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ABSTRACT 

These days, internet and network applications are increasing rapidly across the world. The rapid 

development in the networking technology leads to interchanging of the data very drastically. 

Hence it is more susceptible to duplicating of data and redistributed by attackers or hackers. 

Therefore transferring data securely over a communication medium is considerably important in 

several applications. Consequently data security has become a significant issue in the modern 

world. This increasing need of information security in computer networks led to the growth of 

several cryptographic algorithms. Advanced Encryption Standard (AES) is most popular 

symmetric/private cryptographic algorithm used for encryption and decryption of information. 

This algorithm plays a vital role in developing the new cryptographic standards, since AES is a 

block cipher that has been analyzed broadly. Hardware implementations of cryptographic 

algorithms are physically protected than software implementations because outside attackers 

cannot alter them. In order to attain higher performance in today’s overloaded communication 

networks, hardware implementations are a wise selection in terms of enhanced speed and high 

reliability. This work uses efficient hardware implementations, such as S-box and T-box 

architectures for the Advanced Encryption Standard (AES) algorithm along with secret data-

integrity module on Xilinx Artix-7 FPGA families. In order to attain higher speed and smaller 

area, The Sub-Byte, Inverse Sub-Byte, Mix-Column and Inverse Mix-Column operations are 

considered as Look-up-Tables (LUTs) as well as Read-Only-Memories (ROMs). This design 

uses an iterative looping approach with data-block and key size of 128 bits, Look-up-Table 

implementation of T-box as BRAMs rather than Look-up-table implementation of S-box and 

other combinational implementations as per the specifications given by the NIST. It will give 

higher Field Programmable Gate Arrays (FPGA) (Throughput/Area) efficiency comparing to 

earlier AES implementations. This design approach also provides data-integrity module to check 

whether data is modified by hacker or not. The function of this module varies according to the 

sender /receiver agreement but it must be kept secret. Power consumption has been measured by 

Xilinx Power analysis tool in ISE web pack 14.7 design suite. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

In the modern world, Cryptography is not only limited to defence applications but also essential 

in other applications such as E-commerce, Electronic-mail etc. Cryptography has a major 

function in embedded systems design. As the number of devices  and  applications  which  

transmit  and  receive  data  are  growing  rapidly, the information transfer  rates  are  becoming  

higher. In several applications, this data requires a secured connection which is usually achieved 

by cryptography. Cryptographic algorithms are Data Encryption Standard algorithm (DES), 

Triple Data Encryption Standard algorithm (3DES) and Advanced Encryption Standard 

algorithm (AES) are standardized by National Institute of Standards and Technology (NIST). 

Many researchers and hackers are constantly trying to crack these algorithms by using brute 

force, side channel and other attacks. Some attacks were successful as it was the situation for the 

Data Encryption Standard (DES) in 1993, where the published cryptanalysis attack could crack 

the DES. The Advanced Encryption Standard (AES) is considered these days as one of the robust 

published cryptographic algorithms. It was then adopted by the NIST (National Institute for 

Standards and Technology) after the breakdown of the Data Encryption Standard (DES). In 

addition, it is used in various applications such as in RFID readers, ATMs, cellular phones and 

web browsers etc. Due to the significance of the AES algorithm and the various applications that 

it has, the major concern of this work will be presenting new efficient hardware implementations 

such as S-box, T-box architectures along with data-integrity for this algorithm. Hardware 

implementations for the AES algorithm vary according to the particular application. While some 

applications require extremely high throughput as in the e-commerce servers, other applications 

require medium throughput as in designs used for cellular phones. Some others require very 

small area implementations to be used in low power application as in RFID readers. Numerous 

hardware designs were suggested for the AES algorithm. Some of these designs targeted high 

speed applications as in the loop unrolled 128 bits designs, while others targeted medium and 

low area implementations in the designs as each application requires the AES to have different 

speeds and area.  
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1.2. Reason for implementing AES on hardware  

The AES algorithm can be efficiently implemented in both hardware and software. Generally the 

required speed of encryption and cost of implementation are the most important factors 

determining the selection of technology. Software implementations are designed and written in 

programming languages such as C, Java and C++ etc., and are developed to run on Digital Signal 

Processors (DSPs), General Purpose Processors (GPPs) and smart cards. These processors offer 

sufficient power to satisfy the requirements of individual clients, so most of the existing 

implementations of cryptography reside in the software. On the other hand software 

implementations are very economical, but they offer a less physical protection and the slowest 

method. Due to increasing needs for high speed, high level secure communications joint with 

physical protection, hardware implementation of cryptographic algorithms designed. Hardware 

implementations are the only way to attain speeds beyond the DSP-processors or General-

purpose processors. Hardware implementations are designed and written in hard ware description 

languages such as Verilog, VHDL or using schematic level design. There exist two major 

implementation strategies for hardware designs: Field Programmable Gate Arrays (FPGAs) and 

Application Specific Integrated Circuits (ASICs). 

An FPGA implementation is an intermediate solution between application specific integrated 

circuits (ASICs) and general purpose processors (GPPs).  It has advantages over both ASICs and 

GPPs. It gives a quicker hardware solution than a GPP. Furthermore, it has a wider applications 

than ASICs because its configuring software make use of the broad range of functionality 

supported by the reprogrammable device. An FPGA implementation is beneficial as compared to 

ASIC and software implementations, in terms of flexibility, cost-effectiveness, scalability and 

adaptability. The design of cryptographic algorithm on reconfigurable devices offers many 

advantages such as upgradability, algorithm agility and modification etc. Algorithm agility 

means the capability of the algorithm to choose from a different type of ciphers on per session 

basis. This requirement comes from the fact that present day security protocols are defined to be 

independent of the algorithm. Algorithm upgradability means the method of upgrading an 

existing algorithm in the application due to different reasons like expiration of standard and 

formation of new standard. The Algorithm modification implies changes in the algorithm 

implementation based on the necessity and capability of the host platforms. Even though all 

these changes can also be made in ASIC implementation but they require high cost and takes 
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more time to market because runtime reconfiguration not possible. The quality of a hardware 

implementation is measured in terms of throughput, hardware requirement cost, and latency. The 

implemented hardware must be optimized for cost or area, should offer low latency which 

reduces the time to encrypt/decrypt single block of information, and should gives high 

throughput by encrypting/decrypting many blocks simultaneously.  

 Moreover software encryption speed is depends on the host computer and it will impact total 

system performance. In addition, Software encryption also has the problem that, when installed, 

the encryption round keys are stored in gadget memory that can be accessed by other 

components of the mobile device. Hardware encryption is faster than software encryption since it 

has dedicated onboard security chip for processing encryption/decryption, key handling and key 

generation. The hardware encryption does not have an effect on system performance because it 

does not consume CPU cycles. 

Table 1.1 Characteristic features of design of cryptographic algorithms in ASICs, FPGAs 

and Software (GPPs) 

Parameter ASIC FPGA Software 

(GPPs) 

Speed of operation Very high High Moderately high 

Implementation  cost High cost Moderate cost low-cost 

Implementation  cycle More time taken Moderate time taken Less time taken 

implementation Tools High cost low-cost low-cost 

Upgrades and 

Maintenance 

Moderate cost low-cost low-cost 

Key security High moderately high less 

Algorithm Agility Does not provide Does provide Does provide 

 

Every type of design has its pros and cons. Their basic features are shown in table 1.1. Software 

implementations are an attractive choice when speed of encryption is not a main concern and 

expected level of security does not have to be high. It means that the importance of the protected 

information is low compared to the effort required for breaking security mechanisms. The more 
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secure and faster solutions are required, the more vital role is played by hardware 

implementations. When taking into account hardware solutions, FPGAs become more and more 

attractive. If we assume an attacker has no physical access to the device, then FPGA designs can 

be as secure as ASICs. 
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CHAPTER 2 

CRYPTOGRAPHY 

2.1. Basic Description 

The word cryptography originated from the two Greek words, namely Crypto means hidden or 

secret and Graphy means writing. So cryptography is the art and science of creating secret codes. 

It is protecting the data by converting it into a non-recognizable format in which a message can 

be hidden for the reader and only the desired recipient will be able to translate it into original 

message. In cryptography, when the data in its original structure is known as plain text, means 

information can be read and understood without any special measure. The scrambled information 

is known as cipher text. The process of converting plain text into cipher text using a key is 

known as encryption. Conversely, the method of translating cipher text into its original plaintext 

using a key is known as decryption. A system that offers both encryption as well as decryption is 

called cryptosystem as shown in fig 1.1 

                                              Encryption     Key            Decryption 

                             Plaintext                        Cipher text                         Plaintext 

Fig.2.1 Basic Cryptosystem 

2.2. Purpose of Cryptography 

Cryptography offers various security goals guarantee the privacy of information and for non-

alteration of information etc. It is widely used nowadays due to the great security advantages. 

Various security goals of cryptography are: 

Authentication: - The data received by any system has to verify the identity of the transmitter to 

check   whether the data is coming from authorized person/party or not.  

Confidentiality: - Data in the computer has to be accessed and is transmitted only by the 

authorized party or person and not by anybody else. 

Integrity: - Modify the transmitted data only by the authorized party or person. Nobody in 

between the transmitter and receiver are authorized to alter the given information.  
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 Non-Repudiation: - Either the transmitter or the receiver of the information should not be able 

to deny the transmission.  

 Availability: - The data transmitted and stored by an association needs to be accessible to 

authorized entities. Data is of no use if it is not available. 

2.3 Classification of Cryptography 

Cryptography algorithms can be classified into two main categories namely Symmetric (Private) 

and Asymmetric (Public) key Cryptography.  

 

  Fig.2.2 Classification of Cryptography 
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2.3.1. Symmetric (Private) Key Cryptography 

Symmetric key cryptography is also known as secret-key, shared-key, and single-key or private-

key cryptography. Because it uses a shared key for encryption as well as decryption of the 

message. Receiver and sender have to share the private key in the starting, after that they can 

start to encrypt and decrypt messages between them with that key. There are several private key 

algorithms such as DES, TRIPLE DES, RC4, AES, RC6, and BLOWFISH etc. Shared key 

cryptography schemes are usually categorized as stream ciphers and block ciphers. Stream 

ciphers encrypt the data bit by bit. A block cipher scheme operates on a block of information at a 

time using the similar key on each and every block. The advantages of private key 

cryptography are: simple, fast, uses fewer computer resources and it prevents wide-ranging 

information security compromise. While the disadvantages are: Requirement for secure 

channel for private key exchange, too many keys and authentication of information cannot be 

guaranteed 

2.3.2. Asymmetric (Public) Key Cryptography 

 Asymmetric key cryptography makes use of two different keys: a public key and a secret key. 

The public key is made available to the public and is used to encrypt information by any person 

who desires to transmit a message to other person that the key belongs to. The private key is kept 

secret and is used to decrypt received information. The RSA algorithm is an example of public 

key cryptography system. The advantages of public key cryptography are: Convenience, 

data authentication, Detection of tampering and non-repudiation. While the disadvantages are 

Asymmetric keys should be authenticated, Slow, Requires additional computer resources, 

Widespread security compromise is achievable and Loss of private key may be irreparable. 

 As far which of them is more protected, there are differing views. Most of the experts believe 

that private key cryptography is more secure. And few others consider the asymmetric key 

cryptography is better. If possible, both of them are used together to get advantage of their 

benefits. In secret key cryptography AES algorithm is more secure than other cryptographic 

algorithms. 
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2.4. History of Rijndael AES algorithm 

Data Encryption Standard (DES) was worldwide frequently used block cipher during 1970-1993. 

DES encrypts information in 64 bit block size and uses a 56 bit key. 56 bit key offers 

approximately 2^
56

 
  

possible combinations. Although it seems to be large but according to 

nowadays computing power it is not enough and susceptible to brute force attack. So,  Data 

Encryption Standard (DES) could  not  keep  up  with  development  in  technology  and  it  is  

no  longer  suitable  for security. Since DES was used widely at that time, the immediate solution 

was to develop 3DES which is secure enough for most of the applications. 3DES is implemented 

by applying DES three times in succession. 3DES  with three  different cipher  keys  (e.g. K1,  

K2  and  K3)  has an effective  key  size  of  168  bits . An extra variation is called two key (K1 

and K3 are equal) 3DES reduces the effective key length to 112 bits which is not much secure as 

3DES having three different keys. But it is highly inefficient, particularly in software 

implementations. After that the NIST (National Institute for Standards and Technology) has 

recognized requirement for new standard and started the process of developing an Advanced 

Encryption Standard (AES). The most important NIST’s target was to build up an algorithm, 

which offers security at least equivalent to 3DES, and considerably efficient in software and 

hardware implementations in different platforms.   

2.4.1. Requirements and evaluation criteria 

NIST announced an official call for contestant algorithms in 1997. The minimum acceptable 

capabilities were: The algorithm must design or implement symmetric (private or secret) key 

cryptography, the given algorithm should be a block cipher and the contestant algorithm shall be 

able to supporting block-key combinations with sizes of 128-128, 128-192 and 128-256. All 

candidate algorithms were evaluated with respect to following three criteria: Security, Cost and 

implementation characteristics like flexibility, hardware/software suitability and simplicity. 

2.4.2. Evaluation Process 

The method of evaluating best AES algorithms has been divided into number of rounds. The 

initial round was mainly focus on the evaluation of algorithms depends on the cryptanalysis 

carried out by public and the efficiency of software implementations on a different type of 

platforms. Several algorithms were initially presented by researchers from 12 different countries.  
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Fifteen, algorithms were chosen from the first phase of submissions. After the one year research, 

five algorithms were selected as AES finalists from second phase of selection process. They are 

MARS, SERPENT, RIJNDAEL, TWOFISH and RC6. The conclusion was that the five 

contestants illustrated similar type of characteristics. Finally in October 2000, NIST declared that 

the Rijndael algorithm was the winner of the contest. The Rijndael algorithm was selected 

because it offers better security, efficiency, flexibility, performance and implementation ability 

as compared to other algorithms. The Advanced Encryption Standard (AES) is designed for 

the encryption or decryption of digital electronic information. This algorithm is depends on the 

Rijndael cipher developed by two Belgian cryptographers, namely Joan Daemen and Vincent 

Rijmen. Rijndael AES is a group of ciphers with different combinations of block and key sizes. 

AES algorithm became effective as a federal government standard (FIPS) on May 26, 2002 after 

approved by the Secretary of Commerce. AES has been adopted by the U.S. government and is 

now used worldwide.  

Table 2.1: Comparative studies of different cryptographic techniques 

PARAMETER AES 3DES DES RC2 BLOWFISH RC6 

Key size (bits) 128, 192 or 

256  

168 or 112  56  8-128 or 64 32-448  128, 192 

or 256  

Cipher type Symmetric 

block cipher 

Symmetric 

block cipher 

Symmetric 

block cipher 

Symmetric 

cipher 

Symmetric 

cipher  

Symmetric 

cipher  

Data size (bits) 128, 192 or 

256  

64  64  64  64 bits 128  

Developed 2000 1978 1977  1987 1993 1998 

Security Considered 

secure 

 Secure but 

slow process 

inadequate Vulnerable Vulnerable Vulnerabl

e 

Possible keys 2
128

, 2
192

 or  

2
^256

 

2
112

  or  2
168

 2
56

 2
64    

or  2
128

 2
32    

or   2
448

 2
128

, 2
192

 

or 2
256

 

Rounds 10(128bits), 

12(192bits), 

14(256bits) 

48 16 16 of type 

mixing,2 of 

mashing 

16 20 

 

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Joan_Daemen
http://en.wikipedia.org/wiki/Vincent_Rijmen
http://en.wikipedia.org/wiki/Vincent_Rijmen
http://en.wikipedia.org/wiki/United_States_Secretary_of_Commerce
http://en.wikipedia.org/wiki/Federal_government_of_the_United_States
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CHAPTER 3 

RIJNDAEL AES ALGOTITHM 

3.1. Basic Algorithm Description 

The AES algorithm is a symmetric block cipher that can encrypt and decrypt information. 

Encryption unit converts information to a non-readable format called cipher-text. Decryption of 

the cipher-text converts the information back into its original form, which is called plain-text. 

The AES algorithm operates on a 128-bit block of information and run in number of loop 

iterations. The number of iterations (N) of a loop, N can be 10, 12, or 14 based on the key size. 

The key size is 128, 192 or 256 bits respectively. Here, this AES algorithm uses 128 bit key size.  

3.2. AES Encryption  

The Rijndael AES algorithm (128bit key) consists of ten iterations of encryption. First the 128-

bit key is expanded into eleven so-called round keys, each of them 128 bits in length. The initial 

and final iterations are differing from other iterations in that there is an additional Add Round 

Key operation at the starting of the initial round. Means first round key is added (XOR) with the 

plain text. After that nine identically structured iterations to follow. Each of these nine iterations 

consists of the following transformations: 

 Substitute bytes 

 Shift rows 

 Mix columns 

 Add round key 

The final iteration is similar to the iterations one to nine, but the Mix columns transformation is 

not performed. In the following sections, these four transformations are explained. Figure 3.1 

shows the flow diagram of AES encryption.  
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Fig.3.1 AES encryption 

 3.2.1. Representation of 128bit Key and Input information 

Both the input information and the key are represented in a 4x4 matrix of 16bytes (128bits).  

How the 128-bit key and input information are distributed into the byte matrices as shown in Fig. 

3.1.1. 

                           

                          Fig. 3.1.1 Representation of 128bit Key and Input Data 
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3.2.2. Substitution Bytes Transformation 

The Sub bytes transformation is a non-linear byte substitution, operating on all state bytes 

independently. This is the major concern for the security of the AES. There are different ways of 

interpreting the Sub bytes operation in this design; one is combinational implementation, it uses 

Galois-field (composite field) arithmetic for on-the-fly calculation of sub byte values. While the 

other technique is look up table approach, this is done using a once-pre calculated substitution 

table called S-box. That S-box contains 256 numbers (from 0 to 255) and their corresponding 

resulting values as shown in table 3.1. The 16 bytes of the state (the input data) are substituted by 

the corresponding values found in the table.  This is most efficient method than directly 

implementing the multiplicative inverse operation followed by affine transformation. This 

approach avoids complexity of hardware implementation. 

 

                                     Fig. 3.1.2 Substitution Bytes Transformation 

  Table 3.1: Look-up-Table For Substitution 
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3.2.3. Shift Rows Transformation  

In this operation the rows of the state (4x4 byte input information) are cyclically left shifted with 

respect to offset of the row. Row 0 is not shifted, row 1 is cyclically shifted one byte of 

information to the left, row 2 is cyclically shifted two bytes of information to the left and row 3 

is cyclically shifted three bytes of information to the left.  The operation of Shift rows as shown 

in Fig. 3.1.3.  

 

Fig. 3.1.3 Shift Rows Transformation 

3.2.4. Mix Column Transformation 

Mix column transformation is perhaps the most complex operation from a software 

implementation point of view. Contrast to the Shift rows operations, which operate on rows in 

the 4x4 state matrices, the Mix column operation process on the columns. In this, only a matrix 

multiplication required to be executed. To make this operation reversible, the normal addition 

and multiplication are not used. In AES, Galois field arithmetic operations are used. In Galois 

field arithmetic, an addition corresponds to an XOR operation between the operands and a 

multiplication is to a more complex equivalent. The mix column transformation takes a 4x4 byte 

matrix as input, and performs a matrix multiplication for each column with a constant vector.  

In Mix Column transformation, the columns of the state are considered as polynomials over GF 

(2
8
) and multiplied by modulo X

4
 + 1 with a fixed polynomial c(X). This fixed polynomial 

defined by NIST, given by: c(X) = {03} X
3 

+ {01} X
2
 + {01} X + {02}. The working principle 

of Mix column transformation as shown in Figure 3.1.4. 
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Fig. 3.1.4 Mix Column Transformation 

3.2.5. Add Round Key Transformation 

In the Add Round Key transformation, a Round Key is added to the State which is resulted from 

the operation of the Mix Column transformation. This transformation can be done by using 

simple bitwise XOR operation. The Round Key of each round is extracted from the main key 

using the Key Expansion Module. The encryption/decryption algorithm required eleven 128-bit 

Round Keys, which are denoted by Round Key[0] , Round Key[1] ,…,Round Key[9],Round 

Key[10]. In the initial round of encryption, Round Key [0] is added (XOR) to the plain text, 

where as in initial round decryption, Round Key [10] is added (XOR) to the cipher-text. The 

operating principle of Add Round Key transformation as shown in Fig. 3.1.5. 

 

Fig. 3.1.5 Add Round Key Transformation 
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3.3. AES Decryption 

Decryption of information is a reverse of encryption in which inverse round transformations are 

used to compute original plain text from the given cipher text. In order to get original 

information, it uses inverse round transformations in reverse order.  

The Rijandael decryption consists of four inverse operations of encryption.They are 

1.  Inverse Substitution  

2.  Inverse Shift Row  

3.  Inverse Mix Column   

4.  Add Round Key Transformation 

3.3.1. Add Round Key Transformation 

Add Round Key Transformation is its own inverse function because the XOR operation is its 

own inverse. However, the round keys have to be selected in reverse order.  

 3.3.2. Inverse Shift Rows Transformation 

Inv Shift Rows exactly functions the same as Shift Rows, only in the opposite direction. The first 

row is not shifted, while the second, third and fourth rows are shifted right by one, two and three 

bytes respectively. 

3.3.3. Inverse Sub Bytes transformation 

 The Inv Sub Bytes transformation is done by two techniques. One is using a once-pre calculated 

substitution table called Inv S-box. That Inv S-box table contains 256 numbers (from 0 to 255) 

and their corresponding values. Inv S-box is presented in Table II. Another technique is on-the-

fly calculations for inverse sub byte values using Galois field over 2
8
.This transformation exactly 

inverse to the sub byte transformation. For example in this transformation ‘0’ is mapped to ‘52’, 

where as in sub byte transformation ‘52’ is substituted to ‘0’ 
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Table 3.2: Lookup Table for Inverse Substitution 

 

3.3.4. Inv Mix Columns Transformation 

This transformation exactly same as Mix Column transformation except constant polynomial. In 

the Inverse Mix Column transformation, the columns of the state are considered as polynomials 

over GF (2
8
) and multiplied by modulo X

4
 + 1 with a fixed polynomial d(X). This fixed 

polynomial defined by NIST, given by: d(X) = {0B} X
3
 + {0D} X

2
 + {09} X + {0E}, where 

{0B}, {0D}, {09}, {0E} denotes hexadecimal values. 

3.4. Key Expansion Algorithm 

The key expansion operation is fundamental for the AES algorithm, the key is changed with the 

key expansion for each round. The altered key is used as input to next iteration. The changed key 

is referred to as the key schedule because there is one unique key for each iteration. A top level 

description of the key expansion algorithm as shown in Fig. 3.2. 



 
 

17 
 

 

Fig. 3.2 Key Expansion in AES 

The key consists of 16 bytes; however the key expansion processes the key as four sets of four 

bytes. The first operation is applying the SBOX to the last column four bytes. The next step is a 

byte left Rotation.  After that the round constant (RCON) is XOR with the last four bytes. Round 

constant (RCON) which is a simple lookup table with 10 entries, each having 4 bytes constant. 

The result is four new bytes for the next key schedule. The remaining 12 bytes of next key 

schedule is obtained by simple XOR operation between different set of 4 bytes in the previous 

key schedule as shown in Fig. 3.2. The content of the RCON look up table is specified by 

National Institute for Standards and Technology. It is calculated by using equation.  

RCON = 2
round 

mod (2
8
+2

4
 +2

3
 +2 +1). 
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Table 3.3: RCON look up table 

j RCON [j] 

0 32’h01000000 

1 32’h02000000 

2 32’h04000000 

3 32’h08000000 

4 32’h10000000 

5 32’h20000000 

6 32’h40000000 

7 32’h80000000 

8 32’h1b000000 

9 32’h36000000 

         

3.5. AES Implementation Stages 

Since the publication of the AES (Rijndael) algorithm in 2001, different hardware 

implementations were proposed for this algorithm. Most of these implementations have targeted 

the AES with 128-bit key length. This key length is considered to be enough for the majority of 

the commercial applications, where using larger key lengths is considered as waste of resources 

as it need larger area implementations with longer processing time. Key lengths of 256 bit and 

192 bits are used mainly in top secret military applications to guarantee the maximum level of 

information security.  

AES implementations stages can be divided into three major types based on data-path width. The  

first  type  come up  with  8-bit  data–path width  as  implemented  in  targeting  for  small  area 

structural design.  The  second  type  comes with  the  32-bit  data -path  structures  which  

process  every state array column or row collectively  and targeting a normal throughput  

applications.  
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The third stage comes with the implementation of 128-bit loop unrolled structural designs which 

targets extremely high speed applications.  Generally, implementations with 8-bit and 32- bit 

data path widths uses looping architectures. Fig.3.3.1 shows the looping architecture of one stage 

of AES encryption/decryption with a feedback at the ending.  In this approach the information 

will go through this stage until finishing the required amount of rounds which is determined 

according to length of the given key. This AES stage could be simply an encryption block or an 

encryption with decryption block and it comprises the hardware implementation for the four 

different AES operations: Byte Substitution, Shift Rows, Mix Column and Add Round Key 

operations.   For an extremely  high  speed  applications  which  is  designed  as  complete  128  

bit  data -path width,  the throughput can be increased ideally N times with the implementation  

of  loop unrolled structures. In this structural design, duplication of the N similar AES stages is 

implemented in series. In AES 128 bits key size structural design, replicas of 10 AES rounds are 

required to complete the encryption or decryption of the information. In  order  to  get  benefit  

from  the  loop  unrolled  structural design, a  pipelining  stage  is implemented at the end of each 

and every AES stage which permits entering new information at each and every clock cycle, so, 

all AES stage will be operating simultaneously. The loop unrolled architecture with pipelining 

techniques as shown in Fig. 3.3.2.  

In sub-pipelining techniques, instead of applying pipelining stage at the end of each AES stage, it 

is divided into certain number of pipelining stages inside each AES stage. This technique 

increases the throughput, certain number of times as compared to throughput achieved by using 

normal pipelining techniques. The loop unrolled structural design with sub-pipelining techniques 

as shown in Fig. 3.3.3. 

 

 

 

                     Input Output 

     

                                       Fig. 3.3.1 Loop rolling architecture. 

AES Stage 
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Input  Output 

 

                                     Fig. 3.3.2  Loop-unrolled architecture with pipelining. 

 

 

Input   Output 

 

              Fig. 3.3.3  Loop-unrolled architecture with sub-pipelining.  

The  loop  unrolled  sub-pipelined  AES  implementations  which  offers  tens  of  gigabytes  of 

throughput are used in numerous applications such as in e-commerce as highly traffic servers. 

Substitution Box (SBOX) implementation is a major concern in the AES hardware structural 

design. Two main techniques where proposed for the design of the S-BOX. The first technique is 

by pre storing the S-BOX elements in block RAMs (BRAMs), BRAMs is an FPGA memory 

block of RAM which can be used to store information.  The  design  has  used  the  BRAMs  to  

offers  high  speed  loop -unrolled structural design.  

The second technique uses the Galois-field on-the-fly calculation of S-BOX, and implemented as 

high speed loop unrolled sub-pipelined AES structural design. As  pipelining  cannot  suitable  

for  BRAM  since  it  is  a  memory  block.  Using  BRAM  in  the implementation   of  S-BOX  

will  limit  the  number of sub-pipelining  stages used in  the  design. Furthermore 

implementation using BRAMs typically requires larger area than the Galois-field arithmetic 

structural designs. 
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CHAPTER 4 

      LITERATURE REVIEW 

The literature review is divided into two sections: Different hardware AES implementations in 

FPGA and Design Methodologies to achieve required Goals. The first section is studied in order 

to find out how efficient AES algorithms have been implemented in FPGAs so far. For that it 

presents various AES implementations using different techniques. The second section gives 

different design methodologies to achieve our desired goals. This section also suggests the 

hardware and languages required for the efficient implementation of AES algorithm. 

4.1. Different Hardware AES Implementations in FPGA 

 In 2013, Yerlikaya and Akman were published an article where they compare 

performance between FPGA and CPU for the encryption of the data. The CPU 

implementation was in C programming while the FPGA implementation was in VHDL. 

The encryption algorithm has 128 bit block length AES with a key size of 128 bit. The 

comparison was based on simulations results; the encryption processing time was 390ns 

for the FPGA and 11000 ns for the CPU. This article is relevant for our study since it 

provide an empirical example of the superior performance of the FPGA versus a CPU. 

 

 In 2013, Kumar and Sharma have improved the latency in the AES kernel by using an 

enhanced VLSI implementation. The Sub Bytes, which are part of the S-box in the AES 

encryption has been implemented in logic instead of placing them in ROM (BRAM), 

since the access time for the CLB’s are much lower compared to BRAM access, then is 

the latency decreased. The designed was implemented in a Xilinx Virtex-II device and 

the simulation shows that the latency can be reduced by 0.6-0.9 ns, which is roughly the 

penalty for accessing the BRAM. While the FPGA technology used are rather outdated, 

the study shows, that latency improvement can be achieved by reducing the access time 

for the parameters of the s-box  

 

 Dogan and Saldamli studied in 2012 the design techniques for FPGA AES encryption to 

achieve low power consumption. The designed minimize the power by reusing 
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calculations block in the AES kernel such as the S-box. Instead of performing true 

parallel calculations, input the reused kernel was time slot multiplexed, thus utilizing the 

periods where the blocks are idle. The design was targeted to a Xilinx Spartan-3 

XC6SLX150L. The designed was running at low speed, 20 MHz and the throughput was 

low. The conclusion was that proposed design technique did lower the power 

consumption drastically. However no absolute power numbers was published 

 

 In 2011 did a team consisting of Hongying Liua, Ying Zhoub, Yibo Fanc, Yukiyasu 

Tsunood and Satoshi Go to study how to increase the security the FPGA implementation, 

by considering the possibility of side channel in form of differential power analysis  by 

using advance randomization where they able to hide data dependent encryption in the 

power spectrum. The performance of the implementation was 2.56Gbit/s. 

 

 Jason Van Dyken and Jose G. Delgado-Frias investigated in 2010 how encryption 

strength and power consumption was related in FPGA implementation of AES. The study 

showed how to lower the power consumption of the encryption with minimum effect on 

performance. They were able to lower the power consumption with 66% while only 

lowering the encryption strength with 27%. The target device was a Xilinx Virtex-II Pro  

 

 The implementation of AES encryption and decryption in a FPGA was done in 2010 by 

Yogesh Kumar and Prashant Purohit, they have implemented a parallel 128 Bit AES in a 

Xilinx Spartan 3 device. The focus of their work was the achieving high hashing speed in 

a low-cost device. 

 

 The AES encryption was implemented in a FPGA in sequential and parallel architectures 

in 2003 by Nazar A. Saqib, Francisco Rodriguez Henriquez and Arturo Diaz-Pirez. The 

aim of the research was to compare sequential and parallel architectures in respect to area 

and speed. In sequential architecture did the implementation occupy 2744 CLB slices 

while the parallel architecture occupied 2136 CLB slices and not used any BRAM for this 

design. The sequential architecture was encrypting at 0.259Gbit/s while the parallel 

architecture was encrypting at 2.868Gbit/s. The target device was Xilinx Virtex E. 
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 In 2013, High performance FPGA implementation of AES was done by Abhijith.P.S, 

Mallika Srivastava and Aparna Mishra. They implemented AES-128 algorithm in vertex-

5 FPGA. With the designing of all the AES transformations as LUTs and ROMs, the 

proposed design achieves a throughput of 3.74Gbps, latency 10 clock cycles and thereby 

utilizing only 1% of slices in the targeted FPGA. 

 

 The fully pipelined AES implemented was implemented by Hodjat and Verbauwhede in 

2004. They managed to fit the algorithm into one Virtex-II Pro FPGA. The latency for 

the algorithm was only 31 clock cycles and they achieved an encryption rate of 

21.54Gbits/s. The implementation used 84 BRAMs and 5177 CLB slices, giving an 

efficiency of 4.2 Mb/slice if the BRAM usage is not taken into consideration 

 

 Dur-e-Shahwar Kundi, Arshad Aziz and Nasar Ikram published a paper in March 2010 

describing the resource efficient implementation of T-boxes in AES. The design was 

implemented on a Xilinx virtex-5 FPGA and operating at a clock frequency of 

251.421MHz. This implementation saves 50% of the memory requirement (BRAMs) as 

compared other T-Box AES implantations, which aims to target 3Gbps to 32Gbps 

throughput applications. 

 

 In June 2012, O.Prasanthi and M. Subba Reddy were developed  an  iterative AES 128 

bit algorithm (written  in VHDL ) with Vertix-6 FPGA and verified using Xilinx 8.1 

simulator and thereby achieves  a throughput of  352Mbps for both encryption and 

decryption. 

 

 L. Thulasimani and M.Madheswaran jointly published a paper in 2010 which presents 

FPGA implementation of Rijndael AES algorithm for Reconfigurable mobile terminals. 

They implemented complete algorithm (AES-128, AES-192 and AES-256) in the same 

hardware. It is designed in vertex-2 FPGA and requires 12 clock cycles for AES-128. As 

result 666.7Mbps of throughput is achieved and utilizes 2943 CLB slices. 
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 Secured high throughput AES algorithm was implemented by Manjesh.K.N and R.K. 

Karunavathi in may 2013. They presented a hardware implementation of pipeline AES 

architecture which includes both encryption and decryption and also gives an idea of 

restricting the number of pipelining stages in the design. The design is modelled using 

verilog HDL and simulated with the help of ISE 9.2. Synthesis is done by using RTL 

compiler v11.2. For 9 pipelining stages, this design gives a throughput of 800Mbps, uses 

84268 cells, dynamic and leakage power dissipations are 341.88 mw, 27.043uw 

respectively and 20 clock cycles are required for the complete encryption. 

 

 In 2010 Jason, Van Dyken and G. Delgado-Frias have published a paper describing the 

different FPGA schemes for minimizing the power-throughput trade-off in   AES 

Algorithm. Their study is focus on how to lower the power consumption of an FPGA-

based encryption scheme with minimum effect on performance. Three novel FPGA 

schemes are introduced and evaluated. These schemes are compared in terms of 

architectural and performance differences, as well as the power consumption rates. The 

results show that the proposed schemes are able to reduce the logic and signal power by 

60% and 27% respectively on a vertex-2 pro FPGA while maintaining a high level of 

throughput. 

 

 The Advanced Encryption Standard Implemented on FPGA by a Sujatha, Hiremath and 

M.S.Suma. This paper talks of AES 128 bit block and 128 bit cipher key and is 

implemented on Spartan 3 FPGA .Synthesis results in the use of 2511 slices, 712 Flip 

flops, and 4805- 4 input Look Up Tables. The design target is optimization of speed and 

cost. Maximum Frequency: 116.485MHz. 

 

 In 2010, Nabihah Ahmad, Rezaul Hasan and Warsuzarina Mat Jubadi have designed AES 

S-Box using combinational logic Optimization. The proposed work employs a 

combinational logic design of S-Box implemented in Virtex II FPGA chip. The 

architecture employs a Boolean simplification of the truth table of the logic function with 

the aim of reducing the delay. The S-Box is designed using basic gates such as AND 
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gate, NOT gate, OR gate and multiplexer. Theoretically, the design reduces the overall 

delay and efficiently for applications with high-speed performance. The proposed S-Box 

gives another option for hardware implementation other than composite field to represent 

Sub-byte transformation. It reduces the complexities of hardware by avoiding the use of 

multiplicative inverse in Galois field. As compared to the LUT and composite field, the 

S-Box resulted in smaller area with medium delay. 

 

 In 2013, High-performance and Balanced Method of Hardware Implementation for AES 

published by Xiaotao Zhang, Hui Li and Shouwen Yang. Optimized and synthesizable 

verilog HDL code is developed for the realization to achieve 2.33Gbits/s throughput and 

both AES-128 encryption and decryption process are verified using Quartus II 10.0 

software from Altera and simulated by ModelSim SE 6.1f. 5037 slices for encryption and 

5049 slices for decryption.  

 

 In 2008, FPGA implementations of high throughput sequential and fully pipelined AES 

algorithm designed by Chih-Peng Fan and Jun-Kui Hwang. In this Sequential AES uses 

XC2V3000-6 FPGA for  Enc/Dec  slices 7617 latency  11 frequency  75.3 MHz 

throughput 0.876Gbits/s while Our Fully pipelined AES uses  XC2V3000-6 FPGA for  

Enc/Dec slices 139357 (10 chips) latency  51  frequency 222.2 MHz  throughput 

28.4Gbits/s. 

 

 Hoang Trang and Nguyen Van Loi have implemented an efficient FPGA implementation 

of 128 bit block and 128 bit key AES algorithm has been presented in this paper. The 

design is implemented on Altera using APEX20KC FPGA which is based on high 

performance architecture. The proposed design is implemented based on the iterative 

approach for cryptographic algorithms. Our architecture is found to be better in terms of 

latency, throughput as well as area. The design is tested with the sample vectors provided 

by FIPS 197 [2]. The algorithm achieves a low latency and the throughput reaches the 

value of 1054Mbit/sec for encryption and 615Mbit/sec for decryption. 
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 In 2010, Tanzilur Rahman, Shengyi Pan and Qi Zhang have studied  hardware 

implementation of a high throughput 128- bits Advanced Encryption Standard (AES) 

algorithm on a single chip of Xilinx Spartan III XC3S1000 FPGA has been presented. 

The bus width of the architecture is 32 bit. Pipelining method has been used in this design 

in order to achieve a higher speed. Sub-Bytes method has been implemented using both 

composite field method and fixed Rom for further analysis and comparison of 

performance. Through a perfect combination of different methods of S-Box and key 

Expansion, a notable speed has been achieved in the range of 1.11Gbps to 3.22Gbps. Sub 

pipelined sub bytes requires 6605 slices and achieve 3.22 throughput. For rom basesd 

6.279 ns, whereas composite field requires 22ns Combinational delay. 

 

 In July 2012, Samir El Adib and Naoufal Raissouni published a paper on AES 

Encryption Algorithm Hardware Implementation: Throughput and Area Comparison of 

128, 192 and 256-bits Key. In the present paper, throughput and area of 128, 192 and 

256-bits AES have been measured in a hardware implementation. Results show that; key 

size has an almost-linear impact on throughput whereas it has an exponential positive 

relation with area. In terms of area 192-bits and 256-bits AES hardware design in this 

paper require about 21.31% and 48.51%, respectively, more area than 128-bits AES 

design. In the hardware perspective, bigger key size also means bigger area and small 

throughput. Some companies that employ ultra-high security in their systems may look 

for a key size bigger than 128-bit. 

 

4.1.1. Literature review conclusion 

The literature review has shown that there is no standard FPGA implementation of AES. Each 

Implementation was aimed to achieve different goals. The review has revealed that preferred key 

length for the researcher was 128 bit, instead of the more secure AES-192 and AES-256 bit. The 

most common goal for the researchers was to achieve as high throughput as possible. The highest 

throughput was achieved by Abhijith.P.S, Mallika Srivastava and Aparna Mishra. They 

implemented AES-128 algorithm in vertex-5 FPGA. They were able to reach 3.74Gbps on 

Virtex-5, and thereby utilizing only 1% of slices in the targeted FPGA.  
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The closest competing implementation was done by Nazar A. Saqib, Francisco Rodriguez 

Henriquez and Arturo Diaz-Pirez. They used a parallel architecture. They achieved a throughput 

of 2.868Gbps, with the use of 2136 slices. However, they used a Virtex E FPGA technology 

.They did not publish the latency for the core, nevertheless the design is comparable with the 

single pipeline architecture and we can therefore expect that the latency is approximately 20 

clock cycles. Another closest design is done by Dur-e-Shahwar Kundi, Arshad Aziz and Nasar 

Ikram in March 2010 describing the resource efficient implementation of T-boxes in AES. The 

design was implemented on a Xilinx virtex-5 FPGA and operating at a clock frequency of 

251.421MHz. This implementation saves 50% of the memory requirement (BRAMs) as 

compared other T-Box AES implantations, which aims to target 3Gbps to 32Gbps throughput 

applications. 

The literature review has revealed a knowledge gap so far there has been little focus on power 

consumption. The reason could be that the published designs are only conceptual and the 

problem of reducing power consumption is left out for further research. Dogan and Saldamli had 

a study aimed directly at power reduction 0. However Dogan and Saldamli measured power on a 

low throughput design on older FPGA technology. There were no absolute measurements for the 

power consumption and the results cannot be transferred to new die technology since the ratio 

between static and dynamic current has changed drastically. Manjesh.K.N and R.K. Karunavathi 

did an effort to estimate power consumption using the Xilinx XPower analyzer tool, yet the 

XPower only provides a rough estimate which enables the hardware designer to dimension the 

power supply. Moreover, the estimate was not done at the target clock frequency, which only 

adds uncertainty to the estimate. 

The conclusion of the literature review is that there are some excellent design ideas for 

AESFPGA implementations such as the Parallel sub-pipelined architecture or T-box approach 

(Efficient use of BRAMs) which have excellent performance on a modern FPGA technology, 

both in respect to throughput, efficiency, latency and power consumption the performance 

summary at 100MHz for the articles is listed below. NA means not available. 
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Table 4.1: Literature review performance summary 

Author Throughput 

(Gbps) 

Area(slices) Latency 

(clock 

cycles) 

 

Power 

performance(Gb/Ws) 

Hongying Liua, 

Ying Zhoub and 

Yibo Fanc 

2.56 NA NA NA 

Nazar, Henriquez 

and Pirez 

2.87 2136 NA NA 

Abhijith, mallika 

and Aparna 

3.74 NA 10 NA 

Prasanthi and 

subba reddy 

0.352 NA NA NA 

Thulasimani and 

madhswaran 

 

667.7 2943 12 NA 

 

Tanzilar, Rahaman 

and Shengyi 

 

3.22 6605 NA NA 

Zhang, Hui li and 

Shouwen  

2.33 5049 NA NA 
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4.2. Design Methodologies 

The research method used in this thesis is Design Science Research Methodology. The Design 

Science Research Methodology is a relatively new method; it was first published in a journal 

article in 2007. The method is developed specifically for the field of Information Security and 

covers the gap between interpretive research in the field of information security and the 

discipline of engineering. 

The objective of the project is to efficiently implement Rijndael AES algorithm. We need the 

knowledge from Information Security to choose and evaluate the encryption algorithm but we 

also need the discipline of engineering to implement and test the effectiveness of the chosen 

encryptions techniques, for this type of problem Design Science Research Methodology is an 

obvious choice. Other methods could also be chosen, but since this study aims to improve a 

current implementation of AES, is it difficult to predict what design changes that would produce 

good results. Therefore an iterative process like Design Science Research Methodology is an 

effective approach. 

4.2.1. Design Science Research Methodology 

The design science research methodology based on the journal article “A Design Science 

Research Methodology for Information Systems Research”. The method uses six activities which 

are normally executed in a sequence. However the method is not constrain the researcher to start 

at the first activity. Further, the method is an iterative process which means the result of a given 

activity determines if the researcher goes forward to the next activity or back to the previous 

activity and uses the new knowledge as input. The flow of the method is shown in Fig. 4.1. 

 

 

 

 

                                  Fig. 4.1 Design Science research methodology  
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The research process in this project follows the principals of Design Science Research 

Methodology. The Design Science Research Methodology allows us to start at any activity, 

however this project is problem centered and therefore the best activity to start with is number 1. 

The input to the project research process was the project idea, which was to create a research 

platform to solve problems with the privacy of data. 

Activity 1: Problem identification and motivation 

The project idea was synthesized into project proposal. The problem to be addressed was how to 

implement encryption of data in hardware. The motivation for the project is that there is a need 

for real-time encryption in security terminals with power consumptions. The planning for project 

was also done in this activity, you can argue that the planning should be done in activity 2, since 

it is hard to plan are project where the objectives for the solutions are not fully known. However 

due to limited timeframe of project, the overall planning has to be done before you know how to 

create the solutions. This is not much different from the discipline of engineering, the project 

time frame is often fixed long time before the engineers know how to solve a problem. 

Activity 2: Define the objectives for a solution 

The creation of State-of-the-art has been the driver for this activity. The key component is the 

literature review, since it is fundamental for defining the objectives for solution that can generate 

new knowledge. The state-of-the-art has also served another important role, it has shown that 

encryption in FPGA has been done before; therefore it has little scientific value simply to repeat 

what others have done before, instead our solution is based on reusing an AES encryption 

algorithm already implemented and tested. Part of this activity has been to contact the 

researchers who have already implemented AES encryption in FPGA and retrieve their source 

code. 

Activity 3: Design and development 

The activity has a number of steps which is typical for FPGA design: 

1. System design for the FPGA: The system design defines all modules in the FPGA and how 

they are interconnected. 
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2. Detailed design: The functionality for all the modules was described and the interface 

between all modules was defined. 

3. Verilog/VHDL code writing: The Verilog/VHDL code was written based on the detailed 

design. Further, a test bench for each module was designed. There was also designed a test bench 

for the overall FPGA design. 

4. Simulation: All modules are simulated and verified against the detail design specification. As 

well as the entire FPGA was simulated. 

5. Implementation: The implementation of the FPGA is primarily a tool driven task, the actual 

synthesis and PAR (place and route) is done by the development tools. However the tools 

operate based on the input from the designer, the primary input is the VHDL code and the UCF 

file (user constraint file). The output is a bit file that can be loaded into a FPGA.  

After the last step the creation of the artefact is complete. Another output from this activity was 

the user guide, which is a manual how to control the FPGA from a user perspective. The user 

guide is often referred to as the programmer’s reference, since the user of a FPGA is typically a 

piece of software that controls the FPGA. The design and development activity also output 

“how-to knowledge”, since the process of designing and implementing a solution gives the 

researcher knowledge on how to use the artefact. 

Activity 4: Demonstration 

The artefact (The FPGA design) was used to perform the following measurements: 

 Verification 

  Throughput rate 

  Latency 

  Data integrity 

  Power consumption. 

The artefact provides a complete research platform. The test data is loaded into the FPGA 

through the host interface. The encryption is initiated by the start command and the results are 

read out from the registers in the analysis module. Throughput rate, latency, data integrity is all 
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measured by the analyze module. However the FPGA is not able to measure its own power 

consumptions, this was done external with an oscilloscope and a current clamp probe. 

Activity 5: Evaluation 

The measurements from the previous activity were used to determine if the objectives for the 

project had been reached. This activity shows the effectiveness of the solutions, and the result 

was used to improve the design. The design science research methodology allows us to do 

iterations; therefore the knowledge from this activity was used to perform another iteration of the 

design and development, in respect to optimize throughput, latency and power consumption. 

This does not mean that the whole design and development was redone; only adjustment and 

optimizations were performed. At each of the iterations the Demonstration activity was redone, 

since a new design gave new results. The output from this activity is new knowledge to the field 

of information security. 

Activity 6: Communication 

This is out of the scope for this project, nevertheless the results from this studies could be 

considered for publication in a scientific journal. 

4.2.2. Hardware Design Approaches 

There are two fundamental approaches to hardware design: high-level as well as low-level 

designs. The high-level structural design, which is language-dependent, tends to be better 

because of practical considerations. The consequence of high-level implementations are 

relatively easy to construct, however may not be as optimal as compared to schematic based (low 

level) design methodology. All of the five hardware implementations of AES finalists were 

language based high-level structural designs. In the majority cases, the given performance 

statistics were the end result of device simulation, rather than measurements carried out on the 

original devices. So the tools used for designing and simulating ASICs and FPGAs are must be 

reliable and mature. However, the tools use conventional design assumptions and rules. 

Therefore the achievable clock rates of actual devices may exceeds the prediction of the device 

simulations sometimes. One more consideration is the design goals.  
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Achievable goals include: Minimum area, maximum throughput with unlimited area, maximum 

throughput within a predefined area and maximum efficiency, as measured by throughput per 

area. In general, the objective determines the design approaches; different goals frequently 

produce mismatched design choices. The area minimization as well as speed maximization is 

simultaneously not achievable. The maximization of speed may have an effect on efficiency. For 

example, complete loop unrolling   may maximize throughput except increase the required area 

and decrease efficiency. However, in the non-feedback mode of operation, pipelining may 

maximize throughput but maintain efficiency essentially constant or increase efficiency. 

4.2.3. Field Programmable Gate Arrays (FPGAs) 

A Field Programmable Gate Array is an IC (integrated circuit) consists of a large two-

dimensional array of tiny computing units which can be reconfigurable. Information can be 

routed in the array, vertically or horizontally. Changing links in between the blocks can result re-

routing. This kind of hardware has the advantages in terms of flexibility, low implementation 

cost, and low production cost for relatively low capacity devices. In general, there is a possibility 

to re-program an FPGA to toggle from one cryptographic algorithm to other algorithm, from key 

setup to decryption or encryption. Reconfiguration requires a fraction of a second. However, the 

flexibility advantages are trade off against speeds lower than those achievable by non-

reprogrammable hardware devices such as ASICs. On the other hand, FPGAs can attain speeds 

significantly better than software implementation. The smallest computing units of a Field 

Programmable Gate Arrays are called CLBs (Configurable Logic Blocks). Reconfiguration alters 

the function of the CLBs and the links between them. A CLB normally consisting of lookup 

tables (LUTs) and flip-flops (FFs). The LUTs are programmed as either a minimum number of 

combinational logic gates or a tiny RAM. An FPGA may also include fixed block RAMs which 

can be used as either LUTs or memory blocks as shown in Fig. 4.2. On the other hand, there is a 

significant dissimilarity between FPGAs, and the use of fixed block RAMs may have an effect 

on universality as well as portability of the outcomes. And also RAM has slower access time 

than Configurable Logic Blocks. 
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                                                Fig. 4.2 FPGA Architecture 

 4.2.4. Verilog Hardware Description Language: 

Verilog Hardware Description Languages is one of the two main HDL languages used in IC 

designs. The other hardware description language is VHDL. Hardware Description Language 

permits the design to be simulated in the design cycle earlier, in order to rectify faults or 

experimentation with different architectures. Implementations depicted in Hardware Description 

Language are independent of the technology, very easy to debug and design. And these type of 

designs typically more clear than schematic, predominantly for bulky circuits. In verilog the 

designs can be described in four abstraction levels; 1.Algorithmic level (analogous to c 

language).  2. Register transfer level (RTL uses registers linked by Boolean expressions).  3. 

Gate level (pre defined AND, OR, NOT etc. gates). 4.  Switch level (uses MOS transistors like 

PMOS and NMOS). These VHDL and Verilog HDL languages differ from 

software programming languages since they include ways of describing the sensitivity (signal 

strengths) and propagation time. The designers of Verilog need a language with syntax 

analogous to the C programming language, which was already extensively used in engineering 

software development. Verilog is case-sensitive like C and has a basic pre-processor (less 

sophisticated than that of ANSI C/C++). Its control flow keywords (if/else, for, while, case, etc.) 

are equivalent, and its operator precedence is compatible with C language. Syntax differences 

include: required bit-widths for variable declarations, separation of procedural blocks (Verilog 

http://en.wikipedia.org/wiki/C_(programming_language)
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uses begin/end as a substitute to curly braces {}), and several other slight differences. Verilog 

requires that variables be given a specific size. In C language these sizes are assumed from the 

'type' of the variable (for instance an integer type size may be 8 bits). Verilog consists two types 

of assignment operators; a non-blocking assignment operator (<=), and a blocking assignment 

operator (=). The non-blocking assignment permits designer to illustrate a state-machine update 

without need to declare and use temporary storage variables. As these concepts are part of 

Verilog HDL language semantics, designer could quickly write descriptions of bulky circuits in a 

comparatively compact and brief form. At the time of Verilog's introduction (1984), Verilog 

represented a remarkable productivity enhancement for circuit designers who were already using 

graphical schematic based capture software and particularly written software programs to 

document and simulate electronic circuits 

A Verilog HDL design consists hierarchy of modules. Modules encapsulate design hierarchy, 

and communicate with other modules through a set of declared output, input, and bidirectional 

ports. Inside, a module can have any combination of the following: net/variable declarations 

(wire, register, integer, etc.), sequential and concurrent statement blocks, and instances of other 

modules (sub-hierarchies). Sequential statements are placed within the begin and end blocks and 

executed in sequential manner inside the block. However, the blocks themselves are executed 

concurrently, making Verilog a dataflow language.  Verilog has a concept of 'wire' consists of 

both signal values (“1, 0, floating (z), undefined (x) ") and signal strengths (strong, weak, etc.). 

This system allows abstract modeling of common signal lines, where multiple sources drive a 

common net. When a wire has multiple drivers, the wire's (readable) value is determined by a 

function of the source drivers and their strengths. A subset of statements in the Verilog language 

is synthesizable. Verilog modules be conventional to a synthesizable coding style, known as 

RTL (register-transfer level), can be physically realized by synthesis software. Synthesis 

software algorithmically transforms the  Verilog source code into a net list, a logically equivalent 

description consists only of elementary logic primitives (AND, OR, NOT, flip-flops, etc.) that 

are accessible in a specific FPGA or VLSI technology. Further manipulations to the net list 

eventually lead to a circuit manufacture blueprint (such as a photo mask set for an ASIC or a bit 

stream file for an FPGA).  

 

http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/VLSI
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Bitstream
http://en.wikipedia.org/wiki/Bitstream
http://en.wikipedia.org/wiki/FPGA
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4.2.4 Factors of hardware design: 

Throughput: It is defined as the amount of bits processed per unit time after the process has 

vanished through initialization, and generally expressed in Mbps or Gbps. It is represented by 

character Rt. 

Latency: It is defined as the number of clock cycles required process one complete one block of 

information. This is the time between an instant when a chunk of data enters into the encryption 

unit, and an instant when it is come out of the same encryption unit. It is represented by TL. 

Area: Area illustrated the dimension of the circuit. There are different ways of expressing area 

based on the technology. In the ASIC technology, area is stated in terms of a die [um
2
], or in 

terms of the amount of logic gates or transistors. In the FPGA technology, the size of the circuit 

is stated in terms of the number of CLBs.  

Work size: It is defined as the quantity of data to be encrypted, it measured in bits and denoted 

by the letter Ws. 

Processing time: It is defined by three parameters namely throughput, work size and the latency. 

The processing time is represented tprocess and is calculated by the given formula 

tprocess = Ws/Rt + TL 

Efficiency: The efficiency of an AES implementation using FPGA is defined as the ratio of 

throughput to the area of the given FPGA. The area is equal to number of FPGA slices. 

Efficiency is measured in Mbps/slice. It is represented by the symbol ηE. 

ηE = R/area 

Power Performance: The power performance for an algorithm measured in terms of throughput 

per Watt, units are (Gbps/w), and it is represented by  Pp. 
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4.3. Research Objective 

 The most important objectives of AES hardware implementation are:  

1. Introduce new mathematical techniques for the AES algorithm design which reduces 

cost of the hardware implementation.  

2. Increase throughput of the system by parallel processing of the data, using pipelining 

techniques and also by efficient utilization of BRAMs present in the target device. 

3. Reduce area of the design by sharing or merging the recurring operational blocks and 

also by relocating the different modules present in the design. 

4. Study how to efficiently implement AES in Xilinx Artix-7 architecture. 

5. Analyze  throughput rate, power consumption, Latency and data integrity parameters to 

test the performance of the AES design 
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CHAPTER 5 

 DESIGN AND IMPLEMENTATION 

5.1. Proposed AES Architecture 

In order to get maximum speed and lesser area by mapping all the four round transformations of 

AES to LUTs, ROMs and Block RAMs. And use different techniques to provide necessary   

Data-integrity. Therefore the proposed AES architecture has four modules 1.Key Generation 

Module 2.Encryption Module 3.Decryption Module. 4. Data-integrity module. Fig. 5.1 

represents AES architecture  

 

  

 

 

 

  

 

                                                   Fig. 5.1 AES architecture 

The AES Architecture contains key generation module and data-integrity module are common 

units for both encryption and decryption. Key generation module gives necessary key expansion 

for both encryption and decryption functions. The key generation module consists of key register 

of 128 bits, S-Box and XOR gates for bitwise XOR operation. It is designed to produce round 

keys on each positive edge of the clock, when it is enabled. The key generation architecture does 

not require any hardware for shift operation and the port mapping between key register and S-

Box is done according to the required shift. Hence this offers the advantage in area. Also in this 

bits are rearranged on data path from register to S-Box and the round constant required for each 

rounds are stored in ROM and retrieved on each clock. The function of data integrity module is 

different for both encryption and decryption. This module provides necessary data-integrity by 

adding some additional logic to the cipher text during encryption process and sends it to the 

Encryption/Decryption Module 
Input 

Signals 

Output 

Signals 

 

Key generation Module 

Data-integrity Module 
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decryption unit. Where as in decryption process data-integrity module extract the additional logic 

from the cipher text and verifies whether the given data is modified by attacker or not. If the data 

is modified it shows a message to receiver that original information is altered ,otherwise it passes 

the cipher text to the decryption unit to get plain text from the given cipher text. 

5.1.1. Block diagram of Key Generation Unit 

 

  Fig.5.1.1 Key generation unit 

The encryption module takes 128 bit text to be encrypted and receives round key from key 

generation module to do each round of encryption. Fig. 6(a) represents the proposed encryption 

module. Start, stop mix, terminate are control signal produced by the control unit. The “done’ 

signal is provided to indicate that encryption is done. Architecture is as shown in Fig. 6. In the 

proposed work for reducing the hardware of entire architecture, the control unit of encryption 

module is not designed separately. The control unit of key generation module which is a 4-bit 

counter is designed to control the entire functioning of encryption module. The sharing of control 

unit by both encryption and round key generation gives unique advantage of reduction in 

hardware as compared to other implementations.   
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5.1.2. Block diagram of encryption unit: 

 

 re dddddddd                      

data done  

   

key  

reset data       

clk 

 

start 

 

Fig. 5.2 Encryption module 

             

      Fig.5.2.1  Encryption module                      Fig.5.2.2  Nand gate to eliminate last round 

NAND gate shown in fig. 5.2(b) and the 4-bit counter (Controller) are used to set and reset 

selection line of Multiplexer. For count one to ten the selection line will be in set condition and 

multiplexer will pass Mix Column output. However on last round, count will be eleven so 
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selection line will reset and pass Sub Byte output.  Shift Row operation is designed in such a way 

that it does not take any hardware. After Round Key operation data is given to S-Box with 

required shift by port mapping the signal according to required shift in verilog HDL description 

of the design. Since there is no hardware for Shift Row operation design gets the advantage of 

area, power and speed. Architecture of Decryption module is same as encryption module with all 

complimentary functions of encryption module. In this proposed work, the T-box approach 

allows the computation of the entire iteration of AES using only table look-ups called T-boxes 

and XOR operations. These pre-computed T-box look up tables represent the combined 

operation of the sub bytes and the mix column transformations. Compared to the 8x8 bits wide 

S-box look up tables, the T-box tables are of the size of 8 x 32 bits. Therefore memory 

requirement is more than the S-Box approach. But T-box based implementation decreases the 

computation time require for two operations likely substitute byte and mix columns. This 

implementation gives higher throughput for the design by significantly decreasing delay in data 

path. As a result the proposed design takes lesser number of slices when compared with other 

combinational technique proposed. The mathematical description described below explains how 

T-box tables and the corresponding AES round operations are obtained: 

5.2 T-box Tables derivation 

State Input is 
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Mix column encryption operation to the first column of state input 

                                       

T-box and inverse T-box tables are as shown in Fig. 5.3 

 

Fig. 5.3 T-box and inverse T-box 

In the above resultant matrix representation each column has fixed constants except that state 

inputs are updated with next row elements for the following iteration. First row elements of state 

input are always multiplied with first column constants of the multiplication matrix. Similarly, 

the second row elements with second column of matrix and so on. The first row of the state input 

uses table T0, the second row uses the table T1, the third row uses the table T2 and the fourth row 

uses the table T3. 

 



 
 

43 
 

5.2.1. Round functions computation: 

These are 4 tables with 256 4-byte word entries and make up for 4KByte of total space. Using 

these tables, the round transformation can be expressed as: 

           

Hence, a table-lookup implementation with 4 Kbytes of tables takes only 4 table lookups and 4 

EXORs per column per round. It can be seen that Ti[a] = Rot Byte (Ti-1[a]). At the cost of 3 

additional rotations per round per column, the table-lookup implementation can be realised with 

only one table, i.e., with a total table size of 1KByte. We have 

   

The code-size (relevant in applets) can be kept small by including code to generate the tables 

instead of the tables themselves. In the final round, there is no Mix Column operation. This boils 

down to the fact that the S table must be used instead of the T tables. The need for additional 

tables can be suppressed by extracting the S table from the T tables by masking while executing 

the final round. 

5.3. Encryption and Decryption in T-box architecture: 

Round outputs of encryption and decryption iterations are computed from the look-up tables. 

Last round in both the cases is performed in a special way. 

5.3.1. Last round in Encryption 

 Since mix columns operation has to be eliminated in the last round, this round is treated 

differently. In this round, sub byte values are needed instead of T-box outputs. Additional 

memory space is not needed to implement an additional sub byte table, as one byte outputs of the 

sub byte transformation can be extracted from the four-byte outputs of the T-box transformation 

corresponding to the same one-byte input as: 

                   S[a]=byte(1,T0[a])=byte(2,T1[a])=byte(3,T2[a])=byte(0,T3[a])  
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5.3.2. Last round in Decryption 

In the last round of decryption, the Inv Mix columns operation is not executed. As a result, the 

outputs of the Inv sub bytes transformation S
-1

[a] must be computed. Given the value ofT0
-1

[a], 

S
-1

[a] can be computed as follows: 

S
-1

[a] = 0E
-1

.byte (0, T0
-1

[a]) = 09
-1

.byte (1, T0
-1

[a]) =0D
-1

.byte (2, T0
-1

[a]) = 0B
-1

.byte (3, T0
-1

[a]) 

Where byte (n, X) represents the n
th

 byte of a variable X. Based on the above equations each bit 

of S
-1

[a] can be computed using four different equations, each giving the same value.  

 

Fig. 5.4 Structure of T-box AES architecture  

Decryption algorithm shown in figure.2 for the T-box differs from that of the standard 

decryption. Except for the first and the last round keys, inverse round keys are used in the 

intermediate iterations in this decryption algorithm. Round modification for decryption is shown 

in figure 3. 
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Fig. 5.5 Modified Decryption Algotithm 

The operations Inverse Shift Rows and Inverse Sub bytes can be swapped without affecting the 

result and since Inverse Mix column is a linear transformation, the following equation is valid. 

Inverse Mix column (d K) = Inverse Mix Column (d) Inverse Mix Column (K) 

The reason for round modification in the case of T-box decryption is because the T-box outputs 

include sub bytes and mix column operations. This modification is very similar to the encryption 

round operation sequence and hence this method is appropriate for efficient implementation of 

this architecture. 

5.4 Modified T-box table used in the implementation  

In this architecture, input data is fed through the multiplexer and it is stored in the register and 

then passed through a one round combinational logic, the result of the combinational logic is fed 

back to the circuit through the multiplexer and stored in the register. This architecture can only 

encrypt one block of data at a time and the number of clock cycles necessary to encrypt a single 

block of data is equal to the total number of cipher rounds. The critical path is located in the 

decryption circuit and includes T-boxes lookups, XOR network and Inv Mix column for the 



 
 

46 
 

round key. This architecture also requires 11, 13, and 15 clock cycles in order to process one 

block of data for 128, 192, and 256-bit keys respectively. In the T-Box approach, each byte is 

multiplied with 2, 1, 1 and 3. A new approach was developed and presented to store the T-boxes. 

Thus, the T- Box tables are in the form of 32-bits. The multiplication with 1 over GF (2
8
) is done 

only once due to which the T-Box tables are stored in the form of 24 bits . T-Box tables are 

stored in the form of 24 bits as shown below. 

 

In our implementation of AES algorithm modified T-box approach is adopted for encryption and 

decryption both. As discussed above 24-bit T-boxes are used for encryption. For decryption we 

arranged inverse T-boxes in such a manner so that it consists of 24-bit instead of 32-bit. Hence, it 

reduces memory required for both encryption and decryption 
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CHAPTER 6 

RESULTS AND DISCUSSION 

This chapter describes the evaluation of the results obtained from this design. The purpose is to 

evaluate if the project objectives has been achieved. The evaluation is also used to identify if we 

were able to generate new scientific knowledge. 

 

6.1. Outcomes of proposed AES Algorithm 

 

Fig. 6.1 Encryption Module 

                                       

Fig. 6.2 Encryption RTL Schematic 
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Fig. 6.3 Decryption Module

 

Fig. 6.4 Decryption RTL Schematic 
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6.2. Simulation Results 

 

Fig. 6.5 AES Encryption Simulation Waveform 

 

Fig. 6.6 AES Decryption Simulation Waveform 
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6.3. Performance Parameters 

1. Verification: This design is verified by using Xilinx 14.7 ISIM simulator tool. Simulation 

results for both encryption and decryption process mentioned above.  

2. Latency: It is equal to number of clock cycles required to process one block of information. 

For encryption process as well as decryption process this design requires latency of 10 clock 

cycles respectively.  Whereas previous design requires 10 clock cycles for encryption and 20 

clock cycles for decryption. So, there is an improvement in the latency for decryption of data 

3. Throughput: Throughput for the both encryption and decryption is calculated by the given 

formula.         

Throughput = (Block Size * Clock Frequency) / (Latency) 

         Block size =128 bits, Clock frequency =335.818MHz and Latency =10 clock cycles. 

All three parameters are equal for both encryption and decryption. Then achieved throughput 

also same. Throughput =4.2984Gbps. Whereas for previous design, throughput=3.74Gbps for 

encryption and 1.87Gbps for decryption, therefore proposed design achieves a throughput greater 

than already reported design. 

4. Area: In FPGA technology, the area required for the implementation is equal to the number 

CLB slices used in that design. This design uses pair of 1407 slices for encryption and 

decryption respectively. 

5. Data-integrity: The proposed design providing data-integrity by adding some additional 

logic, so that there is an improvement in security provided by AES. While the previous designs 

does not provide any data-integrity. This is an added advantage for this design 

6. Power consumption: It is measured by using Xilinx 14.7 XPower analyzer tool for the given 

Clock frequency.    

The performance of this AES algorithm design using S-box and T-box approach in Artix-7 

FPGA summarized in table 6.1.   
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Table 6.1: comparison of performance parameters of AES algorithm design using S-box 

and T-box approach 

Parameter Encryption 

(Using S-box) 

Encryption 

(Using T-box) 

Decryption 

(Using S-box) 

Decryption 

(Using T-box) 

Latency       (in 

clock cycles) 

10 10 20 10 

Throughput 

(in Gbps) 

3.74 4.2984 1.87 3.2984 

Data-integrity No Yes No Yes 

Power –

consumption  

more less more less 

verification done done done done 

 

Table 6.2: Device Utilization Summary for encryption 
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 Table 6.3: Device Utilization Summary for decryption 

 

6.4. Power consumption report for encryption using Xilinx 14.7 Xpower analyzer at 

100MHz clock frequency 
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6.4. Power consumption report for decryption using Xilinx 14.7 Xpower analyzer at 

100MHz clock frequency 
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FUTURESCOPE 

 The implementation results are shows that 128 bit AES is considered to be a very secure 

encryption method. However, this design has some deterministic nature of mathematical 

Operation. For example, a specific encryption key and a specific input vector always result in the 

same corresponding output vector. Therefore this type of AES design is not well suited for 

biometric image applications for several reasons: like shapes are not fully hidden in the picture.  

For that reason a new design and development is needed to address this problem. By using four 

modes: Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB) and 

Counter (CTR), we can make the FPGA applicable for a biometric image application From 

hardware perspective, the CBC mode is the cheapest to implement. The principle is to form a 

chain, the output from the AES encryption is mixed (XOR) with the input vector for the next 

output calculation. The output vector will therefore not only be depended on the encryption key 

but also on previous outputs. For the first input vector is there no previous output vector, instead 

an initialization vector is used. This vector can be randomly generated for each block of data. 

The initialization vector is not secret; it can be attached to header of the image or transmitted 

separate. Server and Client can also generate the initialization vector locally in a pseudorandom 

way. The approach is to redesign the FPGA to support AES in CBC mode for higher level 

security. The other key sizes (AES-192 and AES-256) used mainly for top level security 

applications. 
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                                    CONCLUSION 

This dissertation report reveals that AES is the better algorithm in terms of performance and 

security. Although its power consumption is on higher side but it is way less than 3 DES (which 

not suitable for all platforms). Only DES has less power consumption than AES but on security 

front DES is the most vulnerable and can be easily broken by brute force attack in merely fifteen 

hours. The two different architectures (S-box and T-box) implemented for AES 128bit algorithm 

have different performance characteristics. The T-box implementation outperforms the S-box 

implementation, giving excellent performance in terms of high throughput, low latency and less 

power consumption. Also the hardware complexity of T-box implementation is less as compared 

to S-box approach. According to the results obtained, there is an improvement in performance 

for T-box implementation since the T-box tables for encryption and decryption are implemented 

as BRAMs and not as logic in the target Artix-7 FPGA. However, by ensuring that the T-box 

tables are stored in BRAMs, the desired performance can be achieved with the T-box 

implementations. This T-box approach achieves a throughput of 4.2984Gbps for both encryption 

and decryption with latency of 10 clock cycles. Therefore the  proposed architecture (using T-

box tables)  achieves  the speed is higher than the already reported systems(using S-box 

technique), hence the proposed design serves as the best high speed encryption algorithm and is 

thus suitable for various applications. Power calculations are done by using Xilinx 14.7 X-Power 

analyzer tool. Moreover with the addition of data-integrity module, the proposed design can offer 

better security than previous designs. The performance of these architectures can further be 

improved by using sub-pipelining techniques in the existing designs and converting the S-box 

look up tables to pure combinational logic. And we can redesign this FPGA implementation to 

support AES in CBC mode or using different key lengths (AES-192 and AES-256) for higher 

level security like biometric image applications.  
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