

Enhancing the Code Clone Detection Algorithm by using Biological

Technique

A Dissertation Proposal Submitted

By

Jaspreet Kaur

(11304255)

To

Department of Science & Technology

In partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science

Under the guidance of

Gurpreet Singh

(May 2015)

i

ABSTRACT

The means of software reuse is copying and modifying block of code that result in cloning.

According to survey, it is observed that 20-30% of module in system contain clone. Mostly,

peoples copy the work of another because they are not able to start the work from scratch and

don’t have time to complete it. Due to this lack of knowledge, the more clones are generated

in software, that increase maintenance cost. So it is mandatory to detect clones in system to

reduce replication and improve reusability.

The copying the existing code and paste them with or without modifications into other

section is known as a software cloning. The copied code is called software clone.

 Code clone is similar or duplicate code in source code that is created either by replication or

some modifications. Clone is a persistent form of software reuse that affects the maintenance

of large software.

 In previous research, the researcher emphasized on detection of type 1, type 2, and type 3

clones. The existing code clone detection tools are used to detect clone in source code. In this

research, the enhancement in code clone detection algorithm will be proposed which detect

type 4. In this work, firstly, an existing algorithm is used to detect clone. Secondly, put some

intensification in that algorithm to detect clone. Thirdly, combine algorithm with type 4 to

detect a clone in particular function.

By using type 4, the efficiency of clone detection is increased. Clone is detected in particular

function, which is more accurate and more efficient in manner.

ii

ACKNOWLEDGEMENT

I would like to express my special thanks to God to give me this opportunity of writing this

thesis and providing such nice peoples who was there always to help me in my dissertation.

Secondly, big thanks goes to my mentor “Gurpreet Singh” who gave me this topic “Code

Clone Detection” for my dissertation work, I am heartily thankful to Gurpreet Sir for being

my mentor and helped me in doing a lot of Research and I came to know about so many new

things. Very special thanks to all the authors whose paper I referred for this dissertation.

Their effort made me to think about new ideas and due to what I am able to implement them

in my research. “Source: Internet” gave me so many short definitions that’s included here.

At last, I would also like to thank my parents and friends who helped me a lot in my

research within the limited time frame.

iii

DECLARATION

I am Jaspreet Kaur hereby declare that the dissertation proposal entitled

“Enhancing the Code Clone Detection Algorithm by using Biological technique”

submitted for the M.Tech Degree is entirely my original work and all ideas and

references have been duly acknowledged. It does not contain any work for the

award of any other degree or diploma.

Date: 01-05-2015 Investigator

Reg. No. 11304255

iv

CERTIFICATE

This is to certify that Jaspreet Kaur has completed M.Tech dissertation proposal titled

“Enhancing Code Clone Detection Algorithm by using Biological Technique” under my

guidance and supervision. To the best of my knowledge, the present work is the result of his

original investigation and study. No part of the dissertation proposal has ever been submitted

for any other degree or diploma.

The dissertation proposal is fit for the submission and the partial fulfillment of the

conditions for the award of M.Tech Computer Science & Engineering.

Date: 01-05-2015 Signature of Advisor

Name: Gurpreet Singh

UID: 16523

v

TABLE OF CONTENTS
S.NO. Chapter Page No.

1. Introduction 1

 1.1 Basic Activities of Software Engineering 2

 1.2 Software engineering sub disciplines 2

 1.3 Software Testing 5

 1.3.1 Software Testing Termonoligies 5

 1.3.2 Objectives of Software Testing 5

 1.3.3 Essential Elements for Software Testing 5

 1.3.4 Types of Testing 7

 1.3.5 Approaches of Software Testing 8

 1.4 Clone Testing 10

2. Review of Literature 16

3. Present Work 21

 3.1 Problem Formulation 21

 3.2 Objective of the Study 21

 33 Research Methodology 22

4. Result and Discussion 23

 4.1 Introduction to MATLAB 23

 4.2 Implementation 26

vi

5. Conclusion and Future Scope 36

6. References 37

LIST OF FIGURES

S.No. Figure Page no.

 Chapter 1

1. Disciplines of Software Engineering 4

2. Complete Cycle for Testing 6

3. General Classification of Software Testing 8

4. Type 1 11

5. Type 2 12

6. Type 3 13

 Chapter 4

7. Proposed Flow Diagram 24

8. Clone Testing Framework 26

9. Efficiency of Old Algorithm 27

10. Graphical Representation of Old Algorithm 28

vii

11. Bar Chart of Efficiency of old Algorithm 29

12. Efficiency of New Algorithm 30

13. Graphical Representation of Efficiency of New

Algorithm

31

14. Bar Chart of Efficiency of New algorithm 32

15. Comparison Between Efficiency of New

Algorithm and Old Algorithm

33

16. Graphical Representation of Comparison

Between Efficiency of New Algorithm and Old

Algorithm

34

17. Bar Chart of Comparison Between Efficiency

of New Algorithm and Old Algorithm

35

1

Chapter 1

Introduction

Software engineering is about building, evolving and maintaining software systems. Software

engineering is a set of problem solving skills, techniques, technology and methods applied

upon a variety of domains to evolve and create useful systems that solve many problems like

practical problems. Software engineer is required to handle software engineering projects

which discover, create, build software and tells its behavior [1].Software is a non-tangible

device like documentation and computer programs and it is different from tangible hardware

device. Software Engineering is the discipline of computer science which applies engineering

principles to create, operate, modify and maintain of software components [24]. An

organized and systematically approach is adopted by software engineers regarding their work

using some techniques and tools depending upon the resources available and problem to be

solved. System engineering is different from software engineering. System engineering is

concern with deployment, architectural design and integration where as software engineering

is concern with development, quality and testing and control of the system [2].

The main goals of software engineering are as follows.

 To produce software of high quality having less cost.

 To achieve Correctability.

 To gain reliability.

 To improve efficiency.

 To produce the system under budget and on schedule.

2

1.1 Basic Activities of Software Engineering [3]:

The basic activities which are necessary to follow in software engineering are as follow:

 Define software process which is to be used.

 Manage development of project.

 Describing software projects which are going to use.

 Design of the product

 Implementation of the product

 Testing of the product.

 Integrates sub parts and test them as a whole.

 Maintance of the system.

1.2 Software Engineering Sub-disciplines:

There are many sub-disciplines of software engineering which are as follow:

1.2.1 Software Requirement:

A requirement specification is the complete description for the behavior of the system. It may

be defined according to the system specification.

1.2.2 Software Design

 It is a problem solving process and plan for solutions. Dataflow Diagrams and Flowcharts,

are comes under software design. In this SRS document are transform into design form using

some tools.

1.2.3 Software Construction

It is a formation, functioning which is in depth manner and in the construction process we

can define methods of the process and its description. It helps to improve software quality.

3

1.2.4 Software Testing

 It checks whether the expected results match with the actual results. This process is to

recognize correctness, integrity and effectiveness of computer software.

1.2.5 Software Maintenance

It is the alteration of the software products for their correction after the delivery to correct

faults, error and bugs in software. It is a changing of software after delivering to the

customer.

 1.2.6 Software Configuration Management

It provides the auditing, changes and report to the changes that are made. So we can say that

SCM is a change management.

4

 Fig. 1.1: Disciplines of Software Engineering

Software Requirement

Software design

Software Construction

Software Maintance

Software Engineering
Process

Software Testing

 Software Quality

Software Configuration
Management

Software Engineering
Management

5

1.3 Software Testing

This process is to find out error or faults in a system to make it correctness, completeness and

to identify the quality of already developed software (guru 99). This process is used to find

the bugs and uncover it. Software testing is a process and discipline also. It is different from

software development. It should be considered that is part of software development .It is an

internal part of software development and closely related to software quality. The main aim

of software testing is to fulfill user’s requirements and make the system error free. So

software testing is mainly to find outs the error or bugs to improve the quality of the system

[2]. It is the last phase of the product before deliver to the customer. Software testing is an

important part which tells whether the product is efficient and error-free, work properly and

according to the requirements of the customer.

1.3.1 Software Testing Terminologies

The basic terminologies are as follows:

 Error: A mistake in coding is known as error. It is a misunderstanding of the internal

stage.

 Defect: It is detected by the tester. It is some trouble in internal and external behavior

of the products.

 Bug: the defect which is accepted by the developer and does not fulfill users

requirement

 Fault: The invalid step taken which cause problem in future and give improper

results.

 Failure: the result of fault is known as failure. The system is unable to perform

according to the given specification.

1.3.2 Objective of Software Testing

The main objective of software testing is as follows:

 To find outs bugs or errors in a system.

6

 To improve the quality of a system and gain confidence.

 To prevent the system from the errors or bugs.

 Having less cost and more efficient system.

1.3.3 Essential Elements for Software Testing

 To improve the efficiency and effectiveness of software there are five elements which are

essential for software testing. These elements are as following.

 Test Strategy

 Test Plan

 Test Cases

 Test data

.

 Failure

 Failure

 Failure

Fig 2:- Complete Cycle for Testing

Need Finish

 Requirements

 High Level Design

 Low level Design

 Code

 Unit Test

 Integration Test

 System Test

7

1.3.4Types of Testing

There are different types of software testing are available to find out the defects in a

software. These testing are as follow:

1.3.4.1 White-Box Testing

This testing also called as Glass testing and structural testing. In this, testing code is visible.

It has knowledge of the internal mechanism of the components [18]. White-box testers are

aware about the internal structure and also know how code is looks like. It is used in the

validation process. It is a clear box testing because code can be easily visible in this type of

testing.

1.3.4.2. Black-Box Testing

It is also known as functional testing. This testing ignores the internal mechanism of the

system. It is a testing which is based upon the output and having no knowledge of internal

code [1].It is attesting in which its working is not understood by its user. It has no knowledge

of processing of code but only concentrate upon the output. It is used in the validation

process. It is based upon the requirements and functionality. There is no user requirement in

this type of testing.

1.3.4.3 Unit Testing

It is a type of white-box testing. It is a testing for low-level design code. It is done within a

class and starts from a individual module [25].It has testing the smallest unit of elements of a

software which module or component or unit .It is basically done by programmer not tester

and require detail of structure of code. It helps to design test driver.

1.3.4.4. Integration Testing

This testing is done when two or more modules are combined together into a larger module.

It verifies the functionality of the module after integration. It is done at the interfaces of the

both the structure and component module. This type of testing is done in distributed or

client/server modules. It uses both white box and black-box techniques [25].

8

1.3.4.5. System Testing

It is also known as end-to-end testing. It tests the complete application of environments. It is

based upon the specification and requirement of the system. It checks the entire systems. It is

for high level design and comes under the black-box testing [25].It also checks non-

functional requirements also.

1.3.4.5.1 General Classification of Software Testing

There are mainly two types of testing:- Black Box Testing and White Box Testing. The

diagrammatically representation of testing is as follows:-

Fig: - General Classification of Software Testing

 Testing

Black-Box White- Box

Equivalence Partitioning

Boundary Value Analysis Loop Testing

Model based Testing

 Path testing

 Comparison testing

 Fuzz Testing

Control Structure Testing

9

1.3.5 Approaches of Software Testing

There are three types of approaches which are followed by the software testing. These

approaches are as following:

 Bottom-Up Approach

 Top-Down Approach

1.3.5.1. Bottom-Up Approach

Bottom–up is a one of the approach of software testing approach. It comes under integration

testing. It starts with the unit modules such as programs and module and complete until the

final phases reach. The control flow moves to upward direction. Drivers are used in the

bottom up approach in the unit module. In this approach testing is conducted from sub

module to main module. Drivers are used to simulate the main module. It is a temporary

program. It is also known inductive reasoning.

1.3.5.1.1 Advantages of Bottom-Up Approach:

The main advantages of Bottom-up Approach are as following:

 Test results are easily observable.

 Easily test cases are generated.

 Faults are occurring at the bottom of the module only.

1.3.5.1.2 Disadvantages of Bottom-Up Approach

Disadvantages of bottom-up approach are as following:

 Driver modules are required.

 After the addition of last module only than program can exist.

1.3.5.2. Top-Down Approach

It is the second type of testing approach. In this approach we start from top level to bottom

level. The control flow moves from top level to lower levels.tn this process module is created

first then broken down into sub modules. Then sub module are further tested and broken

down into super sub modules. Stub is used in it as a temporary program [21].

10

1.3.5.2.1. Advantages of Top-Down Approach

The main advantages of Top-down Approach are as following:

 Test cases are easily created after the I/O functions are added.

 If faults are find out at the early stage then it is useful.

1.3.5.2.2Disadvantages of Bottom-Up Approach

Disadvantages of Top-Down Approach as follow:

 Stub is complicated to produce at early stage.

 Observation of test output is difficult to produce.

 Testing and design are overlapped.

1.4 Clone Testing:

Software engineering is a method to develop, design operation and maintenance of software.

Consequently in software engineering main focus is on to assure the quality in the product,

detect the bugs and prevent system from bugs by testing or analysis. While developing any

software for saving time and effort, software developer copy paste program code again and

again. So if one module has bug, it is reproduced in every copy. There are several copies of

code present and no record of such copies is present. This will make hard to fix such bugs

and maintenance of existing software.

By concluded that the clone result comes from adding some extra functionality, which is same

but not identical to existing logic. A clone in code is nothing but a similar or duplicate code in

a source code or created either by replication or some modifications [3].These cloned code add

to high maintenance cost of software and also cause the code bloating. This is because when

changes perform on one clone, then the same action is performed on respected clone, this will

increase the maintenance. These clones can also increase risk of faults in system [3]. Past

research conclude that around 8%-25%, the source code in a software system contains code

clone [3].The number of tools which are used to detect the code clones, but it is not effective to

11

remove the clones. So we can apply the principal of refactoring or modularity to improve the

reusability and maintainability of software from clone code.

Types of code clones:-

The clones are divided into four types:-

Type 1:-These code clones are identical code clones that only allow modification in white

space and comments.

12

Type 2:-These code clones are semantically and syntactically identical copies.

13

Type 3:-These code clones are copied fragments by changing, adding or removing

statements.

14

Type 4:-These code clones are based on function similarity but they are different in syntax.

Techniques: - There are basically 4 types, that are:- textual, lexical, syntactic and

semantic.

Textual approach: - In Textual approaches there is little need of normalization or

transformation of code. In this, basically line to line comparison is done, which basically

based on two types, one is simple line matching and other one is parameterized line

matching. This technique is basically string based.

Lexical approach: - In lexical technique we convert source code into tokens using lexical

rules. These tokens are then compared.

Syntactic approach: - In syntactic technique an abstract tree is generated. Using parser

source code is converted into parse tree. Abstract tree is then processed either using tree

matching or metric to find the clones.

Semantic approach: - In this approach, an source code is represented as program

dependency graph. Nodes represent the statements and expressions and , edges represent

control and data dependencies.

Advantages of clones

 Cloning helps to configure multiple software at once.

 It is an easy way to develop new software with the help of existing software.

 It is an only way to enhance the existing functionality.

 It is a fast and immediate method to fulfill the requirement of users.

15

Disadvantages of clones

 The presence of clone in software greatly increase the maintenance cost.

 Code cloning increases the probability of bug propagation. if any code contain a bug and that

code pasted at different places, the same bug will be present in all the code fragments.

 When putting a strain on a system, then code cloning increase the size of software system.

16

 Chapter 2

 Review of Literature

C. K.Roy proposed a paper “detection and analysis of near miss clones”[4]. In this paper,

A hybrid approach called NICAD is proposed to detect both exact and near miss clones. In

this, a hybrid detection method is developed and then provides a scenario to compare and

evaluate detection techniques and finally erect a framework for assessing clone detection

tool.

NICAD works in three phases:-

 Standard pretty printing and extraction.

 Clustering and comparison.

 Reporting.

J.H.Johnson proposed a paper “Identifying Redundancy in Source code using

Fimgerprints”[5]. In this paper, a large program source tree over a 300 megabytes has more

clones and that exact duplication of text is detected by fingerprints. This approach is very

suitable for envisioning and understanding the program. In other words, the information

present in source is achieved by looking for repeated substrings.

B. S.Baker presented a paper “On Finding Duplication and Near Duplication in Large

Software System”[6]. In this paper a program DUP is used to identify the code which is

copied and modified. DUP ignore the indentation in any case. By using DUP, firstly fix the

bugs,then match the same bugs that are present in code, then finding the identical and near

identical bugs present in the code.

T. Kamiya proposed a paper “CC Finder: A Multilinguistic Token based Code Clone

Detection system for large scale source code”[7].In this paper,a CC Finder tool is used to

detect clone in software. This tool is used to detect code clone in c++,c,java,cobol and other

17

source file. As a output, CC finder detect and resolve clones in software. The main advantage

of CC Finder is to raise performance and efficiency. This paper showed some issues that are

generated in clone detection. The issues are:-

 Regularization of identifiers

 Measuring clones

 Identification if structure

Kodhai.E proposed a paper “Clone Detection uses Textual and Metrics Analysis to

Figure out All Types of Clone”[8]. In this paper, each line is compared textually using

hashing technique. This paper uses a metrics based technique to detect a functional clone.

This paper mainly detect the code line by line. The conclusion of this paper is to implement

various metrics technique to reduce the total comparison overhead.

R. sivakumar and Kodhari.E proposed a paper “code clone detection in websites using

hybrid approach”[9]. This paper detect all types of clone in web application by using

hybrid approach by the combination of textual and metrix analysis.this method is least

complex and provide efficient way of clone detection. The conclusion of this paper is to find

functional clone and eliminate the duplicate code in web application and improve the poorly

designed web applications.

S. K.Abd-El-Hafiz published a paper “A Metrix Based Data Mining Approach For

Software Clone Detection”[10]. This paper use data mining approach to detect a clone from

software. In this fractal clustering algorithm is used. By using clustering algorithm, firstly

metrics are collected form functions of software and then partition into clusters then clones

are deterct from that clusters. This paper mainly focus to detect clone from clusters rather

than line by line comparison to give accurate and less complex result.

A. Kaur, B. Singh published a paper “Study on Metrix Based Approach for Detecting

Software Code Clones”[11]. this paper used metric approach to detect the bugs directly

from the software rather than working on source code. The principal of refractoring and

modularity is applied to improve the maintainability of software. After the study of this

18

paper, we can conclude that the metrix based approach detect all types of clone form the

software.

R. Koschke, R. Falke, P. Frenzel published a paper “ Clone Detection using Abstract

Syntax Suffix Trees”[12]. which able to find syntactic clone by using Bellon benchmark

technique. The token based clone detection based on the suffix tree. In this paper, firstly they

use the first letter for the word,then construct the suffix tree, then identify the clone in the

suffix tree. At the end they conclude that bellon benchmark technique is use to count token

instead of line as a measure of clone size.

P. Bulychev and M. Minea presented a paper “duplicate code detection using anti

unification”[13]. In this paper only syntactic similarities are considered. The main aim of

this paper is to detect a wide range of clones i.e. third type of clone. In this, clones are

detected using anti-unification algorithm. Firstly, partition statements into clusters and then

fine all pair of identical sequence of clusters and then check for similarities by using the anti-

unification algorithm.

J. Krinke presented a paper “Identifying Similar Code with Program Dependency

Graph”[14], this paper detect the similar code in directed graph. Such approach detect the

duplicate code. Such approach is based on semantic, text and syntax. This approach is

feasible in non-polynomial complexity of the problem.

R. komondoor and Susan Horwitz proposed a paper “Using Slicing to Identify

Duplication in Source Code”[15], This paper describe the design and initial implementation

of tool by using program dependency graph and program slicing to find isomorphic program

dependency graph that detect clones. The benefit of this approach is to find the clones that

does not occur component as a contiguous text. The main approach of this paper is to

describe the implementation tools that find the duplicate code in C program and display to

the programmer.

Rowyda Mohammad et.al have proposed “A technique to extract exact clones from

object oriented source code using differential file comparison[16].Objective of this

technique is to detect cloned code ,which are reason of crosscutting concerns that leads to

19

reducing the system reusability and maintainability. DIFF(Differential File Comparison

Algorithm) will find the different lines of code between two source codes files and rest of the

lines of code are same and that will be considered as clones. Then that clones will extracted

from code .This technique will pass through three stages: (1)Source code normalization

(2)Differential File Comparison (3)Extracting Exact Clones.In the first stage little

transformation of code is needed. During transformation ,the white spaces and comments are

removed from code.In second stage DIFF determine the difference of lines between two files

that are not changed. Unchanged lines will be declared as clones. It will solve the problem

of longest common subsequences by maximize the size of lines which are unchanged. In

third step it will Extract exact clones from two given source codes. Lines which are not

different are considered as clones and which results in extracting the clones two source files.

However ,this tool is implemented on C# language. This technique is implemented on only

two source files. Although this technique is simple and take less time but it can only find type

1 clones .This tool can be extended to detect type 2 or type 3 clones and work on more than

two source codes.

Saif Ur Rehman et.al (2012) has proposed “A technique to detect code clones in large

source codes”[17]. This technique will overcome key problem of other techniques to detect

clones only in one language. This technique can detect clone in any size of source code.LSC

Miner (Large Source Code) will detect the codes written in more than one language source

code.LSC Miner is an prototype tool .In first step this technique will read the source code and

forward it further to next stage. In second step it will take source code as input and then this

code is converted into tokens. This technique is using two dimensional array for faster

storing and identify the clones in source code. So these tokens are stored in this two

dimensional array as dataset. In third step hash values are assigned to each converted token.

Every hash has weight, which are the total number of token there in the statement. In last

every hash value is compared and on that comparison result is out. Matched and copy paste

data will be detected and considered as clones.LSC Miner is implemented in Visual Basic

.Net 2.0 .This system found clones written in C ,C++,Java,VB.Net,C.

20

 Figure 2: Flow of LSC Miner

Praveen Ranjan Srivastava et al (2011) has discussed “Software testing Effort: An

Accessment Through Fuzzy Criteria Approch”[18]. It consists of estimating testing effort,

selecting appropriate test team, designing test cases, executing the software with those test

cases and examining the results produced by those executions. It indicates cost of software

development is committed to testing, with the percentage for testing critical software being

even higher. This paper makes an attempt using fuzzy logic to estimate reliable software

testing effort. In this paper triangular membership functions are chosen with monotonic

constraints.

Sahil Batra et al (2011) have mentioned “IMPROVING QUALITY USING TESTING

STRATEGIES”[19]. In this paper, a variety of types of software testing technique and their

different attributes of software quality are explained. The aim is to identify the types of

testing that can be applied for checking a particular quality attribute. All types of testing

cannot be useful in all phases of software development life cycle. Also summarized which

types of testing are applicable in which phases of life cycle of software development. General

SDLC processes are applied to different type of projects under different conditions and

requirements. The debugging and testing differences are also explained.

 Tokenize

 Assign Hash Values

 Detect Clones

Read source code

21

 Chapter 3
 Present Work

3.1 Problem Formulation
Code cloning is the process of duplicating and modifying code, or creating replication of

code fragments in the source code. Clone groups are type of code clones that are clones of

each other .Clone Detection is a technique that is used to detect functions that are same of

another function. The type of code clone is an indicator of complexity as well as the level of

difficulty in identifying and detecting the clone. In this case, type 1 is the easiest to detect

and type 4 the most difficult. Type 4 Cloning is used for the detection of clones in a

particular function. The problem is that it makes clones of all the function it copies rather

than only the copied lines. To overcome this problem we have to use the pattern matching

algorithm so that only matched values are cloned, not other values.

Pattern Matching Algorithm is used to match the values that are cloned, but to match

the values line by line, we are using Ant Colony Optimization Technique. This technique is

inspired by foranging behavior of ant colony. Ant colony optimization takes inspiration from

the real ants colonies and which are used to solve optimization problem.

3.2 Objectives

 The main objectives of the study are as follow:

 To study all types of clone, type 1, type 2, type 3 and their algorithm.

 To identify the Type 4 cloned.

 To compare existing algorithm with proposing algorithm.

 To remove the problem of whole function cloned of type 4 by using patter matching

algorithm.

 To reduces the complexity and improve the efficiency of the functions.

22

3.3 Research Methodology

 Explore all the existing algorithms to detect all types of clones.

 Apply type 4 enhancing in existing algorithm to detect function code clone.

 Reducing the complexity and improving reusability and maintainability by pattern matching

complexity algorithm.

By removing this error we can use this for various purposes. After combining type 4 with

pattern matching, complexity of the function is removed. In type 4 whole functions are

cloned but with pattern matching algorithm few lines are cloned which is time saving process

and fast than the existing function. In this case, the easiest detection type is type 1and most

difficult type is type 4. Type 4 Cloning is used for the detection of clones in a particular

function. But type 4 is difficult to because it make clone of all the function it is copied rather

than only the copied lines. To overcome this problem we have to use the pattern matching

algorithm so that only matched values are cloned not other values. So pattern matching

algorithm helps to cloned the duplicate code only not the whole function.

23

 Chapter 4
 Result and Discussion

4.1 Introduction to MATLAB
MATLAB stands for matrix laboratory. It is a multi-prototype numerical computing

environment and fourth generation programming language. It is used for matrix

manipulation, plotting of function and data. With the help of its programming capabilities it

provides tool which is very useful for all areas of science and engineering.
GUI toolbox allow advanced matlab programmer to provide graphical user interface to their

program.

4.1.1 Introduction of Ant Colony Optimization Technique
Ant colony optimization is a technique to solve problems which is used to fine good path

through graph.

 This technique is inspired by the foraging behavior of ant colony.

 Ant colony optimization takes inspiration from the real ants colonies and which are used to

solve optimization problem.

 For e.g., While walking from food sources to the nest and vice versa, ants deposit

pheromones on the ground, forming in this way a pheromone trail. Ants can smell the

pheromone and they tend to choose, probabilistically, paths marked by strong pheromone

concentrations.

24

4.1.2 Proposed Flow Diagram

 Input Input

 Input

 Produce

 Clones

4.1.3 Proposed ALGORITHM

Begin
 Initialization: i:=1

 while(i<=n)
if(Functions are distinct)

 if(clone is distinct from any previously processed clone)
then

 if(startNo_Clone has method parameters)
then

 compose advice specification with parameter binding
 Initialization: line:= startNo_Clone+ 1
 while(line<= endNo_Clone)
 copy line to Aspect text area
 line++
 end while
 else
 compose advice specification without parameter binding
 Initialization: line:= startNo_Clone + 1

Original source
code

GUI
File
Processing

Function Clone Visualization

User

25

 while(line<= endNo_Clone)
 copy line to Aspect text area
 line++
 end while

 end if
 end if
 i++
 end while
 Initialization: i=1

 while(i<=n)
 comment out clone from array full_File[][]
 i++
 end while

end begin

In this work, the enhancement is made in the existing algorithm, in existing

algorithm only we can detects the clones in the whole code. In enhanced algorithm, the clone

code under the specified function is also checked. As in the algorithm, if the function under

which we are checking the cloned code has same name, that whole code is detected as the

cloned code. If the function names are distinct, then the clone code detection process

continues until whole code is been traversed. As experimental results shows that the

enhanced algorithm is more efficient and detects the cloned code more efficiently in less

amount of time.

26

4.2 Implementation

 Tools for clone testing: - The tools for clone will test both efficiency of new and old

algorithm. In this figure, various checkboxes and buttons are used for testing the clone and

results are shown in text boxes.

 Fig 1 :- Clone Testing framework

As illustrated in the figure1, the interface is developed for clone testing. The tool will test

both the efficiency of existing and new algorithm.

27

Results:- The outcomes that are generated from new algorithm and old algorithm are

represented as follow. The below diagrams represent the efficiency of new algorithm,

efficiency of old algorithm, and comparison of efficiency of new algorithm and old

algorithm.

Efficiency of Old Algorithm:- In this, the clones are detected by using old algorithm.

This old algorithm tells how much clones are detected in source code by using old algorithm.

Fig 2: Efficiency of Old algorithm

As illustrated in the figure 2, the first line of first code and two lines of the second code are

checked and algorithm gave that 17.1115 % of the code are cloned with the old algorithm.

28

Graphical Representation of Efficiency of Old Algorithm:- This will show the

efficiency of old algorithm in the form of graph. This represents

Fig 3: Efficiency of Old algorithm

As illustrated in the figure 3, the first line of first code and two lines of the second code are

checked and algorithm gave that 17 % of the code are cloned with the old algorithm and

correspond to their efficiency graph is been shown.

29

Bar Representation of Efficiency of Old Algorithm: - The area in this figure

which is blue in color is cloned portion. It means that the clones are detected in this portion

of source code. The result is generated from old algorithm. in this, the function clones are not

detected.

Fig 4:- Bar Representation of Efficiency of Old Algorithm

The above figure is the bar chart representation of the efficiency of old algorithm. In the

above figure, the blue color represents the cloned portion. It means that the clones are

detected in that portion of the code.

30

Efficiency of New Algorithm:- In this, the clones are detected by using proposed

algorithm. This new algorithm tells how much function clones are detected in source code by

using new algorithm.

Fig 5: Efficiency of new algorithm

The above fig illustrate that the lines of first code and lines of the second code are checked

and algorithm gave that 27.4874 % of the code are cloned with the new algorithm . this will

increase the efficiency because it will also detect the function clones in source code.

31

Graphical Representation of Efficiency of New Algorithm:- This will show the

efficiency of new algorithm in the form of graph. This represents

Fig 6: Efficiency of new algorithm

As illustrated in the figure 6 the first line of first code and two lines of the second code are

checked and algorithm gave that 27.4874 % of the code are cloned with the old algorithm

and correspond to their efficiency graph is been shown.

32

Bar Representation of Efficiency of New Algorithm: - The area in this figure

which is blue in color is cloned portion. It means that the function clones are detected in this

portion of source code. The result is generated from new algorithm.

Fig 7:- Efficiency of New Algorithm

The above figure is the bar chart representation of the efficiency of new algorithm. In the

above figure, the blue color represents the cloned portion. It means that the function clones

are detected in that portion of the code.

33

Comparison of Old Algorithm with New Algorithm: - In the below figure, the

clones are detected from old and new algorithm. The new algorithm is more efficient than

new algorithm because it detects function clones.

 Fig 8:- comparison of new algo with old algo

The fig 8 illustrates the comparison between new algorithm and old algorithm. The old

algorithm detects only 22.9191% of clones, but new algorithm detects 27.4874% of clones.

Because it detects code clone as well as function clones.

34

Graphical representation of comparison of new algo with old algo:-

 Fig 9:- comparison of new algo with old algo

As illustrated in the figure 9, the two lines of first code and two lines of the second code are

checked and algorithm gave that 22.9191% of the code are cloned with the old algorithm and

with the new algorithm it will be 27.4874%. and corresponding to their outputs graphs are

shown

35

Bar Representation of Comparison of New Algorithm with Old

Algorithm:-

Fig 10:- comparison of new Algorithm with old Algorithm

The above figure is the bar chart representation of the comparison of new algorithm with old

algorithm. In the above figure, the blue color represents the cloned portion. The efficiency of

new algorithm is more than the efficiency of old algorithm.

36

Chapter 5

 Conclusion and Future Scope

Software clone is a partition of code that is same according to some manners. Basically clone

means duplicacy of source code. These clones affect the quality of system and more number

of errors occurs in system.

This paper presented an approach that detects the clone in particular function. Basically code

clone are very harmful to software system because they increase the maintenance cost. The

approach in this paper can handle the type 4 of type of clone. This result shows that to detect

the function clone in particular function increase the efficiency of clone detection.

The expected outcomes in this paper to detect the function clones in source code. This

improves the efficiency in terms of execution time and accurate results. By using type 4 with

pattern matching complexity algorithm, this approach improves the reusability and

maintainability of software. By using type 4 with pattern matching algorithm and by using

biological technique, this approach is more accurate and more efficient in manner than the

previous techniques that are implementing to detect clones.

Future Scope: - In this work, the enhanced algorithm has proposed to detect function

clones in source code. The further enhancement technique will detect clone line by line and

will tell in which line, clone exist. It will also assign severity to the detected clones. The

severity of the clones will provide better analysis in terms of code clone detection.

37

 Chapter 6

 List of References

I. References
[1] S.Biswas and Rajiv Mall , “ An approach to software engineering”, 2009.

[2] Myers, Glenford. (1979). The Art of Software Testing.

[3] J.Irena, “Software testing methods and techniques”, 2002.

[4] C. K. Roy, “Detection and Analysis of Near-Miss Software Clones”, Ph.D. Thesis,

Queen’s School of Computing.

[5] J.H. Johnson, “Identifying redundancy in source code using fingerprints”, Proceedings of

the 1993 Conference of the Centre for Advanced Studies on Collaborative.

[6] B.S. Baker, "On finding duplication and near duplication in large software systems",

Proceedings of the 2nd Working Conference on Reverse Engineering.

[7] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: Multilinguistic Token-Based Code Clone

Detection System for Large Scale Source Code”, IEEETransactions on Software

Engineering.

[8] Kodhai.E, Perumal.A, Kanmani.S, “clone detection using textual and metrics analysis to

figure out all types of clones “in ITC, 2010.

[9] R. Sivakumar, Kodhai.E “code clone detection in website using hybrid approach”, in

IJCA(0975-888) volume 48-No.13,june 2012.

[10] S .K.Abd-El-Hafiz “A Metrix Based Data Mining Approach For Software Clone

Detection”, proc. IEEE 36th international conference on computer software and

application,2012.

[11] A.Kaur, B.Singh, “Study on Metrix Based App00roach for Detecting

ppppllpppppSoftware Code Clones” ISSN:2277 128X 2014.

38

[12] R.Koschke, R.Falke, Pierre Frenzel “Clone Detection using Abstract Syntax Suffix

Trees”-working conference on Reverse Engineering-2006.

[13] P.Bulychev and M.Minea, “Duplicate Code Detection using Anti-Unification”, A

Survey on Software Clone Detection Research, 2007.

[14] J.krinke, “Identifying Similar Code with Program Dependency Graph”, proc.eighth

working Conf. Reverse Eng, 2001, pp 301-309.

[15] R.komondoor and S.Horwitz “Using Slicing to Identify Duplication in Source Code”,

proc. Int. Symp. Static Analysis, 2001.

[16] Rowyda Mohammad AbdEl-Aziz,Amal Elsayed Aboutabl,Mostafa-Sami Mostafa ,

“Clone Detection Using DIFF Algorithm For Aspect Mining” , International Journal of

Advanced Computer Science and Applications, Vol. 3, No.8, 2012

[17] Saif Ur Rehman,Kamran Khan,Simon Fong,Robert Biuk-Aghai , “Hidden Cluster

Detection and Visual Data Mining Framework for Infectious Disease Control andQuarantine

Management – II”, joint project with Dr. Si Yain Whar (FST), January 2010 – December

2011

[18]Praveen Ranjan Srivastava, Sirish Kumar, A.P. Singh, G. Raghurama.” Software testing

Effort: An Accessment Through Fuzzy Criteria Approch” Journal of Uncertain Systems , 5,

183-203, 2011

 [19] Sahil Batra, Dr. Rahul Rishi “IMPROVING QUALITY USING TESTING

STRATEGIES”. Journal of Global Research in Computer Science , 2011.

[20] Khan, M. E. “ Different Forms of Software Testing Techniques for Finding Errors”. IJCSI

International Journal of Computer Science Issues , 7, 2010.

39

[21] Samuel A . Ajila , Angad S,Gakhar, Chung H.Lung, Marzia Zaman , “Reusing and

Converting Code Clones to Aspects - An Algorithmic Approach”, IEEE IRI 2012

 [22] Dr.gayathri Devi , Dr.M punithavalli , “ Developing a Novel and Effective Clone

Detection Using Data Mining Technique” , International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 8, August 2012 ISSN: 2277

128X.

[23] Salwa K.Abd-El-Hafiz , “Code Cloning: The Analysis, Detection and Removal” ,

International Journal of Computer Applications (0975 – 8887) Volume 20– No.7, April 2013.

II. Websites
[24] http://guru99.199tech.com/software-testing-introduction-importance.html

[25] http://www.slideshare.net/engineerrd/software-requirement

[26] http://arxiv.org/abs/1205.5615

