Introduction to Artificial

Intelligence and Expert Systems
DCAP310

OVELY
ROFESSIONAL
NIVERSITY




> 2% IMOVELY
9 [RJROFESSIONAL
7 [EINIVERSITY

INTRODUCTION TO ARTIFICIAL
INTELLIGENCE & EXPERT SYSTEMS




Copyright © 2013, Amit Sinha
All rights reserved

Produced & Printed by
EXCEL BOOKS PRIVATE LIMITED
A-45, Naraina, Phase-I,

New Delhi-110028
for
Lovely Professional University
Phagwara



SYLLABUS

Introduction to Artificial Intelligence & Expert Systems

Objectives:

° To enable the student to understand technicalities of intelligence.

° To enable the student to understand techniques of capturing and generating knowledge.
° To enable the student to understand knowledge representation methodologies.

° To enable the student to learn Natural language processing.

° To enable the student to learn Fuzzy Logic with their applications.

° To enable the student to understand probabilistic reasoning.

° To enable the student to learn technicalities of expert system.

° To enable the student to understand Artificial intelligence language 'LISP' and "Prolog’.

Sr. No. Description

1. Overview of Al: What is Al, Importance of Al, Early Work in AI, Al and Related Fields.

2. Knowledge: General Concepts, Introduction, Definition and Importance of Knowledge, Knowledge-based
Systems, Representation of Knowledge, Knowledge Organization, Knowledge Manipulation, Acquisition of
Knowledge.

3. LISP and Other AI Programming Languages: Introduction to LISP Syntax and Numeric Functions, Basic List

Manipulation Functions in LISP, Functions, Predicates, and Conditionals, Input, Outputs and Local Variables,
Iterations and Recursion, Property Lists and Arrays, PROLOG and Other AI Programming Languages.

4. Formalized Symbolic Logics: Introduction, Syntax and Semantics for Propositional Logic, Syntax and Semantics
for FOPL, Properties of WFFs, Conversion to Clausal Form, Inference Rules, The Resolution Principle,
Non-deductive Inference Methods, Representations using Rules Dealing with Inconsistencies and Uncertainties:
Truth Maintenance System, Predicated Completion and Circumscription, Modal and Temporal Logics, Fuzzy
Logic and Natural Language Computation.

5. Probabilistic Reasoning: Bayesian Probabilistic Inference, Possible World Representations, Dempster-Shafer
Theory, Ad-Hoc Methods, Heuristic Reasoning Methods. Structured Knowledge: Associative Networks, Frame
Structures, Conceptual Dependencies and Scripts. Object Oriented Representation: Overview of Object-Oriented
Systems, Object, Classes, Messages and Methods.

6. Search and Control Strategies: Preliminary Concepts, Examples of Search Problems, Uninformed or Blind
Search, Informed Search, Searching And-Or Graph.

7. Matching Techniques: Structures used in Matching, Measures for Matching, Matching Like Patterns, Partial
Matching, Fuzzy Matching Algorithms, The RETE Matching Algorithm. Knowledge Organization and
Management: Indexing and Retrieval Techniques, Integrating Knowledge in Memory.

8. Natural Language Processing: Overview of Linguistics, Grammars and Languages, Basic Parsing Techniques,
Semantic Analysis and Representation Structures, Natural Language Generalization, Natural Language Systems,
Recognition and Classification Process.

9. Expert System Architecture: Rule-Based Architecture, Nonproduction System Architectures, Dealing with
Uncertainty, Knowledge Acquisition and Validation.

10. Types of Learning, Knowledge Acquisition is Difficult, General Learning Model, Performance Measures,
Knowledge System Building Tools, Learning by Induction: Generalization and Specialization, Inductive Bias.
Analogical Reasoning and Learning, Explanation based Learning.




CONTENTS

Unit 1: Overview of Artificial Intelligence 1
Unit 2: Knowledge 17
Unit 3: Representation of Knowledge 30
Unit 4: LISP 51
Unit 5: Artificial Intelligence Programming Language 71
Unit 6: Formalized Symbolic Logics 84
Unit 7: Probabilistic Reasoning 126
Unit 8: Structured Representation of Knowledge 147
Unit 9: Search and Control Strategies 165
Unit10:  Matching Techniques 184
Unit11:  Knowledge Organization and Management 200
Unit 12: Natural Language Processing 215
Unit 13: Expert System Architecture 234

Unit 14: Types of Learning 253






Unit 1: Overview of Artificial Intelligence

Unit 1: Overview of Artificial Intelligence

CONTENTS

Objectives

Introduction

1.1

What is AI?
1.1.1 Goals of Al

1.2 Importance of Artificial Intelligence
1.2.1 Artificial Intelligence in Manufacturing
1.2.2 Artificial Intelligence in Financial Services
1.2.3 Artificial Intelligence in Marketing
1.2.4 Artificial Intelligence in HR

1.3 Early Work in Artificial Intelligence
1.3.1 Expert Systems
1.3.2 Natural Language Processing (NLP)
1.3.3 Computer Vision
1.34 Intelligent Robots
1.35 Industrial Applications
1.3.6 Computer-aided Instruction (CAI)
1.3.7 Learning by Computers
1.3.8 Voice Recognition (VR)

1.4 Al and Related Fields
14.1 Common Techniques Used in Al
142 Related Fields of Al

1.5 Summary

1.6 Keywords

1.7 Review Questions

1.8 Further Readings

Objectives

After studying this unit, you will be able to:

Define Artificial Intelligence
Describe the goals of Al and the importance of Artificial Intelligence
Elaborate on the Early Work in Artificial Intelligence

Discuss the Common Techniques Used in Al

LOVELY PROFESSIONAL UNIVERSITY

Notes



Introduction to Artificial Intelligence & Expert Systems

Notes

Introduction

Artificial Intelligence (Al) is the intelligence of machines or software and is also a branch of
computer science that studies and develops intelligent machines and software. This field of
computer science, Al, is defined as “the study and design of intelligent agents” where an intelligent
agent is a system that perceives its environment and takes actions that maximize its chances of
success. It is also defined as “the science and engineering of making intelligent machines”.

Al research is highly technical and specialized, deeply divided into subfields that often fail to
communicate with each other. Some of the division is due to social and cultural factors: subfields
have grown up around particular institutions and the work of individual researchers. Al research
is also divided by several technical issues. There are subfields which are focused on the solution
of specific problems, on one of several possible approaches, on the use of widely differing tools
and towards the accomplishment of particular applications. There is no established unifying
theory or paradigm that guides Al research. Researchers disagree about many issues A few of
the most long standing questions that have remained unanswered are these: should artificial
intelligence simulate natural intelligence by studying psychology or neurology?

The central problems (or goals) of Al research include reasoning, knowledge, planning, learning,
communication, perception and the ability to move and manipulate objects. General intelligence
or “strong Al” is still among the field’s long term goals. Currently popular approaches include
statistical methods, computational intelligence and traditional symbolic Al There are an
enormous number of tools used in Al, including versions of search and mathematical
optimization, logic, methods based on probability and economics, and many others. In this unit,
you will be able to understand the meaning of Artificial Intelligence, its goals and importance,
the early work and common techniques used in Artificial Intelligence.

1.1 Whatis AI?

Artificial intelligence (AI) is the science of programming computers to perform complex tasks
that normally require human intelligence. Artificial intelligence systems used in information
security applications include Artificial Neural Networks, expert systems and genetic algorithms.

Alis an emerging technology that has recently attracted considerable publicity. Many applications
are now under development. One simple view of Al is that it is concerned with devising computer
programs to make computers smarter. Thus, research in Al is focused on developing
computational approaches to intelligent behavior. This research has two goals:

1. Making machines more useful.
2. Understanding intelligence.

The computer programs with which Al is concerned are primarily symbolic processes involving
complexity, uncertainty, and ambiguity. These processes are usually those for which algorithmic
solutions do not exist and search is required. Thus, Al deals with the types of problem-solving
and decision-making that humans continually face in dealing with the world.

1.1.1 Goals of Al

The general problem of simulating (or creating) intelligence has been broken down into a
number of specific sub-problems. These consist of particular traits or capabilities that researchers
would like an intelligent system to display. The traits described below have received the most
attention.

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

Deduction, Reasoning and Problem Solving Notes

Early Al researchers developed algorithms that imitated the step-by-step reasoning that humans
use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, Al research
had also developed highly successful methods for dealing with uncertain or incomplete
information, employing concepts from probability and economics.

For difficult problems, most of these algorithms can require enormous computational resources —
most experience a “combinatorial explosion”: the amount of memory or computer time required
becomes astronomical when the problem goes beyond a certain size. The search for more
efficient problem-solving algorithms is a high priority for Al research.

Human beings solve most of their problems using fast, intuitive judgments rather than the
conscious, step-by-step deduction that early Al research was able to model. Al has made some
progress at imitating this kind of “sub-symbolic” problem solving: embodied agent approaches
emphasize the importance of sensory motor skills to higher reasoning; neural net research
attempts to simulate the structures inside the brain that give rise to this skill; statistical approaches
to Al mimic the probabilistic nature of the human ability to guess.

Knowledge Representation

Ontology represents knowledge as a set of concepts within a domain and the relationships
between those concepts.

Figure 1.1: Knowledge Representation

Individual

Knowledge representation and knowledge engineering are central to Al research. Many of the
problems machines are expected to solve will require extensive knowledge about the world.
Among the things that Al needs to represent are: objects, properties, categories and relations
between objects; situations, events, states and time; causes and effects; knowledge about
knowledge and many other, less well researched domains. A representation of “what exists” is
ontology: the set of objects, relations, concepts and so on that the machine knows about. The
most general are called upper ontologism, which attempt provides a foundation for all other
knowledge.

LOVELY PROFESSIONAL UNIVERSITY 3



Introduction to Artificial Intelligence & Expert Systems

Notes

1.2 Importance of Artificial Intelligence

Artificial Intelligence deals with study and building of rational systems. The Artificial Intelligence
has the following advantages:

(i)  This method is more general as compared to the laws of thought method.

(ii) This method responds to science than to the methods based on human behaviour or
thought.

(iii) The first computer program introduced to beat the champion chess player was Hitech.
Limited intellectual skills are required for the chess strategies.

(iv) Artificial Intelligence is divided into many branches. Artificial Intelligence search programs
to study the various probabilities which include chess game moves. Different ways are
being set up to carry out more proficiently. Logical Artificial Intelligence deals with
mathematical logical program. A program of pattern recognition studies and compares
with a particular pattern. It matches the eyes and nose to the face of a police id. Epistemology
deals with the study of different types of knowledge required to solve problems.

(v)  Currently, voice recognition program failed to recognize every word but is slowly leading
towards improvement. This idea guide disabled people to utilize computers.

(vi) Now computers perform many tasks that were beyond our imagination. By 2020, computers
will be more intelligent than the mankind. Due to these advances we will not be inferior
to computers as we can turn it off when it fails to perform.

1.2.1 Artificial Intelligence in Manufacturing

Al in manufacturing is wide. It can be described an interactive note-taking system for pen-based
computers with two distinctive features. The system is an example of a learning apprentice
software-agent. A machine learning component characterises the syntax and semantics of the
users information. In machine learning that acquires knowledge for some of the higher level
processing; it was found that performance equals that of a partially trainable discourse module
requiring manual customisation for each domain. The central assumption of the model is that
the learner is embedded within an environment of related learning tasks. Explicit bounds were
also derived demonstrating that learning multiple tasks within an environment of related tasks
could potentially give much better generalization than learning a single task.

Knowledge and Intelligence are as fundamental as the universe within which they exist, it may
turn out that they are more fundamental. Enterprises that utilize Al-enhanced applications are
expected to become more diverse, as the needs for the ability to analyze data across multiple
variables, fraud detection and customer relationship management emerge as key business drivers
to gain competitive advantage. Artificial Intelligence is a branch of Science which deals with
helping machines, finds solutions to complex problems in a more human-like fashion. This
generally involves borrowing characteristics from human intelligence, and applying them as
algorithms in a computer-friendly way. A more or less flexible or efficient approach can be
taken depending on the requirements established.

1.2.2 Artificial Intelligence in Financial Services

Banks use artificial intelligence systems to organize operations, invest in stocks and manage
properties. In August 2001, robots beat humans in a simulated financial trading competition.

Financial institutions have long used artificial neural network systems to detect charges or
claims outside of the norm, flagging these for human investigation.

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

Creative Virtual has deployed artificial intelligence customer support systems, or automated Notes
online assistants at HSBC and Lloyds Banking Group, to assist financial services customers with

services such as checking an account balance, signing up for a new credit card or retrieving a

forgotten password.

1.2.3 Artificial Intelligence in Marketing

Artificial intelligence is a field of study that “seeks to explain and emulate intelligent behavior
in terms of computational processes” through performing the tasks of decision making, problem
solving and learning. Unlike other fields associated with intelligence, Artificial intelligence is
concerned with both understanding and building of intelligent entities, and has the ability to
automate intelligent processes. It is evident that artificial intelligence is impacting on a variety
of subfields and wider society. However, literature regarding its application to the field of
marketing appears to be scarce. Advancements in Artificial intelligence’s application to a range
of disciplines have led to the development of Artificial intelligence systems which have proved
useful to marketers. These systems assist in areas such as market forecasting, automation of
processes and decision making and increase the efficiency of tasks which would usually be
performed by humans. The science behind these systems can be explained through neural
networks and expert systems which are computer programs that process input and provide
valuable output for marketers. In the area of social networking, Al is used to Artificial intelligence
systems stemming from Social computing technology can be applied to understand social
networks on the Web. Data mining techniques can be used to analyze different types of social
networks. This analysis helps a marketer to identify influential actors or nodes within networks,
this information can then be applied to take a Societal marketing approach. Artificial intelligence
has gained significant recognition in the marketing industry. However, ethical issues surrounding
these systems and their potential to impact on the need for humans in the workforce, specifically
marketing, is a controversial topic. Al-enhanced analytics programs also provide survival
modeling capabilities suggesting changes to products based on use.

Example: Customer patterns are analyzed to learn ways to extend the life of light bulbs
or to help decide the correct dosage for medications. High-tech data mining can give companies
a precise view of how particular segments of the customer base react to a product or service and
propose changes consistent with those findings.

1.2.4 Artificial Intelligence in HR

Artificial Intelligence (AI) has been used in business applications since the early eighties. As
with all technologies, Al initially generated much interest, but failed to live up to the hype.
However, with the advent of web-enabled infrastructure and rapid strides made by the Al
development community, the application of Al techniques in real-time business applications
has picked up substantially in the recent past.

Computers are fundamentally well suited to performing mechanical computations, using fixed
programmed rules. This allows artificial machines to perform simple monotonous tasks
efficiently and reliably, which humans are ill-suited to. For more complex problems, things get
more difficult. Unlike humans, computers have trouble understanding specific situations, and
adapting to new situations. Artificial Intelligence aims to improve machine behavior in tackling
such complex tasks.

Together with this, much of Al research is allowing us to understand our intelligent behavior.
Humans have an interesting approach to problem-solving, based on abstract thought, high-level
deliberative reasoning and pattern recognition. Artificial Intelligence can help us understand

LOVELY PROFESSIONAL UNIVERSITY 5



Introduction to Artificial Intelligence & Expert Systems

Notes

this process by recreating it, then potentially enabling us to enhance it beyond our current
capabilities. The main purposes of the study are to discuss the appointment of managers in
enterprises through fuzzy neural network, to construct a new model for evaluation of managerial
talent, and accordingly to develop a decision support system in human resource selection.
Therefore, the research methods of reviewing literature, in-depth interview, questionnaire survey,
and fuzzy neural network are used in the study.

g
Task  Go through various websites for the definition of Al

AN

Caution Have proper knowledge of all procedure before applying the Al

Self Assessment

State whether the following statements are true or false:

1. Al can be defined as “the science and engineering of making intelligent machines”.

2. Knowledge representation and knowledge engineering are central to Al research.

3. Artificial Intelligence has no branch.

4. Banks use artificial intelligence systems to organize operations, invest in stocks and manage
properties.

5. Al deals with the types of problem-solving and decision-making that humans continually

face in dealing with the world.

1.3 Early Work in Artificial Intelligence

1.3.1 Expert Systems

A hierarchical control system is a form of control system in which a set of devices and governing
software is arranged in a hierarchy. Intelligent agents must be able to set goals and achieve
them. They need a way to visualize the future (they must have a representation of the state of the
world and be able to make predictions about how their actions will change it) and be able to
make choices that maximize the utility or “value” of the available choices.

Figure 1.2: A Planned System

Hierarchical Control System

top level node
tasks, goals
sensa:ons,\\A

results

sensor actuator sensor/actuator

A actions A actions
sensations v sensations 7

Controlled system, controlled process, or environment

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

In classical planning problems, the agent can assume that it is the only thing acting on the world Notes
and it can be certain what the consequences of its actions may be. However, if the agent is not the

only actor, it must periodically ascertain whether the world matches its predictions and it must

change its plan as this becomes necessary, requiring the agent to reason under uncertainty.

1.3.2 Natural Language Processing (NLP)

Natural Language Processing gives machines the ability to read and understand the languages
that humans speak. A sufficiently powerful natural language processing system would enable
natural language user interfaces and the acquisition of knowledge directly from human-written
sources, such as Internet texts.

Figure 1.3: A NLP System

hit Det N

the ball

A parse tree represents the syntactic structure of a sentence according to some formal grammar.
Some straightforward applications of natural language processing include information retrieval
(or text mining) and machine translation.

A common method of processing and extracting meaning from natural language is through
semantic indexing. Increases in processing speeds and the drop in the cost of data storage makes
indexing large volumes of abstractions of the users input much more efficient.

1.3.3 Computer Vision

Machine learning is the study of computer algorithms that improve automatically through
experience and has been central to Al research since the field’s inception. Unsupervised learning
is the ability to find patterns in a stream of input. Supervised learning includes both classification
and numerical regression. Classification is used to determine what category something belongs
in, after seeing a number of examples of things from several categories. Regression is the
attempt to produce a function that describes the relationship between inputs and outputs and
predicts how the outputs should change as the inputs change. In reinforcement learning, the
agent is rewarded for good responses and punished for bad ones. These can be analyzed in terms
of decision theory, using concepts like utility. The mathematical analysis of machine learning
algorithms and their performance is a branch of theoretical computer science known as
computational learning theory.

1.3.4 Intelligent Robots
Artificial Intelligence (AI) is a general term that implies the use of a computer to model and/or

replicate intelligent behavior. Research in Al focuses on the development and analysis of
algorithms that learn and/or perform intelligent behavior with minimal human intervention.

LOVELY PROFESSIONAL UNIVERSITY 7



Introduction to Artificial Intelligence & Expert Systems

Notes

These techniques have been and continue to be applied to a broad range of problems that arise
in robotics, e-commerce, medical diagnosis, gaming, mathematics, and military planning and
logistics, to name a few.

Several research groups fall under the general umbrella of Al in the department, but are disciplines
in their own right, including: robotics, NLP, computer vision, computational biology, and e-
commerce. Specifically, research is being conducted in estimation theory, mobility mechanisms,
multi-agent negotiation, natural language interfaces, machine learning, active computer vision,
probabilistic language models for use in spoken language interfaces, and the modeling and
integration of visual, haptic, auditory and motor information.

1.3.5 Industrial Applications

Artificial intelligence is implemented in automated online assistants that can be seen as avatars
on web pages. It can avail for enterprises to reduce their operation and training cost. A major
underlying technology to such systems is natural language processing. Similar techniques may
be used in answering machines of call centers, such as speech recognition software to allow
computers to handle first level of customer support, text mining and natural language processing
to allow better customer handling, agent training by automatic mining of best practices from
past interactions, support automation and many other technologies to improve agent productivity
and customer satisfaction. Fuzzy logic controllers have been developed for automatic gearboxes
in automobiles. Many telecommunications companies make use of heuristic search in the
management of their workforces, for example BT Group has deployed heuristic search in a
scheduling application that provides the work schedules of 20,000 engineers. The 1990s saw
some of the first attempts to mass-produce domestically aimed types of basic Artificial Intelligence
for education or leisure. This prospered greatly with the Digital Revolution and helped introduce
people, especially children, to a life of dealing with various types of Artificial Intelligence,
specifically in the form of Internet. The evolution of music has always been affected by technology.

1.3.6 Computer-aided Instruction (CAI)

With Al, scientists are trying to make the computer emulate the activities of the skillful musician.
Composition, performance, music theory, sound processing are some of the major areas on
which research in Music and Artificial Intelligence are focusing. The Air Operations Division
uses Al for the rule based expert systems. The AOD has use for artificial intelligence for surrogate
operators for combat and training simulators, mission management aids, support systems for
tactical decision making, and post processing of the simulator data into symbolic summaries.

To truly learn is to digest and make the material one’s own by updating one’s internal models
and using them in new applications. Real-time interaction with a computer providing immediate
feedback and individual guidance is particularly appropriate to this goal. Thus, as computer
hardware costs continue to tumble, the nature of the entire present educational system may be
radically changed.

1.3.7 Learning by Computers

Computers can support the variety of ways learners construct their own understanding. Students
who gather information from the Internet can be self-directed and independent. They can choose
what sources to examine and what connections to pursue. Depending on the parameters set by
teachers, the students may be in complete control of their topics and their explorations.

Students can work through a computer-based activity at their own pace. Rather than 25 individuals
working together on one activity, technology allows independent completion of work. Those

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

who begin to fall behind can receive an instructor’s individualized attention while others can Notes
begin to tackle more complex tasks.

Computer software can mix text, pictures, sound, and motion to provide a variety of options for
learners. Multimedia software will not be the only classroom resource, but it can contribute
richness and variety to student work.

Students can build on their own understanding by using computers as resource tools, as work
stations for individual learning, or as communication channels to share their ideas with other
learners. Individual understanding and experiences must be shared and compared to curriculum
content. By uncovering students’ individual understandings, teachers can determine the influence
of students’ prior knowledge and further their education through new experience.

Computers can be used to assist active experiences — gathering data and resources, conversing
with colleagues, struggling through a challenging puzzle or application — or they can assist in
reflection. For example, while an online conversation through e-mail is an active event, such
discussions usually prompt reflection. They help us think about ideas and check our
understanding. In another reflective application, teachers can enlist computers as authoring
tools for students’ journals which are excellent vehicles for thoughtful examination of experience.

IS

Notes Introducing technology into the learning environment can encourage cooperative
learning and student collaboration. If they are allowed to converse, most students like to
talk about their computer work and share their strategies. Classroom activities that are
structured so that computers encourage collaboration build on learners” desire to
communicate and share their understanding. It takes planning and intervention to build
successful cooperative groups with or without computers, but groups that use computers
as teamwork tools have a better start toward collaborative work.

Beyond the classroom, computer networking allows students to communicate and collaborate
with content experts and with fellow students around the globe. Communication tools like
e-mail, bulletin boards, and chat groups allow teachers to exchange lesson plans and teaching
strategies and create a professional community.

The use of real world tools, relevant experiences, and meaningful data inject a sense of purpose
to classroom activity. Part of the mission of educational institutions is to produce workforce-
ready graduates who can, among other things, manipulate and analyze raw data, critically
evaluate information, and operate hardware and software. This technological literacy imparts a
very important set of vocational skills that will serve students well in the working world.

Technology has allowed schools to provide greater assistance to traditionally underserved
populations. Assistive technology such as voice recognition systems, dynamic Braille displays,
speech synthesizers, and talking books provide learning and communication alternatives for
those who have developmental or physical disabilities. Research has also shown that computer-
mediated communication can ease the social isolation that may be experienced by those with
disabilities. Computers have proved successful in increasing academic motivation and lessening
anxiety among low ability students and learning disabled students, many of whom simply
learn in a manner different from that practiced in a traditional, non-technological classroom.

1.3.8 Voice Recognition (VR)

In computer science, voice recognition is the translation of spoken words into text. It is also

s

known as “automatic speech recognition”, “ASR”, “computer speech recognition”, “speech to

LOVELY PROFESSIONAL UNIVERSITY 9



Introduction to Artificial Intelligence & Expert Systems

10

Notes

text”, or just “STT”. Some SR systems use “training” where an individual speaker reads sections
of text into the SR system. These systems analyze the person’s specific voice and use it to fine
tune the recognition of that person’s speech, resulting in more accurate transcription. Systems
that do not use training are called “Speaker Independent” systems. Systems that use training are
called “Speaker Dependent” systems. Speech recognition applications include voice user interfaces
such as voice dialing (e.g. “Call home”), call routing (e.g. “I would like to make a collect call”),
demotic appliance control, search (e.g. find a podcast where particular words were spoken),
simple data entry (e.g., entering a credit card number), preparation of structured documents
(e.g. a radiology report), speech-to-text processing (e.g., word processors or emails), and aircraft
(usually termed Direct Voice Input). The term “voice recognition” refers to finding the identity
of “who” is speaking, rather than what they are saying. Recognizing the speaker can simplify
the task of translating speech in systems that have been trained on specific person’s voices or it
can be used to authenticate or verify the identity of a speaker as part of a security process.

Self Assessment

State whether the following statements are true or false:

6.  Natural Language Processing (NLP) gives machines the ability to read and understand the
languages that humans speak.

7. Unsupervised learning includes both classification and numerical regression.

8. The Air Operations Division uses Al for the rule based expert systems.

9. Voice Recognition (VR) is also known as “automatic speech recognition” or “speech to
text”.

1.4 Al and Related Fields

The AI may be defined as a branch of Computer Science that is concerned with automation of
intelligent behavior. Its principles include the data structures used and knowledge representation,
the algorithms needed to apply the knowledge, and language and programming techniques
used in their implementation.

1.4.1 Common Techniques Used in Al

Neural Networks: Neural networks are structures that can be “trained” to recognize patterns in
inputs. Neural networks typically take a vector of input values and produce a vector of output
values. Inside, they train weights of “neurons”. Neural networks use supervised learning, in
which inputs and outputs are known and the goal is to build a representation of a function that
will approximate the input to output mapping.

They are a way to implement function approximation: given y, = f(x), y, = f(x,), ..., y, = f(x)),
construct a function f” that approximates f. The approximate function f" is typically smooth: for x’
close to x, we will expect that f'(x’) is close to f'(x). Function approximation serves two purposes:

1. Size: The representation of the approximate function can be significantly smaller than the
true function.

2. Generalization: The approximate function can be used on inputs for which we do not
know the value of the function.

In path finding, the function is f(start, goal) = path. We do not already know the output paths. We
could compute them in some way, perhaps by using A*. But if we are able to compute a path
given (start, goal), then we already know the function f, so why bother approximating it?

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

There is no use in generalizing f because we know it completely. The only potential benefit Notes
would be in reducing the size of the representation of f. The representation of f is a fairly simple

algorithm, which takes little space, so I don’t think that’s useful either. In addition, neural

networks produce a fixed-size output, whereas paths are variable sized.

Genetic Algorithms: Genetic Algorithms allow to explore a space of parameters to find solutions
that score well according to a “fitness function”. They are a way to implement function
optimization: given a function g(x) (where x is typically a vector of parameter values), find the
value of x that maximizes (or minimizes) g(x). This is an unsupervised learning problem. The
right answer is not known beforehand. For path finding, given a starting position and a goal, x
is the path between the two and g(x) is the cost of that path. Simple optimization approaches like
hill-climbing will change x in ways that increase g(x). Unfortunately, in some problems, we
reach “local maxima”, values of x for which no nearby x has a greater value of g, but some
faraway value of x is better. Genetic algorithms improve upon hill-climbing by maintaining
multiple x, and using evolution-inspired approaches like mutation and crossover to alter x. Both
hill-climbing and genetic algorithms can be used to learn the best value of x. For path finding,
however, we already have an algorithm (A¥) to find the best X, so function optimization approaches
are not needed.

Genetic Programming takes genetic algorithms a step further, and treats programs as the
parameters. For example, we would breed path finding algorithms instead of paths, and your
fitness function would rate each algorithm based on how well it does. For path finding, we
already have a good algorithm and we do not need to evolve a new one.

It may be that as with neural networks, genetic algorithms can be applied to some portion of the
path finding problem.

Reinforcement Learning: Like genetic algorithms, Reinforcement Learning is an unsupervised
learning problem. However, unlike genetic algorithms, agents can learn during their lifetimes;
it’s not necessary to wait to see if they “live” or “die”. Also, it’s possible for multiple agents
experiencing different things to share what they’ve learned. Reinforcement learning has some
similarities to the core of A*. In A%, reaching the end goal is propagated back to mark all the
choices that were made along the path; other choices are discarded. In reinforcement learning,
every state can be evaluated and its reward (or punishment) is propagated back to mark all the
choices that were made leading up to that state. The propagation is made using a value function,
which is somewhat like the heuristic function in A*, except that it’s updated as the agents try new
things and learn what works. One of the key advantages of reinforcement learning and genetic
algorithms over simpler approaches is that there is a choice made between exploring new
things and exploiting the information learned so far. In genetic algorithms, the exploration via
mutation; in reinforcement learning, the exploration is via explicitly allowing the probability
of choosing new actions. As with genetic algorithms, we don’t believe reinforcement learning
should be used for the path finding problem itself, but instead as a guide for teaching agents
how to behave in the game world.

1.4.2 Related Fields of Al

Following may be the related fields of AL
(a) Robotics

(b) Computer Vision

(¢) Image Processing

(d) Voice Recognition

(e) Neural Networks

LOVELY PROFESSIONAL UNIVERSITY 11



Introduction to Artificial Intelligence & Expert Systems

12

Notes

(@)

(b)

Artificial Intelligence — Robotics: Robots are a practical application of artificial intelligence
of rapidly growing importance for industrial, domestic, entertainment and military tasks.
The capabilities of today’s robots go far beyond the factory robots of the last century,
whose operations depended on the strictly controlled conditions of an assembly line.
Today’s field and service robots must be able operate in the unstructured world of a shop
floor, a home, a school or a battlefield. Furthermore, the software controlling such machines
must be far more flexible, robust and autonomous than the robot programming languages
of the past. They must be able to be commanded to go about their tasks far more readily
than is today possible. In order to solve such demanding problems, it is not only necessary
to build and test new kinds machines, but also to create new and powerful classes of
algorithms, the general applicability of which can be demonstrated by the successful
operation of those machines on challenging problems. We invite research students to join
us in this important work; skills in electronics, mechanics or software development are
welcome, but an interest in robots is essential!

Artificial Intelligence — Vision: Computer vision is a field that includes methods for
acquiring, processing, analyzing, and understanding images and, in general,
high-dimensional data from the real world in order to produce numerical or symbolic
information, e.g., in the forms of decisions. A theme in the development of this field has
been to duplicate the abilities of human vision by electronically perceiving and
understanding an image. This image understanding can be seen as the disentangling of
symbolic information from image data using models constructed with the aid of geometry,
physics, statistics, and learning theory. Computer vision has also been described as the
enterprise of automating and integrating a wide range of processes and representations
for vision perception.

Applications range from tasks such as industrial machine vision systems which, say,
inspect bottles speeding by on a production line, to research into artificial intelligence and
computers or robots that can comprehend the world around them. The computer vision
and machine vision fields have significant overlap. Computer vision covers the core
technology of automated image analysis which is used in many fields. Machine vision
usually refers to a process of combining automated image analysis with other methods
and technologies to provide automated inspection and robot guidance in industrial
applications.

As a scientific discipline, computer vision is concerned with the theory behind artificial
systems that extract information from images. The image data can take many forms, such
as video sequences, views from multiple cameras, or multi-dimensional data from a
medical scanner.

As a technological discipline, computer vision seeks to apply its theories and models to
the construction of computer vision systems. Examples of applications of computer vision
include systems for:

- Controlling processes, e.g., an industrial robot;

< Navigation, e.g., by an autonomous vehicle or mobile robot;

< Detecting events, e.g., for visual surveillance or people counting;

& Organizing information, e.g., for indexing databases of images and image sequences;

o Modeling objects or environments, e.g., medical image analysis or topographical
modeling;

< Interaction, e.g., as the input to a device for computer-human interaction, and

< Automatic inspection, e.g., in manufacturing applications.

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Overview of Artificial Intelligence

(c)  Artificial Intelligence — Image Processing: We can apply artificial intelligence techniques Notes
in digital image fundamentals, image enhancement, image restoration, morphological
image processing, image segmentation and edge detection, object recognition, image
representation and description, colour image processing, wavelets and multi resolution
processing, image compression.

(d)  Artificial Intelligence — Voice Recognition: Voice recognition has existed in some form or
another since the 1950s, Since then, many other companies have toyed with voice
recognition, including Dragon Dictation, which launched the first speech recognition
software for the PC. Soon after, the telecom industry began creating voice portals, which
were intended to replace customer service representatives by giving information through
voice-activated menus. Instead, they became a nuisance to cell phone users looking for
answers about their overage charges.

Despite these advances, the ability to truly communicate with machines through
conversation remained confined to the realm of science fiction.

The latest advances in voice recognition software have found a niche in the automotive
department. Ford’s SYNC feature debuted in 2007 and has now become a popular offering
across its product line. In last year’s Super Bowl, Chevrolet advertised On Star’s ability to
read live Facebook feeds aloud.

Al for speech recognition involves two basic ideas. Firstly, it involves studying the thought
processes of human beings. Secondly, it deals with representing those processes via
machines (like computers, robots, etc.). Al is behavior of a machine, which, if performed
by a human being, would be called intelligence. It makes machines smarter and more
useful, and is less expensive than natural intelligence. NLP, refers to artificial intelligence
methods of communicating with a computer in a natural language like English. The main
objective of a NLP program is to understand input and initiate action. The input words are
scanned and matched against internally stored known words. Identification of a keyword
causes some action to be taken. In this way, one can communicate with the computer in
one’s language.

(e)  Artificial Intelligence — Neural Network: A neural network is, in essence, an attempt to
simulate the brain. Neural network theory revolves around the idea that certain key
properties of biological neurons can be extracted and applied to simulations, thus creating
a simulated (and very much simplified) brain. The first important thing to understand
then is that the components of an artificial neural network are an attempt to recreate the
computing potential of the brain. The second important thing to understand, however, is
that no one has ever claimed to simulate anything as complex as an actual brain. Whereas
the human brain is estimated to have something on the order of ten to a hundred billion
neurons, a typical Artificial Neural Network (ANN) is not likely to have more than 1,000
artificial neurons. While many types of artificial neural nets exist, most are organized
according to the same basic structure. There are three components to this organization: a
set of input nodes, one or more layers of ‘hidden’ nodes, and a set of output nodes. The
input nodes take in information, and are akin to sensory organs. Whether the information
is in the form of a digitized picture, or a series of stock values, or just about any other form
that can be numerically expressed, this is where the net gets its initial data. The information
is supplied as activation values, that is, each node is given a number, higher numbers
representing greater activation. This is just like human neurons except that rather than
conveying their activation level by firing more frequently, as biological neurons do,
artificial neurons indicate activation by passing this activation value to connected nodes.
After receiving this initial activation, information is then passed through the network.

LOVELY PROFESSIONAL UNIVERSITY 13



Introduction to Artificial Intelligence & Expert Systems

14

Notes

l)

Did u know? The philosophy of artificial intelligence can determine the following:

° A machine can act intelligently? Can it solve any problem that a person would solve
by thinking?
° A human intelligence and machine intelligence are the same? Is the human brain

essentially a computer?

° A machine has a mind, mental states and consciousness in the same sense humans
can do? Can it feel how things are?

° The art of creating machines that perform functions that require intelligence when
performed by people” (Kurzweil, 1990)

2

Task  Create a list of software that can solve the problems intelligently.

Self Assessment

State whether the following statements are true or false:

10.
11.
12.
13.

Neural networks do not use supervised learning.
Genetic Programming takes genetic algorithms and treats programs as the parameters.
Robots are one of the applications of AL

Human brain is estimated to have something on the order of hundred billion neurons
called artificial neural network (ANN).

[0

Lab Exercise 1. Create a list of five existing expert systems and their work domain.

2. Draw a diagram showing knowledge in a system and the place of AL

=

Case Smdy — Application Areas of Al Technology

research. In archaeology, however, it does not (yet) play an important role. In the

past twenty years archaeologists have discussed the potentials of, in particular,

expert systems. They have developed some valuable systems, but the general impression
is that archaeology is not a suitable host discipline for knowledge-based approaches. In
Archaeology and the Application of Artificial Intelligence: case studies on use-wear analysis
of prehistoric flint tools, Dr. M. H. van den Dries sets out to validate this negative conclusion.
She states that since most archaeological applications were mere prototypes and have
never been subjected to objective tests, there is hardly any ground for this rather radical
inference. In order to ground her conclusion objectively, Van den Dries has built two
applications, an expert system and a neural network. She used use-wear analysis of
prehistoric tools as the application area. The main objective of the project was to develop
Contd...

ﬁ rtificial intelligence is an integrated part of our daily life and of many fields in

LOVELY PROFESSIONAL UNIVERSITY




Unit 1: Overview of Artificial Intelligence

a practical training tool for students. As Van den Dries’ aim was to demonstrate the Notes
practical applicability of both applications, they were exposed to two objective tests in
which replicated stone tools as well as prehistoric artefacts were involved. In one test both
experience use-wear analysts and students participated. The outcome of this trail has been
compared with the results of all other blind tests that human use-wear analysts have
carried out hitherto. An important conclusion of Van den Dries” study is that both
applications perform well, but that the expert system is better equipped for educational
tasks, while the neural network approach mainly suits research purposes. Therefore, the
expert system application, called WAVES, has been made operational. It already supports
students of several archaeology departments around the world in learning use-wear
analysis. Based on her findings Van den en Dries subsequently advises archaeologists to
exploit better the merits that artificial intelligence offers them, because it is a means to
record unique and valuable expert knowledge, to obtain objective analysis results and to
democratize archaeological knowledge.

Questions:
1. What are the application areas of Al ?
2. Whatis WAVES ?

1.5 Summary

° Al is a branch of science which deals with helping machines find solution to complex
solutions.

° Al is generally associated with computer science but it has many important links with

other fields such as Mathematics, Psychology and Biology etc.

° It is more general than the “laws of thought” approach, because correct inference is only
a useful mechanism for achieving rationality, and not a necessary one. Second, it is more
amenable to scientific development than approaches based on human behavior or human
thought, because the standard of rationality is clearly defined and completely general.

1.6 Keywords

Artificial Intelligence: Artificial Intelligence is one of the newest disciplines. It was formally
initiated in 1956, when the name was coined, although at that point work had been under way
for about five years.

Expert System: An expert system is a computer system that emulates the decision-making ability
of a human expert. Expert systems are designed to solve complex problems by reasoning about
knowledge, like an expert, and not by following the procedure of a developer as is the case in
conventional programming.

Natural Language: A natural language (or ordinary language) is any language which arises in
an unpremeditated fashion as the result of the innate facility for language possessed by the
human intellect. A natural language is typically used for communication, and may be spoken,
signed, or written.

1.7 Review Questions

1. Explain artificial intelligence with an example.
2. What are the advantages of AI?

3. How does AI help in solving complex problems of computer science?

LOVELY PROFESSIONAL UNIVERSITY 15



Introduction to Artificial Intelligence & Expert Systems

Notes

16

N o @ &

Discuss the role of Al in police interrogation.
Explain the working of any expert systems.
What are the different techniques used in AI?

Can Al software help in determining human behavior?

Answers: Self Assessment

1. True
3. False
5. True
7. False
9. True
11.  True
13.  true

2. True
4. True
6. True
8. True
10. False
12.  True

1.8 Further Readings

N

Books

af

Online links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie). Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

aima.cs.berkeley.edu/

http:/ /interests.caes.uga.edu/eai/ai.html

http:/ /www.ucs.louisiana.edu/~isb9112/dept/phil341 /wisai/ WhatisAL.html
http:/ /www-formal.stanford.edu/jmc/whatisai/

https:/ /www.ai-class.com/

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

Unit 2: Knowledge Notes

CONTENTS
Objectives
Introduction
2.1  General Concepts of Knowledge
2.1.1 Knowledge Progression
2.1.2 Knowledge Model
2.2 Definition and Importance of Knowledge
221 Three Kinds of Knowledge
222 Uses of Knowledge
223 Knowledge-base
2.3 Knowledge-based Systems (KBS)
2.3.1 Characteristics of KBS
232 Structure of a Knowledge-based System
2.3.3 KBS Development
234 Testing
2.3.5  Why Build a Knowledge-based System?
24  Summary
2.5 Keywords
2.6  Review Questions

2.7  Further Readings

Objectives

After studying this unit, you will be able to:
° Discuss the general concepts of Knowledge
° Explain the definition and importance of Knowledge

° Describe the concept of Knowledge-based Systems (KBS)

Introduction

In the previous unit, we dealt with the meaning of Artificial intelligence, its goals and importance,
the early work and common techniques used in Artificial Intelligence. Knowledge is a familiarity
with someone or something, which can include facts, information, descriptions or skills acquired
through experience or education. It can refer to the theoretical or practical understanding of a
subject. It can be implicit (as with practical skill or expertise) or explicit (as with the theoretical
understanding of a subject); it can be more or less formal or systematic. In philosophy, the study
of knowledge is called epistemology; the philosopher Plato famously defined knowledge as

LOVELY PROFESSIONAL UNIVERSITY 17



Introduction to Artificial Intelligence & Expert Systems

18

Notes

“justified true belief.” However, no single agreed upon definition of knowledge exists, though
there are numerous theories to explain it.

The following quote from Bertrand Russell’s “Theory of Knowledge” illustrates the difficulty in
defining knowledge: “The question how knowledge should be defined is perhaps the most
important and difficult of the three with which we shall deal. This may seem surprising: at first
sight it might be thought that knowledge might be defined as belief which is in agreement with
the facts. The trouble is that no one knows what a belief is, no one knows what a fact is, and no
one knows what sort of agreement between them would make a belief true. Let us begin with
belief.” The definition of knowledge is a matter of ongoing debate among philosophers in the
field of epistemology. The classical definition, described but not ultimately endorsed by Plato
specifies that a statement must meet three criteria in order to be considered knowledge: it must
be justified, true, and believed. Some claim that these conditions are not sufficient, as Gettier
case examples allegedly demonstrate.

There are a number of alternatives proposed, including Robert Nozick’s arguments for a
requirement that knowledge ‘tracks the truth” and Simon Blackburn’s additional requirement
that we do not want to say that those who meet any of these conditions ‘through a defect, flaw,
or failure” have knowledge. Richard Kirkham suggests that our definition of knowledge requires
that the evidence for the belief necessitates its truth. In this unit, you will be able to understand
the concepts of knowledge progression and model, importance of knowledge, characteristics
and structure of Characteristics of KBS.

2.1 General Concepts of Knowledge

The theory of knowledge and creativity is an important department of philosophy. It arose
historically with philosophy, as its core, around which everything else was built. This department
of philosophy considers a wide range of problems: the relationship between knowledge and
reality, its sources and driving forces, its forms and levels, the principles and laws of cognitive
activity, and the trends of its development. Philosophy analyses the criteria of the authenticity
of knowledge, its veracity, and also the causes of error, the problems of the practical application
of knowledge.

As selective reflection of the world cognition expresses the highest creative aspirations of human
reason and constitutes the crown of human achievement. Throughout the millennia of its
development humanity has travelled a long road, from the primitive and limited to an
increasingly profound and comprehensive understanding of the essence of existence.

Caution This difficult path has led us to the discovery of innumerable facts, properties and
laws of nature, of social life and man himself, to the building of an extremely complex and
almost unencompassable scientific picture of the world, to the highly sophisticated sphere
of art, to the achievements of modern technology.

Humanity has always striven to acquire new knowledge. The process of mastering the secrets of
existence continues unceasingly and its vector is oriented on the infinite vistas of the future. The
pace and scale of cognitive activity are constantly increasing. Every day is marked by intellectual
advances in a constant quest, which ever more widely and vividly illuminates the remote
horizons of the as yet invisible. We are deluged with new discoveries.

The path travelled by science convinces us that the possibilities of human cognition are limitless.
Our reason perceives the laws of the universe in order to bring them under man’s control, in

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

order to refashion the world in the interests of man and society. Human knowledge is a highly Notes
complex system, a social memory whose wealth is passed on from generation to generation by
means of social heredity.

INFERENCE Control System
ENGINE Interpreter
KNOWLEDGE
BASE

2.1.1 Knowledge Progression

The concept can be understood by the following figure:

Figure 2.1: Knowledge Progression

Organizing Interpretation Understanding
Analyzing Evaluation Principles

Data: Data is viewed as collection of disconnected facts.

' Example: 1t is raining.

Information emerges when relationships among facts are established and understood;

”oou oo

Provides answers to “who”, “what”, “where”, and “when”.

' Example: The temperature dropped 15 degrees and then it started raining.
Knowledge emerges when relationships among patterns are identified and understood;

Provides answers as “how”.

' Example: If the humidity is very high and the temperature drops substantially, then the
atmosphere is unlikely to hold the moisture, so it rains.

Wisdom is the pinnacle of understanding, uncovers the principles of relationships that describe
patterns;

Provides answers as “why”.

'E Example: Encompasses understanding of all the interactions that happen between
raining, evaporation, air currents, temperature gradients, changes, and raining.

LOVELY PROFESSIONAL UNIVERSITY 19



Introduction to Artificial Intelligence & Expert Systems

20

Notes

2.1.2 Knowledge Model

Knowledge modeling is a process of creating a computer interpretable model of knowledge or
standard specifications about a kind of process and/or about a kind of facility or product. The
resulting knowledge model can only be computer interpretable when it is expressed in some
knowledge representation language or data structure that enables the knowledge to be interpreted
by software and to be stored in a database or data exchange file.

Knowledge-based engineering or knowledge-aided design is a process of computer-aided usage
of such knowledge models for the design of products, facilities or processes. The design of
products or facilities then uses the knowledge model to guide the creation of the facility or
product that need to be designed. In other words, it used knowledge about a kind of object to
create a product model of an (imaginary) individual object. Similarly, the design of a particular
process implies the creation of a process model, which design activity can be guided by the
knowledge that is contained in a knowledge model about such a kind of process. The resulting
process model, product model or facility model is typically also stored in a database.

Usually, the knowledge representation language only allows to represent knowledge (about
kinds of things), whereas another language or data structure is required to represent and store
the information models about individual things.

l)

Did u know? 1f the knowledge representation language enables to express both, then the
knowledge model and the information model can be expressed in the same language (or
data structure).

The basis of a knowledge model of an assembly physical object is a decomposition structure that
specifies the components of the assembly and possible the sub-components of the components.

Example: Knowledge about a compressor system includes that a compressor system
consists of a compressor, a lubrication system, etc., whereas a lubrication system consists of a
pump system, etc. Assume that this knowledge is expressed in a knowledge representation
language that expresses knowledge as a collection of relations between two kinds of things,
whereas in that language a relation type is defined that is called <shall have as part a>. Then a
part of a knowledge model about a compressor system will consist of the following expressions
of knowledge facts:

° compressor system shall have as part a compressor
° compressor system shall have as part a lubrication system
° lubrication system shall have as part a pump system

In everyday situations, people make a variety of decisions to act upon. In turn, these decisions
vary based on one’s preferences, objectives and habits. The following example, Figure 2.2 —
Situational Effects, highlights how gender and age play a role in the decision-making process.

As such, many models, like the example of Jim and Jane, can only be executed after having a
profile assigned. A profile is defined as the personnel interpretation of inputs to a model.

KCM incorporate the quantitative and qualitative use of information, and processes tangible
and intangible attributes that contribute to end result. The bridging together of quantitative and
qualitative methods enables KCM to incorporate subjectivity, which is the main differentiator
between information and knowledge.

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

Figure 2.2: Example of Knowledge-based System

il
o o Person =
( Situation ) EEEEEEEEE | Decision ]
\-"—-H_'—‘J/!
(IR EE R R EE EE EE R E R E RN EEEERENERENRNERENEEJSMN]
a —
. .
Jim Ay ( - ]
w ﬁ? Utility
= G ¥ —
|'( What Type

L ofCar? /J ¢
pN -'/ AR
I\ Jane

CRCIE SR A U U R R U R B B I B B B L

’Eza |SPT]

Pl Factor X
|i‘ Situation } 5%5 [ Decisionj
N Factor Y

Self Assessment

State whether the following statements are true or false:

1. The theory of knowledge and creativity is an important department of philosophy.
Humanity has always striven to acquire old knowledge.

KCM incorporate the quantitative and qualitative use of information.

The basis of a knowledge model of an assembly physical object is a decomposition structure.

oo » N

The path travelled by science convinces us that the possibilities of human cognition are
not limitless.

2.2 Definition and Importance of Knowledge

Knowledge encompasses the implicit and explicit restrictions placed upon objects (entities),
operations, and relationships along with general and specific heuristics and inference procedures
involved in the situation being modeled.

Knowledge is to represent reality in thought or experience the way it really is on the basis of
adequate grounds. Knowledge is a description of the world. It determines a system’s competence
by what it knows.

=7

HE

Notes To know something is to think of or experience it as it really is on a solid basis of
evidence, experience, intuition and so forth. Little can be said in general about what
counts as “adequate grounds.” The best one can do is to start with specific cases of
knowledge and its absence in, say, art, chemistry, memory, scripture and logic, and
formulate helpful descriptions of “adequate grounds” accordingly.

LOVELY PROFESSIONAL UNIVERSITY

Notes

21



Introduction to Artificial Intelligence & Expert Systems

22

Notes

“Adequate grounds” may be a variety of things, including scientific evidence, widespread
perception of beauty and excellence in a piece of art, clarity and vividness in recalling something
in the past, and so forth. Different areas of knowledge will have different kinds of evidence
relevant to those areas, and when the evidence reaches a certain level, it becomes adequate to
provide the kind of support one needs to have knowledge of something.

Again, little more can be said in general about what counts as “adequate.” Only by focusing
carefully on particular cases can “adequate” be clarified.

2.2.1 Three Kinds of Knowledge

In addition to these three observations about knowledge, there are three different kinds of
knowledge:

Knowledge by Acquaintance

This happens when we are directly aware of something; e.g. when we see an apple directly
before must or pay attention to our inner feelings, we know these things by acquaintance. One
does not need a concept of an apple or knowledge of how to use the word “apple” in English to
have knowledge by acquaintance with an apple. A baby can see and recognize an apple without
having the relevant concept or linguistic skills. Knowledge by acquaintance is sometimes called
“simple seeing”—being directly aware of something.

Propositional Knowledge

This is knowledge that an entire proposition is true. For example, knowledge that “the object
there is an apple” requires having a concept of an apple and knowing that the object under
consideration satisfies the concept. Propositional knowledge is justified true belief; it believes
something that is true on the basis of adequate grounds.

Know-how

This is the ability to do certain things; e.g. to use apples for certain purposes. We may distinguish
mere know-how from genuine know-how or skill. The latter is know-how based on knowledge
and insight and is characteristic of skilled practitioners in some field. Mere know-how is the
ability to engage in the correct behavioural movements, say, by following the steps in a manual,
with little or no knowledge of why one is performing these movements.

2.2.2 Uses of Knowledge

It’s the information age, as the popular magazines keep reminding us. Our ability to generate,
classify, collect, and exploit data has grown exponentially with the advent of computers and
other technologies.

But how is this information to be used? After the supermarkets have scanned our rewards cards
to gather data on our buying habits, and the Web site purveyors have posted gigabytes of facts,
and the database services have made available every article written in the last 10 years on every
conceivable subject, what do we really know?

The Markkula Center for Applied Ethics has been grappling with these questions as part of
larger preparations for the conference “Ethics and Technology: Access, Accountability, and
Regulation,” held at Santa Clara University June 5 and 6.

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

These issues in ethics reflects those discussions, exploring the uses and limits of knowledge
from several perspectives. “Little Brother is watching You” describes the potential for employers
to read employee e-mail and monitor Web site browsing, and it lays out the pros and cons of
such electronic surveillance.

“When What We Know Outstrips What We Can Do” looks at the issue in a medical context. How
can ethics guide us as science increases our ability to diagnose genetic illnesses for which no cure
exists? To what end should the growing body of information about the human genome be put?

Our Thinking Ethically piece argues that it is not enough simply to fill students” heads with
knowledge. “Like a Bear Robbed of Her Cubs” explores how educating students for compassion
helps them put their knowledge to use.

Among our regular features, we have “The Case of the Million-Dollar Decision,” which examines
the ethical implications for companies expanding into foreign markets where payoffs are an
accepted part of doing business.

2.2.3 Knowledge-base

A knowledge-base is a database used for knowledge sharing and management. It promotes the
collection, organization and retrieval of knowledge. Many knowledge-bases are structured
around artificial intelligence which not only store data but find solutions for further problems
using data from previous experience stored as part of the knowledge-base. Knowledge
management systems depend on data management technologies ranging from relational databases
to data warehouses.

A knowledge-base is not merely a space for data storage, but can be an artificial intelligence tool
for delivering intelligent decisions. Various knowledge representation techniques, including
frames and scripts, represent knowledge. The services offered are explanation, reasoning and
intelligent decision support. Knowledge-based Computer-aided Systems Engineering (KB-CASE)
tools assist designers by providing suggestions and solutions, thereby helping to investigate
the results of design decisions. The knowledge-base analysis and design allows users to frame
knowledge-bases, from which informative decisions are made.

l)

Did u know? Two major types of knowledge-bases are human readable and machine
readable. Human readable knowledge-bases enable people to access and use the knowledge.
They store help documents, manuals, troubleshooting information and frequently answered
questions. They can be interactive and lead users to solutions to problems they have, but
rely on the user providing information to guide the process.

Machine readable knowledge-bases store knowledge, but only in system readable forms.
Solutions are offered based upon automated deductive reasoning and are not as interactive as
this relies on query systems that have software that can respond to the knowledge-base to
narrow down a solution. This means that machine readable knowledge-base information shared
to other machines is usually linear and is limited in interactivity, unlike the human interaction
which is query based.

AN

Caution Knowledge from any text must be well refined for applying the concept of AL

g

Task  Visit www.knowledge.com for various issues involved with knowledge and AL

LOVELY PROFESSIONAL UNIVERSITY

Notes

23



Introduction to Artificial Intelligence & Expert Systems

24

Notes

Self Assessment

State whether the following statements are true or false:
6.  Knowledge determines a system’s competence by what it knows.

7. Different areas of knowledge will have same kinds of evidence relevant to those areas,
and when the evidence reaches a certain level.

8.  Propositional Knowledge is knowledge that an entire proposition is false.
9. Machine readable knowledge-bases store knowledge, but only in system readable forms.

10.  Solutions are offered based upon automated deductive.

2.3 Knowledge-based Systems (KBS)

A knowledge-based system is a computer program that reasons and uses knowledge to solve
complex problems. Knowledge is acquired and represented using various knowledge
representation techniques rules, frames and scripts. The basic advantages offered by such system
are documentation of knowledge, intelligent decision support, self learning, reasoning and
explanation. Knowledge-based systems are systems based on the methods and techniques of
Artificial Intelligence. Their core components are:

° Knowledge base
° Acquisition mechanisms
° Inference mechanisms

KBS Consist of following things:
° Symbolic: 1t incorporates knowledge that is symbolic [as well as numeric].

° Heuristic: It reasons with judgmental, imprecise, and qualitative knowledge as well as
with formal knowledge of established theories.

° Transparent: Its knowledge is simply and explicitly represented in terms familiar to
specialists, and is separate from its inference procedures. It provides explanations of its
line of reasoning and answers to queries about its knowledge.

° Flexible: It is incrementally re-finable and extensible. More details can be specified to
refine its performance; more concepts and links among concepts can be specified to broaden
its range of applicability.

It is an expert system if it provides expert-level solutions. The power lies in task-specific
knowledge.
2.3.1 Characteristics of KBS

Following are the characteristics of the knowledge-based systems:
1.  Expand the knowledge-base for the domain of interest.
Support for heuristics analysis.

Application of search techniques.

L

It is having capability to infer new knowledge from existing knowledge.

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

5. Use the symbol processing approach. Notes
6. Ability to explain its own reasoning.

The KBS can help acting as intelligent assistants to human experts or, in certain cases, even

replacing the human experts.

2.3.2 Structure of a Knowledge-based System

There are three principle roles for those who work with KBS:
(i) End user: Doctor, factory manager, person of the street, etc.

(ii) Knowledge Engineer: The person who designs, classifies, organizes, builds a representation
of the knowledge)

(iii) Constructor of the Tools for the KBS: Typically a programmer

The major components of an Expert System are high level Knowledge-base, Inference Engine
and User Interface.

Knowledge-base: An expert system can give intelligent answers to sufficient knowledge about
the field. The component of the ‘expert system’ that contains the system’s knowledge is called
the knowledge-base. It is a vital component of KBS. The knowledge-base consists of the
declarative knowledge and procedural knowledge.

Declarative knowledge consists of facts about objects, events and situations. Procedural knowledge
consists of courses of action. Knowledge representation is a process of putting the knowledge
into the systems knowledge-base in the form of facts by using the above two types while KBS
uses reasoning to draw the conclusions from stored facts.

Inference Engine: If the system has knowledge, it must be capable of using the knowledge in
appropriate manner. Systems must know how and when to apply the knowledge, i.e. Inference
Engine works as a control programmed to decide the direction of the search in KBS.

The KBS uses different types of search techniques to find the solutions of given problems. Search
is the name given to the process of shifting through alternative solutions to reach the Goal state.
The search is carried through search space. Problem is moved from Initial State to Goal State
through state space. The Inference Engine ‘decides” which heuristic search techniques are used to
determine and how the rules in the knowledge-base are to be applied to the problem. Inference
Engine is independent of the knowledge-base.

User Interface: User must have communicated with the system. KBS helps its user to communicate
with it is known as “user interface” in form of bi-directional communication. The system should
be able to ask much information to arrive at a solution or the user want to know the reasoning
about the facts. Thus, it is important to have a user interface that can be used by common people.

2.3.3 KBS Development

The development of a KBS may require a team of several people working together.
There are two types of people involved in the development of the expert system.
1. Domain Experts: Domain Experts provide the information for the Knowledge-base.

2. Knowledge Engineers: Knowledge Engineer develops the Knowledge-based System.

LOVELY PROFESSIONAL UNIVERSITY 25



Introduction to Artificial Intelligence & Expert Systems

26

Notes

The following are the different stages in the development of KBS:

° Identification

° Conceptualization
° Formalization

° Implementation

2.3.4 Testing

Testing is the process in which the knowledge-base systems are checked. Following are the
phases in the testing process:

Identification: In this phase, Knowledge Engineer and Domain Expert work together closely to
describe the problem that the KBS expected to solve. Such interactive procedure is typical of the
entire KBS development process. Additional resources, such as other experts and knowledge
engineers and reference journals are also identified in the identification stage.

Conceptualization: This stage involves analyzing the problem. Knowledge Engineer represents
graphical representation of the relationship between the objects and the process in the problem
domain. The problem is decomposed in to sub-problems and their interrelationships are properly
conceptualized. Then the identification stage is revised again. Such interactive process can occur
in any stage of development.

Formalization: Both identification and conceptualization are concerned on understanding the
problem. The process of formalization means that the problem is connected to its KBS, by
analyzing the relation mentioned in conceptualization. Knowledge Engineer selects the
development techniques that are appropriate to required KBS. It must be familiar with different
types of Al techniques, i.e. heuristic search techniques and knowledge representation mechanisms
that are used in the development of KBS.

Implementation: During the implementation stage of KBS, Knowledge Engineer determines
whether correct techniques were chosen or not. Otherwise the knowledge engineer has tore
formalize the concepts or use new development tools.

Testing: Testing provides an opportunity to the knowledge engineer to identify the strengths
and weaknesses of the system that will lead to identify and see whether any modifications are
required.

This structure of Expert Systems is most closely matched by the structure of logical programming
(its computational model). In a logic programming language such as LISP and PROLOG, PROLOG
statements are relations of a restricted form called “Clauses” and the execution of such program
is a suitably controlled logic deduction from the Clauses forming the program. A Clause is a
well formed Formula consisting of Conjunction and Disjunction of Literals.

The following logic program for family has three Conditions of four Clauses:
° Father (Bill, John)

° Father (John, Tom)

° Grandfather (X, Z): father (X, Y), mother (Y, Z)

° Grandfather (X, Z): father (X, Y), father (Y, Z)

The first two clauses define that Bill is the father of John, second two clauses use the variables X,
Y and Z to represent (express) the rule that if X is the grandfather of Z, if X is the father of Y and

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

Y is either the mother or father of Z. Such a program can be asked a range of questions—from “Is Notes
John, the father of Tom?” [Father (John, Tom)?] To “Is there any A who is the grandfather of C?”
[Grandfather (A, C)?] .

The possible operation of computer based on logic is illustrated in the following using the
family tree program. Execution of, for example, “Grandfather (Bill, R)?” will match each
“Grandfather ()”Clause.

Grandfather (X = Bill, Z = R): father (Bill, Y), mother (Y, R).
Grandfather (X = Bill, Z = R): father (Bill, Y), father (Y, R).

Both clauses will attempt in parallel to satisfy their Goals, such a concept is called OR — Parallelism.
The first clause will fail being unable to satisfy its goal, search will continues to the second
clause, i.e. called OR - Parallelism.

The first clause will fail being unable to satisfy the “Mother ()” goal from the program. The
second goal has “Father ()”, “Mother ()”, which is an attempt to solve in parallel: such a concept
is called AND parallelism. The latter concept involves Pattern Matching methods and substitution
to satisfy both the individual goals.

Grandfather (X = Bill, Z = R)

: father (Bill, Y), father (Y, R).

: father (Bill, Y = John), father (Y = Bill, R = John).
And the Overall Consistency

: father (Bill, Y = John), father (Y = John, R = Tom).

Computers Organization Supporting Expert Systems are a highly microprogrammed (Control
Flow Based). PROLOG machines analogous to current LISP machines through we can expect a
number of such designs in the near feature. The PROLOG machines are not TRUE Logic Machines,
just as LISP Machines are not considered reduction machines linked by a Common Logic Machine
language and architecture.

2.3.5 Why Build a Knowledge-based System?

Following are the reasons to build knowledge-based systems:
° To decrease cost or increase quality of goods and services.

° Magnify availability of expertise.

° Provide expertise to less experienced personnel.

° Avoid delays when expertise is needed.

° Provide expertise in locations where it is not available.

° Fuse different sources of knowledge.

° Encode corporate knowledge.

° Provide consistency and availability over time.

° Automate some routine decision-making or bookkeeping tasks.
° Keep records of decisions and actions.

° Provide a reliable database for later analysis.

LOVELY PROFESSIONAL UNIVERSITY 27



Introduction to Artificial Intelligence & Expert Systems

28

Notes

Self Assessment

State whether the following statements are true or false:

11. Knowledge-based systems are systems which are not based on the methods and techniques
of Artificial Intelligence.

12.  The development of a KBS may require a team of several people working together.
13.  Testing is the process in which the knowledge-base systems are checked.

14.  End User are the person who designs, classifies, organizes, builds a representation of the
knowledge.

15.  Domain Experts provide the information for the Knowledge-base.

2.4 Summary

° Knowledge is a progression that starts with data which is of limited utility.

° Data and information deal with the past; they are based on the gathering of facts and
adding context.

° Knowledge encompasses the implicit and explicit restrictions placed upon objects (entities),
operations, and relationships along with general and specific heuristics and inference
procedures involved in the situation being modelled.

° A knowledge-base is a database used for knowledge sharing and management.

° The Knowledge-based System division carries out research and development in selected
sub fields of Artificial Intelligence.

° Knowledge-based System is a computer program designed to act as an expert in specific
field of knowledge.

2.5 Keywords

Acquaintance: Acquaintance knowledge by acquaintance is obtained through a direct causal
(experience-based) interaction between a person and the object that person perceives.

Heuristic Methods: Heuristic method refers to experience-based techniques for problem-solving,
learning, and discovery.

Inferential Knowledge: Inferential knowledge is based on reasoning from facts or from other
inferential knowledge such as a theory. Such knowledge may or may not be verifiable by
observation or testing.

LISP: LISP is a family of computer programming languages with a long history and a distinctive,
fully parenthesized Polish prefix notation.

Procedural Knowledge: Also known as imperative knowledge, it is the knowledge exercised in
the performance of some task.

PROLOG: PROLOG is a general purpose logic programming language associated with artificial
intelligence and computational linguistics.

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Knowledge

2.6 Review Questions Notes

1.  Explain knowledge with respect to Artificial Intelligence.
Why should knowledge be extracted carefully?

What are the different types of knowledge?

What are the applications of knowledge?

How is the KBS established?

S 9w N

What are the necessary actions for KBS development?

Answers: Self Assessment

1. True 2. False
3. True 4. True
5. False 6. True
7. False 8. False
9. True 10. True
11. False 12.  True
13.  True 14. False
15.  True

2.7 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.
A
v. L,
Online links ~ http:/ /arantxa.ii.uam.es/~modonnel/IC/02_Structure.pdf
http:/ /www jblearning.com/catalog /9780763776473 /

http:/ /www.mels.gouv.qc.ca/progression/index_en.asp

http://www.reidgsmith.com/Knowledge-Based_Systems_-_Concepts_
Techniques_Examples_08-May-1985.pdf

http:/ /www.tmrfindia.org/eseries/ebookV1-C1.pdf

LOVELY PROFESSIONAL UNIVERSITY 29



Introduction to Artificial Intelligence & Expert Systems

30

Notes

Unit 3: Representation of Knowledge

CONTENTS
Objectives
Introduction
3.1 Knowledge Representation Techniques
311 Semantic Nets
3.1.2 Frames and Scripts
3.1.3 Logic
314 Facts and Rules
3.1.5 Statistics
3.1.6 Neural Networks
3.1.7 Mixed Approaches
3.2 Knowledge Organization
321 Factors
322 Chaining
3.2.3 Software Architecture
324  Theories of Knowledge is Represented and Organized
3.2.5 Participants
3.3 Knowledge Manipulation
3.3.1 The Turing Test
3.4 Knowledge Acquisition
341 Types of Learning
342 Knowledge Acquisition Problem
3.4.3 Knowledge Acquisition Represented and Organized
3.5 Summary
3.6 Keywords
3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you will be able to:

° Identify Knowledge Representation Techniques
° Discuss the concept of Knowledge Organization
° Describe Knowledge Manipulation

° Explain Knowledge Acquisition

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

Introduction Notes

In the previous unit, we dealt with the concepts of knowledge progression and model, importance
of knowledge, characteristics and structure of characteristics of KBS.

Knowledge Representation (KR) is an area of artificial intelligence research aimed at representing
knowledge in symbols to facilitate inferencing from those knowledge elements, creating new
elements of knowledge. The KR can be made to be independent of the underlying knowledge
model or KBS such as a semantic network.

Knowledge Representation (KR) research involves analysis of how to reason accurately and
effectively and how best to use a set of symbols to represent a set of facts within a knowledge
domain. A symbol vocabulary and a system of logic are combined to enable inferences about
elements in the KR to create new KR sentences. Logic is used to supply formal semantics of how
reasoning functions should be applied to the symbols in the KR system. Logic is also used to
define how operators can process and reshape the knowledge. Examples of operators and
operations include negation, conjunction, adverbs, adjectives, quantifiers and modal operators.
The logic is interpretation theory. These elements — symbols, operators, and interpretation
theory — are what give sequences of symbols meaning within a KR.

A key parameter in choosing or creating a KR is its expressivity. The more expressive a KR, the
easier and more compact it is to express a fact or element of knowledge within the semantics and
grammar of that KR. However, more expressive languages are likely to require more complex
logic and algorithms to construct equivalent inferences. A highly expressive KR is also less
likely to be complete and consistent. Less expressive KRs may be both complete and consistent.
Autoepistemic temporal modal logic is a highly expressive KR system, encompassing meaningful
chunks of knowledge with brief, simple symbol sequences (sentences). Propositional logic is
much less expressive but highly consistent and complete and can efficiently produce inferences
with minimal algorithm complexity. Nonetheless, only the limitations of an underlying
knowledge base affect the ease with which inferences may ultimately be made (once the
appropriate KR has been found). This is because a knowledge set may be exported from a
knowledge model or KBS into different KRs, with different degrees of expressiveness,
completeness, and consistency. If a particular KR is inadequate in some way, that set of
problematic KR elements may be transformed by importing them into a KBS, modified and
operated on to eliminate the problematic elements or augmented with additional knowledge
imported from other sources, and then exported into a different, more appropriate KR. In this
unit, you will understand the concepts of knowledge representation techniques along with the
knowledge organization, manipulation and acquisition.

3.1 Knowledge Representation Techniques

In applying KR systems to practical problems, the complexity of the problem may exceed the
resource constraints or the capabilities of the KR system. Recent developments in KR include the
concept of the Semantic Web, and development of XML-based knowledge representation
languages and standards, including Resource Description Framework (RDF), RDF Schema, Topic
Maps, DARPA Agent Markup Language (DAML), Ontology Inference Layer (OIL), and Web
Ontology Language (OWL).

There are several KR techniques such as frames, rules, tagging, and semantic networks which
originated in cognitive science. Since knowledge is used to achieve intelligent behavior, the
fundamental goal of knowledge representation is to facilitate reasoning, inferencing, or drawing
conclusions. A good KR must be both declarative and procedural knowledge. What is knowledge

LOVELY PROFESSIONAL UNIVERSITY 31



Introduction to Artificial Intelligence & Expert Systems

32

Notes

representation can best be understood in terms of five distinct roles it plays, each crucial to the
task at hand:

° KR is most fundamentally a surrogate, a substitute for the thing itself, used to enable an
entity to determine consequences by thinking rather than acting, i.e., by reasoning about
the world rather than taking action in it.

° It is a set of ontological commitments, i.e., an answer to the question: In what terms should
I think about the world?

° It is a fragmentary theory of intelligent reasoning, expressed in terms of three components:
(i) the representation’s fundamental conception of intelligent reasoning; (ii) the set of
inferences the representation sanctions; and (iii) the set of inferences it recommends.

° It is a medium for pragmatically efficient computation, i.e., the computational environment
in which thinking is accomplished. One contribution to this pragmatic efficiency is supplied
by the guidance a representation provides for organizing information so as to facilitate
making the recommended inferences.

° It is a medium of human expression, i.e., a language in which we say things about the
world.”

3.1.1 Semantic Nets

A semantic net (or semantic network) is a knowledge representation technique used for
propositional information. So it is also called a propositional net. Semantic nets convey meaning.
Semantic nets are two dimensional representations of knowledge. Mathematically, a semantic
net can be defined as a labeled directed graph.

Semantic nets consist of nodes, links (edges) and link labels. In the semantic network diagram,
nodes appear as circles or ellipses or rectangles to represent objects such as physical objects,
concepts or situations. Links appear as arrows to express the relationships between objects, and
link labels specify particular relations. Relationships provide the basic structure for organizing
knowledge. The objects and relations involved need not be so concrete. As nodes are associated
with other nodes semantic nets are also referred to as associative nets.

Figure 3.1: Diagram of Semantic Networks

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

In the Figure 3.1 all the objects are within ovals and connected using labelled arcs. Note that Notes
there is a link between Jill and FemalePersons with label MemberOf. Similarly, there is a

MemberOf link between Jack and MalePersons and SisterOf link between Jill and Jack. The

MemberOf link between Jill and FemalePersons indicates that Jill belongs to the category of

female persons.

Inheritance Reasoning

Unless, there is a specific evidence to the contrary, it is assumed that all members of a class
(category) will inherit all the properties of their superclasses. So semantic network allows us to
perform inheritance reasoning. For example, Jill inherits the property of having two legs as she
belongs to the category of FemalePersons which, in turn, belongs to the category of Persons
which has a boxed Legs link with value 2. Semantic nets allows multiple inheritance. So an
object can belong to more than one category and a category can be a subset of more than one
another category.

Inverse Links

Semantic network allows a common form of inference known as inverse links. For example, we
can have a HasSister link which is the inverse of SisterOf link. The inverse links make the job of
inference algorithms much easier to answer queries such as who the sister of Jack is. On
discovering that HasSister is the inverse of SisterOf the inference algorithm can follow that link
HasSister from Jack to Jill and answer the query.

Disadvantage of Semantic Nets

One of the drawbacks of semantic network is that the links between the objects represent only
binary relations. For example, the sentence Run(ChennaiExpress, Chennai,Bangalore, Today)
cannot be asserted directly.

There is no standard definition of link names.
Advantages of Semantic Nets
Semantic nets have the ability to represent default values for categories. In the figure, Jack has

one leg while he is a person and all persons have two legs. So persons have two legs has only
default status which can be overridden by a specific value.

° Semantic nets convey some meaning in a transparent manner.
° Semantic nets are simple and easy to understand.
° Semantic nets are easy to translate into PROLOG.

3.1.2 Frames and Scripts

Two other popular knowledge representation formalisms are frames and scripts. Although,
these were developed independently (both originating in the early 1970s), and are different in
important ways, they have sufficient similarities to be considered together. One influential
proponent of frame-based systems is Marvin Minsky (1975); a champion of script-based systems
is Roger Schank (see Schank and Abelson, 1977). The key idea involved in both frames and
scripts is that our knowledge of concepts, events, and situations is organized around expectations
of key features of those situations.

LOVELY PROFESSIONAL UNIVERSITY 33



Introduction to Artificial Intelligence & Expert Systems

34

Notes

Example: Consider a stereotypical situation, such as going to hear a lecture. One’s
knowledge of what might go on during such an event is based on assumptions. For instance, it
can be assumed that the person who actually delivers the lecture is likely to be identical with the
person advertised; that the lecturer’s actual time of arrival is not more than a few minutes after
the advertised start; that the duration of the lecture is unlikely to exceed an hour and a half at the
maximum; and so on. These and other expectations can be encoded in a generic ‘lecture frame’ to
be modified by what actually occurs during a specific lecture. This frame will include various
slots, where specific values can be entered to describe the occasion under discussion. For example,
a lecture frame may include slots for ‘room location’, ‘start time’, ‘finish time’, and so on.

Scripts were developed in the early Al work by Roger Schank, Robert P. Abelson and their
research group, and are a method of representing procedural knowledge. They are very much
like frames, except the values that fill the slots must be ordered. A script is a structured
representation describing a stereotyped sequence of events in a particular context. Scripts are
used in natural language understanding systems to organize a knowledge base in terms of the
situations that the system should understand.

3.1.3 Logic

Propositional Logic

The following is a brief summary of propositional logic, intended only as a reminder to those
who have taken a course in elementary logic.

Language

Propositional logic is the logic of propositional formulas. Propositional formulas are constructed
from a set var of elementary or ‘atomic’ propositional variables p, q, and so on, with the
connectives:

(negation, ‘not’), N (conjunction, ‘and’), _ (disjunction, ‘or’), ! (implication, ‘if . . . then’), and $
(equivalence, ‘if and only if"). If “ and are formulas, then so are:” and:, (‘*), ("_), ("!), and (* $). So p
is a formula,:(p ” q) and q _ (q ":(r !:p)) are formulas, but pq is not a formula, and neither are p
q!and p: _r. We add the simple symbol ? which is called the falsum. We write this definition in
Backus-Naur Form (BNF) notation, as follows:

[Lprop] =:=pj?j"j (A )j(_)jC1)j($")
This means that a formula “ can be an atom p, the falsum ?, or a complex expression of the other

forms, whereby its sub-expressions themselves must be formulas. The language of propositional
logic is called Lprop.

Brackets are important to ensure that formulas are unambiguous. The sentence p _ q  r could be
understood to mean either (p _ q) ~ r or p _ (q " r), which are quite different insofar as their
meaning is concerned. We omit the outside brackets, so we do not write ((p _ q) " 1).

The symbols ‘; _;::: are formula variables. So, if it is claimed that the formula ‘ _:" is a tautology,
it means that every propositional formula of that form is a tautology. This includes p _:p, (p !:q)
_:(p :q) and any other such formula. In a similar way, we formulate axiom schemata and inference
rules by means of formula variables. If “ ! (! /) is an axiom scheme, then every formula of that
form is an axiom, such as (p " q) ! (:q ! (p  q)). And an inference rule that allows us to infer
* _ from “ allows us to infer p _ (q $ r) from p, and so on.

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

Truth Values and Truth Tables Notes

In propositional logic, the models are (truth) valuations. A truth valuation determines which
truth value the atomic propositions get. It is a function v: var ! f0; 1g, where var is the non-empty
set of atomic propositional variables. A proposition is true if it has the value 1, and false if it has
the value 0. The truth value of falsum is always 0, so v(?) = 0 for every valuation v.

Whether a complex propositional formula is true in a given model (valuation) can be calculated
by means of truth functions, that take truth values as input and give truth values as output. To
each logical connective corresponds a truth function. They are defined as follows:

£:(1) =0 £(0) = 1

fA(L; 1) = 1 £A(1;0) = 0 £A(0; 1) = 0 £7(0; 0) = 0
f(1;1)=1f(1;00=1£(0;1)=1f(0;0)=0
f1(1;1) = 1 £1(1; 0) = 0 £1(0; 1) = 1 f1(0; 0) = 1
£5(1; 1) = 1 £$(1; 0) = 0 £$(0; 1) = 0 £$(0; 0) = 1

' Example: If v(p) = 1 and v(q) = 0, then the propositional formula (p ! q) ~:q is false. To see
that this is the case, firstly, we calculate the truth value of p ! q, which is fl(v(p); v(q)) = fI(1; 0) =
0, so p ! qis false. Secondly, we calculate the truth value of :q, which is f:(v(q)) = £:(0) = 1, so:q is
true.

A fact must start with a predicate (which is an atom) and end with a fullstop. The predicate may
be followed by one or more arguments which are enclosed by parentheses. The arguments can
be atoms (in this case, these atoms are treated as constants), numbers, variables or lists. Arguments
are separated by commas.

If we consider the arguments in a fact to be objects, then the predicate of the fact describes a
property of the objects. In a Prolog program, a presence of a fact indicates a statement that is true.
An absence of a fact indicates a statement that is not true.

3.1.4 Facts and Rules

A rule can be viewed as an extension of a fact with added conditions that also have to be satisfied
for it to be true. It consists of two parts. The first part is similar to a fact (a predicate with
arguments). The second part consists of other clauses (facts or rules which are separated by
commas) which must all be true for the rule itself to be true. These two parts are separated by
“:=”. You may interpret this operator as “if” in English.

A program describes the relationships of the members in a family

father (jack, susan). /* Fact 1 */

father (jack, ray). /* Fact 2 */
father (david, 1liza). /* Fact 3 */
father (david, Jjohn). /* Fact 4 */
father (john, peter). /* Fact 5 */
father (john, mary). /* Fact 6 */
mother (karen, susan). /* Fact 7 */
mother (karen, ray). /* Fact 8 */
mother (amy, liza). /* Fact 9 */
mother (amy, Jjohn). /* Fact 10 */
mother (susan, peter). /* Fact 11 */
mother (susan, mary). /* Fact 12 */
parent (X, Y):- father(X, Y). /* Rule 1 */
parent (X, Y):- mother(X, Y). /* Rule 2 */
grandfather (X, Y):- father(X, 2), parent(z, Y). /* Rule 3 */

LOVELY PROFESSIONAL UNIVERSITY 35



Introduction to Artificial Intelligence & Expert Systems

36

Notes

grandmother (X, Y):- mother (X, 2Z), parent(z, Y). /* Rule 4 */
grandparent (X, Y):- parent(X, Z), parent(z, Y). /* Rule 5 */
veye (X, Y):- father(X, Z), father(z, Y). /* Rule 6 */
mama (X, Y):- mother(X, Z), father(z, Y). /* Rule 7 */
gunggung (X, Y):- father(X, Z), mother(Z, Y). /* Rule 8 */
popo (X, Y):- mother(X, Z), mother(z, Y). /* Rule 9 */

Take Rule 3 as an example. It means that “grandfather (x, Y)” is true if both “father (X,
7)” and “parent (z, X)” are true. The comma between the two conditions can be considered as
a logical-AND operator.

You may see that both Rules 1 and 2 start with “parent (x, v)”. When will “parent (x, v)”

be true? The answer is any one of these two rules is true. This means that “parent (x, Y)” is
true when “father (x, Y)” is true, or “mother (X, Y)” is true.

3.1.5 Statistics

Statistics is the study of the collection, organization, analysis, interpretation, and presentation
of data. It deals with all aspects of this, including the planning of data collection in terms of the
design of surveys and experiments. The word statistics, when referring to the scientific discipline,
is singular, as in “Statistics is an art.” This should not be confused with the word statistic,
referring to a quantity (such as mean or median) calculated from a set of data, whose plural is
statistics.

Some consider statistics a mathematical body of science that pertains to the collection, analysis,
interpretation or explanation, and presentation of data, while others consider it a branch of
mathematics concerned with collecting and interpreting data. Because of its empirical roots and
its focus on applications, statistics is usually considered a distinct mathematical science rather
than a branch of mathematics.

IS

Notes Much of statistics is non-mathematical: ensuring that data collection is undertaken
in a way that produces valid conclusions; coding and archiving data so that information is
retained and made useful for international comparisons of official statistics; reporting of
results and summarised data (tables and graphs) in ways comprehensible to those who
must use them; implementing procedures that ensure the privacy of census information.

Statisticians improve data quality by developing specific experiment designs and survey samples.
Statistics itself also provides tools for prediction and forecasting the use of data and statistical
models. Statistics is applicable to a wide variety of academic disciplines, including natural and
social sciences, government, and business. Statistical consultants can help organizations and
companies that don’t have in-house expertise relevant to their particular questions.

3.1.6 Neural Networks

The term “neural network” was traditionally used to refer to a network or circuit of biological
neurons. The modern usage of the term often refers to artificial neural networks, which are
composed of artificial neurons or nodes. Thus, the term may refer to either biological neural
networks, made up of real biological neurons, or artificial neural networks, for solving artificial
intelligence problems.

Neural networks are a form of multiprocessor computer system, with
° simple processing elements

° a high degree of interconnection

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

° simple scalar messages Notes
° adaptive interaction between elements

A biological neuron may have as many as 10,000 different inputs, and may send its output (the
presence or absence of a short-duration spike) to many other neurons. Neurons are wired up in
a 3-dimensional pattern.

l)

Did u know? Real brains are orders of magnitude more complex than any artificial neural
network so far considered.

3.1.7 Mixed Approaches

Certainly, all previous mentioned ways can be combined. This combination represents a powerful
but complicated solution. The problem is the data exchange between the different methods.
Here potent interfaces must be created.

Self Assessment

State whether the following statements are true or false:

1.  The KR cannot be made to be independent of the underlying knowledge model or
knowledge base system (KBS).

2. A knowledge representation (KR) is most fundamentally a surrogate.

3. Semantic nets are simple and easy to understand.

3.2 Knowledge Organization

Knowledge management has become such a hot topic that it has been dubbed the business
mantra of the 1990s (Halal, 1998). It primarily addresses the growing importance of knowledge
management for private sector organizations, but clearly knowledge-generating organizations
such as federal science management and research agencies can not only benefit from this literature
but also play a leadership role in furthering theory and practice in this area. Although, these
knowledge-oriented organizations have been in the business of creating and furthering
knowledge development, they have not necessarily developed and articulated a systemic
approach to knowledge management. This is a critical omission that should be corrected. Of all
the management topics of potential relevance to public science organizations, this may be one
of the most useful areas to pursue. Knowledge management is central to public science
organizations. Although, knowledge management has become a highly prominent topic, the
term remains rather ambiguous and controversial, impeding progress in articulating what
knowledge management entails and what knowledge-based organizations will look like.

AN

Caution Many have questioned whether knowledge management is, or will ever become,
a useful concept with practical application; others proclaim it is already the pivotal driver
of organizational success and will only become more important in the future. The latter
point of view is persuasive, but there is a long way to go in clarifying and articulating the
concept of knowledge management.

LOVELY PROFESSIONAL UNIVERSITY 37



Introduction to Artificial Intelligence & Expert Systems

38

Notes

The belief that knowledge management is destined to become the key to future economic
success is based on the following logic:

(i) Many prominent scholars note that a new economic era, referred to as the knowledge-
based economy, is already underway. In this new economy, knowledge is the source of
wealth. It is assumed, therefore, that knowledge management will be the new work of
organizations.

(ii) Knowledge management represents a logical progression beyond information
management. Information technologies, at long last, have demonstrated a notable impact
on organizational performance. Many believe that the next generation of information
technology/artificial intelligence products will increasingly enable knowledge
management, in contrast to information management, and, as such, will have a far bigger
impact on organizational performance.

(iii) Knowledge management can also be seen as representing a culmination and integration
of many earlier organization development ideas, e.g. total quality, re-engineering,
organizational learning, benchmarking, competitive intelligence, innovation,
organizational agility, asset management, supply chain management, change management,
etc.). It encapsulates these concepts into a larger, more holistic perspective that focuses on
effectively creating and applying knowledge.

3.2.1 Factors

MYCIN was an early expert system that used artificial intelligence to identify bacteria causing
severe infections, such as bacteremia and meningitis, and to recommend antibiotics, with the
dosage adjusted for patient’s body weight—the name derived from the antibiotics themselves,
as many antibiotics have the suffix “-mycin”. The Mycin system was also used for the diagnosis
of blood clotting diseases.

MYCIN was developed over five or six years in the early 1970s at Stanford University. It was
written in Lisp as the doctoral dissertation of Edward Shortliffe under the direction of Bruce
Buchanan, Stanley N. Cohen and others. It arose in the laboratory that had created the earlier
Dendral expert system.

MYCIN was never actually used in practice but research indicated that it proposed an acceptable
therapy in about 69% of cases, which was better than the performance of infectious disease
experts who were judged using the same criteria.

MYCIN was never actually used in practice. This wasn’t because of any weakness in its
performance. As mentioned, in tests it outperformed members of the Stanford medical school
faculty. Some observers raised ethical and legal issues related to the use of computers in
medicine—if a program gives the wrong diagnosis or recommends the wrong therapy, who
should be held responsible? However, the greatest problem, and the reason that MYCIN was
not used in routine practice, was the state of technologies for system integration, especially at
the time it was developed. MYCIN was a stand-alone system that required a user to enter all
relevant information about a patient by typing in response to questions that MYCIN would
pose. The program ran on a large time-shared system, available over the early Internet (ARPANet),
before personal computers were developed. In the modern era, such a system would be integrated
with medical record systems, would extract answers to questions from patient databases, and
would be much less dependent on physician entry of information. In the 1970s, a session with
MYCIN could easily consume 30 minutes or more—an unrealistic time commitment for a busy
clinician.

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

3.2.2 Chaining Notes

Chaining is an instructional procedure used in behavioral psychology, experimental analysis of
behavior and applied behavior analysis. It involves reinforcing individual responses occurring
in a sequence to form a complex behavior. It is frequently used for training behavioral sequences
(or “chains”) that are beyond the current repertoire of the learner.

The chain of responses is broken down into small steps using task analysis. Parts of a chain are
referred to as links. The learner’s skill level is assessed by an appropriate professional and is
then either taught one step at a time while being assisted through the other steps forward or
backwards or if the learner already can complete a certain percentage of the steps independently,
the remaining steps are all worked on during each trial total task. A verbal stimulus or prompt
is used at the beginning of the teaching trial. The stimulus change that occurs between each
response becomes the reinforcer for that response as well as the prompt/stimulus for the next
response without requiring assistance from the teacher.

Example: In purchasing a soda you pull the money out of your pocket and see the
money in your hand and then put the money in the machine. Seeing the money in your hand
both was the reinforcer for the first response (getting money out of pocket) and was what
prompted you to do the next response (putting money in machine).

As small chains become mastered, i.e. are performed consistently following the initial
discriminative stimulus prompt, they may be used as links in larger chains. (e.g. teach hand
washing, tooth brushing, and showering until mastered and then teach morning hygiene routine
which includes the mastered skills). Chaining requires that the teachers present the training
skill in the same order each time and is most effective when teachers are delivering the same
prompts to the learner. The most common forms of chaining are backward chaining, forward
chaining, and total task presentation.

3.2.3 Software Architecture

Software application architecture is the process of defining a structured solution that meets all of
the technical and operational requirements, while optimizing common quality attributes such
as performance, security, and manageability. It involves a series of decisions based on a wide
range of factors, and each of these decisions can have considerable impact on the quality,
performance, maintainability, and overall success of the application. Their definition is:

“Software architecture encompasses the set of significant decisions about the organization of a software
system including the selection of the structural elements and their interfaces by which the system is
composed; behavior as specified in collaboration among those elements; composition of these structural and
behavioral elements into larger subsystems; and an architectural style that guides this organization. Software
architecture also involves functionality, usability, resilience, performance, reuse, comprehensibility, economic
and technology constraints, trade-offs and aesthetic concerns.”

Like any other complex structure, software must be built on a solid foundation. Failing to
consider key scenarios, failing to design for common problems, or failing to appreciate the long
term consequences of key decisions can put your application at risk. Modern tools and platforms
help to simplify the task of building applications, but they do not replace the need to design
your application carefully, based on your specific scenarios and requirements. The risks exposed
by poor architecture include software that is unstable, is unable to support existing or future
business requirements, or is difficult to deploy or manage in a production environment.

LOVELY PROFESSIONAL UNIVERSITY 39



Introduction to Artificial Intelligence & Expert Systems

40

Notes

Systems should be designed with consideration for the user, the system (the IT infrastructure),
and the business goals. For each of these areas, you should outline key scenarios and identify
important quality attributes (for example, reliability or scalability) and key areas of satisfaction
and dissatisfaction. Where possible, develop and consider metrics that measure success in each
of these areas.

Figure 3.2: User, Business and System Goals

/

User

Trade-offs are likely, and a balance must often be found between competing requirements
across these three areas. For example, the overall user experience of the solution is very often a
function of the business and the IT infrastructure, and changes in one or the other can significantly
affect the resulting user experience. Similarly, changes in the user experience requirements can
have significant impact on the business and IT infrastructure requirements. Performance might
be a major user and business goal, but the system administrator may not be able to invest in the
hardware required to meet that goal 100 percent of the time. A balance point might be to meet
the goal only 80 percent of the time.

Architecture focuses on how the major elements and components within an application are used
by, or interact with, other major elements and components within the application. The selection
of data structures and algorithms or the implementation details of individual components are
design concerns. Architecture and design concerns very often overlap. Rather than use hard and
fast rules to distinguish between architecture and design, it makes sense to combine these two
areas. In some cases, decisions are clearly more architectural in nature. In other cases, the decisions
are more about design, and how they help you to realize that architecture.

3.2.4 Theories of Knowledge is Represented and Organized

Knowledge acquisition is the process of absorbing and storing new information in memory, the
success of which is often gauged by how well the information can later be remembered (retrieved
from memory). The process of storing and retrieving information depends heavily on the
representation and organization of the information. Moreover, the utility of knowledge can
also be influenced by how the information is structured. For example, a bus schedule can be
represented in the form of a map or a timetable. On the one hand, a timetable provides quick and
easy access to the arrival time for each bus, but does little for finding where a particular stop is
situated. On the other hand, a map provides a detailed picture of each bus stop’s location, but
cannot efficiently communicate bus schedules. Both forms of representation are useful, but it is
important to select the representation most appropriate for the task at hand. Similarly, knowledge
acquisition can be improved by considering the purpose and function of the desired information.

Knowledge Representation and Organization

There are numerous theories of how knowledge is represented and organized in the mind,
including rule-based production models, distributed networks, and propositional models.

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

However, these theories are all fundamentally based on the concept of semantic networks. A Notes
semantic network is a method of representing knowledge as a system of connections between
concepts in memory.

Semantic Networks

According to semantic network models, knowledge is organized based on meaning, such that
semantically related concepts are interconnected. Knowledge networks are typically represented
as diagrams of nodes (i.e., concepts) and links (i.e., relations). The nodes and links are given
numerical weights to represent their strengths in memory. The node representing DOCTOR is
strongly related to SCALPEL, whereas NURSE is weakly related to SCALPEL. These link strengths
are represented here in terms of line width. Concepts such as DOCTOR and BREAD are more
memorable because they are more frequently encountered than concepts such as SCALPEL and
CRUST.

Mental excitation, or activation, spreads automatically from one concept to another related
concept. For example, thinking of BREAD spreads activation to related concepts, such as BUTTER
and CRUST. These concepts are primed, and thus more easily recognized or retrieved from
memory. For example, in David Meyer and Roger Schvaneveldt’s 1976 study (a typical semantic
priming study), a series of words (e.g., BUTTER) and non-words (e.g., BOTTOR) are presented,
and participants deter mine whether each item is a word. A word is more quickly recognized if
it follows a semantically related word. For example, BUTTER is more quickly recognized as a
word if BREAD precedes it, rather than NURSE. This result supports the assumption that
semantically related concepts are more strongly connected than unrelated concepts.

A good knowledge representation covers six basic characteristics:

° Coverage, which means the KR covers a breadth and depth of information. Without a
wide coverage, the KR cannot determine anything or resolve ambiguities.

° Understandable by humans. KR is viewed as a natural language, so the logic should flow
freely. It should support modularity and hierarchies of classes (Polar bears are bears,
which are animals). It should also have simple primitives that combine in complex forms.

° Consistency. If John closed the door, it can also be interpreted as the door was closed by
John. By being consistent, the KR can eliminate redundant or conflicting knowledge.

° Efficient
° Easiness for modifying and updating.
° Supports the intelligent activity which uses the knowledge base

To gain a better understanding of why these characteristics represent a good knowledge
representation, think about how an encyclopedia (e.g. Wikipedia) is structured. There are millions
of articles (coverage), and they are sorted into categories, content types, and similar topics
(understandable). It redirects different titles but same content to the same article (consistency).
It is efficient, easy to add new pages or update existing ones, and allows users on their mobile
phones and desktops to view its knowledge base.

3.2.5 Participants
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a
premise to create an argument. A set of rules can be used to infer any valid conclusion if it is

complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set
of rules need not include every rule in the following list, as in logic, a rule of inference, inference

LOVELY PROFESSIONAL UNIVERSITY 41



Introduction to Artificial Intelligence & Expert Systems

42

Notes

rule, or transformation rule is the act of drawing a conclusion based on the form of premises
interpreted as a function which takes premises, analyzes their syntax, and returns a conclusion
(or conclusions). For example, the rule of inference modus ponens takes two premises, one in
the form of “If p then q” and another in the form of “p” and returns the conclusion “q”. The rule
is valid with respect to the semantics of classical logic (as well as the semantics of many other
non-classical logics), in the sense that if the premises are true (under an interpretation) then so

is the conclusion.

Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it
preserves a general designation. But a rule of inference’s action is purely syntactic, and does not
need to preserve any semantic property: any function from sets of formulae to formulae counts
as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that
there is an effective procedure for determining whether any given formula is the conclusion of
a given set of formulae according to the rule. An example of a rule that is not effective in this
sense is the infinitary rule.

g

Task  Critically examine the importance of chaining in behavioral psychology.

Self Assessment

State whether the following statements are true or false:

4. Knowledge management represents a logical progression beyond information
management.

5. MYCIN is not an expert system.
6. A good knowledge representation covers intelligent activity which uses the knowledge

base.

3.3 Knowledge Manipulation

The Knowledge Query and Manipulation Language, or KQML, is a language and protocol for
communication among software agents and knowledge-based systems. It was developed in the
early 1990s part of the DARPA knowledge Sharing Effort, which was aimed at developing
techniques for building large-scale knowledge bases which are shareable and reusable. While
originally conceived of as an interface to knowledge based systems, it was soon repurposed as
an Agent communication language.

Decisions and actions in knowledge based systems come from manipulation of the knowledge.
The known facts in the knowledge base be located, compared, and altered in some way. This
process may set up other sub-goals and require further inputs, and so on until a final solution is
found. The manipulations are the computational equivalent of reasoning. This requires a form
of inference or deduction, using the knowledge and inferring rules. All forms of reasoning
requires a certain amount of searching and matching. The searching and matching operations
consume greatest amount of computation time in Al systems. It is important to have techniques
that limit the amount of search and matching required to complete any given task.

3.3.1 The Turing Test

The Turing test is a test of a machine’s ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of an actual human. In the original illustrative example, a human

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

judge engages in a natural language conversation with a human and a machine designed to Notes
generate performance indistinguishable from that of a human being. All participants are separated
from one another. If the judge cannot reliably tell the machine from the human, the machine is
said to have passed the test. The test does not check the ability to give the correct answer; it
checks how closely the answer resembles typical human answers. The conversation is limited to
a text-only channel such as a computer keyboard and screen so that the result is not dependent
on the machine’s ability to render words into audio. The test was introduced by Alan Turing in
his 1950 paper “Computing Machinery and Intelligence,” which opens with the words: “I propose
to consider the question, ‘Can machines think?’” Since “thinking” is difficult to define, Turing
chooses to “replace the question by another, which is closely related to it and is expressed in
relatively unambiguous words.” Turing’s new question is: “Are there imaginable digital
computers which would do well in the imitation game?” This question, Turing believed, is one
that can actually be answered. In the remainder of the paper, he argued against all the major
objections to the proposition that “machines can think”.

Self Assessment

State whether the following statements are true or false:

7. KQML, is a language and protocol for communication among software agents and
knowledge-based systems.

8. The manipulations are the computational equivalent of reasoning.
9. The searching and matching operations consume least amount of computation time in Al
systems.

3.4 Knowledge Acquisition

Knowledge acquisition is the process of extracting, structuring and organizing knowledge from
one source, usually human experts, so it can be used in software such as an ES. This is often the
major obstacle in building an Expert System (ES).

There are three main topic areas central to knowledge acquisition that require consideration in
all ES projects. Firstly, the domain must be evaluated to determine if the type of knowledge in
the domain is suitable for an ES. Secondly, the source of expertise must be identified and evaluated
to ensure that the specific level of knowledge required by the project is provided. Thirdly, if the
major source of expertise is a person, the specific knowledge acquisition techniques and
participants need to be identified. An ES attempts to replicate in software the reasoning/pattern-
recognition abilities of human experts who are distinctive because of their particular knowledge
and specialized intelligence. ES should be heuristic and readily distinguishable from algorithmic
programs and databases. Further, ES should be based on expert knowledge, not just competent
or skillful behavior.

Domains

Several domain features are frequently listed for consideration in determining whether an ES is
appropriate for a particular problem domain. Several of these caveats relate directly to knowledge
acquisition. Firstly, bona fide experts, people with generally acknowledge expertise in the
domain, must exist. Secondly, there must be general consensus among experts about the accuracy
of solutions in a domain. Thirdly, experts in the domain must be able to communicate the details
of their problem solving methods. Fourthly, the domain should be narrow and well defined and
solutions within the domain must not require common sense.

LOVELY PROFESSIONAL UNIVERSITY 43



Introduction to Artificial Intelligence & Expert Systems

44

Notes

Following points are remembered about knowledge acquisition:

L

1L

111

Iv.

VL

The object of a knowledge representation is to express knowledge in a computer tractable
form, so that it can be used to enable our Al agents to perform well.

A knowledge representation language is defined by two aspects:

(i)  Syntax: The syntax of a language defines which configurations of the components of
the language constitute valid sentences.

(ii)  Semantics: The semantics defines which facts in the world the sentences refer to, and
hence the statement about the world that each sentence makes.

Suppose the language is arithmetic, then ‘x’, ‘=" and ‘y’ are components (or symbols or
words) of the language the syntax says that “x =y’ is a valid sentence in the language, but

‘= =xy’ is not the semantics say that "x = y’ is false if y is bigger than x, and true otherwise
The requirements of a knowledge representation are as follows:

(i)  Representational Adequacy: The ability to represent all the different kinds of knowledge
that might be needed in that domain.

(ii)  Inferential Adequacy: The ability to manipulate the representational structures to
derive new structures (corresponding to new knowledge) from existing structures.

(iii) Inferential Efficiency: The ability to incorporate additional information into the
knowledge structure which can be used to focus the attention of the inference
mechanisms in the most promising directions.

(iv) Acquisitional Efficiency: The ability to acquire new information easily. Ideally, the
agent should be able to control its own knowledge acquisition, but direct insertion
of information by a ‘knowledge engineer’ would be acceptable. Finding a system
that optimizes these for all possible domains is not going to be feasible.

In practice, the theoretical requirements for good knowledge representations can usually
be achieved by dealing appropriately with a number of practical requirements:

(i)  The representations need to be complete — so that everything that could possibly
need to be represented can easily be represented.

(ii) They must be computable — implementable with standard computing procedures.

(iii) They should make the important objects and relations explicit and accessible — so
that it is easy to see what is going on, and how the various components interact.

(iv) They should suppress irrelevant detail — so that rarely used details don’t introduce
unnecessary complications, but are still available when needed.

(v)  They should expose any natural constraints — so that it is easy to express how one
object or relation influences another.

(vi) They should be transparent — so you can easily understand what is being said.

(vii) The implementation needs to be concise and fast — so that information can be stored,
retrieved and manipulated rapidly.

The four fundamental components of a good representation:

(i) The lexical part — that determines which symbols or words are used in the
representation’s vocabulary.

(i)  The structural or syntactic part — that describes the constraints on how the symbols
can be arranged, i.e. a grammar.

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

VIL

(iii) The semantic part — that establishes a way of associating real world meanings with Notes
the representations.

(iv) The procedural part — that specifies the access procedures that enables ways of
creating and modifying representations and answering questions using them, i.e.
how we generate and compute things with the representation.

Knowledge Representation in Natural Language
Advantages of natural language are:

(i) Itis extremely expressive — we can express virtually everything in natural language
(real world situations, pictures, symbols, ideas, emotions, reasoning).

(ii) Most humans use it most of the time as their knowledge representation of choice.
Disadvantages of natural language are:

(i)  Both the syntax and semantics are very complex and not fully understood.

(i)  There is little uniformity in the structure of sentences.

(iii) It is often ambiguous — in fact, it is usually ambiguous.

3.4.1 Types of Learning

N o g ke W

Perceptual Learning: Ability to learn to recognize stimuli that have been seen before:
& Primary function is to identify and categorize objects and situations
& Changes within the sensory systems of the brain

Stimulus-response Learning: Ability to learn to perform a particular behavior when a
certain stimulus is present

RS Establishment of connections between sensory systems and motor systems
& Classical conditioning — association between two stimuli

¢ Unconditioned Stimulus (US), Unconditioned Response (UR), Conditioned
Stimulus (CS), Conditioned Response (CR)

¢ Hebb rule - if a synapse repeatedly becomes active at about the same time that
the postsynaptic neuron fires, changes will take place in the structure or
chemistry of the synapse that will strengthen it

* Rabbit experiment — tone paired with puff of air

o Instrumental conditioning — association between a response and a stimulus; allows
an organism to adjust its behavior according to the consequences of that behavior

* Reinforcement — positive and negative
* Punishment
Motor Learning: Establishment of changes within the motor system
Relational Learning: Involves connections between different areas of the association cortex
Spatial Learning: Involves learning about the relations among many stimuli
Episodic Learning: Remembering sequences of events that we witness

Observational Learning: Learning by watching and imitation other people

LOVELY PROFESSIONAL UNIVERSITY 45



Introduction to Artificial Intelligence & Expert Systems

46

Notes

3.4.2 Knowledge Acquisition Problem

The preceding section provided an idealized version of how ES projects might be conducted. In
most instances, the above suggestions are considered and modified to suit the particular project.
The remainder of this section will describe a range of knowledge acquisition techniques that
have been successfully used in the development of ES.

Operational Goals

After an evaluation of the problem domain shows that an ES solution is appropriate and feasible,
then realistic goals for the project can be formulated. An ES’s operational goals should define
exactly what level of expertise its final product should be able to deliver, who the expected user
is and how the product is to be delivered. If participants do not have a shared concept of the
project’s operational goals, knowledge acquisition is hampered.

Pre-training

Pre-training the knowledge engineer about the domain can be important. In the past, knowledge
engineers have often been unfamiliar with the domain. As a result, the development process
was greatly hindered. If a knowledge engineer has limited knowledge of the problem domain,
then pre-training in the domain is very important and can significantly boost the early
development of the ES.

Knowledge Document

Once development begins on the knowledge base, the process should be well documented. In
addition to tutorial a document, a knowledge document that succinctly state the project’s current
knowledge base should be kept. Conventions should be established for the document such as
keeping the rules in quasi-English format, using standard domain jargon, giving descriptive
names to the rules and including supplementary, explanatory clauses with each rule.

AN

Caution The rules should be grouped into natural subdivisions and the entire document
should be kept current.

Scenarios

An early goal of knowledge acquisition should be the development of a series of well developed
scenarios that fully describe the kinds of procedures that the expert goes through in arriving at
different solutions. If reasonably complete case studies do not exist, then one goal of pre-training
should be to become so familiar with the domain that the interviewer can compose realistic
scenarios. Anecdotal stories that can be developed into scenarios are especially useful because
they are often examples of unusual interactions at the edges of the domain. Familiarity with
several realistic scenarios can be essential to understanding the expert in early interviews and
the key to structuring later interviews. Finally, they are ultimately necessary for validation of
the system.

Interviews

Experts are usually busy people and interviews held in the expert’s work environment are
likely to be interrupted. To maximize access to the expert and minimize interruptions it can be

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

helpful to hold meetings away from the expert’s workplace. Another possibility is to hold Notes
meetings after work hours and on weekends. At least initially, audiotape recordings ought to be

made of the interviews because often times notes taken during an interview can be incomplete

or suggest inconsistencies that can be clarified by listening to the tape. The knowledge engineer

should also be alert to fatigue and limit interviews accordingly. In early interviews, the format

should be unstructured in the sense that discussion can take its own course.

l)

Did u know? The knowledge engineer should resist the temptation to impose personal
biases on what the expert is saying.

During early discussions, experts are often asked to describe the tasks encountered in the domain
and to go through example tasks explaining each step. An alternative or supplemental approach
is simply to observe the expert on the job solving problems without interruption or to have the
expert talk aloud during performance of a task with or without interruption. These procedures
are variations of protocol analysis and are useful only with experts that primarily use verbal
thought processes to solve domain problems. For shorter term projects, initial interviews can be
formalized to simplify rapid prototyping. One such technique is a structured interview in which
the expert is asked to list the variables considered when making a decision. Next the expert is
asked to list possible outcomes (solutions) from decision making. Finally, the expert is asked to
connect variables to one another, solutions to one another and variables to solutions through
rules.

A second technique is called twenty questions. With this technique, the knowledge engineer
develops several scenarios typical of the domain before the interview. At the beginning of the
interview, the expert asks whatever questions are necessary to understand the scenario well
enough to determine the solution. Once the expert begins the questions, the expert is asked to
explain why each question is asked. When the interviewer perceives a rule, he interrupts and
restates the rule to ensure that it is correct.

A third technique is card sorting. In this procedure, the knowledge engineer prepares a stack of
cards with typical solutions to problems in the domain. The expert is asked to sort the cards
according to some characteristic important to finding solutions to the problem. After each sort,
the expert is asked to identify the sorting variable. After each sort, the expert is asked to repeat
the process based on another variable.

=/4|

Notes During interviews, it may be helpful to work at a whiteboard to flexibly record
and order the exact phraseology of rules or other representations. It may also be helpful to
establish recording conventions for use such as color coding different aspects of a rule and
using flags to note and defer consideration of significant but peripheral details. Structured
interviews should direct the course of a meeting to accomplish specific goals defined in
advance.

Example: Once a prototypic knowledge base is developed, the expert can be asked to
evaluate it line by line. Other less obvious structures can be imposed on interviews, such as
asking the expert to perform a task with limited information or during a limited period of time.
Even these structured interviews can deviate from the session’s intended goals. Sometimes such
deviations show subtleties in the expert’s procedures and at other times the interview simply
becomes sidetracked, requiring the knowledge engineer to redirect the session.

LOVELY PROFESSIONAL UNIVERSITY 47



Introduction to Artificial Intelligence & Expert Systems

48

Notes

3.4.3 Knowledge Acquisition Represented and Organized

The knowledge-acquisition process includes five major activities:

1.

Knowledge Acquisition: Knowledge acquisition involves the acquisition of knowledge
from human experts, books, documents, sensors, or computer files. The knowledge may
be specific to the problem domain or to the problem-solving procedures, it may be general
knowledge (e.g., knowledge about business), or it may be meta knowledge (knowledge
about knowledge). (By meta knowledge, we mean information about how experts use
their knowledge to solve problems and about problem-solving procedures in general.)
Byrd (1995) formally verified that knowledge acquisition is the bottleneck in ES
development today; thus, much theoretical and applied research is still being conducted
in this area. An analysis of more than 90 ES applications and their knowledge acquisition
techniques and methods is available in Wagner et al. (2003).

Knowledge Representation: Acquired knowledge is organized so that it will be ready for
use, in an activity called knowledge representation. This activity involves preparation of
a knowledge map and encoding of the knowledge in the knowledge base.

Knowledge Validation: Knowledge validation (or verification) involves validating and
verifying the knowledge (e.g., by using test cases) until its quality is acceptable. Testing
results are usually shown to a domain expert(s) to verify the accuracy of the ES.

Inferencing: This activity involves the design of software to enable the computer to make
inferences based on the stored knowledge and the specifics of a problem. The system can
then provide advice to non-expert users.

Explanation and Justification: This step involves the design and programming of an
explanation capability (e.g., programming the ability to answer questions such as why a
specific piece of information is needed by the computer or how a certain conclusion was
derived by the computer).

Task 1. Create a structure for a knowledge organization.

2. Prepare and defined the neural network architecture.

Self Assessment

State whether the following statements are true or false:

10.

11.

12.

13.
14.
15.

There are six main topic areas central to knowledge acquisition that require consideration
in all ES projects.

Experts in the domain must not be able to communicate the details of their problem
solving methods.

ES should be heuristic and readily distinguishable from algorithmic programs and
databases.

Episodic learning refers to remembering sequences of events that we witness.
Relational learning is the establishment of changes within the motor system.

Unstructured interviews should direct the course of a meeting to accomplish specific goals
defined in advance.

LOVELY PROFESSIONAL UNIVERSITY



Unit 3: Representation of Knowledge

3.5 Summary Notes
° Knowledge acquisition is integrally tied to how the mind organizes and represents

information.
° Learning can be enhanced by considering the fundamental properties of human knowledge

as well as by the ultimate function of the desired information.

° The most important property of knowledge is that it is organized semantically; therefore,
learning methods should enhance meaningful study of new information.

° Learners should also create as many links to the information as possible.

° Learning methods should be matched to the desired outcome. Just as using a bus timetable
to find a bus-stop location is ineffective, learning to recognize information will do little
good on an essay exam.

3.6 Keywords

Declarative Knowledge: It refers to one’s memory for concepts, facts, or episodes, whereas
procedural knowledge refers to the ability to perform various tasks.

Inference Rule: An inference rule is a conditional statement with two parts: an if clause and a then
clause.

Knowledge Acquisition: It is the process of adding new knowledge to a knowledge-base and
refining or otherwise improving knowledge that was previously acquired.

Knowledge Representation: Knowledge representation (KR) is most fundamentally a surrogate,
a substitute for the thing itself, used to enable an entity to determine consequences by thinking
rather than acting, i.e. by reasoning about the world rather than taking action in it.

3.7 Review Questions

1.  Explain semantic network and classify it with frame based representation.

2. Describe the different types of knowledge representation techniques. Explain propositional
logic.

3. Explain differences between declarative and procedural knowledge. Explain with the help
of examples.

4. How the knowledge representation is defined?

Answers: Self Assessment

1. False 2. True

3. True 4. True

5. True 6. True

7. True 8. True

9. False 10. False
11. False 12.  True

13.  True 14. False
15. False

LOVELY PROFESSIONAL UNIVERSITY 49



Introduction to Artificial Intelligence & Expert Systems

50

Notes

3.8 Further Readings

N

Books

£

Online

links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

http:/ /intelligence.worldofcomputing.net/category /knowledge-representation
http:/ /itforum.coe.uga.edu/AECT_ITF_PDFS/paper109.pdf

http://opencourseware.kfupm.edu.sa/colleges/ccse/ics/ics381/files/
2_Lectures%?209-10-Knowledge%20Representation%20Methods.pdf

http:/ /www.cs.vassar.edu/~weltyc/papers/phd /HTML/dissertation-14.html

http://www.springer.com/engineering/computational+intelligence+
and+complexity /book/978-3-540-33518-4

http:/ /www .stanford.edu/class/cs227 /Lectures/lec01.pdf

http://www.techfak.uni-bielefeld.de/ags/wbski/lehre/digiSA /WS0506 /
MDKI/Vorlesung/vl11_knowledgerep.pdf

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

Unit 4: LISP

CONTENTS

Objectives

Introduction

41 LISP Application

42  Syntax and Numeric Functions

4.3  Basic List Manipulation Functions in LISP
431 List Manipulation—Step 1
432 List Manipulation—Step 2
4.3.3 List Manipulation—Step 3

44  Functions
441 Defining Functions
442 Defining Procedures

45 Summary

46 Keywords

4.7  Review Questions

4.8  Further Readings

Objectives

After studying this unit, you will be able to:
° Identify LISP Applications

° Discuss the Syntax and Numeric Functions

° Explain Basic List Manipulation Functions in LISP

° Describe the concept of Functions and its Procedure
Introduction

LISP (historically, LISP) is a family of computer programming languages with a long history
and a distinctive, fully parenthesized Polish prefix notation. Originally specified in 1958, LISP is
the second-oldest high-level programming language in widespread use today; only Fortran is
older (by one year). Like Fortran, LISP has changed a great deal since its early days, and a
number of dialects have existed over its history. Today, the most widely known general-purpose
LISP dialects are Common LISP and Scheme. LISP was originally created as a practical mathematical
notation for computer programs, influenced by the notation of Alonzo Church’s lambda calculus.
It quickly became the favored programming language for artificial intelligence (AI) research.
As one of the earliest programming languages, LISP pioneered many ideas in computer science,
including tree data structures, automatic storage management, dynamic typing, conditionals,
higher-order functions, recursion, and the self-hosting compiler.

The name LISP derives from “List Processing”. Linked lists are one of LISP language’s major
data structures, and LISP source code is itself made up of lists. As a result, LISP programs can

LOVELY PROFESSIONAL UNIVERSITY

Notes

51



Introduction to Artificial Intelligence & Expert Systems

52

Notes

manipulate source code as a data structure, giving rise to the macro systems that allow
programmers to create new syntax or even new domain-specific languages embedded in LISP.
LISP was invented by John McCarthy in 1958 while he was at the Massachusetts Institute of
Technology (MIT). McCarthy published its design in a paper in Communications of the ACM in
1960, entitled “Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I” (“Part II” was never published). He showed that with a few simple operators and a
notation for functions, one can build a Turing-complete language for algorithms. Information
Processing Language was the first Al language, from 1955 or 1956, and already included many of
the concepts, such as list-processing and recursion, which came to be used in LISP. LISP was first
implemented by Steve Russell on an IBM 704 computer. Russell had read McCarthy’s paper, and
realized (to McCarthy’s surprise) that the LISP eval function could be implemented in machine
code. The result was a working LISP interpreter which could be used to run LISP programs, or
more properly, ‘evaluate LISP expressions.” The first complete LISP compiler, written in LISP,
was implemented in 1962 by Tim Hart and Mike Levin at MIT. This compiler introduced the LISP
model of incremental compilation, in which compiled and interpreted functions can intermix
freely. The language used in Hart and Levin’s memo is much closer to modern LISP style than
McCarthy’s earlier code.

LISP was a difficult system to implement with the compiler techniques and stock hardware of
the 1970s. Garbage collection routines, developed by then-MIT graduate student Daniel Edwards,
made it practical to run LISP on general-purpose computing systems, but efficiency was still a
problem. This led to the creation of LISP machines: dedicated hardware for running LISP
environments and programs. Advances in both computer hardware and compiler technology
soon made LISP machines obsolete. During the 1980s and 1990s, a great effort was made to unify
the work on new LISP dialects (mostly successors to Mac lisp like Zeta LISP and NIL (New
Implementation of LISP)) into a single language. The new language, Common LISP, was
somewhat compatible with the dialects it replaced (the book Common LISP the Language notes
the compatibility of various constructs). In 1994, ANSI published the Common LISP standard,
“ANSI X3.226-1994 Information Technology Programming Language Common LISP.”

4.1 LISP Application

LISP is an expression-oriented language. Unlike most other languages, no distinction is made
between “expressions” and “statements”; all code and data are written as expressions. When an
expression is evaluated, it produces a value (in Common LISP, possibly multiple values), which
then can be embedded into other expressions. Each value can be any data type. McCarthy’s 1958
paper introduced two types of syntax: S-expressions (Symbolic expressions, also called “sexps”),
which mirror the internal representation of code and data; and M-expressions (Meta Expressions),
which express functions of S-expressions.

AN

Caution M-expressions never found favor, and almost all Lisps today use S-expressions to
manipulate both code and data.

The use of parentheses is Lisp’s most immediately obvious difference from other programming
language families. As a result, students have long given LISP nicknames such as Lost In Stupid
Parentheses, or Lots of Irritating Superfluous Parentheses. However, the S-expression syntax is
also responsible for much of Lisp’s power: the syntax is extremely regular, which facilitates
manipulation by computer. However, the syntax of LISP is not limited to traditional parentheses
notation. It can be extended to include alternative notations.

' Example: XM LISP, for instance, is a Common LISP extension that employs the meta
object-protocol to integrate S-expressions with the Extensible Markup Language (XML).

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

The reliance on expressions gives the language great flexibility. Because LISP functions are
themselves written as lists, they can be processed exactly like data. This allows easy writing of
programs which manipulate other programs (meta programming).

Many LISP dialects exploit this feature using macro systems, which enables extension of the
language almost without limit. A LISP list is written with its elements separated by whitespace,
and surrounded by parentheses. The empty list () is also represented as the special atom nil. This
is the only entity in LISP which is both an atom and a list.

The following industrial LISP users are grouped by industry:

° Aerospace/ Airlines

° Animation/Graphics

° Automotive

° Computers and Computer Tools
° Computer-aided Design

° Consulting /Research

° Databases

° Expert Systems and Knowledge-based Engineering Tools

° Education

° Electronics

° Energy

° Finance

° Government

° Groupware/Project Management

° Internet/World-Wide-Web
° Publishing
° Mathematics

° Medicine/Biotechnology

° Music
° Telecommunications
° Other

Self Assessment

State whether the following statements are true or false:
1. LISP is an expression-oriented language.

2. McCarthy’s 1958 paper introduced four types of syntax.

3. A LISP list is written with its elements separated by whitespace, and surrounded by
parentheses.
4. The empty list () is not represented as the special atom nil.

LOVELY PROFESSIONAL UNIVERSITY

Notes

53



Introduction to Artificial Intelligence & Expert Systems

Notes

54

4.2 Syntax and Numeric Functions

The two fundamental pieces of LISP syntax are the idea of a list of things and the dotted pair:
° For any set of strings X, list_of(X):="(" # X “)”,
° For any set of strings X, dotted_pair(X)::="(* X dot X “)”.

A dotted pair is the external image of a node in an internal data structure with two components
called “car” and “cdr” for historical reasons.

l)

Did u know? Each component in the pair points at an atomic item or another list.

Each list is coded internally as dotted pairs:

(A) = (A.NIL).

(A B) = (A.(B.NIL)).

(A B C) = (A.(B.(C.NIL))).

(A B CD ... Y Z) = (A.(B.(C.(.D ... (Y. (Z. NIL)) ...).

After the lexical analysis the interpreter parses input as a list_structure before evaluating it. A
list_structure is empty, or a dotted_pair, or an atom, or any number of lists inside a pair of
parenthesis. We often call a list structure a list for short. But always be careful to distinguishing
‘a list of numbers’ from a ‘list structure of numbers’

° list_structure:=atom | dotted_pair(list_structure) | list_of(list_structure).

=74|

Notes In old LISP, commas were optional separators in lists but not in XLISP and Scheme.
The separating spaces, tabs, etc. in a list are all sieved out by the lexical scan. This scan also
removes comment lines that start with a semicolon [ comment in lisp.lexemes ]

° atom::= [ atom in lisp. lexemes ]
The “Unknowns” below indicate that an entry is incomplete.
° either the entry exist in the language,

° either the entry doesn’t exist in the language. The entry will be marked as such and won't
appear as missing anymore.

° Category: Object Oriented, Dynamically typed, Functional

° Various

nothing needed breaking lines (useful when end-of-line and/or
indentation has a special meaning)

#] ... |#(D) commenting (nestable)
commenting (until end of line)

< > <= >= Comparison

min/max comparison (min/max (binary or more))

(defun f (paral para2) "..." ...) documentation comment

Equal equality/inequality (deep)

Equalp equality /inequality (deep)

eq, eql equality /inequality (shallow)

Contd...

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

(ext:gc)

force garbage collection

Eval

runtime evaluation

case-insensitive

tokens (case-sensitivity (keywords, variable
identifiers...))

anything without a space and is not a
number

tokens (variable identifier regexp)

hyphens tokens (what is the standard way for
scrunching together multiple words)

Setq variable assignment or declaration (assignment)

Setf variable assignment or declaration (assignment)

Set variable assignment or declaration (assignment)

let let*

variable assignment or declaration (declaration)

flet labels defun defmethod defvar
defparameter defsetf

variable assignment or declaration (declaration)

Functions
(lambda (a b) ...) anonymous function
(fab ...) (apply £ 1) function call

(funcall £f a b ...)

function call

(£)

function call (with no parameter)

(funcall f)

function call (with no parameter)

no-applicable-method

function called when a function is not defined
(in dynamic languages)

(defun f (paral para2) ...)

function definition

Return

function return value (breaks the control flow)

Return-from xxx

function return value (breaks the control flow)

no syntax needed

function return value (function body is the
result)

identity

identity function

Control Flow

/return-from xxx or return

breaking control flow (continue /break)

go throw

breaking control flow (goto (unconditional

jump))

Return

breaking control flow (returning a value)

Return-from xxx

breaking control flow (returning a value)

handler-bind handler-case ignore-errors

exception (catching)

Unwind-protect

exception (cleanup: code executed before
leaving)

Error

exception (throwing)

Signal

exception (throwing)

Cerror warn

exception (throwing)

(if ¢ ...) if_then
(if ¢ bl b2) if_then_else
(cond (c bl) (c2 b2) (t b3)) if_then_else

Contd...

LOVELY PROFESSIONAL UNIVERSITY

Notes

55



Introduction to Artificial Intelligence & Expert Systems

Notes (loop do ... until c) loop (do something until condition)
(loop with VAR = INITIAL-VALUE ... while []oop (for "ala C" (while + initialisation))
CONDITION finally INCREMENT ...)
(loop for i from 1 to 10 by -1 do ...) loop (for each value in a numeric range, 1
decrement)
(loop for i from 1 to 10 do ...) loop (for each value in a numeric range, 1
increment (see also the entries about ranges))
(loop for i from 1 to 10 by 2 do ...) loop (for each value in a numeric range, free
increment)
(loop do ...) loop (forever loop)
(loop while ¢ do ...) loop (while condition do something)
(case val multiple selection (switch)
((v1) ...)
((v2) ...)
(otherwise ...))
(progn ...) (progl ...) (prog2 ...) Sequence
° Types
(declare (t v)) annotation (or variable declaration)
(deftype n () 't) Declaration

° Object Oriented & Reflexivity

call-next-method accessing parent method

defclass defstruct class declaration

dispatching parameter current instance

type-of get the type/class corresponding to an
object/instance /value

find-method has the method

(defclass child (parent) ...) Inheritance

(method object para) method invocation

(method object) method invocation (with no parameter)

(make-instance class_name ...) object creation

Typep testing class membership

° Package, Module

(defpackage p ...) Declare
(export 'namel 'name2) declare (selective export)
(use-package 'p) import (everything into current namespace)
(require 'p) import (package (ie. load the package))
(import ' (p:namel p:name2)) import (selectively)
1 (5) package scope
° Strings
char, aref, schar, svref accessing n-th character
Aref accessing n-th character
code-char ascii to character

Contd...

56 LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

#\z

non

character "z

char-code

character to ascii

(coerce e 'string)

convert something to a string (see also string
interpolation)

Subseq

extract a substring

Search

locate a substring

(search substring string:from-end t)

locate a substring (starting at the end)

all strings allow multi-line strings

multi-line

(with-standard-io-syntax (write obj
stream))

serialize (marshalling)

Write

simple print (on any objects)

Print

simple print (on any objects)

princ prinl

simple print (on any objects)

write-string

simple print (on strings)

Format simple print (printf-like)
Format sprintf-like
concatenate

string concatenation

equal, equalp

string equality & inequality

Length

string size

-3

strings (end-of-line (without writing the real CR
or LF character))

" "

strings (with no interpolation of variables)

(with-standard-io-syntax (read obj
stream) )

unserialize (un-marshalling)

char-upcase/char-downcase

upper/lower case character

string-upcase/string-downcase

uppercase/lowercase/capitalized string

Booleans
Nil false value
not logical not
or/and logical or/and (short circuit)
T true value
anything not false true value
boolean type name

Bags and Lists

t:initial-value init)

Cons adding an element at the beginning (list cons)
(return the new list (no side-effect))

Push adding an element at the beginning (list cons)
(side-effect)

cdr all but the first element

Reduce f(... f(f(init, el), €2) ..., en)

(reduce f ' (el e2 . en) :from-right f(el, f(e2, ... f(en, init) ...))

Find

find an element

Contd...

LOVELY PROFESSIONAL UNIVERSITY

Notes

57



Introduction to Artificial Intelligence & Expert Systems

Notes find-if find an element
Car first element
(dolist (v 1) ...) (loop for v in 1 do for each element do something
.) mapc
Pop get the first element and remove it
Member is an element in the list
Some is the predicate true for an element
Every is the predicate true for every element
(loop for v in 1 as i upfrom 0 do ...) iterate with index
Remove-if-not delete-if-not keep elements (matching)
Remove-if delete-if keep elements (non matching)
(car (last 1)) last element
Nconc list concatenation
Append list concatenation
"(a b c) list constructor
List list constructor
Pairlis list of couples from 2 lists
Length list size
Nth list/array indexing
Aref list/array indexing
Assoc lookup an element in a association list
Delete-duplicates remove duplicates
Remove-duplicates remove duplicates
Reverse Reverse
min/max smallest/biggest element
sort Sort
split-sequence split a list (into sublists delimited by elements
matching a predicate)
Mapcar transform a list (or bag) in another one
Mapcar transform two lists in parallel
° Unknown:
* list flattening adding an element at index get the last element and remove it partition

a list: elements matching, elements non matching join a list of strings in a string
using a glue string

° Various Data Types

(gethash k h) dictionary (access: read/write)
(gethash k h) dictionary (has the key ?)
remhash dictionary (remove by key)
Nil optional value (null value)

Y optional value (value)

Normal function call record (selector)

(cons a b) tuple constructor

58 LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

Unknown:

o computable tuple (these are a kind of immutable lists playing a special role in
parameter passing) (empty tuple) computable tuple (these are a kind of immutable
lists playing a special role in parameter passing) (1-uple) computable tuple (these
are a kind of immutable lists playing a special role in parameter passing) (using a
tuple for a function call) optional value (null coalescing) dictionary (constructor)
dictionary (merge) range

Mathematics
+/=/*// addition/subtraction/multiplication/division
Logand/logior/logxor bitwise operators (and/or/xor)
Lognot bitwise operators (bitwise inversion)
(ash x positive-integer)/(ash x bitwise operators (left shift/right
negative-integer)/ shift/unsigned right shift)
Floor euclidian division (both quotient and modulo)
Expt exponentiation (power)
(log x 10) logarithm (base 10)
Log logarithm (base e)
Mod modulo (modulo of -3/2is 1)
- Negation
1000.0, 1E3 numbers syntax (floating point)
#bl, #o7, #xf numbers syntax (integers in base 2, octal and
hexadecimal)
#2rl, #8r7, #l6rf numbers syntax (integers in base 2, octal and
hexadecimal)
1000, 1000. numbers syntax (integers)
Random random (random number)
make-random-state random (seed the pseudo random generator)
sqrt/exp/abs square root/e-exponential/absolute value
sin/cos/tan trigonometry (basic)
asin/acos/atan trigonometry (inverse)
truncate/round/floor/ceiling truncate/round/floor/ ceil

Self Assessment

State whether the following statements are true or false:

5.

A dotted pair is the internal image of a node in an internal data structure with two
components.

In LISP, commas were optional separators in lists.
LISP can be used in finding the human behavior.

Each list is coded internally as dotted pairs.

LOVELY PROFESSIONAL UNIVERSITY

Notes

59



Introduction to Artificial Intelligence & Expert Systems

60

Notes

4.3 Basic List Manipulation Functions in LISP

Basic List Manipulation Functions in LISP are as follows:
4.3.1 List Manipulation—Step 1

As you are probably well aware, LISP stands for “List Processing”. (Not “Lost in Stupid
Parenthesis”). A list is a group of elements consisting of any data type and is stored as a single
variable. A list can contain any number of Reals, Integers, Strings, Variables and even other
Lists.

Let’s have a look at a list. Type this:

(setg ptl (getpoint ™“\nChoose a Point: “))
AutoLisp should return something like this:

(127.34 35.23 0.0)

Fine, you say, I've got a list but what do I do with it? AutoLisp has many functions available to
manipulate lists. Let’s have a look at them.

Car

The primary command for taking a list apart is the “Car” function. This function returns the first
element of a list. (The x coordinate.)

For example,
(setg a (car ptl))
Would return:

(127.34)
Cdr

This function returns the second element plus the remaining elements of a list. For example,
(setg b (cdr ptl))

Would return:
(35.23 0.0)

But what if we only wanted the second element? We could write:
(setg b (car (cdr ptl)))

But there is a better way. AutoLisp has provided the “Cadr” function which is basically an
abbreviation of a nested command.

Cadr

This returns the second element of a list. (The y coordinate)
(setg b (cadr ptl))

This would return:
(35.23)

Likewise, there is another abbreviated function to return the third element.

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

Caddr Notes

This returns the third element of a list. (The z coordinate)
(setg ¢ (caddr ptl))

Would return:
(0.0)

AutoLisp has other functions that will retrieve values from lists of more than three elements.
(Caar, cadar, etc.). You can, though, us another function to access any element of a list. This is the
“nth” function.

nth

The syntax for the nth function is as follows:
(nth num 1list)

“num” is the number of the element to return. Just remember that zero is the first element. For
example given the list:

(setg 4 (™M10” *M20” ™“M30” 10.25))
(setg e (nth 0 d))

Would return:

(*M10")
And likewise:

(setg £ (nth 3 d))
Would return:

(10.25)
Syntax Synergy

The thing that I think scares most everyday hackers away from lisp is the (comparatively) very
odd syntax it’s written in. One of the simple functions we wrote while working through the first
couple units looks like this:

(defun 1list-copy (1lst)
(if (atom 1lst)
st
(cons (car 1st) (list-copy (cdr 1st)))))

To someone who's used to the simula syntax languages (as most programmers are), this can be
a very challenging paradigm shift. All those parentheses hovering around, seemingly providing
random groupings of keywords. It’s like this for a pragmatic reason, though, and in the end it’s
actually simpler than the languages you might be used to. You don’t have to know where to use
braces, brackets, parentheses, or dots.

Notes Everything is grouped by the same syntax, and everything is a list. It takes some
getting used to, but if you work with it for a couple days your brain adapts and starts to
actually compose your code ideas this way.

LOVELY PROFESSIONAL UNIVERSITY 61



Introduction to Artificial Intelligence & Expert Systems

62

Notes

Simple Math

Step one when picking up a language is usually to work with the simple things that are easily
defined. Namely, mathematics. It's an easy way to break into an unfamiliar workspace since
there’s usually a lot of commonality across languages and it can be a more gentle introduction
than jumping right into a catalogue of basic functions. This is true when moving to LISP, but
perhaps less so than other languages because most languages stick to the elementary school
standard “5 + 4” for doing simple arithmetic operations. LISP, true to form (List Processing
language), treats arithmetic operators just like any other function call. Standard syntax is
something like this (the carrot is actually the prompt in the interpreter and is not part of the
language):

>(function argl arg2)

result

so addition is done like this:

>(+ 5 4)
9

This can feel strange since we're used to a different order even in verbalizing the expression

(Five Plus Four), but think about the benefit of prefix notation when you start to add extra
arguments. Most languages chain together addition like this:

5+ 4 + 3 + 2 +1

Notice any redundancy? We've used the “+” operator 4 times in one “sum” operation. Using
lisp, this same expression becomes:

>(+ 5 4 3 2 1)
15

More concise, and actually more natural when you think about the way you do your sums on
paper when you have no calculator:

10
14
12
+ 8
44

why express over and over that you are STILL doing addition? why not just use the operator
once? Subtraction is done the same way, but is a little more awkward since it’s not commutative
the way addition is, and since we usually think of a dash at the front of an expression when we
are signifying a “not” operation on the result.

>(- 5 4)
1

and multiplication and division are in the same vein:

>(* 10 5 2)
100

>(/30 6)

5

Pretty simple, but enough to get your feet wet and to start practicing with a new syntax. Next
time we’ll go just a little deeper and look at list manipulation.

4.3.2 List Manipulation—Step 2

Each item in the list has two things: a value (the item ON the stump) and a link to the rest of the
list (the string leading from the branch to the next stump). Therefore, you're “list” of 10 items on

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

tree stumps is actually a “pair” of things: an item on the first tree stump, and a pointer leading
to a list of 9 other tree-stumps with things on them. So what is that 9-tree-stump list? It is ALSO
a pair of items: the item on the first tree stump, and a pointer to a list of 8 other tree-stumps with
things on them. This subdivision goes all the way down to the last tree stump which is STILL a
pair of items: the item on the tree stump, and a pointer to nothing (NIL).

Now, why is this distinction important? Because the three basic list-manipulation functions in
lisp are based around this paradigm. Look at the following function call:

> (cons ‘B ‘(O R D E R))
(B ORDER)

It takes two arguments (an element and a list) and puts them together as a list. Basically, it’s the
same as putting something on another tree-stump (‘B) and tying that tree-stump’s branch to the
first stump in the original list. How about these two:

> (car ‘(L I S P))
L

> (cdr ‘(L I S P))
(I s Pp)

The CAR function takes a list as a parameter, and returns the first part of the pair (the thing on
the first tree stump). The CDR function takes a list as well, and it returns the SECOND part of the
pair (the list of other tree stumps that the first one points to). If you think about it, you'll see why
this is important: you can do pretty much anything to a list with those three functions. They are
the building blocks of any functionality you need regarding a list. Here is a good example, it’s
one of the practice exercises from Paul Graham’s “ANSI Common LISP”:

(defun our-list-copy (1lst)
(if (atom 1lst)
1st
(cons (car 1st) (list-copy (cdr 1st)))))

We've just written a new function called “our-list-copy” that takes a list as a parameter and
returns a copy of it by recursively traveling through the list and “CONS”-ing each first-element
(CAR) with a copy of the rest of the list (CDR).

l)

Did u know? This kind of development is core to what lispers describe as bottom up
programming. You start out writing simple, minimalist functions. As your needs become
specific you combine these low-level functions into more powerful functions, which are
in turn used to write domain-specific functions, which in turn become a kind of language
for the construction of your top-level program. Basically, you're adding to the language as

you go.
4.3.3 List Manipulation—Step 3

Most programs cannot be written without branching at some point. It’s all well and good to be
able to execute various statements, but it doesn’t really become useful until the program can
decide to take a certain action based on some evaluation of a condition (i.e., if it's below 40
degrees, I will wear a coat outside).

When writing lisp, you base all programmatic logic on predicates (technically this is true for
any language, but because of the prefix syntax all predicates FEEL like predicate functions rather
than X ==Y). In mathematics, a predicate is either a relation or the boolean-valued function that
amounts to the characteristic function or the indicator function of such a relation. This is essentially
true in lisp as well: a predicate is a function that returns a true or false value regarding a certain
characteristic of it’s parameter(s). False is represented by NIL, and true is anything that is
Not-NIL (most commonly represented by T).

LOVELY PROFESSIONAL UNIVERSITY

Notes

63



Introduction to Artificial Intelligence & Expert Systems

64

Notes

There are two basic types of predicates in LISP: Data-type predicates and equality predicates.
Data-type predicates take one argument and determine whether or not that argument qualifies
as the specified datatype. Here are some examples:

> (numberp 5)

T

> (numberp ‘FIVE)

NIL

> (stringp “hello, world”)
T

> (stringp 100)

NIL

“numberp” is a predicate function that returns T if the argument is a number, and NIL if it is not.
Likewise, “stringp” determines whether or not the argument is a string. Most data-type predicates

"1

are written with the convention seen above; namely, the data-type name followed by a “p” for
predicate. The two common exceptions are “null” which determines whether or not an expression
evaluates to NIL, and “atom” which determines whether or not the argument is an atom (a
single value, indivisible into smaller parts...basically, not a list). Here are some common data-
type predicates built into the lisp language:

null
symbolp
atom
consp
listp
numberp
integerp
rationalp
floatp
complexp
characterp
stringp
vectorp
arrayp
functionp

Self Assessment

State whether the following statements are true or false:

9.  The primary command for taking a list apart is the “Cdr” function.
10.  Zero is the first element.

11. Most programs can be written without branching at some point.

12. Most data-type predicates are written with the convention.

4.4 Functions

LISP is a language that is usually associated with the “Functional Programming” paradigm. For
those of you who aren’t familiar with that term, functional programming takes a problem and
models it as mathematical functions for evaluation. This is in contrast to imperative programming
where “state” is the focus, and the outcome of a program is modeled in changes of state. As a
primarily-functional programming language, the most important building block of a LISP
program is the function, so here we’re going to talk about the specifics of defining new functions
and using them.

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

4.4.1 Defining Functions Notes

If we have used to using one of the more common enterprise languages like Java or C#NET, the
following probably looks pretty familiar (example code will be written in java):

public class MyMath
{
public static int AddTogether (int oneNumber,int otherNumber)
{
return oneNumber + otherNumber;
}
}

This is a simple function for adding two numbers together. Now, here’s the same function, but
written in LISP:

(defun addTogether (oneNumber otherNumber)
(+ oneNumber otherNumber))

that’s a little smaller, isn't it? Let’s examine some of the differences. First, the java example has
this “public static” at the beginning. In an imperative language, these are important specifiers.
“public” says that any code can use that function, both code within the MyMath class structure
and code elsewhere. Other modifiers like “protected” and “private” would restrict access to that
function to a subset of code (child classes, and only the defining class, respectively). “static”
means that this is a “class-level” function, or in other words, you don’t need to have an instance
of the MyMath class already constructed to use this function. We can call it without instantiating
any objects. If “static” were omitted, we would have to first instantiate a “MyMath” object, and
then make the function call.

So how is this information conveyed in LISP? Simple: it doesn’t need it. Access modifiers like
“public” have to do with whether code outside the class can use the function or not. Functional
programming doesn’t use classes, the AddTogether function is just a piece of code that adds two
numbers together and returns the result, and once it has been loaded into the runtime it can be
called from any other piece of code. The same goes for “static”: there aren’t any “objects” or
“classes” in functional programming, so there’s no need to specify whether the function belongs
to the class or to instances of the class; it just exists.

4.4.2 Defining Procedures

So far we’ve just used the Listener as a calculator, to evaluate expressions. In this section, we're
going to make a huge leap forward and show you how to define your own procedures. Once
you've defined a procedure, it has the same status as the built-in procedures, like list and +. Let’s
define a procedure to return the average of two numbers.

In words, the procedure for finding the average of two numbers is:
° Add the first number to the second number.

° Divide the sum by 2.
Defining a Procedure — Defun

To define a procedure we use the special operator defun. This is an abbreviation for define
function, but LISP procedures are not strictly functions in the mathematical sense. We can write
the average procedure as follows:

(defun average (lst-number 2nd-number)
(/(+ 1lst-number 2nd-number) 2))

The first argument to defun gives the name of the procedure, which we’ve chosen as average.

LOVELY PROFESSIONAL UNIVERSITY 65



Introduction to Artificial Intelligence & Expert Systems

66

Notes

The second argument, (1st-number 2nd-number), is a list of what are called the parameters.
These are symbols representing the numbers we are going to refer to later in the procedure.

The rest of the definition, (/(+ 1st-number 2nd-number) 2), is called the body of the procedure.
It tells LISP how to calculate the value of the procedure, in this case sum the numbers and divide
by 2.

The words you use for the parameters are arbitrary, as long as they match the words you use in
the procedure definition. So you could equally well have written the average procedure as
follows:

(defun average (a b)
(/(+ a b) 2))

To define it we can type the definition at the LISP prompt:

CL-USER > (defun average (lst-number 2nd-number)
(/(+ 1lst-number 2nd-number) 2))
AVERAGE

Alternatively you could type the definition into the LISP Editor and select Compile Buffer to
evaluate it.

We can try it out with:

CL-USER 13 > (average 7 9)
8

or:

CL-USER 14 > (average (+ 2 3) (+ 4 5))
7

Remember that the arguments are evaluated before they are given to the procedure.
Procedures Without Parameters
A procedure doesn’t have to have any parameters. Here’s a procedure dice that returns a random

dice throw from 1 to 6:

(defun dice ()
(+ 1 (random 6)))

To call the procedure you simply write:

CL-USER 10 > (dice)
5

Example 1:

Objective: Write a program showing use of LISP arithmetic functions.

Solution:

Function Call Value Returned
(+3584) 20

(-10 12) 2
(*234) 24
(/252) 12,5

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

Example 2:

Objective: Write a program for implementation of LISP manipulation functions.

Solution:

Function Call Value Returned
(Car “(ab c)) A

(Cdr “(ab c) (BC)

(Cons ‘a ‘(b 0)) (ABQ)
(List “a ‘(b ¢)) (A (BC))
(Append ‘(a) ‘(b ¢)) (ABC)
(Last “(ab c d)) (D)
(Member ‘b “(a b d)) (BD)
(Reverse “(a (b ¢) d)) (DBC)A)

Example 3:

Objective: Write a program for implementation of LISP Boolean function.

Solution:

Function Call Value Returned
(Atom ‘aabb) t
(Equal “a (car ‘(a b)) t
(Evenp 3) nil
(Number 10ab) nil
(Oddp 3) t
(Zerop .000001) nil
(Greater 2 4 27) t
(Lessp5312) nil
(Listp ‘() t
(Null nil) t

Example 4:

Objective: Write a LISP Program calculating average of three numbers.
Solution:
AVERAGE OF THREE NUMBERS
=> (defun averagethree(nl n2 n3) (/(+ nl n2 n3)3))
AVERAGETHREE
OUTPUT
(Averagethree 10 20 30)

LOVELY PROFESSIONAL UNIVERSITY

Notes

67



Introduction to Artificial Intelligence & Expert Systems

68

Notes

Example 5:

Objective: Write a program in LISP showing implementation of condition.
Solution:

Maximum of Two Numbers

->(defun maximum? (a b) (cond ((>a b) a) (t b)))

MAXIMUM2

OUTPUT

(maximum?2 234 320)

> 320

Maximum of Three Numbers

(defun maximum3(a b ¢)(cond((>a b)(cond((>a c)a)(t ¢)))((>b c)b)(t c)))
MAXIMUM3

OUTPUT

(maximum3 20 30 25)

> 30

=

Task  Write a LISP program for login and password checking.

Self Assessment

State whether the following statements are true or false:

13.  LISP is a language that is usually associated with the Functional Programming paradigm.
14.  To define a procedure we use the special operator average.

15.  The words you use for the parameters are arbitrary.

16. A procedure does have to have any parameters.

4.5 Summary

° LISP programs are made up of expressions, which are lists or single atoms.

° Lists are made up of zero or more atoms or inner lists, separated by white space and
surrounded by parentheses. A list can be empty.

° Atoms are multi-character symbols, like forward-paragraph, single character symbols
like +, strings of characters between double quotation marks, or numbers.

° A number evaluates to itself.
° A string between double quotes also evaluates to itself.
° When you evaluate a symbol by itself, its value is returned.

LOVELY PROFESSIONAL UNIVERSITY



Unit 4: LISP

° When you evaluate a list, the LISP interpreter looks at the first symbol in the list and then
at the function definition bound to that symbol. Then the instructions in the function
definition are carried out.

° A single quotation mark, ’, tells the LISP interpreter that it should return the following
expression as written, and not evaluate it as it would if the quote were not there.

° Arguments are the information passed to a function. The arguments to a function are
computed by evaluating the rest of the elements of the list of which the function is the first
element.

° A function always returns a value when it is evaluated (unless it gets an error); in addition,

it may also carry out some action called a “side effect”. In many cases, a function’s primary
purpose is to create a side effect.

4.6 Keywords

CMUCL: The CMUCL is a high-performance, free common LISP implementation.

Common LISP Implementation: It is licensed under a LISP-specific variant of the LGPL, and
derived from Digitool’s MCL product.

FORTRAN: It has been used for such projects as the design of bridges and aeroplane structures;
it is used for factory automation control, for storm drainage design, analysis of scientific data
and so on.

Functional Calculus: It is a theory allowing one to apply mathematical functions to mathematical
operators. It is now a branch (more accurately, several related areas) of the field of functional
analysis, connected with spectral theory.

Working Knowledge: 1t is a social enterprise dedicated to opening the eyes of business to young
talent available locally.

4.7 Review Questions

1. Define LISP?

What is the different syntax and numeric functions of LISP?
Explain manipulation functions.

Abbreviate and meaning of Car, Cdr, Cadr, Caddr.

Write the difference between Cadr and Caddr.

What are LISP functions? Describe the LISP functions.

Explain the procedures with examples.

® N o T o= » DN

Write the examples for the uses of syntax in the LISP.

Answers: Self Assessment

1. True 2. False
3. True 4. False
5. False 6. True
7. True 8. True

LOVELY PROFESSIONAL UNIVERSITY

Notes

69



Introduction to Artificial Intelligence & Expert Systems

70

Notes

9. False 10. True
11. False 12.  True
13.  True 14. False
15.  True 16. False

4.8 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

N

v. 4,

Online links ~ http://blog.ethanvizitei.com/2008/01/lisp-ing-part-2-basic-list-

manipulation.html
http:/ /people.cs.pitt.edu/~milos/courses/cs2740/Lectures/LispTutorial.pdf
http:/ /www.cs.iusb.edu/~danav/teach/c311/c311_elisp2.html
http:/ /www.cs.sfu.ca/CourseCentral /310/pwfong/LISP/1/tutoriall.html
http:/ /www.n-a-n-o.com/lisp /cmucl-tutorials /LISP-tutorial-24.html

http://www.worldclasscad.com/lisp_pdf/chapter_08_lisp_ manipulation_
functions.pdf

www.apl.jhu.edu/~hall/lisp-books.html

www.engin.umd.umich.edu/CIS/course.des/ cis400/lisp /lisp.html

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

Unit 5: Artificial Intelligence Programming Language Notes

CONTENTS
Objectives
Introduction
51 Al Programming Languages
52  Predicates and Conditionals
5.3 Input, Output and Local Variables
54 Iteration and Recursion
5.5 Property Lists and Arrays
5.6 Prolog and Other Al Programming Languages
5.6.1 Prolog Lists
5.6.2 Prolog Sequences
5.6.3 Prolog as a Relational Language
5.7 Summary
58 Keywords
5.9 Review Questions

510 Further Readings

Objectives

After studying this unit, you will be able to:

° Discuss the Al Programming Languages

° Explain the Predicates and Conditionals in Al

° Describe Input, Output, and Local Variables

° Explain the Iteration and Recursion in Al

° Describe the Property Lists and Arrays in Al

° Explain Prolog and Other Al Programming Languages

Introduction

Programming languages in Al are the major tool for exploring and building computer programs
that can be used to simulate intelligent processes such as learning, reasoning and understanding
symbolic information in context. Although, in the early days of computer language design, the
primarily use of computers was for performing calculations with numbers, it was also found out
quite soon that strings of bits could represent not only numbers but also features of arbitrary
objects. Operations on such features or symbols could be used to represent rules for creating,
relating or manipulating symbols. This led to the notion of symbolic computation as an
appropriate means for defining algorithms that processed information of any type, and thus

LOVELY PROFESSIONAL UNIVERSITY 71



Introduction to Artificial Intelligence & Expert Systems

72

Notes

could be used for simulating human intelligence. Soon it turned out that programming with
symbols required a higher level of abstraction than was possible with those programming
languages which were designed especially for number processing, e.g., Fortran.

5.1 AI Programming Languages

In Al the automation or programming of all aspects of human cognition is considered from its
foundations in cognitive science through approaches to symbolic and sub-symbolic Al, natural
language processing, computer vision, and evolutionary or adaptive systems. It is inherent to
this very complex problem domain that in the initial phase of programming a specific Al
problem, it can only be specified poorly. Only through interactive and incremental refinement
does more precise specification become possible. This is also due to the fact that typical Al
problems tend to be very domain specific; therefore heuristic strategies have to be developed
empirically through generate-and-test approaches (also known as rapid prototyping). In this
way, Al programming notably differs from standard software engineering approaches where
programming usually starts from a detailed formal specification. In Al programming, the
implementation effort is actually part of the problem specification process. Due to the “fuzzy”
nature of many Al problems, Al programming benefits considerably if the programming
language frees the Al programmer from the constraints of too many technical constructions
(e.g., low-level construction of new data types, manual allocation of memory).

l)

Did uknow? A declarative programming style is more convenient using built-in high-
level data structures (e.g., lists or trees) and operations (e.g., pattern matching) so that
symbolic computation is supported on a much more abstract level than would be possible
with standard imperative languages, such as Fortran, Pascal or C. Of course, this sort of
abstraction does not come for free, since compilation of Al programs on standard Von
Neumann computers cannot be done as efficiently as for imperative languages.

However, once a certain Al problem is understood (at least partially), it is possible to reformulate
it in form of detailed specifications as the basis for re-implementation using an imperative
language. From the requirements of symbolic computation and Al programming, two new
basic programming paradigms emerged as alternatives to the imperative style: the functional
and the logical programming style. Both are based on mathematical formalisms, namely recursive
function theory and formal logic. The first practical and still most widely used Al programming
language is the functional language Lisp developed by John McCarthy in the late 1950s. Lisp is
based on mathematical function theory and the lambda abstraction. A number of important and
influential Al applications have been written in Lisp so we will describe this programming
language in some detail in this article. During the early 1970s, a new programming paradigm
appeared, namely logic programming on the basis of predicate calculus. The first and still most
important logic programming language is Prolog, developed by Alain Colmerauer, Robert
Kowalski and Phillippe Roussel. Problems in Prolog are stated as facts, axioms and logical rules
for deducing new facts.

=/4|

Notes Prolog is mathematically founded on predicate calculus and the theoretical results
obtained in the area of automatic theorem proving in the late 1960s.

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

Self Assessment Notes

State whether the following statements are true or false:

1. Al programming differs from standard software engineering approaches where
programming usually ends with a detailed formal specification.

2. A declarative programming style is more convenient using built-in high-level data
structures.
3. Lisp is not based on mathematical function theory and the lambda abstraction.

5.2 Predicates and Conditionals

Predicate logic builds heavily upon the ideas of proposition logic to provide a more powerful
system for expression and reasoning. As we have already mentioned, a predicate is just a function
with a range of two values, say false and true. We use predicates routinely in programming, e.g.
in conditional statements of the form

if(p(...args ...))

Here, we are using the two possibilities for the return value of p, (true or false). We also use the
propositional operators to combine predicates, such as in:

Pf(p(....) && (la(....) || r(....)))

Predicate logic deals with the combination of predicates using the propositional operators we
have already studied. It also adds one more interesting element, the “quantifiers”. The meaning
of predicate logic expressions is suggested by the following:

Expression + Interpretation + Assignment = Truth Value
Now, we explain this equation.

An interpretation for a predicate logic expression consists of: a domain for each variable in the
expression a predicate for each predicate symbol in the expression a function for each function
symbol in the expression. Note that the propositional operators are not counted as function
symbols in the case of predicate logic, even though they represent functions. The reason for this
is that we do not wish to subject them to interpretations other than the usual propositional
interpretation. Also, we have already said that predicates are a type of function. However, we
distinguish them in predicate logic so as to separate predicates, which have truth values used by
propositional operators, from functions that operate on arbitrary domains.

Furthermore, as with proposition logic, the stand-alone convention applies with predicates. We
do not usually explicitly indicate == 1 when a predicate expression is true; rather we just write
the predicate along with its arguments, standing alone. An assignment for a predicate logic
expression consists of a value for each variable in the expression. Given an assignment, a truth
value is obtained for the entire expression in the natural way.

Example:

Consider the expression:
x <y || (v < z & z < x)

A~ A

predicate symbols

Here | | and && are propositional operators and < is a predicate symbol (in infix notation). An
assignment is a particular predicate, say the less_than predicate on natural numbers, and values
for x, y, and z, say 3, 1, and 2. With respect to this assignment then, the value is that of

LOVELY PROFESSIONAL UNIVERSITY 73



Introduction to Artificial Intelligence & Expert Systems

74

Notes

3 <1 || (1 <2 && 2 < 3)
which is false | | (true && true) i.e. true.
With respect to the same assignment for <, but 3, 2, 1 for x, y, z, the value would be that of

3<2 11 (2<1&&1 < 3) which would be false. As long as we have assigned meanings to all
variables and predicates in the expression, we can derive a false or true value. Now, we give an
example where function symbols, as well as predicate symbols, are present.

(u+v)<y) Il ((y < (v+Ww)) && v < x) M / function symbols would be an example of an
expression with both function and predicate symbols. If we assign + and < their usual meanings
and u, v, w, x, y the values 1, 2, 3, 4, 5 respectively, this would evaluate to the value of ((1 + 2)
<4) Il ((4<((2+3)) && 2 < 4) which is, of course, true. It is common to be concerned with a fixed
interpretation (of domains, predicates, and functions) and allow the assignment to vary over
individuals in a domain. If a formula evaluates to true for all assignments, it is called valid with
respect to the interpretation.

If a formula is valid with respect to every interpretation, it is called valid. A special case of
validity is where sub-expressions are substituted for proposition symbols in a tautology. These
are also called tautologies.

The traditional conditional construct in Lisp is cond. However, if is much simpler and is
directly comparable to conditional constructs in other programming languages, so it is considered
to be primitive in Common Lisp and is described first. Common Lisp also provides the dispatching
constructs case and typecase, which are often more convenient than cond.

Special Form
if test then [else]

The if special form corresponds to the if-then-else construct found in most algebraic
programming languages. First the form test is evaluated. If the result is not nil, then the form
then is selected; otherwise the form else is selected. Whichever form is selected is then evaluated,
and if returns whatever is returned by evaluation of the selected form.

(if test then else) == (cond (test then) (t else))
but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of test is nil then nothing is done and
the value of the if form is nil. If the value of the if form is important in this situation, then the
and construct may be stylistically preferable, depending on the context. If the value is not
important, but only the effect, then the when construct may be stylistically preferable.

Self Assessment

State whether the following statements are true or false:

4. Predicate logic builds heavily upon the ideas of proposition logic to provide a more
powerful system for expression and reasoning.

5. Predicate logic does not deal with the combination of predicates using the propositional
operators.
6.  The traditional conditional construct in Lisp is cond.

5.3 Input, Output and Local Variables

Variables in programming languages are simply containers which hold values. Access to
variables and the contents of them is through their name, also know as their identifiers.

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

Inputs are variables that are created and filled with values when a procedure is invoked. The Notes
names of the variables, are given on the procedure’s title line. These identifiers can be used in

the instructions which make up the body of the procedure. Inputs are also called local variables —

they are local to the procedure in which they are defined.

Just to refresh your memory, given:

to box:size

repeat 4 [ forward:size right 90 ]
end

box 100

The first three lines are the definition of the procedure box, which includes an input, :size. A
value is placed in the variable (think container) named size when the procedure box is invoked.
The last line in this example shows an invocation of box. In this case, 100 is the value that’s being
supplied for the: size variable.

Self Assessment

State whether the following statements are true or false:

7. Variables in programming languages are simply containers which hold values.
8. Outputs are variables that are created and filled with values when a procedure is invoked.
9.  Inputs are also called local variables.

5.4 Tteration and Recursion

The fact is that recursion is rarely the most efficient approach to solving a problem, and iteration
is almost always more efficient. This is because there is usually more overhead associated with
making recursive calls due to the fact that the call stack is so heavily used during recursion. This
means that many computer programming languages will spend more time maintaining the call
stack then they will actually performing the necessary calculations. Generally speaking, yes it
does. This is because of the extensive use of the call stack. Recursion is generally used because of
the fact that it is simpler to implement, and it is usually more ‘elegant’ than iterative solutions.
Remember that anything that’s done in recursion can also be done iteratively, but with recursion
there is generally a performance drawback. But, depending on the problem that you are trying
to solve, that performance drawback can be very insignificant — in which case it makes sense to
use recursion. With recursion, you also get the added benefit that other programmers can more
easily understand your code — which is always a good thing to have.

Example of Recursion in Java — the Factorial

We take a simple example of recursion to best illustrate how it works: the factorial is probably
the most commonly used example. What is a factorial? Well, any number written like this: “x!”
is said to be “the factorial of x”. A factorial of a number “x” is just the product of all integers
between 1 and x. So, if x is equal to the number 5, then the factorial of x would be 5*4*3*2*1,
which equals 120. We could also say that the factorial of is equal to 5 multiplied by the factorial
of 4, which would be 5 * 4!, or 5*4*3*2*1 So, the factorial of any number “x” could also be defined
as:

x! = x * (x - 1)!

And, something else that is important to know is the fact that the factorial of 0 is equal to 1 as is
the factorial of 1.

or =1 =1

LOVELY PROFESSIONAL UNIVERSITY 75



Introduction to Artificial Intelligence & Expert Systems

76

Notes

Self Assessment

State whether the following statements are true or false:

10.
11.

12.

Recursion is rarely the most efficient approach to solving a problem.

With recursion, you also get the added benefit that other programmers can more easily
understand.

A factorial of a number “x” is just the product of all integers between 0 and x.

5.5 Property Lists and Arrays

Arrays are extremely useful when you have several similar objects that you want to be able to

process the same way or to be able to process as a group rather than individually. The Array

object itself provides a number of methods that make manipulation of the whole group of

objects or specific objects within the group much easier. The following methods are provided by
Java script to assist in the manipulation of arrays:

concat(secondarray) will concatenate the elements of the second array onto the end of the
original array effectively joining two arrays together.

join(separator) converts the array into a string by placing the contents of the elements one
after the other with the specified separator in between. If no separator is specified then a
comma will be used.

pop() removes the last element from the array making the array smaller. The removed
element is returned from the method call allowing it to be processed.

push(element) adds an element to the end of the array.
reverse() reverses the order of the elements within the array.

shift() similar to pop() but removes and returns the first element in the array rather than
the last.

slice(start,end) creates a new array containing a subset of the elements from the original
array. The start and end values are numbers indicating which elements to extract counting
from the start of the array if the numbers are positive or from the end of the array if they
are negative. If an end value is omitted then the elements from the start position to the end
of the array will be extracted.

sort(compareFunction) will sort the elements in the array into any desired order. If no
compare function is specified then the elements will be treated as strings and sorted into
ascending order. By providing an appropriate compare function you can set whatever sort
order you require.

splice(position,number,elementl,...) allows you to insert, delete, or replace elements from
anywhere within the array. The specified number of elements from the specified position
will be removed from the array and will be replaced with the elements specified in the
third and subsequent parameters.

unshift(element) similar to push except that the new element gets added to the start rather
than the end of the array.

All of the above methods can be used for conventional arrays where the elements of the arrays

are numbered. Such conventional arrays also have a length property that can be used to determine

the number of elements that are currently allocated to the array. There is a second type of array

known as an associative array where the elements of the array are named rather than numbered.

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

An associative array in Java script is primarily an alternative notation for being able to reference Notes
an Object and so the above methods and property cannot be used with an associative array. As

the Array class is based on the Object class in Java script all of the methods and properties of the

Object class are also available to use with Arrays and function the same way for Arrays as they

do for Objects.

AN

Caution Have proper knowledge of array and its applications.

g

Task  Go through various websites for the iteration and recursion related with AL

Self Assessment

State whether the following statements are true or false:

13.  Arrays are extremely useful when you have several similar objects that you want to be
able to process the same way or to be able to process as a group rather than individually.

14.  Concat(secondarray) adds an element to the end of the array.

15.  Pop() removes the first element from the array making the array smaller.

5.6 Prolog and Other AI Programming Languages

In the 1970s, an alternative paradigm for symbolic computation and Al programming arose
from the success in the area of automatic theorem proving. Notably, the resolution proof
procedure developed by Robinson (1965) showed that formal logic, in particular predicate
calculus, could be used as a notation for defining algorithms and therefore, for performing
symbolic computations. In the early 1970s, Prolog (an acronym for Programming in Logic), the
first logical based programming language appeared. Basically, Prolog consists of a method for
specifying predicate calculus propositions and a restricted form of resolution. Programming in
Prolog consists of the specification of facts about objects and their relationships, and rules
specifying their logical relationships. Prolog programs are declarative collections of statements
about a problem because they do not specify how a result is to be computed but rather define
what the logical structure of a result should be. This is quite different from imperative and even
functional programming, in which the focus is on defining how a result is to be computed. Using
Prolog, programming can be done at a very abstract level quite close to the formal specification
of a problem. Prolog is still the most important logical programming language. There are a
number of commercial programming systems on the market which include modern
programming modules, i.e., compiler, debugger and visualization tools. Prolog has been used
successfully in a number of Al areas such as expert systems and natural language processing, but
also in such areas as relational database management systems or in education.

AN

Caution A query is used to activate Prolog’s proof procedure.

Logically, a query corresponds to an unknown theorem. It has the same form as a fact. In order
to tell Prolog that a query has to be proven, the special query operator ? - is usually written in
front of the query. In the simple Prolog program introduced above, we have already seen an
informal description of how a query is used by Prolog. Prolog’s inference process consists of
two basic components: a search strategy and a unifier. The search strategy is used to search

LOVELY PROFESSIONAL UNIVERSITY 77



Introduction to Artificial Intelligence & Expert Systems

78

Notes

through the fact and rule data base while unification is used for pattern matching and returns the
bindings that make an expression true.

]

Notes The unifier is applied on two terms and tries to combine them both to form a new
term. If unification is not possible, then unification is said to have failed. If the two terms
contain no variables, then unification actually reduces to checking whether the terms are
equal.

Prolog is a general purpose logic programming language associated with artificial intelligence
and computational linguistics. Prolog has its roots in first-order logic, a formal logic, and unlike
many other programming languages, Prolog is declarative: the program logic is expressed in
terms of relations, represented as facts and rules. A computation is initiated by running a query
over these relations. Prolog was one of the first logic programming languages and remains the
most popular among such languages today with many free and commercial implementations
available. While initially aimed at natural language processing, the language has since then
stretched far into other areas like theorem proving, expert systems, games, automated answering
systems, ontologism and sophisticated control systems. Modern Prolog environments support
creating graphical user interfaces, as well as administrative and networked applications.

5.6.1 Prolog Lists

Lists themselves have the following syntax. They always start and end with square brackets, and
each of the items they contain is separated by a comma. Here is a simple list
[a,freddie,A_Variable,apple]

Prolog also has a special facility to split the first part of the list (called the head) away from the
rest of the list (known as the tail). We can place a special symbol | (pronounced ‘bar’) in the list
to distinguish between the first item in the list and the remaining list. For example, consider the
following.

[first,second,third] = [A | B]
where A = first and B=[second,third]

The unification here succeeds. A is bound to the first item in the list, and B to the remaining list.

Example 1: Here are some example simple lists

[ab,cdef,g]

[apple,pear,bananas,breadfruit]

[ 1/* this is a special list, it is called the empty list because it contains nothing */
Now lets consider some comparisons of lists:

[a,)b,c] unifies with [Head | Tail] resulting in Head=a and Tail=[b,c]

[a] unifies with [H|T] resulting in H=a and T=[]

[a,b,c] unifies with [a|T] resulting in T=[b,c]

[a,b,c] doesn’t unify with [b|T]

It doesn’t unify with [HIT]

It unifies with []. Two empty lists always match

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

Notes
' Example 2: Consider the following fact.

p([HITL, H, T).
Lets see what happens when we ask some simple queries.
?-p(lab.c], X, Y).
X=a

Y=[b,c]

yes

?-p([al, X, Y).
X=a

Y=[]

yes

7-p((l, X, Y).

no
5.6.2 Prolog Sequences

The kind of sequences most used in Prolog is “comma” sequences. There is no empty sequence
(unlike for lists). The shortest sequence has one element. Longer sequences have elements

"o

separated by commas “,”. An appropriate declaration for the comma operator would be
:- op(1000,xfy,”,").

meaning that comma is right-associative with precedence 1000. (The comma operator is actually
built-in.) Here is some Prolog behavior.

?- (H,T) = (1,2,3,4).
H=1

T = 2,3,4

?- (a) = a

Yes

?- (H,T) = (a)

No

?- (A,B,C) = (1,2,3,4,5).
A =1

B = 2

c = 3,4,5

Prolog clauses use comma sequences.

?- assert((a(X):- Db(X),c(X),d(X))). %% Note parens around clause
X = G1l056

?- clause(a(X),Body), Body=(First, Next).

First = b(Gl176)

Next = c(G1l176), d(Gl1l76)

Body = b(Gl1l76), c(Gll76), d(Gll7e6)

X = Gl176

Processing sequences is similar to processing lists, except that the base case for sequences is a
unit sequence (one element), whereas for lists the base case is for the empty list.

LOVELY PROFESSIONAL UNIVERSITY 79



Introduction to Artificial Intelligence & Expert Systems

80

Notes

'E Example: Here is a program to append comma sequences ...
sequence_append((X,R),S, (X,T)) : -
1
sequence_append(R,S,T) .
sequence_append((X),S, (X,8)) .

Note the use of cut (!) to make sure that the second clause is not available as a alternate choice for
multi-element sequences.

?- sequence_append((1,2,3),(a,b,c,d),S).
s =1, 2, 3, a, b, ¢, d

5.6.3 Prolog as a Relational Language

A Probabilistic Relational Programming Language (PRPL) is a programming language specially
designed to describe and infer with Probabilistic Relational Models (PRMs). A PRM is usually
developed with a set of algorithms for reducing, inference about and discovery of concerned
distributions, which are embedded into the corresponding PRPL. PRPLs often extend from a
basic language. The inventors’ choices of underlying basic language depend on the similarity of
their relational models to the basic language’s relational model, as well as commercial
considerations and personal preference. For instance, Infer.NET is based on .NET framework,
while PRISM extends from Prolog. Currently there are several PRPLs in active development;
some of them have advanced to the beta stage. However because PRMs are new, up to year 2010
there have been no well-known software projects utilizing those languages.

We have introduced Lisp as the main representative functional programming language (especially
the widely used dialect Common Lisp), because it is still a widely used programming language
for a number of Artificial Intelligence problems, like Natural Language Understanding,
Information Extraction, Machine Learning, Al planning, or Genetic Programming. Beside Lisp a
number of alternative functional programming languages have been developed. We will briefly
mention two well-known members, viz. ML and Haskell. ML which stands for Meta-Language
is a static-scoped functional programming language.

The main differences to Lisp is its syntax (which is more similar to that of Pascal), and a strict
polymorphic type system (i.e., using strong types and type inference, which means that variables
need not be declared). The type of each declared variable and expression can be determined at
compile time. ML supports the definition of abstract data types, as demonstrated by the following

Example:

datatype tree = L of int

| int * tree * tree; which can be read as “every binary tree is either a leaf containing an integer or
it is a node containing an integer and two trees (the subtrees)”. An example of a recursive
function definition applied on a tree data structure is shown in the next example:

fun depth(L) = 1
| depth(N(i,Lr)) =
1 + max(depth 1, depth r);

The function depth maps trees to integers. The depth of a leaf is 1 and the depth of any other tree
is 1 plus the maximum of the depths of the left and right sub trees.

Haskell is similar to ML: it uses a similar syntax, it is also static scoped, and makes use of the
same type inference method. It differs from ML in that it is purely functional. This means that it

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

allows no side effects and includes no imperative features of any kind, basically because it has Notes
no variables and no assignment statements. Furthermore, it uses a lazy evaluation technique, in

which no sub expression is evaluated until its value is known to be required. Lists are a commonly

used data structure in Haskell.

Example: [1,2,3] is the list of three integers 1,2, and 3. The list [1,2,3] in Haskell is actually
shorthand for the list 1:(2:(3:[])), where [] is the empty list and: is the infix operator that adds its
first argument to the front of its second argument (a list). As an example of a user-defined
function that operates on lists, consider the problem of counting the number of elements in a list
by defining the function length:

length:: [a] -> Integer
length[]=0

length (x:xs) = 1 + length xs; which can be read as “The length of the empty list is 0, and the length
of a list whose first element is x and remainder is xs is 1 plus the length of xs”. In Haskell,
function invocation is guided by pattern matching. For example, the left-hand sides of the
equations contain patterns such as [ and x:xs. In a function application, these patterns are matched
against actual parameters ([]) only matches the empty list, and x:xs will successfully match any
list with at least one element, binding x to the first element and xs to the rest of the list). If the
match succeeds, the right hand side is evaluated and returned as the result of the application. If
it fails, the next equation is tried, and if all equations fail, an error results.

AN

Caution Use Prolog after creating Algorithm.

g

Task  Use Prolog for any general programs.

Self Assessment

State whether the following statements are true or false:

16. In the 1970s an alternative paradigm for symbolic computation and Al programming
arose from the success in the area of automatic theorem proving.

17. A query is used to activate Prolog’s proof procedure.

18.  Prolog was not the first logic programming languages.

5.7 Summary

° Programming languages in artificial intelligence (AI) are the major tool for exploring and
building computer programs that can be used to simulate intelligent processes such as
learning, reasoning and understanding symbolic information in context.

° The Al programming benefits considerably if the programming language frees the Al
programmer from the constraints of too many technical constructions.

° The input-output functions print, prinl, princ, read, terpri, and format were defined and
example programs presented.

LOVELY PROFESSIONAL UNIVERSITY 81



Introduction to Artificial Intelligence & Expert Systems

Notes ° The data and functions are represented as s — expressions which can be either atoms or
lists.
° The prog function is similar to let in that the first arguments following it are a list of local

variables where each element is either a variable name or a list containing a variable
name and its initial value.

° PROLOG is a logical and a declarative programming language. The name itself, PROLOG,
is short for Programming in Logic.

5.8 Keywords

Artificial Intelligence: It is a major tool for exploring and building computer programs.
Predicates: 1t is a function that tests their arguments for some specific condition.
Processing Sequences: It is similar to processing lists.

PROLOG: It refers to interpreted language.

Setf: It is an assignment function.

5.9 Review Questions

1. Explain LISP.

What do you understand by Prolog?
Define predicate and conditional.
Discuss Prolog as a Relational Language.

Explain with the help of example how Prolog clauses use comma sequences.

S 9w N

Write brief note on Property Lists and Arrays.

Answers: Self Assessment

1. False 2. True
3. False 4. True
5. False 6. True
7. True 8. False
9. False 10.  True
11.  True 12.  False
13.  True 14. False
15. False 16. True
17.  True 18. False

82 LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Artificial Intelligence Programming Language

5.10 Further Readings Notes
Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.

Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.
A
Y. O,
Online links  http:/ /programmers.stackexchange.com/questions /84407 /why-is-prolog-good-
for-ai-programming

http:/ /stackoverflow.com/questions /82036 /what-is-a-good-programming-
language-for-ai

http:/ /www.bracil.net/ Teaching /Intro_AI/downloads/Intro_AI-001.pdf
http:/ /www.cs.millersville.edu/~chaudhary/340/ AIThruProlog.pdf

http:/ /www.csupomona.edu/ ~jrfisher/www /prolog_tutorial/intro.html
http:/ /www.engin.umd.umich.edu/CIS/course.des/cis400/ prolog/prolog.html
http:/ /www.inf.ed.ac.uk/teaching/courses/aipp/

http:/ /www.programmerinterview.com/index.php /recursion/explanation-of-
recursion/

https:/ /news.ycombinator.com/item?id=3944506

LOVELY PROFESSIONAL UNIVERSITY 83



Introduction to Artificial Intelligence & Expert Systems

Notes Unit 6: Formalized Symbolic Logics
CONTENTS
Objectives
Introduction
6.1 Concept of Formalized Symbolic Logics
6.1.1 Syntax Logic
6.1.2 Propositional Logic
6.2 Syntax and Semantics for First-order Logic (FOL)
6.3 Well-formed Formula (WFF)
6.3.1 Properties of WFF
6.4 Conversion to Clausal Form
6.4.1 Conversion to Clausal Normal Form
6.5 Inference Rules
6.5.1 The Standard Form of Rules of Inference
6.6  Resolution Logic
6.6.1 Resolution Rule
6.6.2 The Resolution Principle
6.7  Deductive Inference Methods
6.7.1 Law of Detachment
6.7.2 Law of Syllogism
6.7.3 Deductive Logic: Validity and Soundness
6.7.4 Representations Using Rules Dealing with Inconsistencies and Uncertainties
6.8  Truth Maintenance System (TMS)
6.9 DPredicated Completion and Circumscription
6.9.1 The Propositional Case
6.9.2 Fixed and Varying Predicates
6.9.3 Predicate Circumscription
6.9.4 Pointwise Circumscription
6.9.5 Domain and Formula Circumscription
6.10 Modal Logic
6.11 Temporal Logic
6.12 Fuzzy Logic
6.121  Applying Truth Values

84

Contd...

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

6.13 Natural Language Computation Notes
6.13.1  Defining Natural Language

6.14 Summary

6.15 Keywords

6.16 Review Questions

6.17 Further Readings

Objectives

After studying this unit, you will be able to:
° Explain the concept of Formalized Symbolic Logics
° Discuss Syntax and Semantics for First-order Logic (FOL)

° Describe the Well-Formed Formula (WFF)

° Explain Conversion to Clausal Form

° Identify the standard form of Rules of Inference

° Discuss the concept of Resolution Logic

° Identify various Deductive Inference Methods

° Describe Truth Maintenance System

° Discuss the Predicated Completion and Circumscription

° Define Modal Logic
° Define Temporal Logic
° Explain the concept of Fuzzy Logic

° Discuss the Natural Language Computation
Introduction

Mathematical logic (also symbolic logic, formal logic, or, less frequently, modern logic) is a
subfield of mathematics with close connections to the foundations of mathematics, theoretical
computer science and philosophical logic The field includes both the mathematical study of
logic and the applications of formal logic to other areas of mathematics. The unifying themes in
mathematical logic include the study of the expressive power of formal systems and the deductive
power of formal proof systems.

Mathematical logic is often divided into the fields of set theory, model theory, recursion theory,
and proof theory. These areas share basic results on logic, particularly first-order logic, and
definability. In computer science (particularly in the ACM Classification), mathematical logic
encompasses additional topics not detailed in this article; see logic in computer science for
those.

Since its inception, mathematical logic has both contributed to, and has been motivated by, the
study of foundations of mathematics. This study began in the late 19th century with the
development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th
century, it was shaped by David Hilbert’s program to prove the consistency of foundational

LOVELY PROFESSIONAL UNIVERSITY 85



Introduction to Artificial Intelligence & Expert Systems

86

Notes

theories. Results of Kurt Godel, Gerhard Gentzen, and others provided partial resolution to the
program, and clarified the issues involved in proving consistency. Work in set theory showed
that almost all ordinary mathematics can be formalized in terms of sets, although there are
some theorems that cannot be proven in common axiom systems for set theory. Contemporary
work in the foundations of mathematics often focuses on establishing which parts of mathematics
can be formalized in particular formal systems (as in reverse mathematics) rather than trying to
find theories in which all of mathematics can be developed.

6.1 Concept of Formalized Symbolic Logics

Mathematical logic emerged in the mid-19th century as a subfield of mathematics independent
of the traditional study of logic. Before this emergence, logic was studied with rhetoric, through
the syllogism, and with philosophy. The first half of the 20th century saw an explosion of
fundamental results, accompanied by vigorous debate over the foundations of mathematics.
Theories of logic were developed in many cultures in history, including China, India, Greece
and the Islamic world. In 18th century Europe, attempts to treat the operations of formal logic in
a symbolic or algebraic way had been made by philosophical mathematicians including Leibniz
and Lambert, but their labors remained isolated and little known. In the middle of the 19th
century, George Boole and then Augustus De Morgan presented systematic mathematical
treatments of logic. Their work, building on work by algebraists such as George Peacock,
extended the traditional Aristotelian doctrine of logic into a sufficient framework for the study
of foundations of mathematics. Charles Sanders Peirce built upon the work of Boole to develop
a logical system for relations and quantifiers, which he published in several papers from 1870 to
1885. Gottlob Frege presented an independent development of logic with quantifiers in his Begri
ffsschrift, published in 1879, a work generally considered as marking a turning point in the
history of logic. Frege’s work remained obscure, however, until Bertrand Russell began to
promote it near the turn of the century. The two-dimensional notation Frege developed was
never widely adopted and is unused in contemporary texts. From 1890 to 1905, Ernst Schroder
published Vorlesungen iiber die Algebra der Logik in three volumes. This work summarized and
extended the work of Boole, De Morgan, and Peirce, and was a comprehensive reference to
symbolic logic as it was understood at the end of the 19th century.

6.1.1 Syntax Logic

In logic, syntax is anything having to do with formal languages or formal systems without
regard to any interpretation or meaning given to them. Syntax is concerned with the rules used
for constructing, or transforming the symbols and words of a language, as contrasted with the
semantics of a language which is concerned with its meaning. The symbols, formulas, systems,
theorems, proofs, and interpretations expressed in formal languages are syntactic entities whose
properties may be studied without regard to any meaning they may be given, and, in fact, need
not be given any. Syntax is usually associated with the rules (or grammar) governing the
composition of texts in a formal language that constitute the well-formed formulas of a formal
system.

l)

Did uknow? In computer science, the term “syntax” refers to the rules governing the
composition of meaningful texts in a formal language, such as a programming language,
that is, those texts for which it makes sense to define the semantics or meaning, or otherwise
provide an interpretation.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Notes

Symbols and
strings of symbols

Well-formed formulas

Theorems

This diagram shows the syntactic entities which may be constructed from formal languages. The
symbols and strings of symbols may be broadly divided into nonsense and well-formed formulas.
A formal language is identical to the set of its well-formed formulas. The set of well-formed
formulas may be broadly divided into theorems and non-theorems.

6.1.2 Propositional Logic

A proposition is a sentence expressing something true or false. A proposition is identified
ontologically as an idea, concept or abstraction whose token instances are patterns of symbols,
marks, sounds, or strings of words. Propositions are considered to be syntactic entities and also
truth bearers. A formal theory is a set of sentences in a formal language. A symbol is an idea,
abstraction or concept, tokens of which may be marks or a configuration of marks which form
a particular pattern. Symbols of a formal language need not be symbols of anything. For instance,
there are logical constants which do not refer to any idea, but rather serve as a form of punctuation
in the language (e.g. parentheses). A symbol or string of symbols may comprise a well-formed
formula if the formulation is consistent with the formation rules of the language. Symbols of a
formal language must be capable of being specified without any reference to any interpretation
of them.

Formal Language

A formal language is a syntactic entity which consists of a set of finite strings of symbols which
are its words (usually called its well-formed formulas). Which strings of symbols are words is
determined by fiat by the creator of the language, usually by specifying a set of formation rules.
Such a language can be defined without reference to any meanings of any of its expressions; it
can exist before any interpretation is assigned to it — that is, before it has any meaning. Formation
rules are a precise description of which strings of symbols are the well-formed formulas of a
formal language. It is synonymous with the set of strings over the alphabet of the formal
language which constitute well formed formulas. However, it does not describe their semantics
(i.e. what they mean).

Formal Systems
A formal system (also called a logical calculus, or a logical system) consists of a formal language
together with a deductive apparatus (also called a deductive system). The deductive apparatus

may consist of a set of transformation rules (also called inference rules) or a set of axioms, or
have both. A formal system is used to derive one expression from one or more other expressions.

LOVELY PROFESSIONAL UNIVERSITY 87



Introduction to Artificial Intelligence & Expert Systems

88

Notes

Formal systems, like other syntactic entities may be defined without any interpretation given to
it (as being, for instance, a system of arithmetic). A formula A is a syntactic consequence within
some formal system FS of a set I' of formulas if there is a derivation in formal system FS of A
from the set I'.

T'h A

Syntactic consequence does not depend on any interpretation of the formal system.
Syntactic Completeness of a Formal System

A formal system S is syntactically complete (also deductively complete, maximally complete,
negation complete or simply complete) if for each formula A of the language of the system
either A or —A is a theorem of S. In another sense, a formal system is syntactically complete if no
unprovable axiom can be added to it as an axiom without introducing an inconsistency. Truth-
functional propositional logic and first-order predicate logic are semantically complete, but not
syntactically complete (for example the propositional logic statement consisting of a single
variable “a” is not a theorem, and neither is its negation, but these are not tautologies). Godel’s
incompleteness theorem shows that no recursive system that is sufficiently powerful, such as
the Peano axioms, can be both consistent and complete.

Self Assessment

State whether the following statements are true or false:

1. A formal systems is a syntactic entity which consists of a set of finite strings of symbols
which are its words.

2. Formation rules are a precise description of which strings of symbols are the well-formed
formulas of a formal language.

6.2 Syntax and Semantics for First-order Logic (FOL)

First-order logic is a formal system used in mathematics, philosophy, linguistics, and computer
science. Itis also known as first-order predicate calculus, the lower predicate calculus, quantification
theory, and predicate logic (a less precise term). First-order logic is distinguished from
propositional logic by its use of quantified variables. A theory about some topic is usually first-
order logic together with a specified domain of discourse over which the quantified variables
range, finitely many functions which map from that domain into it, finitely many predicates
defined on that domain, and a recursive set of axioms which are believed to hold for those
things. Sometimes “theory” is understood in a more formal sense, which is just a set of sentences
in first-order logic.

The adjective “first-order” distinguishes first-order logic from higher-order logic in which
there are predicates having predicates or functions as arguments, or in which one or both of
predicate quantifiers or function quantifiers are permitted. In first-order theories, predicates are
often associated with sets. In interpreted higher-order theories, predicates may be interpreted as
sets of sets. There are many deductive systems for first-order logic that are sound (all provable
statements are true) and complete (all true statements are provable). Although the logical
consequence relation is only semi decidable, much progress has been made in automated theorem
proving in first-order logic. First-order logic also satisfies several met logical theorems that
make it amenable to analysis in proof theory, such as the Lowenheim — Skolem theorem and the
compactness theorem. First-order logic is of great importance to the foundations of mathematics,
because it is the standard formal logic for axiomatic systems. Many common axiomatic systems,

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

such as first-order Peano arithmetic and axiomatic set theory, including the canonical Zermelo — Notes
Fraenkel set theory (ZF), can be formalized as first-order theories.

]

Notes No first-order theory, however, has the strength to describe fully and categorically
structures with an infinite domain, such as the natural numbers or the real line. Categorical
axiom systems for these structures can be obtained in stronger logics such as second-order
logic.

Propositional Logic is concerned with propositions and their interrelationships. The notion of a
proposition here cannot be defined precisely. Roughly speaking, a proposition is a possible
condition of the world about which we want to say something. The condition need not be true
in order for us to talk about it. In fact, we might want to say that it is false or that it is true if some
other proposition is true. In this unit, we first look at the syntactic rules for the language of
Propositional Logic. We then look at semantic interpretation for the expressions specified by
these rules. Given this semantics, we define the concept of propositional entailment, which
identifies for us, at least in principle, all of the logical conclusions one can draw from any set of
propositional sentences.

Syntax

In Propositional Logic, there are two types of sentences — simple sentences and compound
sentences. Simple sentences express “atomic” propositions about the world. Compound sentences
express logical relationships between the simpler sentences of which they are composed. Simple
sentences in Propositional Logic are often called propositional constants or, sometimes, logical
constants. In what follows, we refer to a logical constant using a sequence of alphanumeric
characters beginning with a lower case character. For example, raining is a logical constant, as
are rAiNiNg and r32aining. Raining is not a logical constant because it begins with an upper
case character. 324567 fails because it begins with a number. Raining-or-snowing fails because it
contains non-alphanumeric characters. Compound sentences are formed from simpler sentences
and express relationships among the constituent sentences. There are six types of compound
sentences, viz. negations, conjunctions, disjunctions, implications, reductions, and equivalences.
A negation consists of the negation operator - and a simple or compound sentence, called the
target. For example, given the sentence p, we can form the negation of p as shown below:

P
A conjunction is a sequence of sentences separated by occurrences of the A operator and enclosed

in parentheses, as shown below. The constituent sentences are called conjuncts. For example, we
can form the conjunction of p and g as follows:

V)

A disjunction is a sequence of sentences separated by occurrences of the v operator and enclosed
in parentheses. The constituent sentences are called disjuncts. For example, we can form the
disjunction of p and g as follows:

(P va)

An implication consists of a pair of sentences separated by the = operator and enclosed in
parentheses. The sentence to the left of the operator is called the antecedent, and the sentence to
the right is called the consequent. The implication of p and g is shown below:

p=19

A reduction is the reverse of an implication. It consists of a pair of sentences separated by the <
operator and enclosed in parentheses. In this case, the sentence to the left of the operator is called

LOVELY PROFESSIONAL UNIVERSITY 89



Introduction to Artificial Intelligence & Expert Systems

90

Notes

the consequent, and the sentence to the right is called the antecedent. The reduction of p to g is
shown below:

p=aq)
Equivalence is a combination of an implication and a reduction. For example, we can express the
equivalence of p and g as shown below:

p=q)

Note that the constituent sentences within any compound sentence can be either simple sentences
or compound sentences or a mixture of the two. For example, the following is a legal compound
sentence.

((pvq) = -

One disadvantage of our notation, as written, is that the parentheses tend to build up and need
to be matched correctly. It would be nice if we could dispense with parentheses, e.g. simplifying
the preceding sentence to the one shown below:

pvqg=-r

Unfortunately, we cannot do without parentheses entirely, since then we would be unable to
render certain sentences unambiguously. For example, the sentence shown above could have
resulted from dropping parentheses from either of the following sentences:

((pvaq)=-)

(pvig=-n)
The solution to this problem is the use of operator precedence. The following gives a hierarchy
of precedence for our operators.
The — operator has higher precedence than A; A has higher precedence than v; and v has higher
precedence than =, <, and <.

-

A
\4

Ses

In unparenthesized sentences, it is often the case that an expression is flanked by operators, one
on either side. In interpreting such sentences, the question is whether the operator associates
with the operator on its left or the one on its right. We can use precedence to make this
determination. In particular, we agree that an operand in such a situation always associates with
the operator of higher precedence. When an operand is surrounded by operators of equal
precedence, the operand will be associated to the left. The following examples show how these
rules work in various cases. The expressions on the right are the fully parenthesized versions of
the expressions on the left.

“pPAq Cpag
pA—q (p A —q)
pAqvr ((pAg)vr)
pvqgnar (pv@nr)
p=q=r (p=9=r
p=>qg&r (p=9q) <71

Note that just because precedence allows us to delete parentheses in some case does not mean
that we can dispense with parentheses entirely. Consider the example shown above. Precedence
eliminates the ambiguity by dictating that the unparenthesized sentence is an implication with

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

a disjunction as antecedent. However, this makes for a problem for those cases when we want to Notes
express a disjunction with an implication as a disjunctive. In such cases, we must retain at least
one pair of parentheses.

Semantics

The semantics of logic is similar to the semantics of algebra. Algebra is unconcerned with the
real-world meaning of variables like x. What is interesting is the relationship between the
variables expressed in the equations we write; and algebraic methods are designed to respect
these relationships, no matter what meanings or values are assigned to the constituent variables.
In a similar way, logic itself is unconcerned with what sentences say about the world being
described. What is interesting is the relationship between the truth of simple sentences and the
truth of compound sentences within which the simple sentences are contained. Also, logical
reasoning methods are designed to work no matter what meanings or values are assigned to the
logical “variables” used in sentences. Although the values assigned to variables are not crucial
in the sense just described, in talking about logic itself, it is sometimes useful to make these
assignments explicit and to consider various assignments or all assignments and so forth. Such
an assignment is called an interpretation. Formally, an interpretation for propositional logic is
a mapping assigning a truth value to each of the simple sentences of the language. In what
follows, we refer to the meaning of a constant or expression under an interpretation i by
superscripting the constant or expression with i as the superscript.

The assignment shown below is an example for the case of a logical language with just three
propositional constants, viz. p, g, and r.

p' = true
q' = false
' = true

The following assignment is another interpretation for the same language.

p' = false
q' = false
r = true

Note that the expressions above are not themselves sentences in Propositional Logic. Propositional
Logic does not allow superscripts and does not use the = symbol. Rather, these are informal,
Meta level statements about particular interpretations. Although talking about propositional
logic using a notation similar to that propositional logic can sometimes be confusing, it allows
us to convey meta-information precisely and efficiently. To minimize problems, in this book
we use such meta-notation infrequently and only when there is little chance of confusion.
Looking at the preceding interpretations, it is important to bear in mind that, as far as logic is
concerned, any interpretation is as good as any other. It does not directly fix the interpretation
of individual logical constants. On the other hand, given an interpretation for the logical constants
of a language, logic does fix the interpretation for all compound sentences in that language. In
fact, it is possible to determine the truth value of a compound sentence by repeatedly applying
the following rules.

1. If the truth value of a sentence is true in an interpretation, the truth value of its negation is
false. If the truth value of a sentence is false, the truth value of its negation is true.

2. The truth value of a conjunction is true under an interpretation if and only if the truth
value of its conjuncts are both true; otherwise, the truth value is false.

3. The truth value of a disjunction is true if and only if the truth value of at least one its
conjuncts is true; otherwise, the truth value is false. Note that this is the inclusive or

LOVELY PROFESSIONAL UNIVERSITY 91



Introduction to Artificial Intelligence & Expert Systems

Notes interpretation of the v operator and is differentiated from exclusive or in which a
disjunction is true if and only if an odd number of its disjuncts are false.

4. The truth value of an implication is false if and only if its antecedent is true and is consequent
is false; otherwise, the truth value is true. This is called material implication.

5. As with an implication, the truth value of a reduction is false if and only if its antecedent
is true and its consequent is false; otherwise, the truth value is true. Of course, it is important
to remember that in a reduction the antecedent and consequent are reversed.

6.  An equivalence is true if and only if the truth values of its constituents agree, i.e. they are
either both true or both false.

We say that an interpretation i satisfies a sentence if and only if it is true under that interpretation.
Evaluation

Given the semantic definitions in the last section, we can easily determine for any given
interpretation whether or not any sentence is true or false under that interpretation. The technique
is simple. We substitute true and false values for the propositional constants and replace complex
expressions with the corresponding values, working from the inside out.

As an example, consider the interpretation i show below:

p' = true
q' = false
' = true

We can see that i satisfies (p v q) A (=g Vv 7).

‘u

(pva) ™ (~qvr)

(true v false) A (—false v true)
true A (—false v true)

true A (true v true)

true A true

true

Now, consider interpretation j defined as follows:

p' = true
q' = false
r = true

In this case, j does not satisfy (p v q) A (mg v 7).
pva)A(gvr)
(true v true) A (—true v false)
true A (—true v false)
true A (false v false)
true A false

false

Using this technique, we can evaluate the truth of arbitrary sentences in our language. The cost
is proportional to the size of the sentence.

92 LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Reverse Evaluation Notes

Reverse evaluation is the opposite of evaluation. We begin with one or more compound sentences
and try to figure out which interpretations satisfy those sentences. One way to do this is using a
truth table for the language. A truth table for a propositional language is a table showing all of
the possible interpretations for the propositional constants in the language. The following
figure shows a truth table for a propositional language with just three propositional constants.
Each row corresponds to a single interpretation. The interpretations i and j correspond to the
third and seventh rows of this table, respectively.

p q r
true true true
true true false
true false true
true false false
false true true
false true false
false false true
false false false

Note that, for a propositional language with 1 logical constants, there are n columns in the truth
tables and 2" rows. In doing reverse evaluation, we process input sentences in turn, for each
sentence crossing out interpretations in the truth table that do not satisfy the sentence. The
interpretations remaining at the end of this process are all possible interpretations of the input
sentences.

Validity, Satisfiability and Unsatisfiability

Evaluation and reverse evaluation are processes that involve specific sentences and specific
interpretations. In computational logic, we are rarely concerned with specific interpretations;
we are more interested in the properties of sentences that hold across interpretations. In particular,
the notion of satisfaction imposes a classification of sentences in a language based on whether
there are interpretations that satisfy that sentence. A sentence is valid if and only if it is satisfied
by every interpretation. The following sentence is valid.

pvp
A sentence is satisfiable if and only if it is satisfied by at least one interpretation. A sentence is
falsifiable if and only if there is at least one interpretation that makes it false. We have already
seen several examples of satisfiable and falsifiable sentences. A sentence is unsatisfiable if and

only if it is not satisfied by any interpretation. The following sentence is unsatisfiable. No
matter what interpretation we take, the sentence is always false.

pep
A sentence is contingent if and only if it is both satisfiable and falsifiable, i.e. it is neither valid
nor unsatisfiable. In one sense, valid sentences and unsatisfiable sentences are useless. Valid
sentences do not rule out any possible interpretations; unsatisfiable sentences rule out all
interpretations; thus they say nothing about the world. On the other hand, from a logical
perspective, they are extremely useful in that, as we shall see, they serve as the basis for legal
transformations that we can perform on other logical sentences.

LOVELY PROFESSIONAL UNIVERSITY 93



Introduction to Artificial Intelligence & Expert Systems

94

Notes

Note that we can easily check the validity, contingency, or unsatisfiability of a sentence can
easily by looking at the truth table for the propositional constants in the sentence.

Propositional Entailment

Validity, satisfiability, and unsatisfiability are properties of individual sentences. In logical
reasoning, we are not so much concerned with individual sentences as we are with the relationships
between sentences. In particular, we would like to know, given some sentences, whether other
sentences are or are not logical conclusions. This relative property is known as logical entailment.
When we are speaking about Propositional Logic, we use the phrase propositional entailment.

A set of sentences A logically entails a sentence ¢ (written A | = @) if and only if every interpretation
that satisfies A also satisfies @. For example, the sentence p logically entails the sentence (p v g).
Since a disjunction is true whenever one of its disjuncts is true, then (p v ) must be true whenever
p is true. On the other hand, the sentence p does not logically entail (p A q). A conjunction is true
if and only if both of its conjuncts are true, and g may be false. Of course, any set of sentences
containing both p and g does logically entail (p A q). Note that the relationship of logical entailment
is a logical one. Even if the premises of a problem do not logically entail the conclusion, this
does not mean that the conclusion is necessarily false, even if the premises are true. It just means
that it is possible that the conclusion is false. Once again, consider the case of (p A ). Although p
does not logically entail this sentence, it is possible that both p and g are true and, therefore,
(p A q) is true. However, the logical entailment does not hold because it is also possible that g is
false and, therefore, (p A g) is false.

Self Assessment

State whether the following statements are true or false:
3. Validity, satisfiability, and unsatisfiability are properties of individual sentences.

4. A sentence is falsifiable if and only if it is satisfied by at least one interpretation.

6.3 Well-formed Formula (WFF)

In mathematical logic, a well-formed formula, shortly WFF, often simply formula, is a word
(i.e. a finite sequence of symbols from a given alphabet) which is part of a formal language. A
formal language can be considered to be identical to the set containing all and only its formulas.
A formula is a syntactic formal object that can be informally given a semantic meaning.

Symbols and
strings of symbols

Well-formed formulas

Theorems

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

This diagram shows the syntactic entities which may be constructed from formal languages. The Notes
symbols and strings of symbols may be broadly divided into nonsense and well-formed formulas.

A formal language can be thought of as identical to the set of its well-formed formulas. The set

of well-formed formulas may be broadly divided into theorems and non-theorems. A key use of

formulas is in propositional logic and predicate logics such as first-order logic. In those contexts,

a formula is a string of symbols ¢ for which it makes sense to ask “is ¢ true?”, once any free

variables in ¢ have been instantiated. In formal logic, proofs can be represented by sequences of

formulas with certain properties, and the final formula in the sequence is what is proven.

Although the term “formula” may be used for written marks (for instance, on a piece of paper or
chalkboard), it is more precisely understood as the sequence being expressed, with the marks
being a token instance of formula. It is not necessary for the existence of a formula that there be
any actual tokens of it. A formal language may thus have an infinite number of formulas
regardless whether each formula has a token instance. Moreover, a single formula may have
more than one token instance, if it is written more than once. Formulas are quite often interpreted
as propositions (as, for instance, in propositional logic). However formulas are syntactic entities,
and as such must be specified in a formal language without regard to any interpretation of them.
An interpreted formula may be the name of something, an adjective, an adverb, a preposition,
a phrase, a clause, an imperative sentence, a string of sentences, a string of names, etc.

=/4|

Notes A formula may even turn out to be nonsense, if the symbols of the language are
specified so that it does. Furthermore, a formula need not be given any interpretation.

An expression P(t,,...,t ) where P is a predicate symbol of arity n and t,,...t_are terms is a WFF
° If S is a WEFF then so is =S

° If S, and S, are WFFs then sois S, * S,

° If S, and S, are WFFs then sois S, * S,

° If S, and S, are WFFs then sois S, * S,

° If x is a variable and S is a WFF then so is V x. S

B3 We say that any occurrence of x in S is bound.
° If x is a variable and S is a WFF then sois 3 x. S
B3 We say that any occurrence of x in S is bound.

WEFF may still contain unbound variables, for example:
° V x. teaches(x, y) ” Lecturer(x)

° This can cause us problems when we try and interpret them as it’s not clear what we
should do with the variable.

° To cope with this we define a further class of formulae known as sentences.
° A sentence is a WFF with no unbound (or free) variables.
& Any variable occurring in the formula is bound by a quantifier

LOVELY PROFESSIONAL UNIVERSITY 95



Introduction to Artificial Intelligence & Expert Systems

96

Notes

6.3.1 Properties of WFF
Transforming to Clause Normal Form

There are several algorithms for this conversion, but they all have some parts in common, and
all have similarities. The best algorithm is the one which produces the CNF which is most easily
shown to be unsatisfiable. In general, such a determination is impossible to make, but a common
measure is to aim to produce a CNF with the fewest symbols (where a symbol is a variable,
predicate, or constant). The key feature of all the algorithms is that they are satisfiability
preserving.

The starting point is a set of closed formulae. As a preprocessing step, all variables must be
renamed apart.

Rename Variables Apart

The first operation is to simplify the formulae so that they contain only the V, 3, &, | and ~
connectives. This is done by using known logical identities. The identities are easily verified
using truth tables, to show that the original formula has the same value as the simplified
formula for all possible interpretations of the component formulae, denoted by uppercase
variable letters P and Q.

Simplify
Formula Rewrites to
P<~>Q PlQs&(-P| ~Q
P<=>Q P=>Q) &(Q=>P)
P=>Q ~P | Q
The second operation is to move negations in so that they apply to only atoms. This is done by

using known logical identities (including De Morgan’s laws), which are easily verified as above.
After moving negations in the formulae are in literal normal form.

Move negations in

Formula Rewrites to
~VXP ix ~P
~dxP VX ~P

~(P&Q) P | ~Q

~(P Q) (~P& ~Q)

~~P P
The third operation is to move quantifiers out so that each formula is in the scope of all the
quantifiers in that formula. This is done by using known logical identities, which are easily
verified as above. In these identities, if the variable X already exists in Q, it is renamed to a new

variable name that does not exist in the formula. After moving quantifiers out the formulae are
in prenex normal form.

Move quantifiers out

Formula Rewrites to

VXP&Q VX (P &Q)

dXP&Q dX (P & Q)
Contd...

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Q& VXP VX (Q&D) Notes
Q& IXP IAX(Q&P)
VXP|Q VX(P| Q)
IXP | Q IX(P | Q)
Q| vxP VX(Q | P)
Q| 3xp 3% Q| P)

The fourth operation is to skolemize to remove existential quantifiers. This step replaces
existentially quantified variables by skolem functions and removes all quantifiers. The variables
remaining after skolemization are all implicitly universally quantified. Whereas the previous
three operations maintain equivalence between the original and transformed formulae,
skolemization does not. However, Skolemization does maintain the satisfiability of the formulae,
which is what is required for the overall goal of establishing logical consequence. After
Skolemization the formulae are in Skolem normal form.

Skolemize
Formula Rewrites to
Initially Sety= {}

VXP P
andsety = y U {X}

ix P PIx/x(y)]

where x is a new Skolem functor.

The fifth operation is to distribute disjunctions so that the formulae are conjunctions of
disjunctions. This is done by using known logical identities, which are easily verified as above.
After distributing disjunctions the formulae are in conjunctive normal form.

Distribute Disjunctions
Formula Rewrites to
Pl (Q&R) (P]| Q) & (P|R
Q&R | P (Q| P) & (R|P)

The last operation is to convert to Clause Normal Form. This is done by removing the
conjunctions, to form a set of clauses.

Convert to CNF
Formula Rewrites to
P & ... & Py {Py1,...,Py}
'E Example:
1st order formula
VY (VX (taller(Y,X) | wise(X)) => wise(Y))
Simplify
VY (~VX (taller(Y,X) | wise(X)) | wise(Y))
Move negations in
VY (3IXx (~taller(Y,X) & ~wise(X)) | wise(Y))
Move quantifiers out
VY (3IXx ((~taller(Y,X) & ~wise(X)) | wise(Y)))

LOVELY PROFESSIONAL UNIVERSITY 97



Introduction to Artificial Intelligence & Expert Systems

Notes Skolemize
3x ((~taller(Y,X) & -~wise(X)) | wise(Y)) & = {Y}
(~taller(Y,x(Y)) & -~wise(x(Y))) | wise(Y)

Distribute disjunctions
(~taller(Y,x(Y)) | wise(Y)) & (~wise(x(Y)) | wise(Y))

Convert to CNF
{ ~taller(Y,x(Y)) | wise(Y),
~wise(x(Y)) | wise(Y) 1}

Caution Use of truth table should be handled carefully.

R

Tusk  Find the effect of propositional logic in real life.

Self Assessment

State whether the following statements are true or false:
5. A formula is a syntactic formal object that can be informally given a semantic meaning.

6. A formal language may thus have an infinite number of formulas regardless whether each
formula has a token instance.

6.4 Conversion to Clausal Form

Clause Normal Form (CNF)

Clause Normal Form is a sub-language of 1st order logic. A clause is an expression of the form
L, I... I L where each L, is a literal. Clauses are denoted by uppercase letters with a superscript
|, e.g., C'. There are satisfiability preserving transformations from 1st order logic to CNF, i.e.,
if a set of (1st order) formulae are satisfiable, then their CNF is satisfiable. Conversely, if the
CNF of a set of formulae is unsatisfiable, then the formulae are unsatisfiable. This is then useful
for showing logical consequence. The benefit of converting to CNF is that more is possible
using just the Herbrand interpretations. Computationally, CNF is easier to work with, and is
the form used by the resolution inference rule.

6.4.1 Conversion to Clausal Normal Form

Clauses may be expressed in Kowalski form. Kowalski form forms the antecedent of an
implication by conjoining the atoms of the negative literals in a clause, and forms the consequent
from the disjunction of the positive literals.

Example 1:

~taller(Y,x(Y)) | wise(Y) | ~wise(x(Y)) | taller(x(Y),Y)

is written as
taller(Y,x(Y)) & wise(x(Y)) => wise(Y) | taller(x(Y),Y)

If the antecedent is empty it is set to TRUE, and if the consequent is empty it is set to FALSE.

98 LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Horn clauses are clauses that have one or zero positive literals. Sets of Horn clauses are also Notes
called Horn.

Example 2:

~taller(Y,x(Y)) | wise(Y) | -~wise(x(Y))
~wise(geoff) | ~taller(Person,brother_of(jim))

are Horn clauses. Written in Kowalski form, these Horn clauses are:

taller(Y,x(Y)) & wise(x(Y)) => wise(Y)
wise(geoff) & taller(Person,brother_of(jim)) => FALSE

Non-Horn clauses are clauses that have two or more positive literals. Sets of clauses that contain
one or more non-Horn clauses are also called non-Horn.

Example 3:

~taller(Y,x(Y)) | ~wise(Y) | wise(x(Y)) | taller(x(Y),x(x(Y)))

wise(X) | wise(brother_of (X))

are non-Horn clauses. Written in Kowalski form, these non-Horn clauses are:
taller(Y,x(Y)) & wise(Y) => wise(x(Y)) | taller(x(Y),x(x(Y)))
TRUE => wise(X) | wise(brother_of (X))

Self Assessment

State whether the following statements are true or false:
7. Clause Normal Form (CNF) is a sub-language of 1st order logic.

8. Clauses are denoted by lowercase letters with a superscript.

6.5 Inference Rules

In terms of ATP, the disjunction of positive literals in non-Horn clauses corresponds to a choice
point in any goal directed search. This is a source of search. Thus, in general, Horn problems are
easier than non-Horn problems. In logic, a rule of inference, inference rule, or transformation
rule is the act of drawing a conclusion based on the form of premises interpreted as a function
which takes premises, analyzes their syntax, and returns a conclusion (or conclusions).

' Example: The rule of inference modus ponens takes two premises, one in the form of “If

"1 " s

p then q” and another in the form of “p” and returns the conclusion “g”.

The rule is valid with respect to the semantics of classical logic (as well as the semantics of many
other non-classical logics), in the sense that if the premises are true (under an interpretation)
then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In
many-valued logic, it preserves a general designation. But a rule of inference’s action is purely
syntactic, and does not need to preserve any semantic property: any function from sets of
formulae to formulae counts as a rule of inference. Usually only rules that are recursive are
important; i.e. rules such that there is an effective procedure for determining whether any given
formula is the conclusion of a given set of formulae according to the rule. An example of a rule
that is not effective in this sense is the infinitary w-rule.

LOVELY PROFESSIONAL UNIVERSITY 99



Introduction to Artificial Intelligence & Expert Systems

Notes 6.5.1 The Standard Form of Rules of Inference
Rules for Conditionals

Deduction Theorem (or Conditional Introduction)
erw
-V

Modus Ponens (or Conditional Elimination)
-y

@
1

Modus Tollens
-V
v
-0

Rules for Conjunctions

Adjunction (or Conjunction Introduction)

¢
1
oAy

Simplification (or Conjunction Elimination)
OAY
¢

oAy
s

Rules for Disjunctions

Addition (or Disjunction Introduction)

0
oV
]
oV

Case Analysis
ovy
=X
voux

100 LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Disjunctive Syllogism Notes
vy
~°
W
vy
-y

®
Rules for Biconditionals

Biconditional Introduction
(Ol
y—0
[OR =AY
Biconditional Elimination
oV

ooV
-

-y
R
-y

—¢
oV
yvo
YA
ooV
A
= A =@

Rules of Classical Predicate Calculus

In the following rules, ¢(B/0) is exactly like ¢ except for having the term 8 everywhere ¢ has the
free variable o.

Universal Introduction (or Universal Generalization)

¢ B/
Yaoe

Restriction 1: § does not occur in .

Restriction 2: § is not mentioned in any hypothesis or undischarged assumptions.

LOVELY PROFESSIONAL UNIVERSITY 101



Introduction to Artificial Intelligence & Expert Systems

Notes

102

Universal Elimination (or Universal Instantiation)

Yaoe
¢ B/

Restriction: No free occurrence of o in ¢ falls within the scope of a quantifier quantifying a

variable occurring in f.

Existential Introduction (or Existential Generalization)

o (B/a)
oo

Restriction: No free occurrence of o in ¢ falls within the scope of a quantifier quantifying a
variable occurring in f.

Existential Elimination (or Existential Instantiation)

Jo g
o B/o)w
L]

Restriction 1: No free occurrence of o in ¢ falls within the scope of a quantifier quantifying a
variable occurring in f.

Restriction 2: There is no occurrence, free or bound, of § in y.

Example 1: Let us consider the following assumptions: “If it rains today, then we will not
go on a canoe today. If we do not go on a canoe trip today, then we will go on a canoe trip
tomorrow. Therefore (Mathematical symbol for “therefore” is .".), if it rains today, we will go on
a canoe trip tomorrow. To make use of the rules of inference in the above table p we let be the
proposition “If it rains today”, g be “ We will not go on a canoe today” and let r be “We will go
on a canoe trip tomorrow”. Then this argument is of the form:

pP—=4q
g—or

p—or

Example 2: Let us consider a more complex set of assumptions: “It is not sunny today and
it is colder than yesterday”. “We will go swimming only if it is sunny”, “If we do not go
swimming, then we will have a barbecue”, and “If we will have a barbecue, then we will be
home by sunset” lead to the conclusion “We will be home before sunset.” Proof by rules of
inference: Let p be the proposition “It is sunny this today”, g the proposition “It is colder than
yesterday”, r the proposition “We will go swimming”, s the proposition “We will have a
barbecue”, and f the proposition “We will be home by sunset”. Then the hypotheses become
—p Aq,r—p,—r—sand s — t. Using our intuition we conjecture that the conclusion might be
t. Using the Rules of Inference table, we can proof the conjecture easily:

Step Reason
1. —pAg Hypothesis
2. —p Simplification using Step 1

3. r—op Hypothesis

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

4. —r Modus tollens using Step 2 and 3 Notes
5 —r—s Hypothesis

6. s Modus ponens using Step 4 and 5

7. st Hypothesis

8. s Modus ponens using Step 6 and 7

Self Assessment

State whether the following statements are true or false:
9.  Horn problems are difficult than non-Horn problems.
10. Transformation rule is the act of drawing a conclusion based on the form of premises

interpreted as a function.

6.6 Resolution Logic

In mathematical logic and automated theorem proving, resolution is a rule of inference leading
to a refutation theorem-proving technique for sentences in propositional logic and first-order
logic. In other words, iteratively applying the resolution rule in a suitable way allows for
telling whether a propositional formula is satisfiable and for proving that a first-order formula
is unsatisfiable; this method may prove the satisfiability of a first-order satisfiable formula, but
not always, as it is the case for all methods for first-order logic. Resolution was introduced by
John Alan Robinson in 1965.

The clause produced by a resolution rule is sometimes called a resolvent.
6.6.1 Resolution Rule

The resolution rule in propositional logic is a single valid inference rule that produces a new
clause implied by two clauses containing complementary literals. A literal is a propositional
variable or the negation of a propositional variable. Two literals are said to be complements if
one is the negation of the other (in the following, is taken to be the complement to b). The
resulting clause contains all the literals that do not have complements. Formally:

av..va;v..va, b v..vbv..vb,

V.V,

GV NG VA,V Nva VD v v v
where
all as and bs are literals,
a, is the complement to b/., and
the dividing line stands for entails

The clause produced by the resolution rule is called the resolvent of the two input clauses.

When the two clauses contain more than one pair of complementary literals, the resolution rule
can be applied (independently) for each such pair; however, the result is always a tautology.

Modus ponens can be seen as a special case of resolution of a one-literal clause and a two-literal
clause.

LOVELY PROFESSIONAL UNIVERSITY 103



Introduction to Artificial Intelligence & Expert Systems

104

Notes

A Resolution Technique

When coupled with a complete search algorithm, the resolution rule yields a sound and complete
algorithm for deciding the satisfiability of a propositional formula, and, by extension, the
validity of a sentence under a set of axioms.

This resolution technique uses proof by contradiction and is based on the fact that any sentence
in propositional logic can be transformed into an equivalent sentence in conjunctive normal
form. The steps are as follows:

° All sentences in the knowledge base and the negation of the sentence to be proved (the
conjecture) are conjunctively connected.

° The resulting sentence is transformed into a conjunctive normal form with the conjuncts
viewed as elements in a set, S, of clauses.

For example (A, v A)) A (B, v B,v B)) A (C,) gives rise to theset S={A, vA, B, vB,v B, C}.

° The resolution rule is applied to all possible pairs of clauses that contain complementary
literals. After each application of the resolution rule, the resulting sentence is simplified
by removing repeated literals. If the sentence contains complementary literals, it is
discarded (as a tautology). If not, and if it is not yet present in the clause set S, it is added
to S, and is considered for further resolution inferences.

° If after applying a resolution rule the empty clause is derived, the original formula is
unsatisfiable (or contradictory), and hence it can be concluded that the initial conjecture
follows from the axioms.

° If, on the other hand, the empty clause cannot be derived, and the resolution rule cannot be
applied to derive any more new clauses, the conjecture is not a theorem of the original
knowledge base.

One instance of this algorithm is the original Davis — Putnam algorithm that was later refined
into the DPLL algorithm that removed the need for explicit representation of the resolvents.

This description of the resolution technique uses a set S as the underlying data-structure to
represent resolution derivations. Lists, Trees and Directed Acyclic Graphs are other possible and
common alternatives. Tree representations are more faithful to the fact that the resolution rule
is binary. Together with a sequent notation for clauses, a tree representation also makes it clear
to see how the resolution rule is related to a special case of the cut-rule, restricted to atomic
cut-formulas. However, tree representations are not as compact as set or list representations,
because they explicitly show redundant subderivations of clauses that are used more than once
in the derivation of the empty clause. Graph representations can be as compact in the number of
clauses as list representations and they also store structural information regarding which clauses
were resolved to derive each resolvent.

avb, —avc
Example:

bve

In plain language: Suppose a is false. In order for the premise a v b to be true, b must be true.
Alternatively, suppose a is true. In order for the premise —a v c to be true, c must be true.
Therefore regardless of falsehood or veracity of a4, if both premises hold, then the conclusion
b v cis true.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Resolution in First-order Logic Notes

In first-order logic, resolution condenses the traditional syllogisms of logical inference down to
a single rule. To understand how resolution works, consider the following example syllogism
of term logic:

All Greeks are Europeans.
Homer is a Greek.
Therefore, Homer is a European.
Or, more generally:
Vx.P(x) = Q(x)
P(a)
Therefore, Q)

To recast the reasoning using the resolution technique, first the clauses must be converted to
conjunctive normal form. In this form, all quantification becomes implicit: universal quantifiers
on variables (X, Y, ...) are simply omitted as understood, while existentially-quantified variables
are replaced by Skolem functions.

—P(x) v Q(x)
P(a)
Therefore, Q(a)

So the question is, how does the resolution technique derive the last clause from the first two?
The rule is simple:

° Find two clauses containing the same predicate, where it is negated in one clause but not
in the other.

° Perform a unification on the two predicates. (If the unification fails, you made a bad choice
of predicates. Go back to the previous step and try again.)

° If any unbound variables which were bound in the unified predicates also occur in other
predicates in the two clauses, replace them with their bound values (terms) there as well.

° Discard the unified predicates, and combine the remaining ones from the two clauses into

"o

a new clause, also joined by the “v” operator.
To apply this rule to the above example, we find the predicate P occurs in negated form
—P(X)
in the first clause, and in non-negated form
P(a)

in the second clause. X is an unbound variable, while a is a bound value (term). Unifying the two
produces the substitution

Xt>a

Discarding the unified predicates, and applying this substitution to the remaining predicates
(just Q(X), in this case), produces the conclusion:

Qla)

LOVELY PROFESSIONAL UNIVERSITY 105



Introduction to Artificial Intelligence & Expert Systems

106

Notes

For another example, consider the syllogistic form:

All Cretans are islanders.

All islanders are liars.

Therefore all Cretans are liars.

Or more generally,
VX P(X) = Q(X)
VX Q(X) = R(X)

Therefore, VX P(X) - R(X)

In CNF, the antecedents become:
~P(X) v Q(X)
=Q(Y) v R(Y)

Note that the variable in the second clause was renamed to make it clear that variables in
different clauses are distinct.

Now, unifying Q(X) in the first clause with ~Q(Y) in the second clause means that X and Y
become the same variable anyway. Substituting this into the remaining clauses and combining
them gives the conclusion:

-P(X) v R(X)

The resolution rule, as defined by Robinson, also incorporated factoring, which unifies two
literals in the same clause, before or during the application of resolution as defined above. The
resulting inference rule is refutation complete, in that a set of clauses is unsatisfiable if and only
if there exists a derivation of the empty clause using resolution alone.

6.6.2 The Resolution Principle

The resolution principle, due to Robinson (1965), is a method of theorem proving that proceeds
by constructing refutation proofs, i.e., proofs by contradiction. This method has been exploited
in many automatic theorem provers. The resolution principle applies to first-order logic formulas
in Solemnized form. These formulas are basically sets of clauses each of which is a disjunction of
literals. Unification is a key technique in proofs by resolution.

If two or more positive literals (or two or more negative literals) in clause are unifiable and 7 is
their most general unifier, then S, is called a factor of s. For example, P(x) v = Q(f(x), b) v P(g(y))
is factored to P(g(y)) v — Q(f(g()), b). In such a factorization, duplicates are removed. Let S, and
S, be two clauses with no variables in common, let S, contain a positive literal L,, S, contain a
negative literal L, and let n be the most general unifier of L, and L,. Then

(Sln_Lln)U(Szn_LG)

is called a binary resolvent of S, and S,. For example, if S, = P(x) v Q(x) and S, = —P(a) v R(y), then
Q(a) v R(y) is their binary resolvent.

A resolvent of two clauses S, and S, is one of the four following binary resolvents.
1. A binary resolvent of S, and S,
A binary resolvent of S, and a factor of S,.

A binary resolvent of a factor of S, and S,

L

A binary resolvent of a factor of S, and a factor of S,.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Generation of a resolvent from two clauses, called resolution, is the sole rule of inference of the Notes
resolution principle. The resolution principle is complete, so a set (conjunction) of clauses is

unclassifiable if the empty clause can be derived from it by resolution. Proof of the completeness

of the resolution principle is based on Herbrand’s theorem. Since unsatisfiability is dual to

validity, the resolution principle is exercised on theorem negations. Multiple strategies have

been developed to make the resolution principle more efficient. These strategies help select

clause pairs for application of the resolution rule. For instance, linear resolution is the following

deduction strategy. Let be the initial set of clauses. If , C € S, a linear deduction of C, from S with

top clause C, is a deduction in which each C_, is a resolvent of C, and B, (0 <i<n 1), and each B,

is either in or a resolvent C(with j < ).

Linear resolution is complete, so if C is a clause in an unsatisfiable set S of clauses and S —C is
satisfiable, then the empty clause can be obtained by linear resolution with as the top clause. If
the additional restriction that B, be in S imposed, then this restricted strategy is incomplete.
However, it is complete for sets of Horn clauses containing exactly one goal, and the goal is
selected as the top clause. All other clauses in such sets are definite Horn clauses. Implementations
of programming language Prolog conduct search within the framework of this strategy.

AN

Caution Resolution principle can be applied in all situations.

g

Task  Apply inference rule to declare today is hot or not.

Self Assessment

State whether the following statements are true or false:
11. A literal is a propositional variable or the negation of a propositional variable.

12.  Unification is a key technique in proofs by resolution.

6.7 Deductive Inference Methods

Inference is the act or process of deriving logical conclusions from premises known or assumed
to be true. The conclusion drawn is also called an idiomatic. The laws of valid inference are
studied in the field of logic. Or inference can be defined in another way. Inference is the
non-logical, but rational, means, through observation of patterns of facts, to indirectly see new
meanings and contexts for understanding. Of particular use to this application of inference are
anomalies and symbols. Inference, in this sense, does not draw conclusions but opens new paths
for inquiry. In this definition of inference, there are two types of inference: inductive inference
and deductive inference. Unlike the definition of inference in the first paragraph above, meaning
of word meanings are not tested but meaningful relationships are articulated. Human inference
(i.e. how humans draw conclusions) is traditionally studied within the field of cognitive
psychology; artificial intelligence researchers develop automated inference systems to emulate
human inference. Statistical inference allows for inference from quantitative data.

6.7.1 Law of Detachment

In propositional logic is a valid, simple argument form and rule of inference. It can be summarized
as “P implies Q; P is asserted to be true, so therefore Q must be true.” The history of modus

LOVELY PROFESSIONAL UNIVERSITY 107



Introduction to Artificial Intelligence & Expert Systems

108

Notes

ponens goes back to antiquity. While modus ponens is one of the most commonly used concepts
in logic it must not be mistaken for a logical law; rather, it is one of the accepted mechanisms for
the construction of deductive proofs that includes the “rule of definition” and the “rule of
substitution”. Modus ponens allows one to eliminate a conditional statement from a logical
proof or argument (the antecedents) and thereby not carry these antecedents forward in an
ever-lengthening string of symbols; for this reason modus ponens is sometimes called the rule
of detachment. For example, modus ponens can produce shorter formulas from longer ones and
Russell observes that “the process of the inference cannot be reduced to symbols. Its sole record
is the occurrence of g [the consequent] . . . an inference is the dropping of a true premise; it is the
dissolution of an implication”.

A justification for the “trust in inference is the belief that if the two former assertions [the
antecedents] are not in error, the final assertion [the consequent] is not in error”. In other words,
if one statement or proposition implies a second one, and the first statement or proposition is
true, then the second one is also true. If P implies Q and P is true, then Q is true. An example is:

If it’s raining, I'll meet you at the movie theater.
It’s raining.

Therefore, I'll meet you at the movie theater.

P , P
Modus ponens can be stated formally as: i
where the rule is that whenever an instance of “P — Q” and “P” appear by themselves on lines
of a logical proof, Q can validly be placed on a subsequent line; furthermore, the premise P and
the implication “dissolves”, their only trace being the symbol Q that is retained for use later e.g.
in a more complex deduction.

6.7.2 Law of Syllogism

A relation of inference is monotonic if the addition of premises does not undermine previously
reached conclusions; otherwise the relation is no monotonic. Deductive inference, is monotonic:
if a conclusion is reached on the basis of a certain set of premises, then that conclusion still holds
if more premises are added. By contrast, everyday reasoning is mostly non-monotonic because
it involves risk: we jump to conclusions from deductively insufficient premises. We know when
it is worth or even necessary (e.g. in medical diagnosis) to take the risk. Yet we are also aware
that such inference is defensible—that new information may undermine old conclusions. Various
kinds of defensible but remarkably successful inference have traditionally captured the attention
of philosophers (theories of induction, Peirce’s theory of abduction, inference to the best
explanation, etc.). More recently logicians have begun to approach the phenomenon from a
formal point of view. The result is a large body of theories at the interface of philosophy, logic
and artificial intelligence.

6.7.3 Deductive Logic: Validity and Soundness

In mathematical logic, a logical system has the soundness property if and only if its inference
rules prove only formulas that are valid with respect to its semantics. In most cases, this comes
down to its rules having the property of preserving truth, but this is not the case in general.
Soundness is among the most fundamental properties of mathematical logic. A soundness
property provides the initial reason for counting a logical system as desirable. The completeness
property means that every validity (truth) is provable. Together they imply that all and only
validities are provable. Most proofs of soundness are trivial.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Notes
Example: In an axiomatic system proof of soundness amounts to verifying the validity
of the axioms and that the rules of inference preserve validity (or the weaker property, truth).
Most axiomatic systems have only the rule of modus ponens (and sometimes substitution), so it
requires only verifying the validity of the axioms and one rule of inference.

Soundness properties come in two main varieties: weak and strong soundness, of which the
former is a restricted form of the latter.

Soundness

Soundness of a deductive system is the property that any sentence that is provable in that
deductive system is also true on all interpretations or structures of the semantic theory for the
language upon which that theory is based. In symbols, where S is the deductive system, L the
language together with its semantic theory, and P a sentence of L: if -, P, then also =, P.

Strong Soundness

Strong soundness of a deductive system is the property that any sentence P of the language upon
which the deductive system is based that is derivable from a set I" of sentences of that language
is also a logical consequence of that set, in the sense that any model that makes all members of
I" true will also make P true. In symbols, where I" is a set of sentences of L: if I -, P, then also
I &, P. Notice that in the statement of strong soundness, when I'" is empty, we have the statement
of weak soundness.

Arithmetic Soundness

If T is a theory whose objects of discourse can be interpreted as natural numbers, we say T is
arithmetically sound if all theorems of T are actually true about the standard mathematical
integers.

6.7.4 Representations Using Rules Dealing with Inconsistencies and
Uncertainties

Al research is highly technical and specialized, deeply divided into subfields that often fail to
communicate with each other. Some of the division is due to social and cultural factors: subfields
have grown up around particular institutions and the work of individual researchers. Al research
is also divided by several technical issues. There are subfields which are focused on the solution
of specific problems, on one of several possible approaches, on the use of widely differing tools
and towards the accomplishment of particular applications. The central problems (or goals) of
Al research include reasoning, knowledge, planning, learning, communication, perception and
the ability to move and manipulate objects. General intelligence (or “strong Al”) is still among
the field’s long term goals. Currently popular approaches include statistical methods,
computational intelligence and traditional symbolic Al There are an enormous number of tools
used in Al, including versions of search and mathematical optimization, logic, methods based
on probability and economics, and many others. The field was founded on the claim that a
central property of humans, intelligence—the sapience of Homo sapiens—can be so precisely
described that it can be simulated by a machine. This raises philosophical issues about the nature
of the mind and the ethics of creating artificial beings, issues which have been addressed by
myth, fiction and philosophy since antiquity. Artificial intelligence has been the subject of
tremendous optimism but has also suffered stunning setbacks. Today it has become an essential
part of the technology industry, providing the heavy lifting for many of the most difficult
problems in computer science.

LOVELY PROFESSIONAL UNIVERSITY 109



Introduction to Artificial Intelligence & Expert Systems

110

Notes

Self Assessment

State whether the following statements are true or false:
13.  Deductive inference is monotonic.
14. Al research is not technical and specialized, deeply divided into subfields that often fail to

communicate with each other.

6.8 Truth Maintenance System (TMS)

Truth Maintenance Systems, also called Reason Maintenance Systems, are used within Problem
Solving Systems, in conjunction with Inference Engines (IE) such as rule-based inference systems,
to manage as Dependency Network the inference engine’s beliefs in given sentences.

PROBLEM SOLVING SYSTEM

A TMS is intended to satisfy a number of goals:
Provide Justifications for Conclusions
When a problem solving system gives an answer to a user’s query, an explanation of the answer

is usually required. If the advice to a stockbroker is to invest millions of dollars, an explanation
of the reasons for that advice can help the broker reach a reasonable decision.

=/4|

Notes  An explanation can be constructed by the IE by tracing the justification of the
assertion.

Recognise Inconsistencies

The IE may tell the TMS that some sentences are contradictory. Then, if on the basis of other IE
commands and of inferences we find that all those sentences are believed true, then the TMS
reports to the IE that a contradiction has arisen. The IE can eliminate an inconsistency by
determining the assumptions used and changing them appropriately, or by presenting the
contradictory set of sentences to the users and asking them to choose which sentence(s) to
retract.

Support Default Reasoning

In many situations we want, in the absence of firmer knowledge, to reason from default
assumptions. If Tweety is a bird, until told otherwise, we will assume that Tweety flies and use
as justification the fact that Tweety is a bird and the assumption that birds fly.

Remember Derivations Computed Previously

In the process of determining what is responsible for a network problem, we may have derived,
while examining the performance of a name server, that Ms. Doe is an expert on e-mail systems.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

That conclusion will not need to be derived again when the name server ceases to be the Notes
potential culprit for the problem and we examine instead the routers.

Support Dependency Driven Backtracking

The justification of a sentence, as maintained by the TMS, provides the natural indication of what
assumptions need to be changed if we want to invalidate that sentence.

Our belief [by “our belief” we mean the “inference-engine’s belief”] about a sentence can be:

° false, the sentence is believed to be unconditionally false; this is also called a contradiction
° true, the sentence is believed unconditionally true; this is also called a premise
° assumed-true, the sentence is assumed true [we may change our belief later]; this is also

called an enabled assumption

° assumed-false, the sentence is assumed false [we may change our belief later]; this is also
called a retracted assumption

° assumed, the sentence is believed by inference from other sentences
° don’t-care.

We say if a sentence is true or assumed to be true; it is out of false, assumed-false, or don’t-care.
A TMS maintains a Dependency Network. The network is bipartite, with nodes representing
sentences and justifications. A sentence may correspond to a fact, such as “Socrates is a man”, or
a rule, such as “if ?x is a man then ?x is mortal”. We will say that a sentence node is a premise if
its sentence is true, is a contradiction if its sentence is false, is an assumption if its sentence is
assumed-true or assumed-false or assumed. A sentence node receives arcs from justification
nodes. Each such justification node provides an argument for believing the given sentence node.
In turn, a sentence node has arcs to the justification nodes that use it as a premise. A justification
node has inputs from sentence nodes, its premises or justifiers, and has output to a sentence
node, its conclusion or justification. A justification node represents the inference of the conclusion
from the conjunction of the stated premises. The conventions used in representing graphically
dependency networks are summarized here.

The TMS maintains the following information with each sentence node:
° a sentence

° a label expressing the current belief in the sentence; it is IN for sentences that are believed,
and OUT for sentences that are not believed.

° a list of the justification nodes that support it
° a list of the justification nodes supported by it
° an indication if the node is an assumption, contradiction, or premise.

The TMS maintains very little information with justification nodes. Only a label with value IN
or OUT depending if we believe the justification valid or not.

The IE can give at least the following orders to the TMS:

° create a sentence node with specific properties
° create a justification with specific premises and conclusions
° attach rules to sentence nodes and execute them when specific beliefs hold at those nodes

[these are like callbacks or triggers; a standard callback informs the IE when a contradiction
becomes true]

° retrieve the properties of a sentence node or its justifications and consequences.

LOVELY PROFESSIONAL UNIVERSITY 111



Introduction to Artificial Intelligence & Expert Systems

112

Notes

Truth Maintenance Systems can have different characteristics:

Justification-based Truth Maintenance System (JTMS)

It is a simple TMS where one can examine the consequences of the current set of assumptions.
The meaning of sentences is not known.

Assumption-based Truth Maintenance System (ATMS)

It allows to maintain and reason with a number of simultaneous, possibly incompatible, current
sets of assumption. Otherwise it is similar to JTMS, i.e. it does not recognise the meaning of
sentences.

Logical-based Truth Maintenance System (LTMS)

Like JTMS in that it reasons with only one set of current assumptions at a time. More powerful
than JTMS in that it recognises the propositional semantics of sentences, i.e. understands the
relations between p and ~p, p and q and p&q, and so on.

A Justification-based Truth Maintenance System is a simple TMS where one can examine the
consequences of the current set of assumptions. In JTMS, labels are attached to arcs from sentence
nodes to justification nodes. This label is either “+” or “-”. Then, for a justification node we can
talk of its in-list, the list of its inputs with “+” label, and of its out-list, the list of its inputs with
“-" label.

The meaning of sentences is not known. We can have a node representing a sentence p and one
representing ~p and the two will be totally unrelated, unless relations are established between
them by justifications. For example, we can write:

~p”p Contradiction Node

o
|
x 'x' denotes a justification node
/ \ 'o' denotes a sentence node
+/ \+
o o
1S ~p

which says that if both p and ~p are IN we have a contradiction.

The association of IN or OUT labels with the nodes in a dependency network defines an in-out-
labeling function. This function is consistent if:

° The label of a justification node is IN if the labels of all the sentence nodes in its in-list are
all IN and the labels of all the sentence nodes in its out-list are OUT.

° The label of a sentence node is IN if it is a premise, or an enabled assumption node, or it
has an input from a justification node with label IN.

Here are examples of JTMS operations:

° create-jtms (node-string contradiction-handler enqueue-procedure) creates a dependency
network. The parameters are:

< node-string, a function to be used by the JTMS, which, given a node, returns its
description

& contradiction-handler, a function to be invoked by the JTMS when it recognises a
contradiction

* enqueue-procedure, a function to be called by the JTMS when it changes the label of
a node to IN.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

° tms-create-node (jtms datum assumptionp contradictoryp) creates a sentence node. The Notes
parameters are:

< jtms, the jtms within which the sentence node is to be created

< datum, the sentence
& assumptionp, true if this is an assumption node; initially the assumption is retracted
< contradictoryp, true if this is a contradictory node

Note that premise nodes are recognised because they are given a justification without any
premises.

° enable-assumption (node), retract-assumption (node). These functions respectively enable
and retract an existing assumption node.

° justify-node (informant conclusion-node list-of-premise-nodes), creates a justification
node. The parameters are:

& The informant, that is who/what is entering this justification

& The conclusion-node and list-of-premise-nodes that specify respectively the
conclusion and the premises of this justification.

Here is a simple dependency network:

contradiction

x
|
g o o h
| |
x x
/ N\ / N\
/ \ / \
o o o
A C E

This network is created:
(setg *jtms* (create-jtms “Forbus-deKleer example on page 181"))
The nodes A, C, E are created and enabled:

(setg assumption-a (tms-create-node *jtms* “A” :assumptionp t)
assumption-c (tms-create-node *jtms* “C” :assumptionp t)
assumption-e (tms-create-node *jtms* “E” :assumptionp t))

(enable-assumption assumption-a)
(enable-assumption assumption-c)
(enable-assumption assumption-e)
The node h 1is created and Jjustified:
(setg node-h (tms-create-node *jtms* “h”))
(justify-node “R1” node-h (list assumption-c assumption-a))
;7 Rl is the informant for this
;; Justification
The node g 1is created, justified, and established as a contradiction:
(setg node-g (tms-create-node *jtms* “g”))
(justify-node “R2” node-g (list assumption-a assumption-c))
(setqg contradiction (tms-create-node *jtms* ‘contra
:contradictoryp t))
(justify-node "“R3” contradiction (list node-g))

This last command will recognise that a contradiction exists and will
invoke a contradiction handler that should state that the node
“contradiction” is a contradiction and that some of the assumptions
in {A, C} should be retracted.

Here should be a larger dependency network as used in a JTMS.

LOVELY PROFESSIONAL UNIVERSITY 113



Introduction to Artificial Intelligence & Expert Systems

114

Notes

Self Assessment

State whether the following statements are true or false:

15.  The IE can eliminate an inconsistency by determining the assumptions used and changing
them.

16. A TMS maintains a Dependency Network.

6.9 Predicated Completion and Circumscription

Circumscription is a non-monotonic logic created by John McCarthy to formalize the common
sense assumption that things are as expected unless otherwise specified. Circumscription was
later used by McCarthy in an attempt to solve the frame problem. In its original first-order logic
formulation, circumscription minimizes the extension of some predicates, where the extension
of a predicate is the set of tuples of values the predicate is true on. This minimization is similar
to the closed world assumption that what is not known to be true is false.

The original problem considered by McCarthy was that of missionaries and cannibals: there are
three missionaries and three cannibals on one bank of a river; they have to cross the river using
a boat that can only take two, with the additional constraint that cannibals must never outnumber
the missionaries on either bank (as otherwise the missionaries would be killed and, presumably,
eaten). The problem considered by McCarthy was not that of finding a sequence of steps to reach
the goal (the article on them and problem contains one such solution), but rather that of excluding
conditions that are not explicitly stated. For example, the solution “go half a mile south and
cross the river on the bridge” is intuitively not valid because the statement of the problem does
not mention such a bridge. On the other hand, the existence of this bridge is not excluded by the
statement of the problem either. That the bridge does not exist is a consequence of the implicit
assumption that the statement of the problem contains everything that is relevant to its solution.
Explicitly stating that a bridge does not exist is not a solution to this problem, as there are many
other exceptional conditions that should be excluded (such as the presence of a rope for fastening
the cannibals, the presence of a larger boat nearby, etc.) Circumscription was later used by
McCarthy to formalize the implicit assumption of inertia: things do not change unless otherwise
specified. Circumscription seemed to be useful to avoid specifying that conditions are not
changed by all actions except those explicitly known to change them; this is known as the frame
problem. However, the solution proposed by McCarthy was later shown leading to wrong
results in some cases, like in the Yale shooting problem scenario. Other solutions to the frame
problem that correctly formalize the Yale shooting problem exist; some use circumscription but
in a different way.

6.9.1 The Propositional Case

Circumscription is a non-monotonic logic created by John McCarthy to formalize the common
sense assumption that things are as expected unless otherwise specified. Circumscription was
later used by McCarthy in an attempt to solve the frame problem. In its original first-order logic
formulation, circumscription minimizes the extension of some predicates, where the extension
of a predicate is the set of tuples of values the predicate is true on. This minimization is similar
to the closed world assumption that what is not known to be true is false.

The original problem considered by McCarthy was that of missionaries and cannibals: there are
three missionaries and three cannibals on one bank of a river; they have to cross the river using
a boat that can only take two, with the additional constraint that cannibals must never outnumber
the missionaries on either bank (as otherwise the missionaries would be killed and, presumably,
eaten). The problem considered by McCarthy was not that of finding a sequence of steps to reach

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

the goal (the article on the missionaries and cannibals problem contains one such solution), but Notes
rather that of excluding conditions that are not explicitly stated. For example, the solution “go

half a mile south and cross the river on the bridge” is intuitively not valid because the statement

of the problem does not mention such a bridge. On the other hand, the existence of this bridge

is not excluded by the statement of the problem either. That the bridge does not exist is a

consequence of the implicit assumption that the statement of the problem contains everything

that is relevant to its solution. Explicitly stating that a bridge does not exist is not a solution to

this problem, as there are many other exceptional conditions that should be excluded (such as

the presence of a rope for fastening the cannibals, the presence of a larger boat nearby, etc.)

While circumscription was initially defined in the first-order logic case, the particularization to
the propositional case is easier to define. Given a propositional formula T, its circumscription is
the formula having only the models of T that do not assign a variable to true unless necessary.
Formally, propositional models can be represented by sets of propositional variables; namely,
each model is represented by the set of propositional variables it assigns to true. For example,
the model assigning true to a, false to b, and true to c is represented by the set {4, c}, because a and
c are exactly the variables that are assigned to true by this model. Given two models M and N
represented this way, the condition N € M is equivalent to M setting to true every variable that
N sets to true. In other words, € models the relation of “setting to true less variables”. N ¢ M
means that N € M but these two models do not coincide.

This lets us define models that do not assign variables to true unless necessary. A model M of a
theory T is called minimal, if and only if there is no model N of T for which N ¢ M.

Circumscription is expressed by selecting only the minimal models. It is defined as follows:
CIRC(T) = {M I M is a minimal model of T}

Alternatively, one can define CIRC(T) as a formula having exactly the above set of models;
furthermore, one can also avoid giving a definition of CIRC and only define minimal inference
as T, Q if and only if every minimal model of T is also a model of Q.

As an example, the formula T =a A (b v c) has three models:

1. a, b, are c true, i.e. {a, b, c};
2. a and b are true, cis false, i.e. {a, b};
3. a and c are true, b is false, i.e. {a, c}.

The first model is not minimal in the set of variables it assigns to true. Indeed, the second model
makes the same assignments except for ¢, which is assigned to false and not to true. Therefore,
the first model is not minimal. The second and third models are incomparable: while the second
assigns true to b, the third assigns true to c instead. Therefore, the models circumscribing T are
the second and third models of the list. A propositional formula having exactly these two
models is the following one:

an—(beo)

Intuitively, in circumscription a variable is assigned to true only if this is necessary. Dually, if a
variable can be false, it must be false. For example, at least one of b and ¢ must be assigned to true
according to T; in the circumscription exactly one of the two variables must be true. The variable
cannot be false in any model of T and neither of the circumscription.

6.9.2 Fixed and Varying Predicates
The extension of circumscription with fixed and varying predicates is due to Vladimir Lifschitz.

The idea is that some conditions are not to be minimized. In propositional logic terms, some
variables are not to be falsified if possible. In particular, two kind of variables can be considered:

LOVELY PROFESSIONAL UNIVERSITY 115



Introduction to Artificial Intelligence & Expert Systems

116

Notes

Varying: These are variables that are not to be taken into account at all in the course of
minimization.

Fixed: These are variables considered fixed while doing a minimization; in other words,
minimization can be done only by comparing models with the same values of these variables.

The difference is the value of the varying conditions is simply assumed not to matter. The fixed
conditions instead characterize a possible situation, so that comparing two situations where
these conditions have different value makes no sense.

Formally, the extension of circumscription that incorporate varying and fixed variables is as
follows, where P is the set of variables to minimize, Z the fixed variables, and the varying
variables are those not in P U Z:

CIRC(T; P, Z) ={MIME Tand IN such that NE T, NNPcMNPand NNZ= MNZ}

In words, minimization of the variables assigned to true is only done for the variables in P;
moreover, models are only compared if the assign the same values on the variables of Z. All
other variables are not taken into account while comparing models. The solution to the frame
problem proposed by McCarthy is based on circumscription with no fixed conditions. In the
propositional case, this solution can be described as follows: in addition to the formulae directly
encoding what is known, one also define new variables representing changes in the values of
the conditions; these new variables are then minimized.

For example, of the domain in which there is a door that is closed at time 0 and in which the
action of opening the door is executed at time 2, what is explicitly known is represented by the
two formulae:

—open,
true — open,

The frame problem shows in this example as the problem that —open, is not a consequence of
the above formulae, while the door is supposed to stay closed until the action of opening it is
performed. Circumscription can be used to this aim by defining new variables change_open, to
model changes and then minimizing them:

change open,, = (open, # open,)

change open, =(open, # open,)

As shown by the Yale shooting problem, this kind of solution does not work. For example,
—open, is not yet entailed by the circumscription of the formulae above: the model in which
change open, is true and change open is false is incomparable with the model with the opposite
values. Therefore, the situation in which the door becomes open at time 1 and then remains open
as a consequence of the action is not excluded by circumscription.

Several other formalizations of dynamical domains not suffering from such problems have
been developed. Many use circumscription but in a different way.

6.9.3 Predicate Circumscription

The original definition of circumscription proposed by McCarthy is about first-order logic. The
role of variables in propositional logic (something that can be true or false) is played in first-order
logic by predicates. Namely, a propositional formula can be expressed in first-order logic by
replacing each propositional variable with a predicate of zero arity (i.e., a predicate with no

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

arguments). Therefore, minimization is done on predicates in the first-order logic version of Notes
circumscription: the circumscription of a formula is obtained forcing predicates to be false
whenever possible.

Given a first-order logic formula T containing a predicate P, circumscribing this predicate amounts
to selecting only the models of T in which P is assigned to true on a minimal set of tuples of
values.

Formally, the extension of a predicate in a first-order model is the set of tuples of values this
predicate assign to true in the model. First-order models indeed includes the evaluation of each
predicate symbol; such an evaluation tells whether the predicate is true or false for any possible
value of its arguments. Since, each argument of a predicate must be a term, and each term
evaluates to a value, the models tells whether P(v,,...v ) is true for any possible tuple of values
(v,,...v,). The extension of P in a model is the set of tuples of terms such that P(v,,...v)) is true in
the model.

The circumscription of a predicate P in a formula T is obtained by selecting only the models of
T with a minimal extension of P. For example, if a formula has only two models, differing only
because P(v,,...v,) is true in one and false in the second, then only the second model is selected.
This is because (v,,...v,) is in the extension of P in the first model but not in the second.

The original definition by McCarthy was syntactical rather than semantical. Given a formula T
and a predicate P, circumscribing P in T is the following second-order formula:

T(P) A Vp—~(T(P) A p < P)

In this formula, p is a predicate of the same arity as P. This is a second-order formula because it
contains a quantification over a predicate. The subformula p < P is a shorthand for:

Va(p(x) = P(x)) A =Vx(P(x) — p(x))

In this formula, x is a n-tuple of terms, where n is the arity of P. This formula states that extension
minimization has to be done: in order for a truth evaluation on P of a model being considered,
it must be the case that no other predicate p can assign to false every tuple that P assigns to false
and yet being different from P.

This definition only allows circumscribing a single predicate. While the extension to more than
one predicate is trivial, minimizing the extension of a single predicate has an important
application: capturing the idea that things are usually as expected. This idea can be formalized
by minimized a single predicate expressing the abnormality of situations. In particular, every
known fact is expressed in logic with the addition of a literal —Abnormal(...) stating that the fact
holds only in normal situations. Minimizing the extension of this predicate allows for reasoning
under the implicit assumption that things are as expected (that is, they are not abnormal), and
that this assumption is made only if possible (abnormality can be assumed false only if this is
consistent with the facts.)

6.9.4 Pointwise Circumscription

Pointwise circumscription is a variant of first-order circumscription that has been introduced by
Vladimir Lifschitz. In the propositional case, pointwise and predicate circumscription coincide.
The rationale of pointwise circumscription it minimize the value of a predicate for each tuple of
values separately, rather than minimizing the extension of the predicate. For example, there are
two models of P(a) = P(b) with domain {a, b}, one setting P(a) = P(b) = false and the other setting
P(a) = P(b) = true. Since, the extension of P in the first model is 0 while the extension for the
second is {a, b}, circumscription only selects the first model.

LOVELY PROFESSIONAL UNIVERSITY 117



Introduction to Artificial Intelligence & Expert Systems

118

Notes

In pointwise circumscription, each tuple of values is considered separately. For example, in the
formula P(a) = P(b) one would consider the value of P(a) separately from P(b). A model is
minimal only it is not possible to turn any such value from true to false while still satisfying the
formula. As a result, the model in which P(a) = P(b) = true is selected by pointwise circumscription
because turning only P(a) into false does not satisfy the formula, and the same happens for P(b).

6.9.5 Domain and Formula Circumscription

An earlier formulation of circumscription by McCarthy is based on minimizing the domain of
first-order models, rather than the extension of predicates. Namely, a model is considered less
than another if it has a smaller domain, and the two models coincide on the evaluation of the
common tuples of values. This version of circumscription can be reduced to predicate
circumscription. Formula circumscription was a later formalism introduced by McCarthy. This
is a generalization of circumscription in which the extension of a formula is minimized, rather
than the extension of a predicate. In other words, a formula can be specified so that the set of
tuples of values of the domain that satisfy the formula is made as small as possible.

Self Assessment

State whether the following statements are true or false:

17.  Circumscription was later used by Vladimir Lifschitz in an attempt to solve the frame
problem.

18. Pointwise circumscription is a variant of first-order circumscription that has been
introduced by McCarthy.

6.10 Modal Logic

Modal logic is a type of formal logic primarily developed in the 1960s that extends classical
propositional and predicate logic to include operators expressing modality. Modals—words
that express modalities—qualify a statement.

' Example: The statement “John is happy” might be qualified by saying that John is
usually happy, in which case the term “usually” is functioning as a modal.

The traditional alethic modalities, or modalities of truth, include possibility (“Possibly, p”, “It
is possible that p”), necessity (“Necessarily, p”, “It is necessary that p”), and impossibility
(“Impossibly, p”, “It is impossible that p”) Other modalities that have been formalized in modal
logic include temporal modalities, or modalities of time (notably, “It was the case that p”, “It has
always been that p”, “It will be that p”, “It will always be that p”), deontic modalities (notably,
“It is obligatory that p”, and “It is permissible that p”), epistemic modalities, or modalities of
knowledge (“It is known that p”) and doxastic modalities, or modalities of belief (“It is believed

that p”). A formal modal logic represents modalities using modal operators.

' Example: “It might rain today” and “It is possible that rain will fall today” both contain
the notion of possibility.

In a modal logic, this is represented as an operator, possibly, attached to the sentence “It will
rain today”. The basic unary (1-place) modal operators are usually written [ for necessarily and
0 for possibly. In a classical modal logic, each can be expressed by the other with negation:

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

OP < —O-P; Notes

Thus it is possible that it will rain today if and only if it is not necessary that it will not rain
today; and it is necessary that it will rain today if and only if it is not possible that it will not rain
today. Alternative symbols used for the modal operators are “L” for necessarily and “M” for
Possibly.

Self Assessment

State whether the following statements are true or false:
19. A informal modal logic represents modalities using modal operators.

20. Modal logic is a type of formal logic primarily developed in the 1980s.

6.11 Temporal Logic

In logic, the term “temporal logic” is used to describe any system of rules and symbolism for
representing, and reasoning about, propositions qualified in terms of time. In a temporal logic,
we can then express statements like “I am always hungry”, “I will eventually be hungry”, or
“I will be hungry until I eat something”. Temporal logic is sometimes also used to refer to tense
logic, a particular modal logic-based system of temporal logic introduced by Arthur Prior in the
late 1950s, and important results obtained were by Hans Kamp. Subsequently it has been
developed further by computer scientists, notably Amir Pnueli, and logicians. Temporal logic
has found an important application in formal verification, where it is used to state requirements
of hardware or software systems. For instance, one may wish to say that whenever a request is
made, access to a resource is eventually granted, but it is never granted to two requestors
simultaneously. Such a statement can conveniently be expressed in a temporal logic.

Consider the statement: “I am hungry.” Though its meaning is constant in time, the truth value
of the statement can vary in time. Sometimes the statement is true, and sometimes the statement
is false, but the statement is never true and false simultaneously. In a temporal logic, statements
can have a truth value which can vary in time. Contrast this with a temporal logic, which can
only discuss statements whose truth value is constant in time. This treatment of truth values
over time differentiates temporal logic from computational verb logic. Temporal logic always
has the ability to reason about a time line. So-called linear time logics are restricted to this type
of reasoning. Branching logics, however, can reason about multiple time lines. This presupposes
an environment that may act unpredictably. To continue the example, in a branching logic we
may state that “there is a possibility that I will stay hungry forever.” We may also state that
“there is a possibility that eventually I am no longer hungry.” If we do not know whether or not
I will ever get fed, these statements are both true some times.

Self Assessment

State whether the following statements are true or false:
21. Temporal logic has found an important application in formal verification.

22.  Temporal logic is used to describe any system of rules and symbolism for representing,
and reasoning about, propositions qualified in terms of time.

LOVELY PROFESSIONAL UNIVERSITY 119



Introduction to Artificial Intelligence & Expert Systems

120

Notes

6.12 Fuzzy Logic

Fuzzy logic is a form of many-valued logic or probabilistic logic; it deals with reasoning that is
approximate rather than fixed and exact. Compared to traditional binary sets (where variables
may take on true or false values) fuzzy logic variables may have a truth value that ranges in
degree between 0 and 1. Fuzzy logic has been extended to handle the concept of partial truth,
where the truth value may range between completely true and completely false. Furthermore,
when linguistic variables are used, these degrees may be managed by specific functions.
Irrationality can be described in terms of what is known as the fuzzjective. The term “fuzzy
logic” was introduced with the 1965 proposal of fuzzy set theory by Lotfi A. Zadeh. Fuzzy logic
has been applied to many fields, from control theory to artificial intelligence. Fuzzy logics
however had been studied since the 1920s as infinite-valued logics notably by Lukasiewicz and
Tarski.

Classical logic only permits propositions having a value of truth or falsity. The notion of
whether 1+1=2 is absolute, immutable, mathematical truth. However, there exist certain
propositions with variable answers, such as asking various people to identify a color. The
notion of truth doesn’t fall by the wayside, but rather a means of representing and reasoning
over partial knowledge is afforded, by aggregating all possible outcomes into a dimensional
spectrum. Both degrees of truth and probabilities range between 0 and 1 and hence may seem
similar at first. For example, let a 100 ml glass contain 30 ml of water. Then we may consider two
concepts: Empty and Full. The meaning of each of them can be represented by a certain fuzzy set.
Then one might define the glass as being 0.7 empty and 0.3 full. Note that the concept of
emptiness would be subjective and thus would depend on the observer or designer. Another
designer might equally well design a set membership function where the glass would be
considered full for all values down to 50 ml. It is essential to realize that fuzzy logic uses truth
degrees as a mathematical model of the vagueness phenomenon while probability is a
mathematical model of ignorance.

6.12.1 Applying Truth Values

A basic application might characterize subranges of a continuous variable.

Example: A temperature measurement for anti-lock brakes might have several separate
membership functions defining particular temperature ranges needed to control the brakes
properly. Each function maps the same temperature value to a truth value in the 0 to 1 range.
These truth values can then be used to determine how the brakes should be controlled.

Figure 6.1: Fuzzy Logic Temperature

cold | warm hot

temperature ==

In this image, the meanings of the expressions cold, warm, and hot are represented by functions
mapping a temperature scale. A point on that scale has three “truth values”—one for each of the
three functions. The vertical line in the image represents a particular temperature that the three
arrows (truth values) gauge. Since the red arrow points to zero, this temperature may be
interpreted as “not hot”. The orange arrow (pointing at 0.2) may describe it as “slightly warm”
and the blue arrow (pointing at 0.8) “fairly cold”.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Linguistic Variables Notes

While variables in mathematics usually take numerical values, in fuzzy logic applications, the
non-numeric linguistic variables are often used to facilitate the expression of rules and facts. A
linguistic variable such as age may have a value such as young or its antonym old. However, the
great utility of linguistic variables is that they can be modified via linguistic hedges applied to
primary terms. The linguistic hedges can be associated with certain functions.

Early Applications

The Japanese were the first to utilize fuzzy logic for practical applications. The first notable
application was on the high-speed train in Sendai, in which fuzzy logic was able to improve the
economy, comfort, and precision of the ride. It has also been used in recognition of hand written
symbols in Sony pocket computers, Canon auto-focus technology, Omron auto-aiming cameras,
earthquake prediction and modeling at the Institute of Seismology Bureau of Metrology in
Japan, etc.

Example: Fuzzy set theory defines fuzzy operators on fuzzy sets. The problem in applying
this is that the appropriate fuzzy operator may not be known. For this reason, fuzzy logic
usually uses IF-THEN rules, or constructs that are equivalent, such as fuzzy associative matrices.
Rules are usually expressed in the form:

IF variable IS property THEN action
For example, a simple temperature regulator that uses a fan might look like this:

IF temperature IS very cold THEN stop fan
IF temperature IS cold THEN turn down fan
IF temperature IS normal THEN maintain level
IF temperature IS hot THEN speed up fan

There is no “ELSE” — all of the rules are evaluated, because the temperature might be “cold” and
“normal” at the same time to different degrees.

The AND, OR, and NOT operators of boolean logic exist in fuzzy logic, usually defined as the
minimum, maximum, and complement; when they are defined this way, they are called the
Zadeh operators. So for the fuzzy variables x and y:

NOT x = (1 - truth(x))
X AND y = minimum(truth(x), truth(y))
x OR y = maximum(truth(x), truth(y))

Self Assessment

State whether the following statements are true or false:
23.  Fuzzy logic is a form of many-valued logic or probabilistic logic.
24.  Fuzzy logics however had been studied since the 1940s as infinite-valued logics notably

by Lukasiewicz and Tarski.

6.13 Natural Language Computation

Natural language processing (NLP) is a field of computer science, artificial intelligence, and
linguistics concerned with the interactions between computers and human (natural) languages.
As such, NLP is related to the area of human — computer interaction. Many challenges in NLP
involve natural language understanding — that is, enabling computers to derive meaning from

LOVELY PROFESSIONAL UNIVERSITY 121



Introduction to Artificial Intelligence & Expert Systems

Notes human or natural language input. What distinguishes these computation from other potential
and actual NLP tasks is not only the volume of research devoted to them but the fact that for each
one there is typically a well-defined problem setting, a standard metric for evaluating the task,
standard corpora on which the task can be evaluated, and competitions devoted to the specific
task.

6.13.1 Defining Natural Language
The following is a list of some of the most commonly researched tasks in NLP. Note that some

of these tasks have direct real-world applications, while others more commonly serve as subtasks
that are used to aid in solving larger tasks.

° Automatic Summarization: Produce a readable summary of a chunk of text. Often used to
provide summaries of text of a known type, such as articles in the financial section of a
newspaper.

° Co-reference Resolution: Given a sentence or larger chunk of text, determine which words

(“mentions”) refer to the same objects (“entities”). Anaphora resolution is a specific example
of this task, and is specifically concerned with matching up pronouns with the nouns or
names that they refer to. The more general task of co reference resolution also includes
identifying so-called “bridging relationships” involving referring expressions. For
example, in a sentence such as “He entered John’s house through the front door”, “the
front door” is a referring expression and the bridging relationship to be identified is the
fact that the door being referred to is the front door of John’s house (rather than of some
other structure that might also be referred to).

° Discourse Analysis: This rubric includes a number of related tasks. One task is identifying
the discourse structure of connected text, i.e. the nature of the discourse relationships
between sentences (e.g. elaboration, explanation, contrast). Another possible task is
recognizing and classifying the speech acts in a chunk of text (e.g. yes-no question, content
question, statement, assertion, etc.).

° Machine Translation: Automatically translate text from one human language to another.
This is one of the most difficult problems, and is a member of a class of problems colloquially
termed “Al-complete”, i.e. requiring all of the different types of knowledge that humans
possess (grammar, semantics, facts about the real world, etc.) in order to solve properly.

° Morphological Segmentation: Separate words into individual morphemes and identify
the class of the morphemes. The difficulty of this task depends greatly on the complexity
of the morphology (i.e. the structure of words) of the language being considered. English
has fairly simple morphology, especially inflectional morphology, and thus it is often
possible to ignore this task entirely and simply model all possible forms of a word (e.g.
“open, opens, opened, and opening”) as separate words. In languages such as Turkish,
however, such an approach is not possible, as each dictionary entry has thousands of
possible word forms.

° Named Entity Recognition (NER): Given a stream of text, determine which items in the
text map to proper names, such as people or places, and what the type of each such name
is (e.g. person, location, organization). Note that, although capitalization can aid in
recognizing named entities in languages such as English, this information cannot aid in
determining the type of named entity, and in any case is often inaccurate or insufficient.
For example, the first word of a sentence is also capitalized, and named entities often span
several words, only some of which are capitalized. Furthermore, many other languages in
non-Western scripts (e.g. Chinese or Arabic) do not have any capitalization at all, and
even languages with capitalization may not consistently use it to distinguish names.

122 LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

For example, German capitalizes all nouns, regardless of whether they refer to names, Notes
and French and Spanish do not capitalize names that serve as adjectives.

° Natural Language Generation: Convert information from computer databases into
readable human language.

° Natural Language Understanding: Convert chunks of text into more formal representations
such as first-order logic structures that are easier for computer programs to manipulate.
Natural language understanding involves the identification of the intended semantic
from the multiple possible semantics which can be derived from a natural language
expression which usually takes the form of organized notations of natural languages
concepts. Introduction and creation of language meta model and ontology are efficient
however empirical solutions. An explicit formalization of natural languages semantics
without confusions with implicit assumptions such as Closed World Assumption (CWA)
vs. open world assumption, or subjective Yes/No vs. objective True/False is expected for
the construction of a basis of semantics formalization.

AN

Caution Natural Language processing can be done if better algorithm is designed.

g

Task Apply NLP to find the trait of human.

Self Assessment

State whether the following statements are true or false:
25.  Co reference resolution produce a readable summary of a chunk of text.

26. Morphological segmentation separate words into individual morphemes and identify the
class of the morphemes.

6.14 Summary

° A formal language can be thought of as identical to the set of its well-formed formulas.
The set of well-formed formulas may be broadly divided into theorems and non-theorems.

° A variation, closely related to Temporal or Chronological or Tense logics, are Modal

v

logics based upon “topology”, “place”, or “spatial position”.

° A well-formed formula, shortly WFFS, often simply formula, is a word (i.e. a finite
sequence of symbols from a given alphabet) which is part of a formal language.

° Fuzzy logic is an approach to computing based on “degrees of truth” rather than the usual
“true or false” (1 or 0) Boolean logic on which the modern computer is based. Natural
language (like most other activities in life and indeed the universe) is not easily translated
into the absolute terms of 0 and 1.

° In logic, a rule of inference, inference rule, or transformation rule is the act of drawing a
conclusion based on the form of premises interpreted as a function which takes premises,
analyses their syntax, and returns a conclusion (or conclusions).

° In mathematical logic and automated theorem proving, resolution is a rule of inference
leading to a refutation theorem-proving technique for sentences in propositional logic
and first-order logic.

LOVELY PROFESSIONAL UNIVERSITY 123



Introduction to Artificial Intelligence & Expert Systems

124

Notes

° Propositional logic is a formal system in mathematics and logic. Other names for the
system are propositional calculus and sentential calculus.

° Reason maintenance is a knowledge representation approach to efficient handling of
inferred information that is explicitly stored.

° Symbolic Logic is designed to cultivate research on the borders of logic, philosophy, and
the sciences, and to support substantive interactions between these disciplines.

° The clausal normal form (or clause normal form, conjunctive normal form, CNF) of a
logical formula is used in logic programming and many theorem proving systems.

6.15 Keywords

Chomsky-type Grammars: Within the field of computer science, specifically in the area of formal
languages, the Chomsky hierarchy (occasionally referred to as Chomsky — Schiitzenberger
hierarchy) is a containment hierarchy of classes of formal grammars.

Disjunctions: Logical disjunction is an operation on two logical values, typically the values of
two propositions, that produces a value of false if and only if both of its operands are false. More
generally a disjunction is a logical formula that can have one or more literals separated only by
ORs. A single literal is often considered to be a degenerate disjunction.

Domain: The term domain can refer either to a local sub-network or to descriptors for sites on
the Internet.

Inference Engine: In computer science, and specifically the branches of knowledge engineering
and artificial intelligence, an inference engine is a computer program that tries to derive answers
from a knowledge base. It is the “brain” that expert systems use to reason about the information
in the knowledge base for the ultimate purpose of formulating new conclusions.

Non-classical Logics: A non-classical logic (and sometimes alternative logics) is the name given
to formal systems which differ in a significant way from standard logical systems such as
propositional and predicate logic

Topology: The physical topology of a network refers to the configuration of cables, computers,
and other peripherals.

6.16 Review Questions

—_

Explain syntax logic with an example.

Define FOL.

What is the purpose of well-formed formula (WFF)?
Describe the clausal normal form and its conversion.
Write the inference rule. Explain each rule.

Explain the resolution logic with an example.

Write few lines on truth maintenance system.

Describe the purpose of circumscription logic.

O ® N Tk » DN

Why does the point wise circumscription use?

—_
e

Explain Fuzzy Logic with an example.

—_
—_

Enumerate NLP with an example.

—_
N

Draw a Fuzzy Logic Transition Diagram.

LOVELY PROFESSIONAL UNIVERSITY



Unit 6: Formalized Symbolic Logics

Answers: Self Assessment Notes
1. False 2. True
3. True 4. False
5. True 6. True
7. True 8. False
9. False 10. True
11.  True 12.  True
13.  True 14. False
15.  True 16. True
17.  False 18.  False
19. False 20. False
21.  True 22.  True
23.  True 24.  False
25. False 26. True

6.17 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

N
Online links  http:/ /people.hofstra.edu/stefan_waner/realworld /logic/logic1l.html
http:/ /vedyadhara.ignou.ac.in/wiki/images/1/11/B2U2mcse-003.pdf

http://www.academia.edu/2157642/Rational_inference_deductive_
inductive_and_probabilistic_thinking

http:/ /www.gelbukh.com/clbook/

http://www.webpages.uidaho.edu/~morourke/404-phil/Summer-99/
Handouts/Philosophical /Non-Deductive-Inference. htm

http://www4.uwsp.edu/philosophy/dwarren/WhatlsFormalLogic/
WhatlsFormalLogicNarration.pdf

https:/ /wiki.umiacs.umd.edu/clip/index.php/Main_Page

LOVELY PROFESSIONAL UNIVERSITY 125



Introduction to Artificial Intelligence & Expert Systems

Notes Unit 7: Probabilistic Reasoning

CONTENTS
Objectives
Introduction
7.1  Bayesian Probabilistic Inference
7.1.1 Inference
712 Brief Introduction to the Bayesian Approach
7.1.3 An Alternative to Bayes: The Stanford Certainty Factor Algebra
714 Graphical Models for Uncertain Reasoning
7.1.5 The Bayesian Belief Network
7.1.6 Inference with a Bayesian Belief Network
7.2 Possible World Representations
721 Pointing to the Subject
722 Common Realms of Discourse
7.2.3 Knowledge Representation
7.3 The Dempster — Shafer Theory
7.3.1 Characteristics of D - S
7.3.2 Example of D — S Application
733 Combining Evidences
734  Advantages and Disadvantages of D — S Theory
74  Heuristic Reasoning Methods
741 Problems with Current Approaches to Uncertainty
7.5 Summary
7.6 Keywords
7.7  Review Questions

7.8  Further Readings

Objectives

After studying this unit, you will be able to:

° Discuss the Bayesian Probabilistic Inference
° Describe the Possible World Representations
° Explain the Dempster — Shafer Theory

° Identify various Heuristic Reasoning Methods

126 LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

Introduction Notes

In statistics, Bayesian inference is a method of inference in which Bays” rule is used to update the
probability estimate for a hypothesis as additional evidence is learned. Bayesian updating is an
important technique throughout statistics, and especially in mathematical statistics. For some
cases, exhibiting a Bayesian derivation for a statistical method automatically ensures that the
method works as well as any competing method. Bayesian updating is especially important in
the dynamic analysis of a sequence of data. Bayesian inference has found application in a range
of fields including science, engineering, philosophy, medicine, and law.

In the philosophy of decision theory, Bayesian inference is closely related to discussions of
subjective probability, often called “Bayesian probability”. Bayesian probability provides a
rational method for updating beliefs; however, non-Bayesian updating rules are compatible
with rationality, according to philosophers Ian Hacking and Bas van Fraassen.

7.1 Bayesian Probabilistic Inference

Bayesian inference derives the posterior probability as a consequence of two antecedents, a
prior probability and a “likelihood function” derived from a probability model for the data to
be observed. Bayesian inference computes the posterior probability according to Bayes’ rule:

P(EIH)- P(H)

P(HIE) = B(E)

where
° | means given.

° H stands for any hypothesis whose probability may be affected by data (called evidence
below). Often there are competing hypotheses, from which one chooses the most probable.

° the evidence E corresponds to data that were not used in computing the prior probability.

° P(H), the prior probability, is the probability of H before E is observed. This indicates
one’s preconceived beliefs about how likely different hypotheses are, absent evidence
regarding the instance under study.

° P(HIE), the posterior probability, is the probability of H given E, i.e., after E is observed.
This tells us what we want to know: the probability of a hypothesis given the observed
evidence.

° P(E| H), the probability of observing E given H, is also known as the likelihood. It indicates
the compatibility of the evidence with the given hypothesis.

° P(E) is sometimes termed the marginal likelihood or “model evidence”. This factor is the
same for all possible hypotheses being considered. (This can be seen by the fact that the
hypothesis H does not appear anywhere in the symbol, unlike for all the other factors.)
This means that this factor does not enter into determining the relative probabilities of
different hypotheses.

Note that what affects the value of P(H|E) for different values of H is only the factors P(H) and
P(E| H), which both appear in the numerator, and hence the posterior probability is proportional
to both. In words:

° (more exactly) The posterior probability of a hypothesis is determined by a combination
of the inherent likeliness of a hypothesis (the prior) and the compatibility of the observed
evidence with the hypothesis (the likelihood).

LOVELY PROFESSIONAL UNIVERSITY 127



Introduction to Artificial Intelligence & Expert Systems

128

Notes

° (more concisely) Posterior is proportional to prior times likelihood.
Note that Bayes’ rule can also be written as follows:

PEIH)

= P(H
P(HIE) P(E) (H)
(ETH) . .
where the factor TE) represents the impact of E on the probability of H.

Informal, Rationally, Bayes” rule makes a great deal of sense. If the evidence does not match up
with a hypothesis, one should reject the hypothesis. But if a hypothesis is extremely unlikely a
priori, one should also reject it, even if the evidence does appear to match up.

' Example: Imagine that I have various hypotheses about the nature of a newborn baby of
a friend, including:

° H, : the baby is a brown-haired boy.
° H, : the baby is a blond-haired girl.
° H, : the baby is a dog.

Then consider two scenarios:

I'm presented with evidence in the form of a picture of a blond-haired baby girl. I find this
evidence supports H, and opposes H, and H..

I'm presented with evidence in the form of a picture of a baby dog. Although this evidence,
treated in isolation, supports H,, my prior belief in this hypothesis (that a human can give birth
to a dog) is extremely small, so the posterior probability is nevertheless small.

The critical point about Bayesian inference, then, is that it provides a principled way of combining
new evidence with prior beliefs, through the application of Bayes’ rule. (Contrast this with
frequentist inference, which relies only on the evidence as a whole, with no reference to prior
beliefs.) Furthermore, Bayes’ rule can be applied iteratively: after observing some evidence, the
resulting posterior probability can then be treated as a prior probability, and a new posterior
probability computed from new evidence. This allows for Bayesian principles to be applied to
various kinds of evidence, whether viewed all at once or over time. This procedure is termed
“Bayesian updating”.

Bayesian Updating

Bayesian updating is widely used and computationally convenient. However, it is not the only
updating rule that might be considered “rational”.

Ian Hacking noted that traditional “Dutch book” arguments did not specify Bayesian updating:
they left open the possibility that non-Bayesian updating rules could avoid Dutch books. Hacking
wrote “And neither the Dutch book argument, nor any other in the personalist arsenal of proofs
of the probability axioms, entails the dynamic assumption. Not one entails Bayesianism. So the
personalist requires the dynamic assumption to be Bayesian. It is true that in consistency a
personalist could abandon the Bayesian model of learning from experience. Salt could lose its
savour.”

l)

Did u know? There are non-Bayesian updating rules that also avoid Dutch books. The
additional hypotheses needed to uniquely require Bayesian updating have been deemed
to be substantial, complicated, and unsatisfactory.

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

7.1.1 Inference Notes

Bayesian probability is one of the different interpretations of the concept of probability and
belongs to the category of evidential probabilities. The Bayesian interpretation of probability
can be seen as an extension of the branch of mathematical logic known as propositional logic
that enables reasoning with propositions whose truth or falsity is uncertain. To evaluate the
probability of a hypothesis, the Bayesian probabilist specifies some prior probability, which is
then updated in the light of new, relevant data.

The Bayesian interpretation provides a standard set of procedures and formulae to perform this
calculation. Bayesian probability interprets the concept of probability as “an abstract concept, a
quantity that we assign theoretically, for the purpose of representing a state of knowledge, or
that we calculate from previously assigned probabilities,” in contrast to interpreting it as a
frequency or “propensity” of some phenomenon.

The term “Bayesian” refers to the 18th century mathematician and theologian Thomas Bayes,
who provided the first mathematical treatment of a non-trivial problem of Bayesian inference.
Nevertheless, it was the French mathematician Pierre-Simon Laplace who pioneered and
popularised what is now called Bayesian probability.

Broadly speaking, there are two views on Bayesian probability that interpret the probability
concept in different ways. According to the objectivist view, the rules of Bayesian statistics can
be justified by requirements of rationality and consistency and interpreted as an extension of
logic. According to the subjectivist view, probability quantifies a “personal belief”. Many modern
machine learning methods are based on objectivist Bayesian principles. In the Bayesian view, a
probability is assigned to a hypothesis, whereas under the frequentist view, a hypothesis is
typically being assigned a probability.

7.1.2 Brief Introduction to the Bayesian Approach

Broadly speaking, there are two views on Bayesian probability that interpret the ‘probability”
concept in different ways. For objectivists, probability objectively measures the plausibility of
propositions, i.e. the probability of a proposition corresponds to a reasonable belief everyone
(even a “robot”) sharing the same knowledge should share in accordance with the rules of
Bayesian statistics, which can be justified by requirements of rationality and consistency. For
subjectivists, probability corresponds to a ‘personal belief’. For subjectivists, rationality and
coherence constrain the probabilities a subject may have, but allow for substantial variation
within those constraints. The objective and subjective variants of Bayesian probability differ
mainly in their interpretation and construction of the prior probability.

=74|

Notes The use of Bayesian probabilities as the basis of Bayesian inference has been
supported by several arguments, such as the Cox axioms, the Dutch book argument,
arguments based on decision theory and de Finetti’s theorem.

Axiomatic Approach

Richard T. Cox showed that Bayesian updating follows from several axioms, including two
functional equations and a controversial hypothesis of differentiability. It is known that Cox’s
1961 development (mainly copied by Jay Ness) is non-rigorous, and in fact a counter example
has been found by Halpern. The assumption of differentiability or even continuity is questionable
since the Boolean algebra of statements may only be finite. Other axiomatizations have been
suggested by various authors to make the theory more rigorous.

LOVELY PROFESSIONAL UNIVERSITY 129



Introduction to Artificial Intelligence & Expert Systems

130

Notes

Dutch Book Approach

The Dutch book argument was proposed by de Finetti, and is based on betting. A Dutch book is
made when a clever gambler places a set of bets that guarantee a profit, no matter what the
outcome of the bets. If a bookmaker follows the rules of the Bayesian calculus in the construction
of his odds, a Dutch book cannot be made.

However, Ian Hacking noted that traditional Dutch book arguments did not specify Bayesian
updating: they left open the possibility that non-Bayesian updating rules could avoid Dutch
books. For example, Hacking writes” And neither the Dutch book argument, nor any other in
the personalist arsenal of proofs of the probability axioms, entails the dynamic assumption. Not
one entails Bayesianism. So the personalist requires the dynamic assumption to be Bayesian. It
is true that in consistency a personalist could abandon the Bayesian model of learning from
experience. Salt could lose its savour.”

AN

Caution There are non-Bayesian updating rules that also avoid Dutch books. The additional
hypotheses sufficient to (uniquely) specify Bayesian updating are substantial, complicated,
and unsatisfactory.

Decision Theory Approach

A decision-theoretic justification of the use of Bayesian inference (and hence of Bayesian
probabilities) was given by Abraham Wald, who proved that every admissible statistical
procedure is either a Bayesian procedure or a limit of Bayesian procedures. Conversely, every
Bayesian procedure is admissible.

7.1.3 An Alternative to Bayes: The Stanford Certainty Factor Algebra

It is a more general approach to representing uncertainty than the Bayesian approach. Particularly
useful when decision to be made is based on the amount of evidence that has been collected. It
is appropriate for combining expert opinions, since experts do differ in their opinions with a
certain degree of ignorance. This Approach distinguishes between uncertainty and ignorance by
creating belief functions. This also assumes that the sources of information to be combined are
statistically independent. The basic idea in representing uncertainty in this model is:

Set up a confidence interval — an interval of probabilities within which the true probability lies
with a certain confidence — based on the Belief B and plausibility PL provided by some evidence
E for a proposition P.

MB and MD can be tied together

CF(H|E) = MB(H| E) - MD(H | E)

As CF approaches 1 the confidence for H is stronger

As CF approaches -1 the confidence against H is stronger

As CF approaches 0 there is little support for belief or disbelief in H

A basic probability m(S), a belief BELIEF(S) and a plausible belief PLAUSIBILITY(S) all have
value in the interval [0,1].

Combining Beliefs

To combine multiple sources of evidence to a single (or multiple) hypothesis do the following:
Suppose M, and M, are two belief functions. Let X be the set of subsets of W to which M, assigns

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

a nonzero value and let Y be a similar set for M,. Then to get a new belief function M, from the Notes
combination of M, and M, beliefs in and we do:

M, =2, M) M(y)/1-X o, M(X) M,(y)
Stanford Certainty Factor Algebra
This approach was used in MYCIN for first time. It is based on Several Observations. Here Facts
and the outcome of rules are given confidence factor between -1 and +1
+1 means fact is known to be true.
-1 means fact is known to be false.

Here, the knowledge content of the rules is more important than the algebra of confidences
holding the system together. In this approach, confidence measures correspond to informal
assessments by humans such as “it is probably true” or “it is often the case. It also separates
“confidence for” from “confidence against”.

MB(H I E) — The measure of belief in hypothesis H given evidence E.
MD(H | E) — The measure of disbelief of H given E.

Where the belief brings together all the evidence that would lead us to believe in P with some
certainty and the plausibility brings together the evidence that is compatible with P and is not
inconsistent with it.

Rules of the algebra:

CF(P1 & P2) = Min(CF(P1),CF(P2))

CF(P1 OR P2) = Max(CF(P1),CF(P2))

Given: IF P THEN Q with CF(R)

CF(Q)=CF(P) * CF(R)

If two rules R1 and R2 support Q with CF(QR1) and CF(QR2) then to find the actual CF(Q):
If both +ve: CF(Q)=CF(QR1) + CF(QR2) - CF(QR1) * CF(QR2)

If both -ve: CF(Q)=CF(QR1) + CF(QR2) + CF(QR1) * CF(QR2)

If of opposite signs: CF(Q)= (CF(QR1) + CF(QR2))/(1 - Min(I CF(QR1)|, | CF(QR2)))

Casual Networks

This approach accedes to the kind of descriptions provided by experts (e.g. CASNET, ABEL).
Causal models depict relationships as links between nodes in a graph or a network of nodes. It
is critical to explanatory power. Mostly developed for medical application, these networks
provide multiple levels of detail to link clinical findings to pathophysiological state. They
provide focus mechanisms for diagnostic investigation. It exhibits further information seeking
behavior and provides mechanism for accounting for disease interaction.

Limitations

1. A lot of detail required.

2. Not immediately clear how to choose which level to reason at and how to combine
reasoning at different levels. Not a purely mechanistic approach, still unclear when the
problem space is adequately covered.

LOVELY PROFESSIONAL UNIVERSITY 131



Introduction to Artificial Intelligence & Expert Systems

132

Notes

3. Ata high level, our goal is to efficiently represent and operate upon a joint distribution P

a naive representation of the joint distribution requires the specification of 2 n numbers
(the probabilities of the 2 n different assignments to the variables), which would be
infeasible except for very small n. Fortunately, most real-world application domains
exhibit a high degree of structure in this joint distribution that allows us to factor the
representation of the distribution into modular components.

7.1.4 Graphical Models for Uncertain Reasoning

A Bayesian network, Bayes network, belief network, Bayes(ian) model or probabilistic directed
acyclic graphical model is a probabilistic graphical model (a type of statistical model) that
represents a set of random variables and their conditional dependencies via a directed acyclic
graph (DAG). For example, a Bayesian network could represent the probabilistic relationships
between diseases and symptoms. Given symptoms, the network can be used to compute the
probabilities of the presence of various diseases.

Formally, Bayesian networks are directed acyclic graphs whose nodes represent random variables
in the Bayesian sense: they may be observable quantities, latent variables, unknown parameters
or hypotheses. Edges represent conditional dependencies; nodes which are not connected
represent variables which are conditionally independent of each other. Each node is associated
with a probability function that takes as input a particular set of values for the node’s parent
variables and gives the probability of the variable represented by the node. For example, if the
parents are m Boolean variables then the probability function could be represented by a table of
2™ entries, one entry for each of the 2" possible combinations of its parents being true or false.
Similar ideas may be applied to undirected, and possibly cyclic, graphs; such are called Markov
networks.

Efficient algorithms exist that perform inference and learning in Bayesian networks. Bayesian
networks that model sequences of variables (e.g. speech signals or protein sequences) are called
dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve
decision problems under uncertainty are called influence diagrams.

[SprinklerH Rain ]

Inference, or model evaluation, is the process of updating probabilities of outcomes based upon
the relationships in the model and the evidence known about the situation at hand. When a
Bayesian model is actually used, the end user applies evidence about recent events or observations.
This information is applied to the model by “instantiating” or “clamping” a variable to a state
that is consistent with the observation. Then the mathematical mechanics are performed to
update the probabilities of all the other variables that are connected to the variable representing
the new evidence.

IS

Notes  After inference, the updated probabilities reflect the new levels of belief in (or
probabilities of) all possible outcomes coded in the model. These beliefs are mediated by
the original assessment of belief performed by the author of the model.

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

The beliefs originally encoded in the model are known as prior probabilities, because they are Notes
entered before any evidence is known about the situation. The beliefs computed after evidence

is entered are known as posterior probabilities, because they reflect the levels of belief computed

in light of the new evidence.

Parents and Children: Introduction to Diagrams
To recap, every variable in the real world situation is represented by a Bayesian variable. Each

such variable describes a set of states that represent all possible distinct situations for the variable.

Once the set of variables and their states are known, the next step is to define the causal relationships
among them. For any variable, this means asking the questions:

° What other variables (if any) directly influence this variable?
° What other variables (if any) are directly influenced by this variable?

In a standard Bayesian belief network, each variable is represented by a colored ellipse; this
graphical representation is called a node.

Each causal influence relationship is described by a line (or arc) connecting the influencing
variable to the influenced variable. The influence arc has a terminating arrowhead pointing to
the influenced variable.

The common terminology, then is as follows:
° A node is a Bayesian variable.

° An arc connects a parent (influencing) node to a child (influenced) node.
Belief Network Creation

To create a belief network, then, the following steps are necessary.
1. Create a set of variables representing the distinct elements of the situation being modeled.

2. For each such variable, define the set of outcomes or states that each can have. This set is
referred to in the mathematical literature as “mutually exclusive and exhaustive,” meaning
that it must cover all possibilities for the variable, and that no important distinctions are
shared between states.

3. Establish the causal dependency relationships between the variables. This involves creating
arcs (lines with arrowheads) leading from the parent variable to the child variable.

4. Assess the prior probabilities. This means supplying the model with numeric probabilities
for each variable in light of the number of parents the variable was given in Step 3.

After the model has been developed, MSBNX allows you to model or mimic real-world situations
by entering or removing evidence on the model. As you do so, there are various methods for
displaying the resulting probabilities.

7.1.5 The Bayesian Belief Network

To keep the formalism simple and general, we develop the notion of features without considering
time explicitly. Constraint satisfaction problems will be described in terms of possible worlds.
When we are not modeling change, there is a direct one-to-one correspondence between features
and variables, and between states and possible worlds. A possible world is a possible way the
world (the real world or some imaginary world) could be. For example, when representing a
crossword puzzle, the possible worlds correspond to the ways the crossword could be filled out.

LOVELY PROFESSIONAL UNIVERSITY 133



Introduction to Artificial Intelligence & Expert Systems

134

Notes

In the electrical environment, a possible world specifies the position of every switch and the
status of every component.

Possible worlds are described by algebraic variables. An algebraic variable is a symbol used to
denote features of possible worlds. Algebraic variables will be written starting with an uppercase
letter. Each algebraic variable V has an associated domain, dom(V), which is the set of values the
variable can take on.

7.1.6 Inference with a Bayesian Belief Network

Internal to a computer, a symbol is just a sequence of bits that can be distinguished from other
symbols. Some symbols have a fixed interpretation, for example, symbols that represent numbers
and symbols that represent characters. Symbols that do not have fixed meaning appear in many
programming languages. In Java, starting from Java 1.5, they are called enumeration types. Lisp
refers to them as atoms. Usually, they are implemented as indexes into a symbol table that gives
the name to print out. The only operation performed on these symbols is equality to determine
if two symbols are the same or not. To a user of a computer, symbols have meanings. A person
who inputs constraints or interprets the output associates meanings with the symbols that make
up the constraints or the outputs. He or she associates a symbol with some concept or object in
the world. For example, the variable Harry’s Height to the computer, is just a sequence of bits.
It has no relationship to Harry’s Weight or Sue’s Height. To a person, this variable may mean the
height, in particular units, of a particular person at a particular time.

The meaning associated with a variable-value pair must satisfy the clarity principle: an omniscient
agent - a fictitious agent who knows the truth and the meanings associated with all of the
symbols - should be able to determine the value of each variable.

Example: The height of Harry only satisfies the clarity principle if the particular person
being referred to and the particular time are specified as well as the units. For example, we may
want to reason about the height, in centimeters, of Harry Potter at the start of the second movie
of ]. K. Rowling’s book. This is different from the height, in inches, of Harry Potter at the end of
the same movie (although they are, of course, related). If you want to refer to Harry’s height at
two different times, you must have two different variables. You should have a consistent meaning.
When stating constraints, you must have the same meaning for the same variable and the same
values, and you can use this meaning to interpret the output.

The bottom line is that symbols can have meanings because we give them meanings. For this
unit, assume that the computer does not know what the symbols mean. A computer can only
know what a symbol means if it can perceive and manipulate the environment.

Self Assessment

State whether the following statements are true or false:

1. Bayesian updating is widely used and computationally convenient.

2. The term “Bayesian” refers to the 20th century mathematician and theologian Thomas
Bayes.

3. There are four views on Bayesian probability that interpret the probability concept in

different ways.

4. A decision-theoretic justification of the use of Bayesian inference (and hence of Bayesian
probabilities) was given by Richard T. Cox.

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

7.2 Possible World Representations Notes

A discrete variable is one whose domain is finite or countably infinite. One particular case of a
discrete variable is a Boolean variable, which is a variable with domain {true, false}. If X is a
Boolean variable, we write X=true as its lowercase equivalent, x, and write X=false as —x. We can
also have variables that are not discrete; for example, a variable whose domain corresponds to
a subset of the real line is a continuous variable.

' Example: The variable Class_time may denote the starting time for a particular class.
The domain of Class_time may be the following set of possible times:

dom(Class_time)={8, 9, 10, 11, 12, 1, 2, 3, 4, 5}.

The variable Height_joe may refer to the height of a particular person at a particular time and
have as its domain the set of real numbers, in some range, that represent the height in centimeters.
Raining may be a Boolean random variable with value true if it is raining at a particular time.

7.2.1 Pointing to the Subject

Knowledge Representation is an area of artificial intelligence research aimed at representing
knowledge in symbols to facilitate inference from those knowledge elements, creating new
elements of knowledge. The KR can be made to be independent of the underlying knowledge
model or knowledge base system (KBS) such as a semantic network.

Knowledge representation (KR) research involves analysis of how to reason accurately and
effectively and how best to use a set of symbols to represent a set of facts within a knowledge
domain. A symbol vocabulary and a system of logic are combined to enable inferences about
elements in the KR to create new KR sentences. Logic is used to supply formal semantics of how
reasoning functions should be applied to the symbols in the KR system. Logic is also used to
define how operators can process and reshape the knowledge. Examples of operators and
operations include negation, conjunction, adverbs, adjectives, quantifiers and modal operators.
The logic is interpretation theory. These elements — symbols, operators, and interpretation
theory — are what give sequences of symbols meaning within a KR.

A key parameter in choosing or creating a KR is its expressivity. The more expressive a KR, the
easier and more compact it is to express a fact or element of knowledge within the semantics and
grammar of that KR. However, more expressive languages are likely to require more complex
logic and algorithms to construct equivalent inferences. A highly expressive KR is also less
likely to be complete and consistent. Less expressive KRs may be both complete and consistent.
Auto epistemic temporal modal logic is a highly expressive KR system, encompassing
meaningful chunks of knowledge with brief, simple symbol sequences (sentences). Propositional
logic is much less expressive but highly consistent and complete and can efficiently produce
inferences with minimal algorithm complexity. Nonetheless, only the limitations of an
underlying knowledge base affect the ease with which inferences may ultimately be made (once
the appropriate KR has been found). This is because a knowledge set may be exported from a
knowledge model or knowledge base system (KBS) into different KRs, with different degrees of
expressiveness, completeness, and consistency. If a particular KR is inadequate in some way,
that set of problematic KR elements may be transformed by importing them into a KBS, modified
and operated on to eliminate the problematic elements or augmented with additional knowledge
imported from other sources, and then exported into a different, more appropriate KR.

In applying KR systems to practical problems, the complexity of the problem may exceed the
resource constraints or the capabilities of the KR system.

LOVELY PROFESSIONAL UNIVERSITY 135



Introduction to Artificial Intelligence & Expert Systems

136

Notes

l)

Did u know? Recent developments in KR include the concept of the Semantic Web, and
development of XML-based knowledge representation languages and standards, including
Resource Description Framework (RDF), RDF Schema, Topic Maps, DARPA Agent Markup
Language (DAML), Ontology Inference Layer (OIL) and Web Ontology Language (OWL).

There are several KR techniques such as frames, rules, tagging, and semantic networks which
originated in cognitive science. Since knowledge is used to achieve intelligent behavior, the
fundamental goal of knowledge representation is to facilitate reasoning, inferencing, or drawing
conclusions. A good KR must be both declarative and procedural knowledge. What is knowledge
representation can best be understood in terms of five distinct roles it plays, each crucial to the
task at hand:

° A knowledge representation (KR) is most fundamentally a surrogate, a substitute for the
thing itself, used to enable an entity to determine consequences by thinking rather than
acting, i.e., by reasoning about the world rather than taking action in it.

° It is a set of ontological commitments, i.e., an answer to the question: In what terms should
I think about the world?

° It is a fragmentary theory of intelligent reasoning, expressed in terms of three components:
(i) the representation’s fundamental conception of intelligent reasoning; (ii) the set of
inferences the representation sanctions; and (iii) the set of inferences it recommends.

° It is a medium for pragmatically efficient computation, i.e., the computational environment
in which thinking is accomplished. One contribution to this pragmatic efficiency is supplied
by the guidance a representation provides for organizing information so as to facilitate
making the recommended inferences.

° It is a medium of human expression, i.e., a language in which we say things about the
world.”

7.2.2 Common Realms of Discourse

The Dempster — Shafer theory (DST) is a mathematical theory of evidence. It allows one to
combine evidence from different sources and arrive at a degree of belief (represented by a belief
function) that takes into account all the available evidence. The theory was first developed by
Arthur P. Dempster and Glenn Shafer.

In a narrow sense, the term “Dempster — Shafer theory” refers to the original conception of the
theory by Dempster and Shafer. However, it is more common to use the term in the wider sense
of the same general approach, as adapted to specific kinds of situations. In particular, many
authors have proposed different rules for combining evidence, often with a view to handling
conflicts in evidence better.

Dempster — Shafer theory is a generalization of the Bayesian theory of subjective probability;
whereas the latter requires probabilities for each question of interest, belief functions base
degrees of belief (or confidence, or trust) for one question on the probabilities for a related
question. These degrees of belief may or may not have the mathematical properties of
probabilities; how much they differ depends on how closely the two questions are related. Put
another way, it is a way of representing epistemic plausibilities but it can yield answers that
contradict those arrived at using probability theory.

Often used as a method of sensor fusion, Dempster — Shafer theory is based on two ideas:
obtaining degrees of belief for one question from subjective probabilities for a related question,
and Dempster’s rule for combining such degrees of belief when they are based on independent

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

items of evidence. In essence, the degree of belief in a proposition depends primarily upon the Notes
number of answers (to the related questions) containing the proposition, and the subjective

probability of each answer. Also contributing are the rules of combination that reflect general

assumptions about the data.

In this formalism, a degree of belief (also referred to as a mass) is represented as a belief function
rather than a Bayesian probability distribution. Probability values are assigned to sets of
possibilities rather than single events: their appeal rests on the fact they naturally encode evidence
in favor of propositions.

]

Notes Dempster — Shafer theory assigns its masses to all of the non-empty subsets of the
entities that compose a system

Belief and Plausibility

Shafer’s framework allows for belief about propositions to be represented as intervals, bounded
by two values, belief (or support) and plausibility:

belief < plausibility

Belief in a hypothesis is constituted by the sum of the masses of all sets enclosed by it (i.e. the
sum of the masses of all subsets of the hypothesis). It is the amount of belief that directly
supports a given hypothesis at least in part, forming a lower bound. Belief (usually denoted Bel)
measures the strength of the evidence in favor of a set of propositions. It ranges from 0 (indicating
no evidence) to 1 (denoting certainty). Plausibility is 1 minus the sum of the masses of all sets
whose intersection with the hypothesis is empty. It is an upper bound on the possibility that the
hypothesis could be true, i.e. it “could possibly be the true state of the system” up to that value,
because there is only so much evidence that contradicts that hypothesis. Plausibility (denoted by
Pl) is defined to be Pl(s)=1-Bel(~s). It also ranges from 0 to 1 and measures the extent to which
evidence in favor of ~s leaves room for belief in s. For example, suppose we have a belief of 0.5
and a plausibility of 0.8 for a proposition, say “the cat in the box is dead.” This means that we
have evidence that allows us to state strongly that the proposition is true with a confidence of
0.5. However, the evidence contrary to that hypothesis (i.e. “the cat is alive”) only has a confidence
of 0.2. The remaining mass of 0.3 (the gap between the 0.5 supporting evidence on the one hand,
and the 0.2 contrary evidence on the other) is “indeterminate,” meaning that the cat could either
be dead or alive. This interval represents the level of uncertainty based on the evidence in your
system.

Hypothesis Mass | Belief | Plausibility
Null (neither alive nor dead) 0 0 0
Alive 0.2 0.2 0.5
Dead 0.5 0.5 0.8
Either (alive or dead) 0.3 1.0 1.0

The null hypothesis is set to zero by definition (it corresponds to “no solution”). The orthogonal
hypotheses “Alive” and “Dead” have probabilities of 0.2 and 0.5, respectively. This could
correspond to “Live/Dead Cat Detector” signals, which have respective reliabilities of 0.2 and
0.5. Finally, the all-encompassing “Either” hypothesis (which simply acknowledges there is a
cat in the box) picks up the slack so that the sum of the masses is 1. The belief for the “Alive” and
“Dead” hypotheses matches their corresponding masses because they have no subsets; belief for
“Either” consists of the sum of all three masses (Either, Alive, and Dead) because “Alive” and

LOVELY PROFESSIONAL UNIVERSITY 137



Introduction to Artificial Intelligence & Expert Systems

138

Notes

“Dead” are each subsets of “Either”. The “Alive” plausibility is 1 —m (Dead) and the “Dead”
plausibility is 1 —m (Alive). Finally, the “Either” plausibility sums m(Alive) + m(Dead) +
m(Either). The universal hypothesis (“Either”) will always have 100% belief and plausibility—
it acts as a checksum of sorts.

Here is a somewhat more elaborate example where the behavior of belief and plausibility
begins to emerge. We're looking through a variety of detector systems at a single faraway
signal light, which can only be coloured in one of three colours (red, yellow, or green):

Hypothesis Mass Belief Plausibility
Null 0 0 0
Red 0.35 0.35 0.56
Yellow 0.25 0.25 0.45
Green 0.15 0.15 0.34
Red or Yellow 0.06 0.66 0.85
Red or Green 0.05 0.55 0.75
Yellow or Green 0.04 0.44 0.65
Any 0.1 1.0 1.0

Events of this kind would not be modeled as disjoint sets in probability space as they are here in
mass assignment space. Rather the event “Red or Yellow” would be considered as the union of
the events “Red” and “Yellow”, and P(Red or Yellow)- P(Yellow), and P(Any)=1, where Any
refers to Red or Yellow or Green. In DST, the mass assigned to Any refers to the proportion of
evidence that can’t be assigned to any of the other states, which here means evidence that says
there is a light but doesn’t say anything about what color it is. In this example, the proportion of
evidence that shows the light is either Red or Green is given a mass of 0.05. Such evidence might,
for example, be obtained from a R/G color blind person. DST lets us extract the value of this
sensor’s evidence. Also, in DST the Null set is considered to have zero mass, meaning here that
the signal light system exists and we are examining its possible states, not speculating as to
whether it exists at all.

AN

Caution Deduct uncertain information for knowledge.

g

Task  List five cases of uncertainty of information.

7.2.3 Knowledge Representation

The problem we now face is how to combine two independent sets of probability mass
assignments in specific situations. In case, different sources express their beliefs over the frame
in terms of belief constraints such as in case of giving hints or in case of expressing preferences,
then Dempster’s rule of combination is the appropriate fusion operator. This rule derives common
shared belief between multiple sources and ignores all the conflicting (non-shared) belief through
anormalization factor. Use of that rule in other situations than that of combining belief constraints
has come under serious criticism, such as in case of fusing separate beliefs estimates from
multiple sources that are to be integrated in a cumulative manner, and not as constraints.
Cumulative fusion means that all probability masses from the different sources are reflected in
the derived belief, so no probability mass is ignored.

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

Specifically, the combination (called the joint mass) is calculated from the two sets of masses m, Notes
and m, in the following manner:
m, ,(2) =0
1
ml,z(A) = (m1 ® mz) (A) = ﬁ Bﬂcgmzml(B)mZ(C)
where

K= 3% m(Bym,(C).
BNC=2
K is a measure of the amount of conflict between the two mass sets.
Effects of Conflict

The normalization factor above, 1 - K, has the effect of completely ignoring conflict and
attributing any mass associated with conflict to the null set. This combination rule for evidence
can therefore produce counterintuitive results, as we show next.

' Example: Producing Correct Results in Case of High Conflict

The following example shows how Dempster’s rule produces intuitive results when applied in
a preference fusion situation, even when there is high conflict.

Suppose that two friends, Alice and Bob, want to see a film at the cinema one evening, and that
there are only three films showing: X, Y and Z. Alice expresses her preference for film X with
probability 0.99, and her preference for film Y with a probability of only 0.01. Bob expresses his
preference for film Z with probability 0.99, and his preference for film Y with a probability of
only 0.01. When combining the preferences with Dempster’s rule of combination it turns out
that their combined preference results in probability 1.0 for film Y, because it is the only film
that they both agree to see. Dempster’s rule of combination produces intuitive results even in
case of totally conflicting beliefs when interpreted in this way. Assume that Alice prefers film X
with probability 1.0, and that Bob prefers film Z with probability 1.0. When trying to combine
their preferences with Dempster’s rule it turns out that it is undefined in this case, which means
that there is no solution. This would mean that they can not agree on seeing any film together,
so they don’t go to the cinema together that evening.

' Example: Producing Counter-intuitive Results in Case of High Conflict

An example with exactly the same numerical values was introduced by Zadeh in 1979, to point
out counter-intuitive results generated by Dempster’s rule when there is a high degree of conflict.
The example goes as follows:

Suppose that one has two equi-reliable doctors and one doctor believes a patient has either a
brain tumor—with a probability (i.e. a basic belief assignment - bba’s, or mass of belief) of
0.99—or meningitis—with a probability of only 0.01. A second doctor believes the patient has a
concussion—with a probability of 0.99—and believes the patient suffers from meningitis—with
a probability of only 0.01. Applying Dempster’s rule to combine these two sets of masses of
belief, one gets finally m(meningitis)=1 (the meningitis is diagnosed with 100 percent of
confidence).

Such result goes against the common sense since both doctors agree that there is a little chance
that the patient has a meningitis. This example has been the starting point of many research
works for trying to find a solid justification for Dempster’s rule and for foundations of
Dempster — Shafer Theory or to show the inconsistencies of this theory.

LOVELY PROFESSIONAL UNIVERSITY 139



Introduction to Artificial Intelligence & Expert Systems

140

Notes

'i Example: Producing Counter-intuitive Results in Case of Low Conflict

The following example shows where Dempster’s rule produces a counter-intuitive result, even
when there is low conflict.

Suppose that one doctor believes a patient has either a brain tumor, with a probability of 0.99, or
meningitis, with a probability of only 0.01. A second doctor also believes the patient has a brain
tumor, with a probability of 0.99, and believes the patient suffers from concussion, with a
probability of only 0.01. If we calculate m (brain tumor) with Dempster’s rule, we obtain

m(brain tumor) = Bel(brain tumor) = 1.

This result implies complete support for the diagnosis of a brain tumour, which both doctors
believed very likely. The agreement arises from the low degree of conflict between the two sets
of evidence comprised by the two doctors” opinions.

In either case, it would be reasonable to expect that:

m(brain tumor) < 1 and Bel(brain tumor) < 1.
Since, the existence of non-zero belief probabilities for other diagnoses implies less than complete
support for the brain tumour diagnosis.

Self Assessment

State whether the following statements are true or false:

5. The KR can be made to be dependent of the underlying knowledge model or knowledge
base system (KBS) such as a semantic network.

6. The more expressive a KR, the complex and more compact it is to express a fact or element
of knowledge within the semantics and grammar of that KR.

7. There is only one KR techniques.

8. Belief in a hypothesis is constituted by the sum of the masses of all sets enclosed by it.

7.3 The Dempster — Shafer Theory

Potential computational complexity problems

(i) It lacks a well-established decision theory whereas Bayesian decision theory maximizing
expected utility is almost universally accepted.

(ii) Experimental comparisons between D — S theory and probability theory seldom done and
rather difficult to do; no clear advantage of D — S theory shown.

7.3.1 Characteristics of D — S

The public also relies on specific heuristics to form opinions about science and science news.
Scientists and communicators often assume that the public objectively accumulates and evaluates
scientific information to develop opinions, but research has shown heuristics have a larger
effect than specific science knowledge.

' Example: A 2007 study examined how people in the United States developed opinions
about agricultural biotechnology. Their results showed that the public used key heuristics to

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

arrive at their opinions rather than specific knowledge of biotechnology. Specifically, the Notes
heuristics they used were deference to scientific authority, trust in scientific institutions, and

whether they had seen media coverage of biotechnology. Different heuristics were used for

different demographic groups, and actual knowledge of biotechnology played a small role in

opinion formation.

This also brings up the idea of using current media news as a heuristic. Whatever information
has been most recently presented by the media is likely to be more accessible in an individual’s
mind. This information can then be used as a shortcut in evaluating an issue, and is used
heuristically in place of lengthier cognitive processing using past information.

Our use of heuristics may come directly from individuals. Opinions of trusted or elite individuals
may themselves become a heuristic. When evaluating a decision or problem, individuals can
turn to these trusted or elite individuals for their opinions. Rather than evaluating the information
surrounding the decision, the individual uses these trusted opinions as informational shortcuts
to make their decisions.

7.3.2 Example of D — S Application

Heuristics used when forming opinions can also be ideologically based. A 2008 study looked at
the relationship between religion and opinions about nanotechnology. This research found that
the more religious the citizens of a country, the less likely they were to support nanotechnology.
This suggests that people used religion as a shortcut or heuristic; they were not informed about
nanotechnology, but because their religious beliefs cautioned them against some forms of
technology, they used an ideological heuristic to form their opinions about an unknown
technology.

Different individuals use different heuristics to process the information before them based on
their available schema and the framing of the information. Issues may resonate with different
schemata depending on the individual and the way the issue is framed.

Example: “Drilling for oil” may activate schemata relating to corporate profits,
environmental disasters, and exploitation of workers, while “exploring for energy” may activate
schemata related to protecting the environment, American pride, and American innovation.
These two terms refer to the same activity, but when they are framed differently, different
schemata are activated, which results in the use of different heuristics.

7.3.3 Combining Evidences

In computer science, a heuristic is a technique designed for solving a problem more quickly
when classic methods are too slow, or for finding an approximate solution when classic methods
fail to find any exact solution. By trading optimality, completeness, accuracy, and/or precision
for speed, a heuristic can quickly produce a solution that is good enough for solving the problem
at hand, as opposed to finding all exact solutions in a prohibitively long time.

Example: Many real-time anti-virus scanners use heuristic signatures for detecting viruses
and other forms of malware. One way of achieving this computational performance gain consists
in solving a simpler problem whose solution is also a solution to the more complex problem.
Heuristics is used in the A* algorithm whose intent is to find a short path from one node to
another. A high-value heuristic computes a path quickly, but the path might not be the shortest.
A low-value heuristic computes a path more slowly, but the path becomes shorter.

LOVELY PROFESSIONAL UNIVERSITY 141



Introduction to Artificial Intelligence & Expert Systems

142

Notes

7.3.4 Advantages and Disadvantages of D — S Theory

Five general advantages are as follows:

° Goal-based evaluation
° Goal-free evaluation
° Responsive evaluation
° Systems evaluation

° Professional review
Advantage

° The difficult problem of specifying priors can be avoided

° In addition to uncertainty, also ignorance can be expressed
° It is straightforward to express pieces of evidence with different levels of abstraction
° Dempster’s combination rule can be used to combine pieces of evidence

Self Assessment

State whether the following statements are true or false:

9.  Experimental comparisons between D — S theory and probability theory seldom done and
rather difficult to do.

10.  Opinions of trusted or elite individuals may themselves become a heuristic.
11. Heuristics used when forming opinions can also be ideologically based.
12.  The public do not rely on specific heuristics to form opinions about science and science

news.

7.4 Heuristic Reasoning Methods

Heuristic refers to experience-based techniques for problem solving, learning, and discovery
that give a solution which is not guaranteed to be optimal. Where the exhaustive search is
impractical, heuristic methods are used to speed up the process of finding a satisfactory solution
via mental shortcuts to ease the cognitive load of making a decision. Examples of this method
include using a rule of thumb, an educated guess, an intuitive judgment, stereotyping, or common
sense.

=/4|

Notes In more precise terms, heuristics are strategies using readily accessible, though
loosely applicable, information to control problem solving in human beings and machines.

Heuristics were also found to be used in the manipulation and creation of cognitive maps.
Cognitive maps are internal representations of our physical environment, particularly associated
with spacial relationships. These internal representations of our environment are used as memory
as a guide in our external environment. It was found that when questioned about maps imaging,
distancing, and etc., people commonly made distortions to images. These distortions took shape

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

in the regularization of images (i.e., images are represented as more like pure abstract geometric Notes
images, though they are irregular in shape). There are several ways that humans form and use
cognitive maps. Visual intake is a key part of mapping. The first is by using landmarks. This is
where a person uses a mental image to estimate a relationship, usually distance, between two
objects. Second, is route-road knowledge, and this is generally developed after a person has
performed a task and is relaying the information of that task to another person. Third, is survey.

A person estimates a distance based on a mental image that, to them, might appear like an actual
map. This image is generally created when a person’s brain begins making image corrections.
These are presented in five ways:

1.  Right-angle bias is when a person straightens out an image, like mapping an intersection,
and begins to give everything 90-degree angles, when in reality it may not be that way.

2. Symmetry heuristic is when people tend to think of shapes, or buildings, as being more
symmetrical than they really are.

3. Rotation heuristic is when a person takes a naturally (realistically) distorted image and
straightens it out for their mental image.

4. Alignment heuristic is similar to the pervious, where people align objects mentally to
make them straighter than they really are.

5. Relative-position heuristic people do not accurately distance landmarks in their mental
image based on how well they remember that particular item.

l)

Did u know? Another method of creating cognitive maps is by means of auditory intake
based on verbal descriptions. Using the mapping based from a person’s visual intake,
another person can create a mental image, such as directions to a certain location.

7.4.1 Problems with Current Approaches to Uncertainty

One of the main reasons for the problems with current methods of environmental management
is scientific uncertainty not just its existence, but the radically different expectations and modes
of operation that scientists and policymakers have developed to deal with it. To solve this
problem, these differences must be exposed and understood, and better methods to incorporate
uncertainty into policymaking and environmental management must be designed. To
understand the scope of the problem, it is necessary to differentiate between risk, which is an
event with a known probability (sometimes referred to as statistical uncertainty), and true
uncertainty, which is an event with an unknown probability (sometimes referred to as
indeterminacy). For instance, every time you drive your car, you run the risk of having an
accident because the probability of car accidents is known with very high certainty. The risk
involved in driving is well known because there have been many car accidents with which to
calculate the probabilities. These probabilities are known with enough certainty that they are
used by insurance companies, for instance, to set rates that will assure those companies of a
certain profit.

There is little uncertainty about the possibility of car accidents. If you live near the disposal sight
of some newly synthesized toxic chemical, however, your health may be in jeopardy, but no one
knows to what extent. Because no one knows the probability of your getting cancer, for instance,
or some other disease from this exposure, there is true uncertainty. Most important environmental
problems suffer from true uncertainty, not merely risk. Uncertainty may be thought of as a
continuum ranging from zero for certain information to intermediate levels for information
with statistical uncertainty and known probabilities (risk) to high levels for information with

LOVELY PROFESSIONAL UNIVERSITY 143



Introduction to Artificial Intelligence & Expert Systems

144

Notes

true uncertainty or indeterminacy. Risk assessment has become a central guiding principle at
the U.S. Environmental Protection Agency (EPA) and other environmental management agencies,
but true uncertainty has yet to be adequately incorporated into environmental protection
strategies. Scientists treat uncertainty as a given, a characteristic of all information that must be
honestly acknowledged and communicated.

Over the years, scientists have developed increasingly sophisticated methods to measure and
communicate uncertainty arising from various causes. In general, however, scientists have
uncovered more uncertainty rather than the absolute precision that the lay public often mistakenly
associates with scientific results. Scientific inquiry can only set boundaries on the limits of
knowledge. It can define the edges of the envelope of known possibilities, but often the envelope
is very large, and the probabilities of what’s inside (the known possibilities) actually occurring
can be a complete mystery. For instance, scientists can describe the range of uncertainty about
global warming and toxic chemicals and maybe say something about the relative probabilities
of different outcomes, but, in most important cases, they cannot say which of the possible
outcomes will occur with any degree of accuracy.

AN

Caution Deduct uncertain information for knowledge.

2

Task  List five cases of uncertainty of information.

Self Assessment

State whether the following statements are true or false:

13. Cognitive maps are external representations of our physical environment, particularly
associated with spacial relationships.

14. Heuristics were also found to be used in the manipulation and creation of cognitive maps.
15.  Visual intake is a key part of mapping.

16.  Heuristic refers to experience-based techniques for problem solving.

7.5 Summary

° The reasoning supporting these networks, based on two simplifying assumptions (that
reasoning could not be cyclic and that the causality supporting a child state would be
expressed in the links between it and its parent states) made BBN reasoning quite
manageable computationally.

° Bayesian belief networks (BBNs) can dramatically reduce the number of parameters of the
full Bayesian model and show how the data of a domain (or even the absence of data) can
partition and focus reasoning.

° Bayes’s theorem requires masses of statistical data in addition to the degrees of belief in
preconditions.

° D - S assigns the part of the probability to the entire universe to make the aggregate of all
events to 1. This part is called ignorance level.

° Dumpster — Shafer theory allows updating of beliefs based on evidence gathered.

LOVELY PROFESSIONAL UNIVERSITY



Unit 7: Probabilistic Reasoning

7.6 Keywords

Frames: Frame is a data structure that typically consists of: Frame name, Slot-filler (relations
target), Pointers (links) to other Frames, Instantiation Procedure (inheritance, default,
consistency).

Parts: A precondition (or IF) and an action (or THEN); if a production’s precondition matches
the current state of the world, then the production is said to be triggered.

Predicate Logic: Predicate is a function may be TRUE for some arguments, and FALSE for others.
Production Rules: Consists of a set of rules about behavior; a production consists two.

Scripts: The Scripts are linked sentences using frame-like structures; e.g., a record of sequence of
events for a given type of occurrence.

Semantic Networks: Semantic net is just a graph, where the nodes represent concepts, and the
arcs represent binary relationships between concepts.

7.7 Review Questions

1.  Define logical reasoning.

What is probabilistic reasoning?

Write few lines on probabilistic argumentation.

Differentiate uncertainty with ignorance.

Define derivation of degrees of belief.

What are the problems with current approaches to uncertainty?

Explain uncertainty in probabilistic reasoning.

® N o T o= » N

Explain with an example, intelligent reasoning about uncertainty.

Answers: Self Assessment

1. True 2. False
3. False 4. False
5. False 6. False
7. False 8. True
9. True 10. True
11.  True 12.  False
13. False 14.  True
15.  True 16. True

LOVELY PROFESSIONAL UNIVERSITY

Notes

145



Introduction to Artificial Intelligence & Expert Systems

146

Notes

7.8 Further Readings

N

Books

£

Online

links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

http:/ /arantxa.ii.uam.es/~modonnel /IC/04_3_DempsterShaferl.pdf

http://clear.colorado.edu/~bethard/teaching/csci3202_2008/slides /bayesian-
networks.pdf

http:/ /research.microsoft.com/enus/um/redmond/groups/adapt/msbnx/
msbnx/basics_of_bayesian_inference.htm

http:/ /www.cs.usask.ca/faculty /horsch/publications /dynBN-UAI90.pdf
http:/ /www.glennshafer.com/assets/downloads/articles/article48.pdf

http:/ /www.pitt.edu/~druzdzel / psfiles/ thesis.pdf

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

Unit 8: Structured Representation of Knowledge Notes

CONTENTS
Objectives
Introduction
8.1 Structured Knowledge Representation
8.1.1 Market Passing and Spreading Activation
8.1.2 Conceptual Dependency Structures and Conceptual Graphs
8.2  Production Systems
8.3 Logic
8.4 Grammar Formalisms
8.4.1 Phrase Structure Grammars and Automata
8.5 Frames and Frame Systems
8.6  Conceptual Dependency Theory and Object-oriented Programming
8.6.1 Conceptual Dependency Theory
8.6.2 Object-oriented Programming
8.7  Object and Classes
8.8  Messages and Methods
8.9 Summary
8.10 Keywords
8.11 Review Questions

8.12 Further Readings

Objectives

After studying this unit, you will be able to:

° Explain the Associative Networks

° Discuss the need and scripts of Frame Structures and Scripts
° Describe Conceptual Dependency (CD) and its applications
° Identify the Object-oriented Representation

° Explain an overview of Object-oriented Systems

° Discuss the Object and Classes

° Explain the Messages and Methods
Introduction

Representing knowledge using logical formalism, like predicate logic, has several advantages.
They can be combined with powerful inference mechanisms like resolution, which makes

LOVELY PROFESSIONAL UNIVERSITY 147



Introduction to Artificial Intelligence & Expert Systems

148

Notes

reasoning with facts easy. But using logical formalism complex structures of the world, objects
and their relationships, events, sequences of events etc. cannot be described easily. A good
system for the representation of structured knowledge in a particular domain should posses the
following four properties:

(i)  Representational Adequacy: The ability to represent all kinds of knowledge that are
needed in that domain.

(ii)  Inferential Adequacy: The ability to manipulate the represented structure and infer new
structures.

(iii) Inferential Efficiency: The ability to incorporate additional information into the knowledge
structure that will aid the inference mechanisms.

(iv) Acquisitional Efficiency: The ability to acquire new information easily, either by direct
insertion or by program control.

The techniques that have been developed in Al systems to accomplish these objectives fall under
two categories:

1.  Declarative Methods: In these, knowledge is represented as static collection of facts which
are manipulated by general procedures. Here, the facts need to be stored only one and
they can be used in any number of ways. Facts can be easily added to declarative systems
without changing the general procedures.

2. Procedural Method: In these, knowledge is represented as procedures. Default reasoning
and probabilistic reasoning are examples of procedural methods. In these, heuristic
knowledge of “How to do things efficiently” can be easily represented.

In practice, most of the knowledge representation employ a combination of both. Most of the
knowledge representation structures have been developed to handle programs that handle
natural language input. One of the reasons that knowledge structures are so important is that
they provide a way to represent information about commonly occurring patterns of things such
descriptions are some times called schema. One definition of schema is:

“Schema refers to an active organization of the past reactions, or of past experience, which must always be
supposed to be operating in any well adapted organic response”.

By using schemas, people as well as programs can exploit the fact that the real world is not
random. There are several types of schemas that have proved useful in Al programs. They
include:

(i)  Frames: Used to describe a collection of attributes that a given object possesses (e.g.:
description of a chair).

(ii)  Scripts: Used to describe common sequence of events (e.g.:- a restaurant scene).
(iii) Stereotypes: Used to described characteristics of people.

(iv) Rule Models: Used to describe common features shared among a set of rules in a production
system.

Frames and scripts are used very extensively in a variety of Al programs. Before selecting any
specific knowledge representation structure, the following issues have to be considered.

(i)  The basis properties of objects, if any, which are common to every problem domain must
be identified and handled appropriately.

(ii) The entire knowledge should be represented as a good set of primitives.

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

8.1 Structured Knowledge Representation Notes

A means of representing relational knowledge as a labeled directed graph. Each vertex of the
graph represents a concept and each label represents a relation between concepts. Access and
updating procedures traverse and manipulate the graph. A semantic network is sometimes
regarded as a graphical notation for logical formulas.

Semantic or Associative Networks

Frame-based formalisms grew out of semantic (or associative) networks that were introduced
in the sixties as models for human semantic memory. The data organization of a semantic
network consists of labeled nodes representing concepts and labeled links representing relations
between concepts. Nodes can be used to represent both types and tokens. The is a link
hierarchically relates types to types or types to tokens; parts-of links relate concepts and their
parts, and in general any relation can be the label of a link. It is a token whereas garden, for
instance, is a type.

In a semantic network, each link between two nodes represents a separate proposition, e.g. the
fact that Lucy is a person is a proposition separate from the fact that Lucy weeds the garden and
the fact that the garden contains vegetables. But suppose that we want to represent relations
between more than two nodes. A solution is to allow nodes to represent situations or actions.
Each such node has outgoing links representing thematic roles (or cases) for participants in the
situation or action.

source

Frames

In order to incorporate more structure into semantic networks, frames were introduced by
Minsky (1975) as a representation formalism. A frame is basically a encapsulated fragment of a
semantic network with conceptually related nodes and links that can be addressed as a unity.
For example, one can define a frame for the remove action and the associated roles actor, object
and source.

The term frame is not only used for structures representing domain knowledge, but also for
structures representing linguistic knowledge. In Dells” (1986) model for phonological encoding,
for example, a syllable frame may consist of an onset, a nucleus, and a coda. In the syllable best,
these roles are filled by b, e, and st, respectively. Several modifications have been proposed to
make frames so powerful that they can be used as high-level programming languages:
(1) constraints on the items allowed to fill each slot in the list; (2) recursive frames, the slots of
which may contain items that are themselves frames, (3) procedural attachment, in which
procedures are attached to roles of the frame to compute the fillers of these roles, and
(4) inheritance, which makes inferences along is-a links; this is dealt with in more detail in the
next topic.

LOVELY PROFESSIONAL UNIVERSITY 149



Introduction to Artificial Intelligence & Expert Systems

150

Notes

Inheritance

Given the enormous number of linguistic facts that are brought to bear in language processing,
it is clearly important to represent this knowledge in an efficient and general way. Inheritance
is a powerful technique to represent generalizations over descriptions in a way similar to is-a
relations in semantic networks, and to use these generalizations to make inferences. Daelemans
et al. (1992) motivate the use of inheritance for linguistic knowledge as follows. Imagine that we
are setting out on the job of building a lexicon for English. We begin by encoding everything we
know about the verb love, including its syntactic category and how it is conjugated. Next, we
turn our attention to the verb hate. Although these words are antonyms, they nevertheless have
a lot in common: for example, they are both transitive verbs and have past participle ending on
-ed. To save time and space, both can be categorized as transitive verbs and the common
information about these kinds of words can be encoded in just one place called, say, transitive
verb. The verb love then inherits information from transitive verb. Similarly, when we hit upon
intransitive verbs, we collect all information about this kind of verbs in a place intransitive
verbs. The next step is to extract from both classes of verbs the common information which is
then stored in an even more abstract category verb.

Figure 8.1: Inheritance Example

verb
pm.‘ participle: +(e)d

mtransitive verb ;msm\ e verb
meditate love hate be*\t

past participle: +en

Suppose, we discover the verb beat, which is transitive but not regular: it has a past participle
ending on -en. If we let beat inherit from fransitive verb, we still need to specify the exceptional
information, but then we get an inconsistency with the inherited information. The obvious
solution is to let the exceptional information override inherited information. This mechanism is
called default (or non-monotonic) inheritance. Default inheritance is incorporated in semantic
networks and frame-based representation languages used in AL

l)

Did u know? The sentence production model IPF, is implemented in a frame-based
language using default inheritance. Default inheritance is also used in specific linguistic
formalisms, for example DATR, a formalism for lexical representation.

8.1.1 Market Passing and Spreading Activation

One of the inference mechanisms available in semantic networks is marker passing, a process
with which intersection search can be implemented. This type of search starts from two nodes
which pass a marker to those nodes which are linked to them, a process which is repeated for
each of those nodes. Whenever a marker originating from one of the original nodes encounters
a marker originating from the other node, a path is found representing a association between
the two concepts represented by the nodes. This way, semantic associations can be modeled, but
marker passing can also be used in networks representing other types of linguistic knowledge.

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

A similar inference mechanism in networks is spreading activation where instead of discrete Notes
symbolic markers, a continuous (numerical) activation level is propagated along the links of a

network. A model of lexical retrieval where a semantic network with labeled links is combined

with spreading activation.

8.1.2 Conceptual Dependency Structures and Conceptual Graphs

Many of the early symbolic Al research on natural language understanding used semantic
network or frame-based formalisms to represent its theoretical insights. Schank and his students
developed Conceptual Dependency Theory for the description of the meaning of sentences and
texts (Schank, 1975; 1980). This theory was based on semantic networks, but defined only a
limited number of node types and link types (conceptual primitives) that were deemed necessary
and sufficient as a language of thought to represent meaning unambiguously. Any implicit
information in the text (information that can be inferred by the reader) was to be made explicit
in the conceptual dependency representation.

This goal gave rise to the development of a large number of data structures and inference
mechanisms (often without a well-defined semantics). Data structures included causal chains
(a chain of states enabling or motivating actions which in turn result in, or initiate, other states),
scripts and scenarios (prepackaged sequences of causal chains), and MOPS (Memory Organization
Packages) (Schank & Abelson, 1977; Schank, 1982). These data structures enabled directed and
efficient inference mechanisms, based on following up causal connections and associations
between representations at the same and at different levels of abstraction.

One problem is that these models tend to focus on the data structure, and are vague on the
inference part.

Two sources of knowledge are indispensable for developing useful symbolic natural language
understanding systems: (1) knowledge about the intentions, plans and goals of different agents
in narratives or dialogue, and (2) knowledge about preceding discourse (discourse representation).
In work by Allen and Perrault (1980) and others, Al planning formalisms are combined with
speech act theory to model the recognition of intention, an approach which gave rise to research
on speech act planning, topic structure modeling, and user modeling. This Al work has influenced
psycholinguistic models of discourse comprehension and discourse production

Self Assessment

State whether the following statements are true or false:
1. A semantic network is regarded as a graphical notation for logical formulas.

2. In a semantic network, each link between four nodes represents a separate proposition.

8.2 Production Systems

Production systems are rule-based systems developed during the seventies as models for human
problem solving. They are common in models for many areas of knowledge. In this kind of
formalism, knowledge is expressed as rules taking the form of condition-action pairs: if X then
do.

' Example: In a model for language production, one of the rules for producing questions
might be the following: if the intention is to query the truth of P, then produce a sentence about
P where the finite verb of the main clause is moved up front.

LOVELY PROFESSIONAL UNIVERSITY 151



Introduction to Artificial Intelligence & Expert Systems

152

Notes

Rules of this type, often called production rules, can only produce actual behavior with the help
of an interpreter, a mechanism which applies the rules to reach a given goal. In addition to the
rule-base (which acts as a kind of long-term memory), a production rule system also has a
short-term memory (working memory) which registers the current state of the computation, as
well as current input and output states. The control structure of a production system interpreter
consists of a cyclical process, where each cycle consists of three phases:

1. Identification: This phase determines for which rules the condition sides are currently
satisfied in working memory.

2. Selection: It will often happen that more than one rule’s condition side will be satisfied.
Since in general it is not desirable for all applicable rules to fire, one or more rules are
selected on the basis of a particular conflict resolution strategy.

3. Execution: The action part of the chosen rule is executed. Although actions can take many
forms, the most typical ones involve the addition to or removal from working memory of
certain facts.

This interpreter’s mode of operation is called forward chaining or data-driven: rules are identified
when states in working memory match their conditions; the execution of the rules may in their
turn activate other rules, until a goal is achieved. But it is also possible to run an interpreter in
a backward chaining or goal-driven mode: in that case, rules are identified when their actions
match the current goals; their execution may add elements of their conditions as new goals
when they are not present in working memory, and so on, until rules are found whose conditions
match the current states in working memory. It is evident that both modes represent different
kinds of search. Rule-based architectures have been further developed toward more sophisticated
cognitive architectures, for example, ACT* (Anderson, 1983) and SOAR.

=/4|

Notes The ACT* system has a semantic network (see above) as part of its long term
memory. Production systems have been used in a few psycholinguistic models, but no
models based.

Anderson, Kline and Lewis (1977) describe a production system model of language processing.
In PROZIN (Kolk, 1987), agrammatism effects are simulated by manipulating the processing
speed of the production system interpreter and the decay rate of facts in working memory.
Lewis (1993) describes a computer model of human sentence comprehension implemented in
SOAR.

Self Assessment

State whether the following statements are true or false:

3. Production systems are rule-based systems developed during the seventies as models for
human problem solving.

4. This interpreter’s mode of operation is called upward chaining.
8.3 Logic

Logic has often been used as a formal foundation for knowledge representation in Al The
formal properties of logic formalisms are relatively well understood and make them ideally
suited as a language to which other formalisms can be translated in order to evaluate and

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

compare them. Data organization in predicate logic consists of a set of unambiguous constants Notes
(representing entities in the domain), a set of unambiguous predicates (representing relations

between entities in the domain), a set of functions (mapping between sets), variables, quantifiers,

and logical connectives. Inference in predicate logic is achieved by applying deductive inference

rules, e.g. by means of resolution. For an introduction to the logical approach to knowledge

representation.

A practical computer language based on a limited version of predicate logic is PROLOG. Below
is a small program that expresses the fact that Socrates and Plato are human, and the rule that if
x is human, then x is mortal:

human (socrates) .
human (plato) .
mortal (X) : - human (X) .

The interpreter of PROLOG uses these facts and rules to derive other facts. For example, the
following dialog is possible, where we ask whether Socrates and Descartes are mortal, and who
are all mortal beings the system knows. The system infers, for instance, that Socrates and Plato
are mortal. Notice that PROLOG gives a negative answer for everything that does not occur in
the knowledge base.

| ?-mortal (socrates) .
ves

| ?-mortal (descartes) .
no

| ?-mortal (X) .
X=socrates;

X=plato;

No

Predicate logic has some severe limitations as a tool for representing linguistic knowledge
which is incomplete, inconsistent, dynamically changing, or relating to time, action and beliefs.

AN

Caution For all these problems, special purpose logics are being designed. An example is
default logic, which handles exceptional information without having to modify existing
general knowledge.

Self Assessment

State whether the following statements are true or false:
5. The interpreter of PROLOG uses these facts and rules to derive other facts.

6.  Logic has been used as a formal foundation for knowledge representation in AL

8.4 Grammar Formalisms

Grammar formalisms constitute a special type of formalism for natural language processing,
even though they are not unrelated to the knowledge representation paradigms and formalisms
discussed earlier. They often use a different terminology, due to the different background of the
developers, which is linguistics, logic, and theoretical computer science rather than Al, and use
special notations for linguistic strings and structures. Most grammar formalisms were developed
as part of the efforts to build systems for natural language understanding, which up to now
received more attention in Al than natural language generation.

LOVELY PROFESSIONAL UNIVERSITY 153



Introduction to Artificial Intelligence & Expert Systems

154

Notes

8.4.1 Phrase Structure Grammars and Automata

The representation of grammatical knowledge as phrase structure rules is common for syntactic
parsing in sentence comprehension and to some extent, the recognition of complex words. The
use of these rules is somewhat similar to production rules, but they operate on strings of
linguistic items. Phrase structure rules basically specify how an initial symbol can be recursively
expanded into a sequence of other symbols.

' Example: The first rule in the rule set below specifies that a sentence (S) can be expanded
into a noun phrase (NP) followed by a verb phrase (VP), or, inversely, that a noun phrase and a
verb phrase can be reduced to a sentence.

The selection mechanism chooses among various applicable rules. Often, a symbol can be
expanded into different ways, for example in the following rule set describing how an NP can be
rewritten as either an article followed by a noun, or an article followed by an adjective, followed
by a noun.

S -> NP VP

NP -> PRONOUN
NP -> ART N

NP -> ART ADJ N
VP -> COPULA NP
PRONOUN -> she
COPULA -> 1is
ART -> the

ART -> a

ADJ -> nice
ADJ -> smart

N -> doctor

A deterministic system will choose only one rule, whereas a non-deterministic system may
search through a space of possibilities, using e.g. a parallel or backtracking search. When a rule
is chosen, the left hand side of the rule is replaced with the right hand side. Successive expansions
develop the structure until a solution is reached in the form of a sequence of words. The expansion
history of a particular case can be represented as a syntactic tree structure. Clearly, different
grammars give rise to different tree structures.

Figure 8.2: Syntactic Tree Structure

S
NP "'{-?
NP

~ ~—.

Pronoun Copula At Adj N

she is a nice doctor

Phrase structure rules may operate in both directions, top-down, where the left hand sides of
rules are rewritten as their right hand sides, or bottom-up, where the right hand sides are
rewritten as the left hand sides. Depending on the form the left-hand side and the right-hand
side of the phrase structure rules can take, different types of grammars can be formally defined:
regular, context-free, context-sensitive, or unrestricted. Much research in CL is based on context-
free grammars.

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

Self Assessment Notes

State whether the following statements are true or false:

7. Phrase structure rules specify how an initial symbol can be recursively expanded into a
sequence of other symbols.

8. A symbol can be expanded in a one way.

8.5 Frames and Frame Systems

Many of the ideas about frame systems were first introduced in a unit by Marvin A. Minsky,
entitled “Framework for Representing Knowledge,” which appeared in P. H. Winston (Ed.), The
Psychology of Computer Vision. NY: McGraw-Hill, 1975. Pp. 211-277. In this unit, Minsky
introduces and argues for the idea of representing common sense knowledge in a data-structure
that he calls a frame. His motivation for introducing these ideas is indicated immediately at the
start of this unit where he states:

“It seems to me that the ingredients of most theories both in artificial intelligence and in psychology have
been on the whole too minute, local and unstructured to account either practically or phenomenologically for
the effectiveness of common sense thought. The “chunks” of reasoning, language, memory and “perception”
ought to be larger and more structured, and their factual and procedural contents must be more intimately
connected in order to explain the apparent power and speed of mental activities.”

A frame is a data-structure for representing a stereotyped situation, like being in a certain kind
of living room, or going to a child’s birthday party. Attached to each frame are several kinds of
information. Some to this information is about how to use the frame. Some is about what one
can expect to happen next. Some is about what to do if these expressions are not confirmed.

We can think of a frame as a network of nodes and relations. The “top levels” of a frame are
fixed, and represent things that are always true about the supposed situation. The lower levels
have many terminals- “slots” that must be filled by specific instances or data. Each terminal can
specify conditions its assignments must meet. (The assignments themselves are usually smaller
“subframes.”) Simple conditions are specified by markers that might require a terminal
assignment to be a person an object of sufficient value, or a pointer to a sub-frame of a certain
type. More complex conditions can specify relations among things assigned to several terminals.

Collections of related frames are linked together into frame systems. The effects of important
actions are mirrored by transformations between the frames of a system. These are used to make
certain kinds of calculation economical, to represent changes of emphasis and attention, and to
account for the effectiveness of imagery.”

As these ideas were realized in various “frame systems,” a rough agreement emerged concerning
exactly what constituted a frame. Below is listed these components.

A frame is a data structure that typically consists of:
° Frame Name

° Slot-filler (relations target)

B3 default values
B3 constraints on values within the slots of a frame

LOVELY PROFESSIONAL UNIVERSITY 155



Introduction to Artificial Intelligence & Expert Systems

156

Notes

° pointers (links) to other Frames

2 ako (a-kind-of)

B3 instance (is-a)
° Instantiation Procedure
< Inheritance Procedure
< Default Inference Procedure
& Consistency Checking Procedure
B3 Inconsistency Resolution Procedure
=7

Notes That knowledge is organized around the objects. The knowledge is accessed when
an instance of a particular object is created or instantiated. Instantiation can be an extremely
rich and complicated procedure as can be noted by reviewing the various procedures that
are listed above as part of the instantiation procedure. Additionally, instantiation is typically
specialized with respect to classes of objects.

An Example

A brief example of an instantiation process is shown below. This example is a trace recorded
long ago (in the late 70s or early 80s) taken from a frame system, AIMDS, developed for use in
research on plan recognition. For those unfamiliar with programming, most programming
languages give one some facility create a record of chosen aspects of a procedure. In this example,
certain component functions of the process were chosen and the result returned by these
component function is printed as the function is exited.

In this particular example, the instantiation process is specialized for frames that represent
actions which modify a world. The example below lists the definition provided the system for
the two frames used in this example. The first is the frame referred to as ACT. The second is the
frame referred to as WALK. WALK is a kind of ACT. When a WALK is instantiated an ACT
representation is also created for that instance of ACT. In this example, we will focus on the
frame, WALK. The strings TDN: and QSCC: that occur in these tables are simply the name of
functions that are invoked to create these data structures when this knowledge is entered.

Beneath the name of the frame is listed the set of slots that are associated with the frame. For
WALK, the first slot is (AGENT PERSON) the next (LOC LOCATION) and so on. The terms
shown in bold (PERSON, LOCATION, and so one) are other frames which themselves would
typically be further defined. The term proceeding these is the name of the relation or slot
AGENT and LOC in these first two elements. Thus, this is a way of specifying that WALK is a
kind of ACTION which involves an agent who is a PERSON, and so on.

An Example Pair of Frames: ACT and WALK

(* STRUCTURAL DESCRIPTION OF THE ACT FRAME *)
(TDN: [(ACT D)
( (PRESUPPOSITIONS L) PROPOSITION)
((RESULTS L) PROPOSITION)
((OUTCOMES L) PROPOSITION)
( (PRECONDITIONS L) PROPOSITION)
((ENABLE L) ACT ENABLEDBY)
((

MOTIVATES L) ACT MOTIVATESOF) 1)

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

(* STRUCTURAL DESCRIPTION OF THE WALK FRAME *) Notes
(TDN: [(WALK P A)
((AGENT I FN) PERSON)
(LOC LOCATION)
((TOLOC I FN) LOCATION)
(FROMLOC LOCATION)
( (OPPORTUNITY L) (PROPOSITION ( (X AGENT) LOC (X FROMLOC))))
(PGOAL (PROPOSITION ( (X AGENT) LOC (X TOLOC))))
( (PRESUPPOSITIONS L) PROPOSITION)
((RESULTS L) PROPOSITION) ])

(* CONSISTENCY CONDITIONS FOR THE WALK FRAME *)

(0scC: [((LOCATION Z) | (NOT [X TOLOC Z]) (X (AGENT LOC) Z)) WALK
FROMLOC] )

(0scC: [((LOCATION L) | (X TOLOC L) (NOT [X FROMLOC L])) WALK
TOLOC] )

(0scC: [((LOCATION L) | (X FROMLOC L)) WALK LOC])

(0scCc: [((PERSON P) | (X (LOC LOCOF) P)) WALK AGENT])

The final segment of the example above lists what are referred to as consistency conditions; in
this case for the WALK FRAME. These are expressions that are given a logical interpretation and
constrain the way in which a WALK instance can be instantiated. Note that at the end of each of
these lines the name WALK and a relation or slot are shown in bold. For example, the first is
WALK FROMLOC. This constraint expression is attached to this slot. For example, the first
constraint states that the LOCATION Z that is placed in the fromloc slot is a location such that Z
is not the same as the location placed in the toloc slot; and it is the LOCATION that is in the slot
loc that is associated with the PERSON P in the agent slot of WALK. More simply put; when you
walk you must change location and the starting location of the Walk is the same as where you
are when you begin this action.

AN

Caution Use a better programming paradigm for knowledge representation.

g

Task  List out the three level of knowledge representation.

Self Assessment

State whether the following statements are true or false:
9. The expansion history of a particular case can not be represented as a syntactic tree structure.

10. A frame is a data-structure for representing a stereotyped situation.

8.6 Conceptual Dependency Theory and Object-oriented

Programming

8.6.1 Conceptual Dependency Theory

Conceptual dependency theory is a model of natural language understanding used in artificial
intelligence systems. Roger Schank at Stanford University introduced the model in 1969, in the
early days of artificial intelligence. This model was extensively used by Schank’s students at
Yale University such as Robert Wilensky, Wendy Lehnert, and Janet Kolodner.

LOVELY PROFESSIONAL UNIVERSITY 157



Introduction to Artificial Intelligence & Expert Systems

158

Notes

Schank developed the model to represent knowledge for natural language input into computers.
Partly influenced by the work of Sydney Lamb, his goal was to make the meaning independent
of the words used in the input, i.e. two sentences identical in meaning, would have a single
representation. The system was also intended to draw logical inferences.

The model uses the following basic representational tokens:

° real world objects, each with some attributes.
° real world actions, each with attributes

° times

° locations

A set of conceptual transitions then act on this representation, e.g. an ATRANS is used to represent
a transfer such as “give” or “take” while a PTRANS is used to act on locations such as “move” or
“go”. An MTRANS represents mental acts such as “tell”, etc.

A sentence such as “john gave a book to Mary” is then represented as the action of an ATRANS
on two real world objects John and Mary.

This representation is used in natural language processing in order to represent them earning of
the sentences in such a way that inference we can be made from the sentences. It is independent
of the language in which the sentences were originally stated. CD representations of a sentence
is built out of primitives, which are not words belonging to the language but are conceptual,
these primitives are combined to form the meanings of the words. As an example, consider the
event represented by the sentence.

I gave the man a book.
In CD from the above sentence can be represented with primitives as
P 0 R » man
I < ATRANS <« book ¢
From<_ |

In the above representation, the symbols have the following meaning:

° Arrows indicate direction of dependency
° Double arrow indicates two may link between actor and the action
° P indicates past tense

ATRANS is one of the primitive acts used by the theory. It indicates transfer of possession
° 0 indicates the object case relation
° R indicates the recipient case relation

Conceptual dependency provides a structure in which knowledge can be represented and also a
set of building blocks from which representations can be built. A typical set of primitive actions
are:

ATRANS - Transfer of an abstract relationship (E.g.: give)
PTRANS - Transfer of the physical location of an object (E.g.: go)
PROPEL - Application of physical force to an object (E.g.: push)
MOVE — Movement of a body part by its owner (e.g.: kick)

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

GRASP - Grasping of an object by an actor (E.g.: throw) Notes
INGEST - Ingesting of an object by an animal (E.g.: eat)

EXPEL - Expulsion of something from the body of an animal (cry)

MTRANS - Transfer of mental information (E.g.: tell)

MBUILD - Building new information out of old (E.g.: decide)

SPEAK - Production of sounds (E.g.: say)

ATTEND - Focusing of sense organ toward a stimulus (E.g.: listen)

A second set of building block is the set of allowable dependencies among the conceptualization
describe in a sentence.

8.6.2 Object-oriented Programming

Object-oriented programming (OOP) is a programming language model organized around
“objects” rather than “actions” and data rather than logic. Historically, a program has been
viewed as a logical procedure that takes input data, processes it, and produces output data.

The programming challenge was seen as how to write the logic, not how to define the data.
Object-oriented programming takes the view that what we really care about are the objects we
want to manipulate rather than the logic required to manipulate them.

' Example: Of objects range from human beings (described by name, address, and so
forth) to buildings and floors (whose properties can be described and managed) down to the
little widgets on your computer desktop (such as buttons and scroll bars).

The first step in OOP is to identify all the objects you want to manipulate and how they relate to
each other, an exercise often known as data modeling. Once you’'ve identified an object, you
generalize it as a class of objects (think of Plato’s concept of the “ideal” chair that stands for all
chairs) and define the kind of data it contains and any logic sequences that can manipulate it.
Each distinct logic sequence is known as a method. A real instance of a class is called (no surprise
here) an “object” or, in some environments, an “instance of a class.” The object or class instance
is what you run in the computer. Its methods provide computer instructions and the class object
characteristics provide relevant data. We communicate with objects — and they communicate
with each other — with well-defined interfaces called messages.

The concepts and rules used in object-oriented programming provide these important benefits:

° The concept of a data class makes it possible to define subclasses of data objects that share
some or all of the main class characteristics. Called inheritance, this property of OOP
forces a more thorough data analysis, reduces development time, and ensures more accurate
coding.

° Since a class defines only the data it needs to be concerned with, when an instance of that
class (an object) is run, the code will not be able to accidentally access other program data.
This characteristic of data hiding provides greater system security and avoids unintended
data corruption.

° The definition of a class is reusable not only by the program for which it is initially created
but also by other object-oriented programs (and, for this reason, can be more easily
distributed for use in networks).

LOVELY PROFESSIONAL UNIVERSITY 159



Introduction to Artificial Intelligence & Expert Systems

160

Notes

° The concept of data classes allows a programmer to create any new data type that is not
already defined in the language itself.

In programming languages, an object is the composition of nouns (like data such as numbers,
strings, or variables) and verbs.

Object-oriented Programming takes a Radically Different Approach

An object-oriented program may be viewed as a collection of interacting objects, as opposed to
the conventional model, in which a program is seen as a list of tasks (subroutines) to perform. In
OOP, each object is capable of receiving messages, processing data, and sending messages to
other objects. Each object can be viewed as an independent “machine” with a distinct role or
responsibility. Actions (or “methods”) on these objects are closely associated with the object.
For example, OOP data structures tend to “carry their own operators around with them” (or at
least “inherit” them from a similar object or class)—except when they must be serialized.

Simple, non-OOP programs may be one “long” list of commands. More complex programs
often group smaller sections of these statements into functions or subroutines—each of which
might perform a particular task. With designs of this sort, it is common for some of the program’s
data to be ‘global’, i.e., accessible from any part of the program.

l)

Did u know? As programs grow in size, allowing any function to modify any piece of data
means that bugs can have wide-reaching effects.

In contrast, the object-oriented approach encourages the programmer to place data where it is
not directly accessible by the rest of the program. Instead, the data is accessed by calling specially
written functions, commonly called methods, which are bundled in with the data. These act as
the intermediaries for retrieving or modifying the data they control. The programming construct
that combines data with a set of methods for accessing and managing those data is called an
object. The practice of using subroutines to examine or modify certain kinds of data was also
used in non-OOP modular programming, well before the widespread use of object-oriented
programming.

An object-oriented program usually contains different types of objects, each corresponding to a
particular kind of complex data to manage, or perhaps to a real-world object or concept such as
a bank account, a hockey player, or a bulldozer. A program might contain multiple copies of
each type of object, one for each of the real-world objects the program deals with. For instance,
there could be one bank account object for each real-world account at a particular bank. Each
copy of the bank account object would be alike in the methods it offers for manipulating or
reading its data, but the data inside each object would differ reflecting the different history of
each account.

Objects can be thought of as encapsulating their data within a set of functions designed to ensure
that the data are used appropriately, and to assist in that use. The object’s methods typically
include checks and safeguards specific to the data types the object contains. An object can also
offer simple-to-use, standardized methods for performing particular operations on its data,
while concealing the specifics of how those tasks are accomplished. In this way, alterations can
be made to the internal structure or methods of an object without requiring that the rest of the
program be modified. This approach can also be used to offer standardized methods across
different types of objects. As an example, several different types of objects might offer print
methods. Each type of object might implement that print method in a different way, reflecting
the different kinds of data each contains, but all the different print methods might be called in
the same standardized manner from elsewhere in the program. These features become especially

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

useful when more than one programmer is contributing code to a project or when the goal is to Notes
reuse code between projects.

Advantages of Object-oriented Programming

Object-oriented programming is a style of programming that focuses on using objects to design
and build applications. Think of an object as a model of the concepts, processes, or things in the
real world that are meaningful to your application. For example, in a project management
application, you would have a status object, a cost object, and a client object among others. These
objects would work together (and with many other objects) to provide the functionality that you
want your project management application to have. Object-oriented programming is used to
develop many applications—simple and complex applications, business applications and games,
mobile and desktop applications. Developers choose to program in the object-oriented paradigm
because the proper use of objects makes it easier to build, maintain, and upgrade an application.
Also, developing an application with objects that have been tested increases the reliability of the
application.

Self Assessment

State whether the following statements are true or false:

11.  Conceptual dependency theory is a model of natural language understanding used in
artificial intelligence systems.

12.  Arrows indicate direction of independency.

8.7 Object and Classes

In programming terms, an object is a self-contained component that contains properties and
methods needed to make a certain type of data useful. An object’s properties are what it knows
and its methods are what it can do. The project management application mentioned above had
a status object, a cost object, and a client object, among others. One property of the status object
would be the current status of the project. The status object would have a method that could
update that status. The client object’s properties would include all of the important details about
the client and its methods would be able to change them. The cost object would have methods
necessary to calculate the project’s cost based on hours worked, hourly rate, materials cost, and
fees.

Self Assessment

State whether the following statements are true or false:
13.  An object’s properties are what it knows and its methods are what it can not do.

14.  One property of the status object would be the current status of the project.

8.8 Messages and Methods

In addition to providing the functionality of the application, methods ensure that an object’s
data is used appropriately by running checks for the specific type of data being used. They also
allow for the actual implementation of tasks to be hidden and for particular operations to be
standardized across different types of objects. You will learn more about these important
capabilities in Object-oriented concepts: Encapsulation. Objects are the fundamental building

LOVELY PROFESSIONAL UNIVERSITY 161



Introduction to Artificial Intelligence & Expert Systems

162

Notes

blocks of applications from an object-oriented perspective. Each different type of object comes
from a specific class of that type. A class is a blueprint or template or set of instructions to build
a specific type of object. Every object is built from a class. Each class should be designed and
programmed to accomplish one, and only one, thing. (You'll learn more about the Single
Responsibility Principle in Object-oriented programming concepts: Writing classes.) Because
each class is designed to have only a single responsibility, many classes are used to build an
entire application. An instance is a specific object built from a specific class. It is assigned to a
reference variable that is used to access all of the instance’s properties and methods. When you
make a new instance the process is called instantiation and is typically done using the new
keyword. Think about classes, instances, and instantiation like baking a cake.

A class is like a recipe for chocolate cake. The recipe itself is not a cake. You can’t eat the recipe
(or at least wouldn’t want to). If you correctly do what the recipe tells you to do (instantiate it)
then you have an edible cake. That edible cake is an instance of the chocolate cake class. We can
bake as many cakes as you would like using the same chocolate cake recipe. Likewise, you can
instantiate as many instances of a class as you would like. Pretend you are baking three cakes for
three friends who all have the same birthday but are different ages. You will need some way to
keep track of which cake is for which friend so you can put on the correct number of candles. A
simple solution is to write each friend’s name on the cake. Reference variables work in a similar
fashion. A reference variable provides a unique name for each instance of a class. In order to
work with a particular instance, you use the reference variable it is assigned to.

AN

Caution Learn the basic concepts of OOPs before implementing it.

2

Task  Make a Java program for small calculator using objects and classes.

Self Assessment

State whether the following statements are true or false:
15.  Every object is built from a class.

16.  Objects are the fundamental building blocks of applications from an object-oriented

perspective.
8.9 Summary
° The Hopfield is an auto-associative network often used (or derivatives of it) in monochrome

image recognition.

° A script is a data structure used to represent a sequence of events. Scripts are used for
interpreting stories. Popular examples have been script driven systems that can interpret
and extract facts from Newspaper Stories.

° The object-oriented approach to programming is based on an intuitive correspondence
between a software simulation of a physical system and the physical system itself.

° Frame is a type of schema used in many Al applications including vision and natural
language processing. Frames provide a convenient structure for representing objects that
are typical to stereotypical situations.

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Structured Representation of Knowledge

° Conceptual Dependency originally developed to represent knowledge acquired from Notes
natural language Input.

8.10 Keywords

Conceptual Dependency: It is a model of natural language understanding used in artificial
intelligence systems.

Expert System: An expert system is a computer system that emulates the decision-making ability
of a human expert.

Frame: A frame is an artificial intelligence data structure used to divide knowledge into
substructures by representing stereotyped situations.

Knowledge Representation (KR): It is an area of artificial intelligence research aimed at
representing knowledge in symbols to facilitate inference from those knowledge elements,
creating new elements of knowledge.

Scripts: Scripts are a method of representing procedural knowledge. They are very much like
frames, except the values that fill the slots must be ordered.

8.11 Review Questions

1. What are the needs of associative networks?

Explain the frame structures and scripts.

What is the conceptual dependency (CD)?

Define object-oriented representation.

Write the advantages of object-oriented programming.
What are the purposes of object classes?

Explain the messages and methods in artificial intelligence.

® N o T o= » N

What are the uses of frames and scripts?

Answers: Self Assessment

1. True 2. False
3. True 4. False
5. True 6. True
7. True 8. False
9. False 10. True
11.  True 12.  False
13. False 14.  True
15.  True 16. True

LOVELY PROFESSIONAL UNIVERSITY 163



Introduction to Artificial Intelligence & Expert Systems

164

Notes

8.12 Further Readings

N

Books

£

Online

links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

html/disciascio02a.html ww.businessdictionary.com/definition/knowledge-
structure.html

http:/ /deepblue.lib.umich.edu/bitstream/handle/2027.42 /43836 /11229_
2004_Article_BF00413665.pdf?sequence=1

http:/ /krchowdhary.com/ai/Conceptual%20dependencies.pdf
http:/ /merode.econ.kuleuven.ac.be/publications%5Cmerobk01.pdf

http://whttp://www.cs.cmu.edu/afs/cs/project/jair/pub/volumel6/
disciascio02a

http:/ /www.cs.cf.ac.uk/Dave/AlI2 /node69.html
http:/ /www.cs.wustl.edu/~schmidt/PDF/ood-overview4.pdf

http:/ /www slideshare.net/adrijovin/an-overview-of-object-oriented-systems-
development

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

Unit 9: Search and Control Strategies Notes

CONTENTS
Objectives
Introduction
9.1 Preliminary Concepts
9.2 Examples of Search Problems
9.21 Water Container Problem
9.2.2 Problem Characteristics
9.2.3 Means-End Analysis
9.3  Uninformed or Blind Search
9.3.1 Breadth-first Search
9.3.2 Depth-first Search
9.4 Informed Search
94.1 Hill Climbing Methods
94.2 Best-first Search
94.3 A* Algorithm
9.5 Problem Reduction (AND/OR-Tree Search)
9.5.1 Problem-Reduction and the Tower of Hanoi
9.5.2 Implementing Arbitrary AND/OR-Trees
9.5.3 Implementing the AND/OR-Tree Search Function
9.54  Implementing Planning as AND/OR-Tree Search
9.5.5 Implementing Reasoning as AND/OR-Tree Search
9.6 Summary
9.7 Keywords
9.8 Review Questions

9.9  Further Readings

Objectives

After studying this unit, you will be able to:

° Identify Preliminary Concepts

° Discuss the examples of Search Problems

° Explain the concept of Uninformed or Blind Search
° Describe Informed Search

° Discuss the Problem Reduction (AND/OR-Tree Search)

LOVELY PROFESSIONAL UNIVERSITY 165



Introduction to Artificial Intelligence & Expert Systems

166

Notes

Introduction

In the field of artificial intelligence, “planning” is defined as designing the behavior of some
entity that acts an individual, a group, or an organization. The output is some kind of blueprint
for behavior, which we call a plan. There are wide variety of planning problems, differentiated
by the types of their inputs and outputs. Typically, planning problems get more and more
difficult as more flexible inputs are allowed and fewer constraints on the output are required. As
this flexibility increases, the space of possibilities needing to be explored by the planning
algorithm grows extremely quickly. This problem is the essence of the planning problem, and
it arises regardless of which specific planning methodology is used (nonlinear planning,
deductive planning, hierarchical planning, etc.) — in all of these controlling an exponentially
growing search space is a central problem. In all planning formalizations, it is critical that some
sort of knowledge (heuristic or otherwise) is used to make reasonable decisions at any of the
many choice points which arise in planning. Such choice points can concern:

° ordering of subgoals

° selection of operators/control structures

° resolution of conflicts/threats by different techniques
° choosing between differing commitment strategies

° selecting /choosing the right control regime

In all of these cases, picking the right control knowledge can result in an algorithm that is able
to identify and prune many dead-end branches of the search space before the algorithm explores
them, ideally while preserving the soundness and completeness of the planner. However,
designing search control approaches is difficult and it is often impossible to ensure various
qualitative and quantitative properties of the “controlled algorithms”.

9.1 Preliminary Concepts

Deductive planning systems rely on an expressive logical representation formalism, a proper
formal semantics, and a calculus the rules of which are used to implement the planner. Plans are
generated by constructive proof of so-called plan specification formulae. In the simplest case,
specification formulae describe the initial state and the goal state and demand for the existence
of a plan that transforms the one into the other. Starting from a plan specification, a proof (tree)
is developed by applying logical inference rules in a backward-chaining manner, and by
instantiating the plan variable accordingly. We have introduced the modal temporal planning
logic TPL, as an example, and have demonstrated how deductive planning works in this context.

TPL is an expressive formalism that allows for the distinction of rigid and flexible symbols and
provides a programming language for plans, including control structures like conditionals and
loops. The search problems and solutions we have addressed are concerned with the guidance of
the theorem proving = planning process, the selection of appropriate basic actions, and the
selection of subgoals.

ig

Notes Since a carefully designed domain model is an essential prerequisite for acting
safely and efficiently in this context, the planning environment we have introduced provides
deductive support in setting up provably consistent domain models.

The general context for the research is the design of integrated planning and scheduling
architectures for constraint-based activity management. A number of aspects useful to improve

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

the applicability of such architectures have been addressed. One aspect is connected with the Notes
involvement of users in actively exploiting such systems. Relevant problems are: the definition

of a domain representation language powerful enough to represent the physical constraints of

a domain, and endowed with clear semantics as a basis for automated verification tools; the

investigation of various aspects of the interaction with the user like the “cognitive intelligibility”

of the plan representation and the planning process.

A second aspect consists in the study of specialized classes of constraint propagation techniques:
interesting results on the efficiency and flexibility of manipulating quantitative temporal
networks have been obtained through the synthesis of dynamic algorithms for constraint posting
and retraction; also the problem of mixed resource and time constraints representation has been
studied and some techniques proposed for the synthesis of implicit temporal constraints from
the analysis of resource representation. A further aspect consists in the integration of the
incremental constructive way of building a solution with local search techniques: in particular
a taboo search algorithm has been proposed that take advantage of the given temporal
representation to solve planning problems requiring multiple resources.

Early Al researchers developed algorithms that imitated the step-by-step reasoning that humans
use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, Al research
had also developed highly successful methods for dealing with uncertain or incomplete
information, employing concepts from probability and economics.

l)

Did u know? For difficult problems, most of these algorithms can require enormous
computational resources — most experience a “combinatorial explosion”: the amount of
memory or computer time required becomes astronomical when the problem goes beyond
a certain size. The search for more efficient problem-solving algorithms is a high priority
for AI research.

Human beings solve most of their problems using fast, intuitive judgments rather than the
conscious, step-by-step deduction that early Al research was able to model. Al has made some
progress at imitating this kind of “sub-symbolic” problem solving: embodied agent approaches
emphasize the importance of sensor motor skills to higher reasoning; neural net research attempts
to simulate the structures inside the brain that give rise to this skill; statistical approaches to Al
mimic the probabilistic nature of the human ability to guess.

Self Assessment

State whether the following statements are true or false:
1.  Plans are generated by constructive proof of so-called plan specification formulae.

2. By the late 1940s and 1960s, Al research had also developed highly successful methods for
dealing with uncertain or incomplete information, employing concepts from probability
and economics.

3. Al has made some progress at imitating kind of “sub-symbolic” problem solving.

4. TPLis an expressive formalism that allows for the distinction of rigid and flexible symbols.

9.2 Examples of Search Problems

9.2.1 Water Container Problem

Search plays a major role in solving many Artificial Intelligence (AI) problems. Search is a
universal problem-solving mechanism in Al. In many problems, sequence of steps required to

LOVELY PROFESSIONAL UNIVERSITY 167



Introduction to Artificial Intelligence & Expert Systems

168

Notes

solve is not known in advance but must be determined by systematic trial-and-error exploration
of alternatives. The problems that are addressed by Al search algorithms fall into three general
classes: single-agent pathfinding problems, two players games, and constraint-satisfaction
problems

'i Example: There is a 41 container and 31 container; neither has any measuring markers on
it. There is a pump that can be used to fill the containers with water. Problem to solve is to get
exactly two liters of water in the 4l container.

Solution: From initial state to goal state through appropriate sequence of moves or actions such
as filling and emptying the containers are described as below:

Content of the two containers at any given time is a problem state:

Let x - content of the 4l container
y - content of the 31 container

Then (x,y) - problem state represented by an ordered pair. The set of all ordered pairs is the space
of problem states or the state-space of the problem.

State-space: { (x,y) | x=0,1,2,3,4y=0,1,2,3 }

Data structure to represent the state-space can be:

° Vectors
° Sets

° Arrays
° Lists

9.2.2 Problem Characteristics

The problem characteristics can be illustrated as:

Suppose: initial state (0,0)
and Goal state (2, y) where y = any possible number.

Moves transform from one state into another state. Operators determine the moves. Operators
for the problem state-space:

1. Fill the 41 container
Fill the 31 container
Empty the 31 container
Empty the 31 container

Pour water from 31 container into 41 container until 41 container is full

S

Pour water from 4l container into the 31 container until the 3l container is full

N

Pour all the water from 31 container into the 41 container
Pour all the water from 41 container into the 31 container
Preconditions need to be satisfied before an operator can be applied.

e.g.: # 1 can be applied if there is less than 41 water in the container.

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

IF there is less than 41 in the 41 container THEN fill the 41 container. Notes
Adding preconditions to operators => generation of production rules.
Forwarded form of rule # 1:
IF (x,y | x?4) THEN (4,y)
The forwarded set of production rules:

R1IF (x,y| x?4) THEN (4,y)

R2IF (x,y | y?3) THEN (x,3)

R3 IF (x,y | x>0) THEN (0,y)

R4 IF (x,y | y>0) THEN (x,0)

R5IF (x,y | x+y>=4? y>0 ? x?4) THEN (4,y-(4-x))
R6 IF (x,y | x+y>=3 ? x>0 ? y?3) THEN (x-(3-y),3)
R7IF (x,y | x+y?=4? y>0) THEN (x+y,0)

R8IF (x,y | x+y?=3 ? x>0) THEN (0,x+y)

In certain states, more than one rule can be applied.
e.g.: (4,0) satisfies the preconditions of R2, R3 ? R6

Control or Search Strategy: Selecting rules; keeping track of those sequences of rules that have
already been tried and the states produced by them. Goal state provides a basis for the termination
of the problem solving task.

(i)  Pattern Matching Stage: Execution of a rule requires a match.

preconditions match content of
of a rule <=====> the working memory.
when match is found => rule is applicable

several rules may be applicable
(i)  Conflict Resolution (Selection Strategy) Stage: Selecting one rule to execute;

(iii) Action Stage: Applying the action part of the rule => changing the content of the workspace
=>new patterns, new matches => new set of rules eligible for execution

Recognize-act control cycle

Production System

1.  Content of workspace => candidate rules for execution (search strategy)

2. Each rule surveys the entire workspace

3. A rule activates itself when its condition matches the content of the workspace

Adv: Adding, deleting, revising rules without disturbing the rest of the system.

Water Container Problem

Production Rules Facts in Working Memory
IF (x<4) THEN FILL x “4y)
IF (y<3) THEN FILL y (x,3)
IF (x>0) THEN EMPTY x 0y)
IF (y>0) THEN EMPTY y (x,0)
IF (x+y>=4 AND y>0) THEN FILL x FROM y (4,y-(4-x))
IF (x+y>=3 AND x>0) THEN FILL y FROM x (x-(3-y),3)

LOVELY PROFESSIONAL UNIVERSITY 169



Introduction to Artificial Intelligence & Expert Systems

170

Notes

IF (x+y<=4 AND y>0) THEN FILL x FROM y (x+y,0)
IF (x+y<=3 AND x>0) THEN FILL y FROM x (0,x+y)
MATCH
RULES FArTs
SELECT (DATABASE)
EXECUTE
PRODUCTION SYSTEM
Production System

no information is available to judge that one rule is better than the rest of the applicable rules
=>systematic search of the state-space is necessary for finding a solution.

=>no information which action is better than the others

=>no information on the progress towards solution

blind search (exhaustive search) is being done.

When number of states is high it is not an efficient method.

Standard Terminology

intermediate states

/_,__- —_—
—
v

initial state @ ///®\1® goul state
IEal e

O O
.

—_—— e —

State j is an immediate successor of state i.
State i is a successor of state k.

All states that can be reached from initial state are search space. Each intermediate state generates
an exhaustive set of successors. Exhaustive search leading to combinational explosion. To prevent
combinational explosion, information at each intermediate state to identify which immediate
successor is most promising.

9.2.3 Means-End Analysis

The most basic definition is “A problem is any given situation that differs from a desired goal”.
This definition is very useful for discussing problem solving in terms of evolutionary adaptation,

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

as it allows to understand every aspect of (human or animal) life as a problem. This includes Notes
issues like finding food in harsh winters, remembering where you left your provisions, making

decisions about which way to go, learning, repeating and varying all kinds of complex

movements, and so on. Though all these problems were of crucial importance during the

evolutionary process that created us the way we are, they are by no means solved exclusively by

humans. We find a most amazing variety of different solutions for these problems in nature (just

consider, e.g., by which means a bat hunts its prey, compared to a spider). For this, we will

mainly focus on those problems that are not solved by animals or evolution, that is, all kinds of

abstract problems (e.g. playing chess).

Furthermore, we will not consider those situations as problems that have an obvious solution:
Imagine Knut decides to take a sip of coffee from the mug next to his right hand. He does not
even have to think about how to do this. This is not because the situation itself is trivial (a robot
capable of recognising the mug, deciding whether it is full, then grabbing it and moving it to
Knut’s mouth would be a highly complex machine) but because in the context of all possible
situations it is so trivial that it no longer is a problem our consciousness needs to be bothered
with. The problems we will discuss in the following all need some conscious effort, though
some seem to be solved without us being able to say how exactly we got to the solution. Still we
will find that often the strategies we use to solve these problems are applicable to more basic
problems, too.

For many abstract problems it is possible to find an algorithmic solution. We call all those
problems well-defined that can be properly formalised, which comes along with the following
properties:

° The problem has a clearly defined given state. This might be the line-up of a chess game,
a given formula you have to solve, or the set-up of the towers of Hanoi game.

° There is a finite set of operators, that is, of rules you may apply to the given state. For the
chess game, e.g., these would be the rules that tell you which piece you may move to
which position.

° Finally, the problem has a clear goal state: The equations is resolved to X, all discs are
moved to the right stack, or the other player is in checkmate.

Not surprisingly, a problem that fulfils these requirements can be implemented algorithmically.
Therefore many well-defined problems can be very effectively solved by computers, like playing
chess.

Though many problems can be properly formalized (sometimes only if we accept an enormous
complexity) there are still others where this is not the case. Good examples for this are all kinds
of tasks that involve creativity, and, generally speaking, all problems for which it is not possible
to clearly define a given state and a goal state: Formalizing a problem of the kind “Please paint
a beautiful picture” may be impossible. Still this is a problem most people would be able to
access in one way or the other, even if the result may be totally different from person to person.
And while Knut might judge that picture X is gorgeous, you might completely disagree.
Nevertheless ill-defined problems often involve sub-problems that can be totally well-defined.
On the other hand, many everyday problems that seem to be completely well-defined involve-
when examined in detail- a big deal of creativity and ambiguities. If we think of Knut’s fairly
ill-defined task of writing an essay, he will not be able to complete this task without first
understanding the text he has to write about. This step is the first sub goal Knut has to solve.
Interestingly, ill-defined problems often involve sub problems that are well-defined.

AN

Caution Searching should be handled carefully.

LOVELY PROFESSIONAL UNIVERSITY 171



Introduction to Artificial Intelligence & Expert Systems

172

Notes

g

Task  Learn and revise various searching methods studied earlier in data structure.

Self Assessment

State whether the following statements are true or false:

5.

6
7.
8

Preconditions need to be satisfied before an operator can be applied.
A problem is any given situation that does not differs from a desired goal.
Though all the problems were not of crucial importance.

For many abstract problems it is possible to find an algorithmic solution.

9.3 Uninformed or Blind Search

Blind search, also called uninformed search, works with no information about the search space,
other than to distinguish the goal state from all the others. The following applets demonstrate
four different blind search strategies, using a small binary tree whose nodes contain words. Just
enter a word in the text input field (your word doesn’t have to be in the tree) and click on the
“Start Search” button in order to begin the search. The nodes will change color to red as they are
visited by the search.

Uninformed vs. Informed Search

Uninformed search strategies:

- Also known as “blind search,” uninformed search strategies use no information
about the likely “direction” of the goal node(s)

B3 Uninformed search methods: Breadth-first, depth-first, depth-limited, uniform-cost,
depth-first iterative deepening, bidirectional.

Informed search strategies:

R
o<

Also known as “heuristic search,” informed search strategies use information about
the domain to (try to) (usually) head in the general direction of the goal node(s)

R
o<

Informed search methods: Hill climbing, best-first, greedy search, beam search, A,
A*.

9.3.1 Breadth-first Search

Enqueue nodes on nodes in FIFO (first-in, first-out) order.
Complete

Optimal (i.e., admissible) if all operators have the same cost. Otherwise, not optimal but
finds solution with shortest path length.

Exponential time and space complexity, O(b?), where d is the depth of the solution and b
is the branching factor (i.e., number of children) at each node

Will take a long time to find solutions with a large number of steps because must look at
all shorter length possibilities first

& A complete search tree of depth d where each non-leaf node has b children, has a
totalof 1 + b + b% + ... + b = (b4V - 1)/(b-1) nodes

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

& For a complete search tree of depth 12, where every node at depths 0, ..., 11 has 10 Notes
children and every node at depth 12 has 0 children, there are 1 + 10 + 100 + 1000 + ...
+ 10 = (10" - 1)/9 = O(10") nodes in the complete search tree. If BFS expands 1000
nodes/sec and each node uses 100 bytes of storage, then BFS will take 35 years to run
in the worst case, and it will use 111 terabytes of memory!

9.3.2 Depth-first Search
° Enqueue nodes on nodes in LIFO (last-in, first-out) order. That is, nodes used as a stack

data structure to order nodes.

° May not terminate without a “depth bound,” i.e., cutting off search below a fixed depth D
(“depth-limited search”)

° Not complete (with or without cycle detection, and with or without a cutoff depth)

° Exponential time, O(b?), but only linear space, O(bd)

° Can find long solutions quickly if lucky (and short solutions slowly if unlucky!)

° When search hits a dead-end, can only back up one level at a time even if the “problem”
occurs because of a bad operator choice near the top of the tree.

Self Assessment

State whether the following statements are true or false:

9. Blind search works with information about the search space.
10.  Uninformed search strategies also known as heuristic search.
11.  Depth-first Search may terminate with a depth bound.

12.  Breadth-first Search enqueue nodes on nodes in FIFO.

9.4 Informed Search

It is not difficult to see that uninformed search will pursue options that lead away from the goal
as easily as it pursues options that lead to wards the goal. For any but the smallest problems this
leads to searches that take unacceptable amounts of time and/or space. Informed search tries to
reduce the amount of search that must be done by making intelligent choices for the nodes that
are selected for expansion. This implies the existence of some way of evaluating the likelihood
that a given node is on the solution path. In general, this is done using a heuristic function.

Unfortunately, uninformed search methods are very inefficient in most cases.

We now show how heuristic search strategies — ones that use problem specific knowledge — can
find solutions more efficiently. In computer science, a search algorithm is an algorithm for
finding an item with specified properties among a collection of items. The items may be stored
individually as records in a database; or may be elements of a search space defined by a
mathematical formula or procedure, such as the roots of an equation with integer variables; or
a combination of the two, such as the Hamiltonian circuits of a graph. Algorithms for searching
virtual spaces are used in constraint satisfaction problem, where the goal is to find a set of value
assignments to certain variables that will satisfy specific mathematical equations and inequations.
They are also used when the goal is to find a variable assignment that will maximize or minimize
a certain function of those variables.

LOVELY PROFESSIONAL UNIVERSITY 173



Introduction to Artificial Intelligence & Expert Systems

174

Notes

]

Notes  Algorithms for these problems include the basic brute-force search (also called
“naive” or “uninformed” search), and a variety of heuristics that try to exploit partial
knowledge about structure of the space, such as linear relaxation, constraint generation,
and constraint propagation.

This class also includes various tree search algorithms, that view the elements as vertices of a
tree, and traverse that tree in some special order. Examples of the latter include the exhaustive
methods such as depth-first search and breadth-first search, as well as various heuristic-based
search tree pruning methods such as backtracking and branch and bound. Unlike general
metaheuristics, which at best work only in a probabilistic sense, many of these tree-search
methods are guaranteed to find the exact or optimal solution, if given enough time. Another
important sub-class consists of algorithms for exploring the game tree of multiple-player games,
such as chess or backgammon, whose nodes consist of all possible game situations that could
result from the current situation. The goal in these problems is to find the move that provides
the best chance of a win, taking into account all possible moves of the opponent(s). Similar
problems occur when humans or machines have to make successive decisions whose outcomes
are not entirely under one’s control, such as in robot guidance or in marketing, financial or
military strategy planning. This kind of problem — combinatorial search — has been extensively
studied in the context of artificial intelligence. Examples of algorithms for this class are the
minimax algorithm, alpha-beta pruning, and the A* algorithm.

9.4.1 Hill Climbing Methods

Hill climbing is a mathematical optimization technique which belongs to the family of local
search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then
attempts to find a better solution by incrementally changing a single element of the solution. If
the change produces a better solution, an incremental change is made to the new solution,
repeating until no further improvements can be found.

Example: Hill climbing can be applied to the travelling salesman problem. It is easy to
find an initial solution that visits all the cities but will be very poor compared to the optimal
solution. The algorithm starts with such a solution and makes small improvements to it, such as
switching the order in which two cities are visited. Eventually, a much shorter route is likely to
be obtained. One of the problems with hill climbing is getting stuck at the local minima and this
is what happens when you reach F. An improved version of hill climbing (which is actually used
practically) is to restart the whole process by selecting a random node in the search tree and
again continue towards finding an optimal solution. If once again you get stuck at some local
minima you have to restart again with some other random node.

Generally, there is a limit on the no. of time you can re-do this process of finding the optimal
solution. After you reach this limit, you select the least amongst all the local minima’s you
reached during the process. Though, it is still not complete but this one has better chances of
finding the global optimal solution. Hill climbing has no guarantee against getting stuck in a
local minima/maxima. However, only the purest form of hill climbing doesn’t allow you to
either backtrack. A simple riff on hill climbing that will avoid the local minima issue (at the
expense of more time and memory) is a tabu search, where you remember previous bad results
and purposefully avoid them.

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

9.4.2 Best-first Search Notes

Best-first search is a search algorithm which explores a graph by expanding the most promising
node chosen according to a specified rule. It is described as estimating the promise of node n by
a “heuristic evaluation function which, in general, may depend on the description of n, the
description of the goal, the information gathered by the search up to that point, and most
important, on any extra knowledge about the problem domain.”

Some authors have used “best-first search” to refer specifically to a search with a heuristic that
attempts to predict how close the end of a path is to a solution, so that paths which are judged to
be closer to a solution are extended first. This specific type of search is called greedy best-first
search. Efficient selection of the current best candidate for extension is typically implemented
using a priority queue. The A* search algorithm is an example of best-first search, as is B*.
Best-first algorithms are often used for path finding in combinatorial search.

Algorithms
OPEN = [initial state]
CLOSED = []
while OPEN is not empty
do
1. Remove the best node from OPEN, call it n, add it to CLOSED.
2. If n is the goal state, backtrace path to n (through recorded
parents) and return path.
3. Create n’s successors.
4. For each successor do:

(a) If it is not in CLOSED: evaluate it, add it to OPEN, and
record 1its parent.
(b) Otherwise: change recorded parent if this new path is better
than previous one.
done

9.4.3 A* Algorithm

The A* algorithm combines features of uniform-cost search and pure heuristic search to efficiently
compute optimal solutions. A* algorithm is a best-first search algorithm in which the cost
associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state
to node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal. Thus, f(n)
estimates the lowest total cost of any solution path going through node n. At each point, a node
with lowest f value is chosen for expansion. Ties among nodes of equal f value should be broken
in favor of nodes with lower h values. The algorithm terminates when a goal is chosen for
expansion.

A* algorithm guides an optimal path to a goal if the heuristic function h(n) is admissible,
meaning it never overestimates actual cost.

'E Example: Since airline distance never overestimates actual highway distance, and
Manhattan distance never overestimates actual moves in the gliding tile.

For Puzzle, A* algorithm, using these evaluation functions, can find optimal solutions to these
problems. In addition, A* makes the most efficient use of the given heuristic function in the
following sense: among all shortest-path algorithms using the given heuristic function h(n).
A* algorithm expands the fewest number of nodes. The main drawback of A* algorithm and
indeed of any best-first search is its memory requirement. Since at least the entire open list must

LOVELY PROFESSIONAL UNIVERSITY 175



Introduction to Artificial Intelligence & Expert Systems

176

Notes

be saved, A* algorithm is severely space-limited in practice, and is no more practical than
best-first search algorithm on current machines. For example, while it can be run successfully on
the eight puzzle, it exhausts available memory in a matter of minutes on the fifteen puzzle.

A* uses a best-first search and finds a least-cost path from a given initial node to one goal node
(out of one or more possible goals). As A* traverses the graph, it follows a path of the lowest
expected total cost or distance, keeping a sorted priority queue of alternate path segments along
the way. It uses a knowledge-plus-heuristic cost function of node x (usually denoted f(x)) to
determine the order in which the search visits nodes in the tree. The cost function is a sum of two
functions:

° the past path-cost function, which is the known distance from the starting node to the
current node x (usually denoted g(x))

° a future path-cost function, which is an admissible “heuristic estimate” of the distance
from x to the goal (usually denoted h(x)).

The h(x) part of the f(x) function must be an admissible heuristic; that is, it must not overestimate
the distance to the goal. Thus, for an application like routing, i(x) might represent the straight-
line distance to the goal, since that is physically the smallest possible distance between any two
points or nodes.

If the heuristic / satisfies the additional condition h(x) < d(x, y) + h(y) for every edge x, y of the
graph (where d denotes the length of that edge), then / is called monotone, or consistent. In such
a case, A* can be implemented more efficiently—roughly speaking, no node needs to be processed
more than once (see closed set below)—and A* is equivalent to running Dijkstra’s algorithm with
the reduced cost d(x, y) := d(x, y) — h(x) + h(y).

First search and finds a least-cost path from a given initial node to one goal node (out of one or
more possible goals).

Caution Apply full algorithm of any searching technique.
2

Tusk  Apply BFS in finding the shortest path to reach from one railway station to another
railway station.

Self Assessment

State whether the following statements are true or false:

13. Informed search tries to increase the amount of search that must be done by making
intelligent choices for the nodes that are selected for expansion.

14. A search algorithm is an algorithm for finding an item with specified properties among a
collection of items.

15.  Best-first search is a search algorithm which explores a graph by expanding the most
promising node chosen according to a specified rule.

16.  A* uses a best-first search and finds a expensive path from a given initial node to one goal
node.

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

9.5 Problem Reduction (AND/OR-Tree Search) Notes

The general shape of all states was the same. They were distinguished by the values of their
internal components. The basic idea here is that a problem is represented as one or more goals
to be solved and a step in the problem solving process is either the immediate solution of one of
these goals or its division into a set of (one hopes) simpler sub goals. The technique in question,
construed in abstract terms, is basically just an exploitation of the idea that for any given goal
there are a set of sub goals, such that satisfying the sub goals satisfies the goal. The process of
decomposing a goal into its sub goals is referred to as goal-reduction. We will start by taking a
very simple case where there is only one way of decomposing a goal into sub goals and therefore
there is no search. To illustrate what this means we will look at the Tower of Hanoi problem.

9.5.1 Problem-Reduction and the Tower of Hanoi

Sometimes problems only seem hard to solve. A hard problem may be one that can be reduced
to a number of simple problems and, when each of the simple problems is solved, then the hard
problem has been solved. This is the basic intuition behind the method of problem reduction.
We will have much more to say about this method of search when we cover problem solving
and planning in the second half of the course. At this point, our goal is simply to introduce you
to this type of search and illustrate the way in which it differs from state space search. The typical
problem that is used to illustrate problem reduction search is the Tower of Hanoi problem
because this problem has a very elegant solution using this method. The story that is typically
quoted to describe the Tower of Hanoi problem describes the specific problem faced by the
priests of Brahmabh. Just in case you didn’t decide to read this story, the gist of it is that 64 size
ordered disks occupy one of 3 pegs and must be transferred to one of the other pegs. But, only
one disk can be moved at a time; and a larger disk may never be placed on a smaller disk.

Figure 9.1: State Space for the 3 Disk Tower of Hanoi Problem

Rather than deal with the 64 disk problem faced by the priests, we will consider only three
disks...the minimum required to make the problem mildly interesting and useful for our purpose
here...namely to illustrate problem reduction search. In Figure shows the state space associated
with a 3-disk Tower of Hanoi Problem. The problem involves moving from a state where the
disks are stacked on one of the pegs and moving them so that they end up stacked on a different

LOVELY PROFESSIONAL UNIVERSITY 177



Introduction to Artificial Intelligence & Expert Systems

178

Notes

peg. In this case, we will consider the state at the top of the figure the starting state. In this case,
all three disks are on the left-most peg. And, we will consider the state at the bottom right to be
the goal state. In this state, the three disks are now all stacked on the right-most peg.

Recall that in state space search the generators correspond to moves in the state space. Thus, the
two states below the top state in the triangle of states corresponds to the movement of the
smallest disk either to the rightmost peg or to the middle peg. The shortest solution to this
problem corresponds to the path down the right side of the state space. This solution is shown in

the animation below.

In problem reduction search, the problem space consists of an AND/OR graph of (partial) state
pairs. These pairs are referred to as (sub)problems. The first element of the pair is the starting
state of the (sub)problem and the second element of the pair is the goal state (sub)problem.
There are two types of generators: non-terminal rules and terminal rules. Non-terminal rules
decompose a problem pair, <s0, g0> into an ANDed set of problem pairs {<si,gi>, <sj,gj>, ...>.
The assumption is that the set of subproblems are in some sense simpler problems than the
problem itself. The set is referred to as an ANDed set because the assumption is that the solution
of all of the subproblems implies that the problem has been solved. Note all of the subproblems
must be solved in order to solve the parent problem.

Any subproblem may itself be decomposed into subproblems. But, in order for this method to
succeed, all subproblems must eventually terminate in primitive subproblems. A primitive
subproblem is one which can not be decomposed (i.e., there is no non-terminal that is applicable
to the subproblem) and its solution is simple or direct. The terminal rules serve as recognizers
of primitive subproblems.

The symmetry of the state space shown above may have led you to suspect that the Tower of
Hanoi problem can be elegantly solved using the method of problem decomposition. The AND
tree that solves the 3 disk problem is shown below.

9.5.2 Implementing Arbitrary AND/OR-Trees

Let us number the state space solution shown in the state space above 1 through 8 so that we can
refer to the states by number. 1 corresponds to the topmost or starting state and 8 to the right
corner or goal state. These two states are the first and second element in the problem shown as
the root node in the AND tree above. The red arc is used to indicate that the node is an AND
node.

The problem is decomposed into three subproblems. The left subproblem consists of states 1
and 4; the middle subproblem consists of states 4 and 5; and the right corresponds to states 5 and
8. Note that the left and the right subproblems correspond to the top and bottom nodes of the

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

upper and lower triangles respectively. The middle subproblem corresponds to the move that Notes
links these two triangles of states. Note that this middle subproblem has no further

decomposition. It is a primitive problem that corresponds to moving the large disk from the

first to the third peg. The yellow border is used to depict primitive or terminal subproblems.

The left and right subproblems are not primitive subproblems and they are each decomposed

further. The three subproblems for each of these subproblems are primitive and correspond to

the first three and the last three moves of the solution.

In this example, only AND nodes are shown. An OR node corresponds to the case where one or
more different non-terminal rules are applied to a particular subproblem. For an OR node, at
least one of the OR nodes must be solved in order to solve the (sub)problem.

Note that syntactically a decomposition is simply a set of (partial) state descriptions. (This
definition can be relaxed even further, but that is a rather long story.) Thus, there are very many
possible non-terminal reduction rules that could be defined for this 3 Disk Tower of Hanoi
Problem. The figure above illustrates another possible non-terminal rule for this problem. In
this case, the first subproblem is to move the middle and small sized disks to the right peg. The
second subproblem is to move these disks from the right peg to the middle peg. This corresponds
to moving down the left side of the triangle in the state space above and then moving across to
the right side. Although this involves unnecessary moves, it leads to a valid solution when
coupled with the appropriate further rules of decomposition.

The next figure above illustrates a non-terminal rule for this problem which involves partial
states. Note that the first subproblem specifies as the goal state a situation where the large disk
is on the left peg and no disks are on the large disk. (Of course, our picture can’t express this last
condition since the other two pegs aren’t in our picture at all.) The next subproblem involves a
goal situation where the large disk is now on the left peg and again no disks are on the large
disk.

IS

Notes That there are four states in the state space that satisfy the goal of the first subproblem
and also four that satisfy the goal of the second subproblem. This observation forces us to
recognize that implicit in the use of non-terminal rules in problem reduction is the
assumption that there is a path in the state space that will be discovered when the partial
state descriptions are bound to an appropriate state space.

LOVELY PROFESSIONAL UNIVERSITY 179



Introduction to Artificial Intelligence & Expert Systems

180

Notes

9.5.3 Implementing the AND/OR-Tree Search Function

Another important feature of problem reduction rules is that their use allows the order of problem
solving to differ from the order of problem execution. In the state space above, these two are
obviously the same (although one could also search backward from the goal, but in the case of
either forward or backward search the solution involves the same linear order of states.) In the
present case, the problem solver could choose any of the subproblems to work on first.

In the Tower of Hanoi problem, there is no obvious advantage to solving the problem in an
order that differs from the order of problem execution. However, in some problems one may
find that some subproblems are easier than others and their solution may serve to simplify the
solution of the remaining subproblems. A Cryptarithmetic Problem has been developed which
illustrates this point. In this case, the subproblems correspond to the different equations that are
formed in the algebraic representation of the problem. Note, that in this case the state space has
10! states and solving it via state space search is out of the question for any sane human mind. It
thus uses depth first search and exits as soon as the first solution is found. The function will
systematically explore the whole space if no solution can be found (if there are no loops) before
returning <false>. We have used recursion to deal with the other goals. It would have been just
as easy to have used a loop instead which looped through each of the goals input to the search
function and merely called itself recursively in dealing with each of their sub-goals.

9.5.4 Implementing Planning as AND/OR-Tree Search

To implement a simple form of planning behaviour using our generic, AND/OR-tree search
function, we first need to set up the appropriate AND/OR search space (i.e. rule-base). Below is
a set rule which define an implicit AND/OR tree for a “book” problem. This is a variant on the
“cake” problem of Burton and Shad bolt, 1987.

We have placed facts earlier in the rule-base than rules. This is to ensure that in searching, the
system checks facts first before continuing the search via the rules. All the entries are lists of
elements; in each case the first element corresponds to a goal and the remaining elements form
the corresponding sub-goals or “preconditions”. Calling the new search function on the Input
corresponding to a goal of the planning task considered produces behaviour.

9.5.5 Implementing Reasoning as AND/OR-Tree Search

The AND/OR-tree search function is not only applicable in the case where we wish to solve a
simplified planning problem. It can also be applied in many other cases. Any problem whose
solution we can think of in terms of goal-reduction can be solved by the application of AND/
OR-tree search. To obtain a specific implementation we only need to set up the appropriate rule
base.

Example: AND/OR-tree search can be used to solve simple reasoning problems. In this
application goals correspond roughly to “conclusions” and sub-goals correspond roughly to
bits of “evidence”. Search rules state that certain collections of evidence (sub-goals) allow the
drawing (achievement) of a given conclusion (goal).

Self Assessment

State whether the following statements are true or false:

17. The process of decomposing a goal into its sub goals is referred to as goal-reduction.

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

18.  Any subproblem may not be decomposed into subproblems. Notes

19. The AND/OR-tree search function is only applicable in the case where we wish to solve a
simplified planning problem.

20. To obtain a specific implementation we only need to set up the appropriate rule base.

9.6 Summary

° The Al system are developed using the knowledge of an expert person (or persons) in the
field where the system will be applied.

° Each node or vertex in the graph corresponds to a problem state, and arcs between nodes
correspond to transformations or mapping between the states.

° Search can be characterized as finding a path through a graph or tree structure.

° The process of generating all of the children of a parent is also known as expanding the
node.

° A search procedure is a strategy for selecting the order in which nodes are generated and

a given path selected.

° The problem space of means-end analysis has as initial state and one or more goal states,
a set of operators Ok with given preconditions for their application, and a difference
function that computes the difference between two states Si and S;.

° Information might relate to the problem space as a whole or to only some states.

° The depth-first search is preferred over the breadth-first when the search tree is known to
have a plentiful number of goals. Otherwise, depth-first may never find a solution.

9.7 Keywords

Backtracking: It helps in undoing what has been done so far and permits to try a totally different
path to attain the global peak.

Blind or Uninformed: It is a search algorithm that is one that uses no information other than the
initial state, the search operators, and a test for a solution.

Breadth-first Searches: These are performed by exploring all nodes at a given depth before
proceeding to the next level.

Depth-first Searches: These are performed by diving downward into a tree as quickly as possible

Hill Climbing: It is like depth-first searching where the most promising child is selected for
expansion.

Informed Search Methods: These often depend on the use of heuristic information i.e. information
about the problem (the nature of the states, the cost of transforming from one state to another,
the promise of taking a certain path, and the characteristics of the goals) can sometimes be used
to help guide the search more efficiently.

Local Maximum: It is a state that is better than al its neighbours but not so when compared to
states to states that are farther away.

Plateau: A flat area of the search space, in which all neighbours have the same value.

Ridge: Described as a long and narrow stretch of elevated ground or a narrow elevation or
raised path running along or across a surface.

LOVELY PROFESSIONAL UNIVERSITY 181



Introduction to Artificial Intelligence & Expert Systems

182

Notes

Worst Case: This situation the only information available will be the ability to distinguish goal
from non-goal nodes.

9.8 Review Questions

1. Explain search and control strategies.

List four examples of search problems.

Explain and solve the water container problem.

Draw a diagram for blind search.

Explain with an example breadth-first search. Write its algorithm also.
Explain with an example depth-first search. Write its algorithm also.

Explain hill climbing methods.

® N o T o= » N

Write the A* algorithm.

Answers: Self Assessment

1. True 2. False
3. True 4. True
5. True 6. False
7. False 8. True
9. True 10. False
11. False 12.  True
13. False 14.  True
15.  True 16. False
17.  True 18. False
19. False 20. True

9.9 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

LOVELY PROFESSIONAL UNIVERSITY



Unit 9: Search and Control Strategies

Notes

&
v. 4,
Online links  ari.cankaya.edu.tr/ Al/~ceng462/303/lect/chp3.htmly
http://ai.stanford.edu/~latombe/cs121/2011/slides/C-blind-search.pdf
http:/ /research.microsoft.com/en-us/um/people/gurevich/Opera/96.pdf

http://www.academia.edu /1056008 /Search_and_check._Problem_solving_
by_problem_reduction

https:/ /web.cs.dal.ca/~mheywood /CSCI3154/Slides /3154-BlindSearch.pdf
www.dagstuhl.de/Reports/96/9647 pdfy

LOVELY PROFESSIONAL UNIVERSITY 183



Introduction to Artificial Intelligence & Expert Systems

184

Notes

Unit 10: Matching Techniques

CONTENTS

Objectives

Introduction

10.1 Structures Used in Matching
10.2 Measure for Matching

10.3 Matching Like Patterns

10.4 Prediction by Partial Matching (PPM)
10.5 Fuzzy Matching Algorithms
10.6 The Rete Matching Algorithm
10.7 Summary

10.8 Keywords

10.9 Review Questions

10.10 Further Readings

Objectives

After studying this unit, you will be able to:

° Discuss the Structures used in Matching
° Explain how to measure for Matching
° Describe Matching Like Patterns

° Define Prediction by Partial Matching
° Identify Fuzzy Matching Algorithms

° Discuss the Rete Matching Algorithm
Introduction

Artificial Intelligence (AI) could be defined as the ability of computer software and hardware to
do those things that we, as humans, recognize as intelligent behavior. Traditionally, those

things include such activities as:

Searching: Finding “good” material after having been provided only limited direction, especially

from a large quantity of available data.

Surmounting Constraints: Finding ways that something will fit into a confined space, taking

apart or building a complex object, or moving through a difficult maze.

Recognizing Patterns: Finding items with similar characteristics, or identifying an entity when

not all its characteristics are stated or available.

Making Logical Inferences: Drawing conclusions based upon understood reasoning methods

such as deduction and induction.

LOVELY PROFESSIONAL UNIVERSITY




Unit 10: Matching Techniques

Al technologies extend from the word “Technology” which stems from the Greek word “fechnos”, Notes
which means “art” and “skill.” A sophisticated technology is then a cumulative building of
learned and well-refined skills and processes. In the Al area, these processes have manifested
themselves in a number of well-recognized and maturing areas including Neural Networks,
Expert Systems, Automatic Speech Recognition, Genetic Algorithms, Intelligent Agents, Natural
Language Processing, Robotics, Logic Programming, and Fuzzy Logic. Each of these areas will
be examined in some depth here, but it is first important to understand that the importance of
these individual areas has changed over the last two decades. These changes have been based
upon the progress in each area, and the needs that each area meets. For example, in the early
1980s robotics was a large thrust in artificial intelligence. At that time benefits could be seen in
manufacturing applications. In the late 1990s, the blossoming of the Internet pushed the importance
of intelligent agents forward for performing routine tasks and complex searches. At the same
time, throughout the 1980s and 1990s, orders of magnitude advances in computer processing
power have allowed hurdles in speech recognition and image processing to be overcome. The
maturity of each of these technology areas also differs. Expert Systems and Automatic Speech
Recognition are among the most mature while Natural Language Processing and Intelligent
Agents remain in early stages of development. In the next few paragraphs, the basis for each of
these technologies will be reviewed. In addition examples where the technologies have been
effectively utilized will be presented.

10.1 Structures Used in Matching

In computer science, pattern matching is the act of checking a perceived sequence of tokens for
the presence of the constituents of some pattern. In contrast to pattern recognition, the match
usually has to be exact. The patterns generally have the form of either sequences or tree structures.
Uses of pattern matching include outputting the locations (if any) of a pattern within a token
sequence, to output some component of the matched pattern, and to substitute the matching
pattern with some other token sequence. Sequence patterns (e.g., a text string) are often described
using regular expressions and matched using techniques such as backtracking.

Tree patterns are used in some programming languages as a general tool to process data based
on its structure, e.g., Haskell, ML and the symbolic mathematics language Mathematica have
special syntax for expressing tree patterns and a language construct for conditional execution
and value retrieval based on it. For simplicity and efficiency reasons, these tree patterns lack
some features that are available in regular expressions. Often it is possible to give alternative
patterns that are tried one by one, which yields a powerful conditional programming construct.
Pattern matching sometimes include support for guards.

The simplest pattern in pattern matching is an explicit value or a variable.

'i Example: Consider a simple function definition in Haskell syntax (function parameters
are not in parentheses but are separated by spaces, = is not assignment but definition):

£ 0 =1

Here, 0 is a single value pattern. Now, whenever f is given 0 as argument the pattern matches
and the function returns 1. With any other argument, the matching and thus the function fail. As
the syntax supports alternative patterns in function definitions, we can continue the definition
extending it to take more generic arguments:

fn=mn=m*I £ (n-1)

Here, the first n is a single variable pattern, which will match absolutely any argument and bind
it to name n to be used in the rest of the definition. Patterns are tried in order so the first

LOVELY PROFESSIONAL UNIVERSITY 185



Introduction to Artificial Intelligence & Expert Systems

186

Notes

definition still applies in the very specific case of the input being 0, while for any other argument
the function returns n * £ (n-1) with n being the argument. The wildcard pattern (often
written as _) is also simple: like a variable name, it matches any value, but does not bind the
value to any name.

Self Assessment

State whether the following statements are true or false:

1. Tree patterns are used in all programming languages as a general tool to process data
based on its structure.

2. Pattern matching sometimes include support for guards.
3. Sequence patterns are often described using regular expressions and matched using
techniques.

10.2 Measure for Matching

More complex patterns can be built from the primitive ones of the previous section, usually in
the same way as values are built by combining other values. The difference then is that with
variable and wildcard parts, a pattern doesn’t build into a single value, but matches a group of
values that are the combination of the concrete elements and the elements that are allowed to
vary within the structure of the pattern.

A tree pattern describes a part of a tree by starting with a node and specifying some branches and
nodes and leaving some unspecified with a variable or wildcard pattern. It may help to think of
the abstract syntax tree of a programming language and algebraic data types.

In Haskell, the following line defines an algebraic data type color that has a single data
constructor ColorConstructor that wraps an integer and a string.

data Color = ColorConstructor Integer String
The constructor is a node in a tree and the integer and string are leaves in branches.

When we want to write functions to make Color an abstract data type, we wish to write functions
to interface with the data type, and thus we want to extract some data from the data type, for
example, just the string or just the integer part of Color.

If we pass a variable that is of type Color, how can we get the data out of this variable? For
example, for a function to get the integer part of color, we can use a simple tree pattern and
write:

integerPart (ColorConstructor thelInteger _) = thelInteger
As well:
stringPart (ColorConstructor _ theString) = theString

The creations of these functions can be automated by Haskell’s data record syntax.
Filtering Data with Patterns

Pattern matching can be used to filter data of a certain structure. For instance, in Haskell a list
comprehension could be used for this kind of filtering:

[A x|A x <- [A 1, B 1, A2, B 2]]
evaluates to

[A 1, A 2]

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

Pattern Matching in Mathematica Notes

In Mathematica, the only structure that exists is the tree, which is populated by symbols. In the
Haskell syntax used thus far, this could be defined as:

data SymbolTree = Symbol String [SymbolTree]
An example tree could then look like
Symbol “a” [Symbol “b” [], Symbol “c” [] 1]

In the traditional, more suitable syntax, the symbols are written as they are and the levels of the
tree are represented using [], so that for instance a[b, c] is a tree with a as the parent, and b and
c as the children.

u o

A pattern in Mathematica involves putting at positions in that tree. For instance, the pattern

Al_]

will match elements such as A[1], A[2], or more generally A[x] where x is any entity. In this case,
A is the concrete element, while _ denotes the piece of tree that can be varied. A symbol prepended
to _ binds the match to that variable name while a symbol appended to _ restricts the matches to
nodes of that symbol.

The Mathematica function cases filters elements of the first argument that match the pattern in
the second argument:

Cases[{all]l, Dbll], al2], bl2]}, al_]l ]

evaluates to

Pattern matching applies to the structure of expressions. In the example below,

Cases[ {albl, alb, cl, alblcl, dl, alblcl, de, alblcl, d, el}, albl_l,
_1 1

returns
{alblcl,dl, alblcl,de}
because only these elements will match the pattern a(b[_],_] above.

In Mathematical, it is also possible to extract structures as they are created in the course of
computation, regardless of how or where they appear. The function Trace can be used to
monitor a computation, and return the elements that arise which match a pattern. For example,
we can define the Fibonacci sequence as

fib[0|l]::l
fib[n_]:= fib[n-1] + fib[n-2]
Then, we can ask the question: Given fib[3], what is the sequence of recursive Fibonacci calls?

Trace[fib[3], fib[[_]] returns a structure that represents the occurrences of the pattern
fib[_] in the computational structure:

{(£ib[3],{£fib[2],{£fib[1]1},{£ib[0]}}, {£ib[1]}}
Declarative Programming
In symbolic programming languages, it is easy to have patterns as arguments to functions or as

elements of data structures. A consequence of this is the ability to use patterns to declaratively
make statements about pieces of data and to flexibly instruct functions how to operate.

LOVELY PROFESSIONAL UNIVERSITY 187



Introduction to Artificial Intelligence & Expert Systems

188

Notes

Example: The Mathematical function compile can be used to make more efficient
versions of the code. In the following example, the details do not particularly matter; what
matters is that the sub expression {{com[_], Integer}} instructs compile that expressions of the
form com[_] can be assumed to be integers for the purposes of compilation:

com[i_]:= Binomial[2i, 1]
Compile[{x, {i, _Integer}}, x"com[i], {{com[_], Integer}}l]

Pattern Matching and Strings

By far the most common form of pattern matching involves strings of characters. In many
programming languages, a particular syntax of strings is used to represent regular expressions,
which are patterns describing string characters. However, it is possible to perform some string
pattern matching within the same framework that has been discussed throughout this article.

Tree Patterns for Strings

Mathematically, strings are represented as trees of root String Expression and all the characters
in order as children of the root. Thus, to match “any amount of trailing characters”, a new
wildcard ___ is needed in contrast to _ that would match only a single character. In Haskell and
functional programming languages in general, strings are represented as functional lists of
characters. A functional list is defined as an empty list, or an element constructed on an existing
list. In Haskell syntax:

[l - an empty 1list

x:xs - an element x constructed on a list xs
The structure for a list with some elements is thus element:1ist. When pattern matching, we
assert that a certain piece of data is equal to a certain pattern. For example, in the function:

head (element:1list) = element

We assert that the first element of head’s argument is called element, and the function returns
this.

ig

Notes We know that this is the first element because of the way lists are defined, a single
element constructed onto a list. This single element must be the first. The empty list would
not match the pattern at all, as an empty list does not have a head (the first element that is
constructed).

In the example, we have no use for 1ist, so we can disregard it, and thus write the function:
head (element:_) = element
The equivalent Mathematical transformation is expressed as

head[element, ]:=element

' Example: It can be represented as,

StringExpression[“a”, ]
will match a string that has two characters and begins with “a”.
The same pattern in Haskell:

[ra’, _I

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

Symbolic entities can be introduced to represent many different classes of relevant features of a Notes
string. For instance,

StringExpression[LetterCharacter, DigitCharacter]
will match a string that consists of a letter first, and then a number.
Guards could be used to achieve the same matches:

[letter, digit] | isAlpha letter && isDigit digit

The main advantage of symbolic string manipulation is that it can be completely integrated
with the rest of the programming language, rather than being a separate, special purpose subunit.
The entire power of the language can be leveraged to build up the patterns themselves or
analyze and transform the programs that contain them.

AN

Caution Use of pattern matching carefully.

g

Task Learn the working of character recognition from several websites.

Self Assessment

State whether the following statements are true or false:
4. Strings are not represented as trees of root String Expression.

5. The function Trace can be used to monitor a computation, and return the elements that
arise which match a pattern.

6.  In Mathematica, some structure that exists is the tree, which is populated by symbols.

10.3 Matching Like Patterns

The pattern-matching conditions compare character data.
LIKE Condition

The LIKE conditions specify a test involving pattern matching. Whereas the equality operator
(=) exactly matches one character value to another, the LIKE conditions match a portion of one
character value to another by searching the first value for the pattern specified by the second.
LIKE calculates strings using characters as defined by the input character set. LIKEC uses Unicode
complete characters. LIKE2 uses UCS2 code points. LIKE4 uses UCS4 code points.

like_condition::=

ﬁ ESCAPE |.(easc_char)1

L4 r 4

LOVELY PROFESSIONAL UNIVERSITY 189



Introduction to Artificial Intelligence & Expert Systems

190

Notes

In this syntax:

° charl is a character expression, such as a character column, called the search value.
° char2 is a character expression, usually a literal, called the pattern.
° esc_char is a character expression, usually a literal, called the escape character.

The LIKE condition is the best choice in almost all situations. Use the following guidelines to
determine whether any of the variations would be helpful in your environment:

° Use LIKE2 to process strings using UCS-2 semantics. LIKE2 treats a Unicode supplementary
character as two characters.

° Use LIKE4 to process strings using UCS-4 semantics. LIKE4 treats a Unicode supplementary
character as one character.

° Use LIKEC to process strings using Unicode complete character semantics. LIKEC treats a
composite character as one character.

If esc_char is not specified, then there is no default escape character. If any of charl, char2, or
esc_char is null, then the result is unknown. Otherwise, the escape character, if specified, must be
a character string of length 1.

All of the character expressions (char1, char2, and esc_char) can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, or NVARCHAR?. If they differ, then Oracle converts all of them to the
datatype of charl.

The pattern can contain special pattern-matching characters:

° An underscore (_) in the pattern matches exactly one character (as opposed to one byte in
a multibyte character set) in the value.

° A percent sign (%) in the pattern can match zero or more characters (as opposed to bytes in
a multibyte character set) in the value. The pattern ‘%’ cannot match a null.

l)

Did u know? We can include the actual characters % or _ in the pattern by using the ESCAPE
clause, which identifies the escape character. If the escape character precedes the character
% or _ in the pattern, then Oracle interprets this character literally in the pattern rather
than as a special pattern-matching character.

You can also search for the escape character itself by repeating it. For example, if @ is the escape
character, then you can use @@ to search for @.

The table shown below describes the LIKE conditions.

Type of Operation Example
Condition
x [NOT] TRUE if x does [not] match the pattern y. Within y, the SELECT last_name
LIKE ¥ character % matches any string of zero or more characters FROM employees

. WHERE last_name
except null. The character _ matches any single character. LIKE '%A\_B%'

Any character can follow ESCAPE except percent (%) and ESCAPE '\ ';
underbar (_). A wildcard character is treated as a literal if
preceded by the escape character.

[ESCAPE
1z

To process the LIKE conditions, Oracle divides the pattern into subpatterns consisting of one or
two characters each. The two-character subpatterns begin with the escape character and the other
character is %, or _, or the escape character.

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

Let P, P, ..., P_be these subpatterns. The like condition is true if there is a way to partition the Notes
search value into substrings S, S,, ..., S, so that for all i between 1 and n:

° If P,is _, then S, is a single character.
° If P, is %, then S, is any string.

° If P, is two characters beginning with an escape character, then S, is the second character of
P.

° Otherwise, P, = S..

With the LIKE conditions, you can compare a value to a pattern rather than to a constant. The
pattern must appear after the LIKE keyword. For example, you can issue the following query to
find the salaries of all employees with names beginning with R:

SELECT salary
FROM employees
WHERE last_name LIKE ‘R%’;

The following query uses the = operator, rather than the LIKE condition, to find the salaries of
all employees with the name ‘R%”":

SELECT salary
FROM employees
WHERE last_name = ‘R%’;

The following query finds the salaries of all employees with the name ‘SM%’. Oracle interprets
‘SM%’ as a text literal, rather than as a pattern, because it precedes the LIKE keyword:

SELECT salary
FROM employees
WHERE ‘SM%’ LIKE last_name;

Case Sensitivity

Case is significant in all conditions comparing character expressions that use the LIKE condition
and the equality (=) operators. You can perform case or accent insensitive LIKE searches by
setting the NLS_SORT and the NLS_COMP session parameters.

Pattern Matching on Indexed Columns

When you use LIKE to search an indexed column for a pattern, Oracle can use the index to
improve performance of a query if the leading character in the pattern is not % or _. In this case,
Oracle can scan the index by this leading character. If the first character in the pattern is % or _,
then the index cannot improve performance because Oracle cannot scan the index.

LIKE Condition: General Examples

This condition is true for all last_name values beginning with Ma:
last_name LIKE ‘Ma$%’

All of these last_name values make the condition true:
Mallin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so last_name values beginning with MA, ma, and mA make the condition
false.

Consider this condition:

last_name LIKE ‘SMITH_'

LOVELY PROFESSIONAL UNIVERSITY 191



Introduction to Artificial Intelligence & Expert Systems

192

Notes

This condition is true for these last_name values:
SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the special underscore character (_) must match exactly
one character of the last_name value.

ESCAPE Clause Example

The following example searches for employees with the pattern A_B in their name:

SELECT last_name
FROM employees
WHERE last_name LIKE ‘%A\_B%’ ESCAPE ‘\’;

The ESCAPE clause identifies the backslash (\) as the escape character. In the pattern, the escape
character precedes the underscore (_). This causes Oracle to interpret the underscore literally,
rather than as a special pattern matching character.

Patterns Without % Example

If a pattern does not contain the % character, then the condition can be true only if both operands
have the same length. Consider the definition of this table and the values inserted into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));

INSERT INTO ducks VALUES (‘DUCK’, ‘DUCK’');
SELECT ‘*'||f]|]|’*’ “char”,
Nk | ‘V‘ | ko1 wvarchar”

FROM ducks;
char varchar

*DUCK * *DUCK*

In many pattern, many object pattern matching, a collection of patterns is compared to a collection
of objects, and all the matches are determined. That is, the pattern matcher finds every object that
matches each pattern. This kind of pattern matching is used extensively in Artificial Intelligence
programs today. For instance, it is a basic component of production system interpreters. The
interpreters use it to determine which productions have satisfied condition parts. Unfortunately,
it can be slow when large numbers of patterns or objects are involved. Some systems have been
observed to spend more than nine-tenths of their total run time performing this kind of pattern
matching. The simplest patterns contain only constant symbols and numbers. A pattern containing
only constants matches a working memory element if every constant in the pattern occurs in the
corresponding position in the working memory element.

We have seen SQL SELECT command to fetch data from MySQL table. We can also use a
conditional clause called WHERE clause to select required records.

A WHERE clause with equal sign (=) works fine where we want to do an exact match. Like if
“tutorial_author = ‘Sanjay””
results where tutorial_author name should contain “jay”. This can be handled using SQL LIKE

clause alongwith WHERE clause.

. But there may be a requirement where we want to filter out all the

If SQL LIKE clause is used along with % characters then it will work like a meta character (*) in
Unix while listing out all the files or directories at command prompt.

Without a % character LIKE clause is very similar to equal sign alongwith WHERE clause.

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

Syntax: Notes

Here is generic SQL syntax of SELECT command along with LIKE clause to fetch data from
MySQL table:

SELECT fieldl, field2,...fieldN table_namel, table_name2...
WHERE fieldl LIKE conditionl [AND [OR]] filed2 = ‘somevalue’

Self Assessment

State whether the following statements are true or false:
7. The LIKE conditions specify a test involving pattern matching.
8. LIKE2 uses USC4 code points.

9. Char1 is a character expression, such as a character column, called the pattern.

10.4 Prediction by Partial Matching (PPM)

Prediction by Partial Matching (PPM) is an adaptive statistical data compression technique
based on context modeling and prediction. PPM models use a set of previous symbols in the
uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also
be used to cluster data into predicted groupings in cluster analysis.

Predictions are usually reduced to symbol rankings. The number of previous symbols, n,
determines the order of the PPM model which is denoted as PPM(r). Unbounded variants where
the context has no length limitations also exist and are denoted as PPM*. If no prediction can be
made based on all n context symbols a prediction is attempted with 1 — 1 symbols. This process
is repeated until a match is found or no more symbols remain in context. At that point a fixed
prediction is made. PPM compression implementations vary greatly in other details. The actual
symbol selection is usually recorded using arithmetic coding, though it is also possible to use
Huffman encoding or even some type of dictionary coding technique.

The underlying model used in most PPM algorithms can also be extended to predict multiple
symbols. It is also possible to use non-Markov modeling to either replace or supplement Markov
modeling. The symbol size is usually static, typically a single byte, which makes generic handling
of any file format easy. Prediction by Partial Matching is a method to predict the next symbol
depending on n previous. This method is else called prediction by Markov Model of order n. In
case of text in natural language like English it is clear intuitively and proved by some researchers
that probability of every next symbol is highly dependent on previous symbols. The most
obvious method to use this feature is to incorporate it with one of known entropy compressions
which have to gather statistics. The natural candidates are Huffman and Arithmetic compressions.
It can be Adaptive or Static variants of this algorithms.

The key issue is to change alphabet to be alphabet of sequences and not alphabet of single
symbols:

° Assume Markov model of order n.
° Let the input stream to be sequence x.
° For each symbol x, that is in sequence x on place i:

2 Update probability of sequence y, y =[x ... x].

i

B3 Let y to be a symbol in the target alphabet.

LOVELY PROFESSIONAL UNIVERSITY 193



Introduction to Artificial Intelligence & Expert Systems

194

Notes

o Update all relevant structures in the basis algorithm.
& Perform the rest of needed steps required in the basis algorithm.

Notice definition of sequence y:
y =[x, - x]

If x, or other particles of the sequence are not available, there are some options to handle this
situation:

° Output x, uncoded and skip to the next symbol
° Add shortened symbol to the alphabet.

The first option is obvious and do not need farther clarification. The second option can be
enhanced and should be explained more detailed. I will not touch this option directly because it
can be implemented as variant of Multilevel PPM.

Self Assessment

State whether the following statements are true or false:

10.  Partial matching (PPM) is an adaptive statistical data compression technique based on
context modeling and prediction.

11.  Predictions are increased to symbol rankings.

12.  The symbol size is usually static.

10.5 Fuzzy Matching Algorithms

Fuzzy matching is a mathematical process used to determine how similar one piece of data is to
another.

' Example: If you had ‘John Arun Smith” in one system and wanted to find similar names
from another system, the fuzzy matching process may return a list like this:

° J A Smith

° John A Smith

° JA Smith

° Jon Smith

° Jonathan A Smith
° Jon A Smithe

For each entry examined, the fuzzy matching process can give a probability score as to the
accuracy of the match. For example, ‘John A Smith” might receive a 95% score of similarity
whereas ‘JA Smith” would only get a 72% score.

Fuzzy matching attempts to improve recall by being less strict but without sacrificing relevance.
With fuzzy matching the algorithm is designed to find documents containing terms related to
the terms used in the query. The assumption is that related words (in the English language) are
likely to have the same core and differ at the beginning and/or end. A search for “matching”, for
example, would also return documents containing match, matched, etc. Unfortunately, it will
also return documents containing unrelated words like matchbox, etc.

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

10.6 The Rete Matching Algorithm Notes

° One potential problem with expert systems is the number of comparisons that need to be
made between rules and facts in the database.

° In some cases, where there are hundreds or even thousands of rules, running comparisons
against each rule can be impractical.

° The Rete Algorithm is an efficient method for solving this problem and is used by a
number of expert system tools, including OPS5 and Eclipse.

° The Rete is a directed, acyclic, rooted graph.
° Each path from the root node to a leaf in the tree represents the left-hand side of a rule.

° Each node stores details of which facts have been matched by the rules at that point in the
path. As facts are changed, the new facts are propagated through the Rete from the root
node to the leaves, changing the information stored at nodes appropriately.

° This could mean adding a new fact, or changing information about an old fact, or deleting
an old fact. In this way, the system only needs to test each new fact against the rules, and
only against those rules to which the new fact is relevant, instead of checking each fact
against each rule.

° The Rete algorithm depends on the principle that in general, when using forward chaining
in expert systems, the values of objects change relatively infrequently, meaning that
relatively few changes need to be made to the Rete.

° In such cases, the Rete algorithm can provide a significant improvement in performance
over other methods, although it is less efficient in cases where objects are continually
changing.

° The basic inference cycle of a production system is match, select and execute as indicated

in Figure 10.1. These operations are performed as follows:

Figure 10.1: Production System Components and Basic Cycle

I—» User »| Inference Ma’tch
<« 00— Interface < Engine l
/ \ Select
Working Knowledge Execute
Memory Base

< Match:

* During the match portion of the cycle, the conditions in the LHS of the rules in
the knowledge base are matched against the contents of working memory to

LOVELY PROFESSIONAL UNIVERSITY 195



Introduction to Artificial Intelligence & Expert Systems

196

Notes

determine which rules have their LHS conditions satisfied with consistent

bindings to working memory terms.

. Rules which are found to be applicable are put in a conflict set.
* Select:

* From the conflict set, one of the rules is selected to execute. The selection
strategy may depend on recency of usage, specificity of the rule or other
criteria.

< Execute:
* The rule selected from the conflict set is executed by carrying the action or

conclusion part of the rule, the RHS of the rule. This may involve an I/O
operation, adding, removing or changing clauses in working memory or

simply causing a halt.

. The above cycle is repeated until no rules are put in the conflict set or until a

stopping condition is reached.

The main time saving features of Rete are as follows:

1.

In most expert systems, the contents of working memory change very little from cycle to
cycle. There is persistence in the data known as temporal redundancy. This makes exhaustive
matching on every cycle unnecessary. Instead, by saving match information, it is only
necessary to compare working memory changes on each cycle. In RETE, addition to,
removal from, and changes to working memory are translated directly into changes to the
conflict set in Figure 10.2 shown below. Then when a rule from the conflict set has been
selected to fire, it is removed from the set and the remaining entries are saved for the next
cycle. Consequently, repetitive matching of all rules against working memory is avoided.
Furthermore, by indexing rules with the condition terms appearing in their LHS, only
those rules which could match. Working memory changes need to be examined. This

greatly reduces the number of comparisons required on each cycle.

Figure 10.2: Changes to Working Memory are Mapped to the Conflict Set

Changes to

4 working memory
\ LHS rule

conditions

RETE matcher

X Conflict set

e

Many rules in a knowledge base will have the same conditions occurring in their LHS.
This is just another way in which unnecessary matching can arise. Repeating testing of the
same conditions in those rules could be avoided by grouping rules which share the same
conditions and linking them to their common terms. It would then be possible to perform
a single set of tests for all the applicable rules shown in Figure 10.3 shown below:

LOVELY PROFESSIONAL UNIVERSITY




Unit 10: Matching Techniques

Figure 10.3: Typical Rules and a Portion of a Compiled Network

(R6
((father ?y ?x)
(father 7z 7y))
-——>
(grandfather ?z ?y))

(R12

(father Py ?x)

=

(male ?y)
(R13

((father ?y 7x)

(male ?x)

- ‘>

(son ?x ?y))

(R23
({father ?x ?y)
(brother 7z 7x)
- _)
luncle 7z ?y))

cond-1

1

1

AN

Caution Use of proper algorithm in pattern matching before applying it.

g

Task  Make a list of five expert systems.

Self Assessment

State whether the following statements are true or false:

13.
14.

15.

The Rete is a directed, acyclic, rooted graph.

Fuzzy matching is a mathematical process used to determine how similar one piece of

data is to another.

Fuzzy matching attempts to improve recall by being more strict but with sacrificing

relevance.

10.7 Summary

Matching is the process of comparing two or more structures to discover their likenesses

or differences.

LOVELY PROFESSIONAL UNIVERSITY

Notes

197



Introduction to Artificial Intelligence & Expert Systems

Notes

198

Recognition of the intended request can be achieved by matching against key words in a
template containing “low-calorie” and ignoring other words except, perhaps, negative
modifiers.

The RETE is a directed, acyclic, rooted graph. Each path from the root node to a leaf in the
tree represents the left-hand side of a rule. Each node stores details of which facts have
been matched by the rules at that point in the path.

A graph is a collection of points called vertices, some of which are connected by line
segments called edges.

The match fails if the patterns differ in any aspect. For example, a match between the two
character strings acdebfba and acdebeba fails on an exact match since the strings differ in
the sixth character positions.

10.8 Keywords

Expert System: An expert system is a computer system that emulates the decision-making ability
of a human expert.

Fuzzy Logic: Is a form of many-valued logic or probabilistic logic; it deals with reasoning that
is approximate rather than fixed and exact.

LISP: 1t is a family of computer programming languages with a long history and a distinctive,
fully parenthesized Polish prefix notation.

Probabilistic Logic: It is to combine the capacity of probability theory to handle uncertainty
with the capacity of deductive logic to exploit structure.

RETE Algorithm: The RETE algorithm is an efficient pattern matching algorithm for implementing
production rule systems.

10.9 Review Questions

—_

0 ® N gk » D

—_
e

What is pattern matching?

What are the different matching measurements for matching?
How is pattern matching important in real life?

Explain Prediction by partial matching.

Describe fuzzy matching algorithms.

Explain image processing.

Write the different probabilistic measures.

How does Al help in pattern matching?

Describe the working of any real life expert system.

Write the RETE algorithm.

Answers: Self Assessment

1.

True 2. True
True 4, False
True 6. False

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Matching Techniques

7. True 8. False Notes
9. False 10.  True

11. False 12.  True

13.  True 14. True

15. False

10.10 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.
A
v. o,
Online links  http:/ /blog.melissadata.com/mt-search.cgi?blog_id=2&tag=fuzzy%20matching
%20algorithms&limit=20
http:/ /docs.racket-lang.org/reference /match.html

http:/ /social. msdn.microsoft.com/Forums/en-US/e7f51f55-0e03-4773-946b-
fb0d45713e1d/fuzzy-matching-scoring-algorithm

http:/ /www.cis.temple.edu/~giorgio/cis587/readings/rete.html
http:/ /www.cs.princeton.edu/~rs/AlgsDS07 /21PatternMatching.pdf
http:/ /www .knockyoursocksoff.com/dataservices /Fuzzy.htm

http:/ /www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library /uuid/
10deald3-fbef-2d10-0e89-a7447f95bc0e?QuickLink=indexé&overridelayout=true

LOVELY PROFESSIONAL UNIVERSITY 199



Introduction to Artificial Intelligence & Expert Systems

Notes Unit 11: Knowledge Organization and Management

CONTENTS

Objectives

Introduction

11.1 Nature of Knowledge Organizations

11.2 Indexing and Retrieval Techniques
11.2.1  The Frame Problem
1122 Indexed Organization
11.2.3  Hashed Files
1124  Conceptual Indexing
11.2.5 Retrieval Techniques

11.3 Partial Match Techniques
11.3.1  Feature-based Techniques
11.3.2  Structure-based Techniques

114 Integrating Knowledge in Memory
1141 Hypertext

11.5 Memory Organization System
11.5.1 HAM, a Model of Memory
11.5.2  Memory Organization with E-MOPs

11.6 Summary

11.7 Keywords

11.8 Review Questions

11.9 Further Readings

Objectives

After studying this unit, you will be able to:
° Discuss the nature of Knowledge Organizations
° Identify Indexing and Retrieval Techniques

° Explain Partial Match Techniques

° Describe Integrating Knowledge in Memory
° Explain Memory Organization System
Introduction

A knowledge organization is a management idea, describing an organization in which people
use systems and processes to generate, transform, manage, use, and transfer knowledge-based

200 LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

products and services to achieve organizational goals. A knowledge organization also links Notes
past, present, and future by capturing and preserving knowledge in the past, sharing and

mobilizing knowledge today, and knowledge organizations can be viewed from a number of

perspectives: their general nature, networks, behavior, human dimensions, communications,

intelligence, functions, and services.

11.1 Nature of Knowledge Organizations

The nature of an organization is based on knowledge rather than industrial society notions of
land, labor or capital was not well understood. The core competencies are not what an organization
owns but rather what it knows. Knowledge organizations have a network dimension. Davis
(1977) states that networks would not replace hierarchies, but that the two would coexist within
a broader organizational concept. Similarly, Amidon (1997) points out that traditional industrial-
era hierarchies are neither flexible nor fluid enough to mobilize an organization’s intellectual
capacity and that much less constrained networked organizational forms are needed for modern
decision making. There is an underlying logic and order to the emerging digital organizational
form. It is networked, involves multiple enterprises, is based on core competencies, and
knowledge is actively created, exchanged, and used.

There is also a behavioral approach. The organizational structure is just a skeleton. Knowledge
organizations also have a physiology in the form of the flow of information and knowledge, as
lifeblood. They also have a psychology represented by people’s values and how they act as
individuals and collectively.

Knowledge is created and used by people. Strassman (1985) described the transformation of
work in the electronic age from the standpoint of education and training for managers and
employees, human aspects of the working environment, and issues of morale, motivation,
privacy, and displacements.

l)

Did u know? The empowerment is not possible in an autocratic organization that networks
cannot be sustained in fixed hierarchical structure, and that learning is not possible in an
environment constrained by rigid policies and procedures.

Davenport (1997) used an information ecology approach, in which he explored the use and
abuse of information in the context of infighting, resource hoarding, and political battles as well
as appropriate management in such a context. Simard (2000) states that knowledge is inextricably
linked to organizational mandates. Some providers strive for objectivity, others selectively
disseminate information and knowledge, while still others use information to further their
agenda. Users must understand that information is not innocent, and that all information is not
created equal.

Knowledge organizations also have collective intelligence. From a functional perspective, in a
knowledge organization, content (objects, data, information, knowledge, and wisdom) are
generated by knowledge workers. Content is captured, organized, and preserved to enable its
reuse and leveraging by people and groups other than those who generated it. Infrastructure is
in place to enable sharing of content across all elements of an organization and with external
partners, as appropriate. Procedures are in place to integrate content from multiple sources and
mobilize it to achieve organizational goals and objectives. A learning culture promotes not
only individual learning but also results in a shared understanding. Finally, the organization
embraces continuous evolutionary change to sustain itself in a constantly changing environment.
Simard et al. (2007) described five functions of a knowledge-service organization: generate
content transform content into useful products and services preserve and manage content to
enable organizational use and external transfer use content to achieve organizational goals, and

LOVELY PROFESSIONAL UNIVERSITY 201



Introduction to Artificial Intelligence & Expert Systems

202

Notes

transfer content externally, in the form of products and services. Functions 1, 3, and 5 are essential
and cannot be bypassed.

The knowledge in organizations is more complicated. Except from formal and informal
documents, Davenport & Prusak’s (1998) also introduced routines, processes, practices and norms.
It may, therefore, be clear that organizational knowledge is much more than a sum of all the
individual knowledge. It became clear that most of the knowledge an organization needs,
already exists in the organization, but that finding and identifying it were the problems. This
has several explanations.

First of all, it depends how the knowledge in an organization is organized. Hansen et al. (1999)
made a distinction between a codification and personalization strategy. A codification strategy
focuses as the word already implicates, to codify knowledge in a company, where a
personalization strategy implies personal interaction as the main factor for exchanging
knowledge. Both strategies have their problems. First of all, it is in many cases not possible to
codify knowledge because of e.g. modifiability and complexity. This is called cognitive limitations.

“As expertise increases, mental representations become more abstract and simplified” And
even if people can share knowledge, sometimes they do not want to. Hinds & Pfeffer (2001) call
this motivational limitations. Hall et al. (2001) see rewards and informal activities with colleagues
as the solution for the so-called motivational limitations. They divided the rewards in two
groups, the explicit and the soft rewards. Explicit rewards are e.g. economic incentives and
career advancement. Soft rewards are non-economic rewards such as reputation and satisfaction.

All this theory is based on formal structures in an organization. Organizations all also exist out
informal ties and networks. This complicates organizational goals of formal knowledge sharing.
A company will lose track of who has what knowledge because of the informal networks. This
does not mean that informal networks are negative, just on the contrary, informal networks can
create ties and surroundings which are necessary for knowledge sharing. The implication and
unfortunately also the complication of informal networks is that an organization loose the
general view of the knowledge in the organization. The informal structure significantly differs
of the formal one. To effectively maximize the potential the authors argue that it is necessary to
analyze both structures. They introduce the so-called Social Network analysis which
systematically assesses informal networks. The result is that knowledge consequently can be
collected from formal and informal networks to create a socio-knowledge matrix in
organizations.

Self Assessment

State whether the following statements are true or false:
1.  Knowledge is created and used by people.
2. A learning culture promotes not only individual learning.

3. Functions 1, 3, and 5 are essential and can be bypassed.

11.2 Indexing and Retrieval Techniques

Following are the indexing and retrieval techniques:
11.2.1 The Frame Problem

A fluid mix of framed experience, values and contextual information that provides a framework
for evaluating and incorporating new experiences and information. It originates and is applied

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

in the minds of “knowers”. In organizations, it often becomes embedded not only in documents Notes
or repositories but also in organizational routines, processes, practices, and norms.

° Actionable information.

° The integration of ideas, experience, intuition, skill, and lessons learned that has the
potential to create value for a business, its employees, products and services, customers
and ultimately shareholders by informing decisions and improving actions.

° Knowledge is information combined with understanding and capability; it “lives” in the
minds of people. Typically, knowledge provides a level of predictability that usually
stems from the recognition of patterns.

° Knowledge is information that has been generalized to increase applicability.

Knowledge can be represented in following ways:

° Frame: A single know-what knowledge structure containing slots.
° Slot: Element of the frame that contains one or more facets.

° Facets: Element that describes something about a slot.

° Demons: Procedures attached to slots that are fired circumstantially.
° Instance: Frame example.

Also, we can have the following relationships between frames:

° Slot Sub-concepts: Contains links to other frames which represent sub-concepts.
° Slot Type: GENERIC or INSTANCE.

° Slot with facet other containing another frame.

Facets may take one of the following forms:

° Values: Contains the slot (single or multiple) value.

° Default: Used if there is not other value present.

° Range: Informs about the kind of information the slot can contain.

° if-added: Procedural attachment which specifies an action to be taken when a value in the
slot is added or modified (forward chaining, data-driven, event-driven or bottom-up
reasoning).

° if-needed: Procedural attachment which triggers a procedure which goes out to get

information which the slot doesn’t have (backward chaining, goal driven, expectation
driven or top-down reasoning).

° Other: May contain frames, rules, semantic networks, or other types of knowledge
11.2.2 Indexed Organization

Each record in the file has one or more embedded keys (referred to as key data items); each key
is associated with an index. An index provides a logical path to the data records according to the
contents of the associated embedded record key data items. Indexed files must be direct-access
storage files. Records can be fixed length or variable length.

Each record in an indexed file must have an embedded prime key data item. When records are
inserted, updated, or deleted, they are identified solely by the values of their prime keys. Thus,
the value in each prime key data item must be unique and must not be changed when the record

LOVELY PROFESSIONAL UNIVERSITY 203



Introduction to Artificial Intelligence & Expert Systems

204

Notes

is updated. You tell COBOL the name of the prime key data item in the RECORD KEY clause of
the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded alternate key data
items. Each alternate key provides another means of identifying which record to retrieve. You
tell COBOL the name of any alternate key data items on the ALTERNATE RECORD KEY clause
of the file-control paragraph.

AN

Caution The key used for any specific input-output request is known as the key of reference.

An indexed file contains records ordered by a record key. Each record contains a field that
contains the record key. The record key uniquely identifies the record and determines the
sequence in which it is accessed with respect to other records. A record key for a record might be,
for example, an employee number or an invoice number.

An indexed file can also use alternate indexes, that is, record keys that let you access the file
using a different logical arrangement of the records. For example, you could access the file
through employee department rather than through employee number.

The record transmission (access) modes allowed for indexed files are sequential, random, or
dynamic. When indexed files are read or written sequentially, the sequence is that of the key
values.

11.2.3 Hashed Files

Computer security is an important aspect for most businesses. Many organizations use a process
of hashing data into hash files to encrypt important data. Hash data is a numerical representation
of data and is not easy for a human to interpret. A hash file is a file that has been converted into
a numerical string by a mathematical algorithm. This data can only be understood after it has
been unencrypted with a hash key.

The process of hashing is the mathematical conversion of a string of characters into a smaller
value that is typically called a hash key. This new value represents the original character string
after it has been encrypted. Hashing is often used in databases as a method of creating an index.
Because hashed values are smaller than strings, the database can perform reading and writing
functions faster.

—]]

Notes Hash files are commonly used as a method of verifying file size. This process is
called check-sum verification. When a file is sent over a network, it must be broken into
small pieces and reassembled after it reaches its destination. In this situation, the hash
number represents the size of the data in a file. The hash can then be used as a tool for
validating the entire file was successfully transmitted over the network.

Hash functions are mostly used to accelerate table lookup or data comparison tasks such as
finding items in a database, detecting duplicated or similar records in a large file, finding
similar stretches in DNA sequences, and so on.

They represent one-way algorithms with a predefined size. If there was a decryption to hash
functions, we would have a reversible function which is not available in this scenario. However,
if there was, we would have the following. We know that the length could be any. Take a file
with 1024 TB in size and parse it through a hash function. We get a block of [i]N (say N is 64 bits)

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

which is eight characters that we can even memorize. Now suppose you place those characters Notes
in your ‘decrypter’ and you get 1024 TB ‘decompressed’. Most plainly said, we have a simple

equation where we have three variables (a, b and ¢). Within hash functions we only know the

value of the output which would be (if ¢ = (a + b)) the letter ‘c’. So we need 2*c attempts to find out

the result which means brute-force.

Figure 11.1: Working of Hash Function

hash
keys function hashes

00

John Smith o1
. 02
Lisa Smith ==
Sam Doe o
05

SandraDee i

A hash function should be referentially transparent (stable), i.e., if called twice on input that is
“equal” (for example, strings that consist of the same sequence of characters), it should give the
same result. There is a construct in many programming languages that allows the user to
override equality and hash functions for an object: if two objects are equal, their hash codes must
be the same. This is crucial to finding an element in a hash table quickly, because two of the same
element would both hash to the same slot.

All hash functions that map a larger set of data to a smaller set of data cause collisions. Such hash
functions try to map the keys to the hash values as evenly as possible because collisions become
more frequent as hash tables fill up. Thus, single-digit hash values are frequently restricted to
80% of the size of the table. Depending on the algorithm used, other properties may be required
as well, such as double hashing and linear probing. Although the idea was conceived in the
1950s, the design of good hash functions is still a topic of active research.

Hash functions are related to (and often confused with) checksums, check digits, fingerprints,
randomization functions, error correcting codes, and cryptographic hash functions. Although
these concepts overlap to some extent, each has its own uses and requirements and is designed
and optimized differently.

Hash Tables

Hash functions are primarily used in hash tables, to quickly locate a data record (e.g., a dictionary
definition) given its search key (the headword). Specifically, the hash function is used to map the
search key to an index; the index gives the place in the hash table where the corresponding
record should be stored. Hash tables, in turn, are used to implement associative arrays and
dynamic sets.

Typically, the domain of a hash function (the set of possible keys) is larger than its range (the
number of different table indexes), and so it will map several different keys to the same index.
Therefore, each slot of a hash table is associated with (implicitly or explicitly) a set of records,
rather than a single record. For this reason, each slot of a hash table is often called a bucket, and
hash values are also called bucket indices.

Thus, the hash function only hints at the record’s location—it tells where one should start
looking for it. Still, in a half-full table, a good hash function will typically narrow the search

LOVELY PROFESSIONAL UNIVERSITY 205



Introduction to Artificial Intelligence & Expert Systems

206

Notes

down to only one or two entries. Hash functions are also used to build caches for large data sets
stored in slow media. A cache is generally simpler than a hashed search table, since any collision
can be resolved by discarding or writing back the older of the two colliding items. This is also
used in file comparison.

11.2.4 Conceptual Indexing

Teaching for conceptual change primarily involves — uncovering students’ preconceptions about
a particular topic or phenomenon and using various techniques to help students change their
conceptual framework. The vast majority of research on conceptual change instruction has been
confined to science education, while research in other subject areas has been scarce. However,
outside of school, students develop strong (mis)conceptions about a wide range of concepts
related to non-scientific domains, such as how the government works, principles of economics,
the utility of mathematics, the reasons for the Civil Rights movement, the nature of the writing
process, and the purpose of the electoral college. Conceptual change instruction can help students
overcome misconceptions and learn difficult concepts in all subject areas.

Conceptual change is not only relevant to teaching in the content areas, but it is also applicable
to the professional development of teachers and administrators.

Example: As constructivist approaches to teaching gain popularity, the role of the teacher
changes. Teachers must learn different instructional strategies, but they must also reconceptualize
or change their conception about the meaning of teaching. This change implies conceiving of
teaching as facilitating, rather than managing learning and changing roles from the “sage on the
stage” to a “guide on the side.” Likewise, a shift has occurred for school media specialists
(formerly known as librarians). Their role in the school has changed from being “keeper of the
books” to “collaborative planner,” working in partnership with teachers, school administrators
and the community.

Conceptual change is of particular relevance in business and professional communities.
Companies often restructure, changing their business strategies and processes to remain
competitive and responsive to the needs of their customers. The advancement of technology has
also initiated a trend in the restructuring of industrialization. Lansky states that technological
innovation, globalization, and industrial relocation are leaving only two general types of paid
work in advanced industrialized countries: technical jobs, which center on problem-solving,
and interpersonal jobs, which require a “human touch”. Lansky (2000) observes that the
contemporary work force can be divided into three categories. The first is “highly skilled and
highly paid technicians [and] providers of interpersonal services”. The second group consists of
“lower paid technicians and lower paid providers of interpersonal services”. The third group
comprises workers “without the education, skills or connections needed to become technicians
or interpersonal workers” (Lansky, 2000). Due to this trend toward “upskilling,” the first and
second groups benefit from the changes in industry; the third group faces the possibility of
unemployment.

Conceptual change is not limited to the company level; it can also occur at the level of an entire
industry. Hospitals are now known as “medical centers.” Those who receive care in such facilities
are now termed “clients” rather than “patients.” Banks have been replaced by “financial centers.”
Employees of organizations are now considered “associates.” Companies are beginning to
view themselves as “learning organizations” instead of “corporations.” These are not simply
changes in terminology; the changes signify conceptual change.

Restructuring in companies or entire industries often requires employees to re-conceptualize
their roles and responsibilities and change the way they perform their jobs. Teaching new job

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

skills and new procedures to employees is relatively easy to accomplish; bringing about a Notes
conceptual change in how these workers view their organizational roles is a far more difficult
undertaking. One such example is the shift in scope of practice for health psychologists. The role
of these practitioners has shifted away from that of “peripheral case consultants” who simply
provide psychological interventions to “primary care case managers,” who actively manage the
care of their clients. In reflecting on training health psychologists as primary care case managers,
James and Folen emphasize “that the most arduous task in bringing about this shift was neither the
training nor the demanding workload. Rather, it was bringing about a conceptual shift in traditionally
trained psychology interns, whose training resists going beyond traditional psychological interventions”.
In the early 1980s, a group of science education researchers and science philosophers at Cornell
University developed a theory of conceptual change . This theory is based on Piaget’s notions of
disequilibration and accommodation as well as Thomas Kuhn’s description of scientific revolution
(Kuhn, 1970). According to Kuhn, scientific revolutions have followed a consistent pattern.
Firstly, a dominant scientific paradigm — a basic way of perceiving, thinking, valuing, and doing
— fell into a “state of crisis” by failing to provide solutions or explanations to deal with significant
problems identified by the scientific community. Secondly, an alternative paradigm with the
potential to solve these problems had to be available. The existence of these two conditions
increased the probability of a “paradigm shift,” or universal adoption of a new framework for
thinking.

11.2.5 Retrieval Techniques

An information retrieval process begins when a user enters a query into the system. Queries are
formal statements of information needs, for example search strings in web search engines. In
information retrieval, a query does not uniquely identify a single object in the collection.
Instead, several objects may match the query, perhaps with different degrees of relevancy.

An object is an entity that is represented by information in a database. User queries are matched
against the database information. Depending on the application the data objects may be, for
example, text documents, images, audio, mind maps or videos. Often the documents themselves
are not kept or stored directly in the IR system, but are instead represented in the system by
document surrogates or metadata.

Most IR systems compute a numeric score on how well each object in the database matches the
query, and rank the objects according to this value. The top ranking objects are then shown to the
user. The process may then be iterated if the user wishes to refine the query.

AN

Caution Don’t apply all information. First extract it and convert it into knowledge.

g

Task  Draw a knowledge discovery diagram (KDD).

Self Assessment

State whether the following statements are true or false:

4. Knowledge is information that has been generalized to increase applicability.
5. Values informs about the kind of information the slot can contain.
6.  Records can not be fixed length or variable length.

LOVELY PROFESSIONAL UNIVERSITY 207



Introduction to Artificial Intelligence & Expert Systems

208

Notes

11.3 Partial Match Techniques

Many different measures for evaluating the performance of information retrieval systems have
been proposed. The measures require a collection of documents and a query. All common
measures described here assume a ground truth notion of relevancy: every document is known
to be either relevant or non-relevant to a particular query. In practice, queries may be ill-posed
and there may be different shades of relevancy.

Precision is the fraction of the documents retrieved that are relevant to the user’s information
need. In binary classification, precision is analogous to positive predictive value. Precision
takes all retrieved documents into account. It can also be evaluated at a given cut-off rank,
considering only the topmost results returned by the system. Note that the meaning and usage
of “precision” in the field of Information Retrieval differs from the definition of accuracy and
precision within other branches of science and technology.

Recall is the fraction of the documents that are relevant to the query that are successfully retrieved.

In binary classification, recall is often called sensitivity. So it can be looked at as the probability
that a relevant document is retrieved by the query.

It is trivial to achieve recall of 100% by returning all documents in response to any query.
Therefore recall alone is not enough but one needs to measure the number of non-relevant
documents also, for example by computing the precision.

The proportion of non-relevant documents that are retrieved, out of all non-relevant documents
available.

11.3.1 Feature-based Techniques

The feature-based techniques extract local regions of interest (features) from the images and
identify the corresponding features in each image of the sequence. Such algorithms have initially
been developed for tracking a small number of salient features in long image sequences. The
tracking process can be divided into two major subtasks: feature extraction and feature tracking.
One can extract features only in the first image and search for the same features in the subsequent
images. This dynamic feature extraction scheme is advocated by the KLT Tracker. Alternatively,
one can find features in each static image prior to tracking and then find the corresponding
features along the sequence. Most of the feature tracking algorithms, including our IPAN Tracker,
operate in this way, although the dynamic feature extraction seems to be more natural and
reliable than the static one: the temporal information helps decide where and how to search for
features in the next frame.

In order to make use of features in processing geometric models, some core common aspects
exist. These apply irrespective of the domain of problems and the particular problems at hand.
The relevance of individual aspects may vary. These are as follows:

1. Identication of Features: A particular feature of interest in a given 3D model must be
specified in a way such that it can be algorithmically identified in the 3D data. This
definition can be a mix of topological properties, geometric metrics, colour and texture
attributes and so on. Some higher-level features may be defined in terms of simpler low-
level features. Such hierarchies of features are common in literature.

2. Recognition of Features: Recognition of a feature in the given 3D model is an essential
computational part feature-based processing of geometric models. For detecting an
individual model, typically specialised filters need to be implemented.

3. Suppressing Features: By suppressing a feature we mean removing a local instance of the
feature while minimally disturbing the data around the feature.

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

4. Reconstruction of Features: This is an inverse of “suppressing features.” By reconstruction Notes
we mean restoration of a previously suppressed feature in the data, preferably, without
any loss of information of the original data.

5. Encoding of Features: A machine representation of features, preferably a compact one,
must be developed.

6.  Feature Space Conversion: Given a model described in one feature space, often there is a
requirement to convert the description to another feature space.

11.3.2 Structure-based Techniques

Structure-based techniques serve two purposes: test coverage measurement and structural test
case design. They are often used first to assess the amount of testing performed by tests derived
from specification-based techniques, i.e. to assess coverage. They are then used to design additional
tests with the aim of increasing the test coverage. Structure-based test design techniques are a
good way of generating additional test cases that are different from existing tests. They can help
ensure more breadth of testing, in the sense that test cases that achieve 100% coverage in any
measure will be exercising all parts of the software from the point of view of the items being
covered.

Software testing is a process of executing a program or application with the intent of finding the
software bugs.

It can also be stated as the process of validating and verifying that a software program or
application or product. Meets the business and technical requirements that guided it’s design
and development. It provides Works as expected. It can be implemented with the same
characteristic.

Let’s break the definition of software testing into the following parts:
1. Process: Testing is a process rather than a single activity.

2. All Life Cycle Activities: Testing is a process that’s take place throughout the Software
Development Life Cycle (SDLC).

The process of designing tests early in the life cycle can help to prevent defects from being
introduced in the code. Sometimes it’s referred as “verifying the test basis via the test design”.
The test basis includes documents such as the requirements and design specifications.

Static Testing: It can test and find defects without executing code. Static Testing is done during
verification process. This testing includes reviewing of the documents (including source code)
and static analysis. This is useful and cost effective way of testing. For example, reviewing,
walkthrough, inspection, etc.

Dynamic Testing: In dynamic testing, the software code is executed to demonstrate the result of
running tests. It’s done during validation process. For example, unit testing, integration testing,
system testing, etc.

Planning: We need to plan as what we want to do. We control the test activities, we report on
testing progress and the status of the software under test.

Preparation: We need to choose what testing we will do, by selecting test conditions.

Evaluation: During evaluation we must check the results and evaluate the software under test
and the completion criteria, which helps us to decide whether we have finished testing and
whether the software product has passed the tests.

Software Products and Related Work Products: Along with the testing of code the testing of
requirement and design specifications and also the related documents like operation, user and
training material is equally important.

LOVELY PROFESSIONAL UNIVERSITY 209



Introduction to Artificial Intelligence & Expert Systems

210

Notes

Self Assessment

State whether the following statements are true or false:
7. In binary classification, precision is analogous to negative predictive value.

8. Recognition of a feature in the given 3D model is an essential computational part feature-
based processing of geometric models.

9. Structure-based test design techniques are a good way of generating additional test cases
that are different from existing tests.

11.4 Integrating Knowledge in Memory

Knowledge integration is the process of synthesizing multiple knowledge models (or
representations) into a common model (representation).

Comparison of information integration involves merging information having different schemas
and representation models, knowledge integration focuses more on synthesizing the
understanding of a given subject from different perspectives.

' Example: Multiple interpretations are possible of a set of student grades, typically each
from a certain perspective.

An overall, integrated view and understanding of this information can be achieved if these
interpretations can be put under a common model, say, a student performance index. The
Web-based Inquiry Science Environment (WISE), from the University of California at Berkeley
has been developed along the lines of knowledge integration theory.

Knowledge integration has also been studied as the process of incorporating new information
into a body of existing knowledge with an interdisciplinary approach. This process involves
determining how the new information and the existing knowledge interact, how existing
knowledge should be modified to accommodate the new information, and how the new
information should be modified in light of the existing knowledge.

A learning agent that actively investigates the consequences of new information can detect and
exploit a variety of learning opportunities; e.g., to resolve knowledge conflicts and to fill
knowledge gaps. By exploiting these learning opportunities the learning agent is able to learn
beyond the explicit content of the new information. The machine learning program KI, developed
by Murray and Porter at the University of Texas at Austin, was created to study the use of
automated and semi-automated knowledge integration to assist knowledge engineers
constructing a large knowledge base. A possible technique which can be used is semantic matching.
More recently, a technique useful to minimize the effort in mapping validation and visualization
has been presented which is based on Minimal Mappings. Minimal mappings are high quality
mappings such that (i) all the other mappings can be computed from them in time linear in the
size of the input graphs, and (ii) none of them can be dropped.

11.4.1 Hypertext

A special type of database system, invented by Ted Nelson in the 1960s, in which objects (text,
pictures, music, programs, and so on) can be creatively linked to each other. When you select an
object, you can see all the other objects that are linked to it. You can move from one object to
another even though they might have very different forms.

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

Notes
Example: While reading document about Mozart, you might click on the phrase Violin
Concerto in A Major, which could display the written score or perhaps even invoke a recording of
the concerto. Clicking on the name Mozart might cause various illustrations of Mozart to appear
on the screen. The icons that you select to view associated objects are called Hypertext links or
buttons.

Hypertext systems are particularly useful for organizing and browsing through large databases
that consist of disparate types of information. There are several Hypertext systems available for
Apple Macintosh computers and PCs that enable you to develop your own databases. Such
systems are often called authoring systems. HyperCard software from Apple Computer is the
most famous.

Hypertext is the presentation of information as linked network of nodes which readers are free
to navigate in a non-linear fashion. It allows for multiple authors, a blurring of the author and
reader functions, extended works with diffuse boundaries, and multiple reading paths.

The term “hypertext” was defined as “non-sequential writing”.

Many subsequent writers have taken hypertext to be a distinctly electronic technology — one
which must involve a computer.

l)

/s
Did u know? Janet Fiderio, in her overview “A Grand Vision,” writes:

“Hypertext, at its most basic level, is a DBMS that lets you connect screens of information using
associative links. At its most sophisticated level, hypertext is a software environment for collaborative
work, communication, and knowledge acquisition. Hypertext products mimic the brain’s ability to
store and retrieve information by referential links for quick and intuitive access.”

Self Assessment

State whether the following statements are true or false:

10. Hypertext systems are particularly useful for organizing and browsing through large
databases.

11.  The term “hypertext” was defined as sequential writing.

12.  HyperCard software from Apple Computer is the most famous.

11.5 Memory Organization System

In the following aspects, you can see the Memory Organization System:
11.5.1 HAM, a Model of Memory

Storage in human memory is one of three core process of memory, along with recall and
encoding. It refers to the retention of information, which has been achieved through the encoding
process, in the brain for a prolonged period of time until it is accessed through recall. Modern
memory psychology differentiates the two distinct type of memory storage: short-term memory
and long-term memory. In addition, different memory models have suggested variations of
existing short-term and long-term memory to account for different ways of storing memory.
Varieties of different memory models have been proposed to account for different types of
recall processes, including cued recall, free recall, and serial recall. In order to explain the recall

LOVELY PROFESSIONAL UNIVERSITY 211



Introduction to Artificial Intelligence & Expert Systems

212

Notes

process, however, the memory model must identify how an encoded memory can reside in the
memory storage for a prolonged period of time until the memory is accessed again, during the
recall process.

=/4|

Notes Not all models use the terminology of short-term and long-term memory to explain
memory storage; the Dual-Store theory and refined version of Atkinson-Shiffrin Model of
Memory (Atkinson 1968) uses both short-term and long-term memory storage, but others
do not.

The short-term memory refers to the ability to hold information from immediate past for a
short duration of time. According to the Atkinson-Shiffrin Model of Memory, in the process of
Encoding, perceived memory enters the brain and can be quickly forgotten if the sensory
information is not stored further in the short-term memory. The information is readily accessible
in the short-term memory for only a short time. Baddeley suggested that memory stored in
short-term memory is continuously deteriorating, which can eventually lead to forgetting in
the absence of rehearsal. George A. Miller suggested in his paper that the capacity of the short-term
memory storage is approximately seven items, plus or minus two, but modern researchers are
showing that this itself is subject to numerous variability, including the stored items’ phonological
properties.

11.5.2 Memory Organization with E-MOPs

Roger Schank and his students at Yale University have developed several computer systems
which perform different functions related to the use of natural language, text, knowledge
representation, and memory organization. One system of particular interest was developed by
Janet Kolodner (1983a, 1983b, 1984) to study problems associated with the retrieval and
organization of reconstructive memory. Her system, called CYRUS (Computerized Yale Retrieval
and Updating System) stores episodes from the lives of former secretaries of state Cyrus Vance
and Edmund Muskie. The episodes are indexed and stored in long-term memory for subsequent
use in answering queries posted in English. The system has many of the other features. The basic
memory model in CYRUS is a network consisting of Episodie Memory Organization Packets
(E-MOPs). Each such E-MOP is a frame-like node structure which contains conceptual information
related to different categories of episodic events. E-MOPs are indexed in memory by one or
more distinguishing features.

'E Example: There are basic E-MOPs for diplomatic meetings with foreign dignitaries,
specialized political conferences, traveling, sight-seeing, negotiations, state dinners, as well as
other basic events related to diplomatic state functions.

The diplomatic-meeting E-MOP, called $MEET, contains information which is common to all
diplomatic meeting events. The common information which characterizes such an E-MOP is
called its content.

AN

Caution Use of truth table should be handled carefully.

2

Tusk  Find the effect of propositional logic in real life.

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Knowledge Organization and Management

Self Assessment Notes

State whether the following statements are true or false:

13.  The long-term memory refers to the ability to hold information from immediate past for
a short duration of time.

14.  Varieties of same memory models have been proposed to account for different types of
recall processes.

15.  E-MOPs are indexed in memory by one or more distinguishing features.

11.6 Summary

° The maim aspect of knowledge organization is frame problem.

° Among the different file organization is indexed organizations that allows efficient access
are based on the use of a hash function.

° One of the important issue is retrieval techniques is concerned with a specific aspect of
research and development (R&D) in information retrieval (IR) systems-that is, the means
for identifying retrieving, and/or ranking texts in a collection of texts, that might be
relevant to a given query (or useful for resolving a particular problem).

° Hypertext systems are examples of information organized through associative links, like
associative networks.

° The HAM is informed of new sentences; they are parsed and formed into new tree-like
memory structures or integrated with existing ones.

11.7 Keywords

Exact Match Retrieval Techniques: These are those that require that the request model be
contained, precisely as represented in the query formulation, within the text representation.

Expert System: It can be expected to have thousands or even tens of thousands of rules (or their
equivalent) in its KB.

Index File: It is searched to find the desired record key and obtain the corresponding block
address the block is then accessed using this address.

Indexing: It is accomplished by organizing the information in some way for easy access one way
to index is by segregating knowledge.

Object Attributes: It can also serve as indices to locate items based on the attribute values.

Retrieval Techniques: These are based on formal models of document retrieval and indexing.

11.8 Review Questions

1 Explain knowledge organization and management in AL
2 Explain the indexing and retrieval technique.

3. What is integrating knowledge in memory?
4

Explain the important characteristics should a computer memory organization system
possess.

5. Describe the basic operations must a program perform in order to access specific chunks of
knowledge?

LOVELY PROFESSIONAL UNIVERSITY 213



Introduction to Artificial Intelligence & Expert Systems

Notes Answers: Self Assessment

1. True 2. False
3. False 4. True
5. False 6. False
7. False 8. True
9. True 10. True
11. False 12.  True
13. False 14. False
15.  True

11.9 Further Readings

N

Books

£

Onli-r;; links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

http:/ /www.cs.cmu.edu/~wing/publications/Wing79.pdf

http:/ /www.cs.tut.fi/ ~moncef/publications/MTA_Editorial_09_2006.pdf
http:/ /www.di.unito.it/~phd/documents/tesi/XVII/ValenteFinal. pdf
http:/ /www.mif.vu.lt/~algis/DSA /sciencertree9.pdf

http://www.open.edu/openlearn/money-management/management/
technology-management/knowledge-technologies-context/content-section-3.4.1

http:/ /www.rci.rutgers.edu/~ph221/publications/Hemmer_Steyvers_PB_R.pdf

http://www.unc.edu/~sunnyliu/inls258/Introduction_to_ Knowledge_
Management.html

214 LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

Unit 12: Natural Language Processing Notes

CONTENTS
Objectives
Introduction
12.1 Overview of Linguistics
12.1.1  Computational Linguistics
12.2  Grammars and Languages
12.3 Basic Parsing Techniques
12.3.1 Top Down Parsing
1232  Bottom Up Parsing
12.4 Semantic Analysis and Representation Structures
1241  Semantic Analysis
12.42  Syntactic Analysis
1243 Knowledge Representation (KR)
12.5 Natural Language Generalization
12.5.1  Natural Language Systems
12.5.2  Recognition and Classification Process
12.6 Summary
12.7 Keywords
12.8 Review Questions

12.9 Further Readings

Objectives

After studying this unit, you will be able to:

° Discuss an overview of Linguistics

° Explain Grammars and Languages in Al

° Identify various Basic Parsing Techniques

° Describe Semantic Analysis and Representation Structures
° Discuss Natural Language Generalization
Introduction

Natural Language Processing (NLP) is a field of computer science, artificial intelligence, and
linguistics concerned with the interactions between computers and human (natural) languages.
As such, NLP is related to the area of human — computer interaction. Many challenges in NLP
involve natural language understanding — that is, enabling computers to derive meaning from

LOVELY PROFESSIONAL UNIVERSITY 215



Introduction to Artificial Intelligence & Expert Systems

216

Notes

human or natural language input. Up to the 1980s, most NLP systems were based on complex
sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in NLP
with the introduction of learning algorithms for language processing. This was due both to the
steady increase in computational power resulting from Moore’s Law and the gradual lessening
of the dominance of Chomskyan theories of linguistics (e.g. transformational grammar), whose
theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-
learning approach to language processing. Some of the earliest-used machine learning algorithms,
such as decision trees, produced systems of hard if-then rules similar to existing hand-written
rules. Increasingly, however, research has focused on statistical models, which make soft,
probabilistic decisions based on attaching real-valued weights to the features making up the
input data. The caches language models upon which many speech recognition systems now rely
are examples of such statistical models. Such models are generally more robust when given
unfamiliar input, especially input that contains errors (as is very common for real-world data),
and produce more reliable results when integrated into a larger system comprising multiple
subtasks.

Many of the notable early successes occurred in the field of machine translation, due especially
to work at IBM Research, where successively more complicated statistical models were developed.
These systems were able to take advantage of existing multilingual textual corpora that had
been produced by the Parliament of Canada and the European Union as a result of laws calling
for the translation of all governmental proceedings into all official languages of the
corresponding systems of government. However, most other systems depended on corpora
specifically developed for the tasks implemented by these systems, which was (and often continues
to be) a major limitation in the success of these systems. As a result, a great deal of research has
gone into methods of more effectively learning from limited amounts of data.

Recent research has increasingly focused on unsupervised and semi-supervised learning
algorithms. Such algorithms are able to learn from data that has not been hand-annotated with
the desired answers, or using a combination of annotated and non-annotated data. Generally,
this task is much more difficult than supervised learning, and typically produces less accurate
results for a given amount of input data. However, there is an enormous amount of non-annotated
data available (including, among other things, the entire content of the World Wide Web),
which can often make up for the inferior results.

12.1 Overview of Linguistics

Linguistics is the study of human languages. It follows scientific approach. So it is also referred
to as linguistic science. Linguistics deals with describing and explaining the nature of human
languages. It treats language and the ways people use it as phenomena to be studied. Linguist is
one who is expertise in linguistics. Linguist studies the general principles of language
organization and language behavior. Linguistic analysis concerns with identifying the structural
units and classes of language. Linguists also attempt to describe how smaller units can be
combined to form larger grammatical units such as how words can be combined to form phrases,
phrases can be combined to form clauses, and so on. They also concerns what constrains the
possible meanings for a sentence. Linguists use intuitions about well-formedness and meaning
and mathematical models of structure such as formal language theory and model theoretic
semantics. Structure of language include morphemes, words, phrases, and grammatical classes.
Sub-fields with respect to linguistic structure are phonetics, phonology, morphology, syntax,
semantics, pragmatics, and discourse analysis. There are many branches of linguistics including
applied linguistics, computational linguistics, evolutionary linguistics, neurolinguistics,
cognitive linguistics and psycholinguistics. A linguist in the academic sense is a person who
studies natural language (an academic discipline known as linguistics).

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

T Notes

Notes  Ambiguously, the word is sometimes also used to refer to a polyglot (one who
knows several languages), or a grammarian (a scholar of grammar), but these two uses of
the word are distinct (and one does not have to be a polyglot in order to be an academic
linguist).

12.1.1 Computational Linguistics

Computational linguistics is an interdisciplinary field dealing with the statistical or rule-based
modeling of natural language from a computational perspective.

Traditionally, computational linguistics was usually performed by computer scientists who had
specialized in the application of computers to the processing of a natural language. Computational
linguists often work as members of interdisciplinary teams, including linguists (specifically
trained in linguistics), language experts (persons with some level of ability in the languages
relevant to a given project), and computer scientists. In general, computational linguistics draws
upon the involvement of linguists, computer scientists, experts in artificial intelligence,
mathematicians, logicians, philosophers, cognitive scientists, cognitive psychologists,
psycholinguists, anthropologists and neuroscientists, among others.

Computational linguistics has theoretical and applied components, where theoretical
computational linguistics takes up issues in theoretical linguistics and cognitive science, and
applied computational linguistics focuses on the practical outcome of modelling human language
use. Computational linguistics (CL) is a discipline between linguistics and computer science
which is concerned with the computational aspects of the human language faculty. It belongs to
the cognitive sciences and overlaps with the field of artificial intelligence (AlI), a branch of
computer science aiming at computational models of human cognition. Computational
linguistics has applied and theoretical components.

Self Assessment

State whether the following statements are true or false:

1.  Linguistics is the study of human languages.
2. There are some branches of linguistics.
3. Linguists also attempt to describe how bigger units can be combined to form smaller

grammatical units.

12.2 Grammars and Languages

In formal language theory, a grammar (when the context isn’t given, often called a formal
grammar for clarity) is a set of production rules for strings in a formal language. The rules
describe how to form strings from the language’s alphabet that are valid according to the
language’s syntax. A grammar does not describe the meaning of the strings or what can be done
with them in whatever context—only their form.

Formal language theory, the discipline which studies formal grammars and languages, is a
branch of applied mathematics. Its applications are found in theoretical computer science,
theoretical linguistics, formal semantics, mathematical logic, and other areas.

LOVELY PROFESSIONAL UNIVERSITY 217



Introduction to Artificial Intelligence & Expert Systems

218

Notes

A formal grammar is a set of rules for rewriting strings, along with a “start symbol” from which
rewriting starts. Therefore, a grammar is usually thought of as a language generator. However,
it can also sometimes be used as the basis for a “recognizer”—a function in computing that
determines whether a given string belongs to the language or is grammatically incorrect. To
describe such recognizers, formal language theory uses separate formalisms, known as automata
theory.

l)

Did u know? One of the interesting results of automata theory is that it is not possible to
design a recognizer for certain formal languages.

Parsing is the process of recognizing an utterance (a string in natural languages) by breaking it
down to a set of symbols and analyzing each one against the grammar of the language. Most
languages have the meanings of their utterances structured according to their syntax—a practice
known as compositional semantics. As a result, the first step to describing the meaning of an
utterance in language is to break it down part by part and look at its analyzed form.

A grammar mainly consists of a set of rules for transforming strings. (If it only consisted of these
rules, it would be a semi-Thue system.) To generate a string in the language, one begins with a
string consisting of only a single start symbol. The production rules are then applied in any
order, until a string that contains neither the start symbol nor designated non-terminal symbols
is produced. A production rule is applied to a string by replacing one occurrence of its left-hand
side in the string by its right-hand side (cf. the operation of the theoretical Turing machine). The
language formed by the grammar consists of all distinct strings that can be generated in this
manner. Any particular sequence of production rules on the start symbol yields a distinct string
in the language. If there are multiple ways of generating the same single string, the grammar is
said to be ambiguous.

' Example: Assume the alphabet consists of a and b, the start symbol is S, and we have the
following production rules:

S — aSb

S —ba
Then we start with S, and can choose a rule to apply to it. If we choose rule 1, we obtain the string
aSh. If we then choose rule 1 again, we replace S with aSb and obtain the string aaSbb. If we now

choose rule 2, we replace S with ba and obtain the string aababb, and are done. We can write this
series of choices more briefly, using symbols:

S = aSb = aaSbb = aababb.

The language of the grammar is then the infinite set {a"bab" | n > 0} = {ba, abab, aababb, aaababbb,...},
where a* is a repeated k times.

A context-free grammar is a grammar in which the left-hand side of each production rule
consists of only a single non-terminal symbol. This restriction is non-trivial; not all languages
can be generated by context-free grammars. Those that can are called context-free languages.

The language defined above is not a context-free language, and this can be strictly proven using
the pumping lemma for context-free languages, but for example the language {a"b" In > 1} (at
least 1 a followed by the same number of b’s) is context-free, as it can be defined by the grammar
G, with N = {S}, X = {a, b}, S the start symbol, and the following production rules:

1. S — aSb
2. S—ab

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

A context-free language can be recognized in O(n®) time. For every context-free language, a Notes
machine can be built that takes a string as input and determines in O(r°) time whether the string

is a member of the language, where n is the length of the string. Deterministic context-free

languages are a subset of context-free languages that can be recognized in linear time. There

exist various algorithms that target either this set of languages or some subset of it.

In regular grammars, the left hand side is again only a single non-terminal symbol, but now the
right-hand side is also restricted. The right side may be the empty string, or a single terminal
symbol, or a single terminal symbol followed by a non-terminal symbol, but nothing else.

The language defined above is not regular, but the language {a"b" | m, n > 1} (at least 1 a followed
by at least 1 b, where the numbers may be different) is, as it can be defined by the grammar G,
with N = {S, A, B}, X = {a, b}, S the start symbol, and the following production rules:

1. S —aA
2. A—aA
3. A — bB
4. B — bB
5. B—e

All languages generated by a regular grammar can be recognized in linear time by a finite state
machine. Although, in practice, regular grammars are commonly expressed using regular
expressions, some forms of regular expression used in practice do not strictly generate the
regular languages and do not show linear recognitional performance due to those deviations.

Self Assessment

State whether the following statements are true or false:
4. A grammar is a set of production rules for strings in a formal language.

5. Grammar is the process of recognizing an utterance by breaking it down to a set of
symbols and analyzing each one against the grammar of the language.

6. A production rule is applied to a string by replacing one occurrence of its right-hand side
in the string by its left-hand side.

12.3 Basic Parsing Techniques

‘Parsing’ is the term used to describe the process of automatically building syntactic analyses of
a sentence in terms of a given grammar and lexicon. The resulting syntactic analyses may be
used as input to a process of semantic interpretation, (or perhaps phonological interpretation,
where aspects of this, like prosody, are sensitive to syntactic structure). Occasionally, ‘parsing’ is
also used to include both syntactic and semantic analysis. We use it in the more conservative
sense here, however. In most contemporary grammatical formalisms, the output of parsing is
something logically equivalent to a tree, displaying dominance and precedence relations between
constituents of a sentence, perhaps with further annotations in the form of attribute-value
equations (‘features’) capturing other aspects of linguistic description. However, there are many
different possible linguistic formalisms, and many ways of representing each of them, and
hence many different ways of representing the results of parsing. We shall assume here a simple
tree representation, and an underlying context-free grammatical (CFG) formalism. However,
all of the algorithms described here can usually be used for more powerful unification based
formalisms, provided these retain a context-free ‘backbone’, although in these cases their

LOVELY PROFESSIONAL UNIVERSITY 219



Introduction to Artificial Intelligence & Expert Systems

220

Notes

complexity and termination properties may be different. Parsing algorithms are usually designed
for classes of grammar rather than tailored towards individual grammars.

ig

Notes There are several important properties that a parsing algorithm should have if it is
to be practically useful. It should be ‘sound” with respect to a given grammar and lexicon;
that is, it should not assign to an input sentence analyses which cannot arise from the
grammar in question.

It should also be ‘complete’; that it should assign to an input sentence all the analyses it can have
with respect to the current grammar and lexicon. Ideally, the algorithm should also be “efficient’,
entailing the minimum of computational work consistent with fulfilling the first two
requirements, and ‘robust”: behaving in a reasonably sensible way when presented with a
sentence that it is unable to fully analyse successfully. In this discussion, we generally ignore the
latter two requirements: to some extent, they are covered by the companion section on ‘chart
parsing’. There are several other dimensions on which is useful to characterise the behaviour of
parsing algorithms. One can characterise their search strategy in terms of the characteristic
alternatives of depth-first or breadth-first (q.v.). Orthogonally, one can characterise them in
terms of the direction in which a structure is built: from the words upwards (‘bottom up’), or
from the root node downwards (‘top down’). A third dimension is in terms of the sequential
processing of input words: usually this is left-to-right, but right-to-left or ‘middle-out” strategies
are also feasible and may be preferable in some applications (e.g. parsing the output of a speech
recogniser).

12.3.1 Top Down Parsing

We can illustrate a simple top down algorithm for a CFG as follows. Let the grammar contain
the following rules (which for simplicity also introduce lexical entries instead of presupposing
a separate component for this):

S— NP VP

NP — they | fish
VP — Aux VP
VP — Vi

VP — Vt NP
Aux — can

Vi — fish

Vt — can

This will assign to the sentence ‘they can sh’ two distinct analyses corresponding to two
interpretations ‘they are able/permitted to sh” and ‘they put sh in cans’. (It will also generate
several other good sentences and lots of odd ones). The top down algorithm is very simple. We
begin with the start symbol, in this case, S, and see what rules it figures in as the mother. Then
we look at the daughters of these rules and see whether the first one matches the next word in the
input. If it does, we do the same for the remaining daughters. If not, we go through the same
loop again, this time matching the daughters of the rules already found with mothers of other
rules. The algorithm is easily illustrated on the input sentence ‘they sh’: the ‘dot’ precedes the
daughter of the rule we are currently looking at, and the level of indentation indicates which
rule has invoked the current action.

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

Rule Input Notes
S — NP VP they fish

NP — .they they fish

NP — they. fish

S—>NP.VP fish

VP — Vi fish

Vi — .fish fish

Vi — fish.

VP — Vi.

S — NP VP.

Of course, in parsing this sentence we have magically chosen the correct rule at each point, and
ignored choices which would not lead to a successful parse. To fully specify the algorithm we
would need to eliminate all this magic and provide an exhaustive mechanism for trying out all
possibilities. We can do this by non-deterministically trying out all alternatives at each point as
they arise, or, more flexibly, by casting our algorithm in the form of a set of operations on
representations that encode the state of a parse. Each parsing step takes an ‘item’, as we shall call
them, and produces a set of new items. These alternatives can be pursued in whatever order is
convenient. Parsing proceeds from an initial seed item and ends when no more steps are possible.
Each remaining item, if there are any, will then represent a successful parse of the input. An item
consists of a list of ‘dotted trees” with the most recent to the right, and a list of unconsumed
words. ‘Dotted trees’” are derived from dotted rules in an obvious way (a rule like S -; NP .VP is
represented [S NP .VP]) and represent the partial analyses built so far. The list of words is the
input remaining to be parsed. There are three basic operations that can be performed on an item:

(i)  If there is a word after a dot in the most recent tree that matches the next word in the input,
make a new item like the current one except that the dot follows the word, and the next
word is removed from the input. For example, an item of the form. < ... [NP .they], [they
can fish]> will yield a new item:

< ... [NP they.], [can fish] >

(ii)  If the most recent tree has the dot at the end of its daughters, integrate it with the tree to its
left, if there is one. So an item like:

<[S .NP VP], [NP they.], [can fish]>
yields a new one:
<[S [NP they] .VP], [can fish]>

(iii) If there is a rule whose left hand side matches the category following the dot in the most
recent tree, make a new item like the old one with the addition of a new tree derived from
the rules, with the dot preceding its daughters.

An item like

<[S .NP VP], [they can fish]>

yields one like:

<[S .NP VP], [NP .they], [they can fish]>

LOVELY PROFESSIONAL UNIVERSITY 221



Introduction to Artificial Intelligence & Expert Systems

222

Notes

The sequence of items corresponding to the sample parse of ‘they sh’ above begins:
0. <[.S], [they fish]>
1. < [S .NP VP], [they fish]>
2. <[S NP VP], [NP .they], [they fish]>
3. <[S .NP VP], [NP .fish], [they fish]>
4. <[S NP VP], [NP they.], [ fish]>
5. < [S [NP they] .VP], [ fish]>
6. < [S [NP they] .VP], [VP .Vi], [ fish]>
7. < [S [NP they] .VP], [VP .Vt NP], [ fish]>
etc.

Notice that both 2 and 3 were produced from 1, but that 3 was discarded because none of the
actions applied to it. The order in which new items are processed can be varied in order to give
depth first or breadth first search behaviour. Depending on the search strategy followed, the top
down algorithm may go into a loop when certain types of rule are found in the grammar. For
example, if we added rules for more complex types of NP, we would encounter ‘left recursion’
of the category NP:

NP -> NP ‘s N:possessive NPs like [[John] ‘s sister]
Now from an item like:

<5->.NPVP..>

we would produce one like

<NP->.NP‘sN..>

and this would in turn produce another
<NP->.NP‘sN..>

and so on. There are two solutions: either rewrite the grammar to eliminate left recursion,
which is always possible in principle, or add an extra step to the algorithm to check for repeated
items. Some grammars will potentially send any sound and complete parsing algorithm into a
loop: namely, those that contain cycles of the form A -> ...... -> A, where some symbol exhaustively
dominates itself. This is not necessarily a bug in the parsing algorithms: such grammars will
assign an infinite set of parse trees to any structure containing an A. Under these circumstances,
the parser is merely trying to do what it is supposed to do and find all possible parses.

12.3.2 Bottom Up Parsing
The operation of a bottom up algorithm for CFG can be illustrated by the following sequence of
operations for ‘they sh’: Structure Input so far remaining

[they fish]

[NP they] [fish]

[NP they][Vi fish] []

[NP they][Vp [Vi fish]] []

[S [NP they][Vp [Vi fish]]] []

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

We proceed by matching words to the right hand sides of rules, and then matching the resulting Notes
symbols, or sequences of symbols, to the right hand sides of rules until we have an S covering

the whole sentence. Again, we have magically made the right choices at each point. We can

provide a complete algorithm for one type of left-to-right, bottom up parsing procedure in

terms of operations on items like those used in the top down parser. (Since we shall only be

dealing with completely parsed constituents we can dispense with the dots.)

(i)  If there is a rule whose right hand side matches the next word in the input, create a new
item with a new tree made from that rule on the end of the tree list, and the remainder of
the input.

Example:

<[], [they fish]>
becomes:
<[NP they], [fish] >

(ii)  If there is a rule with n daughters matching the n most recent trees on the list, in order,
create a new item which combines those daughters into an instance of the mother:

<[NP they], [VP [Vi fish]], []>
becomes:
< [S [NP they][VP [Vi fish]]], []>

A successful parse is represented by an item with no more input and a single S rooted tree on the
list.

The sequence of items produced by this method in parsing ‘they sh’ is:

L. [they fish]
2. [NP they], [fish]

3. NP they], [NP fish] 1]

4. [NP they], [Vi fish] [

5. [NP they], [VP [Vi fish]] [

6. [S NP they] [VP [Vi fish]]] il

Nothing can happen to item 3 and it is discarded. This particular type of bottom up algorithm is
known as a ‘shift-reduce’ parser. Operation (i) shifts a word from the input on to the list of trees,
which is operating like a ‘stack’ (a last-in-first-out store) insofar as it is only possible to get at the
most recent items. Operation (ii) ‘reduces’ the list of trees by combining several of them from
the top of the stack into one constituent. A generalization of this type of algorithm is familiar
from computer science: the LR(k) family can be seen as shift-reduce algorithms with a certain
amount (‘’k” words) of look ahead to determine, for a set of possible states of the parser, which
action to take. The sequence of actions from a given grammar can be pre computed to give a
‘parsing table’ saying whether a shift or reduce is to be performed, and which state to go to next.
The use of this technique for natural language parsing has been promoted by Tomita (1987),
among others.

While in general, bottom up algorithms are more efficient than top down algorithms, one
particular phenomenon that they deal with only clumsily are ‘empty rules”: rules in which the
right hand side is the empty string. Such rules are theoretically dispensable in a context free

LOVELY PROFESSIONAL UNIVERSITY 223



Introduction to Artificial Intelligence & Expert Systems

224

Notes

framework (any grammar containing them can in principle be converted to one, usually much
larger, recognizing the same language which does not) but they are practically very useful in
describing, for example, movement phenomena, in a reasonably concise way. Bottom up parsers
find instances of such rules applied at every possible point in the input which can lead to much
wasted effort. A better parsing algorithm than either pure top down or pure bottom up can be
got by combining features of both. Operating bottom up means that the process is guided by
what is actually in the input, rather than what the grammar predicts might be there (which will
give a very large number of possibilities for a realistic grammar and lexicon). But imposing
some top down constraints means that we can use what we have already found, with our
knowledge about possible grammatical structures, to guide the search for what follows.

One such combined algorithm is the following. It is a member of the family of ‘left-corner’
parsing algorithms, since it begins at the left corner of the constituent it is trying to build, when
viewed pictorially:

Mother

/\

/\

‘Left Corner’ ......

It is also a ‘predictive’ parser, in that it uses grammatical knowledge to predict what should
come next, given what it has found already.

To describe this left-corner predictive parsing algorithm we extend our notion of an ‘item” to be:
<CurrentConstituent, RemainingInput, MotherCatSought,
DaughtersFound, DaughtersSought, StackOfIncompleteConstituents>

There are four operations creating new items from old:

° ‘Shift’ is as before, taking the next word from RemainingInput and making it (suitably
labelled) the CurrentConstituent.

° ‘Predict’ finds a rule whose leftmost daughter matches the CurrentConstituent, and then
fills the MotherCatSought, DaughtersFound, and DaughtersSought fields of the new item
as appropriate, copying these parts of the old item onto the StackOfIncompleteConstituents.

° ‘Match’ applies when the CurrentConstituent is the next item in DaughtersSought: the
new item has a null CurrentConstituent, and undergoes appropriate changes to the two
Daughters fields.

° ‘Reduce’ applies when there are no more DaughtersSought and creates an item with a new
CurrentConstituent built from the MotherCatSought and the DaughtersFound, popping
the most recent StackOfIncompleteConstituents entry to form the new Mother and
Daughters fields.

With the Predict operation defined as above the algorithm will be sound and complete. However,
it will derive no benefit from the top down information it carries, for that is not yet being used
to constrain parsing hypotheses. What we need to do is to check that the mother categories on
the rules found by Predict can be a ‘left corner” of the current MotherCatSought, i.e. can be the
leftmost daughter of some tree dominated by the MotherCat. This information can be calculated
from the grammar fairly easily: we will not show how to do this here but for the grammar given
above the ‘left-corner-of relation is:

<NP,S>
<Aux, VP>

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

<Vi, VP> Notes
<Vt,VP>

We illustrate with the more complex and ambiguous sentence ‘they can sh’, assuming that
Predict uses a left-corner check to filter candidate rules. For purposes of illustration, we will
expand the grammar with an extra rule Sigma -> S, where Sigma, by convention, is the start
symbol. Thus the full left-corner-of relation is:

<NP,Sigma>
8<NP,S>
<Aux, VP>
<Vi, VP>
<Vt, VP>

The initial item is based on the rule expanding the start category Sigma:

Operation Current Input Mother  Found Sought Stack

- they can fish Sigma 0 [s] -
1. Shift: [NP they] can fish Sigma 0 [s] = a
2. Predict 1: - can fish s (NP they] [vP] <Sigma, [1, [S) >—
3. Shift 2: [Vt can] £ish s [NP they] [vel <Sig=za, [], [S] ;-
4. Shift 2: [Aux can] fish s [P they] [VF] <Sigza, [1, [8] >_-
§. Predict 3: - £ish Ve [Vt can] (np] <8, [NP they].[\'P]_;

<Sig=ma, [, [S]>

6. Predict 4: - fish VP [Aux can] [VP] <S, [NP they]l, [VP]>
<Sigma, [1, [S]>

7. Shift 6: [P £ish] = VP [Aux can] [VF] <§, [NP theyl, [VP]>
<Sig=a, [1, [S]>

8. Shift 6: [Vi £ish] - VP [Aux can] [vP) <8, [NP theyl, [VP]>
<Sigma, [], [S]>

9. Shift b: [NP £ish] - P [Vt can) [KP) <S, [NP they], [VP]>
(Sis’ﬁll [J " [SJ>

10. Shift 5: [Vi £ish] - VP [Vt can] [nP] <S, [NP theyl, [VP]>
<Sig=ma, [, [S]>

11. Predict 8: - - VP [Vi £ish) [] <VP, [Aux can], [VP]
<8, [KP they], [VP]>
<S:i.g:na. o, s»

12. Reduce 11: [VP [Vi £ish]]

VP [Aux can) [VP] <8, [NP theyl, [VP]>
<Sigma, [, [S]>

13. Match 12: - Ve [Aux can], [ <S, [NP theyl, [VP]>
[VP [Vi f£ish]] <Sigma, [, [sS]>
14, Reduce 13: [VP can [VP £fieh]) s (NP they] [ve] <Sigma, [1, [S]>
18. Match 14: - g (NP tkey], [] <Sigzma, [], [S]>
[VP can [VP £ish]]
16. Reduce 15: [S they can fish] Sigza [ [s] -
17. Match 16: - Signa [S they can fish] [] =

LOVELY PROFESSIONAL UNIVERSITY 225



Introduction to Artificial Intelligence & Expert Systems

226

Notes

18. Reduce 17 [Sigza [S they can £ish]] - o = =

19. Match 9: - VP [Vt can], 8] <S, [NP they], [VP]>
[NP £ish]) <Sigma, [1, [S]>
20. Reduce 19: [VP can [NP fish]] s [NP they] [VF) <Sigzma, [, [S])>
21. Match 20: - s [NP they], 1 <Sigma, [1, [S]>
[VP can [NP fish]
22. Reduce 21: [S they can fish) Signa [] [s) -
23. Match 22: - Sigma [S they can f£ish] [] -

24. Reduce 23: [Sigma [S they can fish]) - - - -

Source: http://www.cs.ox.ac.uk/files/219/parsing.pdf

Notice that the ?ltering done by Predict eliminates several possible items based on the S -> NP
VP rule at the point where the NP "?sh'’ is the current constituent (items 7 and 9), because S is not
a left corner of VP, which is the current MotherCatSought. Items marked * lead to parsing paths
that do not go anywhere: these too could be ruled out by doing a left corner check when Shifting:
if the category of the item shifted is not a left corner of the ?rst item in DaughtersSought, then no
parse will result.

AN

Caution Each tagger has its meaning and importance.

g

Tusk  Read parts of speech (POS) tagger and their meaning.

Self Assessment

State whether the following statements are true or false:

7.  Parsing algorithms are usually designed for classes of grammar rather than tailored
towards individual grammars.

8. There is only one dimension on which is useful to characterise the behaviour of parsing
algorithms.

9. A successful parse is represented by an item with no more input and a single S rooted tree
on the list.

12.4 Semantic Analysis and Representation Structures

Computers are very fast and powerful machines, however, they process texts written by humans
in an entirely mindless way, treating them merely as sequences of meaningless symbols. The
main goal of language analysis is to obtain a suitable representation of text structure and thus
make it possible to process texts based on their content. This is necessary in various applications,
such as spell- and grammar-checkers, intelligent search engines, text summarization, or dialogue
systems.

Natural language text can be analyzed on various levels, depending on the actual application
setting. With regard to automatic processing of language data, the following analysis levels can
be distinguished: Morphological analysis gives a basic insight into natural language by studying
how to distinguish and generate grammatical forms of words arising through inflection

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

(i.e., declension and conjugation). This involves considering a set of tags describing grammatical Notes
categories of the word form concerned, most notably, its base form (lemma) and paradigm.

Automatic analysis of word forms in free text can be used for instance in grammar checker

development, and can aid corpus tagging, or semi-automatic dictionary compiling.

12.4.1 Semantic Analysis

Semantic and pragmatic analysis make up the most complex phase of language processing as
they build up on results of all the above mentioned disciplines. Based on the knowledge about
the structure of words and sentences, the meaning of words, phrases, sentences and texts is
stipulated, and subsequently also their purpose and consequences. From the computational
point of view, no general solutions that would be adequate have been proposed for this area.
There are many open theoretical problems, and in practice, great problems are caused by errors
on lower processing levels. The ultimate touchstone on this level is machine translation, which
hasn’t been implemented for Czech with satisfactory results yet.

One of the long-term projects of the NLP laboratory is the use of Transparent Intensional Logic
(TIL) as a semantic representation of knowledge and subsequently as a transfer language in
automatic machine translation. At the current stage, it is realistic to process knowledge in a
simpler form — considerably less complex tasks have been addressed, such as machine translation
for a restricted domain (e.g., official documents and weather reports), or semi-automatic machine
translation between close languages.

AN

Caution The resources exploited in these applications are corpora, semantic nets, and
electronic dictionaries.

In linguistics, c to the level of the writing as a whole, to their language-independent meanings.
It also involves removing features specific to particular linguistic and cultural contexts, to the
extent that such a project is possible. The elements of idiom and figurative speech, being cultural,
are often also converted into relatively invariant meanings in semantic analysis.

12.4.2 Syntactic Analysis

Parsing or syntactic analysis is the process of analysing a string of symbols, either in natural
language or in computer languages, according to the rules of a formal grammar. The term
“parsing” comes from Latin “pars”, meaning part (of speech).

The term has slightly different meanings in different branches of linguistics and computer
science. Traditional sentence parsing is often performed as a method of understanding the exact
meaning of a sentence, sometimes with the aid of devices such as sentence diagrams. It usually
emphasizes the importance of grammatical divisions such as subject and predicate.

Within computational linguistics the term is used to refer to the formal analysis by computer of
a sentence or other string of words into its constituents, resulting in a parse tree showing their
syntactic relation to each other, which may also contain semantic and other information.

l)

Did uknow? The term “syntactic analysis” is also used in psycholinguistics when
describing language comprehension. In this context, parsing refers to the way that human
beings analyze a sentence or phrase (in spoken language or text) “in terms of grammatical
constituents, identifying the parts of speech, syntactic relations, etc.” This term is especially
common when discussing what linguistic cues help speakers to interpret garden-path
sentences.

LOVELY PROFESSIONAL UNIVERSITY 227



Introduction to Artificial Intelligence & Expert Systems

228

Notes

Within computer science, the term is used in the analysis of computer languages, referring to the
syntactic analysis of the input code into its component parts in order to facilitate the writing of
compilers and interpreters.

12.4.3 Knowledge Representation (KR)

A knowledge representation is most fundamentally a surrogate, a substitute for the thing itself,
used to enable an entity to determine consequences by thinking rather than acting, i.e., by
reasoning about the world rather than taking action in it. It is a fragmentary theory of intelligent
reasoning, expressed in terms of three components:

(i)  the representation’s fundamental conception of intelligent reasoning;
(ii)  the set of inferences the representation sanctions; and
(iii) the set of inferences it recommends.

It is a medium for pragmatically efficient computation, i.e., the computational environment in
which thinking is accomplished. One contribution to this pragmatic efficiency is supplied by the
guidance a representation provides for organizing information so as to facilitate making the
recommended inferences. It is a medium of human expression, i.e., a language in which we say
things about the world. Understanding the roles and acknowledging their diversity has several
useful consequences. Firstly, each role requires something slightly different from a representation;
each accordingly leads to an interesting and different set of properties we want a representation
to have. Secondly, we believe the roles provide a framework useful for characterizing a wide
variety of representations. We suggest that the fundamental “mindset” of a representation can
be captured by understanding how it views each of the roles, and that doing so reveals essential
similarities and differences.

Thirdly, we believe that some previous disagreements about representation are usefully
disentangled when all five roles are given appropriate consideration. We demonstrate this by
revisiting and dissecting the early arguments concerning frames and logic.

Finally, we believe that viewing representations in this way has consequences for both research
and practice. For research, this view provides one direct answer to a question of fundamental
significance in the field. It also suggests adopting a broad perspective on what’s important about
a representation, and it makes the case that one significant part of the representation endeavor —
capturing and representing the richness of the natural world — is receiving insufficient attention.
We believe this view can also improve practice by reminding practitioners about the inspirations
that are the important sources of power for a variety of representations.

Self Assessment

State whether the following statements are true or false:
10. Computers are very fast and powerful machines.

11.  Semantic and pragmatic analysis make up the most simple phase of language processing
as they build up on results of all the above mentioned disciplines.

12. The term parsing comes from Latin pars, meaning part (of speech).

12.5 Natural Language Generalization

Generalization and memory are part of natural language understanding. The generalization
process includes the retrieval of relevant examples from long-term memory so that the concepts

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

to be created can be determined when new stories are read. Generalizations are analyzed as to Notes
their critical parts and evaluated in light of later evidence. The knowledge structures used and a
number of examples of the system in operation are presented.

12.5.1 Natural Language Systems

The Natural Language System is a software system designed to answer questions that are posed
to it in natural language. START parses incoming questions, matches the queries created from
the parse trees against its knowledge base and presents the appropriate information segments
to the user. In this way, START provides untrained users with speedy access to knowledge that
in many cases would take an expert some time to find.

START (SynTactic Analysis using Reversible Transformations) was developed by Boris Katz at
MIT’s Artificial Intelligence Laboratory. Currently, the system is undergoing further
development by the InfoLab Group, led by Boris Katz. This system was first connected to the
World Wide Web in December, 1993, and in its several forms has to date answered millions of
questions from users around the world.

A key technique called “natural language annotation” helps to connect information seekers to
information sources. This technique employs natural language sentences and phrases —
annotations — as descriptions of content that are associated with information segments at various
granularities. An information segment is retrieved when its annotation matches an input question.
This method allows this system to handle all variety of media, including text, diagrams, images,
video and audio clips, data sets, Web pages, and others.

The natural language processing component of this system consists of two modules that share
the same grammar. The understanding module analyzes English text and produces a knowledge
base that encodes information found in the text. Given an appropriate segment of the knowledge
base, the generating module produces English sentences. Used in conjunction with the technique
of natural language annotation, these modules put the power of sentence-level natural language
processing to use in the service of multimedia information access.

12.5.2 Recognition and Classification Process

It is generally easy for a person to differentiate the sound of a human voice, from that of a violin;
a handwritten numeral “3,” from an “8”; and the aroma of a rose, from that of an onion. However,
it is difficult for a programmable computer to solve these kinds of perceptual problems. These
problems are difficult because each pattern usually contains a large amount of information, and
the recognition problems typically have an inconspicuous, high-dimensional, structure.

Pattern recognition is the science of making inferences from perceptual data, using tools from
statistics, probability, computational geometry, machine learning, signal processing, and
algorithm design. Thus, it is of central importance to artificial intelligence and computer vision,
and has far-reaching applications in engineering, science, medicine, and business. In particular,
advances made during the last half century, now allow computers to interact more effectively
with humans and the natural world (e.g., speech recognition software). However, the most
important problems in pattern recognition are yet to be solved.

It is natural that we should seek to design and build machines that can recognize patterns. From
automated speech recognition, fingerprint identification, optical character recognition, DNA
sequence identification, and much more, it is clear that reliable, accurate pattern recognition by
machine would be immensely useful. Moreover, in solving the indefinite number of problems
required to build such systems, we gain deeper understanding and appreciation for pattern
recognition systems. For some problems, such as speech and visual recognition, our design

LOVELY PROFESSIONAL UNIVERSITY 229



Introduction to Artificial Intelligence & Expert Systems

230

Notes

efforts may in fact be influenced by knowledge of how these are solved in nature, both in the
algorithms we employ and in the design of special-purpose hardware. Feature can be defined as
any distinctive aspect, quality or characteristic which, may be symbolic (i.e., color) or numeric
(i.e., height). The combination of d features is represented as a d-dimensional column vector
called a feature vector. The d-dimensional space defined by the feature vector is called feature
space. Objects are represented as points in feature space. This representation is called a scatter
plot.

Pattern is defined as composite of features that are characteristic of an individual. In classification,
a pattern is a pair of variables {x,w} where X is a collection of observations or features (feature
vector) and w is the concept behind the observation (label). The quality of a feature vector is
related to its ability to discriminate examples from different classes.

l?

Did u know? Here are two fundamental approaches for implementing a pattern recognition
system: statistical and structural. Each approach employs different techniques to implement
the description and classification tasks. Hybrid approaches, sometimes referred to as a
unified approach to pattern recognition, combine both statistical and structural techniques
within a pattern recognition system.

Statistical pattern recognition draws from established concepts in statistical decision theory to
discriminate among data from different groups based upon quantitative features of the data.
There are a wide variety of statistical techniques that can be used within the description task for
feature extraction, ranging from simple descriptive statistics to complex transformations.

'E Examples: Of statistical feature extraction techniques include mean and standard deviation
computations, frequency count summarizations, Karhunen-Léeve transformations, Fourier
transformations, wavelet transformations, and Hough transformations.

The quantitative features extracted from each object for statistical pattern recognition are
organized into a fixed length feature vector where the meaning associated with each feature is
determined by its position within the vector (i.e., the first feature describes a particular
characteristic of the data, the second feature describes another characteristic, and so on). The
collection of feature vectors generated by the description task are passed to the classification
task. Statistical techniques used as classifiers within the classification task include those based
on similarity (e.g., template matching, k-nearest neighbor), probability (e.g., Bayes rule),
boundaries (e.g., decision trees, neural networks), and clustering (e.g., k-means, hierarchical).

The quantitative nature of statistical pattern recognition makes it difficult to discriminate (observe
a difference) among groups based on the morphological (i.e., shape based or structural)
subpatterns and their interrelationships embedded within the data. This limitation provided
the impetus for the development of a structural approach to pattern recognition that is supported
by psychological evidence pertaining to the functioning of human perception and cognition.
Object recognition in humans has been demonstrated to involve mental representations of
explicit, structure-oriented characteristics of objects, and human classification decisions have
been shown to be made on the basis of the degree of similarity between the extracted features
and those of a prototype developed for each group. For instance, the recognition by components
theory explains the process of pattern recognition in humans: (1) the object is segmented into
separate regions according to edges defined by differences in surface characteristics (e.g.,
luminance, texture, and color), (2) each segmented region is approximated by a simple geometric
shape, and (3) the object is identified based upon the similarity in composition between the
geometric representation of the object and the central tendency of each group. This theorized
functioning of human perception and cognition serves as the foundation for the structural
approach to pattern recognition.

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

Structural pattern recognition, sometimes referred to as syntactic pattern recognition due to its Notes
origins in formal language theory, relies on syntactic grammars to discriminate among data
from different groups based upon the morphological interrelationships (or interconnections)
present within the data. Structural features, often referred to as primitives, represent the
subpatterns (or building blocks) and the relationships among them which constitute the data.
The semantics associated with each feature are determined by the coding scheme (i.e., the selection
of morphologies) used to identify primitives in the data. Feature vectors generated by structural
pattern recognition systems contain a variable number of features (one for each primitive
extracted from the data) in order to accommodate the presence of superfluous structures which
have no impact on classification. Since the interrelationships among the extracted primitives
must also be encoded, the feature vector must either include additional features describing the
relationships among primitives or take an alternate form, such as a relational graph, that can be
parsed by a syntactic grammar.

The emphasis on relationships within data makes a structural approach to pattern recognition
most sensible for data which contain an inherent, identifiable organization such as image data
(which is organized by location within a visual rendering) and time-series data (which is
organized by time); data composed of independent samples of quantitative measurements, lack
ordering and require a statistical approach. Methodologies used to extract structural features
from image data such as morphological image processing techniques result in primitives such
as edges, curves, and regions; feature extraction techniques for time-series data include chain
codes, piecewise linear regression, and curve fitting which are used to generate primitives that
encode sequential, time-ordered relationships. The classification task arrives at an identification
using parsing: the extracted structural features are identified as being representative of a particular
group if they can be successfully parsed by a syntactic grammar. When discriminating among
more than two groups, a syntactic grammar is necessary for each group and the classifier must
be extended with an adjudication scheme so as to resolve multiple successful parsings.

R

Task  Analyze the approaches for implementing a pattern recognition system.

Self Assessment

State whether the following statements are true or false:
13.  Generalization and memory are part of natural language understanding.

14.  The natural language processing component of this system consists of four modules that
share the same grammar.

15.  Structural pattern recognition sometimes referred to as syntactic pattern recognition.

12.6 Summary

° Natural Language Processing (NLP) is the computerized approach to analyzing text that is
based on both a set of theories and a set of technologies. And, being a very active area of
research and development.

° Modern NLP algorithms are grounded in machine learning, especially statistical machine
learning.
° Computational linguistics might be considered as a synonym of automatic processing of

natural language, since the main task of computational linguistics is just the construction
of computer programs to process words and texts in natural language.

LOVELY PROFESSIONAL UNIVERSITY 231



Introduction to Artificial Intelligence & Expert Systems

Notes

232

° Regular grammar was first introduced for studying the properties of neural nets. The
languages represented by regular expressions are called the regular languages.

° Semantic and pragmatic analysis make up the most complex phase of language processing
as they build up on results of all the above mentioned disciplines.

° The goal of syntactic analysis is to determine whether the text string on Input is a sentence
in the given (natural) language. If it is, the result of the analysis contains a description of
the syntactic structure of the sentence.

12.7 Keywords

Context-sensitive Grammar: It is a formal grammar in which left-hand sides and right hand dies
of any production (rewrite) rules may be surrounded by a context of terminal and non terminal
symbols.

Linguistics: It is the study of human languages. It follows scientific approach. So it is also
referred to as linguistic science.

NLP: It stands Natural Language Processing. NLP is a sub field of Artificial intelligence (AI)
Linguistic, devoted to make computer “ understand” statements written in human languages.

Parsing: It is a process to determine how a string might be derived using productions (rewrite
rules) of a given grammar.

Semantic Network: It is a structure for representing knowledge as a pattern of interconnected
nodes and arcs, in a way that the nodes represent concepts of entities, attributes, events and
states; and the arcs represent the connections among the concepts.

12.8 Review Questions

1. Explain natural language processing.

Define linguistics. What is computational linguistics?
What is formal language?

Explain the role of parsing.

Discuss recognition and classification process.
Explain natural language systems.

Define knowledge representation.

® N o gk » N

What do you understand by syntactic analysis?

Answers: Self Assessment

1. True 2. False
3. False 4. True
5. False 6. False
7. True 8. False
9. True 10. True
11. False 12.  True

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Natural Language Processing

13.  True 14. False Notes
15.  True

12.9 Further Readings

N

Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.
A
v. o,
Online links  http:/ /krchowdhary.com/me-nlp/nlp-01.pdf
http:/ /ltrc iiit.ac.in/downloads /nlpbook /nlp-panini.pdf
http:/ /nltk.org/
http:/ /skr.nlm.nih.gov/papers/references/aral96.pdf
http:/ /www.cs.utexas.edu/~mooney/cs343/slide-handouts/nlp.pdf
http:/ /www.cse.unt.edu/~rada/papers/mihalcea.cicling06a.pdf
http:/ /www.webopedia.com/TERM/N/NLP.html

LOVELY PROFESSIONAL UNIVERSITY 233



Introduction to Artificial Intelligence & Expert Systems

234

Notes

Unit 13: Expert System Architecture

CONTENTS

Objectives

Introduction

13.1 Expert System Architecture

13.2 Rule-based Systems
13.21  Forward Chaining (Data-driven Rule-based Expert Systems)
13.2.2  Backward Chaining (Goal-driven Rule-based Expert Systems)

13.3 Non-production System Architectures
13.3.1  Associative or Semantic Networks
13.3.2  Frame Architecture

13.4 Semantic Memory
13.4.1  Feature Models
13.4.2  Associative Models

13.5 Knowledge Acquisition and Validation
13.5.1 Methods for Knowledge Acquisition
13.5.2  Validation of Knowledge

13.6 Distinguishing Features of Expert Systems
13.6.1  Utility of Expert Systems

13.7 Summary

13.8 Keywords

13.9 Review Questions

13.10 Further Readings

Objectives

After studying this unit, you will be able to:

Describe Expert System Architecture

Discuss Rule-based Systems

Explain Non-production System Architectures

Identify how to deal with Uncertainty and Change

Discuss Knowledge Acquisition and Validation

Explain distinguishing features of Expert Systems

LOVELY PROFESSIONAL UNIVERSITY




Unit 13: Expert System Architecture

Introduction Notes

In artificial intelligence, an expert system is a computer system that emulates the decision-
making ability of a human expert. Expert systems are designed to solve complex problems by
reasoning about knowledge, like an expert, and not by following the procedure of a developer
as is the case in conventional programming. The first expert systems were created in the 1970s
and then proliferated in the 1980s. An expert system has a unique structure, different from
traditional computer programming. It is divided into two parts, one fixed, independent of the
expert system: the inference engine, and one variable: the knowledge base. To run an expert
system, the engine reasons about the knowledge base like a human. In the 80s, a third part
appeared: a dialog interface to communicate with users. This ability to conduct a conversation
with users was later called “conversational”.

13.1 Expert System Architecture

Expert systems typically contain the following four components:

° Knowledge-Acquisition Interface
° User Interface

° Knowledge Base

° Inference Engine

This architecture differs considerably from traditional computer programs, resulting in several
characteristics of expert systems.

Figure 13.1: Expert System Components

Domain Expert
Transfer of Expertise
Control Structure Knowledge Knowledge Structure
Engineer

Inference
Engine
External Knowledge
Interfaces | s e e b Base
Working
l Memory
[ Problem Data
[ I Solutions Updates
|
Data Bases Y
Spreadsheets User Interface
Executable Programs (Consultation/Explanation)

LOVELY PROFESSIONAL UNIVERSITY 235



Introduction to Artificial Intelligence & Expert Systems

236

Notes

Knowledge-Acquisition Interface

The knowledge-acquisition interface controls how the expert and knowledge engineer interact
with the program to incorporate knowledge into the knowledge base. It includes features to
assist experts in expressing their knowledge in a form suitable for reasoning by the computer.
This process of expressing knowledge in the knowledge base is called knowledge acquisition.

—]]

Notes Knowledge acquisition turns out to be quite difficult in many cases — so difficult
that some authors refer to the knowledge acquisition bottleneck to indicate that it is this
aspect of expert system development which often requires the most time and effort.

Debugging faulty knowledge bases is facilitated by traces (lists of rules in the order they were
fired), probes (commands to find and edit specific rules, facts, and so on), and bookkeeping
functions and indexes (which keep track of various features of the knowledge base such as
variables and rules).

—]]

Notes  Some rule-based expert system shells for personal computers monitor data entry,
checking the syntactic validity of rules.

Expert systems are typically validated by testing their predictions for several cases against those
of human experts. Case facilities — permitting a file of such cases to be stored and automatically
evaluated after the program is revised — can greatly speed the validation process. Many features
that are useful for the user interface, such as on-screen help and explanations, are also of benefit
to the developer of expert systems and are also part of knowledge-acquisition interfaces. Expert
systems in the literature demonstrate a wide range of modes of knowledge acquisition (Buchanan,
1985). Expert system shells on microcomputers typically require the user to either enter rules
explicitly or enter several examples of cases with appropriate conclusions, from which the
program will infer a rule.

User Interface

The user interface is the part of the program that interacts with the user. It prompts the user for
information required to solve a problem, displays conclusions, and explains its reasoning.

Features of the user interface often include:

° Doesn’t ask “dumb” questions

° Explains its reasoning on request

° Provides documentation and references

° Defines technical terms

° Permits sensitivity analyses, simulations, and what-if analyses
° Detailed report of recommendations

° Justifies recommendations

° Online help
° Graphical displays of information

° Trace or step through reasoning

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

The user interface can be judged by how well it reproduces the kind of interaction one might Notes
expect between a human expert and someone consulting that expert.

Knowledge Base

The knowledge base consists of specific knowledge about some substantive domain. A knowledge
base differs from a data base in that the knowledge base includes both explicit knowledge and
implicit knowledge. Much of the knowledge in the knowledge base is not stated explicitly, but
inferred by the inference engine from explicit statements in the knowledge base. This makes
knowledge bases have more efficient data storage than data bases and gives them the power to
exhaustively represent all the knowledge implied by explicit statements of knowledge.

Knowledge bases can contain many different types of knowledge and the process of acquiring
knowledge for the knowledge base (this is often called knowledge acquisition) often needs to be
quite different depending on the type of knowledge sought.

Types of Knowledge

There are many different kinds of knowledge considered in expert systems. Many of these form
dimensions of contrasting knowledge:

° Explicit knowledge

° Implicit knowledge

° Domain knowledge

° Common sense or world knowledge
° Heuristics

° Algorithms

° Procedural knowledge

° Declarative or semantic knowledge
° Public knowledge

° Private knowledge

° Shallow knowledge

° Deep knowledge

° Meta knowledge
Another View of Expert System Architecture

Following figure shows the most important modules that make up a rule-based expert system.
The user interacts with the system through a user interface which may use menus, natural language
or any other style of interaction). Then an inference engine is used to reason with both the expert
knowledge (extracted from our friendly expert) and data specific to the particular problem being
solved. The expert knowledge will typically be in the form of a set of IF-THEN rules. The case
specific data includes both data provided by the user and partial conclusions (along with certainty
measures) based on this data. In a simple forward chaining rule-based system the case specific
data will be the elements in working memory.

Almost all expert systems also have an explanation subsystem, which allows the program to
explain its reasoning to the user. Some systems also have a knowledge base editor which help the
expert or knowledge engineer to easily update and check the knowledge base.

LOVELY PROFESSIONAL UNIVERSITY 237



Introduction to Artificial Intelligence & Expert Systems

238

Notes

Figure 13.2: Expert System Shell

Expert System Shell

i R e e e i e oy e i I

! |

] & _| Explanation J: 2l | Case—
User ! system I specific

! : data

User -t -
e —

. Interface | . Infe}‘ ence :

: engine o .

: I

: : Knowledge

H ot w Knowledge |l @ base

: base editor :

: I

One important feature of expert systems is the way they (usually) separate domain specific
knowledge from more general purpose reasoning and representation techniques. The general
purpose bit (in the dotted box in the figure) is referred to as an expert system shell. As we see in the
figure, the shell will provide the inference engine (and knowledge representation scheme), a
user interface, an explanation system and sometimes a knowledge base editor. Given a new
kind of problem to solve (say, car design), we can usually find a shell that provides the right sort
of support for that problem, so all we need to do is provide the expert knowledge. There are
numerous commercial expert system shells, each one appropriate for a slightly different range
of problems. (Expert systems work in industry includes both writing expert system shells and
writing expert systems using shells.)

Caution Using shells to write expert systems generally greatly reduces the cost and time
of development (compared with writing the expert system from scratch).

Self Assessment

State whether the following statements are true or false:

1. Expert systems typically contain the two components.
2. Expert system shells on microcomputers.
3. The user interface is the part of the program that interacts with the user.

13.2 Rule-based Systems

Conventional problem-solving computer programs make use of well-structured algorithms,
data structures, and crisp reasoning strategies to find solutions. For the difficult problems with
which expert systems are concerned, it may be more useful to employ heuristics: strategies that
often lead to the correct solution, but that also sometimes fail. Conventional rule-based expert
systems, use human expert knowledge to solve real-world problems that normally would
require human intelligence. Expert knowledge is often represented in the form of rules or as data
within the computer. Depending upon the problem requirement, these rules and data can be
recalled to solve problems. Rule-based expert systems have played an important role in modern
intelligent systems and their applications in strategic goal setting, planning, design, scheduling,
fault monitoring, diagnosis and so on. With the technological advances made in the last decade,
today’s users can choose from dozens of commercial software packages having friendly graphic
user interfaces (Ignizio, 1991).

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

Conventional computer programs perform tasks using a decision-making logic containing
very little knowledge other than the basic algorithm for solving that specific problem. The basic
knowledge is often embedded as part of the programming code, so that as the knowledge
changes, the program has to be rebuilt.

l)

Did u know? Knowledge-based expert systems collect the small fragments of human
knowhow into a knowledge base, which is used to reason through a problem, using the
knowledge that is appropriate.

An important advantage here is that within the domain of the knowledge base, a different
problem can be solved using the same program without reprogramming efforts. Moreover,
expert systems could explain the reasoning process and handle levels of confidence and
uncertainty, which conventional algorithms do not handle (Giarratano and Riley, 1989). Some
of the important advantages of expert systems are as follows:

° ability to capture and preserve irreplaceable human experience;
° ability to develop a system more consistent than human experts;
° minimize human expertise needed at a number of locations at the same time (especially in

a hostile environment that is dangerous to human health);
° solutions can be developed faster than human experts.

The basic components of an expert system are illustrated. The knowledge base stores all relevant
information, data, rules, cases, and relationships used by the expert system. A knowledge base
can combine the knowledge of multiple human experts. A rule is a conditional statement that
links given conditions to actions or outcomes.

A frame is another approach used to capture and store knowledge in a knowledge base. It relates
an object or item to various facts or values. A frame-based representation is ideally suited for
object-oriented programming techniques. Expert systems making use of frames to store
knowledge are also called frame-based expert systems.

The purpose of the inference engine is to seek information and relationships from the knowledge
base and to provide answers, predictions, and suggestions in the way a human expert would.
The inference engine must find the right facts, interpretations, and rules and assemble them
correctly.

Figure 13.3: Rule-based Systems

Expert knowledge Users

N -
Knowledge base
acquisition facility
N N 1 >

Inference engine

/

Knowledge base ‘ User interface

\

Explanation
facility

LOVELY PROFESSIONAL UNIVERSITY

Notes

239



Introduction to Artificial Intelligence & Expert Systems

Notes

240

Two types of inference methods are commonly used — Backward chaining is the process of
starting with conclusions and working backward to the supporting facts. Forward chaining
starts with the facts and works forward to the conclusions.

13.2.1 Forward Chaining (Data-driven Rule-based Expert Systems)

A rule-based system consists of if-then rules, a bunch of facts, and an interpreter controlling the
application of the rules, given the facts. These if-then rule statements are used to formulate the
conditional statements that comprise the complete knowledge base. A single if-then rule assumes
the form “if x is A then y is B’ and the if-part of the rule “x is A’ is called the antecedent or premise,
while the then-part of the rule ‘y is B’ is called the consequent or conclusion. There are two broad
kinds of inference engines used in rule-based systems: forward chaining and backward chaining
systems. In a forward chaining system, the initial facts are processed first, and keep using the rules
to draw new conclusions given those facts. In a backward chaining system, the hypothesis (or
solution/goal) we are trying to reach is processed first, and keep looking for rules that would
allow to conclude that hypothesis. As the processing progresses, new subgoals are also set for
validation. Forward chaining systems are primarily data-driven, while backward chaining
systems are goal-driven. Consider an example with the following set of if-then rules

Rule 1: If A and C then Y
Rule 2: If A and X then Z
Rule 3: If B then X
Rule 4: If Z then D

If the task is to prove that D is true, given A and B are true. According to forward chaining, start
with Rule 1 and go on downward till a rule that fires is found. Rule 3 is the only one that fires in
the first iteration. After the first iteration, it can be concluded that A, B, and X are true. The second
iteration uses this valuable information. After the second iteration, Rule 2 fires adding Z is true,
which in turn helps Rule 4 to fire, proving that D is true. Forward chaining strategy is especially
appropriate in situations where data are expensive to collect, but few in quantity. However,
special care is to be taken when these rules are constructed.

13.2.2 Backward Chaining (Goal-driven Rule-based Expert Systems)

A rule-based system consists of if-then rules, a bunch of facts, and an interpreter controlling the
application of the rules, given the facts. These if-then rule statements are used to formulate the
conditional statements that comprise the complete knowledge base. A single if-then rule assumes
the form “if x is A then y is B” and the if-part of the rule x is A" is called the antecedent or premise,
while the then-part of the rule ‘y is B’ is called the consequent or conclusion. There are two broad
kinds of inference engines used in rule-based systems: forward chaining and backward chaining
systems. In a forward chaining system, the initial facts are processed first, and keep using the
rules to draw new conclusions given those facts. In a backward chaining system, the hypothesis
(or solution/goal) we are trying to reach is processed first, and keep looking for rules that
would allow to conclude that hypothesis. As the processing progresses, new subgoals are also
set for validation. Forward chaining systems are primarily data-driven, while backward chaining
systems are goal-driven. Consider an example with the following set of if-then rules

Rule 1: If A and C then Y
Rule 2: If A and X then Z
Rule 3: If B then X
Rule 4: 1f Z then D

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

If the task is to prove that D is true, given A and B are true. According to forward chaining, start Notes
with Rule 1 and go on downward till a rule that fires is found. Rule 3 is the only one that fires in

the first iteration. After the first iteration, it can be concluded that A, B, and X are true. The second

iteration uses this valuable information. After the second iteration, Rule 2 fires adding Z is true,

which in turn helps Rule 4 to fire, proving that D is true. Forward chaining strategy is especially

appropriate in situations where data are expensive to collect, but few in quantity. However,

special care is to be taken when these rules are constructed.

Self Assessment

State whether the following statements are true or false:
4. Expert knowledge is often represented in the form of rules or as data outside the computer.

5. Rule-based expert systems does not play an important role in modern intelligent systems
and their applications.

6.  The purpose of the inference engine is to seek information and relationships from the
knowledge base.

13.3 Non-production System Architectures

A production system (or production rule system) is a computer program typically used to
provide some form of artificial intelligence, which consists primarily of a set of rules about
behavior. These rules, termed productions, are a basic representation found useful in automated
planning, expert systems and action selection. A production system provides the mechanism
necessary to execute productions in order to achieve some goal for the system. Productions
consist of two parts: a sensory precondition (or “IF” statement) and an action (or “THEN”). If a
production’s precondition matches the current state of the world, then the production is said to
be triggered. If a production’s action is executed, it is said to have fired. A production system also
contains a database, sometimes called working memory, which maintains data about current
state or knowledge, and a rule interpreter.

AN

Caution The rule interpreter must provide a mechanism for prioritizing productions
when more than one is triggered.

13.3.1 Associative or Semantic Networks

'E Example: This example shows a set of production rules for reversing a string from an

alphabet that does not contain the symbols “$” and “*” (which are used as marker symbols).

Pl: $S ->

P2: *$ -> *

P3: *x -> x*

P4: * -> null & halt

P5: $xy -> y$x

P6: null -> S
In this example, production rules are chosen for testing according to their order in this production
list. For each rule, the input string is examined from left to right with a moving window to find
a match with the LHS of the production rule. When a match is found, the matched substring in
the input string is replaced with the RHS of the production rule. In this production system, x and

LOVELY PROFESSIONAL UNIVERSITY 241



Introduction to Artificial Intelligence & Expert Systems

242

Notes

y are variables matching any character of the input string alphabet. Matching resumes with P1
once the replacement has been made.

The string “ABC”, for instance, undergoes the following sequence of transformations under
these production rules:

$ABC (P6)
BSAC (P5)
BCSA (P5)
$BCSA (P6)
C$BSA (P5)
SC$BSA  (P6)
$SCSBSA  (P6)
*CSBSA (P1)
C*$BSA  (P3)
C*BS$A (P2)
CB*$A (P3)
CB*A (P2)
CBA* (P3)
CBA (P4)

In such a simple system, the ordering of the production rules is crucial. Often, the lack of control
structure makes production systems difficult to design. It is, of course, possible to add control
structure to the production systems model, namely in the inference engine, or in the working
memory.

13.3.2 Frame Architecture

In a toy simulation world where a monkey in a room can grab different objects and climb on
others, an example production rule to grab an object suspended from the ceiling would look
like:

(p Holds::0Object-Ceiling
{(goal "status active “type holds “objid <01>) <goal>}
{ (physical-object
~id <O01>
“weight 1light
~at <p>
“on ceiling) <object-1>}
{ (physical-object ~id ladder "at <p> “on floor) <object-2>}
{ (monkey “on ladder "holds NIL) <monkey>}
- (physical-object “on <01>)
-— >
(write (crlf) Grab <O0l> (crlf))
(modify <objectl> “on NIL)
(modify <monkey> “holds <01>)
(modify <goal> “status satisfied)
)
In this example, data in working memory is structured and variables appear between angle
brackets. The name of the data structure, such as “goal” and “physical-object”, is the first literal
in conditions; the fields of a structure are prefixed with “/”. The “-” indicates a negative condition.

Self Assessment

State whether the following statements are true or false:

7. A production system also contains a database called working memory.
8. The “-” indicates a positive condition.
9. The lack of control structure makes production systems difficult to design.

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

13.4 Semantic Memory Notes

Semantic memory refers to the memory of meanings, understandings, and other concept-based
knowledge, and underlies the conscious recollection of factual information and general
knowledge about the world. Semantic and episodic memory together make up the category of
declarative memory, which is one of the two major divisions in memory. With the use of our
semantic memory we can give meaning to otherwise meaningless words and sentences. We can
learn about new concepts by applying our knowledge learned from things in the past. The
counterpart to declarative, or explicit memory, is procedural memory, or implicit memory.
TLC is an instance of a more general class of models known as semantic networks. In a semantic
network, each node is to be interpreted as representing a specific concept, word, or feature. That
is, each node is a symbol. Semantic networks generally do not employ distributed representations
for concepts, as may be found in a neural network. The defining feature of a semantic network
is that its links are almost always directed (that is, they only point in one direction, from a base
to a target) and the links come in many different types, each one standing for a particular
relationship that can hold between any two nodes. Processing in a semantic network often takes
the form of spreading activation.

—]]

Notes Semantic networks see the most use in models of discourse and logical
comprehension, as well as in Artificial Intelligence. In these models, the nodes correspond

to words or word stems and the links represent syntactic relations between them.

13.4.1 Feature Models

Feature models view semantic categories as being composed of relatively unstructured sets of
features. The semantic feature-comparison model, proposed by Smith, Shoben, and Rips (1974),
describes memory as being composed of feature lists for different concepts. According to this
view, the relations between categories would not be directly retrieved, they would be indirectly
computed. For example, subjects might verify a sentence by comparing the feature sets that
represent its subject and predicate concepts. Such computational feature-comparison models
include the ones proposed by Meyer (1970), Rips (1975), Smith, et al. (1974).

Early work in perceptual and conceptual categorization assumed that categories had critical
features and that category membership could be determined by logical rules for the combination
of features. More recent theories have accepted that categories may have an ill-defined or “fuzzy”
structure and have proposed probabilistic or global similarity models for the verification of
category membership.

13.4.2 Associative Models

The “association”—a relationship between two pieces of information—is a fundamental concept
in psychology, and associations at various levels of mental representation are essential to models
of memory and cognition in general. The set of associations among a collection of items in
memory is equivalent to the links between nodes in a network, where each node corresponds to
a unique item in memory. Indeed, neural networks and semantic networks may be characterized
as associative models of cognition. However, associations are often more clearly represented as
an NxN matrix, where N is the number of items in memory. Thus, each cell of the matrix
corresponds to the strength of the association between the row item and the column item.
Learning of associations is generally believed to be a Hebbian process; that is, whenever two
items in memory are simultaneously active, the association between them grows stronger, and
the more likely either item is to activate the other.

LOVELY PROFESSIONAL UNIVERSITY 243



Introduction to Artificial Intelligence & Expert Systems

244

Notes

Self Assessment

State whether the following statements are true or false:

10. Semantic and episodic memory together make up the category of declarative memory,
which is one of the two major divisions in memory.

11.  Processing in a semantic network often takes the form of spreading activation.

12.  The set of associations among a collection of items in memory is equivalent to the links
between nodes in a network.

13.5 Knowledge Acquisition and Validation

The frame contains information on how to use the frame, what to expect next, and what to do
when these expectations are not met. Some information in the frame is generally unchanged
while other information, stored in “terminals”, usually change. Different frames may share the
same terminals.

Each piece of information about a particular frame is held in a slot. The information can contain:

° Facts or Data
2 Values (called facets)
° Procedures (also called procedural attachments)

B3 IF-NEEDED: deferred evaluation
B3 IF-ADDED: updates linked information
° Default Values

B3 For Data

< For Procedures
° Other Frames or Subframes
Neural Network

The term “neural network” was traditionally used to refer to a network or circuit of biological
neurons. The modern usage of the term often refers to artificial neural networks, which are
composed of artificial neurons or nodes. Thus, the term may refer to either biological neural
networks, made up of real biological neurons, or artificial neural networks, for solving artificial
intelligence problems.

Unlike von Neumann model computations, artificial neural networks do not separate memory
and processing and operate via the flow of signals through the net connections, somewhat akin
to biological networks.

These artificial networks may be used for predictive modeling, adaptive control and applications
where they can be trained via a dataset.

The word “network” in the term ‘artificial neural network’ refers to the inter — connections
between the neurons in the different layers of each system. An example system has three layers.
The first layer has input neurons, which send data via synapses to the second layer of neurons,
and then via more synapses to the third layer of output neurons. More complex systems will
have more layers of neurons with some having increased layers of input neurons and output
neurons. The synapses store parameters called “weights” that manipulate the data in the
calculations.

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

Figure 13.4: Architecture

Hidden
A~

Input \

An ANN is typically defined by three types of parameters:

1. The interconnection pattern between different layers of neurons
2. The learning process for updating the weights of the interconnections
3. The activation function that converts a neuron’s weighted input to its output activation.

Mathematically, a neuron’s network function f(x) is defined as a composition of other functions
8, (x), which can further be defined as a composition of other functions. This can be conveniently
represented as a network structure, with arrows depicting the dependencies between variables.
A widely used type of composition is the nonlinear weighted sum, where f(x) = K(X,w g (x)), where
K (commonly referred to as the activation function) is some predefined function, such as the
hyperbolic tangent. It will be convenient for the following to refer to a collection of functions g,

as simply a vector ¢ = (,, &,/--+/8,)-

Figure 13.5: ANN Dependency Graph

(hi
£~ N
/ L N
(* f={h -:Z*;_\_ ) f)
y_ P
\ )'1\'

This Figure 13.5 depicts such a decomposition of f, with dependencies between variables indicated
by arrows. These can be interpreted in two ways.

The first view is the functional view: the input x is transformed into a 3-dimensional vector #,
which is then transformed into a 2-dimensional vector g, which is finally transformed into f. This
view is most commonly encountered in the context of optimization.

LOVELY PROFESSIONAL UNIVERSITY

Notes

245



Introduction to Artificial Intelligence & Expert Systems

246

Notes

The second view is the probabilistic view: the random variable F = f(G) depends upon the
random variable G = g(H), which depends upon H = h(X), which depends upon the random
variable x. This view is most commonly encountered in the context of graphical models.

The two views are largely equivalent. In either case, for this particular network architecture, the
components of individual layers are independent of each other (e.g., the components of g are
independent of each other given their input /). This naturally enables a degree of parallelism in
the implementation.

Dealing with Uncertainty and Change

Fancy Logics
Dealing with uncertainty and change in important in Al because:

° The world changes, sometimes unpredictably, as a result of external actions (ie, actions
that we don’t perform ourself).

° Our beliefs about the world change (whether or not the world changes itself). If we get
new evidence about something, a whole web of related beliefs may change.

° Our beliefs about the world may be uncertain. We may be unsure whether we have
observed something correctly, or we may draw plausible but not certain inferences from
our existing variably certain beliefs.

Dealing with such things isn’t too hard to do in an ad hoc way. We can have rules that delete
things from working memory when they change, and/or which have rules and facts with
numerical certainty factors on them. What is hard is dealing with uncertainty in a principled
way. First order predicate logic is inadequate as it is designed to work with information that is
complete, consistent and monotonic (this basically means that facts only get added, not deleted
from the set of things that are known to be true). There is no straightforward way of using it to
deal with incomplete, variably certain, inconsistent and non-monotonic inferences. (We also
cannot easily use it to explicitly represent beliefs about the world, for reasons that should become
clear later.) We would like to have a formal, principled, and preferably simple basis for dealing
with belief, uncertainty and change.

There are two main approaches to dealing with all this. The first is to use a fancier logic. It is
important to remember that first order predicate logic is but one logic among many. New logics
pop up every day, and most come with a clear, well defined semantics and proof theory. Some
of these fancy logics appear to be just what we need to deal with belief, uncertainty and change
(though in practice we tend to find that no logic solves all our problems, so people end up
picking a suitable logic off the shelf depending on their application).

The second approach is to base things not on a logic, but on probability theory. This too is a well
understood theory, with clear results concerning uncertainty. Unfortunately basic probability
theory tends to make too many assumptions concerning the availability and reliability of
evidence, so we have to be careful how we use it. However, it still provides a good starting point
and a way of assessing more ad hoc approaches to uncertainty - are they consistent with classical
probability theory, given certain assumptions?

The first type of logic is default logic, which allows us to perform non monotonic inferences, where
new information may mean that certain facts are no longer believed true.

Default Logics

Default logics allow us to reason about things where there is a general case, true of almost
everything, and some exceptions. We met this idea when looking at frame systems and

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

inheritance. Elephants are almost always grey, except Clyde, who’s pink. It is very tedious to Notes
represent such things in first order predicate logic - you have to specify all the exceptions in the

rules, which ends up getting very complex. To avoid this special logics have been developed.

There are a variety of such logics, but all (most?) based on the same idea.

Default logics allow you to write rules which refer to whether it is consistent to believe something.
So we’d say that if X is an elephant and it’s consistent to believe that X is grey then X is grey. This
is expressed in various ways in different variants of default logic, but one is to introduce a
special operator M, so that M X means “X is consistent with everything else”. Given the following
rule and facts:

X elephant (X) M grey(X) grey (X)

grey (clyde)
elephant (nellie)
elephant (clyde)

we would conclude that Nellie was grey but we wouldn’t conclude that Clyde was grey, as it is
not consistent with everything else (ie, grey (clyde)).

If we had a hundred elephants, about ten of which were pink (or blue, or..), then we could write
the general rule, and specify the exceptions by adding facts like: grey(albert), grey(edward).. If
we bought a new elephant we’d just add a new fact of this sort. However, if we were using
ordinary predicate logic we’d have to modify the general rule itself, which might look like:

X elephant (X) name (X, clyde) name (X, albert) name (X, edward)
grey (X)

If we have more complex defaults then the advantages of using a default logic become more
compelling. For example, we might want to say that elephants are generally grey, circus elephants
are generally pink, but Nellie is in fact grey. Dealing with all these nested defaults and exceptions
explicitly in predicate logic gets very complex.

Default logics can be used to provide semantics. However, remember that in frame systems you
sometimes had to choose which parent class to inherit from - if Clyde is both a circus animal and
an elephant, is he likely to be tame or not? We have the same problem in default logics. There
may be alternative, inconsistent conclusions, and the logic doesn’t (usually) specify which is the
right one. If we have a default rule that says that circus animals are generally not grey, if it is
consistent to believe that they aren’t grey, then we won’t know whether our circus elephant is
grey or not. Different alternative sets of facts we could believe are referred to as different
extensions of the knowledge base.

13.5.1 Methods for Knowledge Acquisition

The aim of a probabilistic logic (also probability logic and probabilistic reasoning) is to combine
the capacity of probability theory to handle uncertainty with the capacity of deductive logic to
exploit structure. The result is a richer and more expressive formalism with a broad range of
possible application areas.

l)

Did u know? Probabilistic logics attempt to find a natural extension of traditional logic
truth tables: the results they define are derived through probabilistic expressions instead.

A difficulty with probabilistic logics is that they tend to multiply the computational complexities
of their probabilistic and logical components. Other difficulties include the possibility of counter-
intuitive results, such as those of Dempster-Shafer theory. The need to deal with a broad variety
of contexts and issues has led to many different proposals.

LOVELY PROFESSIONAL UNIVERSITY 247



Introduction to Artificial Intelligence & Expert Systems

248

Notes

13.5.2 Validation of Knowledge

It is used in many computer science domains such as artificial intelligence, including databases,
data mining, expert systems, decision support systems and geographic information systems.
Knowledge engineering is also related to mathematical logic, as well as strongly involved in
cognitive science and socio-cognitive engineering where the knowledge is produced by
socio-cognitive aggregates (mainly humans) and is structured according to our understanding
of how human reasoning and logic works.

Various activities of KE specific for the development of a knowledge-based system:

° Assessment of the problem
° Development of a knowledge-based system shell/structure
° Acquisition and structuring of the related information, knowledge and specific preferences

(IPK model)

° Implementation of the structured knowledge into knowledge bases
° Testing and validation of the inserted knowledge

° Integration and maintenance of the system

° Revision and evaluation of the system.

Being still more art than engineering, KE is not as neat as the above list in practice. The phases
overlap, the process might be iterative, and many challenges could appear.

Self Assessment

State whether the following statements are true or false:
13.  Different frames may share the different terminals.
14.  Each piece of information about a particular frame is held in a slot.

15.  An ANN is defined by four types of parameters.

13.6 Distinguishing Features of Expert Systems

Quick Availability and Opportunity to Program Itself

As the rule base is in everyday language (the engine is untouchable), expert system can be
written much faster than a conventional program, by users or experts, bypassing professional
developers and avoiding the need to explain the subject.

Ability to Exploit a Considerable Amount of Knowledge

The expert system uses a rule base, unlike conventional programs, which means that the volume
of knowledge to program is not a major concern. Whether the rule base has 10 rules or 10,000,
the engine operation is the same.

Reliability

The reliability of an expert system is the same as the reliability of a database, i.e. good, higher
than that of a classical program. It also depends on the size of knowledge base.

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

Scalability Notes

Evolving an expert system is to add, modify or delete rules. Since the rules are written in plain
language, it is easy to identify those to be removed or modified.

Pedagogy

The engines that are run by a true logic are able to explain to the user in plain language why they
ask a question and how they arrived at each deduction. In doing so, they show knowledge of the
expert contained in the expert system. So, user can learn this knowledge in its context. Moreover,
they can communicate their deductions step by step. So, the user has information about their
problem even before the final answer of the expert system.

Preservation and Improvement of Knowledge

Valuable knowledge can disappear with the death, resignation or retirement of an expert.
Recorded in an expert system, it becomes eternal. To develop an expert system is to interview an
expert and make the system aware of their knowledge. In doing so, it reflects and enhances it.

New Areas Neglected by Conventional Computing

Automating a vast knowledge, the developer may meet a classic problem: “combinatorial
explosion” commonly known as “information overload” that greatly complicates his work and
results in a complex and time consuming program. The reasoning expert system does not
encounter that problem since the engine automatically loads combinatorics between rules. This
ability can address areas where combinatorics are enormous: highly interactive or conversational
applications, fault diagnosis, decision support in complex systems, educational software, logic
simulation of machines or systems, constantly changing software.

13.6.1 Utility of Expert Systems

Expert systems are especially important to organizations that rely on people who possess
specialized knowledge of some problem domain, especially if this knowledge and experience
cannot be easily transferred. Artificial intelligence methods and techniques have been applied
to a broad range of problems and disciplines, some of which are esoteric and others which are
extremely practical. One of the early applications, MYCIN, was created to help physicians diagnose
and treat bacterial infections. Expert systems have been used to analyze geophysical data in our
search for petroleum and metal deposits (e.g., PROSPECTOR). They are used by the investments,
banking, and telecommunications industries. They are essential in robotics, natural language
processing, theorem proving, and the intelligent retrieval of information from databases. They
are used in many other human endeavors which might be considered more practical.

]

Notes Rule-based systems have been used to monitor and control traffic, to aid in the
development of flight systems, and by the federal government to prepare budgets.

A rule-based, expert system maintains a separation between its Knowledge-base and that part of
the system that executes rules, often referred to as the expert system shell. The system shell is
indifferent to the rules it executes. This is an important distinction, because it means that the
expert system shell can be applied to many different problem domains with little or no change.

LOVELY PROFESSIONAL UNIVERSITY 249



Introduction to Artificial Intelligence & Expert Systems

250

Notes

It also means that adding or modifying rules to an expert system can effect changes in program
behavior without affecting the controlling component, the system shell.

The language used to express a rule is closely related to the language subject matter experts use
to describe problem solutions. When the subject matter expert composes a rule using this language,
he is, at the same time, creating a written record of problem knowledge, which can then be
shared with others. Thus, the creation of a rule kills two birds with one stone; the rule adds
functionality or changes program behavior, and records essential information about the problem
domain in a human-readable form. Knowledge captured and maintained by these systems
ensures continuity of operations even as subject matter experts (i.e., mathematicians, accountants,
physicians) retire or transfer.

Furthermore, changes to the Knowledge-base can be made easily by subject matter experts
without programmer intervention, thereby reducing the cost of software maintenance and
helping to ensure that changes are made in the way they were intended. Rules are added to the
knowledge-base by subject matter experts using text or graphical editors that are integral to the
system shell.

AN

Caution Don’t apply semantics directly.

g

Task  Draw a probabilistic logic to find factorial of any number.

Self Assessment

State whether the following statements are true or false:
16.  The reliability of an expert system is the different from the reliability of a database.
17.  Evolving an expert system is to add, modify or delete rules.

18.  Valuable knowledge can appear with the death, resignation or retirement of an expert.

13.7 Summary

° Expert systems are designed to solve complex problems by reasoning about knowledge,
like an expert, and not by following the procedure of a developer as is the case in
conventional programming.

° The Knowledge-base Editor is a simple text editor, a graphical editor, or some hybrid of
these two types.

° The Rule Engine (often referred to as an inference engine in Al literature) is responsible
for executing Knowledge-base rules.

° A rule-based system consists of if-then rules, a bunch of facts, and an interpreter controlling
the application of the rules, given the facts.

° The non-production system architecture of certain expert system does not have
rule-representation scheme.

° Frames are structured sets of closely related knowledge, such as an object or concept
name, the object’s main attributes and their corresponding values, and possibly some
attached procedure (if needed, if added, if-removed procedures).

LOVELY PROFESSIONAL UNIVERSITY



Unit 13: Expert System Architecture

13.8 Keywords Notes

Backward Chaining: It is an inference method that can be described (in lay terms) as working
backward from the goals.

Baye’s Theorem: It provides us with a statistical theory of evidence which allows us to update the
probabilities attached to certain facts in the light of new evidence. The fundamental notion is
that of conditional probability:

Expert Systems: It is a computer system that emulates the decision-making ability of a human
expert.

Inference Engine: It is computer program that tries to derive answers from a knowledge-base. It
is the “brain” that expert systems use to reason about the information in the knowledge-base for
the ultimate purpose of formulating new conclusions.

Knowledge Acquisition: It is the transformation of knowledge from the form in that it is exist in
the world into the form that it can be used by expertise systems.

Knowledge Engineering: It is an engineering discipline that involves integrating knowledge
into computer systems in order to solve complex problems normally requiring a high level of
human expertise.

13.9 Review Questions

1.  Why do we need knowledge engineers to develop expert systems? Can we ask experts to
develop the system by themselves?

2. What do you think of their approach, which developed ten separate knowledge bases and
then put them together through knowledge fusion? What are the pros and cons of this
approach?

3. For systems testing and evaluation, they used simulated data rather than real data. Why is
this acceptable for real-time expert systems? Can you think of a better approach for system
testing and evaluation?

4. What are the benefits of using knowledge acquisition tools?
5. What are the steps in the knowledge engineering process?
6. Describe the evaluation, validation, and verification of knowledge.

Answers: Self Assessment

1. False 2. True
3. True 4. False
5. False 6. True
7. True 8. False
9. True 10. True
11.  True 12.  True
13. False 14.  True
15. False 16. False
17.  True 18. False

LOVELY PROFESSIONAL UNIVERSITY 251



Introduction to Artificial Intelligence & Expert Systems

252

Notes

13.10 Further Readings

N

Books

£

Online

links

Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.
Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.
Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson
Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

http:/ /cinuresearch.tripod.com/ai/www-cee-hw-ac-uk/_alison/ai3notes/
subsection2_5_2_1.html

http:/ /lecturer.ukdw.ac.id /jokop /wp-content/uploads/2011/4-5Architecture
%200£%20ES1.pdf

http:/ /www.cvel.clemson.edu/pdf/EMCS02-976.pdf

http:/ /www.ece.unb.ca/jtaylor/Publications/ieee_proc84.pdf

http:/ /www .elsevierdirect.com/companions/9780124438804 / expert_sys_toc.pdf
http:/ /www ijcai.org/Past%20Proceedings /IJCAI-81-VOL-2/PDF/059.pdf

http://www .slideshare.net/poerslide/lecture5-expert-systems-and-artificial-
intelligence

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

Unit 14: Types of Learning Notes

CONTENTS
Objectives
Introduction
14.1 Knowledge Acquisition Difficulties
14.2 General Learning Model
14.3 Performance Measures
144 Knowledge System Building Tools
14.4.1  ES Building Tools on the Market
1442  Market Trends
14.5 Learning by Induction
14.6 Generalization and Specialization
14.7 Inductive Bias
14.8 Analogical Reasoning and Learning
14.8.1 Makes a Good Analogy
14.82  Methods Used to Investigate Analogical Learning
14.8.3  Retrieval of Analogy: The Inert Knowledge Problem
14.9 Explanation-based Learning (EBL)
14.10 Summary
14.11 Keywords
14.12 Review Questions

14.13 Further Readings

Objectives

After studying this unit, you will be able to:

° Explain Knowledge Acquisition Difficulties
° Discuss the General Learning Model
° Identify Performance Measures

° Identify various Knowledge System Building Tools

° Explain Learning by Induction

° Discuss Generalization and Specialization

° Define Inductive Bias

° Describe Analogical Reasoning and Learning
° Discuss Explanation-based Learning

LOVELY PROFESSIONAL UNIVERSITY 253



Introduction to Artificial Intelligence & Expert Systems

254

Notes

Introduction

Learning is acquiring new, or modifying existing, knowledge, behaviors, skills, values, or
preferences and may involve synthesizing different types of information. The ability to learn is
possessed by humans, animals and some machines. Progress over time tends to follow learning
curves. Learning is not compulsory; it is contextual. It does not happen all at once, but builds
upon and is shaped by what we already know. To that end, learning may be viewed as a process,
rather than a collection of factual and procedural knowledge. Learning produces changes in the
organism and the changes produced are relatively permanent.

Human learning may occur as part of education, personal development, schooling, or training.
It may be goal-oriented and may be aided by motivation. The study of how learning occurs is
part of neuropsychology, educational psychology, learning theory, and pedagogy. Learning
may occur as a result of habituation or classical conditioning, seen in many animal species, or as
a result of more complex activities such as play, seen only in relatively intelligent animals.
Learning may occur consciously or without conscious awareness. Learning that an aversive
event can’t be avoided nor escaped is called learned helplessness. There is evidence for human
behavioral learning prenatally, in which habituation has been observed as early as 32 weeks
into gestation, indicating that the central nervous system is sufficiently developed and primed
for learning and memory to occur very early on in development.

Play has been approached by several theorists as the first form of learning. Children experiment
with the world, learn the rules, and learn to interact through play. Lev Vygotsky agrees that
play is pivotal for children’s development, since they make meaning of their environment
through play. 85 percent of brain development occurs during the first five years of a child’s life.
The context of conversation based on moral reasoning offers some proper observations on the
responsibilities of parents.

14.1 Knowledge Acquisition Difficulties

Knowledge acquisition is a method of learning, first proposed by Aristotle in his seminal work
“Organon”. Aristotle proposed that the mind at birth is a blank slate, or tabula rasa. As a blank
slate it contains no knowledge of the objective, empirical universe, nor of itself. As a method, it
is opposed to the concept of “a priori” knowledge, and to “intuition” when conceived as religious
revelation. It has been suggested that the mind is “hard wired” to begin operating at birth,
beginning a lifetime process of acquisition through abstraction, induction, and conception. The
“five senses” referred to by the word sensation are metaphorically the interface between empirical
(sensate) reality and the consciousness of the knowing subject. A knowing subject for the purpose
of this discussion of knowledge acquisition may be defined as any conscious creature capable of
deriving direct and immediate sensate data from its environment. Sensate data, or sensation, are
distinct from perception. Perception is the recognition within the knowing subject of the event
of having had a sensation. The tabula rasa and must learn the nature of sensation as the awareness
of something which is outside itself. Commonly recognized sensory systems are those for
vision, hearing, somatic sensation (touch), taste and olfaction (smell). Perception is the retention
of a group of sensations transmitted through the sensory system(s), which gives the knowing
subject the ability to be aware, not only of the singularity of stimuli presented by sensation
itself, but of an entity, a thing, an existent. Retention of percepts allows the human mind to
abstract information from the percepts. The abstraction is considered the extensional definition
of the percept. An extension is “every object that falls under the definition of the concept or term
in question.” This is the same as a universal (metaphysics) or genus or denotation, or class
(philosophy).

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

Once a universal (class) has been identified, then the next step in the acquisition of knowledge is Notes
the abstraction of the intension, which is the particular, the species, or the connotation.

Connotation as its meaning as particular is “the assertion that at least one member of one class of things

is either included or excluded as a member of some other class.” This means, for example, that a poodle

is the particular in a class or universal concept called “dog” or “canine”.

Some of the most important issues in knowledge acquisition are as follows:
° Most knowledge is in the heads of experts
° Experts have vast amounts of knowledge
° Experts have a lot of tacit knowledge
* They don’t know all that they know and use
& Tacit knowledge is hard (impossible) to describe
° Experts are very busy and valuable people
° Each expert doesn’t know everything

° Knowledge has a “shelf life”
Self Assessment

State whether the following statements are true or false:

1.  Perception is the recognition within the knowing subject of the event of having had a
sensation.
2. Knowledge acquisition is not a method of learning.

14.2 General Learning Model

Learning can be accomplished using a number of different methods, such as by memorization
facts, by being told, or by studying examples like problem solution. Learning requires that new
knowledge structures be created from some form of input stimulus. This new knowledge must
then be assimilated into a knowledge base and be tested in some way for its utility. Testing
means that the knowledge should be used in performance of some task from which meaningful
feedback can be obtained, where the feedback provides some measure of the accuracy and
usefulness of the newly acquired knowledge.

Figure 14.1: General Learning Model

stimuli < feedback u
exmaples
/l._* ¢ ? e
Li Knowled Critic
) e 2 performance
Environ- Base evaluator
ment of ¢ T
teacher %
Performance Response
component
<
Tasks

LOVELY PROFESSIONAL UNIVERSITY 255



Introduction to Artificial Intelligence & Expert Systems

256

Notes

General learning model is depicted in figure 14.1 where the environment has been included as
a part of the overall learner system. The environment may be regarded as either a form of nature
which produces random stimuli or as a more organized training source such as a teacher which
provides carefully selected training examples for the learner component. The actual form of
environment used will depend on the particular learning paradigm. In any case, some
representation language must be assumed for communication between the environment and
the learner. The language may be the same representation scheme as that used in the knowledge
base (such as a form of predicate calculus). When they are chosen to be the same, we say the
single representation trick is being used. This usually results in a simpler implementation since
it is not necessary to transform between two or more different representations. For some systems
the environment may be a user working at a keyboard. Other systems will use program modules
to simulate a particular environment.

ig

Notes In even more realistic cases the system will have real physical sensors which
interface with some world environment. Inputs to the learner component may be physical
stimuli of some type or descriptive, symbolic training examples.

The information conveyed to the learner component is used to create and modify knowledge
structures in the knowledge base. This same knowledge is used by the performance component
to carry out some tasks, such as solving a problem playing a game or classifying instances of
some concept given a task, the performance component produces a response describing its
action in performing the task. The critic module then evaluates this response relative to an
optimal response. Feedback, indicating whether or not the performance was acceptable, is then
sent by the critic module to the learner component for its subsequent use in modifying the
structures in the knowledge base. If proper learning was accomplished, the system’s performance
will have improved with the changes made to the knowledge base.

The cycle described above may be repeated a number of times until the performance of the
system has reached some acceptable level, until a known learning goal has been reached, or
until changes ceases to occur in the knowledge base after some chosen number of training
examples have been observed. There are several important factors which influence a system’s
ability to learn in addition to the form of representation used. They include the types of training
provided, the form and extent of any initial background knowledge, the type of feedback
provided, and the learning algorithms used. The type of training used in a system can have a
strong effect on performance, much the same as it does for humans. Training may consist of
randomly selected instance or examples that have been carefully selected and ordered for
presentation. The instances may be positive examples of some concept or task a being learned,
they may be negative, or they may be mixture of both positive and negative. The instances may
be well focused using only relevant information, or they may contain a variety of facts and
details including irrelevant data. Domain-specific learning theories of development hold that
we have many independent, specialized knowledge structures, rather than one cohesive
knowledge structure. Thus, training in one domain may not impact another independent domain.
For example, core knowledge theorists believe we have highly specialized functions that are
independent of one another. Jean Piaget’s theory of development, on the other hand, believed
that knowledge is internalized into a cohesive knowledge structure, favoring the domain-
general learning model.

In this model, the purpose of a learning machine is to be able to infer certain facts of some data
X from a training set selected from X.

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

Notes

'i Example: Over the set of all people we wish to automatically distinguish some person
as either male or female based on a collection of n observations such as height, weight, pitch of
voice, etc. We stack these observations into a feature vector x.

If we have chosen the types of these observations intelligently then the distributions of these
characteristics may tell us how to classify some person described by x.

'E Example: Males will on average be taller, heavier, and have a lower pitched voice than
females. So based on some instance of these characteristics, the hope is that we will be able to
predict the sex of a subject with some amount of certainty.

Self Assessment

State whether the following statements are true or false:
3. Learning can be accomplished using same methods.

4. The information conveyed to the learner component is used to create and modify
knowledge structures in the knowledge base.

14.3 Performance Measures

A performance measure is a numeric description of an agency’s work and the results of that
work. Performance measures are based on data, and tell a story about whether an agency or
activity is achieving its objectives and if progress is being made toward attaining policy or
organizational goals. In technical terms, a performance measure is a quantifiable expression of
the amount, cost, or result of activities that indicate how much, how well, and at what level,
products are provided to customers during a given time period. “Quantifiable” means the
description can be counted more than once, or measured using numbers. “Activities” mean the
work, business processes and functions of Washington state government agencies. “Results” are
what the agency’s work is intended to achieve or accomplish for its customers. Performance
measurement is the process of collecting, analyzing and/or reporting information regarding
the performance of an individual, group, organization, system or component. It can involve
studying processes/strategies within organizations, or studying engineering processes/
parameters/phenomena, to see whether output are in line with what was intended or should
have been achieved. There are several reasons to measure, monitor and report performance of
our work. It’s the right thing to do: We measure many things in our lives outside work. Our
children regularly bring home objective measures of their performance at school (i.e. test scores
and report cards). We get monthly measures of performance at home: investment performance,
water and electricity usage, and so on. We monitor our health through a variety of measures of
how well our body is performing: weight, blood pressure, cholesterol levels. Work performance
is another aspect of our lives, and measuring it should be what we do.

Self Assessment

State whether the following statements are true or false:

5. Performance measures are not based on data.
6.  Quantifiable means the description can be counted more than once, or measured using
numbers.

LOVELY PROFESSIONAL UNIVERSITY 257



Introduction to Artificial Intelligence & Expert Systems

258

Notes

14.4 Knowledge System Building Tools

In the best performance management systems, actions and results are logically related to one
another by a theory of causality, or “logic model.” Potential measures come from understanding
the purpose of the organization and what is being done to accomplish the organization’s mission.
Logic models are a useful tool for this. Agencies exist to carry out certain lines of business or
activities. Each activity is accomplished through a business process.

Example: The Human Trafficking Reporting System (HTRS) is a secured, online
performance measurement portal. The HTRS collects data on suspected human trafficking
incidents, offenders, and victims from DOJ-funded human trafficking task forces. These task
forces can encompass cities, regions, territories, or states. Information collected includes incident
status, type of human trafficking, lead investigating agency, number of known victims, number
of known offenders, whether the case was confirmed as human trafficking, the demographic
characteristics of offenders and victims, case processing information of offenders, and victim
service provision information.

The various learning and their meaning are written below whose knowledge may be measured:

° Perceptual learning — ability to learn to recognize stimuli that have been seen before.

° Stimulus-response learning — ability to learn to perform a particular behavior

° when a certain stimulus is present.

° Motor learning — establishment of changes within the motor system

° Relational learning — involves connections between different areas of the association
cortex.

° Spatial learning — involves learning about the relations among many stimuli

° Episodic learning — remembering sequences of events that we witness

° Observational learning — learning by watching and imitation other people

14.4.1 ES Building Tools on the Market

An expert system tool, or shell, is a software development environment containing the basic
components of expert systems. Associated with a shell is a prescribed method for building
applications by configuring and instantiating these components. Some of the generic components
of a shell are shown in Figure shown and described below. The core components of expert
systems are the knowledge base and the reasoning engine.

Figure 14.2: Basic Components of Expert System Tools

Expert System shell

Inference

Knowledge
Fee8 Knowledge Base| | Mechanism Explanation | | User
Expert 4 Acquisition H S : _— 5 - —1— User
Facts, heuristics Reasoning with Subsystem Interface
Subsystem ; =
< Uncertainty

N -
Knowledge

Engineer

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

° Knowledge Base: A store of factual and heuristic knowledge. An ES tool provides one or Notes
more knowledge representation schemes for expressing knowledge about the application
domain. Some tools use both frames (objects) and IF-THEN rules. In Prolog, the knowledge
is represented as logical statements.

° Reasoning Engine: Inference mechanisms for manipulating the symbolic information and
knowledge in the knowledge base to form a line of reasoning in solving a problem. The
inference mechanism can range from simple modus ponens backward chaining of IF-
THEN rules to case-based reasoning.

° Knowledge Acquisition Subsystem: A subsystem to help experts build knowledge bases.
Collecting knowledge needed to solve problems and build the knowledge base continues
to be the biggest bottleneck in building expert systems.

° Explanation Subsystem: A subsystem that explains the system’s actions. The explanation
can range from how the final or intermediate solutions were arrived at to justifying the
need for additional data.

° User Interface: The means of communication with the user. The user interface is generally
not a part of the ES technology, and was not given much attention in the past. However, it
is now widely accepted that the user interface can make a critical difference in the perceived
utility of a system regardless of the system’s performance.

14.4.2 Market Trends

Tablets, mobile applications and social user experiences are set to dominate the technology
landscape in 2012, according to market analyst Gartner. The addition of sensors and intelligence
into everyday consumer devices, growing application stores, next-generation analytics, big
data, in-memory computing, extreme low-energy servers and cloud computing are also trends
that will make their way into the mainstream during 2012 and beyond. Early adopters and avid
technology fans have already had their eyes (and fingers) on many of these emerging trends
throughout 2011 but Gartner predicts that these ten trends will have a significant impact on the
enterprise in the years ahead. “The user interface (IU) paradigm in place for more than 20 years
is changing. Uls with windows, icons, menus, and pointers will be replaced by mobile-centric
interfaces emphasizing touch, gesture, search, voice and video,” says Gartner. Context-aware
computing is also set to get a boost - that’s great news for consumers as the focus will be placed
on them and their needs. “A contextually aware system anticipates the user’s needs and proactively
serves up the most appropriate and customized content, product or service,” explains Gartner.
2012 will be all about “The Internet of Things” — giving users the ability to interact with physical
items and to track every element of their lives. This will be achieved by integrating technology
such as sensors, Near Field Communication (NFC), artificial intelligence and image recognition
into everyday objects and connecting them to the web.

Self Assessment

State whether the following statements are true or false:
7. The core components of expert systems are the knowledge base and the reasoning engine.

8. The user interface is generally a part of the ES technology.

LOVELY PROFESSIONAL UNIVERSITY 259



Introduction to Artificial Intelligence & Expert Systems

260

Notes

14.5 Learning by Induction

Inductive learning is essentially learning by example. The process itself ideally implies some
method for drawing conclusions about previously unseen examples once learning is complete.
More formally, one might state: Given a set of training examples, develop a hypothesis that is as
consistent as possible with the provided data. It is worthy of note that this is an imperfect
technique. As Chalmers points out, “an inductive inference with true premises [can] lead to false
conclusions”. The example set may be an incomplete representation of the true population, or
correct but inappropriate rules may be derived which apply only to the example set. A simple
demonstration of this type of learning is to consider the following set of bit-strings (each digit
can only take on the value 0 or 1), each noted as either a positive or negative.

In logic, we often refer to the two broad methods of reasoning as the deductive and inductive
approaches. Deductive reasoning works from the more general to the more specific. Sometimes
this is informally called a “top-down” approach. We might begin with thinking up a theory
about our topic of interest. We then narrow that down into more specific hypotheses that we can
test. We narrow down even further when we collect observations to address the hypotheses.
This ultimately leads us to be able to test the hypotheses with specific data — a confirmation (or
not) of our original theories.

Inductive reasoning works the other way, moving from specific observations to broader
generalizations and theories. Informally, we sometimes call this a “bottom up” approach. In
inductive reasoning, we begin with specific observations and measures, begin to detect patterns
and regularities, formulate some tentative hypotheses that we can explore, and finally end up
developing some general conclusions or theories.

AN

Caution Learning should be applied after refining the given task.

g

Task  Create a learning chart for a car Driving.

Self Assessment

State whether the following statements are true or false:
9. Deductive reasoning works from the more general to the more specific.

10. Inductive learning is essentially learning by example.

14.6 Generalization and Specialization

Terms such as superclass, subclass, or inheritance come to mind when thinking about the object-
oriented approach. These concepts are very important when dealing with object-oriented
programming languages such as Java, Smalltalk, or C++. For modeling classes that illustrate
technical concepts they are secondary. The reason for this is that modeling relevant objects or
ideas from the real world gives little opportunity for using inheritance (compare the class
diagram of our case study). Nevertheless, we would like to further introduce these terms at this
point in Figure 14.3 shown below:

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

Figure 14.3: Notation of Generalization

/Superclass

¢ Freight

Weight

Identification

ID-Number

[t

|

Piece‘ofl.um

_» Piece of Cargo

V' Degree of Hazardousness

Subclass

Generalization is the process of extracting shared characteristics from two or more classes, and
combining them into a generalized superclass. Shared characteristics can be attributes,
associations, or methods. In next figure 14.4, the classes Piece of Luggage (1) and Piece of Cargo
(2) partially share the same attributes. From a domain perspective, the two classes are also very
similar. During generalization, the shared characteristics (3) are combined and used to create a
new superclass Freight (4). Piece of Luggage (5) and Piece of Cargo (6) become subclasses of the class

Figure 14.4: Example of Generalization

feigt®
identification

Weight

'D-Number
—_—

Piece of Luggage " | Piece of Cargo
Degree of Hazardousness
Piece of luggage Piece of cargo
identification Identificatior.
Weight Weight
| 1D-Number | iD-Number
of Hazardousness

The shared attributes (3) are only listed in the superclass, but also apply to the two subclasses,

even though they are not listed there.

LOVELY PROFESSIONAL UNIVERSITY

Notes

261



Introduction to Artificial Intelligence & Expert Systems

262

Notes

In contrast to generalization, specialization means creating new subclasses from an existing class.
If it turns out that certain attributes, associations, or methods only apply to some of the objects
of the class, a subclass can be created. The most inclusive class in a generalization/specialization
is called the superclass and is generally located at the top of the diagram. The more specific
classes are called subclasses and are generally placed below the superclass. In figure,
the class Freight (1) has the attribute Degree of Hazardousness (2), which is needed only for cargo,
but not for passenger luggage. Additionally, only passenger luggage has a connection to a
coupon. Obviously, here two similar but different domain concepts are combined into one class.
Through specialization the two special cases of freights are formed: Piece of Cargo (3) and Piece of
Luggage (4). The attribute Degree of Hazardousness (5) is placed where it belongs—in Piece of Cargo.
The attributes of the class Freight (1) also apply to the two subclasses Piece of Cargo (3) and Piece of
Luggage (4):

Figure 14.5: Example of Specialization

Freight
Identification
Weight
ID-Number
(-Degree of Hazardousness |

Freight
Identification
Weight
ID-Number

A

I l
| Piece of Luggage ) | |_ Piece of Cargo
({Degree of Hazardousness|

So much for the mechanism, however, the domain meaning of the relationship between superclass
and subclass is much more important. These rules apply to this relationship: All statements that
are made about a superclass also apply to all subclasses. We say that subclasses “inherit” attributes,
associations, and operations from the superclass. For example, if the superclass Freight has an
attribute Weight, then the subclass piece of luggage also has an attribute Weight, even though
this attribute is not listed in the subclass Piece of Luggage. Anything that can be done with an
object of the superclass can also be done with an object of the subclass. For example, if freight can
be loaded, pieces of luggage can also be loaded. In the terminology of the system that is being
modeled, a subclass has to be a special form of the superclass. For example, a piece of luggage is
a special case of freight. The counter-example to this is: A flight is not a special case of a flight
number.

Self Assessment

State whether the following statements are true or false:

11.  Specialisation is the process of extracting shared characteristics from two or more classes,
and combining them into a generalized superclass.

12.  The shared attributes are not listed in the superclass.

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

14.7 Inductive Bias Notes

The inductive bias of a learning algorithm is the set of assumptions that the learner uses to
predict outputs given inputs that it has not encountered (Mitchell, 1980).

In machine learning, one aims to construct algorithms that are able to learn to predict a certain
target output. To achieve this, the learning algorithm is presented some training examples that
demonstrate the intended relation of input and output values. Then the learner is supposed to
approximate the correct output, even for examples that have not been shown during training.
Without any additional assumptions, this task cannot be solved exactly since unseen situations
might have an arbitrary output value. The kind of necessary assumptions about the nature of the
target function are subsumed in the term inductive bias (Mitchell, 1980; desJardins and Gordon,
1995). A classical example of an inductive bias is Occam’s Razor, assuming that the simplest
consistent hypothesis about the target function is actually the best. Here consistent means that
the hypothesis of the learner yields correct outputs for all of the examples that have been given
to the algorithm. Approaches to a more formal definition of inductive bias are based on
mathematical logic. Here, the inductive bias is a logical formula that, together with the training
data, logically entails the hypothesis generated by the learner.

AN

Caution Unfortunately, this strict formalism fails in many practical cases, where the
inductive bias can only be given as a rough description (e.g. in the case of neural networks),
or not at all.

The following is a list of common inductive biases in machine learning algorithms.

° Maximum Conditional Independence: If the hypothesis can be cast in a Bayesian framework,
try to maximize conditional independence. This is the bias used in the Naive Bayes
classifier.

° Minimum Cross-validation Error: When trying to choose among hypotheses, select the

hypothesis with the lowest cross-validation error. Although cross-validation may seem
to be free of bias, the No Free Lunch theorems show that cross-validation must be biased.

° Maximum Margin: When drawing a boundary between two classes, attempt to maximize
the width of the boundary. This is the bias used in Support Vector Machines. The
assumption is that distinct classes tend to be separated by wide boundaries.

° Minimum Description Length: When forming a hypothesis, attempt to minimize the length
of the description of the hypothesis. The assumption is that simpler hypotheses are more
likely to be true.

° Minimum Features: Unless there is good evidence that a feature is useful, it should be
deleted. This is the assumption behind feature selection algorithms.

° Nearest Neighbors: Assume that most of the cases in a small neighborhood in feature space
belong to the same class. Given a case for which the class is unknown, guess that it belongs
to the same class as the majority in its immediate neighborhood. This is the bias used in
the k-nearest neighbor algorithm. The assumption is that cases that are near each other
tend to belong to the same class.

LOVELY PROFESSIONAL UNIVERSITY 263



Introduction to Artificial Intelligence & Expert Systems

264

Notes

Self Assessment

State whether the following statements are true or false:

13.  If the hypothesis can be cast in a Bayesian framework, try to minimise conditional
independence.

14.  When forming a hypothesis, attempt to minimize the length of the description of the
hypothesis.

14.8 Analogical Reasoning and Learning

Analogy plays an important role in learning and instruction. As John Bransford, Jeffrey Franks,
Nancy Vye, and Robert Sherwood noted in 1989, analogies can help students make connections
between different concepts and transfer knowledge from a well-understood domain to one that
is unfamiliar or not directly perceptual.

' Example: The circulatory system is often explained as being like a plumbing system,
with the heart as pump.

Analogical reasoning involves several sub-processes: (1) retrieval of one case given another;
(2) mapping between two cases in working memory; (3) evaluating the analogy and its inferences;
and, sometimes, (4) abstracting the common structure. The core process in analogical reasoning
is mapping. According to structure-mapping theory, developed by Dedre Gentner in 1982, an
analogy is a mapping of knowledge from one domain (the base or source) into another (the
target) such that a system of relations that holds among the base objects also holds among the
target objects. In interpreting an analogy, people seek to put the objects of the base in one-to-one
correspondence with the objects of the target so as to obtain the maximal structural match. The
corresponding objects in the base and target need not resemble each other; what is important is
that they hold like roles in the matching relational structures. Thus, analogy provides a way to
focus on relational commonalities independently of the objects in which those relations are
embedded. In explanatory analogy, a well-understood base or source situation is mapped to a
target situation that is less familiar and/or less concrete. Once the two situations are aligned —
that is, once the learner has established correspondences between them — then new inferences
are derived by importing connected information from the base to the target. For example, in the
analogy between blood circulation and plumbing, students might first align the known facts
that the pump causes water to flow through the pipes with the fact that the heart causes blood to
flow through the veins. Given this alignment of structure, the learner can carry over additional
inferences: for example, that plaque in the veins forces the heart to work harder, just as narrow
pipes require a pump to work harder.

14.8.1 Makes a Good Analogy

Analogy examples with corresponding meanings are the best way to show the meaning of the
word “analogy.” The following is a list of some common analogies and an explanation of their
meaning.

° The relationship between them began to thaw. This means that the relationship was
changing.

° You are as annoying as nails on a chalkboard. You must be pretty annoying for someone
to say that.

° I am going to be toast when I get home. This is usually said when someone is in trouble

with their significant other.

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

° He is like a rock. This means he is steadfast and strong. Notes

° She attended the celebrity roast. The person being roasted is being honored by people
making harmless jokes about him or her.

° I feel like a fish out of water. This implies that you are not comfortable in your surroundings.

° She was offended when I said she was as flaky as a snowstorm. That isn’t a very nice
comparison to make.

° There are plenty of fish in the sea. Unless you really are a fish, this encourages you to
move on and find another potential mate.

° She was as quiet as a mouse. It is hard to hear a mouse, so that means she was very quiet.

° Bing Crosby had a velvet voice. Since voices are not made of velvet, this implies that his
voice was smooth and soothing.

° Life is like a box of chocolates. This has many meanings and is a great analogy for life.

Analogy plays a significant role in problem solving such as, decision making, perception,
memory, creativity, emotion, explanation and communication. It lies behind basic tasks such as
the identification of places, objects and people, for example, in face perception and facial
recognition systems. It has been argued that analogy is “the core of cognition”. Specific analogical
language comprises exemplification, comparisons, metaphors, similes, allegories, and parables,
but not metonymy. Phrases like and so on, and the like, as if, and the very word like also rely on
an analogical understanding by the receiver of a message including them. Analogy is important
not only in ordinary language and common sense (where proverbs and idioms give many
examples of its application) but also in science, philosophy and the humanities. The concepts of
association, comparison, correspondence, mathematical and morphological homology,
homomorphism, iconicity, isomorphism, metaphor, resemblance, and similarity are closely
related to analogy. In cognitive linguistics, the notion of conceptual metaphor may be equivalent
to that of analogy.

Analogy has been studied and discussed since classical antiquity by philosophers, scientists and
lawyers. The last few decades have shown a renewed interest in analogy, most notably in
cognitive science.

In addition to the above general qualities, several further factors influence the success of an
explanatory analogy, including base specificity, transparency, and scope. Base specificity is the
degree to which the structure of the base domain is clearly understood. Transparency is the ease
with which the correspondences can be seen. Transparency is increased by similarities between
corresponding objects and is decreased by similarities between non corresponding objects. For
example, in 1986 Gentner and Cecile Toupin found that four-to six-year-old children succeeded
in transferring a story to new characters when similar characters occupied similar roles (e.g.,
squirrel [.arrowright] chipmunk; trout salmon), but they failed when the match was
cross-mapped, with similar characters in different roles (e.g., squirrel salmon; trout chipmunk).
The same pattern has been found with adults. Transparency also applies to relations. In 2001,
Miriam Bassok found that students more easily aligned instances of “increase” when both were
continuous (e.g., speed of a car and growth of a population) than when one was discrete (e.g.,
attendance at an annual event).

14.8.2 Methods Used to Investigate Analogical Learning

Much research on analogy in learning has been devoted to the effects of analogies on domain
understanding.

LOVELY PROFESSIONAL UNIVERSITY 265



Introduction to Artificial Intelligence & Expert Systems

266

Notes

Example: In 1987, Brian Ross found that giving learners analogical examples to illustrate
a probability principle facilitated their later use of the probability formula to solve other
problems. In classroom studies from 1998, Daniel Schwartz and John Bransford found that
generating distinctions between contrasting cases improved students” subsequent learning. As
reported in 1993, John Clement used a technique of bridging analogies to induce revision of
faulty mental models. Learners were given a series of analogs, beginning with a very close
match and moving gradually to a situation that exemplified the desired new model.

Another line of inquiry focuses on the spontaneous analogies people use as mental models of
the world. This research generally begins with a questionnaire or interview to elicit the person’s
own analogical models. For example, Willet Kempton in 1986 used interviews to uncover two
common analogical models of home heating systems. In the (incorrect) valve model, the
thermostat is like a faucet: It controls the rate at which the furnace produces heat. In the (correct)
threshold model, the thermostat is like an oven: It simply controls the goal temperature, and the
furnace runs at a constant rate. Kempton then examined household thermostat records and
found patterns of thermostat settings corresponding to the two analogies. Some families constantly
adjusted their thermostats from high to low temperatures, an expensive strategy that follows
from the valve model. Others simply set their thermostat twice a day — low at night, higher by
day, consistent with the threshold model.

Retrieval of Analogs: The Inert Knowledge Problem

Learning from cases is often easier than learning principles directly. Despite its usefulness,
however, training with examples and cases often fails to lead to transfer, because people fail to
retrieve potentially useful analogs. For example, Mary Gick and Holyoak found in 1980 that
participants given an insight problem typically failed to solve it, even when they had just read
a story with an analogous solution. Yet, when they were told to use the prior example, they were
able to do so. This shows that the prior knowledge was not lost from memory; this failure to
access prior structurally similar cases is, rather, an instance of “inert knowledge” — knowledge
that is not accessed when needed.

One explanation for this failure of transfer is that people often encode cases in a situation-
specific manner, so that later remindings occur only for highly similar cases. For example, in
1984, Ross gave people mathematical problems to study and later gave them new problems.
Most of their later remindings were to examples that were similar only on the surface, irrespective
of whether the principles matched. Experts in a domain are more likely than novices to retrieve
structurally similar examples, but even experts retrieve some examples that are similar only on
the surface. However, as demonstrated by Laura Novick in 1988, experts reject spurious reminding,
more quickly than do novices. Thus, especially for novices, there is an unfortunate dissociation:
While accuracy of transfer depends critically on the degree of structural match, memory retrieval
depends largely on surface similarity between objects and contexts.

Analogical Encoding in Learning
In the late 20th century, researchers began exploring a new technique, called analogical encoding,
that can help overcome the inert knowledge problem. Instead of studying cases separately,

learners are asked to compare analogous cases and describe their similarities. This fosters the
formation of a common schema, which in turn facilitates transfer to a further problem.

'E Example: In 1999, Jeffrey Loewenstein, Leigh Thompson, and Gentner found that
graduate management students who compared two analogical cases were nearly three times

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

more likely to transfer the common strategy into a subsequent negotiation task than were Notes
students who analyzed the same two cases separately.

14.8.3 Retrieval of Analogy: The Inert Knowledge Problem

Inert knowledge is information which one can express but not use. The process of understanding
by learners does not happen to that extent where the knowledge can be used for effective
problem-solving in realistic situations. The phenomenon of inert knowledge was first described
in 1929 by Alfred North Whitehead:

“Theoretical ideas should always find important applications within the pupil’s curriculum. This is not an
easy doctrine to apply, but a very hard one. It contains within itself the problem of keeping knowledge alive,
of preventing it from becoming inert, which is the central problem of all education.”

An example for inert knowledge is vocabulary of a foreign knowledge which is available
during an exam but not in a real situation of communication.

An explanation for the problem of inert knowledge is that people often encode knowledge to a
specific situation, so that later remindings occur only for highly similar situations

In contrast so called conditionalized knowledge is knowledge about something which includes
also knowledge as to the contexts in which that certain knowledge will be useful.

Self Assessment

State whether the following statements are true or false:
15.  Analogy plays an important role in learning and instruction.

16.  Learning from cases is often difficult than learning principles directly.

14.9 Explanation-based Learning (EBL)

Explanation-based learning (EBL) is a form of machine learning that exploits a very strong, or
even perfect, domain theory to make generalizations or form concepts from training examples.

An example of EBL using a perfect domain theory is a program that learns to play chess by being
shown examples. A specific chess position that contains an important feature, say, “Forced loss
of black queen in two moves,” includes many irrelevant features, such as the specific scattering
of pawns on the board. EBL can take a single training example and determine what are the
relevant features in order to form a generalization. A domain theory is perfect or complete if it
contains, in principle, all information needed to decide any question about the domain. For
example, the domain theory for chess is simply the rules of chess. Knowing the rules, in principle
it is possible to deduce the best move in any situation. However, actually making such a deduction
is impossible in practice due to combinatoric explosion. EBL uses training examples to make
searching for deductive consequences of a domain theory efficient in practice. An EBL system
works, by finding a way to deduce each training example, from the system’s existing database of
domain theory. Having a short proof of the training example extends the domain-theory database,
enabling the EBL system to find and classify future examples that are similar to the training
example very quickly. The main drawback of the method, the cost of applying the learned proof
macros as these become numerous.

l)

Did u know? Humans appear to learn quite a lot from one example.

LOVELY PROFESSIONAL UNIVERSITY 267



Introduction to Artificial Intelligence & Expert Systems

268

Notes

Basic Idea: Use results from one examples problem solving effort next time around. An EBL
accepts 4 kinds of input:

° A training example — what the learning sees in the world.

° A goal concept — a high level description of what the program is supposed to learn.

° An operational criterion - a description of which concepts are usable.

° A domain theory — a set of rules that describe relationships between objects and actions in
a domain.

° From this EBL computes a generalization of the training example that is sufficient not
only to describe the goal concept but also satisfies the operational criterion. This has two
steps:

° Explanation - the domain theory is used to prune away all unimportant aspects of the

training example with respect to the goal concept.

° Generalization — the explanation is generalized as far possible while still describing the
goal concept.

g

Task  Make a difference hart between learning and knowledge acquisition.

Self Assessment

State whether the following statements are true or false:

17. A domain theory is perfect or complete if it contains, in principle, all information needed
to decide any question about the domain.

18.  EBL uses training examples to make searching for deductive consequences of a domain
theory efficient in practice.

14.10 Summary

° Learning is acquiring new knowledge, behaviours, skills, values, preferences or
understanding, and may involve synthesizing different types of information.

° Knowledge acquisition is the process of adding new knowledge to a knowledge-base and
refining or otherwise improving knowledge that was previously acquired.

° Explanation-based learning (EBL) systems attempt to improve the performance of a
problem solver (PS), by first examining how PS solved previous problems, then modifying
PS to enable it to solve similar problems better (typically, more efficiently) in the future.

° Inductive biases can be probabilistically correct or probabilistically incorrect, and if they
are correct, it is good to have as much of them as possible, and if they are incorrect, we are
left worse off than if you had no inductive bias at all.

° ‘Learning’ is a broad term covering a wide range of processes. We learn (memorize)
multiplication tables, learn (discover how) to walk, learn (build up an understanding of,
then an ability to synthesize) languages.

° Performance measures are based on data, and tell a story about whether an agency or
activity is achieving its objectives and if progress is being made toward attaining policy
or organizational goals.

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Types of Learning

° An expert system tool, or shell, is a software development environment containing the Notes
basic components of expert systems

° Inductive reasoning works the other way, moving from specific observations to broader
generalizations and theories.

° The inductive bias of a learning algorithm is the set of assumptions that the learner uses to
predict outputs given inputs that it has not encountered.

14.11 Keywords

Backtracking: It is a general algorithm for finding all (or some) solutions to some computational
problem that incrementally builds candidates to the solutions.

Explanation-Based Learning (EBL): 1t is a form of machine learning that exploits a very strong,
or even perfect, domain theory to make generalizations or form concepts from training examples.

Knowledge Acquisition: It is a structured way of developing knowledge-based systems (expert
systems).

Knowledge-based Systems: Knowledge-based system are artificial intelligent tools working in
a narrow domain to provide intelligent decisions with justification.

User Interface: The user interface, in the industrial design field of human — machine interaction,
is the space where interaction between humans and machines occurs.

14.12 Review Questions

—_

Explain the knowledge acquisition difficulties.
Explain the general learning model.

What are the different measures of performance?
Write few knowledge system building tools.
What is learning by induction?

Explain super class.

What is the inductive bias?

Explain analogical reasoning and learning.

0 ® N gk »w D

What is explanation based learning?

—
©

Differentiate generalization and aggregation.

Answers: Self Assessment

1. True 2. False
3. False 4. True
5. False 6. True
7. True 8. True
9. True 10. True
11. False 12.  False

LOVELY PROFESSIONAL UNIVERSITY 269



Introduction to Artificial Intelligence & Expert Systems

Notes 13. False 14. True
15.  True 16. False
17.  True 18. True
14.13 Further Readings
Books Deshpande, Neeta (2009), Artificial Intelligence, Technical Publications.

Harris, Michael C. (2010), Artificial Intelligence, Marshall Cavendish.

Rich, Elaine (2004), Artificial Intelligence 3E (Sie), Tata McGraw-Hill Education.

Russell, Stuart (2003), Artificial Intelligence: A Modern Approach, 2/E, Pearson

Education India.

Whitby, Blay (2009), Artificial Intelligence, The Rosen Publishing Group.

A

Y

Online links  http:/ /home.epix.net/~tcannonl/Physioweek10.htm

http:/ /www.chess.com/article/view /learning-by-induction

http:/ /www.claes.sci.eg/Department.aspx?Depld=272&lang=en

http:/ /www.eolss.net/Sample-Chapters/C15/E6-44-03.pdf

http:/ /www.washington.edu/doit/TeamN/types.html

http:/ /www.wtec.org/loyola/kb/c3_s2.htm

270 LOVELY PROFESSIONAL UNIVERSITY



LOVELY PROFESSIONAL UNIVERSITY
Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411

For Enquiry: +91-1824-300360

Fax.: +91-1824-506111

Email: odi@Ilpu.co.in



	00 Cotnents.pdf
	Unit 01.pdf
	Unit 02.pdf
	Unit 03.pdf
	Unit 04.pdf
	Unit 05.pdf
	Unit 06.pdf
	Unit 07.pdf
	Unit 08.pdf
	Unit 09.pdf
	Unit 10.pdf
	Unit 11.pdf
	Unit 12.pdf
	Unit 13.pdf
	Unit 14.pdf



