

A Dissertation

Submitted

By

Rekha Rani

11306293

To

Department of Computer Science and Engineering

In partial fulfilment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

Under the guidance of

Mr. Balraj Singh

(May 2015)

Software design enhancement using refactoring

ii

iii

ABSTRACT

Refactoring is the process of improving the design of code by changing its internal structure

without affecting its external behavior. Refactoring method is useful for easily readability, reduce

bugs and for improving software quality attributes. There are many refactoring methods that are

apply on internal attributes such as OOCK metrics, each method has a particular purpose and

effect. The effects of refactoring method on software quality attributes vary a lot. Refactoring is

able to reduce the complexity of the software. In this work, we are applying the refactoring on the

OOCK metrics and have measureable effects on quality attributes.

Keywords: Software metrics, Software quality attributes, Refactoring methods.

iv

CERTIFICATE

This is to certify that Rekha Rani has completed M.Tech dissertation proposal titled “Software

design enhancement using refactoring” and its effects on Quality Attributes” under my guidance

and supervision. To the best of my knowledge, the present work is the result of her original

investigation and study. No part of the dissertation proposal has ever been submitted for any other

degree or diploma. The dissertation proposal is fit for the submission and the partial fulfillment of

the condition for the award of M.Tech in Information Technology.

Date: Signature of Advisor:

 Name: Balraj Singh

v

ACKNOWLEDGEMENT

First of all, I would thank to Almighty god, who has always blessed me and for giving me strength

to do this work. I wish to express my deep gratitude to my guide, Mr. Balraj Singh for his generous

guidance. His guidance and support enabled me to conduct the research. Without his support, I

would not be possible to complete this program. I owe my loving thanks to my friends and

colleagues, without their cooperation, encouragement and understanding it would have been

impossible for me to finish this work. Lastly, and most importantly, I remain indebted to my

parents, well-wishers and Almighty for always having faith in me and for their endless blessings.

 Rekha Rani

 11306293

vi

DECLARATION

I hereby declare that the dissertation proposal entitled, “Software design enhancement using

refactoring” submitted for the M.Tech Degree is entirely my original work and all ideas and

references have been duly acknowledged. It does not contain any work for the award of any

other degree or diploma.

Date: Rekha Rani

Registration no.11306293

vii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ..1-13

1.1 Refactoring..1-4

1.1.1 Refactoring Methods ...4-5

1.2 Software Metrics...6

1.3 Software Quality attributes..7

1.4 Relation of refactoring to metrics and software quality..7-9

1.5 Reasons for Refactoring..9-10

1.5 Why refactoring is done? …………………………………………………………....10-11

1.5.2 When to refactor the code? ……………………………………………..…………11-13

CHAPTER 2. REVIEW OF LITERATURE ...14-23

CHAPTER 3. PRESENT WORK..24-27

3.1 Problem formulation ..24

3.2 Objective ..24

3.3 Methodology..25-27

 CHAPTER 4. RESULTS AND DISCUSSIONS ...28-34

 CHAPTER 5. CONCLUSION ANF FUTURE WORK ..35

CHAPTER 6. REFERENCES ..36-37

viii

LIST OF FIGURES:

Fig 1.1 Refactoring process ……………………………………………………………………....4

Fig: 3.1 the flow chart of Proposed Approach …………………….…………………………….26

Fig 4.1 Result of the refactoring approach ………………………………………………………28

Fig 4.2 metrics value before refactoring …………………………………...................................29

Fig 4.3 metrics value after refactoring ………………………………………………………….30

Fig 4.4 Quality attribute before refactoring ……………………………………………………..32

Fig 4.5 Quality attribute after refactoring ……………………………………………………….33

Fig 4.6 Comparison of quality parameters ………………………………………………………34

List of tables:

1.1 Refactoring methods for the Object Oriented Software …………………………………...…5

4.1 Comparison of value of software ……………………………………………………………30

4.2 Comparison of quality parameter ……..…………………………………………………….35

1

CHAPTER 1

 INTRODUCTION

A software handles the real world problems and so it adapts to make the changes that occur in

problem domain. A software developed by the developer is passed through the number of phases.

Different models are used for development of software. Some examples of the software models

are Waterfall model, Evolutionary model, Prototype model, Incremental model, Spiral model and

the Object-Oriented model. Software development phases include the requirement gathering

phase, designing phase, programming phase, testing phase and the maintenance phase. During the

development and the maintenance phase, we also change and improve the code. Changing and

Improving of code is done by the fixing of bugs and by the addition of new requirements

1.1 Refactoring

One basic process is used to improve the code of software is called “Refactoring”. Refactoring is

the approach that is used for refining the internal part (code) of software without affecting its

external activities. Refactoring is performed while improving the internal structure of the software

by adding some new features in the software. Refactoring is a technique that is used to reduce the

complexity of the software by improving its internal structure by fixing bugs or by adding new

features. We used the software metrics – Object Oriented chidamber and kemerer metrics, in this

six metrics are include that are used as internal attributes of the software. The examples of quality

attributes are Adaptability, Completeness, Maintainability, Understandability and Testability.

These quality attributes can act as external attribute of the software. This research work mainly

concerns with three factors that are included for research first one is Refactoring Methods, second

one is software metrics and third one is software quality attributes. Refactoring is used for

improving the code is directly measured the software metrics and indirectly measured the software

quality attributes.

One common concern with refactoring is that it also effects on the performance of the software.

Refactoring is the one method to achieve the better quality. Refactoring is mainly concerned with

the reengineering process. Reengineering is also a process that is related to the changes to improve

the software quality. Refactoring is generally accepted for the purpose of maintainability of

2

software system. The concept of refactoring is also considered as the transformations of the source

code, without changing the visible behavior, to make the software stress-free to understand and

reuse. Refactoring is used for the incremental improvement in the software quality through the

different refactoring methods that are used in the code at right place. Different refactoring methods

are applicable for particular purpose and effect. Refactoring is manual process that is used to

remove or weaken quality defects for the improvement of the software quality. Refactoring is an

active approach to extend the software life-time. The impact of refactoring on the software system

varies. The poorly designed code is too harder to maintain, test and implement. The basic goal is

related to refactoring is the safe transformation of the code to improve the quality. In software

program, the word “Smell” means potential problem in the code. In the refactoring process, as the

smell is found, refactoring methods is applied and improved the code. The classification of

refactoring methods is prepared for the particular desired quality attributes and metric set.

Sometimes, the unclear for the software developers exactly how to use refactoring methods to

increase the software quality.

The refactoring applied on the software code is reduces the cost of software maintainability for the

long time. Refactoring used in real world practice is improve the code for software maintenance

and the improvement of the existing software. Refactoring method is also efficient for the solving

problems and maintenance of existing software. The transformation in the software is done by

some changes in the code. The process of restructuring or refactoring is transform the internal

arrangement with the objective of accepting of its processes. In software development process

firstly we designed the software system then we write the code for the implementation purpose.

Refactoring have some positive effects on software quality attributes but also have some negative

aspects. They also considered higher power consumption, longer execution time, additional

memory used, less suitable for the safety critical applications.

Refactoring process is used to remove the weak defects and adding some new features to the code

so that the software quality should be improved. Since the activities involved in the software, result

of the product maintenance for the cost overruns in SDLC, helping to improve the maintainability.

The tools and methods to support the refactoring process becomes important.

The present research in the field of software refactoring is active and has identified the usage of

metrics for refactoring as a main research attribute. The previous examination in this field had

3

resulted in behavior preserving methods for refactoring of the object-oriented software structures,

tool supports to automatically refactor or reorganize the applications or methods for code based

refactoring. Software restructuring or refactoring is used in the field of the software engineering

for the upgrading of the structure and the understandability of the software parts of the

development. The main use of the refactoring is to transform the program structure into better

quality after setting the quality faults. Software refactoring recovers the basic Object Oriented

strategy internal assets such as encapsulation, abstraction, message passing, inheritance and

polymorphism. These assets are quantifiable and can be measured. The significant clue behind the

refactoring is to restructure aspects and procedures through the class hierarchy in order to arrange

for the future allowances. The motive of refactoring provide the techniques and tools for the

software developers so that it make the program faster, remove bugs and improve the software

quality and place the refactor methods at right place.

Sometimes the task of selecting the refactoring methods is time consuming and form conflict

between the program writers. Refactoring is applied on the internal code changes the value of

software metrics and hence the software quality attributes. It is not compulsory, all the refactoring

methods improve the software quality, so we need to find those refactoring methods that are used

to improve the software quality attributes. Refactoring is also helpful in minimizing the code

duplication.

Refactoring has two explanations dependent on condition. Refactoring a change in the interior

structure of software to make it stress-free, understandable and inexpensive to adapt without

varying its external activities. Refactor to rearrange software by applying a sequence of

refactoring without altering its recognizable behavior.

Refactoring is generally inspired by observing by code smells. For example the method at hand

may be long, or it may be a matched with another close method. After recognized, such difficulties

can be addressed by refactoring of the source code, or transforming it into a new form that

implement same work as before but they have no bad "smells".

Benefits of Refactoring:

1. Without refactoring, the design of the program decays.

2. Refactoring helps to develop code more quickly.

4

3. Refactoring helps to find bugs.

4. Refactoring makes software easier to understand.

5. Refactoring improves the internal structure of software.

Refactoring is the procedure used for changing a software structure in such a manner that it does

not modify the external activities of the code yet improves its design. It’s a well-organized way

to clear the code that decreases the chances of offering bugs. When you refactor you are refining

the actual form of the code after it has been written.

In understanding of software improvement have faith in that design and then code. A best

design derives when the software coding is complete. Over time the code will be form with

better-quality and the trustworthiness of the system, its structure according to that design,

slowly but surely fade away. The code gradually sinks from engineering to hacking.

With refactoring you can take a design that have bad code smells, confusion even, and modify

it into well-organized code. Refactoring interchange a field from one class to another, pull

some code out of a method to make into its new method, and push some code up or down

order.

The refactoring process include the following activities:

a) Identify the software where refactoring is to be applied.

b) Determine which refactoring method should be applied on the software.

c) Guarantee about preserve behavior.

d) Apply the refactoring technique to the software.

e) Identify the effects of applying refactoring to the software.

Fig.1.1 refactoring process

1.1.1 Refactoring Methods

There are many numbers of refactoring methods. The list mentions some refactoring methods

that redistribute responsibilities within or between the classes and some refactoring that

operate at the field level. The following table shows those re-factoring methods:

select
Refactoring
method

Guarantee
about
preserve
behavior

Apply
refactoring

Assess the effect
of refactoring on
code

Find place
where apply
refactoring

5

Refactoring Patterns Description
Chain Constructor Chains a set of constructors together to obtain a low amount of

duplicated code.
Collapse hierarchy Merges a super class and a subclass together.
Delete Attribute Delete an attribute that is not being referenced by any class.
Delete Class Delete a class and all references to it.
Delete Method Deletes a method that is not being referenced by any class.
Encapsulate Attribute Creates assessors for attribute and replace all the read and

write operations to the attribute by calls to the assessors.
Extract Class Create a new class and moves to it fields and methods from an

existing class.
Extract Interface Extracts method signatures and creates an interface for a class.
Extract Method Extracts a piece of code to a new method.
Inline Class Moves all the features of a chosen class into another class.

Deletes the chosen class.
Inline Method Replaces all the method calls of a specific method by the

contents of that method.
Inline Singleton Moves the features of a singleton to a class that stores and

provides access to the object. Deletes the Singleton.
Introduce Ex-planning
Variable

Extracts an expression to a local variable.

Move Attribute Moves an Attribute to another class.
Move Embellishment to
Decorator

Moves an embellishment code to a Decorator.

Move Method Moves a method from one class to another.
Pull Up Attribute Moves an attribute to a super-class or super-aspect of the

current class or aspect.
Pull Up Method Moves a method to a super-class of the current class.
Push down Method Moves a method to one or more of its subclasses.
Rename Class Changes the name of a class and in all the places that it is

referenced.
Rename method Changes the name of a method and all the method calls to a

new name.
Replace Method with
Method Object

Extracts a method from a set of selected statements to a new
class, containing the extracted statements as a new method and
the local variables of the method as fields of new class.

Table 1.1 Refactoring methods for the Object Oriented Software

Refactoring methods applied on source code after the calculation of internal metrics to improve

the code. These method directly affect the software internal metrics and indirectly affect the

software quality attributes. Applying refactoring tool for make refactoring efficient and can avoid

the possibility of the presenting bugs in the code.

6

1.2 Software Metrics

Software metrics are used as internal quality attributes. A software metrics are the good events of

measuring the software quality. Software metrics offer a means to extract valuable and quantifiable

data about the structure of the software system. The software code has a very large list of metrics

in order to understanding the structure and quality of the system. The software metrics help us to

establish the value of class. Measuring the complexity measures of the software system is the basic

method to estimate the maintainability of the software. If the calculated result has higher value

then its mean is program is too complex and very hard to maintain it.

 To classify the refactoring method based on the internal quality attributes, we choose metrics

based on the objected oriented concepts. We consider the OOCK (Object Oriented Chidamber and

Kemerer) metric suite which consist of six metrics that are measured: Depth of Inheritance

Tree(DIT), Weighted Methods per Class(WMC), Number of Children(NOC), Response for a

Class(RFC), Coupling Between Object Classes(CBO), Lack of Cohesion on Methods(LCOM).

The metrics we investigate [1] that are the following:

a) DIT (Depth of Inheritance) is defined as the length of the longest path from a given class

to the root class in the hierarchy.

b) Weighted Methods per Class also termed as (WMC) is defined as a no. of methods defined

in a given class. Traditionally, it is used to measure the complexity of an individual class.

c) Number of Children (NOC) is termed as the no. of classes that inherit directly from the

given class.

d) Response of a Class abbreviated as (RFC) is defined as the number of methods that can be

executed in response to a message being received by an object of that class.

e) Coupling between Objects or (CBO) is explained as a number of distinct and non-

inheritance related classes for which a given class is coupled.

f) Lack of Cohesion on Methods also called as (LCOM) is defined as the number of pairs of

member functions who do not share an instance variable, minus the number of pairs of

member with the shared instance variables but, the metric is set to zero when the subtraction

produces a negative value.

7

1.3 Software Quality Attributes

Quality of software is a multidimensional concept. The term quality has a different meanings.

It all depend on the users, customers and developers of the software system. Developers

develop the product that satisfy the customer, what they want. The customer buy the software

system according to requirement of the organization and user must support these software

system. The user want the beneficial features that they easily work with the software system.

Quality can be defined in different way, one party could be denoting to it in its broadest sense,

where as another might be denoting to its specific meaning. The term quality is a portion of

our daily language and the popular and professional uses of it may be very different. Based on

the quality attributes, the refactoring methods [1] have been classified as:

a) Adaptability is defined as the ease with which a can dwell itself to the applications or

environments other than those for which it was designed.

b) Completeness is defined as the degree to which the selected component implements all the

required functionalities.

c) Maintainability can be defined as the ease with which a component can be modified to

correct its faults, or improve performance of other attributes.

d) Understandability is termed as the degree up-to which the meaning of a software

component is clear to the user.

e) Testability can be said as a set of attributes of software that bear on effort needed to validate

the software product.

There is no direct method to measure the external software quality attributes. The internal

metrics can be used as pointers for external software quality attributes. Some existing research

study shows the correlation between the external quality attributes and the internal quality

metrics. The outcome of the effect of the restructuring on the software quality has an extensive

scope. Different refactoring methods are linked to the different quality attributes. By applying

the different refactoring method enhances the software quality attribute.

1.4 Relation of Refactoring to metrics and software quality

Refactoring is taken as the process of transforming a piece of code or program of a software to

improve the software quality by reducing the bugs and by adding the new features. Refactoring or

8

restructuring is also important for decrease the complexity of the software at the all levels of SDLC

and it also assure that the cost of product is not reach at higher level. Some problems are faced by

some developers at the time of applying refactoring. Basically these problems are related with the

human awareness and because of bad smells in the code.

The software metrics are used to find the place in the code where the refactoring should be applied

in better way for the profit. Tool support is required to contribution the human awareness in the

decision making process in an effective fashion.

Software quality attributes can be defined as the conformance of functional and non-functional

requirements. Refactoring provide the definition that are related to the maintenance of the quality

of the software. Refactoring is directly affected the internal metrics but indirectly effected the

quality attributes. Firstly we calculate the internal metrics then we take the result about how these

Calculation affect the quality attributes of software. Refactoring is useful to find the progress of

the software system. Significant budget and improvement is participated in refactoring.

Refactoring classification for code is altering the code to make it improved in particular way.

Altering code to make it stress-free to maintain. This code transformation by using the refactoring

method is reduce the cost and effort of the software. Refactoring enhanced the quality by

decreasing the size of the code and increasing the number of the procedures. Refactoring applied

on the code will also increases the quality of the code. Refactoring can also be classified into –

combining methods, data organizing, to make the conditional expressions simpler, make the

method call simpler and dealing with inheritance, encapsulation, abstraction and generalization.

Today, in world the various number of tool is present to support the refactoring and restructuring.

A refactoring is applied on existing software implementation so that result can be formed in the

form of improved software implementation.

Refactoring is also used for adding new features in the software so that the software will be easily

reusable in other systems. Refactoring is important but also it is complex. There are number of

approaches are used to evaluate the effects of refactoring on the software quality attribute. There

are number of approaches are used to find the places where refactoring must be applied in better

way. Refactoring is applied on some software also support the minimizing coupling and

maximizing the cohesion.

9

One issue is regarding how different refactoring definitions are compared. Some refactoring issues

are regarding with design, scope, procedures and actions that re performed by developer as a

starting point to start the development of the program. The aim of refactoring is to make the code

more readable form. Refactoring is also used for improve the extensibility of the software code.

Refactoring also boost up the code reuse. Refactoring is the vital part of the software development

process. Developers firstly write the test and then write the code to pass the test and then apply the

refactoring to improve the quality of the software. The refactoring techniques also help to improve

the internal consistency and clarity of the code. Mostly the useful software systems required the

continuous progress and change. As the software system is boosted, altered and improved by using

new requirements, the code become more complex. The major part of cost of software

development process is devoted to maintenance process. The purpose of apply refactoring on code

is better evolution of software while protecting the quality of software system. The best solution

for reduce the maintenance effort is software code refactoring applied on the code.

In software development industry, from the opinion of project managers and developers

quantitatively calculate the effect of refactoring and reconstructing on the software quality. If we

doesn’t know about the refactoring techniques then we cannot apply in beneficial way to the source

code for improved the quality. Refactoring applied on code is also helpful to reduce the size of

code. The size of code is reduced then it make the code less complex. The refactoring is fight with

complexity and coupling in the source code. Refactoring is used to make the code make reusable

by organizing the code in useful fragments. Refactoring applied on the code increase the

performance of the software system. Refactoring is applied on code is also helpful to make the

code more understandable so that user and developers easily be familiar with the code.

1.5 Reasons for Refactoring

Why the people want to refactor the code or the program of the software. Some reasons are like

that they want to remove duplication, reduce the size of code, breakup the long methods and also

present the design patterns in the software system. People mainly attention on that how to make

the software more effective and valuable and they also think about how we improved the programs

for better performance. Mostly the refactoring is use for the duplication of code. Sometimes the

similar code is defined in the program then refactoring applied on this type of code to move this

10

code in the method. It also relate to gathering what belongs together and pushing it all in one place.

So that it make easier to maintain.

Another problem encountered in the programming is some methods are very large so refactoring

applied to make the larger method into smaller ones. Bugs found in the program is also removed

by applying refactoring methods. Addition of new requirements for improving the quality of the

software system. Refactoring support to facilitate to make the changes, understandability and for

increased the performance of the software product.

1.5.1 Why refactoring is done?

It is valuable tool that helps you keep a good control on your code. Refactoring is a tool that can,

and should, be used for a different purposes.

a. Refactoring Improves the Design of Software

Without refactoring, the design of the program will decay. As person change code modifications

to understand short-term objectives or variations made without a complete information of the

design of the code—the code lose its procedure. It becomes very hard to look the design by study

the code. Refactoring is somewhat like clean up the code. Work is completed to eliminate bits that

aren't actually in the correct place. It is very hard to look the design in the code, it very hard to

preserve it, and the more quickly it falloffs. Even refactoring supports code keep its shape.

The poorly developed code generally takes more code to do the similar things, repeatedly since

the code relatively accurate the same thing in a number of places. Thus main feature of refining

design is to reduce the duplication part of the code. The importance of refactoring is also help in

future adaptations to the code. Decreasing the size of code won't make the system to run fast for

that reason the result on the footmark of the programs very hard to significant. Decreasing the size

of code does, still made a large variations at the time of changing the code. The new code there is

very hard to modify properly and there is a more code to understand. The refactoring help to

removing the duplicates, you confirm that the code declares the whole things once and only once,

which is the principle of good design.

11

b. Refactoring Makes Software Easier to Understand

 Refactoring makes the [1] code in more readable form. Refactoring is important for future

development. Refactoring helps to understand unfamiliar code. When user see at unfamiliar code

he will try to understand what code does. Refactoring transforms the code to make it better which

can be easily understood.

c. Refactoring Helps Find Bugs

Refactoring helps to understand the code easily and find the bugs. Refactoring technique is used

to find if the refactored code is working properly. It provides deep understanding of what code

does. Refactoring technique helps for writing robust code.

d. Refactoring Helps Program Faster

Refactoring is useful to improve code and the quality of the code.

When talk about the restructuring and refactoring then the people also see that it exactly work for

improving the quality. Successful design, educating readability, decreasing the several bugs, all

these factors improve the software quality.

A best design is important for quick software development. Without a good design code will work

better for some time but because of poor design the system will slow down. Refactoring is done

by fixing bugs and reducing a number of errors more helpful to improve code than adding the new

functions. Modification take the more time to understanding the code and for find the duplicate

code. New features are added to the code also difficult to handle.

A good design is important to continuing speed in software development. Refactoring helpful for

developing software more quickly and it stops the design of system from decay.

1.5.2 When to refactor the code?

When we talk about refactoring, the frequently examined how to be scheduled it. Must allocate

the two weeks to perform the refactoring. In most of cases, set the time for perform the refactoring

activity. Don't decide to refactor, refactoring is applied want to do somewhat else, and refactoring

supports to do other thing.

12

a. Refactor When Add Function

 Main reason for refactoring is to understand the code that want to change. The code may be been

written by other peoples or by owns. At any time think about what the code is doing, can refactor

the code to make that understanding further straightaway. Then refactor it. This is partially for the

next time, but mostly it's for understanding and clarify the code.

Another driver of refactoring is sometimes does not help to adding a new feature. To look at the

design the design should be like that adding of new features is easily done by programmer and

developer. In some cases, also fix the bugs. Do this partially to make future developments easy,

but generally do it for find the fastest way. Refactoring is a fast and easy process. Once code is

refactored, addition of feature can go much more rapidly and easily.

b. Refactor When Need to Fix a Bug

Fixing of bugs applied in refactoring approach also help to make the more understandable

code. Developers and designers find that the refactoring activities work well with code for

finding the bugs. The presence of bug how that the code is not clear for customers and the

users of the software.

c. Refactor is As Do a Code Review

Code reviews help to spread the information and knowledge through the development team

members. Reviews helpful for the less experienced people they get the knowledge from the

more experienced developers. They also support to understanding more characteristics of a

large software system. They are also very significant to write clear code. It’s very difficult for

people to put themselves in the shoes of somebody unfamiliar with the effects they are working

on. Reviews give the chance to people they also suggest some useful ideas. So in this way lot

of ideas will got in a weeks.in this way the contribution of many peoples help to make easier

the life, so most of people also follow the reviews for many purpose.

Refactoring also help to review the code of the software. Before start working with

refactoring, read the code then understand some point of it, and make some ideas. Now when

derive some ideas, study whether it can be easily implemented with the refactoring methods

and approaches. After that performed refactor. Then check refactoring applied on code

13

increased the performance. As a result, then applied the refactoring on second level of ideas,

does not know about they may be refactored or not.

Refactoring also helps the code review to provide the actual results. Not only related to think

about suggestion also to implement those suggestion.

To make this method work, work with small review groups. The reviewer advises changes,

and they also decide whether the variations can be simply refactored in and then they make

the changes.

14

CHAPTER 2

LITERAURE REVIEW

A number of research studies are included for the refactoring purpose. These describe the co-

relation exist between the internal quality metrics and the external software attributes. A number

research works explain the no. of different criteria: the refactoring activities are explained that are

refining the features of the software.

 Mohammad Alshayeb et.al Refactoring [1] used in educating design code of software using its

internal metrics without making any effect on its external performance. Sometimes, it is often

undecided for the software inventers how to use the refactoring methods to recover software

quality attributes. In this paper, author planned the arrangement of refactoring based on the

software quality attributes. This, in turn, help software inventers choose suitable refactoring

methods that will progress the quality of their design, bas on their design ideas. It also enables

them to calculate the quality drift caused by the specific refactoring methods. The arrangement is

done by recording the changes in the internal quality metrics, produced by put on the refactoring

methods, to the external quality attributes. This recording is based on research work that shows

the relationship exist between the internal quality metrics and the external quality attributes. This

research work was imperfect to examining the result of refactoring. (Mohammad Alshayeb et.al,

2011)

Tom Mens et.al this paper [2] offer the wide overview of current research works in the field of

software refactoring. This research work is matched and debated based up no. of altered principles,

the significant subject that are needed to be taken into the account when structure refactoring tool

support, and the result of refactoring on the software process. Refactoring is the mostly the object-

oriented modified of restructuring “the course of altering a software system in such a way that it

does not alter the external performance of the system, yet improve its internal structure.

Reformation is defined as “the alteration from one demonstration form to another at some qualified

concept level, while conserving the subject system’s external actions. A rearrangement alteration

is often one of arrival, such as altering code to recover its internal structure in the old-style sense

of structure designs. While rearrangement, generate new manners that implement or suggest

change to the subject system, it does not usually contain alteration because of new requirements.

15

Still, it may lead to well explanations of the subject system that instruction changes that would

improve features of the system.

In overall, recognized a need for formalisms, procedure and tools that address refactoring in a more

consistent, basic, walkable and elastic way. While marketable refactoring tools being to increase,

research into software reformation and refactoring stays to be active, and remainders needed to

expose and address the limitations of these tools. (Tom Mens et.al, 2004)

 Konstantinos Stroggylos et.al [3] organization of software suffer from adjustments, developments

and enrichments to handle with growing necessities. This maintenance can origin that the quality

to decrease. Several Metrics can be used to assess the way the quality is affected. Refactoring is

the one of the utmost significant and frequently used practices of exchanging a portion of software

is directive to expand its quality. However, even though it would be projected that the rise in

excellence accomplished via refactoring is reproduced in the many metrics, quantities on actual

life schemes indicate the reverse. To explored source code account switch system logs of popular

open source software systems to notice changes manifest as refactoring and survey how the

software metrics are pretentious by this process, in order to estimate whether refactoring is

effectually used as a means to progress software quality with in the open source community. This

research inspects the how the metrics of standard open source project were caused when the

development group implemented refactoring, irrespective of the motives that led to that

conclusions. This result, specify a substantial change of confident metrics to the inferior. Using a

refactoring uncovering technique to classify the refactoring achieved each time, one could also

relate each kind of refactoring to a precise drift in the change of several metrics and thus realize

which ones or more favorable to the whole quality of the systems. (Konstantinos Stroggylos et.al,

2007)

 Dirk Wilking et.al this paper [4] offers a practice assessment for the alert technique of refactoring

centered on the language C. The basis for the estimation is made up by trial which is directed on

the features of increased maintainability and modifiability. Even though the maintainability test

show a minor benefit for refactoring. Regarding modifiability, the above of put on refactoring

seems to even fail. The examination of subordinate variables offers clues on the benefits of the

refactoring practices like compact resource consumption and a reduced existence of complex

mechanism. In this research, a precise trial is offered evaluating the outcome of refactoring on the

16

efficient features. However, universal result of refactoring on maintainability or modifiability

could not be shown. As an alternative, an overhead aimed at the modifiability feature seems to

exist as refactoring itself needs a sure amount of time for its finishing. A constructive

characteristics of refactoring might be found in the “once and once only” project source, as these

seems to cut the memory necessities of a system. As an accumulation, the three most significant

refactoring found during this experimentation look to be “extract method”, “rename Method”,

“comments” which might be a preliminary idea for straightforward refactoring maintenance in

software tools. In accumulation, a different methodology to consider the status of refactoring is

accessible directing on indirect expectations of why refactoring is practical and what challenging

might to be solved. (Drik Wilking et.al, 2007)

Mohammad Alshayeb this research, examine [5] for practices to enhanced software quality and

attain robust, consistent, and supportable software is continued. Refactoring is a method that

expands the internal structure of software without disturbing its external behavior, is one technique

that attain superior quality. Refactoring pattern is another. The objective of this research is to

inspect whether refactoring patterns expands software quality. This is finished experimental by

the metrics value of external quality attributes for different software systems earlier and next

refactoring pattern is applied. To originate no dependable perfection movements in the software

quality attributes. This is because each refactoring patterns performance has a specific

determination and effect, and in future moves in software quality attributes are seems to be

differently. Additionally, the properties of refactoring patterns on the external qualities exposed

inconsistencies and were unclear and unspecified in several cases. In systems where refactoring

patterns improved a quality in definite proportion of classes, it reversely fallen that identical quality

in a related or even advanced proportion of classes. Based on this research exertion and the earlier

education, can see that learning the consequence of refactoring and refactoring to arrangements as

entire on software quality indications to unclear drifts in quality enhancement. The outcome and

the assumption are equivalent with the outcomes of the research study directed to explore the

properties of refactoring on the entire, not exclusively to the patterns, on the designated groups of

quality attributes. In the later study, could not verify that refactoring in overall recovers the

software quality. (Mohammad Alshayeb, 2011)

17

Bart Du Bois The procedure [6] of refactoring – reformation the source code of an object - oriented

program without altering its external behavior – has been comprised by many object – oriented

software creators as way to provide accommodations fluctuating requirements. The overall

objective of refactoring is to acquire the maintainability of software. Inappropriately, it is unclear

how exact quality aspects are affected. Consequently, this paper proposes to describe the

impression of illustrative number of refactoring on the source code, prolonged with cross –

references. How internal program internal quality metrics can be defined on the topmost of the

program structure illustration and determine how to project the impression of refactoring on these

internal program quality metrics value in the form of implications or improvements. Our

techniques for examining the impression of refactoring on internal program metrics permit the

interpretation of the implication or improvement of specific internal program quality metrics, as

caused by the application exacting refactoring. (Bart Du Bois, 2003)

 Noble Kumari et.al Software quality [7] is a significant topic in the improvement of effective

software application. Many methods have been functional to expand software quality. Refactoring

is one of those methods that are used to progress the software quality. But the outcome of

refactoring in over-all on all the software quality attributes is ambiguous. The aim of this paper is

to invention out the consequence of numerous refactoring methods on quality attributes ant to

illuminate them based on their quantifiable conclusion on precise software quality attribute. This

paper attention on the learning the reusability, complexity, Maintainability, Testability,

Adaptability, understandability, fault proneness, stability and completeness attributes of the

software. This, in turn, will support the maker in defining that whether to put on a definite

refactoring method to expand a desired quality attributes. Our work contains that refactoring

progresses the quality of software but developers need to appearance for the specific refactoring

method for looked-for quality attribute. (Noble Kumari et.al, 2014)

Sultan Alshehri et.al the analytic [8] hierarchy process (AHP) useful in numerous fields and

exclusively to multifaceted engineering difficulties and applications. The AHP is accomplished

of constructing design difficulties and conclusion mathematically single-minded decisions build

on involvement and information. This recommend that AHP should demonstrate beneficial in

responsive software development where composite conclusions occur regularly. In this paper, the

AHP is used to rank the refactoring practices built on the internal quality attributes. However,

18

refactoring may consume more time and efforts. So, maximize the benefits of the refactoring in

less time and effort, AHP applied to achieve this purpose. Subsequently consuming the AHP to

rank the refactoring techniques, it was initiate to be an important tool that delivers a noble idea for

developers when they want to apply the refactoring patterns to improve the code. Considering the

complexity, cohesion, coupling and code size when ranking the refactoring techniques could take

many benefits to the development team such as code enhancing the code in short time and

transferring the knowledge to the developers. The Extract Class and Extract Method were the most

refactoring techniques have improved the code in our studies. However the other refactoring

techniques have added values to internal code qualities as well. (Sultan Alshehri et.al, 2014)

Yoshiki Higo Refactoring [9] is set of procedures to increase the maintainability and

understandability or additional attributes of software system without altering the external behavior

of it and it is receiving a much consideration lately. But it is problematic to achieve suitable

refactoring since the impression of refactoring should verify the cost. Consequently, before a

refactoring is demonstration achieved, the conclusion and the cost of it should be estimated. The

approximation make it potential for us to sufficiently evaluate whether each refactoring should be

implemented or not. This paper shows that it is challenging for developers to execute suitable

refactoring, and recommends a methods approximation refactoring result. The method has been

executed as a software tool, and a case learning presented the approximation of the tool assisted

the developer of the mark system to execute a suitable refactoring. In this paper, a scheme for

refactoring consequence assessment was proposed. The outcome signifies how the z of program

will change by implement the refactoring. Also a tool was established based on the projected

method and a case learning was showed to calculate the practicality of the planned method. From

this inspected, to achieve that the planned method is valuable for directing developers/maintainers

to achieve actual refactoring. (Yoshiki Higo, 2008)

 Jasmeet Singh, presents software maintenance [10] activities often cause design erosion and lead

to increased software complexity and maintenance costs. Extract Class Refactoring attempts to

address design erosion by identifying and pulling out extraneous functionalities from a class and

distributing them to new classes. This thesis extends previous research in this area but improving

a metric known as Structural Similarity between Methods (SSM) used during Extract Class

Refactoring. The improved metric, called Variable based Similarity between Methods (VSM),

19

establishes similarity between methods based on the variables they share, and on how they use

these variables. Strongly connected methods are then allocated into new classes. This paper also

introduces another metric, Cognate Members Metric (CMM), which identifies those members of

a class that are only used in combination with each other, and hence, probably belong together in

a separate class. Additionally, this work extends and modifies existing refactoring processes for

extracting classes. A software prototype that performs Extract Class Refactoring has been

developed to substantiate the research. A few case studies are discussed and comparison and

analysis of results of refactoring using the new and older approaches of the Extract Class

Refactoring process are presented.

 Furthermore, an implementation of the proposed research and the previous research is used as the

basis for comparative study which verifies the applicability of the research. The implementation

tool is further enhanced to provide the developers with the opportunity of selecting the final design

and then automatically refactoring the code to that design. Lastly, software metrics are applied

against the final refactored classes to substantiate the effectiveness of the research. Our result

indicates that our approach leads to improvements in the overall design of the refactored classes

and that in general there is scope for further improvements in the process. (Jasmeet Singh, 2013)

Serge Demeyer et al in this research work [11] offer an exhaustive impression of obtainable

exploration in the field of software reformation and refactoring, form an official as well as a useful

point of view. Next to recommend a wide-ranging list of open queries that designate upcoming

study directions, and offer some limited answers to these queries. The research in software

reformation and refactoring remains to be dynamic. While marketable refactoring tools are being

to increase, there are still a percentage of open matters that persist to be solved. In general, there

is a need for processes, methods and tools, that address refactoring in a more standard, walkable

and elastic way. (Serge Demeyer et.al, 2003)

Quinten David Soetens presents the economical aspect of refactoring by investigating what effect

refactoring [12] has on the costs of adding new functionality to a system and by looking at the

costs of the refactoring activity itself. To expect that the costs of adding functionalities will be

lower after the system was refactored. Indeed it is generally accepted that refactoring has a positive

inspiration on the maintainability of a system. However, it is purely based on anecdotal evidence

and still needs to be reinforced by a through scientific and systematic investigation. In this

20

research, the conducting a series of case studies on some “real-life” systems. On these cases we

will determine where and when they were refactored and influence these refactoring had on the

development costs of the systems. (Quinten David Soetens, 2009)

Marouane Kessentini et.al present techniques and tools that have been developed [13]to support

maintenance activities in demand to progress software quality. One of the most efficient ones is

software refactoring to eliminate bad-smells. A majority of existing work suggest “typical”

refactoring explanations that can be applied by hand for each kind of fault. However, it is hard to

demonstrate or guarantee the simplification of these explanations to any kind of bad smells or

software codes. In this paper, recommend a method to correct bad smells using well designed code.

To use genetic algorithm to generate correction solutions defined as a grouping of refactoring

procedures that maximize, as much as possible, the correspondence between the modified bad-

smells and examples of well-designed code. To report the results of a progress of our approach

using four open-source projects. Our proposal achieved high correction scores by fixing the

majority of expected bad-smells.

To accessible a novel approach to the difficulty of fixing a bad-smells. Then used well designed

code examples to correct bad-smells by applying refactoring sequences to maximize the

similarities between the code to correct and these examples. After applying refactoring, jump by

producing some clarifications that signifies a mixture of refactoring processes to apply. A

qualification purpose computes, after relating the planned refactoring, the structural comparison

between samples and calculate code. The projected method was tested on open-sources systems.

Our research work displays that our technique offerings good grades on a precise test quantity.

(Marouane Kessentini et.al, 2013)

Marjan Hericko et.al the goal of each software artifact is to accomplish an applicable level of

software quality. Developers and designers [14] are demanding to produce understandable,

trustworthy, workable, reusable and testable code. To support accomplish these objectives, a

number of methods have been utilized. In this paper, refactoring procedure was used to estimate

software quality with a quality index. It is composed of different metric collections which defines

numerous quality aspects. It has been recognized that software metrics return software quality.

21

They have been generally used in software quality quantities. The outcomes of these calculations

specify which parts of software essential to be reengineered. Furthermore, creators and designers

attempt to attain higher software quality after creation source code alterations (refactoring).

However, a number of quality metrics have been projected that define changed software quality

aspects. In this research, a quality key metric has been useful to estimate the refactoring effect on

software quality. (Marjan Hericko et.al, 2010)

S.H. Kannangara et.al Quality software are robust, [15] trustworthy and stress-free to maintain,

and as a result decreases the charge of software maintenance. Subsequently software systems

undergo alterations, enlargements and developments to manage with changing requirements,

quality of software can be reduced. Although software system is growing, refactoring is one of the

approaches which have been useful with the determination of refining the software quality.

Refactoring is defined as the process of improving the proposal of the current code by altering its

internal structure without disturbing its external activities, with the key goals of improving the

quality of software product. For that reason, there is a faith that refactoring improves quality

aspects such as understandability, flexibility, and reusability. However, there is restricted practical

suggestion to support such expectations.

The motive of this learning is to validate/invalidate the statements that refactoring increases

software quality. Experimental study methodology was used to attain the objective and ten

particular refactoring procedures were used for the exploration. The whole effect of particular

refactoring techniques and the impact of specific refactoring procedure were evaluated based on

external actions namely; analyzability, variability, time activities and resource consumption.

After examining the experimental outcomes, whole study finished up with the effect that

refactoring weakens the code quality. However, different analysis indications that certain

refactoring procedures increase the code quality while rest is weakening the code quality.

Furthermore, amongst the verified ten refactoring procedures, “Exchange Conditional with

Polymorphism” classified in the highest as having high proportion of improvement in code quality

and “Introduce Null Object” was classified as worst which is having highest measurement of

deteriorate of code quality among the evaluated ten refactoring procedures. (S.H. Kannangara

et.al, 2014)

22

Frank Simon et.al Refactoring [16]is the one of the most important topic that increase the software

quality throughout the entire software development. Since classifying structures where refactoring

should be valuable every so frequently is described with particular observations like “bad taste” or

“bad smells” a programmed refactoring place detector appears hard. To appear that a special kind

of metrics can support these particular observations and thus can be used as efficient and competent

way to get maintenance for the result where to put on which refactoring. Due to the information

that the software designer is the last specialist to offer powerful and metrics established software

positive thinking to provision the developers refereeing their products. In this paper, prove this

approach for four representative refactoring and existing both a tool associate the documentation

and case lessons of its presentation. Our effort indications that metrics can benefit to classify

exceptional variances for positive refactoring. Like Fowler, consider that the developer should be

the last specialist for the result where to apply which refactoring. On the other hand, tool support

is essential to support the human awareness in a very well-organized and actual way. To trust that

software conception based on fixed structure analysis and metrics is a main topic for this task. To

limit our provision of awareness we think on some characteristic of refactoring that attention on

the associates of a class, i.e. methods and attributes. Briefly present both these refactoring and their

conforming “bad smell” which should benefit to recognize parts of the system where to put the

conforming refactoring. (Frank Simon et.al, 2001)

Quinten David Soetens et.al Refactoring [17] is generally familiar as a way to increase the internal

structure of a software system in demand to confirm its long-term maintainability. Subsequently,

software projects which accept refactoring practices should realize decreases in the complexity of

their code base. Statement is evaluate on an open source system —namely a Java source code

analyzer— and exposed that stages of refactoring did not distress the cyclomatic complexity. This

paper considers this counterintuitive phenomenon concluded a complete examination of the real

source code operations applied on the system under study. . Based on their work with IBM, they

expressed the “laws of software development”. The refactoring can be described as:

• Continuing Modification: A program that is recycled in an actual world environment must

alter, or converted more and more useful in that environment.

• Increasing Complexity: As a program changes, it turn into more difficult form, and additional

resources are desired to reserve and make simpler its structure.

23

The law of “Continuing Modification” offers a darwinistic vision on the life-cycle of a software

system, mostly testifying that a software system must familiarize to its background in directive to

continue. The law of “Aggregate Complexity” on the other hand look like the law of entropy in

thermodynamics, saying that a system attempts towards a determined state of disorder except more

energy is added. (Quinten David Soetens et.al, 2010)

Francisco Zigmund Sokol et.al Refactoring [18] is the act of varying software code, frequently to

improve internal code quality, without varying its outer behavior. Soetens and Demeyer (2010)

evaluated one software and exposed that code refactoring did not suggest in enhanced outcome for

code quality metrics. In this work, extend the mining data from 256 software projects from Apache

Software Foundation, using Metric Miner, a web application absorbed on supportive mining

software sources studies. The quantitative analysis displayed that refactoring absolutely does not

drop Cyclomatic Complexity. On the other hand, the qualitative study indicated that a refactoring

be likely to to improve code in expressions of readability and maintainability. Refactoring is the

practice of improving code quality without changing the external behavior of a software system.

If useful and correctly applied, refactoring recovers the maintainability of a system, without

altering its functionality. Thus, it is predictable that refactoring performs central to recovered

outcomes in terms of code quality metrics, such as Cyclomatic Complexity, also this metric

measures only one code quality attribute, namely, complexity. To understand the effect of

refactoring on the quality of a system, an open source system, involving the require messages with

the progression of the Cyclomatic Complexity metric.

In this paper, repeat and cover that study, examining the history of 256 different open source Java

projects from the Apache Software Foundation. To suggest a more effective approach in mining

those repositories using a web presentation planned to support mining software sources trainings,

namely Metric Miner. To examined all the 256 java projects that occur in Apache Software

Foundation and are obtainable via interface. To originate that refactoring performs do not decrease

Cyclomatic Complexity meaningfully, checking the results of the imaginary study in a bigger

dataset. However, when examining a small division of requires, to observed that refactoring have

a tendency to increase system code in expressions of readability and maintainability. In addition,

we present some empirical displays that recommend different patterns of the progression of

Cyclomatic Complexity amongst projects. (Francisco Zigmund Sokol et.al, 2013)

24

 CHAPTER 3

 PRESENT WORK

In this chapter, we are going to present the problem of our research work, its objectives, the

methodology that we used for our purposed approach and the introduction of the developed tool.

In the 3.1 section we explain how we formulated our problem and what the approach we are going

to use. In the 3.2 and 3.3 section, the objectives and the methodology of the work done. In the

methodology the flow of our work with the help of flow chart is explained.

3.1 PROBLEM FORMULATION

Refactoring is the approach use for improving the internal structure of software without affecting

its external behavior. Refactoring is a technique that is used to reduce the complexity of the

software by improving its internal structure by fixing bugs or by adding new features. We use the

eclipse tool for the implementation of the purposed work.

In our research we will use refactoring methods in the code and calculate its effect on the OOCK

(Object Oriented Chidamber and Kemerer) metric suite and map this effect on quality attributes

like adaptability, correctness, testability etc.

3.2 OBJECTIVE

The objective of this proposed work:

1. The consequential effect of refactoring on software external quality attributes.

2. Developing Process for Implement the refactoring on Object Oriented Chidamber and

Kemerer metrics and quantify the changes in the context quality attributes.

3. Analyze and compare the adaptability of proposed Process on the Object Oriented

Chidamber and Kemerer metrics.

Refactoring is basically related to restructuring process and it does not affect the behavior of the

system. Refactoring affects the internal quality software metrics and the external software quality

attributes. The overall objective of proposed work is to enhance the quality of the software by

performing analysis and refactoring using a proposed process.

25

3.3 RESEARCH METHODOLOGY

Refactoring is an approach that is used for the improving the internal structure without affecting

the external behavior. Software metrics are used as internal quality attributes of software and also

called the characteristic of a software process. In order to classify the refactoring method based on

the internal quality attributes, we will choose metrics based on the objected oriented concepts.

 This proposed work is divided into following steps as under:

1. Develop a Process for refactoring in terms of quality attributes and propose an expected

quality benchmark.

2. Select working software.

3. Perform analysis on the software and calculate its internal quality attributes.

4. Perform the refactoring based upon the already existing techniques and record their

results.

5. Perform the refactoring as per the proposed process and desired bench mark.

6. Then calculate the internal quality metrics of software after refactoring. Let us say it 2

7. Examine the changes in the internal quality metrics and check the effects of these

changes on the software quality attributes.

8. Demonstrate improvement in the architecture as per the proposed process by comparing

it differ with the non-refactored (α) software and the results of the other already existing

refactoring techniques.

9. Discuss the various parameters which have scored comparatively high on our process.

26

 Fig: 3.1 the flow chart of proposed approach

Select Software Quality Attributes

Select an α Software to perform analysis on

given attributes.

Perform analysis on α Software to calculate

internal quality attributes

Perform Refactoring using existing technique

Calculate the internal attributes.

Perform Refactoring as per Step 1.

Calculate the internal attributes

Compare result
of step 4 and 6

Describe the Result

27

In the first step, we will identify the software quality factor that we want to access by refactoring.

Then we take the ckjm.jar file of java project in which we form refactoring. After applying the

refactoring firstly calculate the internal metrics. These metrics values is calculate with metrics

value that are calculated after applying the refactoring. When refactoring is applied in the code

they affect the value of internal metrics. So we calculate the values of metrics for comparison with

the actual software code. Then we map the result in the form of quality attribute. This result

indicate the how much the software quality attribute effected by the refactoring on the actual code.

Refactoring is done by the various refactoring method that improve the quality attributes. We used

the eclipse tool for perform the refactoring. Eclipse is a general purpose open platform that provide

tool for coding, building, running and debugging the application. Before apply the refactoring

identify the place where refactoring apply but also guarantee about they preserve behavior. Does

not affect the external behavior of the code. After that access the effect of refactoring applied on

the internal metrics of the software.

28

 CHAPTER 4

RESULT AND DISCUSSION

In this chapter we have presented experimental result of our purposed approach with snapshots
and graphs. In this chapter we will compare the results before applying refactoring and after
refactoring. We report the changes in the internal quality metrics caused by applying refactoring
methods on the selected course software projects and we also present an effect of refactoring
methods on external quality attributes.

The fig. 4.3 contain the graph that indicate the changes between the metrics values before and after

applying the refactoring. Fig 4.5 indicates the effect of refactoring on quality attributes.

The result that form by applying refactoring:

 Fig 4.1 Result of the refactoring approach

29

Metrics Java software 1 Java Software 2 Variations

WMC 24 7 17

NOC 3 1 2

RFC 0 2 -2

DIT 8 6 2

CBO 33 4 29

LCOM 5 2 3

Table 4.1 metrics value of software

This graph describe the metric calculation before and after applying the refactoring approach.

Fig 4.2 metrics value before refactoring

This graph indicates the metric values of Object Oriented Chidamber and Kemerer metric suite

before apply the refactoring.

0

5

10

15

20

25

30

35

WMC NOC RFC DIT CBO LCOM

m
et

ri
cs

 v
al

u
e

software metrics

Metrics Parameter

Before refacotoring

30

The graph for metrics value contain by applying refactoring methods at right place. This graph

describe the metric calculation after applying the refactoring approach.

Fig 4.3 metrics value after refactoring

This graph indicates the metric values of Object Oriented Chidamber and Kemerer metric suite

after apply the refactoring

0

1

2

3

4

5

6

7

8

WMC NOC RFC DIT CBO LCOM

M
et

ri
cs

 v
al

u
e

Software metrics

Metrics Parameter

after refacotoring

31

Formula to calculate the Adaptability:

Sa = ((Rp-Rf)/Rt) ×100 where,

Sa: Software Adaptability

Rp: Code executed successfully

Rf: part of code fail to execute

Rt: Total Lines of Code

 Formula to calculate the completeness:

 Completeness = (no. of requirement full filled/ Total no. of requirement)*100

Formula to calculate the maintainability:

 M = (Time Spent to fix a Bug / Total development time)*100

Formula to calculate the Testability:

 T = (Time Spent to testing the functionality/ Development Time)*100

32

The graph of Quality Parameter before applying refactoring. The quality parameter show quality

value for the quality attributes before applying refactoring. In fig. 4.4 blue line indicate the how

much quality achieved by the actual code of the software in term of quality attributes.

Fig 4.4 Quality attribute before refactoring

0

10

20

30

40

50

60

70

80

90

100

Adaptability Completeness Maintainability Understanability Testability

q
u

al
it

y
va

lu
e

in
 p

er
ce

n
ta

ge

Quality Attributes

Quality Parameter

33

The graph of Quality Parameter after applying refactoring. The quality parameter show quality

value for the quality attributes after applying refactoring. In fig. 4.5 blue line indicate the how

much quality achieved by the refactored code of the software in term of quality attributes

Fig 4.5 Quality attribute after refactoring

In fig 4.4 the x-axis show the quality attributes and the y-axis show the quality value in percentage.

This graph show the enhancement in the software quality attributes.

0

10

20

30

40

50

60

70

80

90

100

Adaptability Completeness Maintainability Understanability Testability

q
u

al
it

y
va

lu
e

in
 p

er
ce

n
ta

ge

Quality Attributes

Available

34

% Improvement Existing Quality Enhanced Quality Difference

Adaptability 30 85 55

Completeness 40 92 52

Maintainability 35 84 49

Understandability 42 62 20

Testability 27 65 38

Table 4.2 Comparison of quality parameter

This graph show the comparison between the existing quality and enhanced quality that are

formed the by the applying refactoring on the code.

Fig 4.6 Comparison of quality parameters

In fig 4.4 the x-axis show the quality attributes and the y-axis show the quality value in percentage.

This graph show the comparison of existing and enhancement software quality.

0

10

20

30

40

50

60

70

80

90

100

Adaptability Completeness Maintainability Understanability Testability

Q
u

al
it

y
va

lu
e

in
 p

er
ce

n
ta

ge

Quality Attributes

Comparison of quality Parameters

Existing Quality Enhanced Quality

35

 CHAPTER 5

CONCLUSION AND FUTURE SCOPE

The refactoring is the important technique used to improving the quality of software. The poorly

designed code is harder to maintain, test and implement and it degrades the quality of software. So

the basic goal of refactoring is the safe transformation of the program to improve the quality. In

this paper, we also examine the effect of changes on software quality attributes because of the

internal quality metrics. These changes are based on the co-relation exist between the internal

quality metrics and the external quality attributes. This research work also help the developer or

designer of the software to make the improvement in software. We focused on the Object Oriented

chidamber and kemerer metrics and different quality attributes which are Adaptability,

Correctness, Maintainability, Understandability and Testability. Our research work achieves the

increased quality of software but designers need to look for the specific refactoring method for

required quality attribute. Research can also examine and prove the result on larger projects and

can come up with common relation between refactoring and quality attributes. The method

measures CK metrics from the original program and the revised one without actually performing

the refactoring, and compares the metrics values. The comparison result represents how the

complexity of the program will change by perform the refactoring. Also, a tool was developed

based on the proposed method and a case study was conducted to evaluate the usefulness of the

proposed method. Further, research on refactoring methods investigated for applying refactoring

on the data set and another possible direction for future work to investigate the side effects of the

refactoring apply on code.

36

CHAPTER 6

 REFERENCES

[1] Elish, Karim O., and Mohammad Alshayeb, "A classification of refactoring methods based
on software quality attributes," Arabian Journal for Science and Engineering, 36.7 (2011):
1253-1267.

[2] Soetens, Quinten David, "Refactoring Economics," (2009).

[3] Kumari, Noble, and Anju Saha, "EFFECT OF REFACTORING ON SOFTWARE
QUALITY," International Journal of Computer Science & Information Technology, 6.4
(2014).

[4] Mens, Tom, and Tom Tourwé, "A survey of software refactoring," Software Engineering,
IEEE Transactions on 30.2, (2004): 126-139.

[5] Alshayeb, Mohammad, "The impact of refactoring to patterns on software quality
attributes," Arabian Journal for Science and Engineering, 36.7 (2011): 1241-1251.

[6] Alshehri, Sultan, and Luigi Benedicenti, "RANKINGTHEREFACTORING TECHNIQUES
BASED ON THE INTERNAL QUALITY ATTRIBUTES," International Journal of
Software Engineering & Applications, 5.1 (2014).

[7] Kessentini, Marouane, Rim Mahaouachi, and Khaled Ghedira, "What you like in design use
to correct bad-smells," Software Quality Journal, 21.4 (2013): 551-571.

[8] Higo, Yoshiki, et al. "Refactoring effect estimation based on complexity metrics," Software
Engineering, 19th Australian Conference on. IEEE, 2008.

[9] Du Bois, Bart, and Tom Mens, "Describing the impact of refactoring on internal program
quality," International Workshop on Evolution of Large-scale Industrial Software
Applications, 2003.

[10] Wilking, Dirk, Umar Farooq Kahn, and Stefan Kowalewski, "An Empirical Evaluation of
Refactoring," e-Informatica, 1.1 (2007): 27-42.

[11] Stroggylos, Konstantinos, and Diomidis Spinellis, "Refactoring--Does It Improve Software
Quality?," Proceedings of the 5th International Workshop on Software Quality, IEEE
Computer Society, 2007.

[12] Mens, Tom, et al. "Refactoring: Current research and future trends," Electronic Notes in
Theoretical Computer Science, 82.3 (2003): 483-499.

37

[13] Singh, Jasmeet, "Extract Class Refactoring by analyzing class variables," (2013).

[14] Gerlec, Č., and M. Heričko, "Evaluating refactoring with a quality index," World Academy
of Science, Engineering and Technolog,y 63 (2010): 76-80.

[15] Kannangara, Sandeepa Harshanganie, and Janaka Wijayanayake, "An Empirical Exploration
of Refactoring effect on Software Quality using External Quality Factors," ICTer ,7.2 (2014).

[16] Simon, Frank, Frank Steinbruckner, and Claus Lewerentz. "Metrics based
refactoring," Software Maintenance and Reengineering, Fifth European Conference on,
IEEE, 2001.

[17] Soetens, Quinten David, and Serge Demeyer, "Studying the effect of refactorings: a
complexity metrics perspective," Quality of Information and Communications Technology
(QUATIC), Seventh International Conference on the. IEEE, 2010.

[18] Sokol, Francisco Zigmund, Mauricio Finavaro Aniche, and Marco Aurélio Gerosa, "Does
the Act of Refactoring Really Make Code Simpler? A Preliminary Study," 4th Brazilian
Workshop on Agile Methods, 2013.

