

Compatibility Measurement of Components in Component Based

Software Engineering Using Boltzmann Learning Technique

A Dissertation Submitted

By

Jasneet Kaur

11301523

To

Department of Science & Technology

In partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science

Under the guidance of

Ms Pooja Devi

(May 2015)

APPROVED PAGE

i

ABSTRACT

In modern days developers are giving less interest in starting any development from the

scratch. In these days developers just deploy the already built components for their project or

system. One of such approach is Component Based software Engineering (CBSE) in which

various developers use already built components according to their requirements and reuses

the components as per need. In this research, the work has done on checking compatibility of

such components with other components of same system so as to reduce reliability issues

between components. The effort of entire work done proposed an approach in which using

dependency values of components; one can compute the compatibility percentage of those

components using Boltzmann learning techniques of neural networks over the values. This

approach will give the best suited component from all the alternatives by analyzing

compatibility values.

ii

ACKNOWLEDGEMENT

I would like to express my special thanks to Department of CSE of Lovely Professional

University for giving me this opportunity of writing this thesis and providing such nice

peoples who was there always to help me in my dissertation. Secondly, big thanks goes to my

mentor “Ms. Pooja Devi” who gave me this topic “Compatibility measurement in

Component Based Software Engineering” for my dissertation work, I am heartily thankful to

Pooja mam for being my mentor and helped me in doing a lot of Research and I came to

know about so many new things. Very special thanks to all the authors whose paper I

referred for this dissertation. Their effort made me to think about new ideas and due to what I

am able to implement them in my research. Source: Internet gave me so many short

definitions that’s included here.

At last, I would also like to thank my parents and friends who helped me a lot in my research

within the limited time frame. This is just 40% completion of my work, I hope my mentor,

parents and friends will help me till my thesis is under working

iii

DECLARATION

I am Jasneet Kaur hereby declare that the dissertation proposal entitled “Measuring the

Compatibility of Components in Component Based Software Engineering Using

Boltzmann Learning Technique” submitted for the M.Tech Degree is entirely my original

work and all ideas and references have been duly acknowledged. It does not contain any

work for the award of any other degree or diploma.

Date: 5-May-2015 Investigator

 Regn. No. 11301523

iv

CERTIFICATE

This is to certify that Jasneet Kaur has completed M.tech dissertation proposal titled

Compatibility Measurement of Components in Computer Based Software Engineering

Using Boltzmann Learning Technique under my guidance and supervision. To the best of

my knowledge, the present work is the result of her original investigation and study. No part

of the dissertation proposal has ever been submitted for any other degree or diploma.

The dissertation proposal is fit for the submission and the partial fulfillment of the conditions

for the award of M.tech Computer Science & Engg.

Date: 5-May-2015 Signature of Advisor

 Name: Pooja Devi

 UID: 17778

v

TABLE OF CONTENTS

S. No. Chapter Page no.

1. Introduction 1

 1.1 Introduction 1

 1.2 Software Engineering Definitions 1-2

 1.3 Objective of Software Engineering 2

 1.4 Software Development Stages 3

 1.5 Software Engineering Principles 3-4

 1.6 Software Engineering Disciplines 4-5

 1.7 Crises of Software 5

 1.8 Some Myths Related To Software 5-6

 1.9 Software Engineering Approaches 6-8

 1.10Software Components 8

 1.11Software Component Models and Technologies 9

 1.12Neural Network 9-10

2. Review of Literature 11-15

3. Present Work 16-18

 3.1 Problem formulation 16

 3.2 Objective of the Study 16-17

 3.3 Research Methodology 17-18

 3.3.1 Flow Chart 18

4. Results and Discussions 19-34

 4.1 Dependencies 19-20

 4.2 Boltzmann Learning 20

 4.3. Introduction to MATLAB 22-23

 4.4 Working Of Developed Tool 23-24

 4.5 Snapshots 22-34

5. Conclusion and Future Scope 35

vi

6. List of References 36-39

 I. Books 36

 II. References 36-38

 III. Links 39

7. Appendix 40

vii

List of figures

Figure 3.3.1 Proposed methodology………………………………………...18

Figure 4.1 Neural Networks ………………………………………………19

Figure 4.2 Boltzmann Learning ………………………………………….20

Figure 4.3.1 Matlab………………………………………………………....22

Figure 4.3.2 Matlab Tool …………...……………………………………...23

Figure 4.5.1 Initial state…………………………………………………….24

Figure 4.5.2 Dependencies graph……………………………………….......25

Figure 4.5.3 Dependency Iterations………………………………………...26

Figure 4.5.4 Compatibility Check…………………………………..............27

Figure 4.5.5 Using KBL…………………………………………………….28

Figure 4.5.6 Graphical representation of KBL……………………………...29

Figure 4.5.7 Using Boltzmann Learning…………………………………...30

Figure 4.5.8 Graphical Representation of Boltzmann learning…………….31

Figure 4.5.9 Old Plot…………………………………………………….....32

Figure 4.5.10 New Plot……………………………………………………....33

Figure 4.5.11 Comparison Graph…………………………………………....34

1

Chapter 1

Introduction

1.1 Introduction:

A software is a collection of instructions. Software Engineering is a branch of computer

science and system engineering which deals with the development of complex and large

software based systems and applications. Basically a software engineering is concerned with

building the software system and it is an applications of skills, principles and art to construct

and design the various programs. Software engineering covers technical aspects of

developing the software through designing, implementation and modification of the software.

System software and application software are two categories of a software. To manage the

hardware components we use system software because these hardware components should

seems like a functional unit to users and software. A system software contain: OS, file

manager, memory manager, resource manager, memory manager and many other utilities.

On the other hand we have “Application Software”. To accomplish the specific task we use

application software. An application software is different from system software, it may or

may not have a single program. In this dissertation work the work’s concern is with software

engineering. There are many software engineering definitions are given by authors and

research, some of them are mentioned in a section.

1.2 Software Engineering Definitions:

There are various definitions of software engineering are given by researchers and authors.

Some of the definitions are mentioned below:

 Sonzmerville: According to author Sonzmerville: Software engineering is concerned

with building the “Software Systems”. The software system consist of various technical

and non-technical features. For the development of the software product various

2

engineering principles are used but software systems are normally tackled by the single

individual.

 Dennis: By the Dennis point of view, software engineering is the application of skills,

principles and art to construct and design the various programs.

 Parnas: Author Parnas said: Software Engineering (SE) is based upon two conditions.

First, in the construction of software more than one person is involved.

Second, more than one version of the program should be produced.

 Fairly: Fairly gave the definition about software engineering is: It is a managerial and

technological discipline which deals with maintenance as well as production of software

product. The software product must be modified on time and within its cost estimation.

 Eoehm: According to Eoehm:Software Engineering (SE) is the practical application of

scientific knowledge. Software engineering is helpful in constructing and designing the

computer programs. Software engineering also represents the complete documentation of

the software.

 Blaschek & Pomberger: According to Blaschek and Pomberger: Software engineering

is related to the use of high quality software and it is the real time application of

economical production as per scientific knowledge.

1.3 Software Engineering Objectives:

The objectives in software engineering are given to design a system which will have

following characteristics:

 On Time: The product should be delivered at the established date.

 Reliable: Software should be reliable enough to use and shouldn’t get crashed while

using.

 Complete: Product must be done with good documentation and is fulfilling customer

requirements.

3

1.4 Software Development Stages:

Following are the software development stages:

 Requirements Specification and Analysis

 Conceptual or Architectural Design

 Detailed Design

 Implementation

 Unit and Integration Testing

 System Testing

 System Delivery and Deployment

 Maintenance

1.5 Software Engineering Principle:

In the software development some principles are used:

 First principle of software engineering is the “Quality of Software”. Quality of

developed software must be high so that software should be easily learn and easily in

use.

 To implement an accurate solution of the software, first determine the problem issues

which are related to the software. After determination of problem issue write down all

the requirements.[19]

 The software product delivery to the customer must be done in easy way.

 During the development of the software various changes in the software can be

occurred. So the software must be designed in such a way that software should be able

to tolerate various changes.

 Software developers who are involved in the process of software development should be

very highly skilled. So that they can make a software with good quality.[26]

 Apply the various testing techniques to make sure that the software is bug and error free.

If there is any error and bug, remove it and make the software bug and error proof.

 Do write the software design documentation. This written documentation will be helpful

if you want to modify the software or want to make any other change.

4

 There are various process models are available which are used to develop the software.

If you are using the appropriate process model, it can give you best solution of a

problem, so use the appropriate process model while developing the software.

1.6 Software Engineering Disciplines:

In software engineering, basically we have 8 effective disciplines:

 Prototyping:

Prototype model is basically a dummy model which is for small types of systems.

Prototype is used to design the good interface. The prototype has limited

functionality. Prototyping usually understands the requirements of users and

demonstrates physical designs.

 Abstraction:

Abstraction is used to find out the key aspect of a problem which is might be

occurring in the software without getting any detailed information.

 Design Methods and Analysis:

For design methods and analysis purpose team work is required. When team building

process is there, usually people communicate with each other by common notations.

 Software Process:

Process of the software contains all activities that are necessary at the time of

software development. Activities can be quality of the software, speed, efficiency of

the software and many others.

 Software Architecture:

Software architecture defines various components of the system with relationships

and the environment which acts as a guide in future.

 Reuse:

Here, the application or the prototype are available for reuse by the other similar

systems too.

5

 Tools: -

Computer Aided Software Engineering (CASE) tools are used to improve the quality

of software development. These tools are used to visualize the software development

by all the stakeholders of project at each and every stage of development

 Measurement:

Measurement is useful and helpful in decision making process. The process in terms

of improvement, resources acts as the support in the development of good software.

1.7 Crises of Software:

During the process of development of the software, many problems can occur. These

problems are known as crises of the software. Following are some characteristics:

 Unsatisfactory of software system.

 Extremely late.

 Software is not matching with user requirement.

 Viability to complete.

 Delivery is expensive.

1.8 Some Myths Related To Software:

There are many myths that are related to the software. In the software development many

myths are used. These myths are discussed below.

 Easy To Change: The one of the myth in software development is software is easy to

change. As the editing in software code may be possible up to some extent. But the

software is not easy to change. In the software development process, the source code is

easy to change, but it is not easy to make changes in the software without introducing the

errors. If any change is required in the system, it should be re verified.

6

 The replaceable device has the less reliability than the computer system: The other

myth in computer system is that the computers that are used in the software development

process are more reliable than the devices that are needs to replace in the software

system. That is with the use of this no software errors is occurring or the probability of

the error occurrence should be less. But it is totally the wrong myth.

 Software Testing Remove All the Errors: The other myth in software development is

that if the system is tested, it should remove all the errors that are presented in the system.

It is totally the wrong myth. As the testing can only shows that how many errors are

presented in the system. The testing cannot show that how many errors are absent at that

time [3].

 Software Safety Can Be Increased With Reusability: This myth is totally wrong,

because reuse of the code may give the false or no sense to the security of the system.

The reuse code is also need to analyze, whenever the code need to reuse, it should be

analyze properly.

 Software Can Work Properly On Its First Time: One of the myth in the software

engineering is that software can be work properly only its starting days. As the time pass

out the software application may not work properly at that environment.

 Software with More Features Is Better Software: This myth is totally unbelievable.

With the extra or more features the software may become complex. So it may be very

difficult to manage the software. So it is totally the wrong myth that with the more

features software is better.

1.9 Software Engineering Approaches:

We can divide software engineering approaches into three major parts which are:

7

 Structured Approach:

Structured approach includes the fundamental steps i.e. Requirements, design, coding,

testing and maintenance of software development. In this approach we use following

elements:

 Data Flow Diagrams: These are used for showing flow of data. In this it gives flow

of data through a system. A data flow diagram includes various processes, flow of

data, actors, and data repositories.

 Data Dictionary: To contains the details of data flow diagrams. In this all the

information about the data flows and data repositories in the system is given.

 State Transition Diagrams: These diagrams visualize the time dependent behavior

of system by showing various states it undertakes.

 Entity Relationship Diagrams: These diagrams highlight the relationships between

the various kinds of data repositories (stores).

 Object Oriented Approach:

The Object oriented approach is used for carrying out the real time problems to the

considerations and using those considerations software development can be done. It is a

sensible strategy in which we deal with the softwares which consist of various objects to

construct and manage itself. [8] This approach uses concept of classes and objects which

also provide facility to reuse the code and design. It is further classified into four parts:

 Unified Modeling Language (UML): UML is the standard language which is used

to write the software dummy models or blueprints. It is used to visualize, construct,

specify, and document the various characters of the project. UML classifies the

Structural things into seven parts.

 Class: Class is basically a bunch of objects. These objects share the same properties,

relationships, functions and the syntax.

8

 Interface: It is the set of various functions that are performed during implementation.

It specifies the service of a class. Interface always defines the set of operations

specifications, it never tell us about the set of operation implementations.

 Collaborations: collaborations stand for combinations of two or more than two

things. Collaborations have the structural as well as the behavior dimensions.

 Use Case: it is defined as the observed set of actions that are performed by actors of

system.

 Active Class: An active class works same as class. But it has one major difference

that in an active class the objects represent only those elements whose behavior are

similar with each other.

 Components: these are physical and replaceable part of the systems.

 Note: the nodes are the physical entities. Nodes are presents only at the run time.

 Component-Based Approach:

Component Based Approach is based upon Reusability principle. In this we use already

built components for our project and deploy them as they are. The components are

selected as per the requirements. This approach is reuse based approach in which we deal

with definition, Implementation and composition of prebuilt independent components

[15]. Even if we don’t have skill to develop any module or component we can take the

available components built for that purpose and use it as per our need.

1.10 Software Components

As it is too complex to deal with objects and classes in case of large projects which includes

various modules and components. Dealing with components using codes includes a number

of classes and objects which leads to very complicated structure and bulky development code

for each component because we have to code each module or component separately. So to

overcome this software engineering introduced component based software engineering in

9

which we deploy already built independent components rather than coding for them from

start. Components can be hardware or software which has certain functionality and some role

to play in the system. Components act as plug n play for the system we are developing using

CBSE.

A software component is a part of system which is developed by any third party and can be

deployed independently wherever required along with interaction of other components of

system. A software system includes its:

 Specifications which includes the description about the component

 One or more implementations to make it platform independent internally so that it

can fit in every situation.

 Component Model which tells us about the set of services that are supported by the

component as well as set of rules associated with component[2].

1.11 Software Component Models and Technologies

As already explained above, a software component model specifies conditions for

composition and communication between various software components.

A software component technology is a collection of software products that supports the

use of software component model.

A component model is a definition of standards for

 component implementation,

 documentation and

 deployment.

Examples of component models are: EJB model (Enterprise Java Beans), COM+ model

(.NET model), CORBA Component Model. The component model specifies how

interfaces should be defined and the elements that should be included in an interface

definition.[20] one of the most widely used component models is Microsoft’s Component

Object Model (COM) [21].

10

1.12 Neural Network:

Neural Network or Artificial Neural Network (ANN) is a field of artificial intelligence which

is defined as a computing system created by a number of interconnected nodes in layers

which process the external inputs and gives dynamic response according to situation as it can

change its patterns accordingly.[30]

ANNs follows some learning rule which provides results according to the input patterns. One

of such rule is:

Boltzmann Learning Rule: This is learning rule according to which we can calculate

probabilities by taking neuron values as parameters.[33] This is a type of machine learning in

which we have following cases:

Clamped condition when we have all connections among the units

Free running condition when we have no connections among units and they operate freely

and independently

Other learning rules that can be used for compatibility analysis are:

 Knowledge based learning rule

 Hebbian learning rule

 Memory based learning rule

 Competitive learning rule etc.

11

Chapter 2

Review of Literature

During the preparation of this dissertation work, work and hypothesis collected from many

books, journals, magazines, whitepapers and articles. Some of them are very useful for my

current and further research. They have worked on this greatly. Some abstracts from those

resources with references are given below.

A research paper by “Inti Gonzalez-Herrera and Johann Bourcier” 2014, entitled

“Scapegoat: An Adaptive Monitoring Framework for Component-Based Systems” [9].

The paper is published under “IEEE Digital Library”, 2014. This paper proposed a method

named “Scapegoat” which used an open source dynamic platform “kevoree” by using

models@run.time for making systems dynamic adaptable. The defined approach in the paper

checks each component's resource usage such as CPU, Memory and Time etc. Then this

approach use model@run.time to predict the faulty components and helps in fine grained

monitoring.

A research paper by “Gordon Blair, Nelly Bencomo and Robert B. France” 2009,

entitled “Models@Run.Time”[7]. This paper is published under “IEEE computers”, 2009.

The paper is defining models@run.time which tells about various aspects of the system in the

case of higher abstractions. A model@run.time represents system by considering the nature,

architecture and objectives of the system from a problem space view. models@run.time

focuses on software architecture and functional representations of architecture and main

target is to upgrade the level of abstraction to that of requirements. It also deals with the

runtime variability of the systems for adaptations of new components or technology.

A research paper by “Marco Autili and Paolo Di Benedetto” 2012, entitled “A

Hybrid Approach For Resource-Based Comparison Of Adaptable Java

Applications”[14]. This paper is published under “Science of Computer Programming”,

2012. In this paper authors are showing that heterogeneity of resources creates problems

because java based mobile applications have to run on huge amount of different devices. This

research paper proposed a model called “Chameleon Model” to decide java programs to be

12

adapted by analyzing their resource consumption. It helps to choose among multiple

alternatives which will suite better with the available resource provisions.

 A research paper by “Ardhendu Mandal Lecturer, Department of Computer Science

and Application, University of North Bengal (2009)” entitled “BRIDGE: A Model for

Modern Software Development Process to Cater the Present Software Crisis”[3]. Large

and complex projects are often late to market, have quality issues, and not always delivered

on promised functionality called software crisis i.e problems associated with software

development process. To handle such software crisis a new software development process

model named BRIDGE is introduces in this paper. The bridge model works in 13 phases and

each phase includes verification and specification

A research paper by “Luciano Baresi, Elisabetta Di Nitto and Carlo Ghezzi” October

2013, entitled “Toward Open-World Software: Issues & Challenges” [13]. This paper is

published under “IEEE Digital Library”, 2013. This paper showed that software should

answer to changes by organizing itself accordingly and adapting the behaviors. This paper

explained many concepts like:

1. SOA (Service Oriented Architecture)

2. Web Services

3. Publish/Subscribe Middleware

4. Grid Computing

5. Autonomic Computing

An another research paper by “Walter Binder, Jarle Hulaas , Philippe Moret and Alex

Villazón” 2010, entitled “Platform-Independent Profiling In a Virtual Execution

Environment” [26]. This Paper states that Java virtual machines have problems in analyzing

algorithms performance, tools, complexity, bottleneck, CPU time and consumption etc. This

paper gave an approach based on program transformation techniques to build a profiling data

structure with independent profiling metrics to make it portable and generate reusable

profiles.

 Aresearch paper by “Steen Becker, Heiko Koziolek and Ralf Reussner” January

2010, entitled “The Palladio Component Model for Model-Driven Performance

13

Prediction” [24].This paper has provided a model named as Palladio Component Model

(PCM) to specify structure of Component Based Software Development by presenting a

model for it as well as model based simulation tool. This can make performance predictions.

This model measures the response time of various alternatives and at the end we can compare

and choose according to our requirements. It provides a simulation model which compares

various alternatives with each other as well as various running systems too.

A research paper by “Francois Fouquet, Olivier Barais, Noel Plouzeau and Jean-Marc

Jezequel” 2012, entitled “A Dynamic Component Model for Cyber Physical Systems”

[6]. The paper is published under “CBSE, V. Grassi, R. Mirandola, N. Medvidovic, and M.

Larsson”, 2012.In this paper authors have presented a system which works in volatile

environments where the components of the system themselves adapt the conditions in their

environment. It evaluates embedded domains and provides reconfigurable component-based

model using model@runtime which provides efficient and safe reasoning for benchmarking

for assessing the usability and overhead. Physical devices are controlled by low power

microcontrollers to bind them with software components than to deploy extra components.

 Research paper by “Murat Gunestas” January 2005, entitled “A Study on

Component Based Software Engineering” [15].This research paper is explaining about the

three main approaches that are used by software engineering. These three main approaches

are: Structured approach (Traditional), Object oriented approach and Component Based

approach. This component based approach has changed the view of the implementation and

maintaining software systems. As estimated by the Gartner Group from year 2003, 70% of

new applications are implemented as a composition of already built components and latest

built components are integrated to develop complex business systems. This increases the

time to market, software lifecycle costs and quality. As compare to structure and object

oriented approaches, Component-based approach of software engineering provides more

advantages in terms of reuse, flexibility and maintenance. In this paper component based

approach is examined as this approach provides interoperability as well as maintenance cost

is reduced because all components are independent.

14

 A research paper by “Ruslan Salakhutdinov and Geoffrey Hinton” 2009, entitled

“Deep Boltzmann Machines” [23].This paper showed an approach that helps the Boltzmann

machines which have multiple variables or hidden layers. Data dependent assumptions are

estimated using an resemblance that varies and concentrate on a single mode, and data

independent expectations are estimated using Markov chains.

Research paper by “KyunHyun Cho, Tapani Raiko and Alexander Ilin” 2012, of

entitled “Deep learning and Boltzmann machines” [11]. In this paper the author suggested

an approach to understand the large and complex problems which uses deep learning i.e

many internal hidden layers. For constructing deep neural networks the new approach the

author has proposed parallel tempering instead of gibbs sampling concept which will analyze

the dynamic properties and gives out the output. This approach has implemented for

Boltzmann machines because it can handle multiple hidden layers better than other

techniques.

 A research paper by “Murali Krishnan Gunasekaran” entitled “Component-Based

Software Engineering – New Paradigm of Software Development,Ivica Crnkovic” [19] This

paper emphasized that the component based software construction is use to gain the large

momentum. It focuses on the software engineering research and computing. For developing

component based applications many standards are needed. In these kind of systems the single

language based approach is not required. In this paper author discuss the mixed language

programming approach, this approach can be used to build the component based software

systems. This method is used to solve the design problems that occur while the development

of the software. The MLP is very useful approach, because it allows to use the existing

components to develops the new software systems. Then these systems are combined to

develop a larger system. The concept of inheritance is used in this paper. Here the genetic

algorithm and component based approach are used. these approaches are used to build the

new components system. These systems are use to analyze and develop a component based

solution for a ship design problem.

 Research paper by “Ms. Sonali. B. Maind , Ms. Priyanka Wankar”, of title “Research

Paper on Basic of Artificial Neural Network” [18]. In this paper the authors tells about

15

Artificial Neural Networks basics. It says that an ANN information processing system which

includes many highly interconnected processing elements called neurons which is inspired by

human biological brain system. An ANN is configured for a specific application, such as

pattern recognition or data classification, through a learning process. This paper gives

overview of Artificial Neural Network, working & training of ANN. It also explain the

application and advantages of ANN.

 Research paper by “Michelangelo Diligenti, Marco Maggini, and Leonardo Rigutini”,

of title “Learning Similarities for Text Documents using Neural Networks” [16]. In this

paper the author explained that neural networks follow either a supervised or a unsupervised

learning. The author proposed an approach which lies in between these two learning

schemes. A set of relations is specified by the supervisors for various input patterns an neural

network is trained to work according to the relationships specified by supervisor for

dimensionally reducing space of text documents.

16

Chapter 3

Present Work

3.1 Problem Formulation

Now days, most of the companies use the component based system to develop the new

software. If a company wants to develop new software, it can use the existing modules. But

the main problems occur in the size of that software. Sometimes the size of the software is

small, but the module size is bigger than the software size. In this case the software became

of large size. Hence the functionality of the software is less. The existing software systems

face the problem of compatibility. The compatibility is the big issue in the CBSE. Because

when a software is developed, its components should match. Their compatibility effect, when

the environment of the components that use in the software is totally different. If the software

developers selects the components manually and they are unable to check the functionalities

of these components. It also leads to a problem called compatibility problem. In the

compatibility various components are checked. The Components are the building blocks of

software systems. It comprises the elements of reuse in software architecture. Component is a

primary functional unit. Components allow the users to represent a high level software

model. Components must be generic enough to work in a variety of contexts. The

compatibility of two components is determined by the behavior at their interfaces. If two

components wants to communicate with each other, the services of these components must

be compatible.

3.2 Objectives of study

The component based software engineering is used to develop the new software using

existing components. Software system’s performance can be increased by measuring

compatibility of the components. Hence, reliability of components increases with the use of

component based software engineering. CBSE is playing an important role in achieving the

objective of this dissertation. Following are the objectives of this dissertation:

17

 To study and analyze various compatibility testing techniques for component based

software

 To propose techniques for compatibility testing of component-based software.

 To Implement knowledge based learning to test compatibility of component based

software modules

 To propose Boltzmann learning to test compatibility of component based software

modules

 To Implement proposed technique, analyze and compare results with existing

technique in terms compatibility

3.3 Research Methodology

Methodology is the theory based analysis. Methodology came from two words, “methods

and logic”. The combination of methods and logic is known as methodology.

The component based software modules are the plug and play based modules means

independent modules and these modules are highly reusable components. The main

problem exists in the component based software’s is of compatibility. In this work, a

technique will be developed which is based on to test compatibility of the component

based software’s using Boltzmann leaning algorithm. In this work, we will take various

component based software modules and test their compatibility for re-using to make a

new or to update existing software. The dependencies have been calculated between

various component based modules to analyze the compatibility. To analyze the

compatibility neural network technique has been applied. The dependency between the

modules will be analyzed on the basis of number of values transferred from one module

to other module. To analyze the compatibility dependency graphs has been drawn. To

draw dependency graph, input training dataset values has been considered. The training

dataset values are initial assumption that how many values are exchanged between

module. To calculate dependency at every iteration initial value will be incremented by 1

and check the error if the error will reduced further increment is done . In the project one

stage will come at which error become stable or keep on increasing with every increment,

now that value will be considered as the final dependency value of modules

18

After the preprocessing phase, we select the modules from the various modules to check

compatibility. To test the compatibility of the selected components Boltzmann learning

algorithm is applied on the proposed dependency values. The modules which are most

compatible are selected to make new software.

3.3.1 Flow Chart: As, problem area for research has been defined already, Now how

the work will be carried out, various methods, technologies and platforms I have

to follow for the completion of my goal is defined through flowchart below:

Fig 3.3.1 Proposed Methodology

19

 CHAPTER 4

 RESULTS AND DISCUSSIONS

4.1 Dependencies:

A neuron is an information-processing unit which is fundamental to the operation of the

neural. The three basic elements of the neural models are:

 Synaptic Weights

 Linear Combiner

 Activation function

SW is a set of synapse which is characterized by the strength or weight of its own.It is

also known as connecting links.

An adder for summing the input signals, weighted by the respective synapse of the

neuron. This operation is called linear combiner (LC).

An AF for limiting the amplitude of output of the neuron. Sometimes it is also called

squashing functions [33]

Fig 4.1: Neural Networks [31]

20

It is a learning in which synaptic weights are corrected according to the error of the neuron

output Here the output generated is compared with target output and desired response.

 Error=Desired Response – Actual Output

4.2 Boltzmann Learning

A restricted Boltzmann machine is a two-layer undirected graphical model where the first

layer visible units are held to values given by the teacher and second layer are unlearning

component (where the output units are free to vary) The visible layer is fully connected to the

hidden layer via pair-wise potentials, while both the visible and hidden layers are restricted to

have no within-layer connections.BM is a stochastic recurrent neural network consisting of

binary neurons arranged in two layers. Each neuron vi in the visible layer is connected to all

the hidden neurons, and each neuron hj in the hidden layer is connected to all the visible

neurons. It can be denoted by v a binary column vector containing the states vi of the visible

neurons and similarly by h a vector of hidden states hj .

Fig.4.2 Boltzmann Learning [23]

21

Algorithm

INPUT: Training rules to derive compatibility and component based modules

OUTPUT: Percentage of compatibility

Start ()

{

1. Assign training rule to each component which are available

While (traversed all components)

2. a=Calculate dependency of each component ()

a=a++;

if (a<a(i-1));

{

A=calculate dependency of each component ();

 a=a++;

else

{

Assign final value of dependency;

}

3. A=b;

4. B=final compatibility;

End

5. End

22

4.3 Introduction to MATLAB

Fig 4.3.1: Matlab

This figure shows the guide tool box that has been used to implement the interfaces as well

as handling various tools

23

Fig 4.3.2: Matlab Tool

This idea is developed in MATLAB which is mostly used in all areas of research and

industry these days. MATLAB gives an advantage of implementing ideas which includes

mathematical equations [27] as the proposed approach in this paper has mathematical

equations to calculate compatibility so most preferred tool is MATLAB. It is a programming

language for coding mathematical programs. It has toolboxes which are used as per

requirement.

4.4 Working Of Developed Tool:

The new tool that is develop in here provides following things

 This tool is used to check the compatibility of the system.

 The tool check the compatability of each module with the other.

 If the faulty objects are present in the module it drops that module and choose the

new one.

 The new tool always check for the uncompatible nodes.

 These uncompatible nodes affect the reliability of the software.

24

 When the tool complete with the checking of nodes, it further checks the

compatability of the software.

 It selects the two or three objects, if the percentage of the faulty nodes present in the

system is high then the tool drop that combination and choose the next.

 This helps to maintain the compatability of the system.

 This tool also increase the quality of the software system.

4.5 Snap Shots

Fig 4.5.1: Initial state.

In this figure, software is in idle state. Here four component boxes are there. These

component boxes contain the various components.

25

Dependencies check

Fig 4.5.2: Dependencies graph

In above figure, various dependencies between components are shown in form of graphs

between the four components

26

Iterations

Fig 4.5.3: Dependency Iterations

Dependencies are calculated by iterations again and again until the optimal value is obtained

27

Fig 4.5.4 Compatibility Check

In this figure, the compatibility between the various components is shown. The computability

can be shown by the bar graph by clicking on the right hand side of the figure.

28

Compatibility Check

Fig 4.5.5 Using KBL

 In this figure, the compatibility between the various components is shown. The

computability between various components are shown using Knowledge Based learning.

29

Fig 4.5.6 Graphical representation of KBL

This figure shows the graph of the compatibility values of various components and according

to value of components overall compatibility is shown using KBL

30

Compatibility Checking

 Fig 4.5.7 Using Boltzmann Learning

In this figure, the compatibility between the various components is shown. The computability

of the components are shown using Boltzmann learning

31

Fig 4.5.8: Graphical Representation of Boltzmann learning

This figure shows the graph of the compatibility values of various components and according

to value of components overall compatibility is shown using Boltzmann Learning

32

Fig 4.5.9: Old Plot

This figure shows the bar graph of knowledge based learning rule after calculating the

compatibility of components using the same

33

Fig 4.5.10: New Plot

This figure shows the bar graph of Boltzmann learning rule after calculating the

compatibility of components using the same

34

Fig 4.5.11: Comparison Graph

As illustrated in figure 4.5.11, the techniques of knowledge based learning and boltzmann

learning technique is applied and in figure compatibility of the two techniques are shown

graphically.

35

Chapter 5

Conclusion and Future Work

The Components are the building blocks of software systems. Component is a primary

functional unit and the compatibility of components is a big issue in the CBSE. Because

when a software is developed, its components should match in terms of compatibility and

resources even when the environment of the components differs. If the software developers

selects the components manually and they are unable to check the functionalities of those

components. It also leads to a problem called compatibility problem. If two components want

to communicate with each other, the services of these components must be compatible.

The component based software modules are independent modules which are plug and play by

nature. The component based software modules are integrated when required and the basis of

compatibility. To analyze the compatibility of the component based software modules

technique of neural network had been proposed. In the previous times, knowledge based

learning had been applied to check compatibility of the software modules. In this work,

technique of Boltzmann learning is applied to analyze compatibility of the software modules.

The simulation results shows that Boltzmann learning perform well in terms of compatibility

testing as compared to knowledge learning.

FUTURE WORK

In the future work, Boltzmann learning technique will be applied on the aspect ratio

programming to test compatibility of aspect ratio programming software modules.

36

Chapter 6

List of References

I. BOOKS :

[1] Dr.-Ing. Michael Eichberg Components and Component-based Software

Development Introduction

[2] Large-Scale, Component-Based DevelopmentAlan W. Brown Publisher:

Prentice Hall PTR First Edition May 30, 2000

II. RESEARCH PAPERS

[3] A. Mandal “BRIDGE: A Model for Modern Software Development Process to

Cater the Present Software Crisis”2009

[4] A.S O’Fallon “Component Based Software Engineering: Qualification of

Components during Design” 2004.

[5] Dr. RW. Jensen “An Economic Analysis of Software Reuse” Software

Technology Support Center December 2004

[6] F. Fouquet, B. Morin,V.Grassi et al. “A dynamic component model for cyber

physical systems”, CBSE, 2012.

[7] G. Blair, N. Bencomo and R B. France,“Models@Run.Time”, 2009, IEEE Digital

Library.

[8] G.Gossler , J.Sifakis “Composition for Component-Based Modelling”2005

37

[9] IG.Herrera, J.Bourcier, E.Daubert, et al.“Scapegoat: an Adaptive monitoring

framework for Component-based systems”, 2014, IEEE Digital Library.

[10] K.Kaur, J.Bedi, and H. Singh “Towards a Suitable and Systematic Approach

for Component Based Software Development”,World Academy of Science,

Engineering and Technology 2007

[11] KH.Cho, T.Raiko, and A. Ilin “Deep learning and Boltzmann machines”,2012

[12] Kuljit Kaur Chahal,Harpeep Singh,”A metrics Approch to Evalutate Design of

software Components”

[13] L. Baresi, E.Di Nitto, and C. Ghezzi“Toward open-world software: Issue and

challenges”, October 2013.

[14] M. Autili, P.Di Benedetto, and P.Inverardi, “A hybrid approach for resource-

based comparison of adaptable java applications”, Science of Computer

Programming, 2012.

[15] M.Gunestas, “A Study on Component Based Software Engineering”, January

2005.

[16] Michelangelo Diligenti, Marco Maggini, and Leonardo Rigutini, of title

“Learning Similarities for Text Documents using Neural Networks”, 2013

[17] Microsoft Corporation, The Component Object Model Specification, v0.99,

1996.

[18] Ms. Sonali. B. Maind , Ms. Priyanka Wankar, of title “Research Paper on

Basic of Artificial Neural Network” , January 2014

38

[19] Murali Krishnan Gunasekaran “Component-Based Software Engineering –

New Paradigm of Software Development,Ivica Crnkovic”, [2012]

[20] Nikolay K. Diakov, Marten van Sinderen, Dick Quartel “Monitoring

Extensions for Component-Based Distributed Software”

[21] Pascal Poizat, and Gwen Sala¨un “Model-Based Adaptation of Behavioural

Mismatching Components,Carlos Canal”

[22] Q.Wang, J.Shen, et al“A Component-Based Approach To Online Software

Evolution”, 2004

[23] R.Salakhutdinov and G.Hinton,“Deep Boltzmann Machines”, 2009

[24] S.Becker, H.Koziolek, et al.“The Palladio Component Model for Model-

Driven Performance Prediction”, 2010.

[25] Sanjay Misra, Ibrahim Akman and Murat Koyuncu, “ An inheritance

complexity metric for object-oriented code, A cognitive approach”, [2011]

[26] W. Binder, J. Hulaas, et al.,“Platform-independent profiling in a virtual

execution environment” January 2010.

39

III. LINKS:

[27] http://en.wikipedia.org/wiki/Artificial_neural_network

[28] http://en.wikipedia.org/wiki/Component-based_software_engineering

[29] http://en.wikipedia.org/wiki/Software_engineering

[30] http://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/Ch19.pdf

[31] http://www.codeproject.com/Articles/175777/Financial-predictor-via-neural-

network

[32] http://www.cs.ccsu.edu/~stan/classes/CS530/Slides/SE-19.pdf

[33] http://www.tutorialspoint.com/matlab/matlab_variables.htm

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://www.cs.ccsu.edu/~stan/classes/CS530/Slides/SE-19.pdf
http://www.tutorialspoint.com/matlab/matlab_variables.htm

40

Chapter 9

Appendix

List of Abbreviation:

AF Activation function

ANN Artificial Neural Network

BM Boltzmann

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Of The Shelf

EJB Enterprise Java Beans

KBL Knowledge Based Learning

LC Linear Combiner

SOA Service Oriented Architecture

SW Synaptic Weights

