
i|P a g e

A Story Point based approach for effort estimation with regression

testing effort for Agile projects

Final Dissertation submitted

By

Shivali Chopra
(11302040)

To

Department of Computer Science Engineering

In partial fulfillment of the Requirement for the Award of the Degree of

Master of Technology in CSE

Under the guidance of

Ms. Rupinder Kaur

Assistant Professor

(May, 2015)

ii|P a g e

PAC Form

iii|P a g e

ABSTRACT

To be competitive in today‟s fast moving market place, organizations need to derive innovations

in every part of their business. In order to accomplish the same, more and more companies are

embracing Agile development as a viable development methodology that deliver customer value

faster with IT and cross key business units. Effort estimation is one of the key feature for the

success of the projects. As effort estimation is the biggest challenge in Agile based projects

because of the volatile nature of the requirements, so there is a need for efficient techniques for

better results. This work proposes a technique to estimate effort in Agile software development

based projects.

Story point based approach is found to be a suitable metrics for Agile projects in spite of being

relative in nature. This work has incorporated this approach to form a new technique. As in

Agile projects the requirements keep on changing as per the need and the demand of the client

which makes regression testing as an integral part of Agile methodology. But in existing

techniques of effort estimation, it is not taken into account. This work proposes a new technique

(E3RT) for effort estimation by including the effort of regression testing in Agile software

development.

In addition, a comparison of the existing techniques with the new one is made which proves that

the new technique gives more realistic and accurate results.

iv|P a g e

ACKNOWLEDGEMENT

I would like to express my deepest sense of gratitude to my supervisor Ms. Rupinder Kaur for

her valuable suggestions, extensive guidance, continuous encouragement and support

throughout my dissertation work. I have benefitted a lot from her feedback. Moreover, I extend

my heartiest thanks to all other faculty members of LPU.

Last but not the least I would like to thank my husband and family for their continuous

encouragement and support.

 (SHIVALI CHOPRA)

v|P a g e

DECLARATION

I hereby declare that the progress report on dissertation entitled, “A Story Point based

approach for effort estimation with regression testing effort for Agile projects” submitted

for the M.Tech Degree is entirely my original work and all ideas and references have been duly

acknowledged. It does not contain any work for the award of any other degree or diploma.

Date: SHIVALI CHOPRA

Reg. No: 11302040

vi|P a g e

CERTIFICATE

This is to certify that Shivali Chopra is pursuing M.Tech (CSE) dissertation titled, “A Story

Point based approach for effort estimation with regression testing effort for Agile

projects” under my guidance and supervision. To the best of my knowledge, the present work is

the result of her original investigation and study. No part of the dissertation has ever submitted

for any other degree or diploma. The dissertation is fit for the submission and the partial

fulfillment of the conditions for the award of M.Tech Computer Science and Engineering.

Date: Ms. Rupinder Kaur (Asst. Professor)

 U.ID: 16835

 1 | P a g e

TABLE OF CONTENTS

 CHAPTER NO. TITLE PAGE NO.

 ABSTRACT i

 LIST OF FIGURES vi

 LIST OF TABLES viii

1. INTRODUCTION

1.1 Agile- Expects the Unexpected 2

1.1.1 Agile Methods 3

1.1.2 Scrum 4

1.2 Effort Estimation in software development 6

1.2.1 Project estimation techniques 7

1.2.2 Agile Effort Estimation 10

1.3 Regression Testing 13

2. REVIEW OF LITERATURE 14

3. SCOPE OF THE STUDY 19

4. OBJECTIVE OF THE STUDY 20

5. RESEARCH METHODOLOGY 21

5.1 Tools used 21

5.2 Activity diagram for the E3RT technique 22

5.3 Proposed work 23

6. RESULTS and DISCUSSIONS 30

7. SUMMARY and CONCLUSIONS 44

 REFERENCES 45

 2 | P a g e

LIST OF FIGURES

Figure No. Figure Title Page No.

1.1 Waterfall Model 1

1.2 Essence of Agile 2

1.3 Agile Manifesto 2

1.4 Agile Principles 3

1.5 Agile Umbrella 4

1.6 Scrum Process 4

1.7 Framework for Software estimation 6

1.8 Estimation techniques 7

1.9 Size estimating methods 9

5.1 Activity Diagram for E3RT technique 22

5.2 User Story Size Scale 24

5.3 User Complexity Scale 25

6.1 User Story Size Scale 30

6.2 User Complexity Scale 31

6.3 Calculation of the initial effort 32

6.4 Calculation of Initial Velocity 33

6.5 Decelerating factors of velocity 34

6.6 Ideal Case for the any Agile project 36

6.7 Calculation Based on Case1 37

6.8 Calculation Based on Case2 38

6.9 Calculation Based on Case3 39

6.10 Comparison of results for four projects with E3RT case 1 40

6.11 Comparison of results for five projects with E3RT case 2 41

6.12 Comparison of results for five projects with E3RT case 3 41

6.13 Comparison of results 42

 3 | P a g e

LIST OF TABLES

Table No. Table Name Page No.

1.1 Qualities of good user story 11

1.2 Agile estimation approaches and problems 12

5.1 Decelerating Factors 26

5.2 Change type and its related degree 27

5.3 TEC and its related degree 27

5.4 NSTC and its related degree 28

5.5 TTP and its related degree 28

6.1 Initial Effort and velocity 35

6.2 Comparison of results of four projects out of 21 projects 40

6.3 Calculation of error and MRE value with respect to Case1 42

6.4 Percentage comparison of previous technique and E3RT 43

 4 | P a g e

 Chapter 1

INTRODUCTION

In the world of industrial process control, we see two major approaches to control any

process. These are the “defined” process control model and the “empirical” process control

model. The defined model is what you use, when you attempt to thoroughly plan a software

project. Here, every piece of work must be completely understood. In the defined process

model we are given with a set of well defined inputs, the same outputs are generated every

time. This states that if the requirements are given clear and stable and the technology is well

understood then we can predict a software project.

Waterfall model is a defined process control model which is the first software development

model. It is also known as linear sequential model which has defined start and end points and

has identifiable deliveries to next phase.

Figure 1.1: Waterfall Model

The „V‟ model is refinement of waterfall model which integrates verification and validation

activities. In each phase tests are planned and addressed. But there are drawbacks of this

model which includes late integration, expensive requirement changes.

The empirical process control is followed when one wants to control situations where inputs

are varying, where the process is too complex to produce repeatable output, and where one

need to frequently inspect and adapt to control such processes. An example of the same is

agile approach. Agile overcomes the drawbacks of traditional software development

methodologies.

Requirement

Analysis

Architecture

Design

Coding and

Unit testing

System and

Integration

Testing

 5 | P a g e

1.1 Agile – Expects the Unexpected

Agile is the latest buzz word in the software development industry. It is iterative, incremental,

and evolutionary. The development of the software is done in short time boxed iterations – 1

to 4 weeks.

Figure 1.2: Essence of Agile

From the requirements, a prioritized set of requirement are chosen for which development is

done in short time boxed iterations. At the end of every iteration one can have production

ready version of the software. Thus the system grows iteratively and incrementally. So, Agile

is a highly collaborative approach with emphasis on open communication. Agile Manifesto

was developed by the Agile Alliance which includes four values as stated below:

Figure 1.3: Agile Manifesto

Design

Coding
and Unit
testing

Integration

System
Testing

Acceptance

testing

Planning

Analysis

Requirements
Prioritized

Requirements

Individuals and Interactions over Processes and Tools

Working Software over Comprehensive Documentation

Customer Collaboration over Contract Negotiation

 Responding to Changes over Following a Plan

 6 | P a g e

There are 12 agile principles as shown below:

Figure 1.4: Agile Principles

The basic advantages of using Agile are – its efficiency for handling Requirement Volatility

and higher Return on Investment.

1.1.1 Agile Methods

There are different methods that are the part of Agile Methodology. These are Scrum,

eXtreme Programming, Crystal Clear, Adaptive Software Development, Dynamic Systems

Development method, Feature Driven Development, Agile Unified Process etc. Out of all,

Scrum methodology is widely used by most of software development industries now-a-days.

Now, let‟s have a look of the agile umbrella in the Figure 1.5 which contains various agile

development methodologies.

 7 | P a g e

Figure 1.5: Agile Umbrella

1.1.2 Scrum

Scrum is an Agile software development framework in which work is structured in short

cycles called sprints that are typically two to four weeks in duration. A potentially shippable

product is delivered at the end of each sprint. The entire cycle from Sprint Planning to

Retrospectives is called a Sprint.

Figure 1.6: Scrum Process [1]

 8 | P a g e

a) Product Backlog: Customer prioritizes requirements as per business value and lists them

in the product backlog. Requirements are listed in the form of user stories, explained later in

detail. While the customer gives the priority, the project team also called the scrum team

provides a high-level estimate for each user story.

b) Sprint Planning: At the beginning of each time-box called sprint, team conducts a sprint

planning meeting. All the stakeholders participate in the meeting. In the meeting, team picks

up stories to be implemented in the sprint from the prioritized product backlog. The number of

stories picked up depends on the available capacity in person-hours and the team‟s

productivity. It is very important that the customers prioritize the product backlog.

Prioritization ensures that the features developed first are of the highest value. The sprint

planning meeting normally takes about half a day.

c) Sprint Backlog: The Scrum team also breaks down product backlog‟s requirements into

sprint tasks. These are the specific development activities needed to implement the

requirement. The output of the sprint planning meeting is the sprint backlog. The sprint

backlog contains the tasks and task-level estimates of the selected stories. When the Sprint

Backlog is complete, you compare the estimated total work with original high-level estimates

from the Product Backlog.

d) Implementation Cycle: Once the team is ready with the sprint backlog, implementation of

stories commences. The Implementation cycle involves the activities of design, coding and

testing. The progress of the team is monitored through visual controls like Story Boards and

Effort Burn-down charts.

e) Daily Scrum: Every day the daily scrum meeting is conducted at a pre-determined time –

typically done at the beginning of the day. This is a fifteen-minute meeting designed to clarify

the state of the Scrum without deviating to technical issues. It is mandatory for the team to

“stand-up” during these meetings so that the stipulated time is not exceeded. Each team

member shares the status of their work by answering the three questions: what did I do

yesterday, what will I do today, and what impediments are getting in my way? While anyone

can attend this meeting, only team members who have are working on a story are allowed to

speak. The goal is to get a global snapshot of the project, discover any new dependencies, and

address any personal needs of committed individuals, and finally adjust the work plan in real

time. At the end of the daily scrum meeting the sprint backlog is updated – with addition,

 9 | P a g e

deletion and modification to the planned tasks and the remaining efforts for the same.

f) Sprint Review: The output of the sprint is a potentially shippable product, which is

demonstrated to all the stakeholders and their feedback is sought – this is called the sprint

review meeting. All enhancements, bugs or defects identified by the customer are added to the

product backlog and are addressed based on their priority.

g) Retrospective: A retrospective is conducted post the Sprint Review. The team assesses

what went well, what did not and identifies the changes needed to make the process better.

Retrospectives allow team to inspect and adapt. Metrics collected are also analyzed to identify

improvement areas.

1.2 Effort estimation in software development:

For the successful and effective execution of the project so that the budget may not overrun

or delivered late, Software development effort estimation plays an indispensable role in

SDLC. It is the process of predicting the amount of effort required to develop the software at

the beginning of the project. It is very much essential for Software Project Management. The

estimating framework for the same is given below:

Figure 1.7 Framework for Software estimation

 10 | P a g e

The following attributes are used in the above diagram:

Project size, cost, duration and effort.

1.2.1 Project estimation techniques

There are many approaches for project estimation. They are broadly classified into three

categories:

a) Empirical estimation techniques:

This technique is based on making a guess of the various project parameters by the use of

prior experience. However, it is subject to errors and individual bias. One of the

improvements is to consider a decision by a coordinator and a group of experts. This is called

as Delphi cost estimation.

In this technique, coordinator will provide a copy of SRS document to its estimators and with

no discussion with each other they will give their individual estimates. This process is re-

iterated for several rounds. [2]

Figure 1.8: Estimation techniques

 11 | P a g e

b) Heuristic estimation:

This technique is based on the assumption that the relationship among the various project

attributes can be made using mathematical expressions. It contains the single and

multivariable estimation models which differ from each other in terms of parameters.

In single variable model, the estimated parameter is:

Estimated parameter = a1 * e
b

1

Where a1 and b1 are constants from historical data and e is an independent variable or a

characteristic of a software project, already estimated. An example can be „size‟.

In multivariable model, the estimated resource is = a1 * (e1)
b

1 + a2 * (e2)
b
2 + ……

An example is COCOMO. COCOMO is a constructive cost model developed by Barry

Boehm. It is a statistical model of software effort and development. It uses the basic

regression formula. There are three basic forms of COCOMO:

(i) Basic COCOMO: To get a rough order of software cost estimates. It computes effort as a

function of program size. COCOMO applies to three classes of software projects viz.,

 Organic projects – In these projects the teams are small with good experience working with

well understood domain.

 Semi-detached projects – Here the teams are medium and working with a mix of rigid and

less than rigid requirements.

 Embedded projects - developed with lot of constraints. It contains projects that are hard. It is

also combination of organic and semi-detached projects.

The basic COCOMO project model gives an estimate of project parameters:

Effort Applied (E) = ai(KLOC)
b

i in person-months.

Development Time (TD) = ci(E)
d
i in months.

(ii)Intermediate COCOMO: It computes effort as a function of program size and set of cost

drivers.

E= ai(KLOC)
b
i *Effort Adjustment Factor(EAF)

(iii) Detailed COCOMO: It is an extension of intermediate COCOMO. It incorporates the

assessment of the impacts of all the cost drivers on each step of the process.

COCOMO II: It is the major extension to the COCOMO. It estimates for system integration,

application generator and infrastructure for two life cycles- Early Design and Post Design

 12 | P a g e

CORADMO: CORADMO is the derivative of revised COCOMO II. It stands for Constructive

Rapid Development Model. This method is meant for Rapid Application Development

Projects. [3]

c) Analytical techniques: This technique derived the required result with basic assumptions

of the project.

d) Size estimating methods:

There are various size based estimation models. The diagrammatic representation for the same

is given below:

Figure 1.9: Size estimating methods

 13 | P a g e

The various metrics for project size estimation includes LOC, Function point, Feature point,

Use Case point, Story points. LOC refers to simply estimate the project by counting the

number of lines in a source code. As per function point metric the size of the software depends

upon the number of functions. Function points can be expressed as weighted sum of five

characteristics and can be calculated in two parts. First by finding unadjusted Function Point

(UFP) followed by technical complexity factor (TCF). UFP = (Number of inputs)*4 +

(Number of outputs)*5 + (Number of inquiries)*4 + (Number of files)*10 + (Number of

interfaces)*10 and TCF is computed as (0.65+0.01*DI) where DI is Degree of influence.

Finally, FP = UFP*TCF.

A use case point is an extension of function points. It is based on use case analysis. It has three

types of actors – Simple, Average and Complex and weighing factor is assigned to them as 1,

2 and 3 respectively. Then UAW i.e. Unadjusted Actor Weights is calculated by adding the

product of actors with their weighing factors. Then based on the number of transactions,

unadjusted use case weights (UUCW) is calculated. Then unadjusted use case points(UUCP)

is calculated by adding UUCW and UAW. Then Technical Complexity factor is calculated by

applying the following formula:

TCF = 0.6 +(0.01*TFACTOR). Then Environmental factors are calculated by the following

formula:

EF = 1.4 + (-0.03*EfACTOR). At last, Adjusted use case points are calculated as per the

following formula: UCP = UUCP *TCF*EF. [4]

1.2.2 Agile Effort estimation

Agile is flexible, so it is bit difficult to carry out effort estimation in it. We have already

discussed that in agile, customer requirements are listed in the form of user stories. A user

story is a very high-level definition of a requirement that contains just enough information to

estimate, develop and test it. However, a user story must be implementable in a single

iteration otherwise if not, the requirement is broken down to smaller stories. The collection of

stories is known as Product Backlog. The units of work can be categorized in two ways viz.,

Real time units (hrs, days, etc) and abstract units (Story point, Ideal days). A good user story

must adhere to INVEST [5].

The customer prioritizes the stories. The priorities could be in terms like "high, medium, low",

 14 | P a g e

"Definitely needed, needed, and nice to have" or just numbers with higher numbers indicating

higher priority. The responsibility of estimating the effort to implement the stories rests on the

project team. Once prioritization and estimation are done, the customer‟s need to go to time-

to-market is decided upon, and a tentative release date is arrived at.

Table 1.1 Qualities of Good user story

Letter

Meaning

Description

I

Independent

The user story should not have inherent dependency on another

user story.

N

Negotiable

User stories can be changed and rewritten.

V

Valuable

A user story must deliver value to the end user.

E

Estimation

The size of the story should be able to get estimated.

S

Scalable

User stories should be of small size.

T

Testable

The user story must be testable in nature.

Story Point: A story point is a metric used in agile software development. It is an absolute

unit to estimate the difficulty of implementing the user story. Many people use the Fibonacci

sequence for estimating. Planning poker can also be used to estimate story points. It is a

variation in Delphi.

Agile Velocity: In iteration, the number of points accomplished is agile velocity i.e. how fast

a work can be completed. How long it will take to complete the project by reviewing previous

sprints work. Agile methods are volatile in nature.

 15 | P a g e

Some of the agile estimation methods are given below:

Table 1.2 Agile estimation approaches and problems [6]

Technique

Approach

Problem

1.Analogy

It is based on the knowledge and

experience of several Project managers

drawn from the results of many specific

projects.

It gives unrealistic

estimates.

2.Top-down

An overall cost estimate for the system is

derived from global properties, using

either algorithmic or non-algorithmic

methods.

It is not considered as

good software

engineering practices.

3.Bottom-up

In this method each component of the

software system is separately estimated

and the results aggregated to produce an

estimate for the overall system.

It is difficult to

understand how the

system is decomposed

into different

components

4. Expert Opinion

In this technique, an expert is asked how

long a task will take to complete.

It is difficult to collect

the opinion of experts.

 16 | P a g e

1.3 Regression Testing

Regression testing is the type of testing which is used to find out the side effects of the

incorporated changes in the project. The main motive of this testing is to ensure that no faults

are induced with the introduction of the new changes. It retests the software after the

modification of the code so that other parts of the software don‟t get affected.

1.3.1 Need and purpose of Regression Testing

The cost of regression testing is major in the cost of the project. It is required to calculate

effort in man hours for effort estimation for regression testing. It is more important in Agile as

agile is an iterative and incremental approach where user stories are implemented in each

iteration. As in Agile development software undergoes lot of changes which is good as the

software so developed is in accordance with the client requirements and recent market trends.

The software development process needs to be of very flexible nature. Because of these rapid

changes it is very obvious that any new update, new features addition and/or performance

issues fix may affect the existing developed modules in terms of design, requirements and

code.

1.3.2 Partial Regression testing

It is not required to execute all the test cases. Only a fraction of test cases can be executed.

There are number of techniques that are used to decide for this fraction of test cases.

 Regression Test Selection- It refers to the selection of subset of test cases from the test

suite based on the modifications.

 Test Suite Minimization- Test suite is minimized such as it still maintains the same

coverage as the original test suite was covering.

 Test Case Prioritization- The ordering of test cases is done in accordance with the priority.

High priority test cases are executed earlier compared to less priority.

 17 | P a g e

Chapter 2

 REVIEW OF LITERATURE

Ziauddin, Shahid Kamal Tipu, Shahrukh Zia (2012) Effort Estimation Model for Agile

Software Development. This paper presents a model for the effort estimation for the agile

projects. The author first discusses about some cost estimation techniques and explains agile

software development and its characteristics. Then techniques for effort estimation in agile

which can be used are discussed. These estimating techniques include numeric sizing, t-shirt

sizes, the Fibonacci sequence etc. It clearly states that the estimation is done by the team

members in the sprint planning meeting for the stories of product backlog.

Story size scale is built which is basically an estimate of the relative scale of the work in

terms of actual effort of development. Complexity of the project which may be because of

user stories or technical complexity is measured on the complexity scale. These two values,

the effort can be calculated for a particular user story which in turn can be summed up for

total effort. Then concept of velocity is used for the calculation of finding out that how many

units of effort the team can accomplish in one sprint. Then this velocity is optimized by

taking into account the friction forces and the dynamic forces which reduces the project

velocity. Then completion time is calculated followed by the calculation of development cost

based on the data collected from the 14 CMMI level 3 companies. Then experimental

analysis is made from the empirical data which was collected from 21 software projects. The

results shows the estimated results are near to the actual results.

This paper opens number of research problems for the future investigation like the use of the

number of scales for the estimation of effort like ranking scale or use of Fibonacci sequence.

Moreover, the other factors that are affecting the velocity other than that are mentioned in the

paper can be analyzed and more optimized results can be obtained. An improvement can be

made on the estimation method by analyzing the major factors that seem missing in this

approach. [7]

Evita Coelho, Anirban Basu (2012) Effort Estimation in Agile Software Development

using Story Points. This paper discusses about the most acceptable approach in agile

 18 | P a g e

methodology – Story Points. Story points are the unit of measurement of user stories which

expresses its overall size. The effort and duration that is required for the delivery of features

to the customer are estimated by the team member. The traditional methods of effort

estimation are not appropriate for effort estimation. For story points approach, the estimation

of the schedule and effort starts by understanding the customer‟s conditions of success and

failure for the product backlog followed by the estimation of user stories and selection of

iteration length, then estimation of velocity, prioritization of user stories and then estimation

of delivery date.[8]

Ratnesh Litoriya, Narendra Sharma, Abhay Kothari (2012) Incorporating Cost Driver

substitution to improve the effort using Agile Cocomo 2. In this paper, the author has

analyzed the behavior of different cost drivers that are responsible for the prediction of cost

of any project and then substitute it with its near values which will result in the decrease of

cost of any project. The investigation is done on the 60 NASA past project data whose actual

efforts are already given. And this data is then put into WEKA tool and K-mean clustering is

applied on the data set which results in the formation of clusters. Then the value of these

clusters is used to analyse the values of the cost drivers or in other words, the value of cost

drivers get optimized with the formation of clusters. So the effect of the reduced values of

cost drivers has direct impact on the cost of the project. This reduction of values of cost

drivers which results in the reduction of cost of the project is calculated by the use of the

online freely available web based tool AGILE COCOMO-II which was developed by the

University of Southern California.

The future work of the paper says that the other data mining algorithms such as apriori etc.

can be used to determine the better optimization of the cost drivers. And these optimized

values can be applied on the web based AGILE COCOMO-II. This paper must had served a

great problem definition by incorporating data mining techniques in Cost estimation and new

combinations of these fields have come out. [9]

Ritesh Tanmrakar, Magne Jorgensen (2012) Does the use of Fibonacci Numbers in

Planning Poker affect effort estimates. This paper gives the study of the affect of the use of

Fibonacci numbers with respect to the linear numbers for effort estimation. Two case studies

 19 | P a g e

have been performed for analyzing the same. In first case study, a group of students were

divided into two groups – one for linear and the other for Fibonacci scale for effort

estimation. The result showed a large difference in the values of effort estimations whereas

linear scale shows higher value of the estimation. The second case study was performed with

the set of experienced developers. The difference between the values of Fibonacci and linear

scale estimations differ with smaller value. So, the use of Fibonacci is considered to be better

than for the use of linear scale. [10]

Zhamri Che Ani, Shuib Basri (2013) A Case study of effort estimation in Agile Software

Development using Use Case Points. In this paper, the author has investigated on how to

estimate the effort for the software development in Agile Environment using Use Case

Points. As calculating the initial efforts in Agile Projects is a challenge because of the

volatile requirements in these projects. And implementing UCP is difficult in agile projects

due to two reasons. First, the product backlog contains short descriptions of user stories

which don‟t fit into the documentation standards of use case points. Secondly, none of the

studies have clearly describes how to use Agile Product Backlog with this approach. So, the

authors have successfully implemented this method in spite of its limitations.

For the implementation of this method, KOINS i.e. Kobena Information System„s data was

taken for analysis. The steps for UCP are followed which involves determining and

computing of unadjusted use case points, technical complexity factors, environmental

complexity factors, productivity factors and estimated number of hours. The estimated result

was near to the actual result stating that UCP approach is suitable for estimating the efforts

for software development at the early stages.

The future work states that other estimation models are needed to be compared with this

method like COCOMO on Agile projects. The major challenge in this paper was the relation

of the agility with the calculation is not clearly explained. The concept of user stories which

is the baseline of agile projects seems to be disappeared in this paper. So, the problem

definition can be formed by merging the concept of story points with use case points. The

major challenge against this statement is availability of the data set for the analysis. [4]

 20 | P a g e

Abhilasha, Ashish Sharma (2013) Test Effort Estimation in Regression Testing. Test Effort

Estimation in Regression Testing. This paper explains the concept of regression testing and

test effort estimation for the regression testing. Test effort estimation turns out to be costly if

all test cases needs to be executed. So, there are various techniques used for the selection of

test cases that minimally needs to be executed. An approach for the calculation of the Test

effort estimation is proposed.

Rashmi Popli (2014) An Agile Software Estimation Technique based on Regression Testing

Effort. This paper states that there is a major need for the inclusion of regression testing

effort in the agile methodology. As Regression testing means to test if the incorporated

changes are affecting the existing features or its side effects, it becomes mandatory to include

the regression testing effort for the more accurate estimation of completion date, effort, cost

and duration of the project. Further, this paper discusses 14 people and project related factors

are taken into account and then regression testing time and effort is calculated which in-turn

affects the total cost and time for the completion of the project. The future work of this paper

states that other factors which affect the estimation to make it more efficient. [11]

Govind Singh Rajput, Ratnesh Litoriya (2014) CORAD Agile Method for Agile Software

Cost Estimation. This paper presents the new method for software cost estimation for web

based agile projects. CORADMO is basically a derivative of revised COCOMO 2. It is

Constructive Rapid Development Model for Agile. CORADMO is an effort estimation

technique used for RAD projects which can be used in agile projects which is named as

CORAD_AGILE. It explains three new cost drivers which are substituted with three old cost

drivers. The three new cost drivers are degree of collaboration support, multisite

development and daily basis customer interaction with vendor team. These new cost drivers

are replaced with personnel, collaboration support and prepositioning assets. Effort, schedule

and person productivity are calculated based on this model. [3]

Rashmi Popli, Naresh Chauhan (2014) Cost and Effort Estimation in Agile Software

development. In this research paper, the author proposed an algorithm for Agile Effort and

Cost estimation. It is a related work to the previous paper which takes into account the

 21 | P a g e

concept of story points. This paper explains a mathematical estimation technique. The author

also explained the life cycle of agile and explains the reason for the necessity of effort

estimation in any project. The major causes which are responsible for inaccurate estimation

in agile development are also discussed which includes the methodology adopted, the

political forces like managerial pressure, improper communication between client and

customer, management control problems like management reviews inaccuracy, uncertainty

and self-knowledge. Then the existing agile estimation techniques which are available are

given along with their problems.

Then the author proposed their own method for the estimation using story point approach.

Total story points are calculated followed by the calculation of velocity which basically is the

value computed by the story point completed in one iteration divided by story point in one

user story. Then, decelerated velocity is calculated by considering the dynamic changes in

agile environment. Then estimated development time, effort and cost are calculated. Then a

case study is done using hypothetical values of the various factors. The future work of the

paper states that other factors which affect the estimation can be added and estimation can be

made more correct and efficient. [12]

Rashmi Popli, Naresh Chauhan (2014) Agile Estimation Using People and Project Related

Factors. This paper presents the algorithmic estimation method based on the effect of various

people and project factors. The author explains why it is necessary to include these factors

and what problems peeps in if we don‟t include these factors in estimation. The author

discussed 14 factors(both for project related factors and people related factors)which includes

types of project, quality requirement, hardware and software requirements, ease of operation,

complexity, data transaction, multiple site, communication skill, familiarity in team,

managerial skill, security, working time, experience of previous projects and technical

ability. The algorithm begins with the calculation of unadjusted values, quality factors and

time factor. Based on these calculations, estimated story points and estimated time for the

project. The future work states the inculcation of other factors which affect the estimation

process to make the process of estimation more accurate and efficient. [6]

 22 | P a g e

Chapter 3

 SCOPE OF THE STUDY

Effort estimation is the most challenging task in the agile software development due to the

volatility of the requirements. This study proposes the new estimation technique for Agile

Software development. The traditional methods of estimation didn‟t work well so there was

the need to improve them. This study covers the efficiency of already existing method by

inculcating the missing factor which is also an important part of the Agile Software

Development. This study covers the existing improved methods and the formation of new

algorithms by merging the existing techniques.

 Story point based approach seems to work well in Agile. So there is a need to improvise

it more by uncovering the hidden factors which are not quoted while doing the effort

estimation.

 Regression Testing is an important part when incorporating the new changes. So, it has

an important role in the agile projects.

 The merging of regression testing effort with the story points serves as a good problem

definition and is of utmost importance.

 Regression testing will be the part of all the sprints except the first one. So, there is a

need to find the way for the calculation of the test effort estimation for the each sprint.

This study proposes the method for its calculation by considering the factors that are

required for the calculation.

This study states that this technique is better in comparison to the simple story based effort

estimation approach. This leads to the better MMRE (Mean Magnitude of Relative Error)

value of effort in terms of completion time.

 23 | P a g e

Chapter 4

 OBJECTIVES OF THE STUDY

As effort estimation is a biggest challenge in agile projects due to two reasons. First, agile

developers don‟t believe in detailed planning that helps in estimations. Second the

requirements are volatile in nature. So, the estimation becomes difficult. These reasons are

not the problems of agile, but it is the design of agile. This requires any such estimation

technique which can accommodate this design. The main purpose of this work is to find out

the method which is appropriate to the structure of agile methodology. The objectives are

listed below:

1. To propose a new technique for effort estimation for agile projects that includes the effort

of regression testing in addition to the already existing story point based approach.

2. To estimate effort using the new approach- E3RT (Effort Estimation including the Effort

of Regression Testing).

3. To estimate test effort of the regression testing for all the iterations and added in the

project development effort.

4. To compare the results of the E3RT, previous technique and the actual results to find out

how near we are to the actual effort.

5. To calculate the MMRE value based on the completion time.

 24 | P a g e

 Chapter 5

 RESEARCH METHODOLOGY

The research methodology includes the following three steps:

1. Formation of new technique E3RT for effort estimation in order to get the improved value

of the effort and completion time.

2. Implementation of the same on the dataset.

3. Comparison of the actual results, previous results and obtained results in terms of MMRE

for completion time.

5.1 Tool Used:

MATLAB is Matrix Laboratory which is a multi paradigm computing environment. It allows

easy implementation of algorithms with the easiness to use mathematical functions.

MATLAB GUI is used for the implementation purpose so as to demonstrate the work easily

and in an efficient way.

Features of MATLAB:

 Easy implementation of GUI (Graphical User Interface in MATLAB)

 Mathematical functions like Exponential functions, logarithmic functions, trigonometric

functions etc

 Easy coding in high level language

 Easy use of global data and its manipulations

 Faster results

 25 | P a g e

5.2 Activity Diagram for the E3RT technique:

Figure 5.1: Activity Diagram for E3RT technique

 26 | P a g e

5.3 Proposed Work:

The proposed technique E3RT involves the following steps:

1. Selection of Sprint Size: The duration of a single iteration is known as Sprint size. In

Agile, sprint size is decided earlier unlike in traditional approaches where completion

time was estimated according to the requirements. Here the number of stories to be

implemented is based on the sprint size. Sprint size may be usually from one week to four

weeks.

2. Estimation for the user story size: There are numerous ways of estimation of the user

story which are proposed by the agile practitioners. Some of the proposed scales are as

follows:

 The selected user stories are rated according to the scale from 1 to 5 where 1 shows

smallest and 5 shows epic which means too large story and should be broken down into

smaller stories.

 Scale based on Fibonacci series for the size of the story. For example: 3,5,8,13,21. This

method is considered good as it gives fair differentiation among the size of the story and

easier for estimator to tag in the suitable range.

 Another method is T-Shirt size approach- XL, L, M, S, and XS. If the story size is bigger,

it is again broken down into number of smaller stories. This is similar to the first scale as

mentioned.

 Another similar scale is dog breeds which is an innovative scale used by agilists. For e.g.

the user story is Great Dane and the other is Chihuahua.

The team agrees upon one scale which they want to use in the project which should be

followed for the whole estimation process.

In our approach, we have chosen the first scale which has rating from 1 to 5 as shown below:

 27 | P a g e

Figure 5.2: User Story Size Scale

3. Estimation of user story complexity: Complexity means the measure of uncertainty in

terms of technicality or the requirements. It is again rated on the similar relative scale as used

earlier for the size measurement.

4. Calculation of Initial Effort based on size and complexity: Initial effort is calculated in

terms of story point which is the determined by the product of story size and the complexity

for a particular user story. The total initial effort is calculated by the sum of the initial effort

calculated per user story. So, the formulas are as follows:

Ei = S*C -Eq. 5.1

where Ei is the effort per user story and S is user story size and C is user story complexity

Ein = 𝑆𝐶 𝑛
𝑖=1 -Eq. 5.2

where n is the total no. of user stories and Ein is the total initial effort.

 28 | P a g e

Figure 5.3: User Complexity Scale

5. Calculation of Project Velocity: Velocity is the term used to define „how fast the work is

being done‟. Project Velocity is calculated in two steps:

Step 1: Initial Velocity: It is equal to the initial effort divided by the initial total completion

time which is the sum of the completion time assumed from the size of the individual user

story.

Step 2: Calculation of final velocity based on decelerating factors: There are various factors

that affect the velocity of the project. These factors that hinder the velocity are known as

decelerating factors and the consideration of these factors in the final calculation of the

velocity is known as optimization of velocity. There are 13 factors discussed by Ziauddin

which are taken into consideration. These factors are shown in the Table No.

These values are taken based on the analogy. And the value of each factor is considered as

per the severity of the situation. The severity is here categorized as stable, volatile, highly

volatile and very highly volatile or can be stated as normal, high, very high or extra high.

The formula for calculating the deceleration is

D = 𝐷𝐹13
𝑖=1 -Eq. 5.3

Where D is the deceleration and DF is the value of Decelerating Factors.

 29 | P a g e

Table 5.1: Decelerating Factors

Decelerating

Factors

Very Highly

Volatile

Highly Volatile Volatile Stable

Team

Dynamics

0.85

0.91

0.98

1

Process 0.89 0.94 0.98 1

Team

Composition

0.91

0.95

0.98

1

Environmental

Factors

0.96

0.98

0.99

1

Relocation 0.98 0.99 0.99 1

Team Changes 0.91 0.95 0.98 1

New Tools 0.96 0.97 0.99 1

Environmental

Changes

0.97

0.98

0.99

1

Vendor

Defects

0.90

0.94

0.98

1

Ambiguity 0.95 0.97 0.98 1

Responsibility

of Team

Member

outside the

project

0.98

0.98

0.99

1

Delay in

response of

stakeholders

0.96

0.98

0.99

1

Personal

Issues

0.98

0.99

0.99

1

 30 | P a g e

6. Calculation of Regression Testing Effort: Regression testing is the necessary part of the

agile development methodology. It is being performed after all the sprints except the first

one. To calculate the test effort estimation for the regression testing, we have

i. Change Type (CT): Change type basically means what kinds of changes are expected in

the project – is it in the code, design or the requirement. Changes are always welcome in the

agile methodology based on the feedback of the customer. The change can fall in the

following three categories:

Table 5.2: CT and its related degree

Change Type Degree

Requirement 3

Design 2

Code 1

ii. Test Execution Complexity (TEC): It is the measure of the complexity of the test in

execution. The degree of test execution complexity is based on some factors shown below:

Table 5.3: TEC and its related degree

TEC scale Characteristics Degree

Low

 Static item display

 Requires Simulators

 Special procedures due to company policy

1

Medium

 Dependency between Steps

 Integration with external applications

 Requires support team due to Access

authorization

2

High

 Logical dependency between data

 UI actions/feedback

 Business Process

 Data Volume

 Network Conditions

3

 31 | P a g e

iii. No. of Selected Test Cases (NSTC): By the term NSTC, it means that how many

number of test cases needs to be executed. It is very expensive to retest all the test cases, so

some set of test cases are executed which are expected to have some impact of the changes.

The degree is assigned based on the number of test cases.

Table 5.4: NSTC and its related degree

NSTC Degree

Few 1

Some 2

All 3

The term All means all the test cases are needed to be executed but it is rarely used. As the

retest all is very expensive so test selection is made. It not only saves cost but also the time of

execution. The term Few and Some vary from project to project which is based on the

number of test cases having higher risk factor or coverage techniques.

iv. Testing Team Productivity (TTP):

The test effort largely depends on the productivity of the testing team. If the team is

experienced, then the effort made by the team will be less and vice versa.

Table 5.5: TTP and its related degree

Category Degree

Experienced 3

Mediocre 2

Inexperienced 1

With degree 1, it defines the tester is inexperienced or a fresher who is having lesser

knowledge about the application. With degree 2, it defines the tester as mediocre having

experience in the testing but may not have experience with the testing of similar applications.

With degree 2, it defines the tester as experienced professional having familiarity with the

similar applications.

In other words, productivity is inversely proportional to the effort.

 32 | P a g e

The formula for the calculation of test effort estimation for regression testing per iteration

(RTEPI) is:

RTEPI = ((CT*NSTC)+TEC)/TTP -Eq. 5.4

Where CT is change type, NSTC is no. of selected test cases, TEC is test execution

complexity and TTP is testing team productivity.

Similarly the total regression testing effort is calculated by:

RTE = (n-1) * RTEPI -Eq. 5.5

Where n is the no of iterations and n is calculated by the formula:

n = Ein /SS -Eq. 5.6

 where Ein is initial effort and SS is sprint size

9. Calculation of Final Effort: Final Effort will be equal to the sum of the initial effort and

total regression testing effort.

E= Ein + RTE -Eq. 5.7

Where Ein is the initial effort and RTE is the total regression testing effort.

10. Calculation of Development Time: Development time T is calculated as :

T = E/V -Eq. 5.8

where E is the total effort and velocity.

 33 | P a g e

Chapter 6

 RESULTS AND DISCUSSIONS

The results and discussions is an important part for any research. Let‟s have a look on the

results:

1. Estimation for the user story size: Assume there is a large story which seems to be the

work of two to five days. So, it is rated as 3 according to user story size scale:

Fig 6.1: User Story Size Scale

 34 | P a g e

2. Estimation of user story complexity: The same user story requires intermediate

programming skills and has easily understood requirements, then it falls under the category

of degree 2 in the scale.

Figure 6.2: User Complexity Scale

3. Calculation of Initial Effort based on size and complexity: Initial effort is the product

of story size and the story complexity for a particular user story.

 35 | P a g e

If we assume we have 40 user stories and each user story carries the same size 3 and

complexity as 2, then the total initial effort would be the sum of all the efforts of each user

story which comes out to be 240 SP. The calculation for the same is shown Figure 6.3.

Figure 6.3: Calculation of the initial effort

 36 | P a g e

4. Calculation of Project Velocity: The Initial velocity for the corresponding project will be

2 for the values of the user story.

Figure 6.4 Calculation of Initial Velocity

 37 | P a g e

For the optimization of velocity, the decelerating factors are considered as shown below:

Figure 6.5 Decelerating factors of velocity

 38 | P a g e

Based on the above three steps, the following table for effort and velocity is generated for 21

previously developed projects which used agile methodology:

Table 6.1 Initial Effort and velocity

Initial Effort Velocity

156 2.7

202 2.5

173 3.3

331 3.8

124 4.2

339 3.6

97 3.4

257 3

84 2.4

211 3.2

131 3.2

112 2.9

101 2.9

74 2.9

62 2.9

289 2.8

113 2.8

141 2.8

213 2.8

137 2.7

91 2.7

Now is the time for the calculation of the regression testing effort.

5. Calculation of the Regression testing Effort: For each project, the parameters for the

effort estimation of regression testing differ. So, we have used to do calculation using

 39 | P a g e

different combinations. The better approach to do it is to eradicate the least practiced

situations and calculate for degrees which are assumed to have higher probability.

Ideal Case: The ideal case for any agile project will be when the test execution complexity is

low, no. of selected test cases will be few and the testing team productivity is high i.e.

experienced. Design, code, and requirement states the nature of change which has nothing to

do with the ideal case so we get three ideal cases have been taken with the different change

types-

(i) When CT is Design:

Figure 6.6: Ideal Case for the any agile project

 40 | P a g e

Figure 6.7 Calculation Based on Case1

 41 | P a g e

(ii) When CT is Code :

Figure 6.8 Calculation based on Case 2

 42 | P a g e

(iii) When CT is requirement

Figure 6.9 Calculation based on Case 3

 43 | P a g e

If we compare this value with previous approach and actual results, we can conclude that we

are more near to the actual results than the previous approach.

Table 6.2: Comparison of results of four projects out of 21 projects

Project

No.

Initial

Effort

Actual

Completion

time

Previous

technique‟s

Completion

time

E3RT

Case I

E3RT

Case II

E3RT

Case III

1 156 63 58 61.3 63.1 64.9

2 202 92 81 85.9 88.4 91.0

3 173 56 52 55.7 57.3 59.0

4 124 32 29 31.33 32.23 33.14

However, the figure for the comparison of four projects with E3RT case 1 is given below:

Figure 6.10: Comparison of results for four projects with E3RT case 1

0

10

20

30

40

50

60

70

80

90

100

Project1 Project2 Project3 Project4

Actual Completion Time

Previous Technique

E3RT case1

 44 | P a g e

The figure for the comparison of four projects with E3RT case 2 is given below:

Figure 6.11: Comparison of results for four projects with E3RT case 2

The figure for the comparison of four projects with E3RT case 3 is given below:

Figure 6.12: Comparison of results for four projects with E3RT case 3

0

10

20

30

40

50

60

70

80

90

100

Project1 Project2 Project3 Project4

Actual Completion Time

Previous Technique

E3RT case2

0

10

20

30

40

50

60

70

80

90

100

Project1 Project2 Project3 Project4

Actual Completion Time

Previous Technique

E3RT case3

 45 | P a g e

Figure 6.13 Comparison of results

Case II: Worst Case: Worst Case here means that the TEC complexity is high or medium,

and the NSTC are many and the testing professionals are mediocre or inexperienced. This

case may hold true only in certain cases. But initially no team would assume such conditions

in the initial stage of the estimation due to some reasons. First, TEC and NSTC both

indirectly depend on the nature of user stories. And user stories should be made as

independent as possible. But the dependency can‟t be completely eradicated so we take

minimum consideration of the dependency. Moreover, if we consider about the testing team

productivity, Agilest prefer experienced professionals.

For instance if we consider the worst case, it can double the effort and increase the

completion time to a great extend.

MMRE value: The effort estimation for all the algorithms is compared based on low MMRE

value to get the best suitable algorithm. MMRE is expected to be near to zero.. For

calculating the MMRE, following process is used.

Error = Actual Effort – Estimated Efforts

0

10

20

30

40

50

60

70

80

90

100

Project1 Project2 Project3 Project4

Actual Completion Time

Previous Technique

E3RT case1

E3RT case2

E3RT case3

 46 | P a g e

Relative Error (RE) = (Actual Effort – Estimated Efforts)/ Actual Efforts

MRE = abs(RE)

MMRE is the summation of MRE for number of projects.

Table 6.3: Calculation of error and MRE value with respect to Case1

Project Error MRE value

1 1.7 0.0269

2 6.1 0.0663

3 0.3 0.0053

4 0.67 0.0209

MMRE = 0.02985

Now, let‟s have a comparison of the previous technique and E3RT technique. The percentage

of accuracy is given in Table 6.4.

Table 6.4: Percentage comparison of previous technique and E3RT

Actual

Completion

time

Previous

technique‟s

Completion

time

E3RT

Case I

Percentage of

accuracy of

previous

technique

Percentage of

accuracy of E3RT

Technique

63

58

61.3

92.063%

97.301%

92

81

85.9

88.043%

93.369%

56

52

55.7

92.857%

99.464%

32

29

31.33

90.625%

97.906%

 47 | P a g e

 Chapter 7

 Summary and Conclusions

This work proposes an effective technique E3RT for the effort estimation of the Agile Based

projects. This technique uses story points and regression testing effort as the base of this

estimation. Calculation of regression testing effort was a challenge in the agile projects. This

work has eliminated this limitation to some extent. As regression testing is must in Agile

projects, its effort needs to be added. This is the reason that this new technique is more

appropriate as compared to the previous technique. Also, the results given by this new

technique are 5 to 10% closer to the actual effort than the previous technique.

This work opens a number of directions for which work can be carried out in the future.

NSTC factors can be studied in more detail. Neural Networks is a powerful branch to carry

out estimations for traditional methods. They can be implemented along with these

techniques. This work will serve as an opening for further discussion and investigation.

 48 | P a g e

 References

[1] Laurie W., Gabe B. (2009) “Scrum + Engineering Practices: Experiences of Three

Microsoft Teams” , ESEM11

[2] Sinhal A. , Verma B. “Software Development Effort Estimation: A Review” ,IJARCSSE,

ISSN: 2277 128X

[3] Rajput, G.S., Litoriya,R. (2014) “CORAD Agile Method for Agile Software Cost

Estimation”, Open Access Journal,1:e579

[4] Ani,Z.C., Basri,S. (2013), “A Case study of effort estimation in Agile Software

Development using Use Case Points” Agile Symposium, Malaysia ISSN 1013-5316

[5] http://en.wikipedia.org/wiki/INVEST_(mnemonic)

[6] Popli,R., Chauhan,N.(2014) “ Agile Estimation Using People and Project Related

Factors” Published in IEEE,978-93-80544-12-0/14

[7] Ziauddin, Tipu, S.K., Zia, S. (2012), “An Effort Estimation Model for Agile Software

Development”, ACSA, ISSN 2166-2924

[8] Coelho, E., Basu, A. (2012), “Effort Estimation in Agile Software Development using

Story Points”, IJAIS, ISSN 2249-0868

[9] Litoriya, R., Sharma, N., Kothari, A. (2012), “Incorporating Cost Driver substitution to

improve the effort using Agile Cocomo 2”, Published in IEEE, CONSEG, ISBN 978-1-4673-

2174-7

[10] Tanmrakar,R. , Jorgensen,M. (2012), “Does the use of Fibonacci Numbers in Planning

Poker affect effort estimates” , Published by IET, Proceedings of EASE, ISBN 978-1-84919-

541-6

[11] Popli,R., Chauhan,N. (2013), “An Agile Software Estimation Technique based on

Regression Testing Effort”, Annual International Software Testing Conference in India”

[12] Popli,R., Chauhan,N. (2014) “Cost and Effort Estimation in Agile Software

development” Published in IEEE, ICROIT 978-1-4799-2995-5/14

[13] R. Martin(2003), “Agile software development: principles, patterns, and practices”.

Conference New York : Prentice Hall

 49 | P a g e

[14] Nassif A., Danny H.(2011) “Regression Model for Software Effort Estimation Based on

the Use Case Point Method” Conference IPCSIT vol.14 IACSIT Press

[15] M. Fowler and J. Highsmith(2001), “The agile manifesto,” Software Development, vol.

9, no. 8, pp. 28–35

