
Design of Embedded Linux Based Voice Calling

Device

DISSERTATION-II
Submitted in a partial fulfillment of the requirement for the award of the degree of engineering

MASTER OF TECHNOLOGY

In
Electronics and Communication Engineering

By

Mahendra Swain (11307913)

Under the guidance of

Mr. Abhishek Kumar Srivastava

Assistant Professor, ECE

 LPU, JALANDHAR

Department of Electronics & Comm. Engineering

Lovely Professional University

Jalandhar–144402, Punjab (India)

ii

ABSTRACT

Now a days, Linux is the choice for every OS compatible embedded platform. The design of

“Embedded Linux based Voice Calling Device” is a prototype designed using Raspberry Pi (Model

B), piTFT (2.8”), GSM Modem (SIM 900A) and python based programming for voice calling

purpose. At the core of this prototype, Embedded Linux kernel image have been implemented,

which is developed and customized using Yocto Project, used for reducing memory footprint (both

at kernel and package level) and adding selective features as needed. Bitbake (command line) and

hob (GUI based) are two available ways to customize LINUX packages in Yocto project to build

optimum sized Image with preferred features.

The Linux has been chosen for its advantages like open source, platform independent, more secure,

and development oriented. The Raspberry Pi board used is cost effective in comparison to other

available Linux operated boards (with optimum specs) and a have better community support.

Popularity of Raspberry Pi can be estimated that till date 5 million Raspberry Pi boards have been

sold as per survey done in Jan 2015.

The software platform used to design this prototype is Ubuntu 14.04 and programming language

used is Python 2.7. The use of Python programming language makes it more Real time and easy

to understand.

This Embedded Linux based device gives the flexibility to have multitasking feature with

minimum memory footprint and optimum speed on same platform which makes voice calling

possible along with available games or/and music or/and web browsing features etc. Till date, we

have successfully made voice transmission using custom LINUX over Raspberry Pi via GSM

modem using terminal (without using Pi TFT display).

iii

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Mr. Abhishek Kumar Srivastava Assistant

Professor, Electronics and Communication Engineering Department, Lovely professional

University, Jalandhar for his gracious flawless efforts and forth right suggestions blended with an

innate intelligent application have crowned my task with success. I am truly very fortunate to have

the opportunity to work with him. I found his guidance to be extremely valuable.

I am also thankful to entire faculty and staff members of Electronics and Communication

Engineering Department and my friends who contributed directly or indirectly through there

constructive criticism in evolution and preparation of this report work.

I extend my deepest gratitude to my parents and brother for their love, affection, encouragement

and support.

My acknowledgements would not be complete without expressing my gratitude towards Almighty

God. I feel very fortunate to come to know Him during all these months of my life and have

continually been blessed by His endless love ever since. He is the true shepherd of my life.

iv

DECLARATION

I hereby declare that the Dissertation-II report entitled “DESIGN OF EMBEDDED LINUX

BASED VOICE CALLING DEVICE”, is an authentic record of my own work carried out as per

the requirements for the award of degree of Master of Technology in ECE, Embedded Systems at

Lovely Professional University, Jalandhar under the guidance of Mr. Abhishek Kumar

Srivastava, Assistant Professor, Department of Electronics and Communication Engineering.

Dated: Mahendra Swain

 Reg. No. 11307913

It is certified that the above statement is correct to the best of my knowledge and belief.

Dated: Mr. Abhishek Kumar Srivastava

 Lovely Professional University

 Phagwara, Punjab

v

CERTIFICATE

This is to certify that Mahendra Swain (11306135) has completed objective formulation of his

Dissertation-II titled, “DESIGN OF EMBEDDED LINUX BASED VOICE CALLING

DEVICE” under my guidance and supervision. To the best of my knowledge, the present work is

the result of their original study and research. No part of the report has ever been submitted for

any other degree at any University. The thesis is fine for the submission and fulfillment of the

conditions for the award of degree Masters of Technology.

Mr. Abhishek Kumar Srivastava

Assistant Professor

ECE Department

Lovely Professional University

Phagwara, Punjab

Date:

vi

LIST OF ABBREVIATIONS

TFT Thin Film Transistor

GSM Global System for Mobile

GPIO General Purpose Input Output

GUI Graphical User Interface

Tx Transmitter

Rx Receiver

BSP Board Support Packages

GPU Graphics Processor Unit

SoC System on Chip

OS Operating System

vii

LIST OF FIGURES

Fig 1 Basic Block Diagram…………………………………………………………………..1

Fig 2 Raspberry Pi Model B………………………………………………………………….8

Fig 3 GPIO pins configuration………………………………………………………………..9

Fig 4 Pi TFT 2.8 inch (320x240)……………………………...…...10

Fig 5 GSM SIM 900 A Modem……………………………………………………………...10

Fig 6 SD-Card for Raspberry Pi……………………………………………………………...11

Fig 7 Raspberry Pi first boot…………..…………………………………………………….15

Fig 8 GUI for Raspberry Pi………………………………………………………………….16

Fig 9 Image building using Bitbake………………………………………………………….21

Fig 10 BitBake core image building…………………………………………………………22

Fig 11 BitBake successful image built………………………………………………………23

Fig 12 Successful build after removing error…………………………………………….…24

Fig 13 Hob main menu selection…………………………………………………………….27

Fig 14 Selection of hob target and basic image……………………………………...………28

Fig 15 Recipe work flow…………………………………………………………………….30

Fig 16 Hob default package for image……………………………………………………….31

Fig 17 Hob while building the packages……………………………………………………..32

Fig 18 Editing recipes………………………………………………………………………..32

Fig 19 Hardware connections………………………………………………………………..33

Fig 20 Physical Hardware interconnections…………………………………………………34

Fig 21 Serial to parallel conversion circuit. …………………………………………………35

Fig 22 SPI bus with single master single slave………………………………………………36

viii

Fig 23 ITEAD B02 3.2” LCD………………………………………………………………..36

Fig 24 Pi TFT 2.8” interfaced with Raspberry Pi……………………………………………37

Fig 25 Python based number dialer on Raspberry Pi………………………………………..38

Fig 26 Number dialer pad……………………………………………………………………39

Fig 27 Prototype during voice call…………………………………………………………..40

ix

TABLES OF CONTENTS

APPROVAL………………………………………………………………………………………i

ABSTRACT………………………………………………………………………………………ii

ACKNOWLEDGEMENT………………………………………………………………………..iii

DECLARATION…………………………………………………………………………………iv

CERTIFICATE…………………………………………………………………………..………..v

LIST OF ABBREVIATIONS……………………………………………………………….........vi

LIST OF FIGURES……………………………………………………………………………...vii

CHAPTER 1 INTRODUCTION…………..……………………………………………………...1

CHAPTER 2 LITERATURE REVIEW…..…………………………………………………........3

CHAPTER 3 EMBEDDED HARDWARE AND SOFTWARE SETUP………………………...6

 CHAPTER 4 RESEARCH METHODOLOGY………………………………………………...17

CHAPTER 5 RESULT AND DISCUSSION……………………………………………………36

CHAPTER 6 CONCLUSION AND FUTURE SCOPE………………………………………...41

CHAPTER 7 REFERENCES……………………………………………………………………42

1

CHAPTER 1

INTRODUCTION

The aim of the thesis is to design of an “Embedded Linux Based Voice Calling Device” using

Raspberry Pi. The Raspberry Pi is the product by the foundation of Raspberry Pi. It is based

on an ARM microcontroller produced by Broadcom that was originally designed for set-top

box and having many more applications in different field. It is a cost effective and multi

purposed device. This research focus on developing Embedded Linux based prototype which

can primarily make voice calls for which we need to configure Linux Kernel and customize

Linux packages as per application requirements and calibrate Pi TFT with Raspberry Pi for

proper touch sensitivity. The Raspberry pi has 26 GPIO pins through which Pi TFT 2.8” can

be interfaced. Pi TFT requires display driver which must be available in Linux kernel for its

smooth functioning. In case of Raspbian OS, we can add easily add display driver to it. For

making voice calls, GSM modem SIM 900A is used has to be interfaced with Raspberry pi

through TX and RX pins present in GPIO. Raspberry Pi is relatively low power hungry

device which can perform multitasking when compared to its opponents (of similar specs).

The Model A Pi draws power of 300mA, which shows the whole board can be powered from

USB port. The Model A Pi consumes power of 1.4 watts, whereas the Model B consumes at

most 3.5watts. If we add lot of power-consumable devices (like Pi TFT and GSM modem) to

our board, the amount of power consumption would increase considerably and we have to

look for alternative measures to reduce power, ex: sleep mode etc.

 Fig 1: Basic Block Diagram

GSM Modem SIM

900A
Pi TFT 2.8” (320x240)

Touch Screen

Raspberry Pi

Model B

2

CHAPTER 2

LITERATURE REVIEW

1. Building Linux Kernel for Raspberry Pi Hannu Flinck Nokia Solutions and

Networks +358504839522 hannu.flinck@saunalahti.fi:- This paper discuss about how

Linux kernel is built to ARM Raspberry Pi platform to enable kernel porting. The Linux

kernel had been built using available tool-chain via different methods for QEMU (target).

This paper describes the kernel basics, configuration files and the important ARM-specific

files. Initially, this file shows how to configure and compile an embedded Linux kernel using

gcc-4.6-arm-linux-gnueabi cross compiler. Then they had configured and compiled Linux

kernel for QEMU (taget). QEMU offers test and development environment that emulates the

target environment without a need for real hardware. Finally, they tell how to prepare a

Raspberry Pi system through Yocto embedded Linux tool chain that results into full SD card

image as a boot media. [1]

 2. Using Phase Behavior in Scientific Application to Guide Linux Operating System

Customization, 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’05) 1530-2075/05:- This paper, represents how to design a system

which can generate application-specified Linux images automatically for scientific

applications that execute using batched cluster resources. Key to this approach is the use of

recurring patterns in program performance, i.e., phase-behavior that can be exploited

potentially to guide automatic Linux customization and to enable significantly higher levels

in program performance. [2]

3. Porting the Linux Kernel to Arm System-On-Chip and Implementation of RFID

Based Security System Using ARM, International Journal of Advanced Research in

Computer Science and Software Engineering:- This paper emphasizes the porting of the

Linux kernel to an ARM board which is implementing the RFID (Radio Frequency

Identification) based security system using the ARM board. ARM system-on-chip is the

best platform for reducing the risk and the cost of SOC designs and thus accelerating the

speed, accuracy and flexibility. ARM boards are the combination of FPGA and ASIC

technology and hence provides the optimal solution in terms of speed, cost and time. [3]The

3

embedded modules based on ARM delivers varied tasks such as process management,

memory management and peripheral interfaces. Linux being an open source domain

provides an additional edge to the embedded systems and as Linux can be freely

downloaded so it can be compiled for any system architecture including ARM. For new

CPU architectures OS has to be configured, compiled burnt to the core and ported to the

target platform. [3]

Source: http://www.ijarcsse.com/docs/papers/Volume_3/5_May2013/V3I5-0184.pdf

4. Studying Main Differences between Android & Linux Operating Systems,

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05.

October 2012:-

This paper gives a comparative analysis between Android and Linux operating system. Some

of the key differences that this paper states are:

i) Android OS is an open source developed by Android, which is now owned by

Google, Inc. whereas Linux is developed as an open source operating system

under the GNU project by Linus Torvalds and others. [4]

ii) Android is developed for Mobile Internet Devices and mobile phones whereas Linux

is developed for desktops/laptops/servers.

iii) The Android operating system has its own C library called Bionic whereas Linux

systems use GNU C library.

iv) The Android systems use flash memory instead of hard drives while the standard

Linux systems use magnetic drives.

v) The Android systems have their own power manager whereas the Linux systems use

APM and ACPI to manage the power. [4]

5. Porting the Linux Kernel to a New ARM Platform, Wookey and Tak-Shing, Aleph

One • www.aleph1.co.uk: - This paper explains the importance of .config files in Linux

kernel porting in to ARM based platforms. It also tell the importance of linux/arch/arm/

directory and the codes present in this directories are kernel, mm, arch, hardware, boot,

defconfig etc. The certain options like menuconfig, kconfig are used to update the kernel

whereas the defconfig generate new Linux kernel according to the target. [5] Here the list the

4

most imperative files, and portray their motivation and the kind of things you ought to put in

them. It looks overwhelming to begin with yet a large portion of what is needed is simply an

issue of filling in the numbers suitable to our equipment. Since such a variety of distinctive

machines are bolstered it is uncommon that we need to compose much new code - about

everything can be taken from a suitable giver machine. This is less demanding to do in the

event that we know which machines have a comparative construction modeling to our own.

6. Raspberry pi user guide Eben Upton, co-creator of the raspberry pi: This article gives

the detail architecture of Raspberry pi, what are its possible uses and how to make it useful.

This guide also gives a knowhow on using GPIO ports, SPI in Raspberry pi, etc. It defines

the significances of DHCP server and VNC, in case of accessing the raspberry pi terminal on

Laptop Screen through Ethernet cable.

7. Analysis of TOI (Things on Internet) Industrial Monitoring System on Raspberry

pi Platform, International Journal of Computer Science and Mobile Applications, Vol.2

Issue. 11, November- 2014, pg. 33-40 ISSN: 2321-8363: This paper explains controlling

real time system from remote location using internet and also explains some sophisticated

features to monitor using smart phones from remote area locations. This research paper was

developed to produce web based temperature, humidity & pressure monitoring system that

allows to continue monitor these parameters. This system allowed the data to be anytime &

anywhere from the internet after we login into webpage. This research paper also concludes

that user can set limit range of the above parameters & if these parameters goes beyond that

value, it will turn off devices. With Ethernet-based, internet-enabled instrumentation, remote

access can be anywhere a smartphone has a signal

Source: http://ijcsma.com/publications/november2014/V2I1113.pdf

8. Linux kernel Development Manual, Yocto Project: This manual provides some

background information of Linux Kernel metadata. For building Linux kernel for Raspberry

pi requires different metadata depending on the applications, we are going to develop. (e.g.

Meta-raspberry). The repositories helps us to create new recipes. This manual also signifies

concept of patching, configuring files and the Board Support Packages available for

Raspberry pi. The Yocto Project also provides a powerful set of kernel tools for managing

Linux kernel sources and configuration data. We can use these tools to make a single

http://ijcsma.com/publications/november2014/V2I1113.pdf
http://ijcsma.com/publications/november2014/V2I1113.pdf

5

configuration change, apply multiple patches, or work with your own kernel sources. The

corresponding changes can be done as per requirement in the kernel level.

9. Smart Projectors using Remote Controlled Raspberry Pi International Journal of

Computer Applications (0975 – 8887): This paper proposes the use of Raspberry Pi and its

web interface, to store files that have been sent from remote sources and view these power

point files or Portable Document Files (PDF) on the projector. The proposed system aims to

substitute laptops with Raspberry Pi which will not only drastically reduce the cost involved,

but also will help achieving quality of service as the system will consume a smaller amount

of power, yet will provide the same functionality as any other similar system does. The

proposed system will be controlled by using a smart phone based remote control, thus adding

to the convenience. [7]

Source: http://research.ijcaonline.org/volume82/number16/pxc3892250.pdf

6

 CHAPTER 3

 EMBEDDED HARDWARE AND SOFTWARE SETUP

The equipment needed for this projects are mentioned in below:

3.1 Embedded Hardware Setup

1. Raspberry pi Model B

2. piTFT LCD 2.8” (Adafruit)

3. GSM modem SIM 900A

4. Micro SD card (8GB)

5. SD card reader

6. USB keyboard and mouse

7. Micro USB adapter for Power

8. Metal mini speaker

9. Mini Metal Microphone

10. 13x2 Serial Bus

11. Patch cable

Raspberry Pi Model B: The Raspberry pi is a cost effective minicomputer. It operates on

700 MHz frequency, with ARM 11 series controller. It supports USB ports, Model B has two

USB ports, Ethernet port, Audio jack 3.5 mm and SD card slot for installation with any

supported OS. Raspberry pi supports USB, Ethernet and HDMI ports, The 26 GPIO (general

purpose input output) the GPIO pins have SPI, I²C, and serial UART, 3V3 and 5V power.

The pins use a 3V3 logic level and are not able to tolerate logic levels of 5V.

In comparison to Raspberry Pi, other boards which are available in market are Beagle Bone,

Beagle Board, Panda Board, Odroid Board and many more. The Raspberry Pi has been

chosen for this research because it encourage the purpose of learning, innovation and

experimental studies with vibrant support community and relatively cheaper development

cost. In this project, Raspberry pi serves our purpose well as of providing Linux based

7

platform where we can add features like GUI for easy handling, Python based games, web

browser, music player, and many more as per need. The different parts of the Raspberry pi

has been shown in the figure 1

Fig 2: Raspberry Pi Model B

GPIO Pins: The raspberry Pi Model b has 26 GPIO pins for interfacing with other

peripherals. The GPIO pins configuration is shown in figure no 3. The GPIO voltage level is

maintained at 3.3 V, this is not tolerable to 5 volt power supply.

8

Fig 3. GPIO pins configuration

Pi TFT 2.8”: The piTFT 2.8" display comes with 320x240 16-bit color pixels and a resistive

touch sensitive. It uses the high speed SPI interface to the Raspberry Pi and can use the mini

display as a console. We have tested with ITEAD 3.2” ITB 02 LCD with Raspberry Pi but we

get some compatibility confliction. So, we have chosen piTFT 2.8” which is compatible with

Raspberry pi. Before using for our application the piTFT driver has to be installed to the

Linux Kernel we are going to use. The calibration has to be done for better touch response.

As per our requirement the display format from landscape to portrait can be customized by

changing the angle of rotation by 90 degree.

9

Fig 4: piTFT2.8” (320x240)

GSM Modem SIM900A

This GSM Modem SIM 900A can accept any GSM network operator through SIM card and

provides flexibility to make call and receive, message with its own unique phone number.

Fig 5: GSM SIM 900A Modem

SD-Card: It plays a vital role in Raspberry Pi for storing Operating system and boot loader.

The SD-Card used in Raspberry Pi Model B is the large one. In case of micro SD-Card we

10

can use SD- Card reader to fix the card in to the socket available in Raspberry Pi. Most

preferable SD-card for raspberry pi is of class 6 and size of 8GB. Depending on the speed the

SD-Card are of different types of class like class 4 which attains maximum speed of 4 MB/S

whereas class 10 gives the speed of 10MB/s. It is always recommended to take genuine SD-

Card and shutdown properly the raspberry pi board after remove the SD-Card from the

socket.

Fig 6: SD-Card for Raspberry pi

Power USB adapter: In order to power up the Raspberry Pi board 5 volt is required that can

be provided through the USB adapter. It is always referred to take good quality USB power

adapter for raspberry pi.

Audio interface with GSM: The mini metal micro-phone interfaced with GSM for audio

input and mini speaker has been used for audio output for the device. The Mini Speaker of

low resistance is preferred for audio interface with GSM Modem.

Patch or LAN cable: The network access of the Raspberry Pi on Laptop interfaced through

the patch cable. Through a particular IP address the Raspberry Pi able to communicate with

the Laptop. The LAN cable mostly used for wired network connection with others

computers. Since Raspberry pi supports Ethernet so that can be connected to the other

computer or Laptop in order to achieve terminal mode of Raspberry pi on laptop.

13x2 Serial Bus: The 13x2 serial bus is connected to the GPIO pins of the Raspberry Pi to

interface peripherals to it. The serial bus allows to connect peripherals from GPIO pins.

11

3.2 Embedded Software Setup:

1. Linux OS (Ubuntu 14.04)

2. Raspbian OS (from www.raspberrypi.org)

3. Yocto for image building

4. Python

Linux OS: The Linux platform has been chosen for this research work. The Linux

distribution Ubuntu 14.04 is used in host system. Since the research work is Linux based so

Linux is the appropriate platform for compilation. The Linux gives other advantages like

command line mode which is quite a powerful tool in many aspects.

Raspbian OS: Raspbian operating system is a Debian based used in Raspberry pi. It contains

all the packages required for the Raspberry pi basic operations. Raspbian is basically

designed for the Desktop environment. The packages can be customized as per our

requirement. The package customization has been explained in the methodology.

Yocto Project for target image build: Yocto project has been used in this research for

building of custom Linux operating system for raspberry pi. The Yocto Project is freely

available Linux image building tool which provide us to create or build new Linux Image for

our target. The Yocto Linux kernel is independent of hardware platforms ARM, PPC, MIPS,

x86, and x86-64. The recommended Linux distributions for Yocto Projects are Fedora,

openSUSE, Debian, Ubuntu, or CentOS .We need minimum of 50 GB of free space on the

disk in order to building images. The Open Embedded build system requires the some

packages exist on our development system (e.g. Python 2.6 or 2.7).The source repository for

Yocto project can be downloaded from Yocto project.

By using command $ git clone git://git.yoctoproject.org/poky

The Yocto project used two basic methods to build image for Raspberry pi one is using

Bitbake and another one is using hob.

BitBake: BitBake was originally a part of the Open Embedded project. BitBake has certain

significances .These are BitBake, a generic task executor BitBake is a generic task execution

engine that allows shell and Python tasks to be run efficiently and in parallel while working

within complex inter-task dependency constraints. BitBake executes tasks according to

provided metadata that builds up the tasks. Metadata is stored in recipe (.bb) and related

http://www.raspberrypi.org/

12

recipe "append" (.bbappend) files, configuration (.conf) and underlying include (.inc) files,

and in class (.bbclass) files. The metadata provides BitBake with instructions on what tasks

to run and the dependencies between those tasks. BitBake includes a fetcher library for

obtaining source code from various places such as local files, source control systems, or

websites. Some important original goals for BitBake are: Handle cross-compilation. handle

inter-package dependencies (build time on target architecture, build time on native

architecture, and runtime).Support running any number of tasks within a given package,

including, but not limited to, fetching upstream sources, unpacking them, patching them,

configuring them, and so forth. Linux kernel configuration for target systems like Raspberry

pi and beagle bone board.

Hob: The hob is graphical user interface for the Bitbake. Which is powerful and easy to

handle all the packages required for the Raspberry Pi. The image building process using by

the hob has been explained in research methodology.

Python: python is a powerful programming language used in Raspberry pi. The advantages

to use python in this work is it makes bridge between the software computing and real time.

The python 2.7 version has been used. The syntax is simple, standard, emphasis on

readability. Python version 2 and 3 both are recommended in Raspberry pi. It allows us to

create Graphical User Interface in real world where as other programming languages are not.

The execution, compilation are easier than others.

3.3 Experimental Works

 As per experimental work is concerned, I have flashed the SD card with Raspbian OS

with suitable display driver both using windows platform as well as Linux.

 We have interfaced Raspberry Pi with my laptop screen to access Raspbian OS in

text mode and access Raspbian OS file system

 We have also accessed Raspbian OS in graphical mode on laptop screen using VNC

server

 Finally, we have witness the Raspbian OS on Pi TFT 2.8” from Adafruit and made

small python application run on Raspbian OS.

13

3.3.1 Flashing of Raspbian in to SD card

 Using win Disk-32 manager.exe on Windows

 We have to download Raspbian from http://www.raspberrypi.org/downloads

 Extract the zip file on to a directory

 SD card was inserted Laptop

 Image file was selected (example 2012-10-28-wheezy-raspbian.img) to be written to

the SD card

 Target device has been selected for "Write to device" after sometime the SD card was

ready

3.3.2 Using the Linux command line

In case of Linux, we can use "dd" tool can overwrite any partition of SD card. Download the

zip file containing the image from a mirror or torrent http://www.raspberrypi.org/download

extracting the image, with unzip ~/2014-10-11-wheezy-raspbian.zip

Run $df -h to see what devices are currently mounted

$umount /dev/sdd1

$sudo dd if=path_of_your_image.img of=/dev/diskn bs=1M

Note that if we are not logged in as root you will need to prefix this with “sudo” Instead of

“dd” we can use “dcfld”; it will give a progress report about how much has been written.Now

we can inserted the Flashed SD card to SD card socket given on Raspberry pi board.

3.4 Set-up of Raspberry Pi to access laptop screen as command-line display

on Ubuntu 12.04

We have performed this work on Ubuntu, the procedure I am mentioning below first I have

connected Raspberry pi to Laptop through Ethernet cable. I edited the wired connection setting,

IPv4Settings- Method: Shared to other computers, click Save. Now, my laptop is able to find

Raspberry Pi. .I have used command "$ifconfig", it prints out "inet addr: 10.42.0.1 Bcast: 10.42.0.255

Mask: 255.255.255.0".Now by using nano editor the following set up was written and saved.

auto lo

iface lo inet loopback

http://www.raspberrypi.org/download

14

iface eth0 inet static

address 10.42.0.2

netmask 255.255.255.0

Initially, laptop /etc/network/interfaces setup is given

auto lo wlan0

iface lo inet loopback

$sudo apt-get install nmap

$sudo nmap –sP 10.42.0.2-254

Using ssh command as "$ssh pi@10.42.0.2" on the laptop, username is pi, then enter my

password: raspberry, which is default password, and finally my Raspberry Pi with my laptop

connection established on Ubuntu 12.04.

3.5 First Boot of Raspberry pi

After inserting the SD-card in to the raspberry pi slot for SD card, it will start booting is

given below in the figure.

 Fig 7: Pi First Boot

Now, it will as for the Login id and password, the

Login id: ~$ pi

Password:~$ raspberry

mailto:pi@10.42.0.2

15

These are the default id and password. For Graphical User interface we have to write the

command “startx” the x window as shown in figure 8.After the experiment setup complete, now

we will able to see the X window of raspberry pi given below in figure

 Fig 8: GUI of Raspberry pi

16

 CHAPTER 4

 RESERCH METHODOLOGY

4.1 Top-Down approach

4.1.1 Using Raspbian OS

Many of the applications designed for Embedded Systems does not require X11 and we want

to keep the files which are really needed in to the SD card to reduce memory foot print as

possible. So we decided to prepare minimal image for Raspberry Pi. Those packages are not

needed for my application we can remove that packages. The different steps involved are

Step 1: Fresh Raspbian image with piTFT driver has been flash on SD-Card

Step 2: Customization of Raspbian as per required

Step 3: Add/modify Python based GUI for voice calling device

Step 4: GSM modem interface

Step 5: Result as per required

4.1.2 Removal of unwanted Packages

To remove the packages we have to access raspberry pi terminal on host through SSH.

Now, we can check the file system size used avail use% mounted on

$pi@raspberry~ df –h

X11 windows, omxplayer, LXDE, Scratch, Wolfram is not needed we can remove this

package by invoking the command

$ sudo apt-get remove x11-common midori lxde python3 python3-minimal

$ sudo apt-get remove lxde-common lxde-icon-theme omxplayer raspi-config

$ sudo apt-get autoremove

17

After removing the extra packages from the raspbian the size becomes 931MB .The size can

be reduced up to 84 MB but in our case we need python, pygame packages which acquire

memory space up to 380MB.

4.2 Bottom-Up Approach

Using Yocto Project

.4.2.1 Yocto on Raspberrypi

The Yocto project can be used to build customized Linux kernel for Raspberry Pi. Since

Yocto supports ARM platform. The different steps involves in it are

Step 1: Download Yocto for Raspberry Pi

Step 2: Package selection for custom Linux OS

Step 3: Build the packages and generate Linux image for it .If build succeed? Then add

piTFT driver in order to interface with piTFT 2.8”

Step 4: Flash the image on to SD-Card and plug in to Raspberry Pi.

The following BSP layer naming schemes are used in Yocto: we are going to use meta-

raspberrypi, which is master branch of meta-raspberrypi.

$ cd poky

 $ “git clone git://git.yoctoproject.org/meta-raspberrypi.git”

4.2.3 Configuring the host

Here, we have used Ubuntu 12.04 to generate the image for that we need to install the

required packages on Ubuntu to build the Yocto image. The command to install the essential

Ubuntu packages is:

$”sudo apt-get install gawk wget git-core diffstat unzip texinfo \

 build-essential chrpath libsdl1.2-dev xterm”

18

4.2.4 Preparing the environment

First, We have downloaded Yocto with this command:

$git clone git://git.yoctoproject.org/poky

Then we have move into poky directory and download the required layers: meta-raspberrypi

and with this commands:

$cd poky

$git clone git://git.yoctoproject.org/meta-raspberrypi

To create our build directory and configure the system to build a Yocto image for a Raspberry

Pi board with the command:

 $.oe-init-build-env raspberrypi

4.2.5 Configuring Linux Kernel Using Bitbake:

The development system will be created into the raspberrypi directory. In the

conf directory there are the two configuration files: local.conf and bblayers.conf.

The main parameter that we can customize in the local.conf are:

MACHINE? = "raspberrypi"

DL_DIR? = "/home/mahi/downloads"

IMAGE_FEATURES += "package-management"

MACHINE is used to specify the target type. DL_DIR can be used to specify the directory

where source tarballs are downloaded during the build process. IMAGE_FEATURES is used

to install rpm tool, to add to the image new packages. In the bblayers.conf file you have to

add the path for the new layers to BBLAYER variable:

BBLAYERS ?= " \

 /home/mahi/yocto/poky/meta \

 /home/mahi/yocto/poky/meta-yocto \

 /home/mahi/yocto/poky/meta-yocto-bsp \

 /home/mahi/yocto/poky/meta-raspberrypi \

"

In this case, We have added the last one line, with meta-raspberrypi and meta-openembedded

layers.

19

4.2.6 Build and install the system

To build the system we have to use the command bitbake from

the /home/mahi/yocto/poky/raspberrypi/ directory. The command was used “bitbake rpi-

hwup-image “to build a minimal system, without the graphical environment .The images was

in poky/raspberrypi/tmp/deploy/images/raspberrypi directory. The image named as “rpi-

hwup-image-raspberrypi.rpi-sdimg”.Now, the image can be flush to SD-card and plugged to

Raspberry pi perform respective tasks.

Snapshots during building image using Bitbake: During the build of image these

snapshots are taken on native system. These snapshots are taken during the building the

custom image for raspberry Pi.

20

 Fig 9: Image building using BitBake

 `

21

 Fig 10: BitBake Core image building

22

 Fig 11: BitBake successfully image built

23

Fig 12: Success build after removing error

24

4.2.7 Board Support Packages (BSP)

It plays an important role in customization of Linux kernel build for specific target. In our

case the target is Raspberry pi. A Board Support Package (BSP) is a set of programs which

defines how to support a particular hardware device, example piTFT (2.8), or hardware

platform. Addition and Removal of packages as per requirement the yocto project provides

flexibilities to build Linux kernel as per our requirement for target.In our case, the packages

needed for us are

(i) Python

(ii) Pygame

(iii) Gcc

(iv) openssh /dropbear

(v) vi editor

(vi) wget

(vii) libsdl

(viii) package manager

(ix) Bash

(x) Tar

(xi) xorg

The required packages can be add to build the Linux kernel for Raspberry pi using hob. As

the packages get added to the image the size of the Linux OS increases.This also can be

added using terminal mode also. For that, we need to add the required packages name in the

local.conf file present in conf directory of raspberry. The line which is to be add to the

local.conf file inorder to get “nano” and “wget” are

IMAGE_INSTALL_append =”nano”, similarly for “wget”

IMAGE_INSTALL_append=”wget”

25

4.2.8 Linux Kernel Customization using hob

Hob is a graphical user interface for BitBake. Its primary goal is to enable a user to perform

common tasks more easily. The steps followed in hob are

Step 1: Build images

Step 2: Edit existing image recipes

Step3: Create our own image recipes

Step 4: Deploy images to target device

Before running Hob, we need to make sure our environment set up. To do that we have to run

the environment script.

$. oe-init-build-env

After the environment script finishes, we typed

$ hob

The Hob initial screen will appear as shown in figure 1. When Hob has launched, we should

switch to "Settings" dialog and to make sure everything is set up for how we want to build as

per our target. By default, the Hob "Settings" dialog provides reasonable values for the

different variables.Hob is independent on BitBake. It does not affects the bblayers.conf file.

Hob takes the update value from local.conf for configuring the parameters given below.

MACHINE =”raspberrypi”

PACKAGE_CLASSES= “package management”

DISTRO=”poky”

DL_DIR=”home/mahi/downloads’

PARALLEL_MAKE=”-j6” (for i3 processor)

GPU_MEM = “16”

26

 Fig13: Hob main menu selection

4.2.9 Building images:

Once we are done with settings and saved, we can decide to take one of the profile for the

target machine for which platform we are going to build the image. The Hob machine

selection menu once we pick the target machine, recipes are parsed. After the recipes are

parsed, we can set image-related options using the "Advanced configuration" dialog.

27

 Fig 14: Selection of Hob target and basic image

Image types: The different distribution are used (e.g. poky, poky-lsb, etc.), and the types of

root file systems we want to build or produce the Output: The package types, the size of our

image and the option to populate an SDK for a certain host platform.

4.2.10 Creating own recipes

In case, we need to decide the type of image recipe we decided to build for our target. We can

choose from many image recipes. Hob will also show a brief explanation of our selected

image recipe as per our requirement. If we want to customize the recipes and packages

included by default in our selected image recipe, we can "Edit image recipe" according to

our requirement image. When we want to modify the kernel recipes, it is better to go for that

28

which can be created and prepared as per our own layer do our work. The layer has BitBake

append files such as (.bbappend).

4.2.11 Creating Layers

Layers allow us to differentiate different types of customizations from each other. The Source

Directory has its own general layers for the hardware and Board Support Packages layers.It is

not mandatory that a layer should be begin with the prefix as meta-, which is commonly

recommended standard in the Yocto Project. Some of the widely used Layers are meta,

“meta-skeleton”, “meta-selftest”, “meta-yocto”, and “meta-yocto-bsp”.

4.2.12 Creating Our Own Layer

It is better to create our own layers for the hardware in order to support the package

dependency. We have to be careful before creating a new layer that someone should not has

already created a layer which having containing the Metadata we need.

(i)Creation of Directory: Creation of a directory involve our layer only. It is not needed, use

prefix string meta. Ex: “meta-mylayer”, “meta-GUI_xyz”and “meta-mymachine”

(ii)Creating a Configuration File: Inside our new layer directory, we need to make a file of

conf/layer.conf f. It is quite helpful to take an existing layer configuration then modify the

file as per our need. We have a conf and classes directory that can be added to BBPATH

 BBPATH. = ":${ LAYERDIR}" The config file and the class folder are appended to the file

named as BBPATH. The recipe work flow diagram shows in the figure 18. Which represents

general working flow of the selecting recipes and adding the layers to it.

29

Fig 15: Recipe work flow (source: http://www.yoctoproject.org/docs/1.6.1/kernel-dev/kernel-

dev.html)

Note

As per our requirements are concerned we need Python, Pygame, libsdl, gcc (full version)

Wget, tar, nano, bash, openssh. As the packages get added to the recipes the size of the

custom image increases.

http://www.yoctoproject.org/docs/1.6.1/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.6.1/kernel-dev/kernel-dev.html

30

Fig 16: Hob default packages for image

Once we are satisfied with the set of recipes, we can proceed by clicking the "Build

packages" button. Or, we can cancel our changes and come to the main menu by click on the

"Cancel" button. Here the figure shows is how the screen looks like during package building,

when the packages are built, the image can be further modified by selecting what are the

packages actually we want to include asper our requirement.

31

 Figure 17: Hob while building packages

By Click on a package we can see some additional details about it. The information includes

the list of files that the package will install into the root file system. Once you are satisfied

with the set of packages. The packages can be further selected after building; if the respective

packages are not available we can rebuild the image.

Figure 18: Editing recipes

32

The building of images takes time to compile depending on the native processor and internet

speed. Approximately it take 10 to 12 hours for i5 processors. Our customized image is

available in tmp/deploy/images/ directory having the name hob-image-raspberrypi.rpi-sdimg.

Now it is ready to be flush in to SD-card. When the packages are not compatible according to

our configuration the build stops automatically. So we have to be careful about the packages

before we start building. Once build is done, we can flash our SD card with the custom image

and insert it to Raspberry pi SD card socket. After giving the power supply we access the

Yocto based Embedded LINUX using host terminal through SSH, acting as root and no

password.

$ssh root@10.42.0.33

Where 10.42.0.33 is the IP address generated by nmap.

4.3 Hardware Connections:

The Raspberry Pi is interfaced with piTFT using 26 GPIO Pins. The GSM Modem SIM 900

A interfaced with Raspberry pi through serial communication using Tx and Rx pin. Tx, Rx

pins of Raspberry pi have been connected to the Rx and Tx pins of GSM modem respectively

having common ground. The audio input and output are interfaced to mini metal microphone

and mini speaker from GSM modem through dedicated pins.

Rx PIN

Tx PIN

Gnd SPK(+)

 SPK(-)

 MIC(+)

 MIC(-)

GSM SIM 900A

 (6th pin) Gnd

 (8th pin) Tx

 (10th pin) rx

Raspberry pi

Speaker

MIC

mailto:root@10.42.0.33

33

 Fig 19: Hardware connections

 Fig 20: Physical Hardware interconnections

4.4 SPI in Raspberry pi

It It is quite simple and easy to use serial protocols in embedded system. Less number of pins

are used and reduce complex functionality. Focusing on the Serial Peripheral Interface (SPI),

this paper explains the reasons to test and debug a SPI port

Serial Parallel interface can save the use of GPIO pins on raspberry pi. SPI uses five pins of

Raspberry pi MISO (pin 09), MOSI (pin 10, CLK (pin 11), CE 0(pin 8), CE 1(pin 7).

34

The advantages, we will get

 Most of the GPIO pins will be free for other peripherals.

 The data transfer rate also increase in case of SPI compared to serial communication

with the peripheral devices.

 Easy handling of data

 No limitations of 8 bit data

 Push – pull drivers give very good result with high speed

,

Fig 21: Serial to parallel conversion circuit

4.4.1 Serial to Parallel Interface:

The Devices able to communicate in master/slave mode when the master device initiates with

the data frame. Many number of slave devices are allowed with individual slave selector

lines. SPI is also called as four-wire serial bus, depending on the three-, two-, and one-wire

serial buses. SPI is referred as SSI (Synchronous Serial Interface)

35

 Fig 22: SPI bus with Single master single slave

The SPI bus has four logic signals are given below:

SCLK: Serial Clock (output of the master).

MOSI: Master Output, Slave Input (output from master to slave).

MISO: Master Input, Slave Output (slave to master).

NOTE We can interface Raspberry pi with ITEAD LCD b02 having 40 input/output pins .In

this case we need SPI, except that we have used PI TFT 2.8 having 26 GPIO pins.

 Fig 23: ITEAD B02 3.2” LCD

36

 CHAPTER 5

RESULT AND DISCUSSION

After getting all the hardware components, we have interfaced pi TFT with Raspberrypi

(Raspbain OS). With Yocto based Embedded LINUX, interfacing of piTFT could not be done

yet (calling takes place via host terminal) since the piTFT driver is kept in staging mode by

Yocto people and would be involved in meta-raspberrypi only in Linux 3.20 kernel and

currently we are running Linux 3.18.11 kernel. In case, we want to use ITEAD B02 3.2 inch

TFT, we need to implement SPI circuit since it has 40 GPIO pins and Raspberrypi have only

26 pins.

5.1 Interfacing piTFT with Raspberry pi:

Raspberry pi can be interfaced with piTFT 2.8, since it has 26 GPIO pins. The GPIO pins are

connected through 26 pin serial Bus as shown in figure. Then the Raspbian OS starts booting

and after login, the graphical x window displayed. The SD card contains the piTFT driver

with Raspbian.

Fig 24: Pi TFT 2.8” interface with Raspberry pi from Adafruit

 We have used python for making GUI (Graphical User Interface) for number dialer.

37

 Fig 25: Python based number dialer on Raspberry pi

 Successful voice transmission between sending and receiving end with optimum

voice clarity.

 Successful customization of Linux OS from 3.3 GB to 300 MB (without GUI &

Python)

 The piTFT (2.8”) has been calibrated to perform touch sensitive and we have used

this feature to write text, draw graphics

 Successful Yocto image build for raspberry Pi Basic image of 13 MB,

330MB(without GUI and python) and 650 MB(GUI + Python)

The number dialing and making call in device are shown in figures with LPU logo. The

audio interface with GSM modem gives clear voice clarity at transmitter as well as

receiver end.

38

Fig 26: Number dialer pad (using python GUI)

The Python graphical user interface have been designed for call dialer pad which is touch

sensitive. The graphical buttons designed are simple and responsive. There are two

buttons on the GUI one is dedicated to dialing CALL and another one is for DEL button

which is used to rectify as per the numbers of character dialed. The wallpaper decided

for the device is having LPU logo. When the call button get pressed the python code

starts to communicate with GSM SIM 900A and call get forwarded. The hanging button

allows dropping the call after conversations get over. The custom images created by

Yocto having some compatibility issue with piTFT 2.8” depending the Linux Kernel

architecture armel and armhf. The Yocto image is having all the BSPs required to run the

python GUI code. The result on the Yocto image would be similar to this.

39

 Fig 27: Device During voice call

40

 CHALLENGES FACED

Here are the some challenges faced while developing this prototype:

 Interfacing of ITEAD LCD 3.2 (ITB02) with Raspberry pi using SPI communication

protocol.

 Customization of LINUX Kernel with piTFT driver (for piTFT 2.8 from adafruit)

 Packages dependencies on ARM architecture “armel” and “armhf” in Raspberry pi.

41

 CHAPTER 6

 CONCLUSION & FUTURE SCOPE

Embedded Linux based voice calling device will produce a voice call alternative to

mobile devices with its stationary appearance. Due to its stationary format, it will not suffer

with battery drainage issue and may act as secondary voice calling device to any home, at

time of emergency. The device has been customized at kernel and package level in order to

get less memory foot print and application specific so that it can support more applications as

required in future. The successfully voice transmission over the transmitter and receiver end

has verified with optimum clarity which was our main objective. Due to limitation of funds,

we have restricted to voice calling feature only.

FUTURE SCOPE

This device features are not restricted to voice calling only, some extra features can be added

to enhanced performance of this device. We may also connect it to battery to make add

portability to device. Since it supports Embedded LINUX, it could be loaded with other

useful applications like web browser, games, music player, image processing application, etc.

Other possible areas of uses of such devices could be home security surveillance,

multifunctional device, and many more. This device features can be enhanced for better user

experience. Ex: it can be used for Speech Recognition, WI pi server, video surveillance,

robotics and automation and many more. To make it smart it can be connected to Wi-Fi

dongle so that internet can be accessed on this device.

42

 CHAPTER 7

REFERENCES

[1] Building Linux Kernel for Raspberry Pi Hannu Flinck, Nokia Solutions and Networks

hannu.flinck@saunalahti.fi

[2] Using Phase Behavior in Scientific Application to Guide Linux Operating System

Customization, Chandra Krintz Rich Wolski Computer Science Department University of

California, Santa Barbara, IEEE computer society, 2011

[3] Porting the Linux Kernel to Arm System-On-Chip and Implementation of RFID Based

Security System Using ARM, International Journal of Advanced Research in Computer

Science and Software Engineering

[4] Studying Main Differences between Android & Linux Operating Systems, International

Journal of Electrical & Computer Sciences IJECS-IJENS Vol:12 No:05. October 2012 [TA6]

Android ology I: Architecture

http://www.android.com/about/videos.html#video=androidologyiarchitecture

 [5] Porting the Linux Kernel to a New ARM Platform, Wookey and Tak-Shing, Aleph One •

www.aleph1.co.uk

 [6] Learn the INS and OUTs of Linux The operating System that runs Raspberry pi

 By peter Membrey and David Hows

 [7] Smart Projectors using Remote Controlled Raspberry Pi International Journal of

Computer Applications (0975 – 8887)

(http://research.ijcaonline.org/volume82/number16/pxc3892250.pdf

[8]http://www.engineersgarage.com/embedded/raspberry-pi/controlling-hardware-using-

gui-in-raspberry-pi

 [9] https://learn.adafruit.com/ raspberry pi projects

 [9] http://ozzmaker.com/tag/raspberry-pi-2/

mailto:hannu.flinck@saunalahti.fi
https://learn.adafruit.com/

43

 [10] http://cagewebdev.com/index.php/category/raspberry_pi/

[11] http://www.raspberrypi.org/

[12]http://blog.iteadstudio.com/raspberry-pi-sim900-gsmgprs-module-adapter-kit/

[13] https://learn.adafruit.com/fona-tethering-to-raspberry-pi-or-beaglebone-black?view=all

[15]http://www.raspians.com/Knowledgebase/setting-up-a-remote-desktop-view-the-pi-on-

your-windows-pc/

[16] http://www.shirwahersi.com/content/how-use-minicom-linux-serial-port-comunication

[17]https://help.ubuntu.com/community/Minicom

[18]http://engineering-with-a-rpi.blogspot.in/search/label/raspberrypi

[19]https://communities.intel.com/message/246077#24607

[20]http://www.tutorialspoint.com/python/tk_button.htm

[21]http://python-gtk-3-tutorial.readthedocs.org/en/latest/spinner.html

[22]http://www.icttm-iitd.in/paper-submission.html

[23]http://www.yoctoproject.org/docs/1.7.1/dev-manual/dev-manual.html#new-recipe-

writing-a-new-recipe

[24]http://www.raspberry-projects.com/pi/programming-in-python/gui-programming-in-

python/tkinter/tkinter-general

[25]http://inventwithpython.com/blog/2012/10/30/creating-a-button-ui-module-for-pygame/

[26]http://www.cnx-software.com/2012/07/31/84-mb-minimal-raspbian-armhf-image-for-

raspberry-pi/

[27]http://www.linuxsystems.it/raspbian-wheezy-armhf-raspberry-pi-minimal-image/

[28]https://community.freescale.com/docs/DOC-94849

[29]http://www.python-course.eu/tkinter_buttons.php

[30]http://python-gtk-3-tutorial.readthedocs.org/en/latest/iconview.html

http://www.raspberrypi.org/

44

[31]https://www.raspberrypi.org/learning/python-for-vb-programmers/worksheet/

[32]http://www.averagemanvsraspberrypi.com/2014/07/how-to-set-up-adafruit-pitft-for.html

[33]http://www.cnx-software.com/tag/debian/page/9/

