
 

 

 

Enhancement in the resource utilization and sharing in distributed systems 

A Dissertation Submitted  

By 

Awadhesh Kumar Shukla 

To 

Department of Computer Science and Engineering 

In partial fulfilment of the Requirement for the 

Award of the Degree of 

Master of Technology in Computer Science and Engineering 

Under the guidance of 

( Balraj Singh ID :13075) 

 

 (May, 2015) 



2 
 



i 
 

ABSTRACT 

The distributed systems had provided an enhanced approach towards the processing of the 

data. The information is processed at multiple locations to gain high performance and speedy 

results. This has also provided utilization of different resources. But the resources and 

processing powers seems to be limited in front of the size of the data. The need for the hour 

is to bring effectiveness in the exiting methodologies and techniques for bringing more 

utilization out of them and improve the overall performance of the work in demand.  Hadoop 

has shown huge lead in processing the large amounts of data through distributed 

environment. The process of scheduling the jobs and effective utilization of resources  will 

always be a challenge looking at the way data is growing. Our proposed work has given 

performance improvements in the existing scheduling processes and implemented better 

utilization of the resources. The limitations of the existing algorithms have been explored in 

our work. The existing system is unable to process the jobs efficient with multiple resource 

requirements. Our strategy has overcome this limitation by packing together the  memory and 

processing requirement together by allocating it to a single job and addressed the issue of 

multiple resource requirements and effective resource utilization. Along with it overcomes 

the problem of fragmentation.  

 

 

 

 

 

 

 

 

 

 

 



ii 
 

CERTIFICATE 

This is to certify that Awadhesh Kumar Shukla has completed M.Tech dissertation titled 

“Enhancement in the resource utilization and sharing in distributed systems” under my 

guidance and supervision. To the best of my knowledge the present work is the result of his 

original investigation and study. No part of the dissertation has ever been submitted for any 

other degree or diploma. 

The dissertation is fit for submission and the partial fulfillment of the conditions award of 

M.Tech Computer Science and Engineering. 

 

 

Date:         Signature of Advisor 

       Name: _____________________ 

       UID: ______________________ 

 

 

 

 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENT 

The dissertation proposal “Enhancement in the resource utilization and sharing in distributed 

systems” is proposed by me could not possible without the moral and academic support of 

my research guide Mr Balraj Singh. Special thanks to him for guiding my efforts to 

perfection. 

 

Awadhesh Kumar Shukla 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

DECLARATION 

I hereby declare that the dissertation entitled, Enhancement in the resource utilization 

and sharing in distributed systems submitted for   the  M.Tech  Degree  is  entirely  my  

original  work  and  all  ideas  and references have been duly acknowledged. It does not 

contain any work for the award of any other degree or diploma. 

 

 

Date: Thursday, May 07, 2015    Awadhesh Kumar Shukla 

       Regn. No. 11301179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 

 

CHAPTER 1: INTRODUCTION ...........................................................................................1 

1.1 Distributed Computing .....................................................................................................1 

1.2 Distributed System Objectives .........................................................................................2 

1.2.1 Making Resource Accessible ................................................................................2 

1.2.2 Distribution Transparency ....................................................................................2 

1.2.3 Openness ...............................................................................................................3 

1.2.4 Scalability .............................................................................................................4 

1.3 Types of Distributed System ............................................................................................4 

1.3.1 Distributed Computing System .............................................................................4 

1.3.1.1 Cluster Computing  System ...................................................................5 

1.3.1.2 Grid Computing System ........................................................................6 

1.4 Hadoop .............................................................................................................................9 

1.4.1 Hadoop Ecosystem................................................................................................9 

1.4.2 Major Components of Hadoop..............................................................................9 

1.4.3 Major Components of Hadoop..............................................................................9 

1.4.3.1 Data Flow in MapReduce ....................................................................10 

1.4.3.2 MapReduce Nodes ...................................................................................... 12 

1.4.4 HDFS ..................................................................................................................13 

1.4.4.1 HDFS-Blocks and HDFS-Replication .................................................13 

1.4.4.2 HDFS-Nodes ............................................................................................... 14 

1.4.4.3 Writing HDFS File ..................................................................................... 14 

1.4.5 Broad Classification of Scheduling Algorithms In Hadoop ...............................16 

1.4.4.1 FIFO Scheduling ..................................................................................16 



vi 
 

1.4.4.2 Capacity Scheduling ................................................................................... 16 

1.4.4.3 Fair Scheduling ........................................................................................... 16 

CHAPTER 2: Review of Literature .....................................................................................17 

CHAPTER 3: Present Work .................................................................................................30 

3.1 Problem Formulation ......................................................................................................30 

3.2 Objective ........................................................................................................................30 

3.3 Methodology ..................................................................................................................31 

CHAPTER 4: Result And Discussion ..................................................................................33 

CHAPTER 5: Conclusion and Future Scope ......................................................................44 

CHAPTER 6: References ......................................................................................................45 

CHAPTER 7: Appendix ........................................................................................................49 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

 

Fig 1: Distributed System ..........................................................................................................2 

Fig 2: A Heterogeneous Grid .....................................................................................................7 

Fig 3: Key/Value Pair Generation............................................................................................11 

Fig 4: MapReduce Data Flow ..................................................................................................12 

Fig 5: HDFS Block vs OS Blocks ...........................................................................................13 

Fig 6: Writing a file to HDFS  .................................................................................................15 

Fig 7: Flowchart of proposed algorithm  .................................................................................32 

Fig 8: Labels the number of containers and running applications. ..........................................34 

Fig 9: Labels the available memory and allocated in the cluster existing scheduler ...............35 

Fig 10: Labels the available Vcores and allocated Vcores in the existing scheduler ..............35 

Fig 11: Labels memory allocation for each queue in the existing scheduler ...........................36 

Fig 12:Labels the Vcores allocation for each queue in the existing scheduler ........................36 

Fig 13:Labels the timecost for each scheduler operation in the existing scheduler .................37 

Fig 14:Snapshot of the job execution using existing technique ...............................................37 

Fig 15:Labels the number of containers and running applications in proposed scheduler. .....38 

Fig 16: Labels the available memory and allocated in the proposed scheduler.......................38 

Fig 17: Labels the available Vcores and allocated Vcores in the proposed scheduler ............39 

Fig 18: Labels memory allocation for each queue in proposed scheduler ...............................39 

Fig 19: Labels the Vcores allocation for each queue proposed scheduler ...............................40 

Fig 20: Labels the timecost for each scheduler operation in the proposed scheduler ..............40 

Fig 21: Snapshot of the job execution using proposed technique ............................................41 

Fig 22: Labels the memory utilization of single resource scheduling technique .....................41 

Fig 23: Labels the vcores utilization of single resource scheduling technique ........................42 



viii 
 

Fig 24: Labels the vcores and memory utilization of single multi resource scheduling ..........42 

Fig 25: Time taken by the each application execution using existing technique.....................43 

Fig 26: Time taken by each application execution using proposed technique ........................43 

 

 



1 
 

CHAPTER 1  

INTRODUCTION 

 

1.1 Distributed Computing 

      A distributed system is a collection of independent computers that appears to its user a 

single coherent system. This definition can explain several important aspects. The first fact is 

that a distributed system is the collection of different types of component’s for example 

computer, networking devices, storage, printers etc. The second aspect is that user which is 

using this distributed system think that they are dealing with single system. This means 

distributed system is the collection of different heterogeneous system from different 

geographical location and how these systems get collaborated is the most important concern 

when developing a distributed system. Distributed systems have some characteristics which 

are very important. The first characteristic is that the various independent components of 

distributed system are the loosely coupled and the network topology by which they are 

communicating with each other is hidden from the user. The second characteristic is user can 

access distributed system from any location such that the geographical distance and the 

location is not any constraint for accessing the distributed system. The third characteristic is 

scalability, it is easy to enhance and extend the distributed system. The most important 

characteristic is that the system is available even though some components stop working such 

that users are unaware of the component’s failure, replacements and substituted by new 

components. All details are hidden from the user. Distributed system is lying as middleware 

layer between higher layer which consists of different type of application and lower layer 

which consists of heterogeneous type of operating systems to support independent computers 

and networks and providing coherent single view to the users as shown in the figure [1] . 



2 
 

 

Fig 1: Distributed System 

 

1.2 Distributed System Objectives 

     This section describes why we use distributed system and what we achieve from the 

distributed system. It is any worth for us using distributed system or not. It is very important 

to know that what we need. This section describes some important objectives of distributed 

systems. 

1.2.1 Making Resource Accessible 

       The main objective of distributed system is to provide easy and efficient access of 

resources to all the users. Resources can be any things such as computes, processors, printer, 

files, storage, network etc. Resource sharing has many advantages such as economics, which 

share expensive resources such as supercomputers, high performance storage and other 

expensive devices and peripherals more effectively and efficiently. 

1.2.2 Distribution Transparency 



3 
 

       This is an important objective of the distributed system which conceals the users 

processes and resources are distributed to geographically dispersed independent computers 

for the processing. A transparent distributed system provides a single coherent view to its 

users and application. The distributed system having different types of transparencies, some 

of them are discussed below. 

Access: This transparency conceals the difference in data representation and the way by 

which resources are accessed by the users. Distributed system is the collection of 

heterogeneous types of the system which having different types of architecture and different 

schemes for data representation which must be hidden from these users. 

Location: This transparency conceals the location of the resources from the user such that 

user does not know where the resources are physically located. Logical names play very 

important role in providing this transparency. 

Migration: This transparency conceals that the resources are physically moved to different 

location without affecting the usage of these resources. 

Relocation: This transparency conceals that the resources are moved from the location while 

they are in accessed without affecting the user. 

Replication: In this resources are physically replicated and have multiple copies while users 

are unaware of this and work as if they are working on a single copy only. 

Concurrency: This transparency conceals that the resources are shared by multiple users and 

application simultaneously. 

Failure: This transparency conceal all kinds of failure from the end users and application 

user doesn’t  know when some of the components of the system stops working and when this 

component get replaced or removed from the error. 

1.2.3 Openness 

Openness is one of the important objectives of the distributed system. The open distributed 

system provides service according to the specific rules and standard rules which define 

syntax and semantics of the services offered by the distributed system. We can explain it by 



4 
 

taking computer network example in which standard rules define the format of the message 

sent and received. The rules are formed by the interface definition languages (IDL) in 

distributed system which captures the syntax of those services.  

1.2.4 Scalability 

        Scalability is also the key objective of the distributed systems. It has three dimensions 

which are enlisted below: 

 The distributed system is scalable with respect to its size. 

 The distributed system is geographically scalable.  

 The distributed system is administratively scalable. 

Size scalability deals with easily adding of more system in the distributed system. Location 

scalability deals with the distance of user and resources. Administrative scalability deals with 

the systems that are scalable from more than one administrative domain [1]. 

1.3 Types of Distributed Systems 

Distributed computing system 

 Cluster computing system 

 Grid computing system 

Distributed Information Systems 

 Transaction Processing Systems 

 Enterprise Application Integration 

Distributed Pervasive Systems 

 Home Systems 

 Electronic Health Care Systems 

 Sensor Networks 

1.3.1 Distributed Computing System 

        This is the class of distributed computing which is used for massive computation 

analysis or we can say high performance computation having two subgroups. Cluster 

computing having homogenous type of systems which are locally connected by the high 



5 
 

speed network. Grid computing consists of heterogeneous types of system which are 

geographically dispersed in location and collaborative perform tasks which require massive 

computation. 

1.3.1.1 Cluster Computing System 

            A cluster is a collection of the homogenous systems which are connected with each 

other using high speed local area network, such as gigabit Ethernet, SCI, Myrinet and 

Infiniband. The system in cluster works collaboratively to perform a task which is not 

performed by single system or we can say a task which needs high computation using 

commodity hardware instead of the extra expenditure in high performance system. Clusters 

are used primarily for increasing availability, load-balancing of the computation. In cluster if 

some components are fail the service is not get stooped the task is transferred to other 

working system of the cluster. Cluster contains multiple computers so the works is shared by 

all the computer system in the cluster which provide better load balancing. Cluster also 

follow the transparency user and application can view cluster as a single system they cannot 

get aware about that any components are fail and how cluster preform their work all these 

hidden from user and application. The challenges faced in the cluster computing are given 

below: 

a) Middleware: The middleware is used to provide single coherent system view to users 

and applications means it is used to hide that the resource are distributed to various 

independent system. Middleware is also taken care how collect the result from 

multiple cluster computer and collaborate them before delivering to the user and 

application.  

b) Program: The application and user programs that run on the cluster must be coded in 

such a way that easily incorporates the distribution of the task to various systems and 

the communication between the distributed modules is also possible easily for better 

load balancing and better resource sharing. 

c) Elasticity: The difference between the real time and actual response time when the 

workload or we can say number of requests get increases.  

d) Scalability: when any user and application request for the additional or enhancement 

in the infrastructure or the system in general.  



6 
 

 

1.3.1.2 Grid Computing System 

           Grid computing is the collection of heterogeneous computer resources from 

geographically dispersed domains and executes the computational operation which demand 

huge amount of computational power to solve a task. Grid computing is similar to electric 

grid like electric grid computational grids also collects the resources from multiple domains 

and provides the computational resource according to the demand of application user. The 

grid computing is a category of distributed computing which uses unused, idle instruction 

cycle to solve a computational task which is not possible to solve by a single resource. Grid 

computing enables maximize use of computational power which is unused during the ideal 

and time. Grid computing is comes under the distributed computing the main aim of grid 

computing is provide on demand service to the application user in transparent manner when 

user submits the job grid middleware distributed the job to various resources and the resource 

perform computational operation and result get back to the grid middleware and this 

middleware gives it back to the application user transparently means user cannot able to 

understand the complexity of resource provision to the given task. This figure shows a grid 

which contains heterogeneous type of resource from multiple domains which are 

geographical far from each other and communicating through high speed network 

connection. The grid computing also faced lot of challenges when deployed in the real world 

we must take care of these challenges for better grid deployment and maximize resource 

utilization of the grid resources. The given figure 2 shows heterogeneous grid. The various 

challenges faced by the grid computing are explained below the figure 2.  



7 
 

 

Fig 2: A Heterogeneous Grid 

Dynamicity: In Grid, the resources from various geographically dispersed administrative 

domains  enters and leaves the grid at random, any time that leads to extra burden on the grid 

for the management of the resources and also keeps track which resources are in and which 

left the grid. 

Administration: Grid having the resources from multiple administrative domains and forms a 

pool of the resources and supplies the resources on demand to the users and applications. 

This increases heavy burden of system administration and also map the local polices of 

various administrative domains to global polices for grid.  

Development: Grid resources are distributed across multiple geographically dispersed 

administrative domain so the main problem are coding the application which run on grid with 

the care of distribution of the module to various processing elements for processing and when 

processing finished the reassembly of the result from all the processing element and give 

back to the requested user.  

Heterogeneity: The resources in the grid computing are heterogeneous in the nature so we 

need to create an efficient framework for the data intensive programming and the scheduling 



8 
 

which take care of heterogeneity of the resources for better utilization of the resources of the 

grid.  

Programming: The processing elements are distributed in different geographical location 

which leads to complex programming for various grid applications.  

 

Types of Grid 

Grid computing is used in the various fields of the computing and exploits the use of unused 

instruction cycle on the basis of use in the various field grids can be divided into different 

types. Grid computing is used in the field of computation, storage, networks it is used to 

provide massive computational power in geographically dispersed environment. Grid 

computing enables us to solve a computational task which is not solved by single node. The 

following types of grid are used:- 

Computational grid: This type of grid mainly focuses on computing power or we can say 

computational power and share this computational power among the multiple users according 

to their demand. We can say computational grid provide resource on demand just like electric 

grid. Computational grid is used to provide massive computational power for preforming 

high computational task. Computational grid uses the unused instruction cycle to perform 

high computational task and provide better processing speed and solve the task that is not 

executed by single system. 

Data grid: This is also similar to computational grid but we know that the aim of 

computational grid is to provide computational power that share between multiple users, like 

the computational grid data grid is used to provide storage for multiple grid user. Data grid is 

used to share data storage to multiple grid users for the requirement of massive amount of 

data storage  

Network grid: We all know grid is the collection of resource from different geographical 

location due to geographically disperse nature it require better communication. Network grid 

is used to provide better communication services in this type of grid each node works as a 



9 
 

router between the two communicating points and provide other services which is needed to 

increase the communication speed on the demand of the user [1, 2]. 

1.4 Hadoop 

Hadoop is a distributed computing architecture based upon the open source implementation 

of Google’s MapReduce which supports processing of huge amount of data sets across 

multiple distributed systems. The present technological era does not depend only on a 

standalone computation, rather demands huge data computation through distributed 

computing along with performance. Almost all the technological giants like Yahoo, Google 

and Facebook use data intensive computation for their business. Handling high amounts of 

work load for computation is somehow a challenging task since it is bounded with the 

performance constraints and availability of the resources. Hadoop has proved to be an 

effective platform for this purpose. Hadoop is designed such that it can accommodate scaling 

up from single standalone systems to excessively large number of systems where each 

machine provides both computation and storage together [3, 4]. 

1.4.1 Hadoop Ecosystem 

 Avro: Avro is serialization system for efficient, cross language RPC and persistent 

data storage.  

 Pig 

 Hive 

 HBase 

 ZooKeeper 

 Sqoop 

 Oozie 

1.4.1 Major Components of Hadoop 

 MapReduce 

 HDFS 

1.4.2 MapReduce 



10 
 

       Hadoop MapReduce is a programming model for data processing. Hadoop MapReduce 

is inspired by the paper published by the google on the MapReduce technology. MapReduce 

is a programming model and associated implementation for processing and generating large 

data sets. Users specify a map function that process a key/value pair to generate a set of 

intermediate key/value pair and a reduce function that merges all intermediate values 

associated with the same intermediate key. 

1.4.2.1 Data Flow in MapReduce  

Input files: The input files are the files which are given to MapReduce for processing. These 

files are resided in HDFS (Hadoop Distributed File System). These files are very large in the 

sizes because Hadoop is used for massive computation analysis.  

InputFormat: The format of reading input files are defined by the InputFormat. InputFormat 

provides us the following given functionality:- 

a) Selects the files or other objects that should be used for input 

b) It breaks the files into tasks by defining the InputSplits. 

c) It  offers a unit for RecordReader objects that read the file 

Several Input formats are provided with Hadoop in which FileInputFormat and InputFormats 

operates on files. When Hadoop start running a job, the FileInput Format is provided to the 

files which needs to be read. Then FileInput Format reads the entire file from given location 

and divides the files into one or more than one InputSplits. The user can define which 

InputFormat wish to apply to on input files by calling setInputFormat() function 

JobConf object that defines the job. 

InputSplits: InputSplit defines a unit of work that encompasses a single map task in a 

MapReduce program. In the Hadoop the default input split size are 64MB and 128MB  

 

RecordReader:  The RecordReader is used to load the data from the source and converts it 

into key/values pair appropriate for reading by the Mapper.  

 

Mapper: The Map function takes key value pair as input and generates intermediate key 

value pair. The output generated by map function become input for the reduce function. 



11 
 

Partition & Shuffle: Shuffling and Partitioning are very important part of MapReduce. 

Shuffling is used to moves the output generated by the map function to the reduce function 

and partitioning take care of allocating output generated by map function to specified reducer 

for the purpose of database shard.   

 

Sort: The sorting take care of sort the intermediate keys generated by the map function 

before passing these to the reducer for the processing. 

 

Reduce: A Reducer is used to perform summary operation of the result generated by the map 

function. The reducer function performs the summary operation on the basis of same key 

generated by the map function. 

 

Output file: The output files are the result produced by the reducer function and stored on  

HDFS (Hadoop Distributed File System) for future use [5]. 

 

 

 

Fig 3: Key/Value pair generation 

 

 



12 
 

 

Fig 4: MapReduce Data Flow 

1.4.2.2 MapReduce Nodes 

 JobTracker 

 TaskTracker 

JobTracker: A JobTracker node manages MapReduce jobs. There is only one of these on 

the cluster. It receives jobs submitted by clients. It schedules the map task and reduce tasks 

on the appropriate. 

TaskTracker: TaskTracker in a rack-aware manner and monitors for any falling tasks that 

need to be rescheduled on a different TaskTracker. To achieve the parallelism for your map 



13 
 

and reduce tasks, there are many TaskTracker in a Hadoop cluster. Each TaskTracker spawns 

java virtual machines to run your map or reduce task.    

1.4.3 HDFS (Hadoop Distributed File System) 

               HDFS runs on top of the existing file system on the each node in Hadoop cluster. It 

is designed for a very specific data access pattern. Hadoop works best with very large files. 

The larger the file the less time Hadoop spends seeking for the next data location on the disk 

and the more time Hadoop run at the limit of the bandwidth of your disks. Seeks are 

generally expensive operation that are useful when you only need to analyze a small subset 

dataset. Since Hadoop is designed to run over your entire dataset, it is best to minimize seeks 

by using large files. Hadoop is designed for streaming or sequential data access rather than 

the random data access. Sequential data access means fewer seeks, since Hadoop only seeks 

to the beginning of each block and begins reading sequentially from there.  

1.4.3.1 HDFS-Blocks and HDFS-Replication 

HDFS-Blocks: Hadoop uses blocks to store a file or parts of the file. Hadoop having default 

to 64 megabytes each and most system runs with block sizes of 128 megabytes and larger. A 

Hadoop block is a file on the underlying file system. The file system stores files as blocks, 

one Hadoop block may consist of many blocks in the underlying file system as shown in the 

figure: 

 

Fig 5: File system storing files as blocks 

Blocks have several advantages first they are fixed in size. This makes it easy to calculate 

how many blocks are fit on a disk. Second, being made up of blocks that can be spread over 

multiple nodes, a file can be larger than any single disk in the cluster. HDFS blocks also do 

not waste space. If a file is not even multiple of the block size, the block containing the 



14 
 

remainder does not occupy the space of an entire block. Finally blocks fit well with 

replication, which allows HDFS to be fault tolerant and available on commodity hardware.   

HDFS-Replication: Hadoop blocks are replicated to multiple nodes this allows for node 

failure without data loss. We can set the number of replication by changing Hadoop 

configuration file. 

1.4.3.2 HDFS-Nodes 

 NameNode 

 DataNode 

NameNode: There is only one NameNode in the cluster. While the data that makes up a file 

is stored in the blocks at the data nodes, the metadata for a file is stored at NameNode. The 

NameNode is also responsible for the file system namespace to compensate for the fact that 

there is only NameNode one should configure the NameNode to write a copy of its state 

information to multiple locations, such as a local disk and NFS mount. If there is one node in 

the cluster to spend money on the best enterprise hardware for maximum reliability it is the 

NameNode. The NameNode should also have as much RAM as possible because it keeps the 

entire file system metadata in memory. 

DataNode: HDFS cluster has many DataNode. They store the blocks of data and when a 

client requests a file, it finds out from the NameNode which DataNodes store the blocks that 

make up that file and the client directly reads the blocks from the individual DataNodes. 

Each DataNodes also reports to the NameNode periodically with the list of blocks it stores. 

DataNodes do not require expensive enterprise hardware or replication at the hardware layer. 

The DataNodes are designed to run on commodity hardware and replication is provided at 

the software layers. 

1.4.3.3 Writing HDFS File 

           The user makes a ‘create file’ request to the NameNode. The NameNode checks that 

file does not already exist and also check the user having permission to perform this action if 

succeed. NameNode find the DataNode for writing the file. If client is running on the 

DataNode it will try to place their otherwise it chooses a random location by default data is 



15 
 

replicated to two other places in the cluster. A pipeline is built between the three DataNodes 

that make up the pipeline. The second DataNode is randomly chosen node on a rack other 

than that of the first replica of the blocks. The final replica is placed on a random node within 

the same rack as the second replica. The data is piped from the second DataNode to the third 

to ensure the write was successful before continuing acknowledgement packets are sent back 

from the third DataNode to the second, from second DataNode to the first and from the first 

DataNode to the client. This process occurs for each of the blocks that make up the file. 

When the client is done writing to the DataNode Pipeline and has received 

acknowledgements, it tells the NameNode that it is complete. The NameNode will check that 

the blocks are at least minimally replicated before responding. This figure shows all the step 

involved in the writing a file to HDFS:-   

 

 

Fig 6: Writing a file to HDFS 

 



16 
 

1.4.4 Broad classification of the scheduling algorithms in Hadoop 

1.4.4.1 FIFO scheduling   

The Hadoop computing system uses the first in first out algorithm. It works on the 

mechanism that the job which entered the system first will be executed first and usually 

supports same category of job requests [7]. The major challenge faced by this algorithm is 

that it results in lower utilizations and poor performance since a large job may be occupying 

the resources and giving a huge waiting time to a job which is waiting in the queue for 

execution. The smaller job may require very lesser amount of resources but have to wait the 

finishing of the task which eventually affects the overall performance of the system. FIFO is 

the basic and default scheduler of the Hadoop distributed system [8].  

 1.4.4.2 Capacity scheduler 

Capacity scheduler is an enhancement on the FIFO which overcomes the issue of resource 

blocking by large job and extended waiting time.  It sets up the Upper and lower limits for 

resource sharing such that none of the job dominates the resource share and everyone gets 

share as per the given limits only. Once the jobs are shared among the jobs as per this 

algorithm, than further in its subsequent processing, they work on the basic mechanism of 

FIFO only. On the downside, this algorithm also suffers with performance issues since the 

algorithm needs to learn the information about the system and create a queue which results in 

huge number of bottlenecks and lower down the performance. 

 1.4.4.3 Fair scheduling   

This scheduling algorithm gives an equal share of available resource to all the jobs. Available 

resources are shared among all the jobs on equal share. The benefits are that the smaller jobs 

get enough shares to get executed well in time [6, 8].  The downside is that it only works on 

the sharing of memory only. Further possibilities are unexplored yet. 

 

 

 



17 
 

CHAPTER 2  

REVIEW of LITREATURE 

 

S. Agarwal et al 2012 “discussed about Re-optimizing data parallel computing”. In this 

paper author proposed a RoPE (Re- optimizing Data-Parallel Computing) which is used for 

the re-optimization of the data-parallel jobs. RoPE uses piggybacking for the collection of the 

certain data properties and code on job execution and then it adapts the plan of the execution 

by serving these properties to a query optimizer. Accurate estimation of the property of code 

and data is not an easy task in distributed environment and forecasting attributes by the 

collection of statistics of the stored raw data is not appropriate because the commonness of 

user operation. The knowledge of these attributes provides us a huge space of enhancements. 

The absolute numbers of jobs indicates attributes are estimated dynamically. The proposed 

solution RoPE gathers statistics from multiple location and uses innovative way to combine 

the entire attribute. The elasticity permitted for the user to state random code leads to  ample 

snugger connection between data and computation in data parallel clusters. Future scope of 

proposed work develop more advance technique that selects plans  We defer to future work 

some advanced techniques that choose plans having defined level of the validity range which 

is specified over given statistics and perform substituting to these plans during runtime 

depending on the detected statistics [9]. 

Mohammad Al-Fares et al 2008 “discussed about the A Scalable, Commodity Data 

Center Network Architecture”. In the proposed research work author discussed about data 

centers which consist of thousands of the nodes which having substantial cumulative 

bandwidth requirement. Network architecture usually consist of the a tree structure of routing 

and switching components which having more expensive components on moving up in the 

hierarchy and deployment of highest end IP based routers and switches, which causes to 

topologies may support only half of the aggregate bandwidth available at the edge of the 

network and still sustaining tremendous cost. Due to the non-uniform bandwidth in between 

the data centers nodes application development become a complicated and also reduce the 

performance of the system. Author proposed a solution of this problem by scalable 



18 
 

commodity data center network architecture which shows how a data center having large 

number of nodes uses influences largely commodity Ethernet switches to provision of full 

collective bandwidth of cluster. Authors says that suitably architected and organized 

commodity switches provides better performance at low cost than the current existing high 

end solutions and this approach not require any modification to the end user network 

interface, running application and operating system platform. In this proposed paper author 

uses flat tree topology and provides a technique to perform scalable routing with the 

backward compatible with the Ethernet, IP and TCP and the proposed idea of author reduce 

the cost of delivering the bandwidth as compare to the current techniques [10]. 

Mosharaf Chowdhury et al 2011 “discussed about the Managing Data Transfers in 

Computer Clusters with Orchestra”. Author discussed about the cluster application such 

as MapReduce and Dryad which transfer huge amount of data during their computation. The 

huge data transfer between cluster applications can have substantial effect on the 

performance of executing completion times. Regardless of this effect having little work for 

the management of the data flow to get improved performance and the management of 

network for per flow management become area of interest for researcher. In proposed work 

author addressed the limitations by proposing set of algorithms and a global architecture. 

First it reduces the time taken in transfer of data during communication, broadcast and 

shuffle phases. Second author uses scheduling policies at the level of the transfer both results 

in the form of reduction in the broadcast time. An author takes two common pattern of 

transfer are shuffle and broadcast for this he proposed an scheduling algorithm name WSS 

(Weighted Shuffle Scheduling) for the shuffling which improves the overall performance and 

high priority transfer are get improved by the inter transfer scheduling. The proposed 

algorithm is implemented at application layer and it does not need any hardware changes for 

running in the data center and clouds due to this no extra expenditure of hardware is not 

required [11]. 

Mosharaf Chowdhury et al 2013 “discussed about the Leveraging Endpoint Flexibility 

in Data-Intensive Clusters”. In this work, the authors discussed that endpoint is not restrain 

for the network transmission but while such kind of extensive distance data transfer gives a 

vast quantity of the bytes in the network. By defining the end points we avoid the congestion 



19 
 

in the links and time of completion of these transfers without the improvement in the 

flexibility improved. In the proposed work author emphasized on leveraging the flexibility in 

replica placement during writes to cluster file system which reduces the cross rack traffic to 

fifty percent in massive data intensive clusters. The cluster file system replicas are placed at 

cluster on the realistic machines the long distance in different fault field and guarantee the 

balanced used of the cluster storage. The author planned and estimated that the proposed 

system find out imbalance in the network by the measuring after a particular time period and 

achieved the flexibility in the system to traverse the links which causes congestion in the 

network. The proposed research reduces the average time taken in the writing blocks and also 

reduces the time average time of completion of the data exhaustive jobs [12]. 

Ali Ghodsi et al 2011 “discussed about the Dominant Resource Fairness: Fair 

Allocation of Multiple Resource Types”. Author says that we have suffered from the fair 

resource allocation problem when we have systems which have different types of the 

resources and the users’ demands are different for each of the system resources. Addressing 

this problem of resource distribution author proposed DRF (Dominant Resource Fairness) 

technique which is the simplification of the max-min fairness to different resource types. He 

shows how DRF fulfills the very much wanted properties. DRF provide inducements to the 

users to share the resources are equally distributed between the users then no user is better 

off. DRF uses strategy to proof the user requirement so the user cannot increase requirement 

by providing false requirements. DRF is greed free as no user need to trade her provision 

with that of alternative uses. DRF offers the Pareto efficient allocation of the resource to the 

user’s means that it is not possible to allocation more resources to one user without 

decreasing resources to another user. Author says that he implemented his DRF allocation of 

resources at Mesons cluster resource manager and it provides us better throughput and the 

fairness then the current slot based schedulers. DRF allows the scheduler to take care of 

heterogeneous demand of multiple cluster applications and provide both more utilization of 

the resources and provide fair allocation of the resources. There is lot of future scope for 

research. First problem is without compromising with fair allocation of the resource reducing 

the resource fragmentation. Second problem is when tasks have placements restriction for the 

resources then providing fairness. Third area is the exploring the use of DRF in the operating 

system [13]. 



20 
 

Albert Greenberg et al 2009 “discussed about the VL2: A Scalable and Flexible Data 

Center Network”. Authors discussed about the data centers provide dynamic resource 

allocation across large pools is provide cost effective services. The data centers must permit 

any server to allot any service. Achieve these goals author proposed a solution a scalable and 

flexible data center network VL2, this provide a network architecture that scales to support 

enormous data centers with unchanging great capacity between servers, performance 

separation services, and Ethernet layer semantics. The proposed network architecture uses 

flat addressing for the placement of service instances placed anywhere in the network. The 

proposed solution provides load balancing to spread the traffic uniformly across the network 

and also provide address resolution which scale the pools without increasing the management 

complexity of the network. The VL2 is plan is derived from the measurement of the traffic 

and the faulty data from the cloud service providers. VL2’s enactment influences confirmed 

network technologies, previously offered at low cost in high speed hardware 

implementations, to develop  easily scalable and reliable architecture of the network. VL2 

provides huge benefit to the programmer of the cloud services and also provide ease to the 

operator of the data centers. VL2 provides a facility that any server is allocated any service at 

the networks sustains isolation between unchanging high bandwidth and performance. Due to 

the simple design of the VL2 it is easily adapted by the current networking technologies it 

does not require any kind of changes in the controlling of switch and data capabilities it is 

efficient and achieved extraordinary tcp fairness [14].  

Sumit Gulwani et al 2009 “discussed about the Precise and Efficient Static Estimation 

of Program Computational Complexity”. In the proposed study author discussed about an 

technique that is based on  inter procedural for calculating the symbolic bounds on the 

number of statement executed by the procedure in the expressions of the scalar response and 

by the user demarcated measurable function of input data. The calculations of computational 

bonds are typically disjunctive, non-linear, and include heaps numerical attributes. The 

author addresses the challenge of calculating these bonds. Author provides numerous counter 

arrangements based on the proof methodology in which counter value is incremented and 

decremented at multiple location of the program which permits the calculation of the bound 

on counter variable independently. The boundaries on these counters are then calm together 

to create total boundaries that are non-linear and disjunctive. Author also provides an 



21 
 

algorithm for the dynamic proofing of the approach. The proposed approach produce the 

boundaries of the difficulty bonds that are not accurate for computational difficulty it also 

include the persistent factors. Author also defined notation for the user defined methods. The 

proposed study says collectively these techniques permits the definition of exact boundaries 

of the computation. In the proposed research work author with the help of the multiple 

counters author removed the problem of the creating disjunctive invariants and also remove 

the generation of non-linear invariants defining the dependencies in counters. Author also 

removed the precision by providing minimum number of dependency of minimal number of 

counters [15].  

Chuanxiong Guo et al 2009 “A High Performance, Server-centric Network 

Architecture for Modular Data Centers”. In the proposed research work, authors 

discussed about a network architecture which is precisely planned for the modular data 

centers and for shipping containers name BCube. The proposed BCube is centered to server 

in network configuration where servers consist of many network ports for the connection of 

commodity of the shelf small switches. The serves act as both hosts and nodes for one and 

another. The proposed BCube architecture various applications which are bandwidth 

intensive by hurtling up one to one traffic pattern, one to many traffic pattern and one to all 

traffic patterns and it also deliver very high capacity to the network. BCube demonstrations 

agile performance dilapidation as switch and servers failure frequency upsurges. Author say 

the implementation of the BCube is very competently deployed in the software and hardware. 

The agile performance dilapidation and meet the unusual necessities are with the help of the 

BSR routing protocol and the future scope of the study how this approach is scale multiple 

containers [16]. 

Mark E. Crovella et al 2009 “discussed about the Connection Scheduling in Web 

Servers”. In the proposed study authors discussed about the behavior of the web services 

under high workload. How web servers serves huge number of the connection 

simultaneously. The order in which these simultaneous connections served is the 

responsibility of the operating system. In this proposed work author analysis the behavior of 

the service by using nontraditional service ordering and in the situation of serving static files 

then the benefits and costs for giving favored service to short connection. Author analyzed 



22 
 

the behavior of the commonly used server in the respect of the size of connection and 

illustrations that it not gives the favored service to short connections and then examine the 

improvements in the probable concert of strategy which does not favor short connection. 

Author shows that mean reply time can be upgraded by the aspects of four or five under 

shortest connection first as compared to a size liberated strategy and they also finds the cost 

of shortest connection based scheduling in the terms of unfairness. An author shows how 

long connection pay very small penalty in the condition of the shortest connection first. 

Future work in the proposed study controlling the scheduling of the kernel mode operations 

and due to these reason exact improvements required by the scheduling polices are not 

computed [17]. 

Michael Isard et al 2007 “discussed about the Distributed Data-Parallel Programs from 

Sequential Building Blocks”. In the proposed research work author proposed Dryad which 

is used in distributed environment for the accomplishment of the abrasive grain data 

analogous applications. It combines the vertices of the computation with the network 

communication medium for a data flow graph. The proposed Dryad uses this graph for 

running application by verifying the vertices produced by the graph on the available set of 

the computers which are communicating each other through TCP, shared memory and files. 

The vertices detection is very simple for the programmer because these are written in the 

sequential languages of the computer programming without any intervention of the thread 

mechanism of locking and creation. The issue of concurrency gets up from the Dryad 

scheduling vertices to run at the same time on multiple processing units on same computer or 

multiple processing units on different computers. Size and the placement of data is 

discovered by the application dynamically at run time to modify the values of the graph for 

better utilization of the resources. The proposed study is applicable to all the single system 

which having multicore processing unit, cluster which contain few systems and the 

distributed data centers having thousands of the systems and it take care of problem faced in 

the creation of concurrent application for distributed computing, data transportation and 

better scheduling of the resources for better resource utilization [18]. 

Michael Isard et al 2009 “discussed about the Fair Scheduling for Distributed 

Computing Clusters”. The proposed research study addresses the problem of the scheduling 



23 
 

parallel jobs on clusters where the data required by application is stored on the different 

computational system. The strategy of putting computation close to data is followed of many 

of current technologies such as MapReduce, Hadoop and numbers of distributed grid 

computing environments. The author says that the scheduling with vicinity and equality 

restrictions has not previously been broadly considered underneath resource sharing. Author 

provide a framework for the scheduling the parallel jobs for distributed computing with the 

fine grain resource distribution strategy. The problem faced is charted on a graph, on which 

graph the demand of the locality, fairness and starvation are calculated with the help of the 

weight on the edges [19]. 

Lei Lu et al 2013 “discussed about the “Predictive VM Consolidation on Multiple 

Resources: Beyond Load Balancing”. In the proposed research work author addresses the 

issue of the fair distribution of the load on numerous servers in the virtualized data centers 

and focused on the applications which are multi-tiered and different demands of the resource 

in each tier and the key issue taken is consideration is the best match of the resource to the 

application that leads to reduced performance interloping. To take consideration of this 

problem author addresses the following two steps. First steps take care of fair allocation of 

the resources for the better load balancing by allocating dissimilar cybernetic machines 

through the numerous servers. This approach is framed as multi-dimensional vector 

scheduling which uses new PATS (polynomial-time approximation schemes). Second 

approach is used for selecting the optimal solution using analytical model of queuing over the 

proposed minimum and maximum solution. Experimental result of the proposed research 

study shows that the given mechanism is tough for predicting the ideal amalgamation 

strategy. The future work of the proposed research work is enhancing the forecast system of 

queuing approach by taking care of burstiness [20]. 

Alexander Rasmussen et al 2012 “discussed about the Themis: An I/O-Efficient 

MapReduce”. In the proposed paper author discussed analysis of the big data utilizes 

programming mode of MapReduce for the analysis of huge amount of data collectively. 

Many jobs of the MapReduce are input/output bounded so reducing the frequency of 

input/output is serious to enhancing performance. In the proposed work author present 

Themis, it is the implementation of the MapReduce which provide read and write of the data 



24 
 

twice on the disk, which is the smallest quantity probable for data sets that cannot appropriate 

in memory. Themis relinquishes task-level mistake acceptance, trusting as an alternative of 

job-level mistake acceptance. To provide reduce number of the input/output operation the 

proposed work take different design decision from the preceding MapReduce execution. The 

proposed work has implementation of an extensive range of MapReduce jobs at 

approximately the consecutive rapidity of the essential storage layer, and is on equivalence 

with TritonSort's record organization performance [21]. 

Alan Shieh et al 2011 “discussed about the Sharing the Data Center Network”. Authors 

say data centers suffer from the effective sharing of the network resources even they are 

multiplexed for the non-cooperating applications and Depend on TCP’s bottleneck control. 

Author addresses this problem and provides a mechanism name Seawall which is technique 

of the allocating bandwidth of the network. This technique divides the network bandwidth 

according to administrator specification and polices. The proposed technique computes the 

requirement and allocation is based on traffic tunneling by the overcrowding control in the 

edge to edge and point to multipoint tunnels. The result of allocation is persist stable 

irrespective of the flows, set of protocols and application destination traffic and it also 

support the run time changes or we can say dynamic changes with scrambling the count of 

application in the data centers. An author says that proposed achieved high performance 

seclusion at the cost of small overhead [22]. 

Todd Tannenbaum et al 2001 “discussed about the Condor – A Distributed Job 

Scheduler”. In this proposed study, authors discussed about the Condor which is used for 

scheduling the jobs in the distributed environment it is specialized for the workload 

supervision for the massive computation tasks, it provides mechanism for job queueing, 

policy for scheduling, management of the resources, monitoring of the resources. The end 

user gives their task to the condor and it pushes into the queue and then takes care of when 

the job gets executed and all the resource requirement of the job along with policies. And it 

also monitors the progress of the jobs provided by the user and provides acknowledgement to 

the user on completion of the job. The key features of the condor are Distributed submission, 

job priorities, user priorities, job dependence, multiple job model support, checkpoints, 

migration, parodic checkpoint, job suspend, job resume, remote system calls, machine pools 



25 
 

can work together, authentication, authorization, heterogeneous platform, grid computing 

[23]. 

Ashish Thusoo et al 2009 “discussed about the A Warehousing Solution Over a Map-

Reduce Framework”. In the proposed research work author discussed about the rapidly 

increasing size of the data collected from the various sources and perform analysis for better 

decision making, the rapid growth of the data causes expensive storage solution. In this paper 

author proposed Hive which is also an open source library and provide data warehousing 

service and it is built on top of Hadoop and this is also support the query languages examples 

are (SQL-like declarative language-HiveQL). Hive query language provide the MapReduce 

are plugged into queries. The author say Hive also contains a system catalog, statistics, Hive-

Metastore, and containing schemas, which are important for the exploring data and 

optimization of the queries. Hive need to improvement towards working on all SQL syntax, 

building Hive on the basis of the optimization and adaptive techniques of optimization for 

better efficient result [24]. 

Rajni Aron and Inderveer Chana et al 2012 “discussed about formal QoS policy based 

resource provisioning framework in”. In this paper he discussed a framework for resource 

provisioning with QoS(quality of service) parameter. This proposed frameworks offer on 

demand resource delivery and efficient scheduling of the resources. This framework 

negotiate with the user by SLA (service level agreement) to analyze customer requirement 

and define a procedure how to accomplishment of user requested service that is satisfactory 

to their resource user. The QoS parameter that should be defined in the SLA (cost, time, 

money, reliability). Cost is calculated on the basis of resources consumed per unit time by the 

user. Time is calculated on the basis of historical data that was collected from the analysis of 

the job executed previously and also perform an analysis before executing the task. Security 

is considered by identifying reliance on the nodes and the reliance of node is recognized by 

the foregoing transaction and present environmental individualities. Reliability of node 

checked before provision of resource, fault tolerance, storage is some of the parameters used 

to measure the reliability. In this paper describes two matrices specifically submission time 

and cost metric to estimating the performance of quality of service based resource 

provisioning. The main proposed idea if this paper how to reduces the complexity from 



26 
 

resource provisioning on demand for the task execution and efficient scheduling of resources 

as per availability of the scare resources. Through the usage of a persistent law, the number 

of migrations and trouble of laws is reduced. In the proposed work researcher demonstrates 

the effectiveness and worth of rules to provide resource to the user on demand and also 

maintain all QoS (Quality of service) parameter desired by the user [25]. 

Naidila Sadashiv and S. M Dilip Kumar et al 2011 “discussed a detailed comparison of 

Cluster, Grid, Cloud computing”. In this paper authors discussed the all possible difference 

between cluster, cloud and grid. Cluster is the collection of homogenous type (means same 

type) of computational nodes which are connected using high speed network. These clusters 

work together on the task which require massive computation that not possible on single 

node. Clusters are mainly used for load balancing, high availability and for compute purpose. 

Grid computing combines various heterogeneous resources from geographically multiple 

managerial domains to solve a massive computational task and after solving the task return 

all the resources to the provider. Grid computing uses a middleware to divide the job to 

various computers which are heterogeneous and geographically dispersed and combine the 

result from these systems and provide to user in transparent fashion. Cloud computing is one 

of the emerging field of computer science. Cloud computing provide services on (application 

delivery and hardware resources) on the demand of the user by using high speed network 

connection. Cloud is a kind of parallel and virtualized computers that are enthusiastically 

provisioned on demand services to the user if user wants measured service [26].  

“Thomas Lehman et al 2006 DRAGON: A Framework for Service Provisioning in 

Heterogeneous Grid Networks”. In the proposed framework, a type of network 

organization is set up that permit dynamically provisioning of network resources to derive 

and set up a path to respond the request from the user application. This framework provides 

progressive e-science applications to dynamically get enthusiastic for determined resources 

of the networks to provide several computational facilities to get desired service to the user 

the given computational services are desired (CPU clusters, storage, picturing facilities, 

remote sensors and many other instruments in geographically dispersed environment and the 

way to specify topology which is best suited to the application which is demanding) [27]. 



27 
 

Rajkumar Buyya et al 2009 “Performance analysis of allocation policies for interGrid 

resource provisioning”. In this paper authors discussed about the performance study of 

distribution rules for inter-Grid resources provisioning. This paper discussed the performance 

evaluation of polices which are used in resource provisioning across the Grids and also 

discussed how grid redirect request to the other grid during the peak workload using cost-

aware load sharing mechanism. This mechanism relies on the information available by 

different scheduling policies at provider sites. The provider policies enable the information 

about the resources management and this information is used for load sharing among the 

grids [28].   

“Michael A. et al 2009 Dynamic Provisioning of Virtual Organization Clusters”. In this 

paper , the authors  discussed about the virtual cluster scheduler for efficient scheduling in 

the virtual organization which is the collection of various virtual clusters. This proposed 

work shows how overall throughput is conserved with the dynamic resource provisioning 

without increasing overhead of scheduling delay. The proposed work shows the size of 

virtual cluster of virtual organization increases on the demand basis and we can also define 

set of rules that defines the maximum or minimum simultaneous request running at the same 

time for a VO (virtual organization). This proposed framework provide that power of 

restricting the resource usage by physical grid mean grid is able to define how much 

computational power he wand to give individual virtual organization. Starting and stopping 

of virtual machine in the response of grid workloads is need attention of researchers [29]. 

A Filali et al 2008 “proposed adaptive resources provisioning for grid applications and 

services”. In the proposed work, authors presented a resource providing scheme which 

increases the efficiency of the resources usage and also delivers the demanded level of QoS 

(Quality of service), it reduces the chance of request deny and increase the profits of service 

sponsor. The proposed work also exploits the consumption of network and reduces the waste 

of network resources. In the proposed work, it uses an optimization model BIP (Binary 

integer programming) and after this a heuristic based technique is user to steadfastness by 

taking measure of response time and the request based movement. It gives us better result 

with low cost [30, 31]. 



28 
 

“Amos Brocco et al 2009 “Service Provisioning Framework for a Self-Organized Grid”. 

In the proposed work authors discussed about the framework which provide on demand 

service and having two layers which preform various operation to deliver the requested 

service. They define this frame works as two layer architecture. Working of layers are a 

lower layer using fully distributed bio-inspired algorithm for providing member management 

and basic communication an upper layer uses the services provided but its lover layer and 

facilities grid services for example (Discovery of the resources, resource monitoring). In this 

paper researcher combined advantages and disadvantages of both organized and unorganized 

system and overwhelming of their boundaries and proposed a framework that is self-

organizing in the nature according to different grid procedure. This framework provides 

membership management and basic communication among the groups which effectively lead 

to deliver high level grid service. In the given framework low-level communication is 

achieved by recognizing local connection between the nodes of grid in order to reduce the 

length of path and exploited the use of network resources which are decentralized in nature 

by using Bio-inspired algorithm to cooperate them. Optimization of network is based on 

entirely dispersed centered on collective bio motivated algorithm. This framework is 

composed of two layer a one is management layer used for self-organization and other layer 

is used to provide grid interface layer. The proposed framework reduces the distance between 

the nodes which are cooperating in the grid [32]. 

Rasjid et al 2004 “discussed Analysis and Provision of QoS for Distributed 

GridApplications”. In this paper authors proposed a framework that livelihood provide QoS 

(Quality of service) management in heterogeneous geographically dispersed distributed grid 

computing in the framework (OGSA- Open grid service architecture). This framework has 

three functioning phase’s instituting, action, expiry. In the institution phase a user application 

request for service with desired QoS (Quality of service) parameter then proposed framework 

analyze the user requirement and run a facility discovery process based on their user 

application requirements which is defined by user. In action phase preform many different 

type of operation such as monitoring of resources, accounting, adaption and if not able to 

provide desired service that time then communicate the user and tell again submit his 

requirements. (Resource bound, Time bound). In resource domain user can state a confident 

measurement of resource he want for expiation we discuss one case that user required to 



29 
 

access to 20% processing unit time, 15Mbps network bandwidth is accessible out of a total of 

100Mbps available. In time domain apportionment approach a user may appeal for whole 

resource to be reserved for secluded use and no other user and application are permitted to 

segment the resource for e.g. preserving full capability of CPU [33]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 3  

PRESENT WORK 

3.1 Problem Formulation 

3.1.1 Short comings of the current existing algorithms: 

The effective utilization of resources and process of execution of jobs lies at the heart of the 

system. Huge number of mechanisms are devised to bring more effectiveness into the 

utilization of resources and improve the overall execution of jobs with the help of various 

given factors and benchmarks. 

The existing schedulers assign the resource to the system on the fairness factor only which 

limits the ability of the process where a job requires diverse set of resources for the 

execution. Secondly, the scheduler has its limitations in defining the optimum size for the 

block size to carry the data where a bargain is required between the efficiency in job 

completion and resource utilization. As a consequences, this in-efficiency and in-ability leads 

to problem of assigning the resources more than required by the job (excessive allocation) 

and also results in fragmentation .This has a high impact on the effective utilization of the 

resources since it leads to the problem of under utilization which eventually effects the 

performance by enhancing the waiting periods, turnaround time, make span etc. 

3.2 Objectives 

Following objects are given in regard to the proposed work: 

a) To improve the resource allocation process.  

b) To achieve better performance by enhancing the job scheduling process. 

c) Compare the existing algorithms with the proposed method. 

d) Validate the results towards the claim of enhancement in the resource utilization and 

scheduling. 

 

 



31 
 

3.3 METHODOLOGY 

1. Selection of appropriate data sets and platform for the distributed systems  

     environment 

2. Review of the existing methodologies. 

3. Implementing the existing algorithms and techniques with single type of resource 

requirement and generating the results. 

4. Implementing the proposed work: 

    4.1. Pack the memory and processor together as a single unit of resource to 

accommodate   multiple resource requirements. 

    4.2. Perform the mapping of the available resources with the job requirement  

                for the best fit (best combination of the resources for optimum utilization) 

    4.3. Allocation of the job to the best fit as per the step 4.2. 

    4.4. Perform the execution the proposed technique. 

5. Analysis of the result and comparison with the existing techniques. 

 

 

 

 

 

 

 

 

 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Flow chart of proposed algorithm 

 

START 

TASK IS SUBMITTED BY USER OR APPLICATION 

RESOURCE MANAGER COMPUTE TASK DEMAND 

RM CHECKS FOR THE MACHINE RESOUCES BEST FIT 

FOR THE TASK DDEMAND (Tdemand <= Mresouces) 

IF MATCH FOUND 

CALCULATE ALINGMENT SCORE (Tdemand*Mresources)  

TASK WITH HIGHER ALINGMENT SCORE IS 

ASSIGN TO THE MACHINE 

WAITING UNTIL 

RESOURCE GETS 

FREE 

YES 

NO

O 



33 
 

CHAPTER 4  

Result and Discussion 

The evaluation setup of the both the scheduler is: 

Parameters Values 

Number of application 10 

Number of queues 3 

Number of nodes 4 

Number of racks 1 

Number of tasks 2472 

Node memory (MB) 10240 

Average tasks per application 248 

Average application per queue 3 

Node vcores 10 

 

For the experimental and simulations, the implementation of the existing strategies have been 

done using Hadoop 2-6.0 which is the latest stable release of the Hadoop. The Yarn 

scheduler load simulator libraries have been used for performing the analysis of the 

scheduler. The trace file .json provided by Apache has been used as dataset for testing the 

schedulers.  

Initially the existing strategies are being implemented .The analysis as per be below given 

graphs represent that the schedulers are working with the single resource requirement only 

.In figure 8 the containers are not fully utilized throughout. In figure 11, it represents the 



34 
 

underutilization of the resource memory in queue. Figure 13 represent the application cost 

when it is added to by the scheduler which is very high initially. Further from figure 14 to 

figure 19, the results are represented for the proposed resource allocation technique. Our 

proposed work represents the better utilization of containers in figure 15. When the multiple 

resources are packed together the proposed work shows the increased utilization of both 

memory and core as per the figures 16. The cost for adding the new applications is 

comparatively lesser in our proposed strategy. 

 

 

Fig 8:  Labels the number of containers and running applications in existing scheduler. 



35 
 

 

Fig 9: Labels the available memory and allocated in the cluster existing scheduler. 

 

 

Fig 10:  Available Vcores and allocated Vcores in the existing scheduler. 

 



36 
 

 

Fig 11: Memory allocation for each queue in the existing scheduler. 

 

 

Fig 12: Vcores allocation for each queue in the existing scheduler. 

 



37 
 

 

Fig 13: Labels the timecost for each scheduler operation in the existing scheduler. 

 

 

Fig 14: Snapshot of the jobs execution using existing technique of resource allocation 

 



38 
 

The result of proposed resource allocation technique are given below 

 

Fig 15:  Labels the number of containers and running applications in proposed scheduler. 

 

 

Fig 16: Labels the available memory and allocated in the proposed scheduler. 

 



39 
 

 

 

Fig 17: Labels the available Vcores and allocated Vcores in the proposed scheduler 

 

 

Fig 18: Labels memory allocation for each queue in proposed scheduler. 

 



40 
 

 

Fig 19: Labels the Vcores allocation for each queue proposed scheduler. 

 

 

Fig 20: Labels the timecost for each scheduler operation in proposed scheduler 

 

 



41 
 

 

Fig 21: Snapshot of the job execution using proposed technique of resource allocation 

The comparative analysis of the graph  

 

 

Fig 22: Labels the memory utilization of single resource scheduling technique 



42 
 

 

Fig 23: Labels the vcores utilization of single resource scheduling technique 

 

Fig 24: Labels the vcores and memory utilization of single multi resource scheduling 

technique 



43 
 

 

 

Fig 25: Time taken by the each application execution using existing technique 

 

 

Fig 26: Time taken by the each application execution using proposed technique 

 



44 
 

CHAPTER 5 

Conclusion and Future Scope 

 

With speedy growth in the massive amounts of data every day, the challenges of processing it 

are also getting higher and higher. The resources and processing powers seems to be limited 

in front of the size of the data. The need for the hour is to bring effectiveness in the exiting 

methodologies and techniques for bringing utilization out of them and improve the overall 

performance of the work in demand. Hadoop has shown huge lead in processing the large 

amounts of data through distributed environment. The existing state of art systems and 

infrastructure are undoubtedly performing well but the still demands and brings in the need 

for further enhancements and improvement in them. The process of scheduling the jobs and 

effective utilization of resources is and will always be a challenge looking at the way data is 

growing. The proposed work has given different dimensions for processing the data by 

bringing improvements in the existing scheduling processes and resource. The limitations of 

the existing algorithms have been exploited and removed. The existing system is unable to 

process the job with multiple resource requirements. Our system has overcome this limitation 

by packing together the   memory and processing requirement together for allocating to a 

single job and addressed the issue of multiple resource requirements which overcomes  

problem of fragmentation and also demonstrated  the increased utilization of the resources. In 

this work we have used two measures for job packing which is memory and processing, in 

future there is a further scope for exploring the other multiple requirements of jobs such as 

graphics, networks, local vs distant processing, cache etc. 

 

 

 

 

 

 



45 
 

CHAPTER 6  

References 

 

[1] Andrew S. Tanenbaum .(2011) Distributed System Princple and Paradigms, PHI Learning 

Ltd., New Delhi.  

[2] Luis Ferreira, Fabiano Lucchese Grid Computing in Research and Education By 

IBM/Redbooks. 

[3] Yang Wang, Wei Shi, "Budget-Driven Scheduling Algorithms for Batches of MapReduce 

Jobs in Heterogeneous Clouds,” IEEE transaction on cloud computing, vol. 2, issue. 1, p. 

306-319, 2013. 

[4] M. Hammoud and M.F. Sakr, “Locality-aware reduce task scheduling for MapReduce,”     

In Cloud Computing Technology and Science (CloudCom) IEEE Third International 

Conference,  p. 570-576, 2011. 

[5] Yahoo, ” MapReduce,” [online] 

Available: https://developer.yahoo.com/hadoop/tutorial/module4.html 

[6] M. Zaharia et al. Delay Scheduling, “Delay Scheduling :A Technique For Achieving 

Locality And Fairness In Cluster Scheduling,” In EuroSys 5th European conference on 

Computer systems, p. 265-278, 2010. 

[7] M. Isard, M. Budiu, Y. Yu, “Distributed Data-Parallel Programs from Sequential 

Building Blocks,” In Proc. of the 2nd ACM SIGOPS/EuroSys European Conference on 

Computer Systems, p.59-72, 2009. 

[8] Jilan Chen,Dan Wang and Wenbing Zhao, “A task scheduling algorithm for hadoop 

platform,”  Journal of computers,” vol. 8, no.4, 2013. 

[9] S. Agarwal et al. “Re-optimizing data parallel computing” In NSDI, 2012.[8] M. Al-Fares 

et al. A Scalable, Commodity Data Center Network Architecture. In SIGCOMM, 2008. 

https://developer.yahoo.com/hadoop/tutorial/module4.html


46 
 

[10] M. Al-Fares et al. “A Scalable, Commodity Data Center Network Architecture,” In 

SIGCOMM, 2008. 

[11] M. Chowdhury et al. “Managing Data Transfers in Computer Clusters with Orchestra,” 

In SIGCOMM, 2011. 

[12] M. Chowdhury et al. “Leveraging Endpoint Flexibility in Data-Intensive Clusters,” In 

SIGCOMM, 2013. 

[13] A. Ghodsi et al. “Dominant Resource Fairness: Fair Allocation Of Multiple Resource 

Types,” In NSDI, 2011. 

[14] A. Greenberg et al. “A Scalable and Flexible Datacenter Network,” In SIGCOMM, 

2009. 

[15] S. Gulwani et al. “SPEED: Precise And E›cient Static Estimation Of Program 

Computational Complexity,” In POPL, 2009. 

[16] C. Guo et al. “BCube: A High Performance, Server-centric Network Architecture for 

Modular Data Centers,” In SIGCOMM, 2009. 

[17] M. Harchol-Balter et al. Connection Scheduling in Web Servers. In USITS, 1999. 

[18] M. Isard et al. “Dryad: Distributed Data-Parallel Programs From Sequential Building 

Blocks,” In EuroSys, 2007. 

[19] M. Isard et al. “Quincy: Fair Scheduling For Distributed Computing Clusters,” In SOSP, 

2009. 

[20] L. Lu et al. “Predictive VM Consolidation on Multiple Resources: Beyond Load 

Balancing,” In IWQoS, 2013. 

[21] A. Rasmussen et al. “Themis: An I/O-E›cient MapReduce,” In SoCC, 2012. 

[22]  A. Shieh et al. “Sharing the Data Center Network,” In NSDI, 2011. 

[23] T. Tannenbaum et al. “Condor – A Distributed Job Scheduler. In Beowulf Cluster 

Computing with Linux,” MIT Press, 2001. 



47 
 

[24] A. Tusoo et al. “Hive: A Warehousing Solution Over A Map-Reduce Framework,” Proc.    

VLDB Endow, 2009. 

[25] Rajni Aron, Inderveer Chana et al “Formal QoS Policy Based Grid Resource 

Provisioning Framework, ” J. Grid Computing (2012) 10:249–264 DOI 10.1007/s10723-012-

9202-y. 

[26] Naidila Sadashiv, S. M Dilip Kumar et al “Cluster, Grid and Cloud Computing: A 

Detailed Comparison,” In 6th International Conference on Computer Science & Education 

(ICCSE 2011) August 3-5, 2011. Superstars Virgo, Singapore. 

[27] Lehman, T., Sobieski, J., Jabbari, B.: “DRAGON: a technique for service provisioning 

in heterogeneous Grid networks,” Commun. Mag.44(3), 84–90 (2006) 

[28] Assuncao, M.D., Buyya, R.: “Performance analysis of allocation policies for intergrid 

resource provisioning,” Information and Software Technology Journal, vol. 51(1), pp. 42–55. 

ISSN: 0950-5849. Elsevier Science, Amsterdam, The Netherlands (2009) 

[29] Murphy, M.A., Kagey, B., Fenn, M., Goasguen, S.: “Dynamic provisioning of virtual 

organization clusters,” In:Proceedings of 9th IEEE International Symposium on Cluster 

Computing and the Grid (CCGrid’09), pp. 364–371. Shanghai, China (2009). 

[30] Filali, A., Hafid, A., Gendreau, M.: “Adaptive Resources Provisioning for Grid 

applications and services,” In: Proceedings of IEEE International Conference on 

Communications, ICC’08, pp. 186–191. China (2008) 

[31] Filali, A., Hafid, A., Gendreau, M.: “Bandwidth and Computing Resources Provisioning 

for Grid Applications and Services,” In: Proceedings of IEEE International Conference on 

Communications, ICC’09,pp. 1–6 (2009) 

[32] Brocco, A., Hirsbrunner, B.: “Service Provisioning Framework for a Self-Organized 

Grid,” In: Proceedings of 18th International Conference Computer Communications and 

Networks (ICCCN 2009). ISSN: 1095-2055, Print ISBN: 978-1-4244-4581-3, pp. 1–6 

(2009).doi:10.1109/ICCCN.2009.5235315 



48 
 

[33] Al-Ali, R., Amin, K., Laszewski, V.G., Rana, O., Walker, D., Hategan, M., Zaluzec, N.: 

“Analysis and provision of QoS for distributed Grid applications,” J. Grid Computing2(2), 

163–182(2004)doi:10.1007/s10723-004-6743-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

CHAPTER 7  

Appendix 

 

HDFS- Hadoop Distributed File System 

DFS- Distributed File System 

SLS- Scheduler Load Simulator 

YARN- Yet Another Resource Negotiator 

DS- Distributed System 

 


