

ENHANCEMENT IN EFFECTIVENESS OF TEST

CASE PRIORITIZATION FOR REGRESSION

TESTING

A Dissertation Submitted

By

Monika Pathania (10810760)

To

Department of CSE/IT

In partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in CSE

Under the guidance of

Mr. Makul Mahajan

(April 2015)

ii

iii

ABSTRACT

A vast study has been made in the field of Regression Testing. Regression testing is

testing in which retesting of system, components and related units is done and it is

ensured that modifications made in the system are working correctly and are not effecting

other modules of system. Regression testing is testing in which modified system is tested

using the old test suites. The procedure is to test modified parts of the system at first

tested and then the whole system needs to be retested using old test suits to make sure that

modification have not affected the other parts of the previously working system.

Developers are interested in detecting faults in the system as early as possible, due to the

resource and time constraints. As in regression testing, re-execution of large test suites is

there so these constraints are always taken into much consideration. There remains a need

to prioritize test cases in order to reduce time and other resources use. So in this

dissertation, work is on test case prioritization technique. Test cases were generated from

model of the system that can depict the behavior of the system and (Average Percentage

of Faults Detected) APFD and (Average Percentage of Block Coverage) APBC metrics

were used to calculate the effectiveness of it. Execution time was also taken into

consideration while prioritizing automatic generated test cases.

iv

ACKNOWLEDGEMENT

This work on dissertation entitled as “ENHANCEMENT OF EFFECTIVENESS OF

TEST CASE PRIORITIZATION FOR REGRESSION TESTING” prepared by me

could not have been completed without the moral support of my mentor Mr. Makul

Mahajan. A Special Thanks to him for guiding my efforts to perfection. I would also like

to thank my father Mr. Santosh Pathania who supports me in every part of my life.

Finally, I would like to thank all my friends.

 Monika Pathania

10810760

v

DECLARATION

I hereby declare that the dissertation entitled “ENHANCEMENT OF

EFFECTIVENESS OF TEST CASE PRIORITIZATION FOR REGRESSION

TESTING”, submitted for the M.Tech. Degree is entirely my original work and all the

ideas and references have been duly acknowledged. It does not contain any work for the

award of any other degree or diploma.

Date: Monika Pathania

 Reg. No. 10810760

vi

CERTIFICATE

This is to certify that Monika Pathania has completed M.Tech dissertation titled

“ENHANCEMENT IN EFFECTIVENESS OF TEST CASE PRIORITIZATION

FOR REGRESSION TESTING” under my guidance and supervision. To the best of

my knowledge, the present work is the result of her original investigation and study. No

part of the dissertation proposal has ever been submitted for any other degree or diploma.

 The dissertation is fit for submission and the partial fulfillment of the conditions for the

award of M. Tech Computer Science & Engineering.

Date: Name: Mr. Makul Mahajan

 UID:14575

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 Software Testing .. 1

1.1.1 Verification .. 1

1.1.2 Validation .. 1

1.2 Software Testing Types ... 1

1.2.1 Black Box Testing ... 2

1.2.2 White Box Testing ... 2

1.3 Regression Testing ... 2

1.3.1 Regression testing Approaches .. 3

1.4. Test Case Prioritization ... 4

1.4.1 Test case prioritization techniques .. 4

1.5 Effectiveness .. 6

CHAPTER 2 REVIEW of LITRATURE .. 7

CHAPTER 3 PRESENT WORK ... 13

3.1 Problem Formulation.. 13

3.2 Objectives ... 13

3.3 Methodology .. 14

CHAPTER 4 RESULTS AND DISCUSSION .. 17

4.1 Identification of Manageable System ... 17

4.2 Prepare Model of the chosen System ... 18

4.2.1 Behavioral Diagram ... 18

4.2.2 Representation of State diagram as FSM (Finite State Machine) 19

4.3 Generate Test Cases from the FSM.. 23

4.3.1 Various States and Transitions Covered by the Generated Test Cases 23

4.4 Prepare some mockups of the SUT (System under Test)... 31

4.5 Run the Generated Test Cases against the SUT ... 32

4.6 Analyze code Coverage and Calculate APBC ... 32

4.7 Associate Faults with the System and Calculate APFD ... 34

4.8 Prioritize Test Cases by Analyzing Fault Matrix and another Parameter Execution

Time ... 36

CHAPTER 5 CONCLUSION AND FUTURE SCOPE .. 40

REFERENCES .. 41

viii

APPENDIX .. 43

ix

LIST OF FIGURES

Figure 1.1 Regression testing………………………………………………………....…...3

Figure 2.1 Test case prioritization techniques…………………………………………….7

Figure 3.1 Research methodology of work…………………………………………........15

Figure 4.1 Operation of stack…………………………………………………………….17

Figure 4.2 States and transition…………………………………………………………..18

Figure 4.3 Finite state machine of UNDO system……………………………………….20

Figure 4.4 Visual studio frameworks…………………………………………………….22

Figure 4.5 Spec explorer…………………………………………………………………22

Figure 4.6 Standard output of test case StacksuiteS0……………………………………23

Figure 4.7 Standard output of test case StacksuiteS10………………………………......24

Figure 4.8 Standard output of test case StacksuiteS12………………………………......25

Figure 4.9 Standard output of test case StacksuiteS14………………………………......26

Figure 4.10 Standard output of test case StacksuiteS6………………………………......26

Figure 4.11 Standard output of test case StacksuiteS16…………………………………27

Figure 4.12 Standard output of test case StacksuiteS4…………………………………..28

Figure 4.13 Standard output of test case StacksuiteS18………………………………....28

Figure 4.14 Standard output of test case StacksuiteS2…………………………………..29

Figure 4.15 Standard output of test case StacksuiteS8…………………………………..30

Figure 4.16 Representation of Stack test suite…………………………………………..31

Figure 4.17 Testing SUT against generated test cases………………………………….32

Figure 4.18 Block coverage……………………………………………………………..34

Figure 4.19 Number of faults found by each test cases………………………………...36

x

LIST OF TABLES

Table 4.1 Block Coverage by Model Based Test Cases………………………………….33

Table 4.2 Number of Faults Detected By each Model Based Test Case and APFD

Calculation………………………………………………………………………………..35

Table 4.3 Number of Faults Detected By each Model Based Test Case and APFD

Calculation after prioritization based on Fault matrix…………………………………...37

Table 4.4 Execution Time Taken by Each Test case to find each fault wherever

Applicable………………………………………………………………………………..38

Table 4.5 Prioritization of test cases on APFD and execution time Basis……………....39

1

CHAPTER 1

INTRODUCTION

1.1 Software Testing

Software testing is the process by which evaluation of software is done to detect that

whether their lies any differences between the given input and expected output or not.

Through this process assessment of the features of a software item is done. Now the

question is “when it should be done?” Most of the developers and researchers say that

software testing should be done during the development process. The process software

testing is done to confirm that whether software item is build according to the customer

requirements or not. Now talking about its objectives, the main objective of software

testing is to find out errors in the system/software being developed or modified by

applying different types of testing like performance testing, regression testing, smoke

testing, stress testing. By software testing, the quality parameters like effectiveness of

software can be improved. It can also be said that software testing is both verification and

validation. Now what is meant by these two terms? [18].

1.1.1 Verification

Verification means “are things right or not?” There always remain some conditions which

are imposed on the product at the begin of the development phase. It is the method to

make positive the product satisfies all those requirements.

Verification is to make confident that the behavior of product according to us is called

verification.

1.1.2 Validation

Validation means “are we doing right things?” Through validation process, we make sure

that at the end of development phase, product meets the specified requirements.

Validation is to make confident the system is performing as per requirements of the

customer or not.

1.2 Software Testing Types

To make the things clear some of the types of software testing are described here. In this

research work, main focus is on regression testing which is described in section 1.3. For

the sake of understanding other various types of testing are as follows:

2

1.2.1 Black Box Testing

Black box testing is a testing method in which focus is not on the internal mechanism of

the system. Its main focus remains on the output which is produced next to any input

provide to the system. This method of testing is also known as functional testing.

1.2.2 White Box Testing

As opposed to the black box testing, in case of white box testing the main focus remains

on the code i.e. it is a testing method whose main focus is on internal mechanism of a

system. This method of testing is also called structural testing or glass box testing.

“Black box testing is used for validation and white box testing is used for verification.”

There are some other approaches to testing which are mentioned below:

a) Unit Testing

b) Integration Testing

c) Functional Testing

d) System Testing

e) Stress Testing

f) Performance Testing

g) Usability Testing

h) Acceptance Testing

i) Regression Testing

j) Beta Testing

In the research proposal, main focus is on regression testing. So what this regression

testing is and what are the various approaches of regression testing are as follows:

1.3 Regression Testing

Regression testing is testing in which retesting of system, components and related units is

done and ensure that modification is working correctly and does not effecting other

modules of system. Regression testing is testing in which old test suites are used by the

modified system. In regression testing we have to test modified parts of the system firstly.

After that whole system will be retested using old test suits. If large size system retesting

is done then consumption of time will be large and more resources will be use. Ordering

test cases for execution is the one of main issue faced by developer. Regression testing is

a necessary process as well as expensive process in the software lifecycle. The main focus

of regression testing is to ensure the modification is working correctly and is not harmful

for other modules to produce unexpected results. Regression testing is type of black box

3

testing. In simple language, regression testing is the method of testing changes to

computers programs to make confident that the older module still works with new

changes.

Figure 1.1: Regression Testing [12]

1.3.1 Regression testing Approaches

There are different types of regression testing approaches:

a) Model Based Regression Testing

b) Code Based Regression Testing

c) Selective Regression Testing

a) Model Based Regression Testing: Model based approach is the approach of

regression testing which is a black-box method. This approach selects test case based on

model modification and uses relationships between test cases and model elements for

retest. This approach generates regression tests using different models of system. The

technique use some system models like activity diagrams, class diagrams and other

various UML diagrams.

b) Code Based Regression Testing: Code based technique is the technique of regression

testing that it is white- box method. This approach selects test case based on the

difference between original code and new modified code. Code based approach always

uses relationships between test cases and code part and when code is modified then this

approach order the test cases for re-execution.

c) Selective Regression Testing: Selective regression testing is the important activity of

MBT (model based testing).According to Donald Bren et al [9] this technique selects test

cases for retest based on model modifications, rather than source-code modifications.

4

1.4. Test Case Prioritization

Test case prioritization is the approach which ordered the test cases in executing manner

according to some criterion. These criterion can be time and cost based. The main aim of

test case prioritization approach is to detect various faults in minimum cost and time. Test

case prioritization approach can be used in two applications; a).first is in the initial testing

of software, b). Second is in the regression testing of software. The difference between

these two used applications in regression testing that prioritization can use in sequence

collected in earlier execution of existing test cases. Test case prioritization is the

technique which is used to assist with regression testing. After arrangement of test cases

in some criterion, test cases with higher priority are executed earlier.

1.4.1 Test case prioritization techniques

a). Model Based Test Case Prioritization

b). Code Based Test Case Prioritization

c). Requirement Bases Test Case Prioritization

a) Model Based Test Case Prioritization

Model based test case prioritization is a technique of test case prioritization in which

we used the various system models to prioritize the test cases. Model based test case

prioritization may help to improve early fault detection as compare to other approach

of test case prioritization which is code based test case prioritization. Model based test

case prioritization may be a sensitive approach for information provided by

developers. So we can say that model based test case prioritization approach is best as

compared to code based test case prioritization. Existing model based test case

prioritization methods can only be used during system maintenance when models are

modified [1]. There are many model based test case prioritization heuristics are:

 Selective prioritization

 Heuristic #1 prioritization

 Heuristic #2 prioritization

 Heuristic #3 prioritization

 Model dependence based prioritization

 Heuristic #1 prioritization

In heuristic #1 prioritization main concept was that when execution of higher

number of modified transactions is occur then it should have higher priority as

5

compare to execution of smaller number of modified transaction. And higher

number of modified transaction has also higher possibility to revealing faults [17].

 Heuristic #2 prioritization

Heuristic #2 method of prioritization is the modified version of previous method

i.e. heuristic #1. As we know that in heuristic #1 tests with higher priority to be

selected first from the bucket then tests with lower priority to be selected. When

tests are failed can be placed in lower priority bucket. So heuristic #2 methods

tries to solve this issue and give more and more chance to lower priority tests to be

selected [17].

 Heuristic #3 prioritization

The concept of heuristic #3 method of prioritization was based on frequency. In

this method tests with higher frequency should be selected first than tests with the

lower frequency. The main idea of this method was that test that executes

transaction more frequently has higher possibility to insert fault [17].

 Model dependence based prioritization

Model dependence based prioritization is an approach of model based test case

prioritization. In this approach tests with higher priority are always prioritized

using model dependence analysis. In this approach new added and deleted

transactions are communicate with model’s outstanding part.

In model –based test case prioritization, a system’s model is used to prioritize

tests. To model state-based system, system modeling is used. System models

confine parts of the system behavior and several modeling languages have been

developed, e.g., State Charts, EFSM [6].

b) Code Based Test Case Prioritization

Code based test case prioritization is a technique of test case prioritization in

which source code is used to prioritize test cases. Most of the test case

prioritization methods are code based. Code based test case prioritization

techniques are dependent on information relating the tests of test suite of various

elements of a system code of the original system [6].

c) Requirement Based Test Case Prioritization

Requirement based test case prioritization Requirement based test case

prioritization developed a prioritization scheme with three main goals: identifying

the severe faults earlier, to improve the software field quality and to devise the

6

minimal set of PORT and PFs that can be used to effectively for the test case

prioritization.

1.5 Effectiveness

In some cases the term effectiveness is also known as efficiency, affectivity and efficacy.

Effectiveness or we can say that efficiency is the capability to produce desired result. It

means that it has expected outcomes when something is effectiveness. Software test

efficiency is number of test cases executed divided by unit of time. Test efficiency tests

the amount of code and testing resource required by a program to perform a particular

function. Effectiveness is the potential of producing a preferred result. When something is

deem effective, it means it has a planned or predictable result, or produces a deep, bright

idea.

7

CHAPTER 2

REVIEW OF LITRATURE

Sujata et al (2014) according to them egression testing is done on the test suite by

applying one of its techniques that is test case prioritization which gives maximum

number of faults and also provides effectiveness to the software. In this paper, problem

was formulated to discover the maximum number of defects by prioritizing the test cases

using model based dependencies. They said that in future test cases are prioritized with

model based dependencies and efficiency of technique will be evaluated with APFD

matrixes. In this research work, prioritization of test cases using their dependencies in

model based testing will be performed. In order to detect the defects and provide

information about these defects to the developer earlier, it will also reduce the time as the

faults will be detected at early phases. Authors said that prioritization is discovering the”

functional dependencies”. Scenario that will be having more dependencies will produce

more faults as well. Techniques can be: a). Open dependency structure which can be

described as one test case should be executed prior to other test case anywhere in the

program. b). Closed dependency structure which can be described as one test case should

be executed just before the other test cases means the other test case must follow the first

test case [8].

Figure 2.1: Test Case Prioritization Techniques [8]

8

Chandana Bharti et al (2013) conducted a study on different regression testing

approaches. According to them there are various types of regression testing approaches

like code based and model based. This study represented the analysis of both approaches

of regression testing that are code based and model base. This analysis is based on some

comparison and assessment standard. Also background of regression testing is presented

in this study. Evaluation of code based technique in control dependence graph based test

selection told that it is safe technique and support generality, it can be applied to all

procedural languages. They also supported both intra-procedural and inter-procedural test

selection. In model based technique if we want to generate test suite then we can use class

and state diagram model of [3].

L.UmaRani et al (2013) according them regression testing is the verification that after a

change earlier functioning software remains. During regression testing if we execute

large number of test case then they are expensive and time consuming. To reduce it

in regression testing TSP is an effective and practical approach . when test cases

schedules in order of precedence then it increases their ability to meet some

performance goals, such as code coverage, rate of fault detection. They concluded

that prioritization of test case or test suits have different aspects of fault detection. On the

basis of prioritization techniques, functionality of regression testing can improved in

minimum time and recourses. Based on test case prioritization using regression

testing they calculated the efficiency for each test cases . And according to them this can

support to make a better software product. They said that test effectiveness and cost can

be calculated for future work [2].

Prateeva Mahali et al (2013) present a model-based test case optimization and

prioritization technique for regression testing. In this approach they investigate the

present methods with respect to reduction of time and cost and also to slow case the

efficiency of prioritized test cases. The result indicates that model based test case

optimization and prioritization is better effective to solve all these problems at the same

time. The work represented in this paper is comparatively small. In the future research,

they plan to apply this approach on a relatively large application to review the scalability

of the proposed approach [14].

Xiaoboo Han et al (2012) they presented an better model-based test prioritization

approach, to prioritize the test suite for system retesting in this two types of information

about the system model is used. They investigated the existing methods with respect to

9

their effectiveness of early fault detection. Results indicated that algorithm used in this

study has better effectiveness of early fault detection. Work presented in this paper was

comparatively small. For future research, they told to do experimental studies on larger

models and systems to have better understanding of the merits and disadvantages of our

approach. They also planned to investigate additional model-based heuristic methods to

consider both test case prioritization technique and regression test selection technique to

reduce the cost of regression testing [7].

Sanjukta et al (2011) in their study the main focus is on various techniques which are

based on codes, models and UML diagrams. They used two metrics (APFD and RPD) for

determining the effectiveness of prioritization techniques. To understand the concepts of

different code based techniques and behavior of components, interactions and also

compatibility of components there was good coverage in terms of research. According to

them in future we can include more numbers of criteria like during component

interactions number of state changes by a test case, and also during the state changes, as

whether it is going to access single attribute or multiple attributes from a database

schema. They also told about optimization technique like GA to apply over their

technique to represent a more effective prioritized test suite [1].

Kavitha V.R et al (2010) said that to increases the effectiveness for achieving few

performance goals test case prioritization is beat approach and also for scheduling test

cases in particular order. They told that the rate of fault detection is also another

important goal. Test cases should run in an order because possibility of fault detection

should be high means faults should be detected in earlier phases of life cycle model. Here

author proposed an algorithm to improve the quality for user satisfaction for TCP from

user requirements and also to improve the possibility of fault detection. Model prioritizes

the test cases based on these factors: a). customer priority, b).changes in requirement, and

c).implementation complexity. This prioritization technique represent the results which

show two different sets of industrial projects and also tell about prioritization technique

which improves the possibility of earlier fault detection [11].

Leila Naslavsley et al (2010) model-based selective approach of regression testing is

used in this research and this approach uses relationships between model elements and

test cases traversing. This approach adopted UML class and sequence diagrams as

modeling perspective. Author analyzed this approach using the regression test evaluation

structure, and described a prototype that implements the approach and a case study. A

10

main statement of this method is that abstract test cases to be selected for regression

testing and generated with this test generation approach [9].

Arup Abhinna Acharya et al (2010) To perform regression testing for real time

systems this proposed technique can further be extended to prioritize test cases. In

this the authors used model based technique to prioritize the test case. The authors are

also working on adding new criterion like frequency of data base access number

of state changes in UML state chart diagram etc. Two different modeling diagrams

can also be combined to find criterion to generate test cases . Requirement specifications

can be another way to prioritize the test cases. Test case prioritization for simultaneous

systems is also a very challenging area of research due to its dynamic behavior [15].

 Korel et al (2009) they simply presented small experimental comparison between model

based and code based test case prioritization heuristics. With effectiveness of early fault

detection of new modified system these heuristics are evaluated in this study. According

to this study model based test case prioritization improved the detection of early faults as

compared to code based test case prioritization. Author said that model-based test

prioritization is an inexpensive approach as compared to existing code-based test

prioritization approach because test suite is inexpensive for execution of the model. And

model-based test case prioritization approach is a very sensitive approach to the

information provided by the testers or developers whether this information is correct or

incorrect. The study presented in this paper is limited to only two test prioritization

heuristics. Author said that in future we can perform more extensive research on different

methods of model based and code based test prioritization on larger models and systems.

Because by this we can understand the limitations and advantages of model based and

code based test case prioritization [6].

Praveen Ranjan Srivastava (2008) proposed an algorithm in order to improve

regression testing for test case prioritization. With the help of APFD metric analysis is

done for prioritized and non prioritized cases. Graphs prove that prioritized case is more

effective. According to author in future we can try on test case prioritization over

requirement analysis using risk metrics and APFD [13].

Leila Naslavsky (2007) presented the model based regression testing approach using

traceability. Author said that to increased use of various models in conjunction modern

driven development is leading in software testing with source code. According to author

to support activities such as selective regression testing, model based regression testing

11

traceability is required. Most model-based testing automated approaches always focus on

the test case generation and execution activities and support to other activities is limited.

So, deal with this problem author proposed a solution to create a traceable

communications to test-related artifacts using model transformation and use this

communications to support model-based selective regression testing approach. Author

expected a small-size project which have smaller test suites by one small and one medium

size project and it is clear that re-executing all test cases will be more cost effective. On

the other hand, author expected that the medium size project should have more test cases

and by this the cost selection and re-execution could be less [5].

Srikanth et al (2003) said that our results showed that unpredictability impact fault

density and requirements complexity. They identified these factors as initial set of PF for

PORT. To determine the effectiveness of customer’s priority in their prioritization plan

they planned to analyze the industrial data further. They believed that PORT can be

improve the effectiveness of various testing activities, (1) for TCP to reduces the effort

utilized as compared to coverage-based techniques and these techniques are prioritize

based on the number of branches and statements covered, (2) the main focus is on

functionalities which present the highest cost to the customer, and (3) to improves the rate

of detection of severe faults. Earlier is believed to improve perceived software quality for

rectifying severe faults [10].

Yanping Chen et al presented a specification –based selection approach of regression

test with results from a small but real industrial study. And this used technique is object-

oriented and risk based. This approach provided various methods to find both targeted

and safety tests. For describing various requirements based on customer features and

behavior basic model is used. They also used the activity diagram which is a notation of

UML [4].

Eliane Collins et al (2012) presented study of various strategies for test automation in

agile software development Scrum. On team organization and test automation they also

observe the authority of agile values. It is feasible to solve problems in team and search

for integrated testing tools and manage the management and organization of a software

testing and also scrum process. The automation testing is a good resource to perform

recurring tasks like document software, reduces cost of project tools, and also task

allocation in small parts. To experiment new methods and tools the programmers’ attitude

is very important. When performing agile test automation strategy in alike environment

12

some concepts learned can be extracted and they can be support other software engineers.

According to author in future we can also work with other strategies of test automation

for agile methodology [16].

13

CHAPTER 3

PRESENT WORK

In this chapter, a brief discussion about how the problem was formulated is there. Then,

what were the various objectives that were setup during the proposal and what were

achieved is presented. Last but not the least the methodology that we followed to work

throughout. In section 3.1 a discussion about how the problem was formulated? Next

section is 3.2 in which objectives are explained and in section 3.3 the methodology of the

work done is explained. Research methodology tells about the flow of our work done

with the help of flow chart is explained.

3.1 Problem Formulation

Regression testing is testing in which retesting of system, components and related units is

done and it is ensured that modifications made in the system are working correctly and

are not effecting other modules of system. Regression testing is testing in which modified

system is tested using the old test suites. The procedure is to test modified parts of the

system at first tested and then the whole system needs to be retested using old test suits to

make sure that modification have not affected the other parts of the previously working

system.

Developers are always interested to detect faults as early as possible in the system or

software, due to the resource and time constraints. As in regression testing, re-execution

of large test suites is there so these constraints are always taken into much consideration.

There remains a need to prioritize test cases in order to reduce time and other resources

use. So in this dissertation, work is on test case prioritization technique of regression

testing and various metrics were be used to calculate the effectiveness of it. Some of these

are APBC and APFD. APBC is an abbreviation of Average percentage of block coverage

and it shows the code coverage and the second one i.e. APFD is an abbreviation of

Average Percentage of Faults Detected and it shows the percentage value of faults

detected when the test suite is run to find out the faults. These two would be discussed in

more detail in chapter 4.

3.2 Objectives

Regression testing is expensive and time consuming due to a large number of test cases

executions. To reduce this expense some techniques can be used which can reduce the

time and cost and hence increase efficiency. Researchers are doing work in this field and

14

as a result many new techniques have been developed. One such technique is test case

prioritization technique. Through test case prioritization technique, test cases are

prioritized in some order of execution according to some criteria so that less number of

test case executions can provide better results. But there always remains a risk of not

testing some part of system because of the reduction in number of test case executions in

order to reduce the expense. So for every such technique there are some metrics on the

basis of which their effectiveness can be measured. If effectiveness can be measured then

their always remains a scope of improving that effectiveness by some means So here are

objectives of this research proposal that were made clear by studying literature review.

The main objectives of the research are:

a) To improve the effectiveness of test case prioritization technique for regression

testing. As is clear from the literature review that APFD percentage value can be

improved more.

b) To analyze the code coverage provided by model based test cases and calculate

the value of APBC (Average Percentage of Block Coverage).

c) To prioritize model based test cases by analyzing the fault matrix and a new

parameter time and then evaluate the efficiency of test case prioritization

technique with APFD metrics.

By improving the effectiveness of test case prioritization technique, we can reduce the

cost and time used during the regression testing. And second objective of study is to

prioritize test cases with model based dependencies which can give better results as

compared to existing heuristic methods. In software development life cycle testing is

major and important part. All it is to reduce the use of resources so that overall cost of

the system can be reduced.

3.3 Methodology

The step wise step procedure that was followed in order to fulfill the mentioned

objectives is as follows. From the very beginning the first step was to identify an original

and Manageable topic. The topic chosen was UNDO system because it is not a very big

system and it also fulfills the purpose of the study. Then some study was made about the

system i.e. how it works and how it could be implemented. The next was to prepare the

model of the system.

Different models can represent the behavior of the system and there are different tools

available to represent the models. So it was a difficult task but State chart diagrams were

15

chosen for the purpose of this study. Why State machine diagrams is explained in next

chapter. Then model of the system was prepared in spec explorer. More about spec

explorer is in the chapter 4. Then test cases were generated automatically by the tool. To

find out the further findings some mockup of the SUT was prepared and was attached

with the test cases to test the system. To see how much code of the implementation i.e.

mockup is covered by the automatically generated test cases, analysis about code

coverage was done. To be more specific APBC was calculated and analyzed. More on

this is in next chapter. Some faults were associated with the system and test cases in

different were run against the faults to check whether the faults were found or not.

Identification of a

Manageable topic

Prepare Model of the Chosen System

i.e. State Diagram

Generate Test Cases

Prepare Some Implementation of the

System

Run the Generated Test Cases against the

SUT (System Under Test)

Reading and Research into

chosen topic

1

16

Figure 3.1: Research Methodology

Then prioritization of test cases was done against the arbitrary order of execution and

results were analyzed. More on how all is done is in next chapter.

Analyze Code Coverage and

Calculate APBC

Associate faults with the System and

Calculate APFD

Prioritize Test Cases by analyzing Fault

Matrix and another parameter time

1

Make changes in the Model

Run Prioritize Test Cases against the

modifies System and Calculate APFD

17

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Identification of Manageable System

In the software industry there can be simple or most probably there are complex systems.

These systems are built by following a process and modeling a system to be developed is

an important part of that process. That process is under continuous research so that

overall development time can be reduced. This research work is related to that and for the

purpose of this research a simple system has been chosen i.e. UNDO system.

A Stack can be used to perform many operations where there is need to pop out the

element which was inserted in it at last. One such implementation of the stack can be

done to perform the UNDO operation. Now what is UNDO operation?

As is clear from the name that an UNDO operation is where the last operation done is

undone first and then the second last operation done is undone and then the third last

operation is undone and so on. This operation can be performed with the help of stack. A

diagrammatic representation of this system is below:

Figure 4.1: Operation of stack

18

The figure 4.1 shows the operation of stack. As is clear from diagram that initially stack is

empty, then seven elements were inserted in the stack in the order 0, 1, 2, 3, 4, 5, 6, 7.

When 0 was inserted in the stack, there was one element in the stack i.e. 0. When 1 was

inserted in the stack, the stack elements were [1, 0] in the same order. When the element 2

was inserted in the stack, the stack elements were [2, 1, 0] in the same order. In the same

order mean that for [2, 1, 0], 2 is at the top. Stack performs two operations i.e. Push and

Pop. Push is used to insert an element at top in the stack and Pop is used to pop out the

top element from the stack. We mean to say that both the operations are performed on the

same end and we say that end Top. This is why UNDO system can be implemented with

the help of stack in which the last operation is undone first and then the second last

operation is undone second and so on.

4.2 Prepare Model of the chosen System

Here the concern is about Model based testing, where the test cases are generated from

the models of the system. There are some tools available which generate abstract test

cases and there are others which generate working test cases from the model. The concern

here is to automate the testing completely not partially. So Spec Explore which is a model

based test case generation tool is used here. Now there are many behavioral

representations of the system. A state transition diagram represents the behavior of a

system in terms of various states in which a system can be and the transitions that force a

system to change from one state to another or to remain in the same state. This can be

explained with the help of diagram below:

Figure4.2: States and Transitions

4.2.1 Behavioral Diagram

There are nine diagrams used to capture different views of a system in UML. These

diagrams can be developed to get the real implementation of the system. Behavioral

diagram is one of those diagrams. In behavioral view there are:

 Sequence Diagram

 Collaboration Diagram

19

 State-chart Diagram

 Activity Diagram

4.2.1.1 State- Chart Diagram

UML state chart which is also known by the name of state machine. In the field of

computer science these state machines are the improved understanding of the

mathematical concept of finite automata. State machine just like state chart diagram is

used to represent the behavior of any system to be developed in the field of computer

science. These can represent the behavior of a single object of the overall behavior of the

system. The states in state machine diagram are represented by circles and to move from

one state to another arrows are used.

4.2.1.2 FSM (Finite State Machine)

FSM have been generally used to model systems in various areas, with Sequential

circuits, some types of programs for example lexical analysis, pattern matching and more

newly. The requirement of system reliability motivates study into the problem of testing

FSM to make sure their accurate functioning and to find out aspects of their performance.

A FSM consist a finite number of states and produces outputs on state transitions after

getting inputs. In a testing problem we have a machine about which we need some

information; we would like to assume this information by provided that a sequence of

inputs to the machine and the outputs produced. Because of its practical meaning and

theoretical attention, the problem of testing FSM has been studied in different areas and at

a range of times.

4.2.2 Representation of State diagram as FSM (Finite State Machine)

For this study, State Chart Diagram of the SUT is used to represent the behavior of the

system. And now it is clear that State Chart Diagrams can be represented as Finite State

Machines. So a Finite state Machine of the system has been developed which is shown on

the figure 4.3. This FSM is representing the behavior of the UNDO system as Stack. As

S0 is the initial state i.e. stack is empty. The Checker[] reads a particular state and gives

the elements in the stack. Then an action is performed on this state i.e. Push[0]. This

operation changes the state of the stack from S0 to S3. S3 is again read by the action

Checker[] and it gives the result as Checker[0]. Pop transition will take the system to

previous state. As it can be observed in figure 4.3, if pop() is performed on state “S8”, it

will take the system to the state “S3”. There is one other operation known as clear(). If

this operation performed on any state of the system, the system will return to its initial

state.

20

Figure 4.3: Finite State Machine of Undo System

21

4.2.2.1 Tool Used

Now a day there is a vast category of tools available which are used for model based

testing. A study of various tools was made for the purpose of this study. Some of the tools

that could be used for this study were some java tools like rational rose, magic draw,

model junit, junit, eclipse. Model junit is an extension of junit and it represents the

behavior of system in the form of FSM or EFSM. The test cases generated by the model

junit are abstract test cases. One should provide the implementation of the methods

generated. But to automate the whole process spec explorer as an extension of visual

studio was used. Now let’s have a brief about visual studio and spec explorer.

Visual Studio

Visual Studio is developed by Microsoft. It is an integrated development environment

(IDE). It is used to build up computer programs for Microsoft Windows, web sites, web

applications and web services. Visual Studio uses various Microsoft software

development platforms such as Windows Presentation Foundation, Windows API,

Windows Store, Windows Forms, and Microsoft Silver light. It can create both local code

and managed code.

VS include a code editor sustaining IntelliSense and code refactoring. The integrated

debugger works both as a source-level debugger and a machine-level debugger. Visual

Studio wires different programming languages and allows the code editor and debugger to

carry any programming language.

Visual Studio has various features like:

 Debugger

 Code editor

 Designer

Spec Explorer

Spec explorer is an extension of visual studio. The main idea behind spec explorer is to

train a system's proposed behavior in the form of model program. The model program

normally does much less than the execution; it does just sufficient to capture the

applicable states of the system and demonstrate the constraints that a correct execution

must follow. The objective is to identify from a selected viewpoint what the system must

do, what it may do and what it must not do. Explore the probable runs of the

requirement-program as a way to thoroughly generate test suites.

22

Figure 4.4: Visual Studio framework

Figure 4.5: Spec Explorer

23

4.3 Generate Test Cases from the FSM

There were ten test cases generated from the FSM model of the system. These test cases

were test to pass test cases.

4.3.1 Various States and Transitions Covered by the Generated Test Cases

Figure 4.6: Standard output of test case StackTestSuiteS0

Figure 4.6 shows the standard output generated by the test case named

“StackTestSuitS0”. It can be seen from this figure that the test case is beginning its

24

execution by reaching at state “S0”. Then an events triggers which is a call to a function

“checker([])”. Now after this function is performed, there occurs a transition which takes

the system from state “S0” to “S1”. Next is what is returned? i.e. checker which will just

read the elements in the stack. Now the System reaches the state “S20”. Then a “push(0)”

operation would be performed which will take the system from state “S20” to “S30”.

Next the Push would be returned and the system will transit from state “S30” to “S40”. In

this way system will transit from one state to another depicting the behavior of the

system. These state names are not in the sequence because these were generated

automatically by the tool.

Figure 4.7: Standard output of test cases StackTestSuitesS10

Figure 4.7 shows the various states and transitions covered by the test case named

“StackTestSuitS10”. This test case is starting its execution from the state “S10” then

reaching “S11” by the transition “call Checker([])”. It transits from state “S11” to “S25”

through “return checker” and so on. By starting its execution from state “S10”, this test

case ends its execution by reaching the state “S168”.

25

Figure 4.8: Standard output of test cases StacktestsuitesS12

Figure 4.8 shows the execution of test case named “StackTestSuiteS12”. As is clear from

the figure, this test case starts its execution from the state “S12” and ends its execution by

reaching at the state “S169”. From state “S12” system moves to state “S13” through

transition “call Checker([])”. By looking at some arbitrary state, the behavior of other

function can be analyzed. E.g.: let us start at state “S66”. When the system was at state

“S66”, a “call Push(1)” moves the system from this state to “S76” and when the

“checker()” will perform, it will return “Checker([1,0])” i.e. the elements in the stack are

1 and 0 and the stack is at level 1 as per our assumption. In this way the system goes

through various states and transitions and various paths are observed by the automatically

generated test cases.

26

Figure 4.9: Standard output of test cases StackTestSuiteS14

Figure 4.9 shows the various states and transitions covered by the test case named

“StackTestSuiteS14”. The execution starts at state “S14” and ends at the state “S141”.

Figure 4.10: Standard output of test cases StackTestSuiteS6

27

Figure 4.10 shows the standard output generated by the test case named

“StackTestSuiteS6”. The test case starts its execution from the state “S6” and ends its

execution by reaching at the state “S188”.

Figure 4.11: Standard output of test cases StacktestsuitesS16

Figure 4.11 shows the standard output generated by the test case named

“StackTestSuiteS16”. The test case starts its execution from the state “S16” and ends its

execution by reaching at the state “S108”.

28

Figure 4.12: Standard output of test cases StacktestsuitesS4

Figure 4.12 shows the standard output generated by the test case named

“StackTestSuiteS4”. The test case starts its execution from the state “S4” and ends its

execution by reaching at the state “S201”.

Figure 4.13: Standard output of test cases StacktestsuitesS18

29

Figure 4.13 shows the standard output generated by the test case named

“StackTestSuiteS18”. The test case starts its execution from the state “S18” and ends its

execution by reaching at the state “S109”.

Figure 4.14: Standard output of test cases StacktestsuiteS2

Figure 4.14 shows the standard output generated by the test case named

“StackTestSuiteS2”. The test case starts its execution from the state “S2” and ends its

execution by reaching at the state “S200”.

30

Figure 4.15: Standard output of test cases StacktestsuitesS8

Figure 4.15 shows the standard output generated by the test case named

“StackTestSuiteS8”. The test case starts its execution from the state “S8” and ends its

execution by reaching at the state “S189”.

31

Figure 4.16: Representation of Stack Test Suite

Figure 4.16 shows the pictorial representation of all the generated test cases. To explore

any transition or any state, that one can be clicked in the spec explorer and analyzed.

4.4 Prepare some mockups of the SUT (System under Test)

We know that stack is also known as LIFO (last in first out). It is represented as collection

of elements. This Stack has various operations:

 Push

o Push means insert an element in the stack.

 Pop

o Pop means remove the last elements from the stack.

 Clear

o It clears the stack.

 Checker

o The Checker[] reads a particular state and gives the elements in the stack.

32

4.5 Run the Generated Test Cases against the SUT

The test cases which were generated by the spec explorer from the FSM of the system

now need to be run against the SUT. The overall process is depicted in the Figure -----

.After generating test cases from the system, a test suit of ten test cases was obtained.

Now these test cases were provided a reference of the SUT. The SUT was a small

implementation of the behavior of system. Now the SUT is against the generated test suit.

After this all four faults were inserted in the system one by one and the test suit was run

against the faults. The results were obtained as a fault matrix. This fault matrix was

consisted of test cases at one end and faults at the other end. The generated test cases

could be run on the fly and could be verified to see whether they are failing or passing.

Figure 4.17: Testing SUT against generated test cases

The fault matrix that was generated is depicted in the table 4.2. More on this is in the

section 4.7

4.6 Analyze code Coverage and Calculate APBC

APBC stands for average percentage block coverage. This metric also represented as

average percentage branch coverage. APBC metric measures the rate at which a

prioritized test suite covers the various blocks and branches.

33

Table 4.1 Block Coverage by Model Based Test Cases

Block Coverage by Model Based Test Cases

Test

Case

Block Not

Covered

Blocks

Covered

Blocks

Covered (%)

Blocks Not

Covered (%)

STS0 15 31 67% 33%

STS10 17 29 63% 37%

STS12 17 29 63% 37%

STS14 17 29 63% 37%

STS16 19 27 59% 41%

STS18 19 27 59% 41%

STS2 17 29 63% 37%

STS4 15 31 67% 33%

STS6 17 29 63% 37%

STS8 15 31 67% 33%

APBC 63%

Table 4.1 shows the block coverage i.e. the percentage of code blocks covered by the

generated test cases. In the spec explorer the coverage is shown for both the generated test

suit code and implementation of the SUT. But here the concern is about the SUT, so the

percentage of code blocks covered by each test case is shown here. From this table APBC

was calculated as follows:

Block Coverage by a test case = Number of blocks covered by a test case/ Total number

of blocks

e.g.: Block Coverage for test case STS0

= (31 / (31+15))*100

= (31/ 46)*100

= 67%

Then APBC is calculated as:

APBC= Sum of block coverage by each test case/ Total number of test cases.

= ((67+63+63+63+59+59+63+67+63+67) / 10)*100

= 63%

34

Figure 4.18: Block coverage

Figure 4.18 shows the percentage of blocks covered and percentage of blocks not covered

by each test case.

4.7 Associate Faults with the System and Calculate APFD

Now the next step is to associate some faults with the implementation and calculate the

APFD i.e. Average percentage of Faults detected. For this, some Restrictions were

imposed on the stack to increase the number of faults that can be associated with the

system make testing more interesting. The restrictions that were imposed on the system

are as follows:

1. The value at a particular level in the stack will be equal to the level number e.g.

Value at level 0 will be 0; value at level 1 will be 1 and so on.

After imposing the above restriction, now there is need to associate some faults with the

system implementation so that we can check that whether the test cases are able to detect

the faults that can be there in the system or not. There were four faults associated with the

system implementation. There four faults are as follows:

Faults:

1. Perform POP on Empty stack initially.

2. After clearing whole stack, Perform POP operation.

3. Perform more than one consecutive POP operation.

4. Perform more than one consecutive Push operation.

After associating all these faults one by one with the system implementation and running

all the test cases in some arbitrary order, the fault matrix was obtained, which is as

follows:

0%

20%

40%

60%

80%

100%

120%

ST
S0

ST
S1

0

ST
S1

2

ST
S1

4

ST
S1

6

ST
S1

8

ST
S2

ST
S4

ST
S6

ST
S8

Block Coverage

Blocks Not Covered (%)

Blocks Covered (%)

35

Table 4.2: Number of Faults Detected By each Model Based Test Case and APFD Calculation

Number of Faults Detected By each Model Based Test Case and APFD Calculation

Faults Test Cases

STS0 STS10 STS12 STS14 STS16 STS18 STS2 STS4 STS6 STS8

1 1 1 1 1 1 1 1 1 1 1

2 1 1 0 1 0 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

Total

Number

of faults

found

4 4 3 4 3 4 4 4 4 4

APFD 95%

This fault matrix shows that whether the fault was detected by a particular test case or

not. For the purpose of representation, if a fault was detected by a test case then “1” was

marked in the particular cell and if it was not detected then “0” was marked in the

particular cell. Table 4.2 shows which test case has detected which fault. E.g.: “STS0”

detected all four faults that is why “1” is marked in each cell below the test case name and

“STS12” had not detected fault “2”, so “0” was marked in the particular cell under test

case “STS12”. This is how fault matrix was obtained. Now this fault matrix can be used

to calculate the APFD value of a test suit run.

To calculate APFD value for a test run one should find out the first test case that is

detecting the particular fault in a particular run. For this an arbitrary order of test cases

execution was set (the order in which test cases were generated and stored by the tool)

and then that test suit was run against the each fault.

In this case where test cases were generated from FSM of the system and where four

faults were taken into consideration, test case “STS0” was able to find out all the faults.

So the faults matrix obtained by running test cases in order STS0, STS10, STS12, STS14,

STS16, STS18, STS2, STS4, STS6, STS8 is shown in the Table 4.2.

Now, to calculate APFD value for this run, the formula is

APFD = 1 – ((first test case that found fault 1 + first test case that found fault 2 + … +

first test case that found the nth fault) / (n * m)) + (1 / (2 * n))

36

Here n = total number of test cases in test suit

And m = total number of faults associated

As per this equation the APFD value for non prioritized test cases is as follows:

= 1 - ((1+1+1+1)/ (10*4)) + (1/ (2*10))

= 1 - (4/40) + (1/20)

= 1 - 0.10 + 0.05

= 1.05 – 0.10

= .95

Figure 4.19: Number of faults found by each test case

Figure 4.19 just shows a graphical representation of the number of faults detected by each

test case if it is executed in the same order as depicted in the table 4.2.

4.8 Prioritize Test Cases by Analyzing Fault Matrix and another

Parameter Execution Time

Now, prioritization can be done by taking into consideration the fault matrix. As can be

seen in the fault matrix in Table 4.2 that there are two test cases named “STS12” and

“STS16” which are not detecting the fault 2, so these two test cases can be moved to the

last position giving the order of execution as STS0, STS10, STS14, STS18, STS2, STS4,

STS6, STS8, STS12, STS16 as shown in the Table 4.3. Even it will not affect the APFD

value calculated because it is based on the fact of finding the first test case that is

detecting a particular fault.

0

1

2

3

4

5

STS0 STS10 STS12 STS14 STS16 STS18 STS2 STS4 STS6 STS8

Test Cases

Number of Faults Found By Each
Test Case

Total Number of faults found

37

Table 4.3: Number of Faults Detected By each Model Based Test Case and APFD Calculation after prioritization

based on Fault matrix

Faults Test Cases

STS

0

STS1

0

STS1

4

STS1

8

STS

2

STS

4

STS

6

STS

8

STS1

2

STS1

6

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 0 0

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

Total

Numbe

r of

faults

found

4 4 4 4 4 4 4 4 3 3

APFD 0.95

As it can be seen that there is no effect on the value of APFD after prioritizing test cases

based on the values obtained in the fault matrix but it is making the testing results more

reliable. Because there was not any fault left after least execution of test suit as it may be

the case that for some arbitrary order of test case execution, “STS12” and “STS16” may

execute at the very first and will not detect the fault 2. So prioritization in this manner is

giving reliability.

Another factor that was taken into consideration for prioritizing these test cases was

“Execution time” of each test case to find out a particular fault.

During the process of finding the faults by executing the generated test cases, the

execution time of each test case was calculated as is shown in the Table 4.4 as follows:

38

Table 4.4: Execution Time Taken by Each Test case to find each fault wherever applicable

Faults Test Cases

STS0 STS10 STS12 STS14 STS16 STS18 STS2 STS4 STS6 STS8

1 100 7 6 5 3 3 10 10 8 8

2 61 6 NA 5 NA 3 11 10 8 8

3 61 6 6 5 3 3 11 10 9 8

4 56 6 6 4 4 3 10 10 9 8

Total

Time

Taken

By

Each

Test

Case

278 25 NA 19 NA 12 42 40 34 32

Table 4.4 shows the time taken to find out the fault by a test case wherever applicable. As

there are ten test cases and four faults. If test suite STS0, STS10, STS12, STS14, STS16,

STS18, STS2, STS4, STS6, STS8 is executed, no doubt that it will give APFD value =

.95 as is calculated in the table 4.2, but if we take into consideration the execution time

also then according to table 4.4, for .95 APFD value the execution time is 278 ms

(milliseconds taken into consideration for this small system) which is maximum in all the

executions. It is a small system so 278 ms may not affect the overall cost of the system

which also relies on the time taken for testing and system and finding all the faults, but

for large system if only APFD value is taken into consideration then cost may increase.

Here two test cases which were not able to detect the fault 2 were represented with the

NA.

Now if both APFD based prioritization and Execution time are taken into consideration

then the values obtained would be as follows:

39

Table 4.5: Prioritization of test cases on APFD and execution time Basis

Faults Test Cases

STS18 STS14 STS10 STS8 STS6 STS4 STS2 STS0 STS16 STS12

1 3 5 7 8 8 10 10 100 3 6

2 3 5 6 8 8 10 11 61 NA NA

3 3 5 6 8 9 10 11 61 3 6

4 3 4 6 8 9 10 10 56 4 6

Total

Time

Taken

By

Each

Test

Case

12 19 25 32 34 40 42 278 NA NA

It is clear from the table 4.5 that if we take into consideration execution time along with

APFD value then the overall cost of the testing can be minimized. As in this case are

faults were detected with an APFD value of .95 but in that case the execution time was

largest among all i.e. 278 m s. But same APFD value can be achieved with much reduced

time i.e. 12 m s.

40

CHAPTER 5

 CONCLUSION AND FUTURE SCOPE

Software testing is the process of evaluating software to detect differences between given

input and expected output. And regression testing is done whenever any change is made

in the system. This change could be any error removal or any update. In regression

testing, after any modification that modified part and the whole system is tested again to

check that the modified part has not made any defect in the working system.

For this the whole system is tested again. So it is costly due to large size of test suites in

system retesting. There will be large amount of time consume and more computing

resources would be used. To reduce the cost and time some techniques can be applied to

reduce the test suit which is to be applied to retest the system. It could be done by

applying one of technique that is test case prioritization.

Test case prioritization technique is that technique which schedule test cases in an

execution order according to some criterion. By this technique the maximum number of

faults can be found in less time and cost and so effectiveness will also improve. So, we

conclude that we improved the effectiveness of test case prioritization technique for

regression testing and prioritize test case by generating them from model of the system.

Prioritization was made by analyzing APFD value for non-prioritized test cases and also

another factor i.e. execution time. Analysis was made and our results showed better

results than the earlier research made in this field.

As a part of future work, this work was done on a small system and a small unit of time

i.e. millisecond was taken into consideration along with four faults and ten test cases. For

this research not to be system biased, it can be done on large system and other behavioral

representations of the system like sequence diagrams.

41

REFERENCES

[1]. Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad Mohapatra “A Survey On Model Based Test

Case Prioritization” International Journal of computer science and information technologies, vol. 2(3), (2011)

ISSN: 0975-9646, ISSN: 1042-1047.

[2]. L.UmaRani, R.Pradeepa “Prioritization Based Test Case Generation Using Regression Testing”

international journal of computer application, (2013), ISSN: 0975-8887.

[3]. Chandana Bharati, Shradha verma, “ Analysis Of Different Regression Testing Approaches”, international

journal of advanced research in computer and communication engineering, vol.2, issue 5, May 2013,

ISSN(print): 2319-5940, ISSN(online): 2278-1021.

[4]. Yanping Chen, Robert L.Probert, D. paul Sims “Specification-Based Regression Test Selection With Risk

Analysis”.

[5]. Leila Naslavsky “Using Traceability To Support Model Based Regression Testing”, ASE’07, November 5-

9, 2007, Atlana, Georgia, USA.

[6]. Bogdan Korel, George , “Experimental Comparison Of Code-Based And Model-Based Test Prioritization”,

IEEE International conference on software testing verification and validation workshop, DOI

10.1109/ICSTW.2009.45

[7]. Xiaobo Han ,Hongwei zeng, Honghao gao, “A Heuristic Model-Based Test Prioritization Method For

Regression Testing”, IEEE International symposium on computer , consumer and control, DOI

10.1109/IS3C.2012.226.

[8]. Ms. Sujata, Nancy Dhamija, “ Test Case Prioritization Using Model-Based Test dependencies: A Survey “,

International journal of information and computation technologies, ISSN:0974-2239 VOLUME 4, NUMBER

10(2014).

[9]. Leila Naslavsky, Hadar ziv, Debra j. Richardson, “Model-Based Selective Regression Testing With

Traceability”, Third IEEE International conference on software testing verification and validation, DOI

10.1109/ICST.2010.61.

[10]. Hema Srikanth, Laurie Williams, “Requirement-Based Test Case Prioritization”.

[11]. Kavitha V..R, “Requirement-Based Test Case Prioritization”,

[12].http://www.softwaretestinghelp.com/regression-testing-tools-and-methods/

[13] Praveen Ranjan Srivastva, “Test case Prioritization” , Journal of theoretical and applied information

technology 2005-2008 JATIT.

[14]. Prateeva Mahali,” MODEL BASED TEST CASE PRIORITIZATION USING UML ACTIVITY

DIAGRAM AND EVOLUTIONARY ALGORITHM”, International Journal of Computer Science and

Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013 .

[15]. Arup Abhinna Acharya,” Model Based Test Case Prioritization for Testing Component Dependency in

CBSD Using UML Sequence Diagram”, (IJACSA) International Journal of Advanced Computer Science and

Applications,

Vol. 1, No. 6, December 2010.

[16]. Eliane Collins “Strategies for Agile Software Testing Automation: An Industrial Experience “, 2012 IEEE

36th International Conference on Computer Software and Applications Workshops.

42

[17]. Bogdan Korel, “Model-Based TestPrioritization Heuristic Methods And Their Evaluation”, 2007

AMOST’07 , LONDON, UK.

[18252Fany%252F%3B1099%3B744

[18].http://www.tutorialspoint.com/software_testing/

43

APPENDIX

ABBREVIATIONS

APFD - Average Percentage Fault Detection

PORT - Prioritization of Regression Testing

PFs - Prioritization Factors

TCP - Test Case Prioritization

MLP - Most Likely Position

EFSM - Extended Finite State Machine

APBC - Average Percentage of Block Coverage

GA - Genetic Algorithm

