t 00
Test 42 : UntarTest.java(t30) with priority 0.0 Test o7 ; Lescrig e .;ava(t'> ?1 : ?rlori7§ .'th sorsiin)
Test 43 : LineOrientedQutputStreanTest. java(t83) with priority 0.0 o LAIRHERE IR T 5 :Jaya(] T AR,

! ! = o Test 98 : ContainsTest.java(t96) with priority 0.0
Test 44 : ImportTest.java(t55) with priority 0.0 3 ; i

i ; i Test 99 : EchoXMLTest.java(t58) with priority 0.0
Test 45 : TStampTest.java(t63) with priority 0.0 ; : .

A 3 2 e Test 100 : IsReachableTest.java(t99) with priority 0.0

Test 46 : UnzipTest.java(t29) with priority 0.0 4057 Mo
Test 47 : GzipTest.java(t4l) with priority 0.0
Test 48 : JarTest.java(t28) with priority0.0 |
Test 49 : FlexIntegerTgst.Java(t99) wlth prlorlty 0.0 98, 6139225373197
Test 50 : ReplaceTest.java(t18) with priority 0.0 Max 1)
Test 51 : DOMElementhriterTest.java(t78) with priority 0.0 ;
FSE zg f g”””;g’"?"tﬁsil"’_'va(tgg Wl’?thp”‘_’”F{ %90 EXECUTION TIHE: : [TCIEE
est 53 : DeweyDecinalTest. java(t79) with priority 0. APSC of LEFT TEST CASES: :95.55143220350146
Test 54 : WarTest.java(t48) with priority 0.0

Figure 4.8: Snapshot of Adaptive Approach at value g=1.00 and p=0.00.

44

Snapshot of our Proposed Approach Results

S R _ustuseiusing) purs appiauon v ospaaye s || <tEFMINated > GA_TestCaseOrdering (1) [Java Applical

il p2gen::[[[[[EchoXMLTest.java(t58),
::highest index::0
Fitness Highest 4::99.34755321592093
indexhigh 4::0
sequence highest 4::[[[[[[IsFileSelected.java(t95
Fitness Highest 1::99.18346758931875
Fitness Highest 2::99.34755321592093
||| Fitness Highest 3::99.34755321592093
|| Fitness Highest 4::99.34755321592093
-| Fitness Highest 5::99.34755321592093
|| TGreatest::0 99.18346758931875
| TGreatest::1 99.34755321592093
|Tareatest::2 99.34755321592093
| TGreatest::3 99.34755321592093
|TGreatest: :4 99.34755321592093
|Highest Fitness of Generation 2 : 99.34755321592093
|Sequence

tll

PASS,

IsFileSelected.java(t95)
mlPropertyTest.java(t21)
ContainsTest. java(t96)
SleepTest.java(t43)
DateUtilsTest.java(t64)
ClasspathUtilsTest.java(t70)
PackageNameMapperTest. java(t68)
DeleteTest.java(t39)

[
[
[
[
[
[
[
[
[[XmlnsTest.java(t51)

[
X
[
[
[
[
[
[
[

| <

6,

),

G, [

PASS,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
E

XECUTION TIME::

IsReachableTest.java(t99)
LazyFileOutputStreamTest.java(t81)
ExecTaskTest.java(t27)
MkdirTest.java(t25)
ParallelTest.java(t31)
ExecutorTest.java(t3)
EqualsTest.java(t98)
XMLFragmentTest.java(t76)
HeadTailTest.java(tl15)
LineContainsTest.java(t13)
LinkedHashtableTest.java(t71)
ZipTest.java(t26)
LoaderUtilsTest.java(t80)
ConditionTest.java(t49)
PathConvertTest.java(t38)
TouchTest.java(t19)
RedirectorElementTest.java(t93)
SleepTest.java(t43)
IsFileSelected.java(t95)
PackageNameMapperTest.java(t68)
ContainsTest.java(t96)
UnPackageNameMapperTest.java(t66)
DescriptionTest.java(t91)
ImmutableTest.java(t4)

[ResourceQutputTest.java(t88)
EchoXMLTest.java(t58)

41691 ms

Figure 4.9: Snapshot of our proposed Approach at value g=0.00 and p=1.00.

p2gen::[[[[[IsReferenceTest.java(t94), PASS,
::highest index::0

Fitness Highest 4::99.54693410545588

indexhigh 4::0

sequence highest 4::[[[[[[[FlexIntegerTest.java(t90),

Fitness Highest 1::99.54693410545588
Fitness Highest 2::99.54693410545588
Fitness Highest 3::99.54693410545588
Fitness Highest 4::99.54693410545588
Fitness Highest 5::99.54693410545588

TGreatest::0 99.54693410545588

| TGreatest::1 99.54693410545588

| TGreatest::2 99.54693410545588

| TGreatest::3 99.54693410545588

| TGreatest::4 99.54693410545588

|Highest Fitness of Generation 1 :

Sequence

[[[FlexIntegerTest.java(t90)

[ParallelTest.java(t31)

[GlobPatternMapperTest.java(t67)
[ZipTest.java(t26)

[ContainsTest.java(t96)

[FilelListTest.java(t84)

[ManifestTest.java(t56)

[LoaderUtilsTest.java(t80)

[FileSetTest.java(t86)

SLSHIIGLSU ~ UM_ 1 SOUC @SSy \ 1) [2GVaA MPPIILaUuUIT] T IUYianti i

[VectorSetTest.java(t69)

[
[
[
L
L
L
[
L
[
[
[
[
L
L
[
L
[
L
[
[
[
L
L
L

EXECUTION

MultiMapTest.java(t24)
ResourceOutputTest.java(t88)
ClasspathUtilsTest.java(t79)
LinkedHashtableTest.java(t71)
LazyFileOutputStreamTest.java(t81)
RedirectorElementTest.java(t93)
DescriptionTest.java(t9o1l)
AntStructureTest.java(t34)
UntarTest.java(t30)
ImportTest.java(t55)
PackageNameMapperTest.java(t68)
PatternSetTest.java(t87)
ZipFileSetTest.java(t85)
XmlnsTest.java(t51)
IsFileSelected.java(t95)
IsReferenceTest.java(t94)
FileUtilsTest.java(t72)
DynamicFilterTest.java(tl4)
DirSetTest.java(t92)
DateUtilsTest.java(t64)
JAXPUtilsTest.java(t74)
IsReachableTest.java(t99)
AntVersionTest.java(t97)
SQLExecTest.java(t32)

TIME: :

52706 ms|

Figure 4.10: Snapshot of our proposed Approach at value g=0.20 and p=0.80.

45

SN LT LMY S AR I A s FAAgE s s

oy

i||p2gen: : [ManifestClassPathTest.java(t59),PASS,R,R,R,R,R,R,R,R,R,R

::highest index::0
Fitness Highest 4::99.67835638672113
indexhigh 4::0
sequence highest 4::[[[[[[[DynamicFilterTest.java(t14),
Fitness Highest 1::99.67835638672113
Fitness Highest 2::99.67835638672113
i|| Fitness Highest 3::99.67835638672113
‘|| Fitness Highest 4::99.67835638672113
-|| Fitness Highest 5::99.67835638672113
|| TGreatest::0 99.67835638672113
TGreatest::1 99.67835638672113
TGreatest::2 99.67835638672113
| TGreatest::3 99.67835638672113
TGreatest::4 99.67835638672113
Highest Fitness
Sequence

PAS

of Generation 1 : EENVEECTERIVISNE

[[[DynamicFilterTest.java(t14)

[ResourceQutputTest.java(t88)

[ExecTaskTest.java(t27)

[XMLFragmentTest.java(t76)

[ClasspathUtilsTest.java(t70)

[ManifestClassPathTest.java(t59)
[DescriptionTest.java(t91)

[TStampTest.java(t63)

[AntVersionTest . dava(t97)

S,

B R e R L T

ce a s am e - —

[RedirectorElementTest.java(t93)

[EqualsTest.java(t98)

[ExecuteWatchdogTest.java(t62)

[LazyFileOutputStreamTest.java(t81)

[JAXPUtilsTest.java(t74)
[FileListTest.java(t84)
[SQLExecTest.java(t32)

[LayoutPreservingPropertiesTest.java(t73)
[LinkedHashtableTest.java(t71)
[FlexIntegerTest.java(t90)
[UnzipTest.java(t29)

[FileUtilsTest.java(t72)
[GetTest.java(t54)

[DateUtilsTest.java(t64)
[StringUtilsTest.java(t82)

[PatternSetTest.java(t87)

[DOMElementWriterTest.java(t78)

[DeweyDecimalTest.java(t79)

[ImportTest.java(t55)

[FileSetTest.java(t86)

[SymlinkUtilsTest.java(t75)

[ContainsTest.java(t96)

[NiceTest.java(t6l)

[LineOrientedOutputStreamTest.java(t83)
[IsReachableTest.java(t99)

E

XECUTION TIME:: 50404 ms

Figure 4.11 : Snapshot of our proposed Approach at value g=0.40 and p=0.60.

p2gen::[[[[[EchoXMLTest.java(t58), PASS,
::highest index::0

Fitness Highest 4::99.65760800987482
indexhigh 4::2

sequence highest 4::[[[[PreSetDefTest.java(t23),
Fitness Highest 1::99.53309986740351

Fitness Highest 2::99.53309986740351

Fitness Highest 3::99.53309986740351

Fitness Highest 4::99.65760800987482

Fitness Highest 5::99.65760800987482
TGreatest::0 99.53309986740351
TGreatest::1 99.53309986740351
TGreatest::2 99.53309986740351
TGreatest::3 99.65760800987482
TGreatest::4 99.65760800987482
Highest Fitness of Generation 4 :
Sequence

99.6576080098748

[[PreSetDefTest.java(t23)
tringUtilsTest.java(t82)

[[BZip2Test.java(t52)

[[EqualsTest.java(t98)

[[DynamicFilterTest.java(t14)

[[FileListTest.java(t84)
[[[[[UnzipTest.java(t29)

[[ExecTaskTest.java(t27)

[[FlexIntegerTest.java(t90)

G,

S 2 e S

SLCHIINALTU < UM_TTILGISVIUTIHIIY | 1) [JGVE APPIILGUUIT] W\ Tu

[XmlnsTest.java(t51)

[ReaderInputStreamTest.java(t77)
[SymlinkUtilsTest.java(t75)

[MultiMapTest.java(t24)

[FlexIntegerTest.java(t90)

[VectorSetTest.java(t69)

[ZipFileSetTest.java(t85)

[ManifestTest.java(t56)

[GetTest.java(t54)

[XMLFragmentTest.java(t76)

[UnPackageNameMapperTest.java(t66)
[LoaderUtilsTest.java(t80)

[LinkedHashtableTest.java(t71)
[DirSetTest.java(t92)

[RedirectorElementTest.java(t93)

[PackageNameMapperTest.java(t68)

[FileUtilsTest.java(t72)

[IsReferenceTest.java(t94)

[ResourceUtilsTest.java(t65)

[TStampTest.java(t63)

[DynamicFilterTest.java(tl4)

[DeweyDecimalTest.java(t79)

[LazyFileOutputStreamTest.java(t81)

[ZipTest.java(t26)

[[[[LazyFileOutputStreamTest.java(t81)
[EqualsTest.java(t98)

EXECUTION TIME::

Figure 4.12: Snapshot of our proposed Approach at value g=0.60 and p=0.40.

46

Zms

p2gen::[[[[[EchoXMLTest.java(t58),
::highest index::0

Fitness Highest 4::99.67144224792719
indexhigh 4::2
sequence highest 4::[[

PASS, G,

[[PreSetDefTest.java(t23),

Fitness Highest 1::99.61610529571772
Fitness Highest 2::99.61610529571772
Fitness Highest 3::99.61610529571772
Fitness Highest 4::99.67144224792719
Fitness Highest 5::99.67144224792719
TGreatest::0 99.61610529571772
TGreatest::1 99.61610529571772
TGreatest::2 99.61610529571772
TGreatest::3 99.67144224792719
TGreatest::4 99.67144224792719
Highest Fitness of Generation 4 :
Sequence

[[[[[[PreSetDefTest.java(t23)
[[LinkedHashtableTest.java(t71)
[[IsReferenceTest.java(t94)
[[[[[FlexIntegerTest.java(t90)
[[ImportTest.java(t55)
[[ManifestTest.java(t56)
[[SymlinkUtilsTest.java(t75)
[[UpToDateTest.java(t35)
[

[
[
[
[
[
[
[
[
[[UntarTest.java(t30)

[
[
[
[
[
[
[
[
[

G,

PASS,

<terminated> GA_TestCaseOrdering (1) [Java Application] C:\Program File:

L
[
[
[
[
[
L
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
L
E

<

XmlnsTest.java(t51)
DOMElementWriterTest.java(t78)
MoveTest.java(t60)
PackageNameMapperTest.java(t68)
UntarTest.java(t30)
FilelListTest.java(t84)
LazyFileOutputStreamTest.java(t81)
LineOrientedOutputStreamTest.java(t83)
ReaderInputStreamTest.java(t77)
ParallelTest.java(t31)
JAXPUtilsTest.java(t74)
DateUtilsTest.java(t64)
NiceTest.java(t6l)
ContainsTest.java(t96)
SymlinkUtilsTest.java(t75)
LinkedHashtableTest.java(t71)
EchoXMLTest.java(t58)
DirSetTest.java(t92)
ZipExtraFieldTest.java(t53)
VectorSetTest.java(t69)
AntVersionTest.java(t97)
SQLExecTest.java(t32)
BZip2Test.java(t52)
IsFileSelected.java(t95)
DynamicFilterTest.java(t14)
PreSetDefTest.java(t23)
XECUTION TIME::

Figure 4.13: Snapshot of our proposed Approach at value g=0.80 and p=0.20.

Table 4.2 Adaptive Genetic hybrid Approach by different p, q factor value.

APSC

Execution

time

99.34755322

41691 ms

0.2 0.8

99.54693411

52706 ms

0.4 0.6

99.67835639

50404 ms

0.6 0.4

99.65760801

48956 ms

0.8 0.2

99.67144225

39178 ms

99.58897335

51171 ms

47

APSC of Propsed Approach
Adaptive Genetic Algorithm
100.0

99.9

99.8
= 99.588973
& 90 99.546934
E 99.5
< 994 bo 347553

99.3

99.2

99.1

99.0

0.00 0.20 0.40 0.60 0.80 1.00
Values of Q factor

Figure 4.14: Graph of APSC according to Different Q values in proposed Approach.

Execution time of Propsed Approach
Adaptive Genetic Algorithm
56000

52706
52000 51171

50000 956

42000 |#1691

Execution Time (in milliSeconds)

32000
36000

0.00 0.20 0.40 0.60 0.80 1.00
Values of Q factor

Figure 4.15 : Graph of Execution Time according to Different Q values in Proposed Approach.

48

APSC comparision
Adaptive and Proposed Approach
100.0

46 3477-67835699.65760899.6714429q 5gggp73
99.5 | 99.347553

99.0

98.5

APSC(in %)

98.0
ay.
97.5

97.0

S & P & & &

Values of Q factor

O Adaptive Approach O Proposed Approach

Figure 4.16: APSC Comparison of Adaptive and proposed Approach.

Execution Time comparison
Adaptive and Proposed Approach

60000
" 52706
51171
2 50000 20404 48956
(W)
u 41691
[¥51
= 40000 39178
=
= 30000
a
£
= 20000
=
=
ol
§1mm
& . 1343 1047 859 969 1214 1191
S P P e e

Values of Q factor

O Adaptive Approach O Proposed Approach

Figure 4.17: Comparison of Execution Time among Adaptive and Proposed Approach.

49

Chapter 5

Conclusion and Future Scope

In this Research we proposed an approach that improves APSC (average percentage of
statement coverage). Our work is extension into the adaptive approach for APFD (average
percentage of fault detection) into adaptive genetic algorithm hybrid approach from which we
conclude that our proposed approach improve the APSC.

We take hundred java test cases package of apache server to evaluate our approach. First we
apply adaptive approach and calculate APSC. Than we apply our proposed algorithm adaptive
genetic algorithm hybrid approach than we calculate APSC than we found that our approach
gives better results than adaptive approach for APSC only.

Basically in this research we focused on APSC only but while we calculate Execution time for
both approach we found that our proposed approach take large time to execute as compare to
adaptive approach. But as the tester view our main aim to cover all statements of the code for
better quality. So, we considering this work as our next future work and we believe that if we
apply any other technique we can improve execution time as well APSC together. And we take
small data set in our research while in future we take large data set of test cases for efficient

results.

50

Chapter 6
REFRENCES

[1]. A.B Taha, S.M. Thebaut, and S.S. Liu.,”An approach to software fault localization and revalidation based
on incremental dat flow analysis”. in proceeding of the 13th Annual International Computer Software and
Applications Conference..

[2] A. Marback, H. Do, and N. Ehresmann, “An effective regression testing approach for PHP web
applications,” in Proceedings of the International Conference on Software Testing, Verification and Validation,
Apr. 2012, pp. 221-230.

[3] Dan Hao, Xu Zhao, “Adaptive Test-Case Prioritization Guided by Output Inspection” 37th Annual
International Computer Software and Applications Conference (COMPSAC 2013), 22-26 July 2013, pages 169-
179, Tokyo, Japan

[4] D.Hoffman and C.Brealey. “Module test case generation” in proceedings of the Third Workshop on
Software Testing, Analysis, and Verification, pages 97-102, December 1989.

[5] G. Rothermel and M. J. Harrold, Analyzing Regression Test Selection Techniques, IEEE Transactions on
Software Engineering, V.22, no. 8, August 1996, pages 529-551.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizingtest cases for regression testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp. 929-948, October 2001.

[7] http://mww.ehow.com/facts_5835705_difference-between-operand-operator.html

[8] J. Hartmann and D.J. Robson.” Revalidation during the software maintenance phase”in Proceeding of the
conference on Software Maintenance.

[9] J.Ziegler, J.M. Grasso, and L.G. Burgermeister.” An Ada based real-time closed-loop integration and
regression test tool”. in Proceedings of the Conference on Software Maintenance -1989, pages 81-90, October
1989

[10] J. Offutt, J. Pan, and J. M. Voas.” Procedures for reducing the size of coverage-based test sets” in
Proceedings of the Twelfth International Conference on Testing Computer Software, pages 111-123, June 1995.
[11] Keith H. Bennett and V_aclav Rajlich. “Software maintenance and evolution: a roadmap.” in Proceedings
of the International Conference on Software Engineering (ICSE'00), pages 73{87, 2000}.

[12]K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma.”Regression testing in an industrial environment”.

[13] Mithun Acharya ,”Configuration Selection Using Code Change Impact Analysis for Regression Testing”,
28th IEEE International Conference on Software Maintenance (ICSM), 2012

[14] Md. Hossain , “Regression Testing for Web Applications Using Reusable Constraint Values ,” IEEE
International Conference on Software Testing, Verification, and Validation Workshops , 2014.

[15] Md. Junaid Arafeen and Hyunsook , “Test Case Prioritization Using Requirements-Based Clustering “,

IEEE Sixth International Conference on Software Testing, Verification and Validation ,2013

51

http://www.ehow.com/facts_5835705_difference-between-operand-operator.html

[16] Mitchell Melanie, Fifth printing, 1999 An Introduction to Genetic Algorithms , A Bradford Book The MIT
Press , Cambridge, Massachusetts * London, England

[17]M.J. Harrold, R. Gupta, and M.L. Soffa. “A methodology for controlling the size of a test suite. ACM
Transactions on Software Engineering and Methodology”.

[18] Nicolas Frechette, “Regression Test Reduction for Object-Oriented Software: A Control Call Graph Based
Technique and Associated Tool” , Hindawi Publishing Corporation ISRN Software Engineering Volume 2013,
Article 1D 420394, 10 pages

[19] P.A Brown and D. Hoffman. “The application of module regression testing at TRIUMF. Nuclear
Instruments and Methods in Pysics Research”, Section A, . A293(1-2):377-381, August 1990.

[20] Prof. A. Ananda Rao and Kiran Kumar J “An Approach to Cost Effective Regression Testing in Black-
BoxTesting Environment “lJCSI international journal of computer science issues vol.8 issue 3,No. 1 may 2011
[21] Regression Test Selection by Exclusion ,Durham E-Theses, Durham University.

[22] R. Lewis, D.w. Beck, and J.Hartmann. “Assay — a tool to support regression testing”. In ESEC’ 89.2nd
European Software Engineering Conference Proceedings, pages 487-496,

[23] S. Elbaum, A. G. Malishevsky, and G. Rothermel. “Test case prioritization: A family of empirical studies.”
IEEE Transactions on Software Engineering, 28(2):159-182,February 2002.

[24] Swarnendu Biswas , “Regression Test Selection Techniques: A Survey” , Informatica 35 (2011) 289-321
289

[25]http://www.chartgo.com

[26] Xuan Lin . “Regression Testing in Research And Practice”, University of Nebraska, Lincoln1-402-472-
4058

[27] Yu-Chi Huang “A history-based cost-cognizant test case prioritization technique in regression testing , The
Journal of Systems and Software 85 (2012) 626— 637.

http://www.chartgo.com/

Chapter 7
Appendix
APSC: Average Percentage of Statement Coverage.

APFD: Average Percentage of Fault Detection.
Ts: represent the latest selected test case .

N : number of test cases

M : statements

P: population size .

G: number of generation.

Cp: Crossover Point.

Mp : Mutation Point.

Ltc : Left Test cases after Adaptive Approach ordering .
MC: Modified condition

DC: Decision coverage

