

Analyzing The Performance Of Smith Waterman Algorithm

Using GPU

A Dissertation II

Submitted

 By

Azhar Ali

(11304555)

To

 Department of Computer & Science Engineering

 In partial fulfilment of the Requirement for the

 Award of the Degree of

 Master of Technology in Computer Science

 Under the guidance of

 Balwant Ram

 (Assistant Professor, Lovely Professional University)

 (MAY 2015)

i

PAC APPROVAL

ii

ABSTRACT

With the latest advancements in the processor architectural technologies has led to the

development of General Purpose Graphical Processing Units (GPU) which can be now days

used to accelerate various time consuming compute intensive scientific applications. This

work presents the analysis of Smith Waterman Algorithm (SWA) based on GPU

computing. Smith waterman algorithm is basically used to perform the alignment of any

two or more biological sequences. In present work we have tested Smith waterman

algorithm for the alignment of genome sequence with H1N1 virus. GPU parallelism has

been exploited using OpenCL and CUDA technologies using NVIDIA GPU GeForce

830M. The OpenCL has been used on visual studio and CUDA has been deployed with

MATLAB tool. The results shows a significant speed improvement of 2.5X with OpenCL

and 1.5X with CUDA platform. Speedup has been good using OpenCL with Visual Studio

in comparison to CUDA with MATLAB on the similar kind of GPU.

iii

CERTIFICATE

This is to certify that Azhar Ali has completed M.Tech dissertation proposal titled

Analyzing The Performance Of Smith Waterman Algorithm Using GPU under my

guidance and supervision. To the best of my knowledge, the present work is the result of

her original investigation and study. No part of the dissertation proposal has ever been

submitted for any other degree or diploma. The dissertation proposal is fit for the

submission and the partial fulfilment of the conditions for the award of M.Tech Computer

Science &Engineering.

Date: Signature of Advisor

Name: Balwant Ram

UID:

iv

ACKNOWLEDGEMENT

I would like to present my deepest gratitude to Mr Balwant Ram for his guidance, advice,

understanding and supervision throughout the development of this dissertation study. I

would like to thank to the Project Approval Committee members for their valuable

comments and discussions. I would also like to thank to Lovely Professional University

for the support on academic studies and letting me involve in this study.

 (Azhar Ali)
 Reg no .1130455

v

DECLARATION

I hereby declare that the dissertation proposal entitled Analyzing The Performance Of

Smith Waterman Algorithm Using GPU for the M.Tech degree is entirely my original

work and all the ideas and references have been dully acknowledged. It does not contain

any work for the award of any other degree or diploma.

Date: __________ Investigator: Azhar Ali

 Regn. No. 11304555

vi

Table of Contents

Contents Page No

INTRODUCTION ... 1

1 ARCHITECTURE OF GPU ... 3

2 GPU COMPUTING .. 5

2.1 THE GPU PROGRAMMING MODEL .. 5

2.2 GENERAL-PURPOSE COMPUTING ON THE GPU ... 5

3. SOFTWARE ENVIRONMENTS ... 6

3.2 OpenCL ... 7

4. GPU Programming in MATLAB .. 8

5. ALGORITHM ... 13

5.1 SMITH WATERMAN .. 13

REVIEW OF LITERATURE .. 16

PRESENT WORK ... 26

RESEARCH METHODOLOGY .. 27

RESULTS AND DISCUSSION .. 29

6.1 Gathering Required Data ... 29

6.2 Analysis of Smith Waterman Algorithm ... 31

6.2.1 CUDA USING “MATLAB” .. 31

6.2.2 OPENCL WITH VISUAL STUDIO .. 34

CONCLUSION AND FUTURE SCOPE .. 42

REFERENCES .. 43

APPENDIX .. 45

PUBLICATIONS ... 46

vii

-Table of figure
Figure 1 GPU processing .. 3

Figure 2 working cores GPU and CPU .. 4

Figure 3 CUDA working ... 7

Figure 4 heterogeneous system .. 8

Figure 5 : Comparison of the number of cores on a CPU system and a GPU 9

Figure 6 An example of database sequences conversion. a Original database sequences, b

sorted database ... 17

Figure 7: Flow diagram .. 27

Figure 8: Property of GPU ... 29

Figure 9: No of Cores in GPU ... 30

Figure 10: H1N1 Sample ... 30

Figure 11: Human Being DNA sample .. 31

Figure 12: Results in GIGAFLOPS ... 32

Figure 13: Alignment and Score .. 32

Figure 14: SW algorithm matrix .. 33

Figure 15: Benhmark Results .. 33

Figure 16: Three Selections ... 34

Figure 17: Selection 1 on CPU .. 35

Figure 18: Selection 1 on GPU .. 35

Figure 19: Performance on CPU and GPU .. 36

Figure 20: Selection 2 results on CPU ... 37

Figure 21: Selection 2 results on GPU ... 37

Figure 22: Performance selection 2 on CPU and GPU .. 38

Figure 23: Selection 3 on CPU .. 39

Figure 24: Results of Selection 3 on GPU ... 39

Figure 25: Performance based on Selection 3 ... 40

Figure 26: OpenCL avg time performance on devices ... 41

Figure 27: CUDA giga flops average performance on devices ... 41

1

Chapter 1

INTRODUCTION
––

In recent years the traditional method of improving the performance of CPUs, namely by

increasing the clock frequency has exhausted its potential and performance growth is

achieved by increasing the number of computing cores and the size of the on-chip cache.

Current top of the line traditional CPUs are built with four cores and eight core designs are

already in development. In the near future one can expect designs with more than 30 cores.

The future computers will be built around processors with hundreds, or even thousands of

cores. One should note that chips with comparable number of computing cores are already

present on the market in large quantities. Current generation of graphic cards, such as

NVIDIA GeForce or ATI Radeon contain hundreds of computing cores. The peak

performance of these cards is at least one order of magnitude higher than that of traditional

CPUs and them and are capable of performing large scale computations for all problems

where data parallel approach is feasible. Algorithms for several suitable problems have

been already implemented for these platforms; in many cases showing a very good

performance. The examples from diverse disciplines, such as quantum chemistry,

computational fluid dynamics, astrophysics, computer science as well as search of similar

sequences of biological macromolecules have been recently reported. All these examples

fall into categories, which have been mentioned in the report of the Berkeley group as most

challenging for the new massively parallel paradigm for software development. Therefore

one may argue, that General Purpose GPU computing is the first step towards this new

paradigm.

In which large computation blocks of data done with parallel. The word of GPU was

promoted by NVidia in 1999, they developed the GeForce 256 as "the world's first 'GPU',

a single-chip processor with integrated convert, light, triangle setup, and reading engines

that are capable of processing a less of 10 million polygons per second". In a personal

computer, a GPU can be present on a video card. The purpose of GPU is for the class of

specific applications having characteristics as follows. From the past few years, a certain

section has recognized several different applications having uniform features and

represented those apps into the graphics processing unit in the proper manner. [1]

2

 There are huge computational requirements. There is a need of billions of pixels per

second in a real-time version, and there is need of hundreds or more operations for

each pixel. It is required of GPUs to render a huge measure of computing

performance to requite the need of tough real-time applications.

 Having parallel processing is appropriate of graphical pipeline. Some operation like

vertical fragment are nicely matched to fine gained nearly parallel programming

compute units, which can be applied to several other computational domain.

GPU is impotent for development it’s a general-purpose computing engine. It’s advantage

of programing model and programming tools. The challenges of GPU developers and

researcher is the proper balance amid low-level ingress to hardware to license realization

and high-level programing language for flexibility. As of late GPU could be portrayed as a

scholarly activity. As a result of the fundamental conduct of the apparatus and methods, the

original of were checked for simple working by any stretch of the imagination. As the field

developed, the methods got to be more develop and the examinations with non- GPU work

more precise. Some as of late study of the recorded condenses this time of GPU figuring.

We are currently entering the third phase of GPU registering, and construct some

application which supportive for us. [1]

3

1 ARCHITECTURE OF GPU

The Graphical preparing unit has all times been a processor expansive computational

assets. Most weak believe is convey to light computational to the software engineer. In the

course of the last few year, GPU has just constrained undertakings or capacities, with utilize

some uncommon reason processor into an undeniable parallel programmable processor

with extra altered capacity unique reason usefulness. [1]

Figure 1 GPU processing

AMD and NVIDIA build architecture with brought together, enormously parallel

programmable units at their centre. The NVIDIA GeForce 8800 GTX (top) highlight 16

spilling multiprocessor, every contains imparted guideline and information reserves

rationale, a 16 kb imparted memory, eight stream processor and two uncommon capacity

4

unit. A different approach is taken by GPUs. The GPU devices use different resources of

the processor in various diverse stages, for an instance; say in the pipeline, it isolates in

space, not in time. The piece of the processor is dealing with a solitary stage that sustains

yield specifically into an assorted part that fundamentally lives up to expectations in the

following stage. The course of action of GPU machine was to a great degree powerful in a

GPUs settled capacity for two of the accompanying reasons.-

 Firstly- Data parallelism could be exploited by the hardware in any particular stage.

Inside that particular stage, preparing of numerous components is done in the

meantime. The same number of parallel stages are running in the meantime, the

GPU could address numerous issues of huge PC of the representation pipeline.

 Secondly- The equipment of every stage could be changed with the assistance of

unique reason equipment for the particular assignment, permitting widely more

prominent competences and additionally of range proficiency over a particular

reason arrangement [1]

Figure 2 working cores GPU and CPU

5

2 GPU COMPUTING

2.1 THE GPU PROGRAMMING MODEL

The GPU programmable units follow SPMD programmable unit. With the same program

the efficiency is improved by GPU while holding many elements with it. Every element

being independent from one another and the elements do not communicate in the base

programming model. Components read information from an imparted memory that is

worldwide and to the progressed GPUs can keep in touch with the memory too. The support

for SMPD model by GPU remains the question to be answered.

The classical GPU’s had the advantage that it allowed unique execution path for every

element that requires a substantial control over hardware. Today’s GPUs support arbitrary

control flow per thread but enforce a disadvantage for coherent branching. Elements are

categorized into blocks and parallel processing is done on blocks. The GPU programs are

written such that provision of branches exists but not free. Programmers structure their code

such that they have coherent branches and make best use of hardware. [1]

2.2 GENERAL-PURPOSE COMPUTING ON THE GPU

It include the following-

2.2.1 PROGRAMMING GRAPHIC PROCESSING UNIT FOR GRAPHICS

The programmable aspects of the GPU pipeline are enlisted as

1) The programmer states a geometry that engulfs a region on screen. The rasterizer

produces a fragment at every pixel on screen included in that geometry.

2) The fragment program shades every fragment.

3) The fragment value is computed by the fragment program by the combination of

math operations and global memory that itself reads from a global “texture”

memory.

4) The resultant picture on impending passes will be utilized as surface through the

representation pipeline.

6

2.2.2 PROGRAMMING A GPU FOR GENERAL-PURPOSE PROGRAMS (OLD)

Making the pipeline to perform general-purpose computation, a different terminology but

exactly the same steps are followed.

1) A geometric primitive is established by the programmer covering a computation

domain of interest. At every pixel a fragment is generated by the rasterizer.

2) Every single section is shaded by SMPD part.

3) The estimation of piece is processed by the section program.

4) For the future passes the subsequent cradle that is in worldwide memory is utilized.

 2.2.3 PROGRAMMING A GPU FOR GENERAL-PURPOSE PROGRAMS (NEW)

The organizing of GPU processing applications is done in the accompanying way

 1) A calculation space of hobby is characterized as the structure network of threads.

 2) Value of each string is processed by SPMD general –purpose program

 3) Each string worth is processed by mix of math operations and both "accumulate"

and "diffuse" gets to worldwide memo. [1]

3. SOFTWARE ENVIRONMENTS

3.1 CUDA

CUDA stands for compute unified system architecture, an NVIDIA created a parallel

computing and programming model and employed by GPU that they produce. A direct

access is to virtual instruction set is provided in CUDA GPUs. An approach called CPGPU

is achieved by GPUs using CUDA. GPUs execute many concurrent threads slowly rather

than a single quick execution of a thread. The CUDA in addition of being available through

CUDA accelerated libraries are extensions to industry standard programming languages

include C, C++, and FORTRAN.

7

Figure 3 CUDA working

3.2 OpenCL

OpenCL is a platform that makes some type of parallel processing easy and parallel

execution of code. OpenCL or open computing language is the first that was open and

royalty free meant for the parallel programming for heterogeneous systems. It provides a

single programming environment to write portable, efficient code for high performing

computer servers, desktop systems and handheld devices using a mixture of multiple core

processors CPUs, GPUs and DSPs. It defines a language in which “kernels” are written.

These constitute functions capable of running on multi-variant computer devices. The

computer kernels are written in an extended C language defined by the OpenCL. On-the-

fly compilation of application helps the host application to take the advantage of all the

compute device in the system with a unit set of portable computer kernels. [2]

8

Figure 4 heterogeneous system

4. GPU Programming in MATLAB
Machines with multi cores and simultaneous-multithreading innovation has empowered

researchers, engineering people, and monetary investigators to accelerate computationally

escalated applications in an assortment of controls. Today, another kind of equipment

guarantees much higher computational execution: the representation handling unit

(Graphical Processing Unit).

Initially utilized to quicken design representation, Graphical Processing Units are

progressively connected to investigative computations. Not at all like a conventional CPU,

which incorporates close to a modest bunch of centers, a Graphical Processing Unit do have

a hugely parallel cluster of number and drifting processors, and in addition devoted, fast

memory. An ordinary GPU includes many these littler processors [3]

9

Figure 5 : Comparison of the number of cores on a CPU system and a GPU

.

The extraordinarily expanded throughput made conceivable by a GPU, notwithstanding,

has a go at an expense.

Initially, memory access turns into a substantially more likely bottleneck for your

figuring’s. Information must be sent from the CPU to the GPU before computation and

after that recovered from it a short time later. Since a GPU is connected to the host CPU by

means of the PCI Express transport, the memory access is slower than with a conventional

CPU. This implies that your general computational speedup is constrained by the measure

of information move that happens in your calculation.

Second, programming for GPUs in C or FORTRAN obliges an alternate mental model and

an ability set that can be troublesome and tedious to secure. Moreover, you must invest

energy adjusting your code for your particular GPU to upgrade your applications for top

execution.

Measuring GPU Performance

This case demonstrates to gauge a percentage of the key execution qualities of a GPU.

http://in.mathworks.com/cmsimages/63256_wl_91967v00gpu_fig1_wl.jpg

10

GPUs can be utilized to accelerate certain sorts of reckonings. Nonetheless, GPU execution

changes generally between diverse GPU gadgets. To evaluate the execution of a GPU, three

tests are utilized:

How rapidly can information be sent to the GPU or read back from it?

How quick can the GPU part read and compose information?

How quick can the GPU perform reckonings?

In the wake of measuring these, the execution of the GPU can be contrasted with the host

CPU.

This gives an aide in respect to the amount of information or calculation is needed for the

GPU to give preference over the CPU.

It is simplest to begin changing over one’s code utilizing MATLAB assembled in capacities

that bolster gpuArray information. These capacities take gpuArray inputs, perform

computations on the GPU, and return gpuArray yields. A rundown of the MATLAB

capacities that bolster gpuArray information is found in Run Built-In Functions on a GPU.

By and large these capacities bolster the same contentions and information sorts as standard

MATLAB capacities that are ascertained in the CPU. Any confinements in these over-

burden capacities for gpuArrays are depicted in their charge line help (e.g., help

gpuArray/qr).

On the off chance that all the capacities that you need to utilize are bolstered on the GPU,

running code on the GPU may be as straightforward as calling gpuArray to exchange data

information to the GPU, and calling accumulate to recover the yield information from the

GPU when wrapped up. By and large, you may need to victories your code, supplanting

circled scalar operations with MATLAB framework and vector operations. While

victimizing is by and large a decent practice on the CPU, it is normally basic for attaining

to elite on the GPU. [4]

Specialists and researchers are effectively utilizing GPU innovation, initially expected for

quickening illustrations rendering, to quicken their control particular computations. With

insignificant exertion and without far reaching information of GPUs, you can now utilize

the promising force of GPUs with MATLAB. GPUArrays and GPU-empowered MATLAB

capacities help you accelerate MATLAB operations without low-level CUDA

programming. To attain to speedups with the GPUs, your application must fulfill some

11

criteria, among them the way that sending the information between the CPU and GPU must

take less time than the execution picked up by running on the GPU. On the off chance that

your application fulfills these criteria, it is a decent possibility for the scope of GPU

usefulness accessible with MATLAB.

On Windows® frameworks, a GPU gadget can be in one of two modes: Windows Display

Driver Model (WDDM) or Tesla Compute Cluster (TCC) mode. For best execution, any

gadgets utilized for figuring ought to be as a part of TCC mode.

Information in MATLAB exhibits is put away in section significant request. Accordingly,

it is gainful to work along the first or segment measurement of your cluster. On the off

chance that one measurement of your information is essentially more than others, you may

attain to better execution on the off chance that you make that the first measurement.

Correspondingly, in the event that you habitually work along a specific measurement, it is

typically best to have it as the first measurement. At times, if continuous operations target

distinctive measurements of a cluster, it may be advantageous to transpose or permute the

show between these operations.

GPUs accomplish elite by figuring numerous outcomes in parallel. Accordingly, network

and higher-dimensional exhibit operations ordinarily perform vastly improved than

operations on vectors or scalars. You can attain to better execution by modifying your

circles to make utilization of higher-dimensional operations. The procedure of updating

circle based, scalar-arranged code to utilize MATLAB grid and vector operations is called

victimization.

As a matter of course, all operations in MATLAB are performed in twofold accuracy

skimming point number juggling. Notwithstanding, most operations bolster a mixed bag of

information sorts, including whole number and single-exactness skimming point. Today's

GPUs and CPUs regularly have much higher throughput when performing single-exactness

operations, and single-accuracy gliding point information involves less memory. On the off

chance that your application's precision necessities permit the utilization of single-accuracy

coasting point, it can significantly enhance the execution of your MATLAB code.

12

The most ideal approach to gauge execution on the GPU is to utilize GPU time it. This

capacity takes as information a capacity handle with no data contentions, and returns the

deliberate execution time of that capacity. It deals with such benchmarking contemplations

as rehashing the timed operation to show signs of improvement determination, executing

the capacity before estimation to keep away from introduction overhead, and subtracting

out the overhead of the timing capacity. Likewise, gputimeit guarantees that all operations

on the GPU have finished before the last timing.

Case in point, consider measuring the time taken to register the lu factorization of an

irregular grid An of size N-by-N. You can do this by characterizing a capacity that does the

lu factorization and passing the capacity handle to gputimeit:

A = rand(N,'gpuArray');

fh = @() lu(A);

gputimeit(fh,2);

13

5. ALGORITHM
5.1 SMITH WATERMAN

Developed by T.F Smith and M.S.Waterman, the smith-waterman is a database search

algorithm works on dynamic programming technique. It determines if the optimal

alignments can be found by taking input alignments of any length, in any sequence and at

any location. Depending on the calculations, scores are assigned. The exact matches are

assigned positive scores and for insertions a or deletions negative is assigned. Scores are

added in the weight matrices and the alignment with highest score is reported. Because its

ability to search a large field of possibility, it’s consider exclusive than BLAST and

FASTA. However there is significant decrees in the individual year-wise compression

between latters. [5] Smith waterman determine similar areas between two string or

nucleotide or protein sequence. This algorithm very fast and wildly use. Its last platform of

sequence similarity search performance with near algorithm

5.1.1 FASTA Format

FASTA is a text base format, its exemplify nucleotide sequence or protein sequence. Its

use for DNA. It had single- length code which is represented by nucleotide and amino acid.

This sequence start by “<”, its identifier of the sequence. In this format less than 80

character in text. Lower-case letter are accepted and mapped into uppercase. In this format

not allow any numeric letter but use database to include the protein in the sequence. [6]

Ex- >MCHU - Calmodulin - Human, rabbit, bovine, rat, and chicken

 ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTID

 FPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREA

 DIDGDGQVNYEEFVQMMTAK [6]

5.1.2 BLAST (Basic Local Alignment Search Tool)

This tool for compering primary biological sequence information. This tool search develop

to compare a query sequence with a library or database of sequence and identify library

sequence, and generate score like.

14

Ex- if query is PQGEFG

So, divide this query in different part –PQG, QGE, GEF, EFG

Score technique- if query match = +5

 Unlatch = -4

So, if database sequence is PEG, PQA

1. PQG & PEG

P = 16, Q = 17,

G = 7, E = 5,

Score is = (+ (P is match)) + (-(E, Q is unmatched)) + (+ (G is match))

 = (16+5) + (- (17+5)-4) + (7+5)

 = 21 – 18 + 12

 = 15

Similarly PQG and PQA

P = 16, Q = 17,

G = 7, A = 1,

=((16)+5) + ((17)+5) +(-(7+1)-4)

= 21 + 22 + 4

= 47

In real meaning, we try to convert a string into another by the application some operations

on single individual characters that form the string....the two possible operations can be

performed, insertion or deletion of a character in the first string and the replacement of a

character in the first string with the character from the second string. Thus the operations

of insertion and deletion are mutually dependent, one leading to other. An edit distance is

defined as the minimum possible number of operations required to convert one string into

another. So, value of the alignment is defined as the similarity between two strings that

maximizes the total alignment value. Then how is alignment figured out? global alignment

is the result of insertion of dashes or spaces into or at the ends of two strings , and then

placement of the resultant strings in a stack manner i.e one above the other so that each

character or space in any of the string is opposite a unique character or a unique space in

different string.

Algorithm-

 M*N = Aij

When

M,N is length of two sequence

15

i th →amino acid in the first protein .

j th →one in the second protein.

Condition for any point

 i > i0 , j > j0

formula:-

 0

Hij = max Eij

 Fij

 Hi-1,j-1+Aij

Hij = processed matrix element

Hi-1,j-1 =score of best alignment terminated

Eij = gap of column

Fij =gap of row

 Ei,j-1 -Gext

Eij = max Hi,j-1 -Gopen

 Fi-1 - Gext

Fij = max Hi-1 - Gopen

Gext = penalty for extending

Gopen = penalty for opening gap

16

Chapter 2

 REVIEW OF LITERATURE
––

Ligowaski, Lukaz et al In this paper developer use the NVIDIA GeFore 9800 GX2 Dual

core card and performed using CUDA lib on NVIDIA and using C++ language. They apply

smith waterman algorithm for sequence similarity searches and alignment of similar

sequence. Developer “copy the required data form global memory to shared memory,

execute as many operation as possible using shared memory store the use result to global

memory” this method use the developer. Developer’s kernel has 16 blocks in each block

has 253 threads, so each threads processes a single sequence. So total threads is 16 x

253=4048. At a time kernel sequencing search is 4048/query. They test on SwissProt

sequence database. This database from Swiss institute of Bioinformatics. Database

succession length is somewhat under 1000 amino acids. This point of confinement of the

'evidence of idea' turning the code, which will be uprooted in further improvement. The

subset of Swiss Port hold 388517 proteins (124041327 deposits 85% of whole database

length) the database was change as indicated by size. Thirty seven arrangement were

arbitrarily picked from the database and utilized as an inquiry. Past execution measured on

the perfect case manufactured database was 8.67 GCUPS. At the point when designer

perform this calculation his own framework. So his outcome is 12 GCPUS. Where all

database arrangement were indistinguishable was more than 72% of that hypothetical

cutoff. [7]

hasan, laiq. kentie, marijn,zaid , Al-arsIn et al this paper developer use Intel core 2 Quad

Q6600, 2.4 GHz processor, with 4 GB RAM, and NVIDIA GTX275, 1GB graphics card.

Developer use pre-convers the database of protien to a support format of GPU. Similarly,

other Graphic Processing Unit implementation, the time intensive framework fill venture

of the Smith Waterman calculation is satisfied and accelerate on the GPU. NVIDIA CUDA

is utilized for DC programming (Device Code) in join with C++ for the (PC) programing

(host code). In this paper designer utilization Swiss-Port database for examination. This

database is larger than 1GB to divide in small part before using loaded into the GPU global

memory for alignment. In execution smith waterman give back the most extreme scores

embedded of the real arrangement, and skirting the calculation follow back step meaning

17

improves and paces up the usage. In this grouping document can then be adjusted on host

PC utilizing the smith- waterman pursuit instrument. By default20 top-scoring sequencing

are excess, while the Swiss-Port database contains more than 500,000.Developer convert

the data format is FASTA to GPU format to better much compatibility. In help of this

research developer increase the performance around 21.4 GCUPS (Graphical Cell Update

Per Second). [8]

eng Xiaowen, jin, hai, zheng, rain, zhu, lei, dai, weiqi et al In this paper developer use

the CUDA architecture. When a kernel grid is invoked by CUDA program the grid block

are enumerated and distributed to smith waterman. The execution of threads belonging to

threads blocks takes place. It’s required a huge amount of computation and memory space,

and is also constrained by memory access speed of GPU , when accelerate global memory

using GPU. Developer design to provide the best alignment of all the database sequence

and they decrease the number of the memory access to reduce memory bandwidth

bottleneck. Developer have some challenges, they improve the organize data and placement

strategies in GPU memory hierarchy. On–chip shared memory use the better utilization by

low-latency. Load balancing amount of threads. In this paper developer use SapceAlign for

mapping because smith waterman algorithm is so difficult to map, so GPU implement new

implementation of smith waterman alignment. Its improve performance with several

solution, increasing GPU threads for each database sequence. In the database data is very

large and unbalance, so its sequence are length of data base are various, and resulting load

imbalance in GPU. Alleviate load imbalance in a warp to some extent, however there is

still high load imbalance among warps. In this paper developer’s process can be helpful to

other application which is less amount of input and output, but large amount of intermediate

result, such as Viterbi path scanning. Combination between them increase the performance

of application. [9]

Figure 6 An example of database sequences conversion. a Original database sequences, b sorted database

18

Panagiotis, vouzis, nikolaos , shainidis et al In this paper developer, develop the GPU-

BLAST for accelerated version of the popular NCBI-BLAST. BLAST (Basic Local

Alignment Search Tool) is Bio-informatics tool, which is widely used. This tool use for the

two different biological sequences comparison. this implementation based on Source Code

of NCBI-BLAST, GPU-BLAST and NCBI-BLAST input output result are same.

Developer share the many data structure with NCBI-BLAST. They modified NCBI-

BLAST with GPU but without compromising the accuracy. When they use single thread

on GPU-BLAST then it work 4 time faster, and they use six thread it works twice as faster.

They use the smith waterman algorithm, in this algorithm they use three main step seeding,

extension, and evaluation. In the seeding, two different types of sequence marching , its

identifies short word common between the query and a database sequence and user them

as seeds. Second is exertion in this step discards the false positive seeds that generate by

chance and takes the seeds that generate because there are part of longer common sequence.

Third is evaluation, in this step generate the score produced by the ungapped or gapped

extension step, the query and database sequence lengths, the sequence data. Using of six

CPU threads that run parallel with GPU outputs the average GPU-BLAST speedup. The

elapsed times are used for sequence alignment with former starting from GPU blast

execution and ending with writing the output alignments to a file. When compared single

threaded NCBI-BLAST the GPU-BLAST achieves the largest speed ups and they fall with

increase in the CPU threads. Both CPU/GPU and multi-threaded CPU tend to remain a

function of many available CPU threads. In every case the total time used to align the whole

set of queries was used to calculate the speedups. there is no linear scaling in case of multi-

threaded NCBI-blast. With six threads the NCBI-BLAST speedup remains four. GPU-

BLAST acquires some limitations as it is directed towards getting the same output results

for which it is built on NCBI-BLAST. However, in every case the addition of the GPU

significantly boosts the observed speedups. For instance, for both gapped and ungapped

alignments the CPU-BLAST is able to achieve a speedup of nearly six. [10]

razmyslovich, Dzmitry; Marcus, Guillermo; Gipp, Markus; Marc, Zapatka; Szillus,

Andreas et al In this implementation developer use NVIDIA GeForce GTX260 GPU,

1.75 GB RAM, Intel i7-920 CPU, 6GB RAM on Linux OS with NVIDIA GPU SDK3.0.

In this paper researcher use the smith waterman algorithm. They implement for sequence

path calculation and computing similarity index between query sequence and references.

This implementation application for cancer research. This implementation is 3 time faster

19

the CUDA-enable CUDASW++2.0 for large and medium sequences. There OpenCL model

programming consist two parts. First is in the help of Host code all data load in GPU

memory and schedule a kernel execution and its result. Second is and kernel code executed

on GPU. In implementation they use some step-

(1) Parallelization granularity- all the data store in parallel according to execution of

data of data sequencing.

(2) Long reference sequence processing- they use large reference sequence divided two

part.

(i) New piece of the matrix calculation.

(ii) New optimal path together with truncating the current matrix and calculate

it.

(3) Multi-query processing- In CPU one query process at a time one multiprocessor. In

the help of GPU, several query processed at a time.

(4) The calculating shape- this result calculate a model make a shape it important to

choose the right shape.

(5) The concurrent transfer and execution- In this step Host initialization and transfer

the data to other device memory provide the kernel scheduling path calculation.

(6) Smith waterman without the path calculation- Input the data in matrix form and

execute the algorithm.

They increase the performance compare to CPU 9x with path and 130x without path. Its

also 3x faster to CUDASW++ . [11]

Edans Flavius de O. Sandes and Alba Cristina M.A. de Melo, Senior Member et al In

this research researcher was use the NVIDIA GTX Ti 1GB graphics card. They use

CUDAlingn 2.1 it’s predefine program version. They use the SRA database which is 50

GB genomic sequence. In this paper researcher are divide the algorithm in six part. In first

part the all processes in DP matrix, one is Special rows it’s a saved area. in Next part DP

matrix fill the like back tracking direction end point to staring point, and this processes

saved in another special columns in disk. This optimization is also called the orthogonal

exe. This calculation are reduces the part 2. And then part execution is work similarly part

2 and in this part number of cross points in executions. After then part 3 they decrease the

size of partitions with the help of Orthogonal and MM algorithm, in the help of this part

they reduce the size of all partition size. Next part 5 is finding the sting marching on all

partition. The next part 6 is optional according to researcher they represent the all result

20

and graphical result. They completed all 50 GB database sequence alignment within 8 hr.

29 min [12]

Yongchao Liu and Bertil Schmidt et al In this paper researcher use CUSHAW2–GPU, a CUDA

good gapped short-read aligner in view of CUSHAW2 calculation. In this aligner, an

entomb undertaking cross use CPU–GPU parallelism has been explored to simultaneously

adjust distinctive peruses on both multicore CPUs and GPUs. What's more, another tiled-

based SW arrangement backtracking calculation has been formulated utilizing CUDA to

encourage quick arrangement. CUSHAW2–GPU acknowledges FASTA, FASTQ, SAM,

and Binary arrangement Alignment/Map designs as data, and reports arrangements in SAM

position. They evaluated the execution of CUSHAW2–GPU and different aligners,

utilizing recreated and genuine peruses. On re-enacted information, CUSHAW2–GPU

yields better review and accuracy than BWA–SW, Bowtie2, and GEM for both SE and PE

arrangements. On genuine information, CUSHAW2–GPU has exhibited equivalent or

better affectability. Concerning speed, our aligner with a NVIDIA Tesla K20c GPU can

attain to a speedup of up to 2.8, 4.2, 1.7, and 2.0 in examination to the multithreaded

CUSHAW2, BWA–SW, Bowtie2, and GEM on the 12 centres of a top of the line CPU for

the SE arrangement, and up to 1.6, 2.7, 1.3, and 2.1 for the alignment [13]

Jung-Hyun Hong, Young-Ho Ahn, Byung-Jin Kim and Ki-Seok Chung et al In this

paper researcher made new frame work for OpenCL this framework will provide

advantages for other programing frameworks, this framework mainly deign for hybrid

performance with CPU and GPUs. In the help of this framework provide multi-core for

CPU, and also provide the boost up the performance. This platform support for host-kernel

program environment and different model like NDK, SDK for mobile and LLVM. In this

OpenCL framework use the kernel command query to arrange and also manage number of

threads and handle. They implement some additional function for OpenCL it’s called

OpenCL kernel. The purpose of researcher implement of function is provide the increases

the parameter, multiple design increases the size of work-group and item. We know that

previously in c not use parallel computing in the help of OpenCL we use the parallel

computing. With the help of OpenCL we improve the performance, handle the memory

device on C. in this paper researcher are explain how to use C in OpenCL framework. [14]

21

Romain Dolbeau, Franc¸ois Bodin, Guillaume Colin de Verdi`ere et al. in this paper resarchar

say OpenCL gives a convenient API to advantage from quickening agent innovation. All

things considered, code tuning remains an issue when sending a solitary code base on

diverse stages. If one form of the code is to be utilized for all equipment, they demonstrate

that it is vital to search for a tradeoff between normal productivity and best execution. For

the situation uncovered in this paper they exhibit that execution convey ability is achievable

if an effectiveness loss of 12% is considered as adequate. Variants of the code tuned for

maximal effectiveness for a given equipment (h/w) have a tendency to firmly corrupt

execution on alternate frameworks (up to 43% loss of throughput) and may not even run.

This paper demonstrates that, if extreme execution is not the objective, execution

movability can be accomplished to a degree. As likewise indicated in past studies, when

searching for exchange offs, auto-tuning innovation is an unquestionable requirement. This

work shows that it is not generally important to install self-adjusting codes that prompts

runtime overheads and additional unpredictability. This study will be augmented utilizing

more applications as a part of request to better focus when self-adjusting code is entirely

vital. [15]

T. Brandes; A. Arnold; T. Soddemann; D. Reith et al In this paper specialist say what

are the distinction in the middle of GPU and CPU .In both cases, GPUs and CPUs,

expanding maximal execution obliges mindful tuning to fit the store and memory orders.

On CPUs, the key is capable ill-use of the broad stores by fitting blocking. On GPUs, one

needs to evaluate unmistakable memory access outlines due to different strolls and figure

capacities. Great heuristics for picking perfect access illustrations are basic for execution

streamlining. BLAS timetables are a sensible include as they give extraordinary, but not

perfect execution both on CPUs and GPUs and a fundamental utilization. On CPUs this is

particularly valid for C programs, which the explored compiler families enhance a great

deal not exactly FORTRAN codes. On GPUs, the BLAS-2 schedules have enhanced and

are new tantamount to very much streamlined hand-tuned code, albeit just on late

equipment. [16]

Youquan Liu; Shaohui Jiao; Wen Wu; Suvranu De et al The paper presents a new

solution having the capability of high speed dynamic deformation simulation on the most

recent available graphics processing unit hardware with CUDA which is from NVIDIA.

CUDA based GPUs generate the power of about 128 microprocessors allowing parallel

data computations. The availability of c language interface makes it more flexible than the

22

previous available GPGPU. The arrangement is given in type of limited component system.

The test outcomes got from the experimentation demonstrate that GPU with CUDA

improves to four times in velocity up for limited component strategy deformity calculation

on Intel(R) Center 2 Quad 2.0GHz machine with GeForce 8800 GTX. [17]

John D.; Mike Houston; David Luebke et al The paper depicts the equipment,

foundation and programming model for graphical preparing unit. It clarifies the working of

instruments and strategies in GPU and the paper displays around four examples of GPU

processing victories on diversion physical science and computational biophysics that give

higher execution increases over effectively advanced CPU applications. It satisfies its truths

on the premise of the headway that has taken in GPU registering throughout the years. The

present GPU is currently an effective representation motor as well as an exceedingly

programmable processor. [18]

Ignacio, Juan; Juan Ignacio Perez; García, Eliseo; Frutos, José A. de et al The paper

utilizes attributes premise capacity strategy to run on the representation handling unit.

CBFM is high parallel procedure which makes itself accessible for abusing the parallel

assets of GPU. The rates up over 90 are gotten and these outcomes appear to be very

encouraging. The outcomes can be streamlined with cautious hand-tuning and

enhancement. This thusly has a tendency to open numerous conceivable outcomes like

expanding the size and precision of EM investigation to performing on normal workstation.

[19]

Changyou Zhang,; Kun Huang; Xiang Cui; Yifeng Chen et al The paper contemplates

a mapping from equipment to primitives to help abnormal state programs mindful of the

exchange off in the middle of execution and force utilization on GPU quickening agent.

The paper introduces a model calling attention to an arrangement of primitives which

change the string state. A string state change is moderately simple for developer to be

mindful of and the abnormal state dialect measures the relating force change. The

consequences of the force utilization estimations of specific primitives and with a given

information exchanging proficiency outline to help software engineers to be knowing the

force effectiveness of the fundamental code. [20]

23

Mingcheng Wu,; Jingyi Fu; Xiaorong Hu et al The paper on basis of GPU computing

presents a relatively fast multi-GPU that comes with the capability of aligning large amount

of T-receptor nucleotide sequencesA half and half of CPU and multi-GPU is proposed

utilizing CUDA –enabled Fermi GPU and the NVIDIA gave CUDA tool stash. This

component is a configuration for quicker and considerably more viable arrangement

process. The two i.e. CPU and GPU are diverse in working, CPU being in charge of

rationale control and GPU for parallel figuring. Between assignment parallel methodology

when connected in segment of parallel registering is in charge of bringing high parallelism

as well as not makes the arrangement procedure limited to specific arrangement calculation.

Multi-GPU, single GPU and single CPU registering are utilized under the basic equipment

for the arrangement of mouse TCR nucleotide groupings. The outcomes demonstrated the

multi-GPU as the best of all in execution and cost. [21]

Michael J. Dinneen,; Masoud Khosravani; Andrew Probert et al The paper presents a

way to use the power of multiple GPUs in form of two design techniques. The two

techniques being using a host CPU script to synchronize a distributed view of a graph

algorithm where in every node of the input graph is related with a unique processing thread

ID and using GPU simplest atomic operations to synchronize a single kernel launch where

in a set of threads, upper-bounded by at most the number of streaming processing units

available, stay active at all time intervals and divide the total workload until the algorithm

completes. A reliable comparative work of both the techniques is presented using BFS. The

paper concludes on the fact that OpenCL and CUDA both are natural tools available for

graph algorithm designers especially for those who are not the experts of GPU hardware

architecture. This helps developers to develop real-world usable graph applications. [22]

Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang, and Kuo-Hsuan Wu et al In this

paper, we utilized a lot of comparable portions to think about the registering execution of

C, OpenCL and CUDA, the two sorts of API's on NVIDIA Quadro 4000 GPU. The

exploratory result demonstrated that, the official time of CUDA Driver API was

94.9%~99.0% speedier than that of C, while and the official time of CUDA Driver API

was 3.8%~5.4% speedier than that of OpenCL. Likewise, the cross-stage normal for

OpenCL did not influence the execution of GPU. In this paper we connected five

application benchmarks to look at the adequacy of C, OpenCL and CUDA, the two sorts of

24

API's. The correlation and examination result indicated that the official time of CUDA

Driver API was 94.9%~99.0% speedier than that of C, while the official time of CUDA

Driver API was 3.8%~5.4% speedier than that of OpenCL. Likewise, the additional official

time needed by the between stage normal for OpenCL, did not appear influence the general

execution of OpenCL. Additionally, there was little contrast between the system

configuration of OpenCL and CUDA. This permits specialists and designers to pick one

sort of programming model to control GPU as indicated by their need, and accordingly

upgrade the general framework viability and decrease advancement time. [23]

Jianbin Fang, Ana Lucia Varbanescu and Henk Sips et al This paper exhibits a thorough

execution correlation in the middle of CUDA and OpenCL. We have chosen 16

benchmarks going from engineered applications to certifiable ones. We make a broad

examination of the execution crevices considering programming models, advancement

techniques, building points of interest, and hidden compilers. Our outcomes show that, for

most applications, CUDA performs at most 30% better than OpenCL. We likewise

demonstrate that this distinction is because of unreasonable examinations: actually,

OpenCL can attain to comparable execution to CUDA under a reasonable examination. In

this way, we characterize a reasonable examination of the two sorts of uses, giving rules

for more potential investigations. We additionally examine OpenCL's porta-bility by

running the benchmarks on other winning stages with minor changes. In general, we reason

that OpenCL's versatility does not on a very basic level influence its execution, and

OpenCL can be a decent different option for CUDA. Since it has been demonstrated in this

paper that OpenCL is a decent different option for CUDA, we might want to build up an

auto-tuner to adjust broadly useful OpenCL projects to all accessible particular stages to

completely misuse the equipment. [24]

Baida Zhang Shuai Xu Feng ZhangYuan Bi and Linqi Huang et al In this paper the

examination is too a structure for system consequently chooses which work is expense

productive to execute on GPU. A progression of benchmark of distinctive sorts of

registering, including information exchange between GPU and CPU, information network

Generation, grid operation and GPU capacities were tried in each of the three tool stash.

Furthermore, the outcomes demonstrate that Jacket is the best one. A few advices to

enhance the execution of tool stash are given at last . An examination is given for when an

errand ought to be executed on GPU. Also, a few measures are gotten from the work. A

25

execution assessment of three MATLAB GPU tool kits is too displayed here. Also, Jacket

is the champion in numerous perspectives. It has the best execution and backings the most

capacities than other 2 tool kits. Also, there are additionally a few issues exist. The client

not just need to know a GPU exist in his PC, yet additionally need to know which

MATLAB capacity the tool stash support. Also, when he composes script, he must to PC

what number of times the information exchange spent, this is an overwhelming weight. The

best way is the client require not to know considerably whether a GPU exist, much the

same as we need not to know how CPU functions. The tool stash will pick suitable capacity

and run it on GPU. We are presently doing the work about naturally investigation and

timetable a few capacities to execute on GPU and the client need not to know there is a

GPU exist. This is the thing that the general client needed. [25]

26

 Chapter 3

PRESENT WORK
––

3.1 Problem Formulation

Today as we are rising far ahead in technologies organizations require best performance

systems which could perform hardest calculations efficiently and effectively these

calculations require a large amount of processing and for processing we require CPU but

using CPU we could execute only calculations in series due to this the amount of time

consumed is more. Here comes demand of GPU which execute calculations in Parallel.

Researchers has tried to provide results by performing calculations using different systems

with different capabilities working with OpenCL an open source platform which supports

all types of system and CUDA only for NVIDIA GPUs .we are trying to create an

environment where we are using these two platform in single system and comparing the

results for them. We found that it was the first time smith waterman algorithm is used on

GPU using MATLAB where we see MATLAB has limited functionality with CUDA the

NVIDIA GPU.

OBJECTIVE

The objective of this research is accelerate smith waterman algorithm with the help of

OpenCL.

 To implement smith waterman algorithm on CUDA and OpenCL.

 To compare the performance of smith waterman algorithm using OpenCL with

visual studio and CUDA with MATLAB.

 To find out the parameter which effect the performance of this smith waterman

algorithm on OpenCL and CUDA.

 Check the amount of acceleration of smith waterman algorithm using OpenCL.

27

RESEARCH METHODOLOGY

 DNA sequence samples DATA BASE

GPU

 CUDA OpenCL

Receive sequence Receive sequence

 Call Call

 Smith waterman () Smith waterman ()

 Send score Send score

 COMPARE

Figure 7: Flow diagram

28

Step 1: Pick any DNA sequence randomly.

-In this step I will pick any DNA sequence randomly. Which is FASTA format.

Step 2: Use Two techniques OpenCL and CUDA.

-In this step in my GPU I will use two techniques OpenCL and CUDA. Both techniques

perform operation one by one.

 Step 3: Use DNA database.

-In this step I will download use any sequence database like NCBI or Uni-Prort sequence

Database, this database freely provided for researchers. Then Database connected to smith

waterman algorithm.

Step 4: Use CUDA technique

In this step in the help of C++ language access DNA sequence in CUDA.

Step 5: Use Smith Waterman in CUDA.

In this step I will create smith waterman program in C++. Then CUDAs kernel call to smith

program.

Step 6: Generate Score.

In this step Smith waterman algorithm DNA sequence match with database and generate

Score.

Step 7: Note result.

In this step I will note all the result like execution time, how many use threads, how many

use cores.

Step 8: Use OpenCL technique.

In this step use step 4 to 7 on OpenCL and Note all the result.

Step 9: Compare

In this step I will compare all the result it’s time, core and threads.

Step 10: Accelerate OpenCL

In this step after analysis all result I will try to accelerate OpenCL result.

29

Chapter 4

RESULTS AND DISCUSSION
__

Using MATLAB we have found results of comparing two strings on CUDA the NVIDIA

GPU platform. We have use two strings one of which is DNA sequence of Human Being

and other is a DNA sequence of H1N1 virus infected Human Being. After executing of the

smith waterman algorithm we got the similarity score for the two strings entered.

6.1 Gathering Required Data
1. To show GPU property using MATLAB command gpuDevice

Figure 8: Property of GPU

30

2. To find the number of cores in GPU “ NVIDIA GeForce 830M”.

Figure 9: No of Cores in GPU

3. Taken the H1N1 virus genome sample. Downloaded by NCBI web site.

Figure 10: H1N1 Sample

31

4. Human being DNA sample downloaded from www.WolframAlpha.com --

Figure 11: Human Being DNA sample

6.2 Analysis of Smith Waterman Algorithm

6.2.1 CUDA USING “MATLAB”

1. Two different DNA sequence.

Sequence 1 = ‘ATGGACTCCAACACCATGTC’

Sequence 1 = ‘AAGCTAGCTAGC’

32

2. To show Execution and Analysis of performance using gigaflops on GPU and CPU.

Figure 12: Results in GIGAFLOPS

3. After complete execution on MATLAB we get values similarity and score. We also

get alignment between two strings.

-

Figure 13: Alignment and Score

33

4. Graphical representation for high score point in Smith waterman algorithm matrix.

Figure 14: SW algorithm matrix

5. Benchmarking results from GPU and CPU gigaflops.

Figure 15: Benhmark Results

34

6.2.2 OPENCL WITH VISUAL STUDIO

Visual Studio is used to recreate smith waterman algorithm for Open CL which is an open

source platform for results like comparing performance of CPU and GPU. MATLAB is

used to recreate the same algorithm for CUDA which is NVIDIA GPU Platform.

We also have compare results based on smith waterman algorithm for Open CL in Visual

Studio which have three selections first of which is used to find the similarity score between

two fa(FASTA) files. Second selection which is used to compare two user-defined strings

which gives us the similarity score calculated by comparing the sting and find sequence in

the matrix generated by smith waterman algorithm. This also calculate execution time for

CPU and GPU. Third selection which is used to find the similarity score by comparing a

fa(FASTA) file and user-defined string.

1. Smith Waterman Algorithm in OpenCL provides three selections. For Comparison

and Analysis of two files or two sequences or a sequence and a file.

Figure 16: Three Selections

35

Selection 1: this shows how to align two test files.

In this two fa (FASTA) file are use to produce different strings of different size as example

 str1.fa = DNA string of human

str2.fa = H1N1 virus DNA string

We see a matrix using smith waterman algorithm when two strings are str1 and str2 on

CPU

Figure 17: Selection 1 on CPU

 Selection 1 based on GPU

Figure 18: Selection 1 on GPU

36

Section 1: Compare CPU and GPU time Result

Figure 19: Performance on CPU and GPU

37

Selection 2: User allocated strings is used as input to be passed into Smith Waterman

Algorithm on CPU

Figure 20: Selection 2 results on CPU

Results On GPU

Figure 21: Selection 2 results on GPU

38

Section 2: Compare CPU and GPU time Result

Figure 22: Performance selection 2 on CPU and GPU

39

Selection 3: User Allocated string as well as file string is used in smith waterman algorithm

is used in OpenCL for CPU

Figure 23: Selection 3 on CPU

Selection 3 on GPU

Figure 24: Results of Selection 3 on GPU

40

Section 3: Compare CPU and GPU time Result

Figure 25: Performance based on Selection 3

41

OpenCL average time base performance in different devices

Figure 26: OpenCL avg time performance on devices

CUDA average giga flops based performance in different devices.

Figure 27: CUDA giga flops average performance on devices

42

Chapter 5

CONCLUSION AND FUTURE SCOPE
––

 The research concludes in proposing OpenCL implementation on visual studio as better

technique to solve sequence matching problems. The other technique used in this research

is CUDA on MATLAB. The research uses both the techniques to solve DNA sequence

matching. On a certain data set of DNA sequence the results from both the implementations

is in form of gig flops and time constraint. The gig flops and time constraints results prove

OpenCL as better technique. One of the experiments on DNA sequence by OpenCL takes

it 0.011 milliseconds to solve it on GPU and 0.112 milliseconds on CPU. The results clearly

point out that GPU performs exceptionally better than CPU. Also in one implemented case,

at matrix size of 14000 the gip flops taken by OpenCL on GPU is about 60 while the same

experimentation on CPU takes about 135 gig flops. Its noted from the experimentation that

as the matrix size increases the gig flops for the CPU grows exponentially, thus the research

derives the fact that GPU performs exceptionally better than CPU.

FUTURE SCOPE

The future scope of this research remains in implementing the proposed efficient technique,

OpenCL and Visual Studio, on many biological tasks. An additional advantage in terms of

flexibility that is with OpenCL language and the mechanism it uses in finding the execution

path has the potential to get exploited by vast biological applications.

43

Chapter 6

REFERENCES
––

[1] J. D. Owens, M. Houston, David Luebke,, Simon Green,, John E. Stone, and James

C. Phillips, "GPU Computing," IEEEE, vol. 96, pp. 879-899, 2008.

[2] r. banger, OpenCL Programming by Example, mumbai, 2014.

[3] "smith waterman in matlab," MATLAB, [Online]. Available:

http://www.google.com/url?q=http%3A%2F%2Fin.mathworks.com%2Fmatlabcen

tral%2Ffileexchange%2F45831-matlab-audio-analysis-

library%2Fcontent%2Flibrary%2FsmithWaterman.m&sa=D&sntz=1&usg=AFQjC

NE6SRQ5Bq7PJnKJngvm6Pg7kLfEPw. [Accessed APR 2015].

[4] "Measuring GPU Performance," MATLAB, [Online]. Available:

http://www.google.com/url?q=http%3A%2F%2Fin.mathworks.com%2Fhelp%2Fd

istcomp%2Fexamples%2Fmeasuring-gpu-

performance.html&sa=D&sntz=1&usg=AFQjCNGXOzaRm2k5BYsqpp5RDJTzO

yqrBw. [Accessed APR 2015].

[5] "cs.stanford.edu," [Online]. Available:

http://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-

hgp/smith_waterman.html. [Accessed 20 11 2014].

[6] "wikipidia," [Online]. Available: http://en.wikipedia.org/wiki/FASTA_format.

[Accessed 15 09 2014].

[7] L. Ligowaski, "an efficient implemention of smith waterman algorithm on GPU

using CUDA, for massively scanning of sequence database," ieeee, 2009.

[8] l. hasan, m. kentie and A.-a. zaid , "DOPA: GPU-based protein alignment using

database and memory access optimizations," BioMed Central, no. 10, 2011.

[9] Feng Xiaowen, h. jin, r. zheng, l. zhu and w. dai, "ACCELERATING SMITH-

WATERMAN ALIGNMENT OF SPECIES-BASED PROTINE SEQUENCE,"

springer science+buniess media new york, no. 10, 2013.

[10] P. D, vouzis, nikolaos and s. , "GPU-BLAST USING GRAPHICAL

PROCESSORS TO ACCELERATE PROTINE SEQUENCE ALIGMENT,"

Oxford University Press, vol. 27, no. 10, pp. 182-188, 2010.

[11] D. razmyslovich, G. Marcus, M. Gipp, Z. Marc and A. Szillus, "IMPLEMENTION

OF SMITH-WATERMAN ALGORITHM IN OpenCL FOR GPU," IEEE, no. 10,

pp. 48-56, 2010.

[12] Edans Flavius de O., Sandes and Alba Cristina M.A. de Melo, "Retrieving Smith-

Waterman Alignments with Optimizations for Megabase Biological Sequences

Using GPU," IEEE, vol. 24, pp. 1009-1021, 2013.

[13] Yongchao Liu and Bertil Schmidt, "CUSHAW2-GPU:Empowering Faster Gapped

Short-Read Alignment Using GPU Computing," IEEE, vol. 14, pp. 31-39, 2013.

[14] Jung-Hyun Hong, Young-Ho Ahn, Byung-Jin Kim and Ki-Seok Chung, "Design of

OpenCL Framework for Embedded Multi-core Processors," IEEE, vol. 60, no. 2,

pp. 233-241, 2014.

[15] Romain Dolbeau, Franc¸ois Bodin and Guillaume Colin de Verdi`ere, "One

OpenCL to Rule Them All?," IEEE, vol. 13, pp. 1-6, 2013.

44

[16] T. Brandes, A. Arnold, T. Soddemann and D. Reith, "CPU vs. GPU - Performance

comparison for the Gram-Schmidt algorithm," Springer, no. 210, pp. 73-88, 2012.

[17] Youquan Liu, Shaohui Jiao, Wen Wu and Suvranu De, "GPU Accelerated Fast

FEM Deformation Simulation," IEEE, pp. 606-609, 2008.

[18] John D., Mike Houston and David Luebke, "GPU Computing," IEEE, vol. 96, no.

5, pp. 879-899, 2011.

[19] J. Ignacio, Juan Ignacio Perez, E. García and J. A. d. Frutos, "Application of GPU

Computing to the Characteristic Basis Function Method," IEEE, vol. 919, no. 12,

pp. 1003-1006, 2011.

[20] Changyou Zhang,, Kun Huang, Xiang Cui and Yifeng Chen, "Power-aware

Programming with GPU Accelerators," IEEE, pp. 2444-2449, 2012.

[21] Mingcheng Wu,, Jingyi Fu and Xiaorong Hu, "High Throughput TCR Sequence

Alignment Using Multi-GPU with Inter-task Parallelization," IEEE, vol. 978, no.

12, pp. 231-237, 2012.

[22] Michael J. Dinneen,, Masoud Khosravani and Andrew Probert, "Using OpenCL for

Implementing Simple Parallel Graph Algorithms," IEEE, vol. 84, no. 35, pp. 168-

174, 2011.

[23] Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang and Kuo-

Hsuan Wu, "Overview and Comparison of OpenCL and CUDA Technology for

GPGPU," IEEE, pp. 448-452, 2012.

[24] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, "A Comprehensive

Performance Comparison of CUDA and OpenCL," IEEE, pp. 216-226, 2011.

[25] Baida Zhang, Shuai Xu, Feng Zhang, Yuan Bi and Linqi Huang, "Accelerating

MatLab Code using GPU: A Review of Tools and Strategies," IEEE, pp. 1875-

1879, 2011.

45

Chapter 7

APPENDIX

ABBREVIATIONS

(a) GPU: Graphical Processing Unit.

(b) CPU: Control Processing Unit.

(c) AMD: Advance Micro Devices.

(d) PC: Personal Computer,

(e) SPMD: Single Program Multiple Data.

(f) CUDA: Compute Unified Device Architecture.

(g) OpenCL : Open Computer Language.

(h) DSP: Digital signal Processing.

(i) WDDM: Windows Display Driver Model.

(j) TCC: Tesla Compute Cluster.

(k) DNA: Deoxyribo Nucleic Acid.

(l) BLAST: Basic Local Alignment Search Tool.

(m) GCUPS: graphical cell update per second.

(n) NCBI: National Center for Biotechnology Information.

(o) SW ALGO: Smith waterman algorithm.

(p) NDK: Native Development Kit.

(q) SDK: Software Development Kit.

46

Chapter 8

PUBLICATIONS

Azhar Ali, Balwant Ram, “GPU PERFORMANCE SURVEY ON OPENCL AND CUDA

USING SMITH WATERMAN ALGORITHM”, International Journal of Applied Engineering

Research (ISSN: 0973-4562).

