

Adaptive resource provisioning for multi-tier applications using

V-cache in cloud computing

A Dissertation submitted

By

Gurjot Balraj Singh

 To

Department of Computer

Science and Engineering

In partial fulfillment of the Requirement for

the

Award of the Degree

of

Master of Technology in CSE

Under the guidance

Of

 Mr. Parminder Singh

 (May 2015)

i

PAC FORM

ii

ABSTRACT

Web applications these days are mostly multi-tier for the sake of software reusability

and flexibility. However it is very difficult to estimate the behavior of workloads in

these tiers due to the fact that resource demand at each tier is distinct. So it becomes

very confronting to allocate resources at each tier. In order to fulfill SLA (Service Level

Agreement) requirements it becomes necessary to provision resources at each tier

separately. Recently various approaches on control theory and dynamic approaches

have been proposed for the provisioning of resources in cloud. In this paper we deploy

adaptive technique using v-cache for multi-tier application in cloud computing so as to

enhance the efficiency of provisioning of resources as well as to combat with resource

contention problems. We present an extended v-cache model where heterogeneity of the

users is considered and cache size is determined dynamically on the basis of SLA

signed as well as according to the priority of the user. Also every application has certain

peak hours where the workload is maximum. So we are considering those peak load

hours to determine the size of cache so as to accommodate maximum requests while the

workload is high. Also the size of cache is reduced during off-peak load hours where

the workload is minimum. Extended policy generator is presented where decision about

size of the cache is made on the basis of current server time and Type of SLA signed.

Although this provisioning comes under static resource provisioning but introduction of

dynamic cache has made it dynamic.

iii

CERTIFICATION

This is to certify that Gurjot Balraj Singh has prorating M.Tech dissertation “Adaptive

resource provisioning for multi-tier applications using V-cache in cloud computing”

under my guidance and supervision. To the best of my knowledge, the present work is the

result of his original investigation and study. No part of the dissertation proposal has ever

been submitted for any other degree or diploma. The dissertation is fit for the submission

and the partial fulfillment of the conditions for the award of M.Tech Computer Science &

Engineering.

Date: Signature of Advisor

iv

ACKNOWLEDGEMENT

The authors are highly grateful to the University, Lovely Professional University

(LPU), Phagwara, for providing this opportunity to carry out the present thesis/ work. The

constant guidance and encouragement received from Mr. Parminder Singh Assistant

Prof., LPU has been of great help in carrying out the present work and is acknowledged

with reverential thanks. Without the wise counsel and able guidance, it would have been

impossible to complete the thesis in this manner. The author expresses gratitude to other

faculty members of Computer Engineering Department, LPU for their intellectual support

throughout the course of this work. Finally, the authors are indebted to all those

whosoever have contributed in this thesis work and friendly stay at Lovely Professional

University.

v

DECLARATION

I hereby declare that the dissertation entitled, Adaptive resource provisioning for multi-

tier applications using V-cache in cloud computing submitted for the M.Tech degree is

entirely my original work and all ideas and references have been duly acknowledged. It

does not contain any work for the award of any other degree or diploma.

Date:___________

 Investigator

 Regn. No.___________

vi

TABLE OF CONTENTS

PAC FORM...i

ABSTRACT...ii

CERTIFICATION...iii

ACKNOWLEDGEMENT...iv

DECLARATION...v

LIST OF FIGURES..viii

Chapter 1: Introduction..1

 1.1 Cloud Computing...1

 1.2 Cloud Delivery Models..2

 1.3 Web Services...4

 1.4 Applications of Web Services..5

 1.5 Emerging Trends in Web Services..6

 1.6 Web Services in Cloud Computing...7

 1.7 Provisioning of resources in Multi-tier applications..7

 1.8 Challenges in Multi-tier scenario...8

 1.9 Types of Resource Provisioning..9

 1.10 Parameters for Resource Provisioning...10

Chapter 2: Review of Literature...11

Chapter 3: Present Work..20

3.1 Problem Formulation..20

 3.1.1 Existing System...20

 3.1.2 Proposed System...22

vii

 3.1.3 Pseudo Code..24

3.2 Objectives...25

3.3 Research Methodology..25

Chapter 4: Results and Discussions...28

Chapter 5: Conclusion and Future Scope..35

Chapter 6: References...36

Chapter 7: Appendix...40

viii

LIST OF FIGURES

Figure Number

Figure Name Page Number

Figure 1.1 Cloud delivery models 4

Figure 1.2 Web service chain 6

Figure 1.3 Demonstration of 24 hours of

working of system.

7

Figure 1.4 General Scenario of multi-

tier applications

8

Figure 3.1 Architecture of v-cache. 20

Figure 3.2 Architecture of extended v-

cache

23

Figure 3.3 Flow chart of research

methodology

26

Figure 5.1 Visual Studio running on

windows

28

Figure 5.2 Working of workload

analyzer

29

Figure 5.3 Effect on overall CPU usage 30

Figure 5.4 Results for one-tier

application

31

Figure 5.5 Results for two-tier

application

32

Figure 5.6 Request in peak hours 32

Figure 5.7 Results for three-tier

application

34

Figure 5.8 Results for all three-tiers 34

1

 CHAPTER 1

 INTRODUCTION

1.1 Cloud Computing

Cloud Computing refers to on demand, Self Service Internet Infrastructure that enables

the users to access the resources from anywhere and anytime. Cloud Computing is aimed

to implement Scalability and Reliability in the networked environment. In Cloud

Computing environment the resources can be allocated according to the needs of the user.

There are 10 basic Principles of Cloud computing namely User centric system,

Friendliness to users, Openness, Transparency, Interoperability, Construction of task

representation, and Division of task in accordance with their specifics, Evolution, Balance

and Security. [5]

Although there are multiple benefits so there exist some security Problems as well.

 Loss of Control: - Loss of control occurs because in cloud database a huge

voluminous data is being stored whose location cannot be predicted by users.

 Loss of Trust: - If the data is being lost then data replacement cannot provide the

trust to the user so there is loss of trust.

 Multi-Tenancy:- Using single server to serve different client servers may lead to

amalgamation of data. [5]

Characteristics of Cloud Computing.

 Clients have instant access to the resources.

 Client can access the services using service discovery from any place.

 Client pays for only those resources which are used by him.

 If the request Processing requires more resources then it is not up to the client to go

and search them but it is the system that deals with it.

2

 Client need not to install Web Services discovery software on his personal computer.

It is already deployed on the cloud.

 Reduced cost implementation with the use of Virtualization. [6]

Cloud computing consist of mainly three types of services that are:-

 Saas (Software as a service). It delivers the application as a service. We can hire the

application and pay per use rather than owning it.

 Paas (platform as a service). It provides computing platform where we can develop

our own application. It consists of support for building and delivering the complete

life cycle of the web based applications.

 Iaas (Infrastructure as a service). It delivers the computing resources that can be CPU

cycles or Memory or Database capacity. If we are developing the application by using

Paas then Iaas is automatically included. [5]

1.2 Cloud delivery models.

Mainly there are three Cloud delivery models namely

1. Public Clouds.

2. Private Clouds.

3. Hybrid Clouds.

1. Public Clouds: -

In public clouds the infrastructure and services are provided basically on-the-shelf over

the internet. These types of clouds acquire the greatest level of efficiency in sharing the

resources. We can deploy public clouds when:-

 When our application is being used by number of peoples. For ex. Gmail.

 When we need to develop and test application code.

 When we need to access saas from a vendor who has implemented strong security

strategies.

3

 When we are working over collaborating projects.

 When we work under fluctuating workload environments.

2. Private Cloud: -

In a private cloud infrastructure and services are maintained over a private network. It is

basically used by an organization but it can also be hosted over other networks. However

this type of cloud scenarios have well implemented security and control but you still need

to purchase infrastructure and services which further enhances the cost. We can deploy

private clouds when:-

 Our business is dedicated to the industry where security and control are the prominent

challenges.

 Our organization is competent enough that it can run its own cloud data center

effectively and efficiently.

3. Hybrid Cloud: -

 Hybrid cloud is a computing environment where an organization manages and provides

some in-hour resources and others are provided externally. It uses a mixture of on-

premises public cloud and private cloud services with orchestration between the two

platforms. It provides the facility by allowing workloads to move between public and

private clouds with the change in computation needs and cost. So hybrid cloud gives our

business more flexibility and greater data deployment options. For example a company

may deploy an on-premises private cloud in order to host critical or sensitive

data/workloads but can also use a third party public cloud provider ex. Google compute

engine to host less critical data or resources such as testing and development of

workloads. Hybrid cloud is best suited for dynamic and highly changeable workloads. For

ex. Transaction orders entry system which has high workload over working days and

totally contrary during holidays. [8]

4

 Figure 1.1 Cloud delivery models. [8]

1.3 Web Services

Web services are basically web application components that run on web. We can either

Publish, Find or Use the web services to include various components that together build a

web service.

Basic components of Web services are:-

 WSDL

WSDL stands for web service description language and it is used to describe our web

services. It is a XML based language.

 SOAP

SOAP stands for simple object access Protocol and this protocol is used to access the

web services. SOAP is also based on XML.

 UDDI

UDDI stands for universal description, discovery and integration and it is basically a

directory service where companies can search for the desired web service. UDDI is

described in Web Service Description Language (WSDL).

 RDF

RDF stands for Resource description Framework and is used to describe the resources

on the web. It is also described in XML.

Now Web Services communicate using open protocols and these are self-contained as

well as self describing. We can discover the web services with the help of common

directory service UDDI. HTTP and XML are the basis for the web services. [7]

5

Web services are of two types:-

 Reusable Application Components: - Web services can contain Reusable codes for

Instance Currency conversion, Language translation or Weather reports.

 Connect Existing Software: - Web services can also be used to solve the problem of

interoperability by giving different applications a way to link them. [7]

1.4 Applications of Web Services.

We have created an application and we want that other applications can be able to

communicate with it. For example if we are creating a Java application for Stock

Information and it is updated after every 5 min and we want that other applications can

access its data.

There can be many traditional ways to accomplish this but with certain drawbacks:-

 We can serialize our java objects and then send to the application desiring that data.

Now problem is that if other application is using C# then it would not be able to read

the data.

 Other approach is that we are sending text file to the application that needs data. Now

C# application can read this data. If C# application wants to attract with another

application other than stock application say weather report application if this

application uses its own format then it will take tremendous amount of time for the C#

application to work. [3]

So we need a Standard file format i.e. Web Services is a solution. To send a Web service

message a WSS standard is predefined.

 Ways to add security headers.

 Attachment of security tokens and credentials to message.

 Inserting a timestamp.

 Signing the message.

 Encrypting.

 Extensibility.

6

Figure 1.2 Web service chain. [4]

Problems with web services.

 Immaturity of Standards.

 Performance

 Complexity and Interoperability.

 Key Management.

 XML Encryption. [4]

1.5 Emerging Trends in Web Services.

Mash Ups

It is the new breed to Web based applications created by programmers. The mash up

mixes two or more Existing different web services from competing and disparate web

sites. For ex. A mash up could overlay Traffic from one source and could mash up and

display over maps from Google, Yahoo etc. Ex. Wikimap. [2]

1.6 Web Services in Cloud Computing.

Now combining different data centers creates a cloud. For example Google has a cloud of

12 Data centers with about 55,600 Servers. In these data centers Physical Machines are

virtualized as instances. Service providers deploy there services on these instances. An

end user usually connects to the cloud and accesses the data and runs the applications or

services. Then user request is redirected to the particular service instance.

Connection information i.e. RTT (Round Trip Time) between a user and an instance is

kept by the cloud provider. [1]

Asp.Net

Website

.Net Web

Service
Client

Machine
Client

7

1.7 Provisioning of resources in Multi-tier applications.

As all the tiers have different set of requirements of computing resources so it becomes a

challenge to monitor both Quality of service (QOS) and resource cost. To overcome this

difficulty generally various QOS requirements are used (i.e. throughput, delay, latency)

and are generally stated in SLA. When defined QOS satisfies SLA then service providers

get revenue otherwise they have to pay penalty to the users. So ultimately our objective is

to provide appropriate resources to the users at each tier so as to reduce the overall cost.

According to Jiang et.al. to provide optimal resource provisioning in cloud service

providers often impose as a SLA (Service Level Agreement) which defines various

parameters that application must offer i.e. Maximum average response time, Latency etc.

[2]

Now capacity planning is a classical method to estimate the amount of resource usage. It

is determined by maximum request rate to a system in a given target period. We can

estimate using either periodic data or historic data. However maximum request rate

occurrence is very rare. Figure 1 shows the demonstration of 24 hours of working of

system with CPU utilization and disk utilization. We can clearly conclude that CPU usage

for most of the time is less than 50% and disk utilization is below 20% for about 70% of

the time. [24]

Figure 1.3 Demonstration of 24 hours of working of system. [24]

However with emerging virtualization technology it becomes feasible to allocate the

resources according to the fluctuations in resource demand. Particularly cloud paradigm

8

is concerned with “Pay as you go”. For example amazon charges $0.1 per hour per virtual

instance [24].

1.8 Challenges in Multi-tier scenario.

Although there are tremendous advantages of cloud computing but it comes with many

challenges which are discussed below.

1. First challenge is that each class of resource has different impact on QOS. So it

becomes very challenging to predict the allocation of resources to users.

2. Secondly in multi-tier applications each tier has substantially different set of

requirements. So it becomes much more difficulty to cope with this problem

dynamically.

3. No performance guarantees are given by the service providers with regard to

application level performance.

A general scenario of 3 tier application is shown in figure 1.2. Although single tier is

easier to implement than multi-tier and has simple architecture but it lacks functionality.

Moreover most modern web sites these days use multi-tier architecture. In multi-tier

architecture each tier has certain functionality. In the given figure basically three tiers are

used namely presentation tier, application tier and data tier and these tiers are

implemented as Web server, application server and data server respectively. [24]

Figure 1.4 General Scenario of multi-tier applications. [3]

9

Although various techniques are available for the provisioning of resources we will take a

look over them one by one. Some techniques have disadvantages as well as advantages

but optimal resource provisioning technique is not yet available. It is very difficult to

understand the overall good understanding of the behavior of whole system.

1.9 Different types of Resource provisioning.

According to the needs of the application these can be classified as:-

1) Static Provisioning: This type of provisioning is best suited for the applications that

are generally predictable and have unchanging demands or workloads; this static

provisioning can be applied there constructively. In this scenario of advance provisioning,

initially the contract is being signed between the customer and services provider and

agreed amount of resources are prepared in advance of the start of service. There are

basically two options for customer either flat free charge can be applied or customer can

be billed on monthly basis.

2) Dynamic Provisioning: This type of provisioning is best suited where there are

fluctuating workloads. Where the demand of resources may vary by the applications

dynamic provisioning is best suited there. We basically migrate VMs on-the-fly to

compute new nodes within the cloud. In this scenario additional numbers of resources are

allocated when they are needed and are removed when the workload decreases. Customer

is charged on pay-per-use basis.

3) User Self-provisioning: In user self- provisioning, resources are purchased by the

customer from provider via web form by creating an account of the customer and paying

for the resources via credit card. The provider provides the resources for use of customer

for hours if not minutes. [26]

1.10 Parameters for Resource provisioning.

i) Response time: Response time taken by the designed resource provisioning algorithm

should be minimum while executing the task.

ii) Minimize Cost: The cost incurred should also be minimum form the cloud user point

of view.

10

iii) Revenue Maximization: this must be achieved from the Cloud Service Provider‟s

view.

iv) Fault tolerant: Despite of failure of nodes our algorithm should continue to provide

services.

v) Reduced SLA Violation: SLA violations should be reduced to minimum by our

designed algorithm.

vi) Reduced Power Consumption: VM placement & migration techniques should lower

power consumption. [26]

11

 CHAPTER 2

REVIEW OF LITERATURE

S.

No

Author Name Title Year

1 Swaminathan sivasubramanian

et.al.

SLA-driven resource provisioning of

multi-tier internet applications

2007

2 Evangelia Kalyvianaki et.al. Applying Kalman filters to dynamic

resource provisioning of virtualized

server applications

2008

3 Jiang Dejun et.al. Autonomous resource provisioning

for multi-service web application

2010

4 Sireesha Muppala et.al. Regression based multi-tier resource

provisioning for session slowdown

guarantees

2010

5 Yee Ming Chen et.al. Optimal provisioning of resource in a

cloud service

2010

6 Jing Bi et.al. Dynamic provisioning modeling for

virtualized multi-tier application in

cloud data center

2010

7 Saurabh kumar garg et.al SLA-Based resource provisioning for

heterogeneous workloads in

virtualized cloud data centers

2011

8 Anshul gandhi et.al. Hybrid resource provisioning for

minimizing data center SLA

violations and power consumptions

2011

9 Riccardo Lancellotti et.al. Dynamic Request Management

Algorithms for Web-Based Services

in Cloud Computing

2011

10 Wesam dewoud et.al. Dynamic Provisioning of multi-tier

applications

2012

12

11 Rui Han et.al. Lightweight resource scaling for

cloud applications

2012

12 Saouli Hazma et.al. A Cloud computing approach based

on mobile agents for web services

discovery

2012

13 Jiang Dejun et.al. Resource provisioning of web

applications in heterogeneous clouds

2013

14 Pooja V et.al. Mobile Computation Dynamic

Offloading Using Cloud

2013

15 Yanfei Guo et.al. V-cache :- Towards flexible resource

provisioning for multi-tier

application in Iaas clouds

2013

SLA-driven resource provisioning of multi-tier internet applications.

Swaminathan sivasubramanian et.al. (2007)”SLA-driven resource provisioning of multi-

tier internet applications”. This paper focuses on end to end performance instead of

dealing with individual tier separately. In this approach run time caches are used which

further enhances the efficiency and performance. With the use of caches similar requests

can be processed faster and efficiently but keeping in mind the consistency problems.

This depends on cache hit ratio. Various advantages of this approach is it deals with end

to end performance. Moreover SLA of service can be maintained with minimum number

of servers. However some disadvantages also persist with this approach that is it is very

difficult to maintain consistency of caches. If data in caches it too old then it needs to be

updated in order to maintain consistency. Moreover it does not take performance

capability of each tier individually as each tier has its own processing requirements.

However many algorithms are available to tackle with this problem. [11]

Applying Kalman filters to dynamic resource provisioning of virtualized server

applications.

Evangelia Kalyvianaki et.al. (2008). “Applying Kalman filters to dynamic resource

provisioning of virtualized server applications”. In this paper they have proposed two

controllers based on kalman filters which adapt according to changing workloads.

13

Moreover we can make this mechanism to adapt more quickly or slowly to workload

changes and also parameters for these controllers can be computed online. In this method

controllers are used to allocate the resources to the CPU. In each CPU there is manager

that periodically sends CPU usage to controller and controller provides resources

accordingly. In this approach they are using two controllers. 1. Basic controller. 2.

Process noise covariance controller. Although in previous works only basic controllers

were used but with the addition of PNCC further improvement is achieved by considering

resource coupling tiers. Moreover PNCC adaptive is used to take non-stationary noises

under consideration. Although kalman uses an efficient approach but this technique is

suitable with small servers only maintaining controller with each CPU and linking those

controllers is a difficult task to achieve and makes system complex. [14]

Autonomous resource provisioning for multi-service web application.

Jiang Dejun et.al. (2010). “Autonomous resource provisioning for multi-service web

application”. In this paper SLA (API) is applied only to the front end service and rest of

the services are automated. Using this approach various services can be provisioned

whether an application or data service. Each service may consist of number of instances

with replicated code and various caches in order to improve performance. In this paper

they are creating acyclic graph in which services are adjusted. Each service computes its

“What if analysis” according to number of available machines i.e. predicting future

performance and these performance promises are reported to their parent services. Each

service consists of aggregated performance values of their child nodes. Responsibility is

totally of the intermediate service for provisioning of resources locally. One advantage of

this approach is that it is a decentralized approach where each service is responsible

autonomously for its own provisioning. Limitation also persists that they are assuming

that the availability of the resources is infinite. So this technique is only subjected to data

centers and clouds. [12]

Regression based multi-tier resource provisioning for session slowdown guarantees.

Sireesha Muppala et.al. (2010). “Regression based multi-tier resource provisioning for

session slowdown guarantees”. In this paper statistical machine learning is used.

According to this approach firstly offline training is provided to machines and tested

under diverse workloads offline. When the system is used in real-time workloads

regression analysis is used to model the internet service behavior pattern whenever the

14

service is violated then system uses predefined metrics and act accordingly. Pros of using

this technique are that once the system has cleared training process it is fully automated.

However some cons also exist 1. Training should be efficient. If training is not up to the

mark then overall system will be affected. 2. Caches or queuing model is not deployed so

this approach is not suitable for heavy workloads as it will compromise with the

efficiency. [13]

Optimal provisioning of resource in a cloud service.

Yee Ming Chen et.al. (2010). “Optimal provisioning of resource in a cloud service”. This

paper uses discrete particle swarm optimization algorithm (DSPO). In this method they

are creating t*p matrix and each row representing task allocation and column representing

allocated tasks in a processor. With the use of this method we are able to achieve the

speed of convergence and ability to obtain faster and feasible allocation. However speed

of convergence and obtaining faster and feasible allocation are the advantages of this

approach. But cons are that dynamic workloads are not taken into the consideration.

Moreover this approach is not suitable for large systems. [15]

Dynamic provisioning modeling for virtualized multi-tier application in cloud data

center.

Jing Bi et.al.(2010). “Dynamic provisioning modeling for virtualized multi-tier

application in cloud data center”. In this paper they presented a novel technique for

dynamic resource provisioning under cluster based virtualized multi-tier applications. It

consists of resource pool where the physical machines are present in data center along

with virtualized applications running on them. Advantage of using virtualized machines is

that the demand of the resources increases or decreases with respect to time so in order to

cope with this problem virtualized environment is used. It consists of resource pool and

self-management community. In self-management community basically four functions

are performed. 1. Monitor. 2. Analyzer. 3. Resource scheduler. 4. Virtualized application

executor. Resource computational pool sends delegate to self-management community

and SMC generates the response accordingly. Under virtualized multi-tier application

queuing model we are having analytic performance models. In this model they are using

ODS (On Demand Scheduler) for the first tier only to schedule the request. Once the

request is scheduled it only needs to be processed and passed to successor tiers. In open

queuing model first step is to estimate the capacity of VM‟s at each tier in accordance to

15

the rate of request they can handle. Next step is to determine the number of VM‟s

required to process the request and satisfy the requirements. Advantage of using this

approach is increased efficiency and flexibility for cloud data centers. To pursue further

research we can use load prediction method technique. [16]

SLA-Based resource provisioning for heterogeneous workloads in virtualized cloud

data centers.

Saurabh kumar garg et.al. (2011). “SLA-Based resource provisioning for heterogeneous

workloads in virtualized cloud data centers”. In this paper they are proposing admission

control and scheduling mechanisms to tackle with the dynamic workload nature of cloud

computing. Process of scheduling used is,

1. Admission control: - Admission control decides whether a VM can be allocated to the

request to serve and if accepted then it signs SLA with the user.

2. VM manager: - VM manager initiates a VM and allocate it to the request then job

scheduler schedules applications on this VM.

3. Job scheduler: - Job scheduler assigns jobs to initiated VM‟s.

4. SLA manager: - SLA monitors each accepted application. SLA enforcement and

rescheduling algorithm is used. It performs following functions. 1. Enforce SLA. 2.

Schedule jobs from batch job. 3. Consolidation. [17]

Hybrid resource provisioning for minimizing data center SLA violations and power

consumptions.

Anshul gandhi et.al. (2011). “Hybrid resource provisioning for minimizing data center

SLA violations and power consumptions”. In this paper they are using the historical data

and on the basis of that data they allocate the resources i.e. 1. Predictive. 2. Reactive. In

predictive they are using historical data and on the basis of that data they allocate the

resources but with the use of reactive technique we can recompute the demand of

resource at finer times. Advantage of this approach is that this model is simple and

efficient for small centers. However there are also some disadvantages that queuing

model is not used and this approach is not suitable for large centers where multiple

requests arrive in a small time span. [18]

16

Dynamic Request Managemennt Algorithms For Web-Based Services in Cloud

Computing.

Riccardo Lancellotti et.al. (2011). “Dynamic Request Management Algorithms for Web-

Based Services in Cloud Computing”. In this Paper they presented an algorithm

„Performance Gain Prediction‟ which decides whether to process a request locally or to

redirect to other server on the basis of some predefined parameters i.e. (Server load,

Computational Cost, User session migration and redirection Delay). However this

approach increased the efficiency to 25% from the traditional algorithms. But limitation is

if the request requires very less computation so Applying the algorithm to such a request

will only decrease the latency and response time and Computing this algorithm for each

of the thousand requests in a minute is very complex. However for servers with very

minimum number of requests this algorithm is worth Functioning. [19]

Dynamic Provisioning of multi-tier applications.

Wesam dewoud et.al. (2012). “Dynamic Provisioning of multi-tier applications”. This

paper is enhancement to the previous paper discussed i.e. “hybrid resource provisioning

for minimizing data center SLA violations and power consumption”. In this paper along

with predictive and reactive techniques a flexible queuing model is also incorporated for

determining how many resources are needed to each tier. Two basic things which we

need to consider while provisioning resources are, 1. How much to provision and 2.

When to provision. In this paper the required capacity at each tier is evaluated using the

queuing model thus allocating the desired capacities at various tiers all at once. Various

advantages of this approach are efficient and flexible model. Also queuing model along

with predictive and reactive techniques further enhances the capability of model. [20]

Lightweight resource scaling for cloud applications.

Rui Han et.al.(2012). “Lightweight resource scaling for cloud applications”. This paper

introduces a new approach of adding or removing lightweight resources (i.e. CPU‟s

memory, I/O etc.) rather than adding or removing whole virtual machine instances

because latter bears more cost and overhead. They are using LS algorithm. According to

it if value of t
0
 > tu

(LSU) then we need to scale up resources and if the value of t

0
 < t

l

(LSD) then we need to scale down resources. Now t
l

= Lower bound and t
u
 = Upper

bound. To use this approach effectively we need to check the performance periodically.

17

Various advantages of this approach are firstly this approach is simple and efficient and

secondly it adapts cost effective scaling. We can extend this approach by scheduling the

resources between application and also understanding tradeoffs between reservation cost

and risk of high running cost. [21]

A Cloud computing approach based on mobile agents for web services discovery

Saouli Hazma et.al. (2012) “A Cloud computing approach based on mobile agents for

web services discovery”. In this paper they presented the approach to discover the

services over the web. First the search is initiated on the key words provided by the client

and then the filtering algorithm is applied to select the appropriate service among the

discovered. Cloudsim is used as a simulator in this research work. Two cloud Regions are

considered and when the request arrives the services are searched in the local cloud

which initiates the searching on the other cloud and filtering is performed there and the

result is returned to the local cloud and then to the client. The problem is that this

approach is beneficial for limited number of clouds whereas if the large number of clouds

are considered in the semantic search then the problem arises of the absence of single

tool. [28]

Resource provisioning of web applications in heterogeneous clouds.

Jiang Dejun et.al. (2013). “Resource provisioning of web applications in heterogeneous

clouds”. In this paper they calculated the performance profile of each individual instance.

Now these parameters help us to balance the load more efficiently and more accurately

rather than allocating the load on the basis of parameters calculated from overall tier.

They controlled workload by applying a load balancer in front of provisioned instance.

Then load balancer calculates weighted workload distribution. Now whenever a new

instance is added in any tier load balancer calculates its performance profile in order to

balance the workload intensities. In this paper heterogeneous instances are taken into

account. So it accommodates various advantages firstly heterogeneous nature is

considered and secondly better allotment of instances. [22]

18

Mobile Computation Dynamic Offloading Using Cloud

Pooja V. et.al. (2013). “Mobile Computation Dynamic Offloading Using Cloud“. This

paper presents an approach of Dynamic offloading the application to the cloud to

maximize the efficiency and increase battery life and to meet the unpredictable user

requirements. The choice of offloading depends on both the application characteristics as

well as the Current environment. Decision is taken on the basis of five parameters i.e.

Input data size, CPU usage, Memory Usage, Execution Time and Power consumption. On

the basis of these parameters three Execution modes are considered i.e. Local (Executed

on mobile), Remote Wi-Fi (Outsource to the remote server through Wi-Fi), and Remote

3G (Outsource to the remote server through Sprint 3G network). The offloading Decision

can also be taken on the basis of user preference. So a group of Predefined Preference

policies can be stored at the mobile device which can be selected by the user. Limitation

of this approach is that offloading requires large amount of data to be transmitted over the

network and the communication overhead so Fast network must be available at the time

User want to use the application. As 3G network is not available all over the locations so

it becomes difficult to apply this approach. [27]

V-cache :- Towards flexible resource provisioning for multi-tier application in Iaas

clouds.

Yanfei Guo et.al. (2013). “V-cache :- Towards flexible resource provisioning for multi-

tier application in Iaas clouds”. In this paper they presented a machine learning approach

in which caches are deployed in front of the applications. These caches use a genetic

algorithm that identifies the request that can be most benefited from caches and

dynamically resizes itself so as to accommodate all requests. In architecture of V-cache

there are –

1. Workload analyzer – It performs following functions.

 Clustering of requests according to their size, types and processing costs.

 It also maintains statistics of completed requests.

2. Policy generator – It performs following functions.

 Identifies the request that benefits the most from the caches. It takes cluster of

requests as input and request redirection map to request redirectors as output.

19

 It also determines the size of cache to accommodate those requests.

3. Request predictor – It performs following functions.

 It determines whether to send or forward the request to cache tier or to forward the

request to web tier on the basis of URL and host sent by policy generator.

We can extend work further for heterogeneous applications and integrating admission

control for overload control and performance guarantees. [23]

20

 CHAPTER 3

 PRESENT WORK

The Enhanced V-Cache resource provisioning technique will enhance the efficiency by

considering the fluctuating workloads. The workload is never constant under real time

situations. So, fluctuating workloads should be considered in order to provision the

resources more effectively and efficiently. In this approach we are working on cache so

that we can filter the requests and those requests which can be served through cache could

be served locally and this will eventually increase the throughput, less memory usage and

less CPU utilization. At the end we can save the resources from unwanted wastage.

However many techniques are available static as well as dynamic but we lack with

optimal resource provisioning mechanism. So by increasing efficiency of caching policy

we can increase the efficiency locally.

3.1 PROBLEM FORMULATION

3.1.1 Existing system

First let us consider the existing V-cache architecture.

Figure 3.1 Architecture of v-cache. [20]

Various algorithms have been proposed both static and dynamic for provisioning of

resources in a cloud. However none of them is able to achieve ideal efficiency due to

21

fluctuating nature of workloads. Workloads changes according to the needs of user so

there is a need of scale-up and scale-down the resources in order to maximize the proper

utilization of resources. Another challenge is that demand of each tier is separate and

should be dealt separately. So we are proposing the method which takes into

consideration both the fluctuating workloads as well as resource contention problems.

In figure 3.1 we are deploying v-caches so as to predict the nature of the request with the

use of URL and Host data and process accordingly. We predict the requests that can be

benefited the most from caches. This work is done by Policy generator. It also maintains

statistics of completed requests. Then the request is passed to Request redirector which

further determines whether to forward the request to caches tier of to pass the request to

web-tier. In this system they have fixed the size of cache and fluctuating workload has

not been taken into consideration. We cannot guarantee that the workload will remain

same for 24 hours. As it is clear in fig 1.3 that the workload has a certain peak hours

where we need additional resources in order to combat with resource contention problem

so we decide some peak hours that may vary from application to application and the size

of cache is determined through that policy. When the application is running under peak

hours then size of dynamic cache is increased so that maximum requests can be

accommodated and benefitted from cache. On the other hand when application is running

under normal hours we decrease the size of dynamic cache in order to save the resources.

In the existing system when the request arrives it is first processed by workload analyzer

where the type of request is determined and size to store that request into cache is

determined. After that the request is passed to policy generator where we determine

whether to process the request through cache or to process the request through server. It

also compares TTL property of the dynamic requests. The request whose TTL has been

expired are sent directly to the server for processing which further increases the cost. So

after the policy generator determines the overall situation the request is passed to request

redirector which redirects the request either to cache or server for processing according to

the results provided by policy generator. Now in the existing system size of cache are

fixed which do not take into consideration fluctuating workloads. So size of cache should

be determined with utmost care. During peak hours when the workload is maximum

cache cannot be able to accommodate all the requests whereas during normal working

hours there may be a lot of space unused in these caches which is leading to wastage of

resources. So size of cache should be fixed carefully. So we are proposing a model which

22

takes into account the fluctuating workloads and changes the size of cache according to

the type off application because different applications may have different peak hours. So

heterogeneity of the applications is also considered.

They have used optimal caching policy in which it is the mapping of request either to

cache or to multi-tier application on the basis of minimum cost incurred in either case.

For n request cluster there can be 2
n.

Suppose system workload has n clusters so for each

cluster it maps 1 to p requests to cache and p+1 to n directly to the application. We define

the cost incurred in mapping M as

Where ci and ai are the processing cost of the request cluster i from cache and application

respectively. Also ni is the total number of requests present in the cluster and hi is the hit

ratio of the cache. Using these 2
n
 mappings we can find optimal solution with least

processing cost. This system uses genetic algorithm which records response time of each

request and when the same request appears again then it checks the data from database for

that request and makes the decision accordingly.

3.1. Proposed system

The Extended V-Cache resource provisioning technique will enhance the efficiency by

considering the fluctuating workloads. As the request arrives we determine if it can be

served by cache and concurrently our system estimates the workload conditions if

possible the request is served locally thus saving the resources and scaling of resources

works concurrently. Architecture of extended v-cache is shown below.

23

Figure 3.2 Architecture of extended v-cache.

In extended v-cache we consider the changing pattern of workload and size of cache is

determined accordingly in order to accommodate maximum request into cache at the time

of peak hours to increase the efficiency, throughput, minimize CPU utilization and reduce

RAM consumption. Keeping the same size of cache during normal working hours is also

wasting the resources unnecessarily so under normal working hours size of the cache is

reduced. Now when the request arrives at workload analyzer it first determines the type of

the request and also maintains the statistics of completed requests. After that request is

passed to extended policy generator where decision whether to process the request

through cache or through web application is taken. Also it checks if the application is

running under peak hours then size of dynamic cache is increased and if application is

running under normal hours them size of the cache remains unchanged. After processing

through extended policy generator the request is passed to request redirector which

redirects the request according to the results provided by the extended policy generator.

Various parameters through which we will conclude the efficiency of our algorithm are

1. Throughput: -Throughput is the total number of request served from cache under a

given interval of time. Throughput should be maximum in order to attain ideal efficiency

and to provision the resources effectively.

24

2. CPU usage: -CPU usage should be minimum and maximum number of requests

should be served through cache. The size of cache should be chosen very carefully as

large size may lead to wastage of resources and small size may lead to poor provisioning.

3. Memory usage: -Memory usage is the memory i.e. RAM used to process the request.

If the request is processed through cache then the memory is saved and there is low

consumption of memory. Memory usage should be minimum.

The pseudo code for this whole system is given below: -

3.1.3 Pseudo code

START

Application A starts

Peak hours for application A = Pk

Request arrives with id Ai

Workload analyzer identifies type of request and passes to policy generator

Policy generator determines whether request Ai has been served earlier

Policy generator also checks whether application A is running under peak hours Pk

IF application A running under peak hours Pk

 Increase the size of dynamic cache Cd

Else

 Size of Cd remains unchanged

ENDIF

IF request Ai arrived for the first time

 Response=Process the request to web-tier

Else

 Response=Process the request Ai through cache

25

ENDIF

Request is passed to request redirector

IF Response= Process the request to web-tier

 Redirect the request to multi-tier application

ELSE Redirect the request to Cache tier.

ENDIF

STOP

I=i+1

Repeat this for every request.

Once the application starts accepting the requests

3.2 Objectives

1. To analyze resource provisioning algorithms available in multi-tier applications.

2. To identify the challenges and problems of resource provisioning in multi-tier

applications.

3. To enhance the efficiency of V-Cache algorithm using the adaptive techniques.

4. To implement proposed and existing algorithm and analyze performance in terms of

accuracy and efficiency.

3.3 Research methodology

Research methodology used in this approach is simple yet efficient. In this approach we

adopted the concept of dynamic caching policy according to the type of user. Rather than

allocating same storage space we define storage space according to our SLA defined and

according to the user accessing our services.

26

Fig. 3.3 Flow chart of research methodology.

Start

Request arrives at workload analyzer

and cluster of similar requests are

created and passed to policy

generator.

Extended Policy Generator

identifies the request that can

be served through Cache.

Application

running in

peak hours

Request redirector identifies

whether to process request

through dynamic cache or

through server.

Send to

Cache

Process the

Request through

Cache

Increase the size of

dynamic cache according

to the application.

Process the

request

through web

tier

Stop

Yes

No

Yes
No

27

Workload analyzer: - Workload analyzer identifies the type of request i.e. (Static or

Dynamic) and the SLA agreements between the service provider and client. After that the

request is passed to policy generator to act according to the type of request.

Policy Generator: - It generates policy according to SLA, Peak Hours and type of the

user and other information provided by the workload analyzer. We have set policies

according to the various SLA categories and type of user requesting for services. Size of

cache is determined dynamically according to the policies defined. After this the request

is passed to request redirector.

Request Redirector: - Request redirector redirects the request either to cache server or to

the web server according to the decision taken by policy generator.

Database Tables

Various tables have been designed to store the results and policies to take effective

decisions at finer times. Different tables used are DynamicCachePolicies, Policies,

RedirectionDatabases.

Dynamic Cache Policies: - This table is used to verdict the size of cache dynamically

according to the type of user requesting for services. Various columns used in this table

are ID, Peakstart, Peakstop. According to the type of application with unique ID peaks

hours are defined and cache size is determined accordingly.

Policy: - This table is designed for the sake of storing and retrieving the information of

every unique request as well as defining the policies for that request. ID is used as unique

identification number for every request appearing for first time. Its URL is stored and

according to specific URL number of caches, SLA for that URL, Size of cache, Peak hour

size and off peak hour size is defined in this table.

Redirection Database: - Using this table we are storing the address of every request in

cache according to the type of request and according to the peak hours and off peak

hours. For every request with different ID we are storing the URL of server and

appropriate cache address is stored in Cache URL for that request.

28

 CHAPTER 4

 RESULTS AND DISSCUSSION

In this chapter results of proposed system are discussed. We have used visual studio .NET

platform for implementation as well as for simulation. Microsoft visual studio is an IDE

(Integrated Development Environment) by Microsoft. The main use of visual studio is for

developing computer programs for Microsoft as well as web services, web sites and web

applications. Microsoft development programs are used by visual studio such as windows

presentation foundation, windows forms, windows applications, windows API, windows

store and Microsoft Silverlight. The integrated debugger present in visual studio works

both as machine-level debugger as well as source-code debugger. Many other built-in

tools are available such as forms for building interactive GUI applications, class designer,

web designer and database schema designer. [9]

Figure 5.1 Visual Studio running on windows. [10]

Visual studio enhances its functionality by accepting plugins at almost every level. It also

supports many programming languages and allows the debugger and code editor to

support nearly any programming language. Languages that pre-exist in visual studio are

29

C++, C, C++/CLI, VB.Net, F#. Other languages are also supported such as Python, M

and Ruby. Other markup languages are also supported like HTML/XHTML,

XML/XSLT, JavaScript and CSS. [9]

In this section we are going to discuss about the working of our proposed system i.e.

extended v-cache. Provisioning of resources is very crucial in order to maintain SLA and

QoS as well as to reduce the cost both for client as well as for service provider. Also it is

very necessary to attain efficient and effective results. Now when the request arrives at

workload analyzer it first determines the type of request according to the URL and host.

Figure 5.2 Working of workload analyzer.

Working of workload analyzer is shown in above figure where the request is static. We

are considering web pages as request parameter. So we have designed three websites

namely one tier, two tier and three tier. One-tier website consists of static webpages and

static content. Two-tier website consists of business logic of currency converter and it is a

dynamic website however the change in content of two-tier website is not frequent. Third

website is three-tier where all the three tiers are included i.e. presentation tier, application

tier and database tier. Now when we enter the address into the URL box the request is

passed to workload analyzer and type of request is identified and after that request is

passed to policy generator. These defined policies are implemented on the request

according to the SLA and appropriate cache size is determined. After that the request is

30

redirected to web-tier. Now we can also check the CPU overall usage and depict the

pattern of request arrival and service.

Figure 5.3 Effect on overall CPU usage.

CPU usage, Memory consumption and throughput are measured using this approach.

Although our results are dynamic as we are taking the results from real working server

but it depicts the overall pattern of results. Now for one tier website we first deploy and

run the website on our server and then that server address is copies and given to our

application URL. Results or performance is calculated from that server hosting our

website and then results are compared. For one tier application where we are having only

the static pages is easy to calculate the results because we can store maximum static pages

into our cache and efficiency can be gradually increased. However storing dynamic pages

is not a good idea because TTL of dynamic pages expires very frequently and maintain

the cache in that case becomes confronting and also more the number of cache miss

occurs more degradation is seen in our performance. So for one-tier web application the

results are shown below.

31

Figure 5.4 Results for one-tier application.

Above shown results are for one tier application where blue bars are for V-cache and

orange bars are for extended V-cache. We can see that when more requests are served

through cache in peak hours our CPU utilization is decreased and ram consumption is

also decreased. Throughput is increased because now with the concept of dynamic cache

more requests are served through caches during peak hours so throughput is increased

gradually. Whereas this pattern does not fit well for dynamic websites however there is

some increase in throughput but due to TTL of pages stored it is very confronting to take

decision regarding service of dynamic pages.

 For two-tier applications TTL property is to be taken into consideration. TTL is different

for different pages and it is not possible to determine in advance. So cache miss ratio in

case of dynamic pages is very high. So we are working on static pages. Various tables are

used to store the results as well as for storing the policies defined. According to the values

stored in table we reach to the decision of whether to increase or decrease the size of

dynamic cache. Although in V-cache policy generator was used only to determine

whether to serve the request through cache or through web-tier but in extended V-cache

extended policy generator is used which also takes the decision about the size of cache on

the basis of peak hours or off-peak hours. We want that at whatsoever SLA should not be

violated. Type of SLA signed with individual user is also stored in database.

Results of two-tier applications conclude that there is decrease in RAM and CPU usage

which is good in saving the resources. Due to the TTL property of dynamic pages there is

a slight increase in throughput.

32

Figure 5.5 Results for two-tier application.

Above shown results are for two-tier application where there is gradual decrease in CPU

usage and RAM thus saving resources and using cache efficiently. Results of two-tier

application are taken in peak hours where the size of dynamic cache is increased to 64

MB thus storing maximum pages.

Figure 5.6 Request in peak hours.

Results of dynamic cache are shown above. Three parameters are considered where

request in peak hours determine the size of cache. Every application has different peak

hours. For example if we consider Facebook application then according to the workload

of that application it can be depicted that application is accessed maximum from 18:00

hours to 23:50 hours.

33

So this value is given in peak hours and off-peak hours respectively. Different

applications have different SLA signed between customer and service provider. We must

take care that in any case SLA should not be violated.

Under three tier applications the request includes database tier also. Now when in peak

hours we are increasing the size of cache it is like we are storing more requests in our

cache for particular applications and that leads to increased throughput. Suppose we

signed SLA with three users i.e. user A, user B and user C. We have to provide them their

desired results in 5, 10 and 15 days respectively. So rather than serving the request of user

under same priority i.e. 10 days we serve the request according to the timelines of

different users keeping in mind SLA of each and every user. If in case we serve the

request with same priority than we are violating the SLA of user A. so keeping in mind

all these things we proceed with serving the request according to the priority of the user.

Also if we are storing the same number of pages statically then we are wasting our

resources. Under peak hours more pages can be stored and served concurrently thus

saving the resources and utilizing the cache efficiently. So suppose we have three caches

for different users User A, B and C has been allocated 16 MB, 32 MB and 64 MB cache

memory respectively. Suppose every website consist of 10 pages and each page is of 4

MB so ultimately we are only able to store 4 pages for user A, 8 pages for user B and all

the 10 pages for user C.

 So if every user accesses all the pages of its website during peak hours and only most

frequently 4 pages are accessed during off-peak hours then using extended V-cache

maximum utilization is achieved. If we consider peak and off-peak hours then in existing

system SLA will be violated during peak hours. However using the proposed approach

we are effectively maintaining the size of cache during peak and off-peak hours. So

dynamic cache and extended policy generator helps in proper, effective and efficient

utilization of cache. Results for three-tier application are shown below.

34

Figure 5.7 Results for three- tier application.

From the above results we can easily depict that RAM consumption is reduced. Although

the results are dynamic and so there are chances that sometimes our CPU is busy in other

tasks so throughput decreases. Overall results for all the tiers are shown below.

Figure 5.8 Results for all three-tiers.

At the end this research concludes that there is gradual increase in throughput for static

web pages. Also the RAM and CPU usage is decreased to huge extent but three-tier

website which uses dynamic web pages are hard to store and manage due to TTL property

of pages. Also using the cache for dynamic web pages decreases our efficiency with

increase in cache miss rate. So dynamic web pages should only be stored during peak

hours for short duration.

35

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

As each tier in the cloud has its own processing requirements so it becomes very

challenging to cater appropriate resources at each tier. Moreover cloud should be flexible

as most of the webpages used these days are dynamic so adaptive nature of the cloud is as

influential as other challenges discussed. So in this paper we are working on

heterogeneity of user as well as combating with resource contention problem by using

extended v-cache approach. At the end we conclude that storing maximum static web

pages are far more efficient and effective than storing and managing dynamic web pages.

Cache hit ratio is maximum for static web pages. During peak hours maximum numbers

of pages are stored in our dynamic cache with the increase in size of cache which results

in increased throughput. Also using this approach we are assuring that SLA is not

violated which further enhance the efficiency of this approach. During off-peak hours size

of the cache is reduced thus saving the resources. Extended policy generator assures that

there is no violation of SLA and Qos is increased. It is easily depict able from the results

that using this approach consumption of costly resources is decreased gradually and cache

is used efficiently and effectively. In future we will be focusing on managing the

resources by developing minimum share algorithm. This work can further be improved by

considering heterogeneous application. In this approach homogeneous applications are

considered. Moreover this approach defines different SLA agreement with different users.

36

 CHAPTER 6

 REFERENCES

Web References

 [1] Retrieved March 23, 2014, from the opentutorials.com

 http://theopentutorials.com/tutorials/web-services/types-of-web-services-big-

and-restful/

 [2] Retrieved February 24, 2014, from webopedia.org:

 www.webopedia.com/TERM/W/Web_Services.html

 [3] Retrieved April 12, 2014, from tutorialspoint.com:

 http://www.tutorialspoint.com/webservices/what_are_web_services.htm

 [4] Retrieved February 5, 2014, from owasp.org.

 http://www.owasp.org/index.php.web_services

 [5] Retrieved February 25, 2014 from ibm.com:

 http://www.ibm.com/cloud-computing/in/en/what-is-cloud-computing.html

 [6] Retrieved April 14, 2014 from infoworld.com:

 http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-

 means-031

 [7] Retrieved April 23, 2014 from w3.org:

 http://www.w3.org/web _services

 [8] Retrieved January 12, 2015 from applications2u.com

 http://www.applications2u.com/cloud-delivery-models/

37

 [9] Retrieved March 12, 2015 from wikipedia.com

 http://en.wikipedia.org/wiki/Microsoft_Visual_Studio

[10] Retrieved March 18,2015 from functionx.com

 http://www.functionx.com/csharp/windows/ide1.gif

References

[11] Sivasubramanian, Swaminathan, Guillaume Pierre, Maarten van Steen, and

 Sandjai Bhulai. Sla-driven resource provisioning of multi-tier internet

 applications. Technical report,Department of Mathematics and Computer

Science, Vrije Universiteit, Amsterdam, 2006.

[12] Jiang, Dejun, Guillaume Pierre, and Chi-Hung Chi. "Autonomous resource

provisioning for multi-service web applications." In Proceedings of the 19th

international conference on World wide web, pp. 471-480. ACM, 2010.

[13] Muppala, Sireesha, Xiaobo Zhou, and Liqiang Zhang. "Regression based multi-

tier resource provisioning for session slowdown guarantees." In Performance

Computing and Communications Conference (IPCCC), 2010 IEEE 29th

International, pp. 198-205. IEEE, 2010.

[14] Kalyvianaki, Evangelia, and Steven Hand. "Applying Kalman filters to dynamic

resource provisioning of virtualized server applications." In Proc. 3rd Int.

Workshop Feedback Control Implementation and Design in Computing Systems

and Networks (FeBid), p. 6. 2008.

[15] Tsai, Yee Ming Chen1 Shin-Ying. "Optimal provisioning of resource in a cloud

service." IJCSI (2010): 95.

[16] Bi, Jing, Zhiliang Zhu, Ruixiong Tian, and Qingbo Wang. "Dynamic provisioning

modeling for virtualized multi-tier applications in cloud data center." In Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on, pp. 370-377.

IEEE, 2010.

38

[17] Garg, Saurabh Kumar, Srinivasa K. Gopalaiyengar, and Rajkumar Buyya. "SLA-

based resource provisioning for heterogeneous workloads in a virtualized cloud

datacenter." In Algorithms and Architectures for Parallel Processing, pp. 371-

384. Springer Berlin Heidelberg, 2011.

[18] Gandhi, Anshul, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish Marwah.

"Hybrid resource provisioning for minimizing data center SLA violations and

power consumption." Sustainable Computing: Informatics and Systems 2, no. 2

(2012): 91-104.

[19] Lancellotti, Riccardo, et al. "Dynamic request management algorithms for Web-

based services in cloud computing." Computer Software and Applications

Conference (COMPSAC), 2011 IEEE 35th Annual. IEEE, 2011.

[20] Wesam dewoud, Prashant Shenoy, Abhishek Chandra, and Pawan Goyal.

"Dynamic provisioning of multi-tier internet applications." In Autonomic

Computing, 2005. ICAC 2012. Proceedings. Second International Conference on,

pp. 217-228. IEEE, 2012.

[21] Han, Rui, Li Guo, Moustafa M. Ghanem, and Yike Guo. "Lightweight resource

scaling for cloud applications." In Cluster, Cloud and Grid Computing (CCGrid),

2012 12th IEEE/ACM International Symposium on, pp. 644-651. IEEE, 2012.

[22] Dejun, Jiang, Guillaume Pierre, and Chi-Hung Chi. "Resource provisioning of

web applications in heterogeneous clouds." In Proceedings of the 2nd USENIX

conference on Web application development, pp. 5-5. USENIX Association, 2011.

[23] Guo, Yanfei, Palden Lama, Jia Rao, and Xiaobo Zhou. "V-cache: Towards flexible

resource provisioning for multi-tier applications in iaas clouds." InParallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on,

pp. 88-99. IEEE, 2013.

[24] Huang, Dong, Bingsheng He, and Chunyan Miao. "A Survey of Resource

Management in Multi-Tier Web Applications." (2014): 1-17.

[25] Iqbal, Waheed, Matthew N. Dailey, David Carrera, and Paul Janecek. "Adaptive

resource provisioning for read intensive multi-tier applications in the

cloud."Future Generation Computer Systems 27, no. 6 (2011): 871-879.

39

[26] Nagesh, Bhavani B. "Resource Provisioning Techniques in Cloud Computing

Environment-A Survey." IJRCCT 3.3 (2014): 395-401.

[27] Patil, Pooja V. Bhokare1 Chitra J. "Mobile Computation Dynamic Offloading

using Cloud."

[28] Hamza, Salma, et al. "A Cloud computing approach based on mobile agents for

Web services discovery." Innovative Computing Technology (INTECH), 2012

Second International Conference on. IEEE, 2012.

40

CHAPTER 7

APPENDIX

Abbreviations

Meaning

SLA Service Level Agreement

University Domain QoWS Quality of Web service

LSD Level Scale Down

LSU Level Scale Up

Qos Quality of service

UWS University Web Services

TTL Time to live

VMs Virtual Machines

 SAAS Software as a service

PAAS Platform as a service

IAAS Infrastructure as a service

LOC Loss of control

LOT Loss of trust

CPU Central processing unit

RAM Random access memory

WSDL Web service description language

SOAP Simple object access protocol

41

UDDI Universal description, discovery and

integration

XML Extensible markup language

HTTP Hypertext transfer protocol

CSS Cascading style sheet

