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ABSTRACT 

Distributed databases are the outcomes of top notch technology advances, high speed 

computer networks further facilitated its growth and its suitability in satisfying various 

businesses needs make it more popular. As data resides at different sites in a distributed 

database environment, so to acquire a specific type of data; subdivision of a query into its sub-

parts (sub-queries) is required and those sub-queries needs to be executed at different data 

sites. In some cases combination of data from two or more different sites may be required. To 

attain this goal a join operator is used. But using join is not always advantageous in terms of 

cost as it may sometimes result in more communication cost in cases when complete relation 

is not desired for join operation. In such scenario communication cost involved between two 

sites can be reduced using other forms of joins like inner join. Inner join is also not always 

useful. So a need of finding the appropriate strategy to decide and assign join operations 

arises. In this thesis join operator allocation has been done dynamically by dynamically 

calculating percentage participations for joins and inner joins for the dynamic distributed 

database simulated. This dynamic percentage participation is given as input to the simulator 

built in MATLAB based on which fragment size for join operation is calculated. The 

simulator by using the genetic algorithm computes the minimum communication cost 

involved in executing the query under different cases using joins only, using inner joins only, 

and mixture of both. Hence finding the optimal query design for a distributed database using 

mix of joins is attained. 
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CHAPTER 1  

INTRODUCTION 

                                                                                                                             

In the old days, programs stored data in the regular files. Each program has to maintain its 

own data which results in huge overhead and easily prone to error. The development of 

database management helped to fully achieve data independency that provides centralized 

and controlled data maintenance and access. Also application is immune to physical and 

logical organization. The advancement in database and communication technologies 

enhanced the popularity of distributed databases, as it provides high availability, autonomy, 

and affordability for managing large databases. A distributed database can be considered as a 

collection of data which are distributed over different sites of a computer network. Each site 

of the network is capable to perform local applications autonomously. However the 

distributed database systems are used in applications which require access to an integrated 

database from geographically dispersed locations. The location of data items and the degree 

of autonomy of individual sites play a prominent role in all aspects of the system.   Data 

allocation is the prominent activity in the distributed database which decides that where to 

locate the data. [4], [5]. Data is the base of whole world of growing organizations in today‟s 

world and managing data is one of the most trivial tasks. Database Management System are 

used to manage whole data in organizations. In today‟s world of universal dependence on 

information systems, every user of the system whether an employee or a employee need 

access to company‟s databases. Database is managed using two approaches known as 

Centralized Database Management System and Distributed Database Management System 

[8]. Conventionally, databases of any organization were focused at one mainframe location 

with all over wide-reaching access. Unified system management and could be beneficial 

when manager in a structured style but it posed few glitches as well. Thus, substitute strategy 

to the centralized database is distributed database. Distributed database is a collection of 

logically interrelated databases that can be stored at different computer network sites. The 

objective of a distributed database management system (DDBMS) is to control the 

management of a distributed database (DDB) in such a way that it appears to the user as a 

centralized database.  
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Figure 1: Distributed Database System (4 sites) 

 

1.1  DATABASE MANAGEMENT SYSTEM (DBMS): 

Database management system (DBMS) [8] is software [9] systems, which are basically 

collection of interrelated data and allow definition, creation, updating of databases [24]. 

DBMS are applications that are designed in such a way that they can interact with users, 

other applications, and database itself to analyze and capture data. DBMS provide a lot of 

facilities, some of which are: 

1.1.1 Data Definition Language [31]: DBMS provide its users facility to define database, 

using data definition language (DDL). Users can specify structure of database, data types 

and constraints on data by using DDL.  

1.1.2 Data Manipulation Language [19]: DBMS provide its users facility to insert, 

retrieve, update and delete data by using Data Manipulation Language (DML). DML 

provide general facility to enquire about data, which is known as query language.  

1.1.3 View Mechanism [6]: DDL is also use to define a view. A view is basically a subset 

of database, but it doesn‟t form part of physical schema. Each user can have his or her 

view of database.  

A distributed database (DDBMS) is such a database system in which all storage devices 

are not all attached to a CPU (central processing unit) and all of these storage devices are 

managed by distributed database management system. 
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Such a database can reside in same large room, but all the fragments/replicas (stored at 

different sites) communicate with each other through network instead of shared memory. 

 

1.2 BENEFITS OF DISTRIBUTED DATABASE [22] 

i. It reflects organizational structure 

A number of organizations in the world are distributed over several locations. For 

example: A bank has many offices in different cities of same district. The database used 

for such applications is distributed over many locations. Banks may keep database at each 

department containing details of employees, staff related to that department.   

   

ii. Improved share ability and local autonomy 

By distributing the database, data can be placed at site near to the use who frequently use 

that data. By doing so, locality of reference gets improved. Along with that, users get 

local control over data and can enforce policies regarding use of data. A global database 

administrator manages the entire global database, while duties of managing local database 

can be assigned to local administrator. 

 

iii. Improved Availability 

While using centralized database, failure of the central application can result in failure 

and unavailability of the whole system. But in case of distributed system, failure of one 

site, does not make whole system unavailable. Distributed databases are designed in such 

a way that they continue to function even in case of failure of one or two sites.  

 

iv. Improved Reliability 

Allocating data at different sites and maintaining replicas of data at various sites, the 

failure of a site does not make data inaccessible. 

  

v. Improved Performance 

The data, in case of distributed database is located at the site or near the site which most 

frequently accesses that data, because of which the speed of data access increases, 
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communication cost incurred while accessing data from remote site gets reduced and 

hence, the performance of the system improves.  

 

vi. Modular Growth 

 In case of distributed databases, expanding the system becomes easy. New sites can be 

added to the system at any time without affecting the whole system.  

1.3 Distributed Database Design 

Design [7] of a distributed database system is one of the most crucial aspect behind the 

success or failure of such a system. Designing a distributed system involves taking decisions 

related to the placement of data and programs in system (includes network nodes and 

network design itself). While designing a distributed system, the main focus is given to the 

division and placement of data i.e. to the placement of data. The issues that arises while 

designing a distributed database system are: 

a. Why fragment at all 

b. How to fragment 

c. How much to fragment 

d. How to test correctness 

e. How to allocate 

 Two basic strategies used in designing distributed database system are: 

 Top-down Approach 

o Involves designing the system from scratch 

o Used for homogeneous systems. 

 Bottom-up Approach 

o Used for systems where database already exists at some sites 

o The aim is to connect the databases to solve common tasks. 
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1.3.1 TOP DOWN APPROACH TO DESIGN [27] 

 

 

The top down approach to distributed design starts with requirement analysis of actual 

environment. It involves designing a system from scratch. This process involves creating data 

models which defines high level entities of the system and their relationships. Then 

refinements are applied to the high level data models to identify and define corresponding 

low level entities, their relationships and attributes.    

The steps involved in top down process are:  

 Analyze the requirements 

 View integration and conceptual design 

 Data distribution design 

 Local physical schema design 

o The process of designing starts with analysis of the requirements which defines the 

system. The requirement document is essential requirement for two parallel activities: 

conceptual design and view design. 

o View design involves defining user interface, while conceptual design includes 

examining the system to determine its component types of entities and relationship 

Figure 2: Top Down Approach to Distributed Database Design [4] 
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between entities. Conceptual design can also be defined as integration of user views. This 

integration is very important because the conceptual schema or design must not only 

support existing application, but must also support global conceptual schema and 

information about access patterns.  

o So, the objectives at this step is to design conceptual schemas using local distribution 

entities across nodes of the system. In relational model instead of whole relation their 

fragments are    distributed across the system.  

o So, distributed design activity consists of two steps: fragmentation and allocation.  

o The last step includes physical design, which involves making connections between 

conceptual schemas and physical storage devices on the nodes of corresponding data.  

 

1.3.2  BOTTOM UP DESIGN APPROACH 

 

Bottom up approach can be used for designing database of an existing system. Most of 

the times, existing and heterogeneous databases are integrated to a common distributed 

database system. This approach comprises of integrating existing schemata into a single 

global schema. But the following aspects must have fulfilled: 

o A common database model must be selected for describing the global schema. 

o Each local schema must be translated into the common data model 

o The integration of common schema into common global schema: the merging common 

data definitions and resolving conflicts among different representations given to the same 

data.  

The bottom up approach involves solving these three problems.  The design steps are just 

reverse of the bottom up approach. The steps of integration for designing a new system 

are: 

o Common data model selection 

o Translation of each local schema into common model 

o Integration of the local schema into a common global schema 

o Design the translation between the global and local schemes. 
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1.4 QUERY PROCESSING  

Database Query is a way of instructing DBMS to update, insert, retrieve, and delete data 

from database. It can be defined as a request for information from database. The actual 

operation is performed by executing a number of low level operations. Such operations 

for example can be, select, project, join etc. Query Processing [5] is a process of 

transforming a high level query into correct and efficient execution plan, which is 

expressed by using a low level query and executing that query plan. All the activities 

involved in executing a query are included in it.  

1.4.1 QUERY PROCESSING PROBLEM [13] 

The main aim of query processor is to transform a high level query into low level query 

plan. Query processing becomes much more important in case of distributed databases. 

As in case of distributed systems, relations involved in query may be fragmented or 

replicated, and hence increase communication cost. In distributed databases, data is 

fragmented or replicated to increase locality of reference and parallel execution. So, the 

role of a distributed query processor can be defined as, mapping a query on distributed 

Figure 3: Bottom up Approach to Distributed Database Design 

Figure 4: Query Processing 
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databases into a sequence of operations on fragments of relations. The data used by the 

low level query must be completely localized, so that operations bear on local fragments. 

The transformation must be correct and efficient. 

Example: Consider the following query, 

“Find name of all employees who manage a project”, 

On relational schema given as: 

Table 1: Example of Database 

emp:                                                            responsibility: 

Relational calculus query equivalent to above query in SQL is: 

Select ename from emp, responsibility where emp.eno= responsibility.eno and 

responsibility.resp=”manager”  

Two equivalent relational algebra queries for the above SQL query are: 

Πename (σresp=”manager” and emp.eno=responsibility.eno (emp × responsibility)) 

And 

Πename (emp ⊠eno (σresp=”manager” responsibility)) 

From above example, it can be observed that: 

I. First query uses Cartesian product, which uses more computing resources, so it must be 

avoided, while the second one uses join instead of Cartesian product, so it must be 

retained.  
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II. In case of a centralized system, the only task to be performed by query processor is to 

convert relational calculus query into the best relational algebra query (which uses 

minimum resources). 

But in case of distributed system, execution plan is expressed by using relational algebra 

query along with communication operators for exchanging data between sites. The best 

site to process data must be selected along with the best ordering of relations and 

operators. 

 

1.4.2  QUERY OPTIMIZATION[4] 

As illustrated in above example, a query can be expressed by using two or more 

equivalent query plan. There can be a huge difference between costs of two alternative 

plans, depending upon the processing costs at different sites, communication costs etc. 

Query optimization [4] is the function of determining the most efficient query plan among 

all, which is performed by query optimizer. 

 

1.4.3 LAYERS OF QUERY PROCESSING [28] 

The problem of query processing has been subdivided into various layers each corresponding 

to various sub problems. The first three layers shown in the figure perform the task of 

mapping the input query to an optimized distributed query execution plan. They perform 

query decomposition, data localization and global optimization functions. A central control 

site performs functions of first three layers and uses global directory‟s schema information. 

The last layer executes the optimized query execution plan and returns the answer to that 

query. 
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I. Query Decomposition [33]: The first layer uses the information in global conceptual 

schema, which contains global relations. It decomposes the input calculus query into 

algebraic query which bears on global relations. It doesn‟t need any information about 

distribution of data on various sites. Hence, it uses techniques used in centralized system.  

I. Figure 4 : Steps of Query Processing 

 

Query decomposition is a four step procedure. The steps involved are: 

1. Frist of all, query is normalized to a form which is best for further manipulation. 

Normalization is done by manipulating query quantifiers and by applying logical operator 

priority.  

2. Next step is of sematic analyses, which attempts to detect and delete incorrect queries as 

early as possible. 
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3. Then the query is simplified, which involves eliminating redundant predicates. 

4. At last the query is restructured as algebraic query. 

 

II. Data Localization:  the input to this layer is algebraic query produced in the first layer. 

This layer uses the data distribution information in fragment schema to localize the 

query‟s data. The main role of this layer is to determine all the fragments involved in 

query and then transform the query on global relations into a query which bears on 

fragments.  

III.  Global query Optimization: it takes the query on fragments as input. The main goal of 

this layer is to determine the optimal execution plan for the query. An execution plan is 

described by using relational algebra operators and communication primitives. This layer 

finds out the best execution plan which involves best ordering of algebra operators and 

communication operators, which minimizes the total cost of executing the query. The cost 

function is described in terms of time units. 

 

IV. Distributed query execution:  All sites containing the fragments involved in query 

perform the task of last layer. Each sub plan (sub query) is executed at one site, called 

local query and then is optimized using local schema. Algorithms of centralized systems 

can be used in local optimization.   

 

1.4.4  OBJECTIVES OF QUERY PROCESSING [25] 

 

 The main objective of query processor is to convert a high level query on a distributed 

environment, which appears a single database to users, into an efficient execution strategy 

in a low level language on local databases. 

   An important aspect of query processing is query optimization. There may be more than 

one execution strategies which are correct transformation of high level query, the one that 

optimizes the resource consumption must be retained.  

 The good indicators of optimized resource consumption are: 
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o The total cost incurred while processing the query. It is sum of all cost incurred while 

processing the operations of the query like, input-output cost, communication costs (in 

case of distributed systems), CPU costs. 

o The response time of query. It is the time taken by system in executing the query. 

Because of parallel execution at one or more sites, response time of a query may be less 

than its total cost. 

 Minimizing the total cost is one of the main objectives of query processing.  

 

1.5   DATA ALLOCATION AND FRAGMENTATION 

While designing a distributed database system, the major issues involves distributing the 

central database to various sites. This involves fragmenting the database and allocating 

fragments to various sites. The design of system must be based on both the quantitative 

and qualitative information. 

FRAGMENTATION: The process of dividing the relation into sub relation is called 

fragmentation. These fragments are then distributed to different sites. Defining and 

allocating the fragments to sites must be based on the access pattern of different 

applications. Two fundamental strategies for fragmentation are: 

a. Horizontal Fragmentation [3]: It partitions a relation along its tuples. So, a fragment is 

basically a subset of tuples of relations.  

b. Vertical Fragmentation: Vertical fragmentation partitions a relation long its attributes 

i.e. fragments of a relation in vertical fragmentation produces fragments, each of which 

contains subset of attributes of main relation.  

ALLOCATION [16]: One major task while designing a DDBMS is to allocate resources 

to various computer nodes or sites. Data or fragment allocation must be done in such a 

way that locality of reference gets maximized. Four general strategies for data allocation 

are: 

I. Centralized  

II. Partitioned 

III. Complete replication 

IV. Selective Replication 
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1.6 JOINS  

The joins impact can be seen when a client prerequisite join datasets from a relational 

database[2]. The space has turned into a colossal. Associations gathering information 

because of expanding rate swinging to this information to drive their objectives. 

Disadvantage of gathering this information is the need to some way or another capably store 

and structure it. One of the key inhabitants of db configuration is to convey it to condition of 

standardization. It is accomplished by which imitation information is lessened, capacity is 

enhanced and the need to get to this standardized information that has been put away in 

partitioned tables gets to be vital. A join in its pith will return, erase, or redesign information 

from more than one information source as one arrangement of information. 

 

1.6.1 Cartesian join 

 

The Cross join is the basic among rest of joins to compose and perceive. It is basically a 

gathering of two relations without a qualifying Where proviso. The result of this join is each 

tuple of the 1st connection consolidated to each tuple of the 2nd  connection. 

  

1.6.2 Equijoin 

An Equijoin is the one of the straightforward kind of inward join and can be recognized by 

the equivalent sign predicate between two connecting variables in the Where condition. 

 1.6.3 Outer joins 

This joins are just ready to process two tables at once. There are three principle sorts of 

external joins: Left, Right, and Full. Since an Outer join can just join two tables at once 

consider the first table as the Left hand side table and the second table as the Right Hand side 

table, in this manner issuing us the Left Outer Join and the Right Outer Join. 
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1.6.4 Left Outer Join 

On account of a Left Join the table that goes before the essential word "Left Join" in the from 

proviso is viewed as the Master information set. That implies all lines paying little respect to 

whether they have a coordinating column on the Right hand side table will be kept in the last 

information set. For the situation where there are various columns in the Right hand side 

table, the Left hand side table's information will be copied. 

 

Objective of join in distributed databases  

 

Join query execution is more complex in a distributed database than in a centralized database. 

In a distributed database, to join two files that are located at different sites, data from one of 

the files must be transmitted to the site of the other file (or data from both files must be 

transmitted to a third site). This data transmission could be time-consuming if data 

transmission data is more. Therefore, distributed database systems need to transfer the data as 

fast as possible in order to improve join query performance.  There are two basic join query 

execution methods used in the distributed database systems [26]. 

 

 

Figure 5: Transfer of operands 

 

One method is to transfer the smaller table of two join query participating tables. This 

method can efficiently perform the join query which the quantity of result is much less than 

the quantity of two source tables. Another way is to transfer two tables in parallel. Parallel 

transmission can reduce the response time for the join query which the quantity of result is 

equal to or greater than the quantity of two source tables. The main objective of join query 

optimization is to reduce the cost of data transmission, small volume of transmitted data and   

move data in parallel so as to minimize the response time.  Therefore, these two methods are 

not good for all types of join query.  
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To minimize the amount of data transmission between the sites inner join operator is used.  

Using Join, entire data most of the tuples in relation participate in the join but in case of inner 

join the size of relations are reduced [26]. 

 

Inner joins 

In order to join two sub queries involving data from multiple sites using join query, data has 

to be transmitted from one site to other.  This transmission of data increases the 

communication time. So the optimizer must consider efficient order in which tables are 

joined in such a way that communication overhead has cut down. 

There is a problem of finding an efficient join order for a query   because query Optimizer 

has to examine number of existing substitutions. Also, join operation affects the size of result 

of particular fragment to increase or decrease. The estimation of join results is quite difficult. 

Join query execution is time-consuming and more complicated on a distributed database than 

on a traditional centralized database if those two tables participating in a join query are stored 

on different remote sites. An approach to implement this join query on a DDB is to send one 

of the join participating tables to the site of the other table and perform the join at that site. 

Join ordering in distributed queries is done by two approaches. First one is to optimize 

directly the ordering of join and another is to substitute join by groupings of inner joins to 

reduce communication cost [5]. It is very useful in improving a join by minimizing the data 

transferred. Join reducers were put in to reduce the communication costs of distributed 

database systems [6]. 

 

1.7 Genetic Algorithm  

Genetic Algorithm (GA) is initially grown by John Holland, his partners and his understudies 

at college of Michigan in the 1960s and 1970s. Holland's objective was to study the wonder 

of adjustment as it happened in nature and to create courses in which the components of 

common adjustment may be imported into computer frameworks. Unique objective of the 

examination was to clarify the adaption of characteristic frameworks and to outline simulated 

frameworks that attempt to grasp versatile and vigorous properties of regular frameworks 
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[29]. Holland's Genetic Algorithm was a system for moving from one population of 

"chromosomes" to another population by utilizing a sort of "characteristic determination" 

together with the genetics inspired administrators of hybrid, change, and reversal. Every 

chromosome comprises of "qualities" (e.g., bits), every quality being an occasion of a 

specific "allele". The determination administrator picks those chromosomes in the population 

that will be permitted to imitate, and by and large the fitter chromosomes deliver more 

posterity than the less fit ones. Hybrid trades sub parts of two chromosomes, generally 

copying natural recombination between two  single−chromosome ("haploid") creatures; 

transformation haphazardly changes the allele estimations of a few areas in the chromosome; 

and reversal inverts the request of a coterminous segment of the chromosome, in this manner 

revising the request in which qualities are displayed [30]. 

 

 

1.7.1 Working of Genetic Algorithm 

Genetic algorithm starts working on a randomly generated set of solutions, known as initial 

population. Each solution is represented by a fixed length string of binary numbers (i.e. 

101010…). Fitness is connected with every arrangement. The fitness assessment is depend 

on objective function. In this every string representing to the arrangement is called 

chromosome, every bit of the string is known as the gene. The arrangement of strings is 

called populace. The chromosomes advance through progressive cycles, called generations. 

Amid every era, the chromosomes are assessed utilizing some measure of fitness [33].  

 

Figure 6: A flowchart of working of Genetic Algorithm [33]. 
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To create the next generation, new chromosome called offspring, are formed by either: 

 Merging two chromosomes from the parent generation using a crossover operator. 

 Modifying a chromosome using a mutation operator. 

A new generation is formed by: 

 Selecting, according to the fitness values, some of parents and offspring. 

 Rejecting others so as to keep the population size constant. 

Fitter chromosome have higher probabilities of being chosen, after a few eras, the calculation 

meets to the best chromosome, which states to the ideal and suboptimal answer for the issue. 

Induction is thought to be arbitrary. Recombination regularly includes hybrid and 

transformation to yield offspring. 

1.7.2 Outline of the Basic Genetic Algorithm 

1. [Start] Chromosome of length n is produced from random population.  

2. [Fitness] the fitness function of each chromosome is calculated from the population 

3. [New population] New population is created by iterating following steps. 

I. [Selection] Select two chromosomes are chosen from a population based on their fitness. 

II. [Crossover] Cross over the parents with crossover probability. 

III. [Mutation] with a mutation probability mutate new offspring at each locus (position in 

chromosome). 

IV. [Accepting] New population is created by placing new offspring. 

4. [Replace] new generated population is required for a further run of algorithm. 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

6. [Loop] Go to step 2 

The process is iterated sequentially to produce new population. Process is iterated for 

criterion to met [33]. 
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1.7.3 GA Operators 

The GA includes three fundamental genetic operators: Reproduction, Crossover and 

Mutation. These operations are used to select and manipulate population solutions and select 

the most appropriate offspring to pass on to the succeeding generations [29]. 

1.7.4 Reproduction 

Reproduction selects good strings from the population and puts them in mating pool [34]. 

The idea is to pick up the strings with higher fitness from current population and apply 

genetic operators to new strings for the successive population. The fittest chromosomes may 

be chosen a few times, be that as it may, the quantity of chromosome chose to replicate is 

equivalent to the populace size, in this way, keeping the size consistent for each era. This 

stage has a component of irregularity simply like the survival of life forms in nature. The 

most normally utilized choice techniques are taking after: 

• Roulette Wheel Selection 

• Stochastic universal sampling 

• Ranked selection 

• Truncation selection 

• Tournament selection 

The roulette wheel is probably the most popular technique used as the selection method for 

genetic algorithm. In this method, the entire population is represented by a segmented wheel 

[34]. The total number of segments in the wheel corresponds to the number of individuals in 

the population. Each individual is represented by a segment according to its fitness value. 

The more fit individuals will have bigger segment on the wheel and thus, will have better 

chances of passing their genes along to the next generation. On the other hand, poorly fitted 

individuals get less chances of passing the genes on to the next generation.  

In the tournament selection method, n individuals are randomly selected from the population. 

The fit individual from this group will have its genes passed along the next generation via the 

crossover procedure. This procedure is repeated until enough individuals have been selected 

to reproduce and create the next generation. 
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1.7.5 Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce 

a new chromosome (offspring). The thought behind hybrid is that the new chromosome may 

be superior to both of the folks in the event that it takes the best attributes from each of the 

folks. Hybrid haphazardly picks a locus and trades the sub arrangement previously, then after 

the fact that locus between two chromosomes to make two posterity, e.g. 

 

Figure 7: Crossover Operation in GA [34]. 

Commonly used combination techniques are as follows: 

• One point crossover 

• Two point crossover 

• Uniform crossover 

• Partially Matched Crossover (PMX) 

• Order Crossover 

• Cycle Crossover 

1.7.6 Mutation 

Mutation is a genetic operator that alters one or more gene values in a chromosome from its 

initial state. This can bring about altogether new quality qualities being added to the quality 

pool. With these new quality values, the hereditary calculation may have the capacity to land 

at preferable arrangement over was already conceivable. Transformation is an essential piece 

of the hereditary inquiry as it serves to keep the populace from stagnating at any nearby 

optima. Change happens amid advancement as indicated by a client perceptible 

transformation likelihood [34].This probability should usually be set fairly low (0.01 is a 

good first choice), e.g. 
0 
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Not mutated chromosome:    1  0  0  0  1  1  1  1 

 

Mutated                1         0  0  1  1  1  1 

 

1.7.7 Advantages of Genetic Algorithm 

GA has numerous favourable circumstances over other pursuit methods. These focal points 

include: 

 Robustness: GA is computationally basic and effective in the quest for development 

and is not constrained by prohibitive suppositions of the pursuit space. 

 Intrinsic parallelism: GA search through populations of points, not single point, 

which makes them intrinsically parallel.  

 Global: GA use random operation in their evolution processes that allows a wider 

exploration of the search space. 

These highlights have made GA alluring for utilization inside a more extensive scope of 

designing trains, and are turned out to be fit for yielding promising results in complex 

applications.  

1 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

In this chapter, some of the important techniques related to the research problem are 

discussed. The review of literature is a very important part as it links up the studies that have 

already conducted in the same field. It also puts light on the various aspects which have 

already been accomplished by researchers and gives us a chance to appreciate the evidences 

that have already been collected by researchers in their studies and supports the researchers 

in projecting the current research work in proper perspectives. Along with that, the 

researchers get chance to learn from the experience of the other studies in the same field and 

can enrich the proposed study. The research methodologies used by different researchers 

help. A comprehensive review of a few research papers is given below. 

Query processing in distributed databases is a complex task due to following two reasons: 

 Data must be allocated to different sites. 

 It must be efficiently accessed, processed and communicated to meet the desired 

retrieval and update requirements by user. 

Genetic algorithm provides an efficient way to solve the above two problems. 

In distributed database systems redundancy of data helps in fault tolerance and recovery but 

they make distributed processing complex. Query optimization is one of the key fields in 

distributed database systems.  It uses inner joins to reduce the communication cost and 

improve the performance of system. Lin Zhou, Yan Chen, Taoying Li, Yingying Yu [18] in 

their paper had analysed the query optimization process based on semi-join operation 

combined with the practical application. They had also developed a new SDD-1 algorithm 

which is used for query optimization based on inner join operations. 

Query optimization is the key factor in distributed database systems for improving the 

performance, reliability, efficiency of the system. Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu 

Yao [14] in their paper had put forward query optimization algorithm on multi relation inner 

join. Their experiment had proved that algorithm for query optimization on multi relation 
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inner join reduces the data volume of intermediate result and also decreases the overall 

communication cost. 

Query Optimization is an important part of distributed database systems. Fan Yuanyuan, Mi 

Xifeng [37] in their paper had analyzed a number of optimization algorithms. They had 

composed another semi-associated database query calculation, which had the information of 

the moderate results produced from the usage of all sub-query as the unequivocal variable of 

system cost, and characterizes a capacity to focus the improvement advantages of this 

calculation. Their exploratory results had demonstrated that the enhanced semi-association 

inquiry improvement calculation had higher enhancement effectiveness, fundamentally 

decreases the measure of transitional result information, and viably diminishes the aggregate 

expense of the system interchanges. 

In distributed database systems there are three processes by which data is distributed among 

various sites, these are: fragmentation, allocation, and replication. Fragmentation process 

requires empirical knowledge of data access and query frequencies. But Shahidul Islam Khan 

and Dr. A. S. M. Latiful Hoque [21] had proposed a horizontal fragmentation technique that 

is capable of taking proper fragmentation decision at the initial stage by using the knowledge 

gathered during requirement analysis phase without the help of empirical data about query 

execution. It allocates the fragments properly among the sites of DDBMS. 

 

In query processing in distributed systems the main problem is determining the sequence and 

the sites for performing the set of operations, if the query is subdivided into sub queries that 

require operations at geographically distributed databases, such that the operating cost for 

processing the query is minimized. For that B.M. Monjurul Alom, Frans Henskens and 

Michael Hannaford [10] had proposed a technique to process the query with minimum inter 

site data transfer. The proposed system is utilized to figure out which relations are to be 

apportioned into sections, and where the pieces are to be sent for preparing. The method by 

and large sections the relations that exist in the predicates (the WHERE condition) of the 

query. It picks more than one connection to stay divided which abuses parallelism, while 

recreating alternate relations (barring the divided relations) to the destinations of the divided 

relations. Thus the communication costs and local processing costs can be reduced due to the 

reduced size of the fragmented relations and the response time of queries can be improved. 
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In [5] Rho and March had designed a nested genetic algorithm that iteratively allocates data 

to nodes and to meet the efficient retrieval and update requirements where to process and 

access the data. In their nested genetic algorithm there were two genetic algorithms. The 

outer genetic algorithm addresses the first problem of query processing in distributed 

databases. That is data allocation to various sites. And the inner genetic algorithm addresses 

the second problem. That is efficiently accessing and processing the data. 

The most important concern in query processing in distributed databases is minimizing the 

query execution time. So different allocation of sub queries to sites and their execution plans 

need to be optimized based on query type. This subquery allocation problem is NP-Hard. 

Therefore, Narasimhaiah Gorla and Suk-Kyu Song [23] had optimized the sub query 

allocation using genetic algorithm. Their proposed GA procedure was tested with simulation 

experiments on 20 complex queries. It had been found that GA produced better results in 

much less time than exhaustive method. 

In distributed database design, the most important concern is for allocating data and 

relational operations (e.g. Select, Project, Join, Union) to various sites. Performance, cost 

concurrency control etc. must be taken care of while performing retrieval or updating queries 

at various nodes. In [36] Salvatore T. Walk and Sangkyu Rho, had added to a scientific 

model which figures out where information will be designated, the level of information 

replication, which duplicate of the information will be utilized for every recovery action, and 

where operations, for example, select, venture, join, and union will be performed. It has three 

stages. In the first place, the arrangement of query is dissected to a situated of document 

sections (vertical and flat segments) for allotment. Second, every query is deteriorated into a 

situated of steps, each of which references document sections. This may oblige extra join or 

union steps if asked for information has been divided. Third, the subsequent parts and 

inquiries are utilized as info to a numerical model that chooses a base expense information 

and operation portion. The scientific model considers system correspondence, neighbourhood 

transforming, and information stockpiling expenses. A hereditary calculation is created to 

settle this scientific detailing.  

Distributed query processing algorithms require data reduction to reduce the communication 

cost. For reducing the data transfer between sites inner joins are used. Peter Scheuermann, 
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Eugene Inseok Chong [11] in their paper had introduced an efficient join processing 

algorithm for distributed database systems that makes use of bipartite graphs in order to 

reduce data communication costs and local processing costs. The bipartite graph represents 

the tuples joined by two relations. Their algorithm also reduces the relations at each site. 

They had represented an algorithm that can easily adapt to the changes in system 

configurations like additional resources available or change in data characteristics. 

In distributed databases as data is located at different locations so there is need to join data 

from different sites to get the desired output. Joins are not always beneficial. Sometimes 

inner join proves to be more beneficial as it reduces the transmission cost. Manik Sharma, 

[12] in their paper had analyzed the performance of join and inner join in distributed database 

system over various parameters like query cost, memory used, CPU cost, input/output cost, 

Data Transmission, Total Time and Response Time. They had shown that inner joins are 

beneficial if the transmission cost is of main consideration, otherwise joins are beneficial. 

In distributed databases data replication, join node selection, join order, and reduction by 

inner join all have significant impact on the efficiency of the distributed database system. 

Rho Sangkyu, T. March Salvatore [4] in their paper had compared the various distributed 

database design models. They had found that replication was most effective for retrieval 

intensive and high selectivity situations. Join node selection, join order, and reduction by 

inner join were most effective for balanced retrieval/update and low selectivity situations. 

There combination offered only marginal improvement. Their results had also shown that 

there is trade-off between total operating cost and average response time design criteria.    

With the advancement in technology businesses want distributed data processing at any cost. 

Distributed data processing is a complex task because distributed systems can become very 

large involving thousands of heterogeneous sites, the state of the distributed systems may 

change rapidly as load over sites varies with time and new sites are added to the system. 

Donald Kossmann [35] in his paper had discussed query processing in distributed database 

and information systems. He had discussed architecture of query processing in distributed 

database systems including various techniques for joins, intraquery parallelism, reducing 

communication costs and exploiting caching and replication of data. 

As the volume of data is increasing day by day relational databases today are seen with large 

queries containing many joins. Ordering of joins is very important as improper ordering may 
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have a negative effect on the efficiency of DBMS. Join ordering is NP-Complete. For smaller 

queries optimal join strategy can be found by dynamic programming. But for larger queries it 

becomes infeasible. Jim Wilenius [15] in his paper had discussed various approaches like 

Iterative Improvement, Simulated Annealing, Genetic Algorithms, Two phase optimization 

etc for producing efficient sub-optimal solutions to the join-ordering problem.   

In distributed databases there is communication involved as data is located at different sites. 

Distributed database systems provide scalability and accessibility due to its architecture. 

While developing distributed database systems security cannot be compromised as it will 

cause a risk to integrity of data. Carolyn Mitchell [17] in her paper had discussed various 

security issues and there solutions for distributed database systems. 

  

Traditional query optimizers assume that complete information about selectivity, resource 

availability is available at run time. But in case of distributed database systems as data is 

located at different sites and changes to data are possible at various sites. So static plans 

produced by traditional optimizers may not be optimal for many of their actual run-time 

invocations. Richard L. Cole [38] in his paper had proposed an optimization model for 

creating dynamic plans at compile time using exhaustive search in a dynamic programming 

framework. But his results had shown that despite using dynamic programming and 

memorization, dynamic plan optimization is slower than traditional optimization. 

In distributed database environment, site task of relations is an imperative undertaking. At 

the point when there is join operations over different destinations are included then picking 

the site to convey join operation may have critical effect on the execution. W. Cornell 

Douglas, S. Yu Philip [20] in their paper had added to an approach to allot relations and 

focus join destinations all the while. The procedure breaks down inquiries into basic 

connection polynomial math steps extended with potential message steps and makes 

connection site and join site task together to enhance execution. 
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CHAPTER 3 

PRESENT WORK 

 

 

3.1 Problem Definition 

Query Optimization in Distributed Databases is gaining popularity due to increasing business 

demands for distributed environment and due to advancement in technology of networks. 

Query optimization can be done in a number of ways like exhaustively, randomized, 

genetically etc. Optimization using genetic algorithm helps in finding the near optimal 

solution in less amount of time. 

Considering the following in distributed database environment: 

           R = {r1, r2,…,rn}, a set of fragments, 

  S = {s1, s2,…,sm}, network sites, 

           Q = {q1, q2,…,qq}, set of sub queries. 

As data is fragmented and located at different sites so to get the desired output there is need 

to join two sub queries located at different sites. So data from one of the site must be 

transmitted to the site of other. But using full join sometimes incurs extra communication 

cost when complete relation is not required for join. In such cases to reduce the 

communication cost involved between two sites inner join is used. But inner join reduction is 

not always viable approach as sometimes all attributes of relation are required for joins 

operation. In that case it increases the communication cost.  

The present study is a humble effort made in analysing the effect of percentage participation 

of intermediate fragments of operations evaluating dynamically to minimize various costs 

like I/O cost, CPU cost and Communication cost of a distributed query. Communication cost 

is the cost of shipping the query and its results from the database site to the site where the 

query originated. Also effort is made in allocating full join and inner join operators based on 

dynamic percentage participation computed at run time which helps in reducing the 

communication cost involved in executing distributed database query. The main 

concentration will be on reducing the communication cost involved in transmitting the 
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relations from one site to other in a dynamic environment by using either joins or inner joins 

or combination of both. 

3.2 Research Objectives 

The main objectives of this thesis are: 

 Simulating dynamic distributed database environment in MATLAB. 

 Create a database in MS ACCESS and create a connection string with MATLAB to 

access the database. 

 Using Genetic algorithm for optimizing the results to minimize the communication 

cost involved in sending data from one site to other. 

 Analyzing the effect of using full joins and inner joins as join operator on 

communication cost.   

 Getting the best results with minimum communication cost involved. 

 Analyzing communication cost and percentage improvement in reducing the 

communication cost involved by inner joins for different instances of database that is 

for dynamic database. 

 

3.3 Methodology adopted for experiment 

  Convert the SQL query to relational algebra query. 

 Represent the relational algebra query into query tree where each node represents 

different operations like selection, projection, joins etc. 

 Dynamically calculate the percentage participation for nodes containing inner join, 

left join, right join operator. 

 If (Is percentage participation for inner join (PPIJ) < percentage participation for join 

(PPJ)) 

Then, Set PP=PPIJ 

else 

Set PP=PPJ 

 Calculate fragment size based on PP for join operation nodes. 

 Give this dynamically computed fragment size for join operations as input to the 

simulator built in MATLAB. 
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 Simulated distributed database environment in MATLAB will use Genetic Algorithm 

to minimize the objective function which is communication cost involved in 

transferring data from one site to other while performing joins. 

 Calculate the percentage reduction in communication cost for inner joins against joins 

for one instance of the database. 

 Dynamically calculate the percentage participation for nodes containing join operator 

both for joins and inner joins for next instance of database. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

 

4.1 DATA ALLOCATION  

Data allocation is process of storing each fragment/ replica at site with optimal 

distribution, which increases locality of reference. It is one of the major task while 

designing a distributed database. There are four strategies regarding placement of 

fragments/ tables, which are as: 

i.  Centralized: This strategy has one database which is stored at a central site and users at 

various sites access that database. Locality of reference is minimal in this case. 

ii. Partitioned (Fragmented): It partitions database into various fragments and each 

fragment is assigned to one site. All the fragments are disjoint. Locality of reference is 

high, if fragments are allocated to sites where they are accessed most frequently.  

iii. Complete Replication:  It consists of keeping of copies of complete database at each site. 

This strategy increases locality of reference, but sometimes problem of inconsistency 

arises. 

iv. Selective Replication: This strategy is a combination of above three strategies. Some 

relations or data items are fragmented to achieve high locality of reference, while some 

relations which are frequently accessed at more than one site and are not updated 

frequently, are replicated. This strategy provides benefits of all the above mentioned 

strategies. 

Table 2:  COMPARISON OF DIFFERENT ALLOCATION STRATGIES [8] 

 Locality of 

Reference  

Reliability and 

Availability 

Performance  Storage 

costs  

Communication 

costs 

Centralized Lowest Lowest Not satisfactory Lowest Highest 
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DISTRIBUTED SUB QUERY ALLOCATION  

As in case of distributed databases, database relations are allocated on different sites. So, 

cost incurred in executing a query does not only consists of input-output costs, but 

communication cost is also there. So, an optimized sub query allocation plan needs be 

generated which gives such a plan for execution of sub queries that the total cost for query 

gets reduced.  

One such approach based on genetic algorithm [39] devised by Dr. Virk [40] is works as 

follows: 

1. Read the input data file which simulates the distributed environment, by providing 

allocation plan, communication coefficients etc. 

2. Generate an initial population of length equal to number of operations, giving feasible 

allocation plans. A chromosome is of the form: 

 

 

 

 

 

3. Calculate the fitness function of each member of the generated initial population. Then 

rank and sort the population in order of fitness. 

Partitioned  High Low for item, 

High for system 

Satisfactory Lowest Low 

Complete 

replication 

Highest Highest Best for read Highest High for update, 

Low for read 

Selective 

replication 

High Low for item, 

High for system 

Satisfactory Average Low  

Table 2: Comparison of different allocation strategies 

4  2  1  5  6  5  5  4  2  3 3  2 

Operation 1 at 

site no 4 
Operation 2 at 

site no 2 
Operation 5 at 

site no 4 
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4. Selection Operation: Select two parents from the population or operation allocation pool 

without replacement. 

5. Crossover and mutation: Crossover the selected parent strings and then apply mutation 

operation to generate a new operation allocation plan. Calculate the fitness of new 

operation allocation plan. 

6. Add the new solutions in the pool and replace the worst from it by replacing it with the 

best of the previous generation.  

7.  If the number of generations is less than maximum number of generations, then go to step 

4, otherwise print the fittest solution of the final population. 

8. Stop. 

I have worked on this algorithm. It had been coded in Pascal. I simulated it using java. 

The environment has been simulated by taking a set ‘S’ of data distribution sites, a set ‘R’ 

of relations and a set „Q‟ of relations. Let a query ‘q’ be broken into a set ‘j’ of sub queries 

on the set of relations ‘R’.   

 

 

4.2 DECISION VARIABLES USED BY SIMULATOR 

a. Data Allocation Variable: Ars  

Ars=1 (if there is a copy of relation/fragment „r‟ at site„s‟) 

Ars=1 (if there is a copy of relation/fragment „r‟ at site„s‟) 

b. Variables used for site selection for sub query execution: 

S
q

ys (sequence of various sites where sub queries gets executed) 

S
q

ys=1 (if sub query „y‟ of query „q‟ is done at site„s‟) 

S
q

ys=0 (otherwise) 

c. A notation is proposed for Join operations to handle left previous operation of a join  

operation ( LPO ) & right  previous operation of  a join ( RPO) as following: 
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Syv[p]S=1   (for [p]=1 for LPO(left previous operation) of a join) 

Syv[p]S=1   (for [p]=2 for RPO(left previous operation) of a join) 

Syv[p]S=0   (otherwise) 

d. I
q

ry represents whether the sub query „y‟ of query „q‟ references intermediate 

relation/fragment „r‟ : 

I
q

ry =1   (if the base relation „r‟ or intermediate fragment „r‟ 

 is used by   sub query „y‟ of „q‟ query) 

I
q

ry =0   (otherwise) 

e. Cost Function used: 

The cost of processing a query is given by: 

             QCi=LPCi+CCi   (LPC stands for Local Processing Cost, 

 CC: Communication Cost) 

 

4.3 LOCAL PROCESSING COSTS 

Local Processing Costs for processing a query‟s simple selection & projections may be 

represented as costs of transforming input relation from disk to memory and CPU time for 

processing a selection or projection at site S. 

  𝐿𝑃𝐶𝑦
𝑞

  =     
𝑠  𝑆𝑦𝑆

𝑞
 (IOCs    𝑟  𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
 +  CPCs   𝑟  𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
)       (4.1) 

Where   𝑀𝑟𝑦
𝑞

 = No. of memory blocks of relations ‘r’ accessed by sub query ‘y’ of q. 

IOCs  = Input Output Cost Coefficient of site s in millisecond per 8k bytes 

CPCs= CPU Cost coefficient of site s. 

This equation represents input output costs in storing the intermediate results of previous 

operations to the site of current join operation. 

Local processing costs for a join may be given as 

 𝐿𝑃𝐶𝑦
𝑞

  =    
𝑠  𝑆𝑦𝑆

𝑞
 (IOCs    𝑝    

𝑟 ρp 𝐼𝑟𝑦𝑣 [𝑝]
𝑞 𝑀𝑟𝑦𝑣 [𝑝]

𝑞

 

 
    

    +  

      
𝑠  𝑆𝑦𝑆

𝑞
 (IOCs 𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
𝑟  + CPCs  𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
)𝑟          

Where 
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  „ρp‟    „Percentage Participation‟ & is defined as the ratio of resultant 

different values of a  field to the domain of that field (0 <= ρp <= 1) . 

 𝑀𝑟𝑦𝑣 [𝑝]
𝑞

 is the size of an intermediate relation. 

 v[p]    represents  „left previous operation‟ of a join for p=1  &    

   „right previous  operation‟ of a join for p=2  . 

This equation represents CPU & I/O costs for performing current join operations at site„s‟. 

 

4.4  COMMUNICATION COSTS 

These costs are involved in case of join operations and final operation only. As we have 

assured that selections & projections of retrievals on relations are to be done only at sites 

which hold a copy of those base relations. Join may be performed at any of all possible 

sites. 

∴  𝐶𝑂𝑀𝑀𝑦
𝑞

   =      𝑝     𝑆𝑦𝑣 [𝑝]𝑆
𝑞

𝑣 𝑆𝑦𝑣
𝑞

𝑠   𝐶𝑠𝑣  (   𝐼𝑟𝑦𝑣  𝑝 
𝑞

 

r
𝑀𝑟𝑦𝑣  𝑝 

𝑞

 

 
 )     

              Where  𝐶𝑠𝑣  (is the communication cost coefficient between site s and v) 

                                    𝐶𝑠𝑣  = 0 if (s = v)  (i.e. if the previous operations and current join operation is done at the 

same site) 

If the final operation is not done at the query originating/destination site then a 

Communication Cost component is added separately for costs involved in sending the 

final query result to the query originating/destination site. 

 

f. Objective Function: 

The Objective Function is to:  Minimize the sum of all costs incurred: i.e. 
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4.5  EXPERIMENTAL SETUP 

Consider the Department Database for experimental analysis: 

Select the details of those employees who are both depositor and student in the department. 

SQL Query 

Select * from ID,department,student,depositor,salary,employee where 

employee.employee_name=depositor.employee_name AND 

employee.employee_name=student.employee_name AND 

student.salary_number=salary.salary_number AND 

salary.department_name=department.department_name AND 

department.department_name=ID.department_name 

Query Tree 

Assuming there are total 10 sites available. Considering that each base relation is allocated to 

different sites. Query tree for the above query can be drawn as shown in Figure 1.19. From 

the query tree it can be seen that there are  

 selection operations = 7,  

 projection operations = 7, 

 total join operations = 6. 

 B1, B2, B3, B4, B5, B6, B7 denotes different base relations allocated to different sites. From 

the tree it is also clear that one of the base relations (student) is replicated. 
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Figure 8: Query Tree for Distributed Database. 

Static input provided to the simulator 

Communication Coefficients ,I/O Coefficients, CPU Coefficients are assumed to be static in 

nature and the following table shows the static coefficients provided as input to the simulator.  

Table 3: Communication, I/O, CPU Cost Coefficients [29]. 

Communication 

Coefficients’ 

Sites 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

S1 0 10 12 13 14 11 12 13 14 11 

S2 10 0 11 12 13 14 11 12 13 14 

S3 12 11 0 11 12 13 14 11 12 13 

S4 13 12 11 0 11 12 13 14 11 12 

S5 14 13 12 11 0 11 12 13 14 11 

S6 11 14 13 12 11 0 11 12 13 14 

S7 12 11 14 13 12 11 0 11 12 13 
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Table 4 shows a matrix of 0s and 1s having 1s at those places which represents different 

operations allocated at different fragments. 

 Table 4: Intermediate fragments used in various operations [29]. 

subqueries→ 

 

 

↓fragments 

SELECTIONS PROJECTIONS JOINS 

Final 

Opn.21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

f1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

f9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

f10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

f11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

f12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

f13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

f14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

f15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

f16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

S8 13 12 11 14 13 12 11 0 11 12 

S9 14 13 12 11 14 13 12 11 0 11 

S10 11 14 13 12 11 14 13 12 11 0 

I/O  Coefficients 1 1.1 1.2 1 1.1 1 1.2 1 1.1 1 

CPU  Coefficients 1.1 1 1 1.1 1 1.2 1 1 1.2 1 
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f17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

f18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

f19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

f20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

f21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

f22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

f23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

f24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

f25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

f26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

f27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Fragment size for selection and projection operations are assumed to remain static during the 

whole run of simulator, also the size of final operation is kept static and constant. Assume the 

size of each base relation residing at different sites to be constant as 100 blocks. However the 

cardinalities of relation could be different. The percentage participation for selection and 

projection operators are assumed to be constant and are taken as 0.7 for selection and 0.9 for 

projection and based on these values intermediate fragment size for selection and projection 

are calculated as follows and these static values are provided to the simulator. 

Operation 1: Selection on B1 -- Size: 100 x 0.7 = 70 blocks 

Operation 2: Selection on B2 -- Size: 100 x 0.7 = 70 blocks 

Operation 3: Selection on B3 -- Size: 100 x 0.7 = 70 blocks 

Operation 4: Selection on B4 -- Size: 100 x 0.7 = 70 blocks 

Operation 5: Selection on B5 -- Size: 100 x 0.7 = 70 blocks 

Operation 6: Selection on B6 -- Size: 100 x 0.7 = 70 blocks 

Operation 7: Selection on B7 -- Size: 100 x 0.7 = 70 blocks 

Operation 8: Projection on B1 -- Size: 70 x 0.9 = 63 blocks 

Operation 9: Projection on B2 -- Size: 70 x 0.9 = 63 blocks 

Operation 10: Projection on B3 -- Size: 70 x 0.9 = 63 blocks 

Operation 11: Projection on B4 -- Size: 70 x 0.9 = 63 blocks 

Operation 12: Projection on B5 -- Size: 70 x 0.9 = 63 blocks 
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Operation 13: Projection on B6 -- Size: 70 x 0.9 = 63 blocks 

Operation 14: Projection on B7 -- Size: 70 x 0.9 = 63 blocks 

Operation 21: f27 → Final Result to Query Site, Size: 10 blocks   

4.5.1 Dynamic Percentage participation Calculated by Simulator at run time 

Considering the above database schema, SQL query and query tree initially Percentage 

participation for both joins and inner joins are calculated for Base Relations B1, B2, B3, B4, 

B5, B6, and B7. 

These are calculated by using the following formula [1] 

PPJ(R, S) = 
card R⋈S 

card R *card S 
 

PPIJ = 
card  ( A (S))

card (dom [A])
 

As inner join is a relational algebra operator so it is implemented in SQL using inner join as 

it gives the same output as inner join. And simply join is implemented as Full Outer Join as 

its output is same as simple join in relational algebra. 

Decomposing the SQL query and calculating the Percentage participation for various 

Sub Queries 

The above SQL Query can be decomposed into various sub queries. These sub queries using 

join and inner join are shown below and how simulator calculates their percentage 

participation are also shown below: 

Using Joins 

1. Join on f22 = f15 ⋈ f16  

j_sqlquery1='Select * from ID left join department on 

ID.department_name=department.department_name Union All Select * from ID right 

join department on ID.department_name=department.department_name'; 

card ID⋈department = 268 

card ID *card department  = 100 *80 

PPJ (ID⋈department)= 
268

100∗80
 = 0.0335 

2. Join on f23 = f17 ⋈ f18  
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j_sqlquery2='Select * from depositor left join student on 

depositor.employee_name=student.employee_name Union All Select * from 

depositor right join student on depositor.employee_name=student.employee_name'; 

card depositor⋈student = 120 

card depositor *card student  = 70*50 

PPJ (depositor⋈student)= 
120

70∗50
 = 0.0343 

3. Join on f24 = f19 ⋈ f20  

j_sqlquery3='Select * from student left join salary on 

student.salary_number=salary.salary_number Union All Select * from student right 

join salary on student.salary_number=salary.salary_number'; 

card student⋈salary = 105 

card student *card salary  = 55 *50 

PPJ (student⋈salary)= 
268

100∗80
 = 0.0382 

4. Join on f26 = f24 ⋈ f21  

j_sqlquery4='Select * from (student left join salary on 

salary.salary_number=student.salary_number) right join employee on 

employee.employee_name=student.employee_name';  

card (student⋈salary)⋈employee = 124 

card student⋈salary *card employee  = 123 *105 

PPJ ((student⋈salary)⋈employee)= 
124

123∗105
 = 0.0096 

Using Inner joins 

1. Inner join on f22 = f15 ⋉ f16  

sj_sqlquery1='Select * from ID inner join department on 

ID.department_name=department.department_name'; 

card ( department _name (ID ⋉ department)) = 100 

card(dom[department_name]) = 100 

PPIJ (ID ⋉department) = 
100

100
 = 1 
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It comes out to be 1 because department_name is foreign key in ID relation and 

primary key in department relation. If R.A being a foreign key of S (S.A is a primary 

key). In this case the inner join percentage participations 1 since  A (S ) = 

card(dom[A]) [4]. 

2. Inner join on f23 = f17 ⋉ f18  

sj_sqlquery2='Select * from depositor inner join student on 

depositor.employee_name=student.employee_name'; 

card ( employee _name (depositor ⋉ student)) = 2 

card(dom[employee_name]) = 123 

PPIJ (depositor ⋉student) = 
2

123
 = 0.0163 

3. Inner join on f24 = f19 ⋉ f20  

sj_ sqlquery3= 'Select * from student inner join salary on 

student.salary_number=salary.salary_number';  

card ( salary _number (student ⋉ salary)) = 50 

card(dom[salary_number]) = 55 

PPIJ (student ⋉salary) = 
50

55
 = 0.9091 

4. Inner join on f26 = f24 ⋉ f21  

sj_sqlquery4='Select * From (student inner join salary on 

salary.salary_number=student.salary_number) inner join employee on 

student.employee_name=employee.employee_name'; 

card ( employee _name ((student ⋉  salary) ⋉ employee)) = 47 

card(dom[employee_name]) = 123 

PPIJ ((student ⋉ salary) ⋉ employee) = 
47

123
 = 0.3821 

Operations O20 and O19 are implemented as simple Join not Inner join because as query tree 

is traversed upwards the selection is getting refined based on conditions therefore the domain 

of relation is coming down and hence PPIJ will move up that is percentage participation for 

inner join will keep on increasing as query tree is traversed upwards. But still percentage 

participation for them are computed as they will be needed to compute the fragment size for 
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join relations further in the code. So O20 and O19 are implemented simply using joins as 

follows: 

 Join on f25 = f22 ⋈f23 

sqlquery5='Select * from ID,department,student,depositor where 

student.employee_name=depositor.employee_name AND 

depositor.ID_number=ID.ID_number AND 

ID.department_name=department.department_name'; 

card f22 ⋈ f23 = 2 

card f22 *card f23  = 268 *2 

PPJ (f22 ⋈ f23) = 
2

268∗2
 = 0.0037 

 Join on f27= f25 ⋈f26 

sqlquery6='Select * from ID,department,student,depositor,salary,employee where 

employee.employee_name=depositor.employee_name AND 

employee.employee_name=student.employee_name AND 

student.salary_number=salary.salary_number AND 

salary.department_name=department.department_name AND 

department.department_name=ID.department_name';  

card f25 ⋈ f26 = 2 

card f25 *card f26  = 2 *124 

PPJ (f25 ⋈ f26) = 
2

2∗124
 = 0.0081 

After calculating the percentage participation, these are provided as input to the simulator 

which in turn calculates the fragment size for various operations. Simulator is run for three 

different cases. For all the cases the GA Parameters are kept same. 

Case 1: Using Joins as Join Operators 

In this case percentage participation for join i.e. PPJ calculated dynamically as shown above 

are given as input to the simulator and fragment size are calculated for them as shown below: 

Operation 15: (f15⋈ f16) → f22, Size: 63 x 0.0335 PPJ (1) =2.1105 blocks 

Operation 16: (f17 ⋈ f18) → f23, Size: 63 x 0.0342 PPJ (2) = 2.1546 blocks 

Operation 17: (f19 ⋈ f20) → f24, Size: 63 x 0.0381 PPJ (3) = 2.4003 blocks 
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Operation 18: (f21⋈ f24) → f26, Size: 63 x 0.0096 PPJ (4) = 0.6048 blocks 

Operation 19: (f22⋈ f23) → f25, Size: 63 x 0.0037 PPJ (5) = 0.2331 blocks 

Operation 20: (f21⋈ f24) →f27, Size: 63 x 0.0081 PPJ (6) = 0.5103 blocks 

With these fragment size values the simulator is run. Here out of 50 only 2 generations of GA 

Simulator calculating the costs are shown.  

Parameters used: 

Size of population: 50 Length of chromosome: 20 

Crossover Probability: 0.6 Mutation Probabilities: 0.2 

 

Generation     1 

                       Chromosomes                            Fit Value              I/O Cost            CPU Cost          Comm Cost       

Total Cost 

1.  8 6 1 8 1 7 7 8 7 10 8 6 10 6 1 2 9 5 9 9          260.591981        143.635728        143.621480         96.484454         

383.741662 

2.  10 10 1 8 3 10 6 10 1 10 4 10 7 6 7 7 2 2 6 2        260.038307         155.716263        131.614241        97.228222         

384.558726 

3.  8 3 6 1 9 10 6 2 2 3 9 3 9 6 8 2 10 6 7 4          274.515161 139.855502       132.160568 92.262536        

364.278606 

4.  8 8 3 7 7 5 3 1 9 2 2 7 9 3 8 4 2 3 7 5          271.736089 140.474023       135.350331 92.179765        

368.004119 

5.  7 4 4 1 8 4 7 2 9 2 6 5 9 4 8 1 1 7 1 9          271.741094 135.660092       139.861025 92.476224        

367.997341 

6.  8 1 9 10 10 9 8 5 1 4 4 1 10 6 3 4 4 1 8 10          288.165286 143.351571       139.893890 63.777602        

347.023063 

7.  2 10 1 8 9 9 1 4 3 9 4 10 2 3 4 2 9 6 6 2         273.644284 143.802433       143.830359 77.805135         

365.437927 

8.  2 4 1 6 4 2 3 10 7 5 10 2 8 8 6 2 6 9 2 3         258.346482 139.681591       147.416449 99.979034         

387.077073 

9.  7 7 7 10 1 8 3 2 4 10 4 2 3 4 10 8 10 4 2 7         271.430160 135.977761        131.345890 101.095245      

368.418896 

10.  10 2 2 2 4 4 3 3 9 5 5 7 8 2 7 5 9 9 3 7         281.654746 152.351056        139.318449  63.375107       

355.044612 

11.  2 8 5 2 1 7 2 8 3 10 3 5 2 3 1 9 8 2 5 10         265.061571 140.159865        143.038331 94.072638        

377.270835 

12.  9 5 9 4 8 4 9 8 4 3 8 10 4 7 5 6 7 6 5 7         260.544255 147.862761        139.918449  96.030745       

383.811955 

13.  7 7 7 10 3 9 3 2 7 5 5 7 8 4 7 5 9 9 7 3         297.532484 152.881056        139.248449  43.968251       

336.097755 

14.  7 1 1 8 10 6 2 9 4 5 8 1 1 7 7 6 8 8 8 9          264.529710 143.662433        139.719570  94.647367       

378.029371 

15.  2 4 9 9 1 1 6 6 3 5 10 6 6 9 5 7 7 3 4 10          264.016095 155.964229        132.492786  90.307771       

378.764787 
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16.  1 3 9 1 10 2 5 2 7 7 3 5 1 5 2 2 4 2 5 4          282.790799 144.224865        135.470451  73.922979       

353.618295 

17.  5 5 4 8 7 8 10 10 2 6 3 4 5 3 7 2 7 1 3 5          261.204259 156.196364        131.345890  95.299896       

382.842150 

18.  7 4 9 6 4 10 9 6 7 2 7 1 3 9 9 5 4 1 8 6         260.749181 144.041571        144.093129  95.375614       

383.510313 

19.  6 8 5 7 6 4 8 7 2 2 1 1 5 7 5 6 2 7 5 2         265.562111 143.894557        139.609331  93.055853       

376.559741 

20.  6 9 6 6 10 7 10 8 4 6 1 1 6 8 10 2 6 3 1 4         281.027402 139.304229        140.260906  76.272051       

355.837186 

21.  2 4 2 2 2 7 3 7 1 8 5 1 3 10 2 9 6 10 1 5         262.335408 144.232433        147.148786  89.810174       

381.191394 

22.  7 3 3 10 3 8 3 5 7 5 7 7 8 4 7 5 9 9 3 7         283.551837 152.851056        139.048449  60.769697       

352.669202 

23.  4 2 6 4 10 7 4 10 5 7 2 4 2 6 2 9 7 4 10 7         256.754427 151.923296        139.683890  97.870032       

389.477218 

24.  4 1 9 10 7 8 1 4 7 2 8 1 3 1 7 4 6 3 6 9         271.132055 143.750092        143.651480  81.422394       

368.823966 

25.  9 8 2 1 4 6 4 5 4 5 6 10 7 2 2 5 10 4 6 1         294.673981 143.631571        131.948919  63.777602       

339.358092 

26.  5 4 8 8 2 2 5 7 8 7 3 7 5 10 2 10 8 6 5 3         273.784343 140.022761        131.140449        94.087771        

365.250981 

27.  7 5 5 4 8 4 8 7 2 2 1 1 5 7 9 6 2 5 2 2         259.612084 143.98572          147.247331        93.957023        

385.190082 

28.  10 2 3 4 1 7 5 10 2 7 2 4 2 8 9 6 7 3 6 9         257.038397 148.145092        147.180480 93.721361        

389.046933 

29.  5 10 1 8 3 3 6 7 5 3 10 10 2 2 2 7 6 1 5 8         257.119551 148.171036        139.273890 101.479212      

388.924139 

30.  2 1 9 9 9 9 1 6 3 9 8 10 2 3 6 5 10 6 6 2         285.710137 139.907433        140.261359 69.836290        

350.005082 

31.  9 8 2 6 4 1 4 5 2 3 5 10 3 10 2 10 8 6 1 9         286.478149 139.677433        131.742142 77.647187        

349.066763 

32.  8 1 9 10 10 9 8 6 2 9 2 1 2 4 3 4 5 7 5 3         263.933620 147.680420        135.920331 95.282394        

378.883145 

33.  8 5 1 3 5 3 5 1 5 9 1 10 7 10 3 7 3 7 5 4         257.393129 160.463695        131.411451 96.635614         

388.510759 

34.  2 4 9 2 10 1 6 5 7 7 6 5 1 10 2 2 4 8 7 1         267.631197 143.810502        135.810451 94.027565         

373.648517 

35.  8 4 3 5 1 2 10 10 6 7 3 8 9 1 1 2 7 5 7 5         270.345832 147.945193        135.550331 86.401060        

369.896584 

36.  8 6 7 7 1 7 5 7 9 10 8 6 9 6 10 2 9 5 9 3         273.712788 144.076591        139.832241 81.437635        

365.346467 

37.  6 2 6 2 2 2 8 9 8 4 6 1 2 2 7 5 2 4 8 1         281.630797 151.881571        131.856009 71.337224         

355.074804 

38.  8 8 3 7 10 4 7 8 5 7 2 10 2 3 8 5 8 5 2 1         284.564489 140.089865        131.131451 80.192875        

351.414192 
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39.  6 4 3 5 5 4 6 8 5 5 2 7 5 9 8 9 6 3 2 7         271.919803 139.900420        147.647331 80.207738         

367.755489  

40.  5 8 6 5 7 7 7 1 9 4 6 1 3 4 6 6 10 5 3 8         276.878724 135.919331        147.667331 77.582295         

361.168957 

41.  7 8 2 6 4 6 4 5 2 3 1 10 7 9 2 10 8 6 5 3         286.288272 139.782761        131.850449 77.665066        

349.298276 

42.  8 5 1 3 2 3 5 6 5 9 6 10 7 10 3 7 3 7 7 1         257.491972 160.468160        131.551451 96.342012        

388.361622 

43.  6 10 3 7 1 4 7 8 9 10 8 6 10 6 1 2 9 5 9 1         258.572480 143.764865        143.761361 99.212533        

386.738759 

44.  6 9 6 2 2 5 8 3 8 4 6 1 2 2 7 4 2 5 2 1         289.833490 147.869865        135.880451 61.275374         

345.025690 

45.  9 5 9 4 8 4 9 8 4 3 10 5 4 7 5 6 5 2 9 3         274.742906 143.846591        139.912241 80.217809        

363.976640 

46.  9 8 7 9 4 6 3 5 2 3 1 10 7 10 2 10 8 6 5 3         286.097672 140.012761        131.810449 77.707771         

349.530981 

47.  8 5 8 9 7 5 3 6 2 9 6 5 9 1 8 1 1 3 8 10         267.094170 135.889229        139.799331 98.711225        

374.399785 

48.  7 8 4 1 8 9 10 1 9 2 2 7 9 6 8 2 10 6 7 9         299.704351 139.716364        131.930687 62.015105        

333.662156 

49.  7 6 4 1 8 4 7 7 2 2 9 7 5 8 8 10 9 4 7 2         266.771222 139.956364        139.613890 95.282772        

374.853026 

50.  1 9 10 8 1 3 4 8 2 2 6 5 9 8 4 1 10 1 8 10         274.526719 135.471571        139.753890 89.037809         

364.263269 

Fitness Sum Maximum Fitness Minimum Fitness Average 

1.3612e+004     299.7044    256.7544 272.2441 

Generation    50 

                  Chromosomes                       Fit Value                I/O Cost        CPU Cost         Comm Cost           Total Cost 

1.  5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 4 2 3       270.419737         136.117761         135.864890         97.812842         

369.795494 

2.  8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 2 3      266.458192          152.167761         139.413890 83.711745         

375.293397 

3.  1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 7 4 3 10      265.557349          151.930502         131.795890 92.840103        

376.566494 

4.  2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6 7 6 5 7      261.292533          144.107761         143.327449 95.277602         

382.712812 

5.  5 4 4 8 7 8 10 10 4 2 7 4 9 6 9 5 10 10 3 6      268.040695          143.670502         139.589570 89.817605        

373.077677 

6.  8 5 3 7 10 5 7 8 5 7 2 10 2 3 8 6 8 4 3 1      281.413027          136.190502         138.974009 80.185066        

355.349577 

7.  9 1 3 1 5 1 6 2 2 3 10 9 9 1 10 3 1 3 7 5      270.984649          143.929023         136.050331 89.045240        

369.024594 

8.  8 3 3 3 7 10 10 2 4 4 5 2 10 4 3 10 5 1 10 2      271.591457          148.187433         131.245890 88.766771         

368.200094 

9.  6 7 1 7 4 1 5 2 2 3 2 5 7 3 3 1 7 5 6 5      277.426837          152.481263         135.503241 72.470890         

360.455394 
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10.  5 4 8 8 2 5 5 7 8 8 3 7 7 2 1 10 10 4 6 9      271.118110          135.922433         135.108039 97.812465        

368.842937 

11.  2 4 1 6 4 3 1 10 9 2 10 2 8 8 6 2 6 6 2 6      268.298127          139.501036         147.656687 85.561986        

372.719709 

12.  9 5 9 4 8 4 9 8 4 3 8 10 2 7 5 7 2 2 9 10      274.093446          152.034865         131.904241 80.899972         

364.839078 

13.  5 7 5 1 7 10 5 4 6 2 10 9 9 3 6 4 5 4 2 2      273.204515          140.041899        143.532890 82.451373        

366.026162 

14.  3 3 7 3 8 8 3 2 2 1 5 1 4 10 5 9 5 10 4 2      257.385258          148.387433        139.180786 100.954421      

388.522641 

15.  8 9 10 8 1 3 4 2 3 7 6 7 6 8 6 10 8 2 2 1      267.054736          135.694865        139.649451 99.110755        

374.455071 

16.  6 6 2 3 4 2 10 7 3 8 2 7 5 3 9 10 9 4 7 2      256.866019          144.191364        147.411890 97.704760        

389.308014 

17.  4 6 4 1 8 4 7 8 2 2 5 5 2 8 6 2 6 3 2 3      270.769651          139.560420        147.507331 82.249857        

369.317608 

18.  2 4 1 6 4 2 3 10 7 5 10 2 8 8 8 2 1 5 8 10      271.054052          139.675400        135.500331 93.754374        

368.930105 

19.  8 6 3 7 1 7 1 8 8 5 5 7 8 1 3 5 9 8 3 7      285.732620          152.162227        139.439331 58.375984        

349.977542 

20.  5 7 8 10 3 9 3 2 9 10 8 2 10 6 1 10 9 5 9 3      276.915823          140.011591        143.421241 77.687738        

361.120570 

21.  3 3 7 3 9 10 8 10 6 10 9 9 9 3 6 1 5 4 2 2      270.185596          140.241899        143.702890 86.171167        

370.115955 

22.  8 4 3 1 8 9 4 6 3 7 5 8 8 2 2 3 6 1 5 2      260.462311          147.901899        139.613890 96.416918         

383.932707 

23.  4 9 6 2 2 5 8 9 8 4 6 1 2 6 7 5 4 5 4 1      267.417896          147.725400        136.061906 90.159245        

373.946551 

24.  5 3 10 8 1 3 4 9 2 8 7 9 5 8 8 10 9 4 7 10      278.116238          139.915502        139.453890 80.192498        

359.561889 

25.  2 9 6 8 1 3 10 7 2 3 2 7 1 8 1 10 6 4 7 2      269.578231          135.861364        143.512890 91.575580        

370.949834 

26.  1 6 5 1 2 2 5 10 8 9 10 4 2 5 5 2 4 3 4 6      277.276518          143.709229        135.612025 81.329553         

360.650807 

27.  9 6 8 8 6 10 7 10 1 9 7 10 7 5 9 3 5 10 6 9      258.389873          151.992433        139.782480 95.237158        

387.012072 

28.  6 9 6 2 2 5 8 4 8 4 6 1 2 2 7 5 2 5 8 1      280.511270          151.820400        131.981451 72.690065        

356.491916 

29.  5 2 4 8 7 8 10 10 2 2 4 3 6 6 9 5 4 7 5 6      264.323794          143.783695        143.388570 91.151602        

378.323867 

30.  7 7 9 10 7 6 9 9 7 2 8 1 3 1 1 9 7 4 10 1      256.402182          148.396571        143.823009 97.792702        

390.012282 

31.  3 4 3 1 8 3 4 4 3 1 1 2 8 2 4 3 6 1 5 2      273.122182          143.966899        143.452890 78.716712        

366.136500 

32.  8 10 9 9 3 3 6 9 4 6 10 1 3 2 9 7 6 1 10 8      268.656366          148.056571        147.931890 76.234246        

372.222707 
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33.  9 3 5 6 4 6 4 5 2 3 9 10 2 5 5 2 6 3 4 6      271.860864          143.989229        139.911025 83.934963         

367.835217 

34.  1 5 9 7 2 4 5 10 2 9 7 4 7 10 2 10 8 6 5 3      283.165007          140.012761        131.650449 81.487771        

353.150981 

35.  7 6 8 1 8 4 7 8 2 9 6 9 9 4 8 7 1 9 7 2      277.116929          143.780193        136.039449 81.038860        

360.858502 

36.  3 3 7 3 8 10 8 4 3 2 10 5 4 3 6 1 5 4 2 10      280.054644          140.211036        143.082890 73.779245        

357.073172 

37.  8 4 3 5 1 2 10 8 10 10 4 8 7 6 10 7 2 2 9 2      279.705859          147.730728        131.444241 78.343463        

357.518432 

38.  3 3 1 9 8 5 8 10 5 9 3 4 4 1 1 2 7 8 7 5      263.013270          148.066364        135.650331 96.492258        

380.208953 

39.  2 8 4 8 2 7 1 7 7 8 3 1 3 10 2 9 6 4 1 5      263.017386          144.042433        147.183345 88.977224        

380.203002 

40.  1 2 8 2 2 1 4 7 8 6 8 8 8 10 9 1 4 4 7 6      261.249920          139.435502        147.352129 95.987607        

382.775237 

41.  9 7 2 9 3 5 4 5 2 3 6 10 7 5 2 10 8 6 5 3      283.027252          140.282761        131.680449 81.359656        

353.322866 

42.  1 10 8 2 4 4 3 3 9 8 6 2 5 1 7 8 6 4 2 7      274.151551          143.737761        139.623890 81.400100        

364.761751 

43.  4 2 9 5 5 4 6 8 5 5 2 1 3 4 7 10 8 5 3 8      271.415740          143.849331        131.771331 92.817809        

368.438470 

44.  6 4 3 3 1 5 3 6 7 4 8 4 7 8 5 1 4 5 3 5      278.024696          139.985193        139.649331 80.045753         

359.680278 

45.  6 3 1 7 4 1 5 2 2 3 2 5 3 7 3 8 6 10 1 5      268.176564          144.282433        139.470786 89.135442         

372.888662 

46.  2 8 4 8 2 7 3 7 7 8 5 1 3 10 2 9 9 5 6 5      256.818262          148.276263        147.080241 94.023905        

389.380409 

47.  1 6 9 7 3 2 5 8 2 9 7 4 2 5 5 2 6 3 2 3    262.269485           144.225420         139.679331 97.382459         

381.287210 

48.  2 2 1 6 4 2 3 10 7 5 10 2 8 8 6 2 6 3 4 9    258.148333           139.785092        147.309025 100.280067      

387.374184 

49.  4 10 5 2 8 3 5 2 7 5 6 3 7 8 3 2 3 7 5 6    268.135543           156.448695        131.271570 85.225444         

372.945709 

50.  7 1 1 1 3 6 2 8 4 3 7 1 1 7 7 3 8 8 8 3    273.259962           152.193296        131.741331 82.017264         

365.951891 

Fitness Sum Maximum Fitness Minimum Fitness  Average 

1.3503e+004    285.7326        256.4022  270.0546 

Case 2: Using Inner join as Join Operator 

In this case percentage participation for inner join i.e. PPIJ calculated dynamically as shown 

above are given as input to the simulator and fragment size are calculated for them as shown 

below: 

Operation 15: (f15⋉ f16) → f22, Size: 63 x 1 PPIJ (1) =63 blocks 
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Operation 16: (f17 ⋉ f18) → f23, Size: 63 x 0.0162 PPIJ (2) = 1.0206 blocks 

Operation 17: (f19 ⋉ f20) → f24, Size: 63 x 0.9090 PPIJ (3) = 57.267 blocks 

Operation 18: (f21⋉f24) → f26, Size: 63 x 0.3821 PPIJ (4) = 24.0723 blocks 

Operation 19: (f22⋉f23) → f25, Size: 63 x 0.0037 PPJ (5) = 0.2331 blocks 

Operation 20: (f21⋉ f24) →f27, Size: 63 x 0.0081 PPJ (6) = 0.5103 blocks 

With these fragment size values the simulator is run. Here again out of 50 only 2 generations 

of GA Simulator calculating the costs are shown.  

Generation     1 

                Chromosomes   Fit Value                 I/O Cost     CPU Cost          Comm Cost            

Total Cost 

1.  6 5 7 7 3 6 2 6 3 3 7 1 7 10 1 4 10 9 9 9    230.247574          153.594561     156.838706             123.881840      

434.315108 

2.  1 8 4 1 6 6 7 1 3 10 7 1 8 5 7 5 3 2 4 2    224.613427          171.799479       147.622658 125.787223      

445.209360 

3.  2 10 1 8 2 1 2 10 8 6 9 7 9 5 9 4 6 7 8 6    225.337629          155.647178     165.869160 122.262183      

443.778521 

4.  4 6 5 8 5 7 9 5 8 6 7 5 10 5 3 2 5 5 1 6    245.153411          168.003617       147.422897              92.481333         

407.907847 

5.  3 7 8 1 1 10 1 1 9 7 5 3 8 7 3 10 7 3 4 8    225.001721          168.242178     147.292658 128.906210      

444.441046 

6.  5 8 6 10 5 6 8 2 1 2 6 5 6 1 1 6 8 6 10 10    246.171313          151.055056       158.259995 96.906124         

406.221174 

7.  8 3 6 8 8 1 9 1 6 4 3 6 3 9 9 10 3 10 8 6    230.287388          163.580056     154.402160 116.257803      

434.240019 

8.  3 6 1 9 4 10 6 1 8 3 5 2 5 4 6 2 8 8 5 6    232.238733          156.850138     154.282160 119.459097      

430.591396 

9.  3 2 10 7 8 8 10 8 2 10 1 4 4 4 7 10 2 3 1 9    240.538933          163.758040     147.062897 104.912178      

415.733115 

10.  2 10 9 7 1 1 10 1 4 7 2 10 7 5 7 10 3 10 1 4    222.684597          167.845056     147.322777 133.897803      

449.065636 

11.  10 10 9 8 1 8 7 5 7 4 1 6 7 10 8 9 10 6 5 6    223.856332          156.850138     154.051234 135.813712      

446.715084 

12.  4 5 1 3 8 7 6 7 8 7 2 10 7 5 7 10 2 4 3 4    233.094099          166.910220       145.868578 116.232493      

429.011290 

13.  2 5 7 7 6 7 7 6 2 10 10 6 6 8 8 10 4 2 2 10    249.622741          153.303699       149.992922 97.307906         

400.604526 

14.  9 1 1 2 10 6 10 4 1 9 2 7 3 9 5 8 10 7 8 8    236.959015          155.687178       146.423922 119.902810      

422.013909 

15.  5 7 9 6 6 6 9 5 8 6 3 1 9 7 7 2 3 10 2 10    228.950031          173.500138       146.753922 116.522469      

436.776529 

16.  9 2 6 8 10 8 5 2 6 5 6 3 2 7 1 8 4 8 10 8    234.032553          151.435056     154.021922            121.834007       

427.290985 
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17.  9 1 7 8 10 8 5 2 6 5 6 3 9 9 7 2 3 4 6 10    231.157710          171.940056     149.085930 111.579096      

432.605082 

18.  3 6 1 9 6 10 6 7 8 3 3 2 4 4 6 2 6 10 8 5    225.349493          155.530918     162.319922 125.904318      

443.755159 

19.  9 1 7 10 10 8 5 1 6 5 6 5 9 7 7 8 3 2 6 10    226.920973          167.903617     148.951394 123.827041      

440.682052 

20.  4 1 2 6 1 4 1 10 6 4 3 7 7 10 7 2 10 10 7 8    241.624767          166.370220       146.313922 101.180716      

413.864858 

21.  10 9 8 8 1 3 7 10 2 6 3 4 10 8 9 10 9 9 5 3    225.896246          161.135424     161.918995 119.626688      

442.681106 

22.  6 7 1 4 9 8 4 5 5 4 1 3 1 2 7 5 6 9 9 9    221.197565          165.169561     157.138706 129.776275      

452.084542 

23.  1 4 4 1 6 6 3 1 3 10 9 6 8 10 7 5 3 6 4 2    221.638749          171.530918     148.061731 131.591994      

451.184643 

24.  4 5 6 9 8 1 5 9 8 2 4 8 3 4 1 10 9 10 1 9    230.089071          155.320918     159.569897 119.723483      

434.614298 

25.  9 5 9 10 5 3 9 5 1 6 6 5 6 5 5 6 5 9 10 3    260.090177          159.875342     154.560995 70.045697         

384.482033 

26.  10 3 5 5 2 6 9 8 1 5 10 7 6 5 3 5 8 6 7 10    237.605311          166.730220     146.142995 107.992799       

420.866014 

27.  2 7 2 8 6 1 4 5 4 5 4 10 8 7 9 7 10 4 6 3     230.287512          163.611781      156.703930 113.924075       

434.239786 

28.  6 1 10 10 10 8 5 2 6 5 4 3 4 7 7 2 3 4 9 8     232.042290          173.100138     148.805930 109.049858       

430.955927 

29.  7 6 1 2 1 4 3 6 7 4 3 3 1 2 1 1 9 9 5 3     225.165906          157.320424     162.188995 124.607552       

444.116971 

30.  10 10 3 10 7 1 8 2 8 7 3 6 9 5 7 7 4 7 8 6     234.506379          168.172178     149.753160 108.502294       

426.427632 

31.  2 10 6 3 2 1 2 8 8 1 9 5 9 6 9 9 8 7 8 6     232.712975          159.802178     162.070160 107.841562       

429.713900 

32.  4 6 3 2 7 10 9 2 6 7 3 3 3 5 7 7 8 7 6 6     236.313176          168.582178     148.801633 105.783453       

423.167263 

33.  9 9 10 9 3 3 6 6 6 2 3 2 10 7 1 2 1 5 7 6     239.824213          158.908781     154.422160 103.641134       

416.972075 

34.  5 9 9 3 1 6 7 2 5 3 7 5 1 1 2 4 5 9 5 8     241.580614          161.613699      150.341995 101.984806       

413.940500 

35.  2 4 1 9 6 10 6 2 8 10 4 5 7 9 2 8 1 4 8 9     242.865101          155.290918     150.447697 106.012597       

411.751213 

36.  10 9 2 2 10 4 9 7 10 3 3 8 5 4 6 2 3 10 8 6     226.375600          163.820056      153.912160 124.011506       

441.743722 

37.  9 10 9 2 1 6 7 1 5 3 9 4 1 1 2 10 5 9 5 5     229.288675          161.204561     146.652995 128.273884       

436.131441 

38.  4 7 6 9 8 3 5 3 10 2 4 7 3 8 1 5 9 10 1 9     229.858809          159.925918      159.259897 115.863860       

435.049675 

39.  9 1 7 8 10 8 5 2 6 8 6 3 9 7 7 2 3 5 6 5     231.258418          172.069479     148.881394 111.465819       

432.416692 
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40.  5 5 6 7 7 7 9 3 2 10 10 7 7 9 3 8 10 7 6 8     236.565312          160.552178     148.701394 113.462671       

422.716242 

41.  5 1 6 2 7 9 6 8 7 9 5 4 9 9 1 4 4 4 5 6     242.540274          153.025138     158.565697 100.711825       

412.302660 

42.  3 8 2 10 5 3 3 8 1 2 6 2 6 5 1 6 8 6 10 1     244.491311          151.655056     157.790114 99.567320         

409.012490 

43.  8 6 7 8 5 1 5 6 1 10 2 2 2 4 4 9 3 7 10 5     223.514748          163.798040     157.890922 125.708809       

447.397771 

44.  8 10 10 2 1 4 6 8 3 2 9 7 4 8 3 4 9 1 3 10     236.582645          166.370220     157.985458 98.329596         

422.685274 

45.  4 2 1 3 3 3 10 1 7 4 2 6 7 10 8 8 5 6 5 6     231.180255          157.250138     146.013234 129.299522       

432.562893 

46.  2 6 7 9 1 1 4 8 2 2 9 7 4 8 3 4 9 1 2 10     224.521541          165.140138     158.285458 121.965966       

445.391562 

47.  3 6 8 5 10 1 9 3 4 8 1 5 4 6 1 9 2 9 7 4     221.372048          162.493781      158.290114 130.944318       

451.728214 

48.  3 8 2 6 2 5 2 9 6 1 10 6 8 2 5 2 4 8 5 8     230.940171          161.035138     150.062922 121.914524       

433.012584 

49.  6 8 4 6 2 5 2 9 6 9 10 6 8 9 5 2 4 8 9 8     221.951682          160.805138     153.330394 136.412981       

450.548512 

50.  6 5 5 7 3 5 10 9 3 2 7 3 7 10 10 4 10 9 9 5     230.932157          153.634561     152.599467 126.793582       

433.027610 

Fitness Sum Maximum Fitness Minimum Fitness Average 

  1.1627e+004   260.0902    221.1976    232.5406 

Generation    50 

              Chromosomes                        Fit Value            I/O Cost              CPU Cost          Comm Cost            

Total Cost 

1.  3 6 8 7 4 10 8 6 2 9 4 1 5 4 5 10 8 1 6 3       230.620434         155.351781       149.015930 129.245209      

433.612920 

2.  1 1 6 4 9 5 10 5 6 8 6 5 1 7 3 9 6 8 6 1       220.219104         163.410056       165.087513 125.595642      

454.093211 

3.  2 7 5 8 6 1 2 8 4 5 5 10 8 7 9 8 5 2 9 8       230.968399         161.203699       156.469394 115.286570      

432.959663 

4.  1 10 10 4 10 4 1 3 5 5 2 6 1 10 1 1 8 6 6 2       228.734056         150.995918       156.838467 129.354557      

437.188943 

5.  4 1 2 5 10 4 1 7 6 4 2 7 7 6 7 5 10 10 5 7       245.642506         165.081863       146.153922 95.859884         

407.095669 

6.  5 7 8 7 9 1 7 2 6 7 1 2 6 7 2 1 10 8 6 8       242.706142         155.960056       152.780394 103.280438      

412.020887 

7.  6 3 9 5 9 10 10 10 9 1 1 3 4 5 2 5 7 4 8 2       220.500245         167.805918       146.418458 139.289858      

453.514235 

8.  3 8 4 3 2 5 2 9 6 9 10 6 8 9 9 3 4 8 5 8       226.551723         165.300138       158.110922 117.989247      

441.400307 

9.  8 9 3 10 7 9 5 6 8 2 5 5 2 10 5 2 6 10 4 9      237.464813          159.815918       155.260897 106.038207      

421.115022 
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10.  8 6 8 1 6 1 2 1 5 1 8 7 6 4 10 3 2 4 5 6      234.761631          164.700138       146.418697 114.845151      

425.963986 

11.  8 6 8 5 10 2 9 2 3 8 1 1 1 3 1 9 5 9 7 4      221.470103          162.533781       158.050114 130.944318      

451.528214 

12.  4 6 7 5 9 6 3 4 6 10 5 2 4 10 8 5 2 5 4 6      246.810627          159.703617       147.762897 97.702427        

405.168940 

13.  3 2 4 6 2 5 2 9 6 9 10 6 8 9 4 2 4 8 5 8      225.818054          157.010138       154.341922 131.482329      

442.834389 

14.  8 3 6 8 9 1 9 1 6 4 3 6 10 9 9 10 8 8 5 9      229.968511          156.811000       154.602160 123.428982      

434.842143 

15.  2 5 6 7 7 7 9 6 2 10 10 6 7 9 4 8 7 7 8 8      247.550367          160.272178       150.192922 93.493098         

403.958197 

16.  9 5 9 1 1 4 7 1 9 3 9 4 1 1 10 2 4 3 5 8      239.961356          157.237260       150.632922 108.863587      

416.733768 

17.  6 7 1 4 9 4 4 5 5 4 3 3 1 7 1 1 7 5 1 6      232.214892          159.823617       155.660897 115.151090      

430.635603 

18.  4 6 9 1 5 7 9 5 8 6 7 5 10 1 3 2 9 9 1 3      225.783523          167.935342       155.859731 119.107042      

442.902115 

19.  2 6 5 8 5 7 9 5 8 6 7 2 10 8 7 2 3 8 5 10      228.437820          173.460138       145.943922 118.351825      

437.755884 

20.  7 8 8 2 2 9 2 2 3 7 2 5 10 5 4 2 7 5 1 6      240.298990          164.218617       150.951897 100.977719      

416.148233 

21.  9 3 7 7 4 5 10 3 1 4 8 3 9 3 6 7 1 10 2 4      222.872993          161.585138       157.891041 129.209858      

448.686037 

22.  1 6 9 6 7 4 10 8 7 7 5 5 6 1 8 3 3 7 6 5      231.197880          168.003040       149.171394 115.355483      

432.529918 

23.  6 7 1 4 9 4 4 5 5 2 4 8 3 7 1 7 9 10 1 1      225.739270          163.720056       159.559777 119.709107      

442.988940 

24.  2 7 6 9 5 3 5 3 10 4 3 3 1 2 1 1 9 9 5 3      225.135490          157.620424       161.948995 124.607552      

444.176971 

25.  1 6 1 10 6 10 6 1 8 3 3 2 5 4 6 4 3 10 8 5      226.954046          159.255918       158.250922 123.110993      

440.617833 

26.  3 7 9 2 1 2 6 8 6 4 2 7 9 3 7 6 7 6 6 10      235.045498          168.145056       157.078467 100.226021      

425.449544 

27.  3 6 4 6 8 10 2 9 6 1 5 6 8 5 5 2 4 8 5 9      231.181514          160.806000       150.363160 121.391376      

432.560537 

28.  8 3 6 8 9 1 9 1 3 4 3 6 3 9 8 8 5 8 5 7      231.958462          157.091863       146.523922 127.495886      

431.111671 

29.  10 3 8 3 8 2 10 9 5 6 9 6 4 2 2 6 1 8 1 7      233.879683          155.521781       159.319658 112.728835      

427.570274 

30.  9 1 7 8 10 8 5 2 6 5 6 3 9 7 7 6 3 10 6 10      245.557304          167.915056       156.819394 82.502469        

407.236919 

31.  7 2 8 2 1 9 6 9 9 8 10 6 8 9 8 2 4 8 5 8      228.345793          156.910138       150.432922 130.589247      

437.932307 

32.  3 8 4 6 2 5 2 2 3 9 10 2 2 8 7 2 3 3 9 1      225.593498           173.757260      148.601513            120.916413      

443.275186 
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33.  2 4 2 3 3 5 6 10 7 5 8 3 9 7 7 1 7 10 6 10      227.911933         168.285056        152.570394 117.910518      

438.765968 

34.  5 1 7 8 10 8 5 2 7 5 6 9 3 9 5 1 10 2 4 8      228.599053         155.828617        151.271658 130.346857      

437.447131 

35.  7 8 8 2 6 9 6 2 2 9 2 9 6 9 5 6 10 2 5 8      229.122555         157.148699        154.501922 124.797027      

436.447648 

36.  2 3 2 3 10 6 6 10 4 5 8 4 3 8 7 2 3 3 4 1      235.132841         172.187178        147.322777 105.781550      

425.291505 

37.  2 5 8 8 7 4 3 10 3 8 5 3 3 10 4 1 2 3 5 6      228.481682         157.547260        153.442160 126.682427      

437.671847 

38.  4 6 7 5 9 6 3 5 6 10 5 2 8 10 4 6 2 4 4 6      240.304102         155.550056        159.594433 100.994892      

416.139381 

39.  4 6 5 8 5 3 5 3 10 2 4 3 10 7 1 10 9 10 1 5      232.496337         155.730918       159.059658 115.323727      

430.114303 

40.  4 5 6 9 1 7 9 5 3 6 7 3 10 5 3 1 7 5 1 6       240.549308        168.213617        151.691897 95.809671        

415.715184 

41.  2 3 2 2 3 5 6 10 4 5 8 9 7 9 3 8 10 7 8 8      245.042790         160.242178        145.953922 101.895892      

408.091991 

42.  2 5 6 7 7 7 9 6 2 10 10 6 3 9 5 1 4 2 4 8       230.226087        156.048617        155.540658 122.766369      

434.355643 

43.  10 3 8 3 5 2 10 9 8 10 3 2 5 2 6 2 5 10 8 5       233.360294        159.855918        153.481922 115.184075      

428.521915 

44.  3 6 1 9 6 10 6 1 5 6 10 8 4 2 4 6 1 8 1 7       231.827801        151.086781        163.838658 116.429212      

431.354651 

45.  5 9 7 9 1 9 5 2 7 6 3 4 2 8 9 5 6 9 5 9       225.191673        161.544561        162.319234 120.202358      

444.066153 

46.  8 8 8 2 1 9 6 2 3 9 4 2 6 8 7 6 3 3 9 1       223.634506        169.292260        156.949513 120.916413      

447.158186 

47.  4 1 6 9 9 5 10 5 8 8 6 5 10 7 3 9 4 8 3 2       227.841151        166.431083        158.250922 114.220273      

438.902277 

48.  3 8 4 7 2 5 2 9 5 9 10 6 10 9 5 2 4 7 5 8       237.913287        161.532260        150.032922 108.756026      

420.321207 

49.  9 1 7 8 10 8 5 2 6 5 7 3 9 7 3 2 3 10 7 6       230.465339        175.070220        145.984160 112.850346      

433.904726 

50.  2 3 8 9 5 1 3 10 3 8 5 3 1 1 4 1 2 4 9 10       227.319582        157.250138        156.603930 126.055239      

439.909308 

Fitness Sum Maximum Fitness Minimum Fitness Average 

  1.1595e+004 247.5504    220.2191    231.9073 

Case 3: Using Combination of Joins and Inner joins 

In this case as percentage participation for joins as well as inner joins are computed the 

minimum out of them are provided to the simulator. That is  

begin 

for i=1:4 
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If PPIJ (i) < PPJ (i) 

PP(i) = PPIJ (i) 

Else  

PP (i) = PPJ (i) 

End 

Therefore PP(1) =  0.0335, PP(2) = 0.0343, PP(3) = 0.0382, PP(4) = 0.0096, PP(5) = 0.0037, 

PP(6) = 0.0081 

Percentage participation for joins are computed above. Fragment size for intermediate 

fragments is calculated as follows: 

Operation 15: (f15 ⋈f16) → f22, Size: 63 x 0.0335 PP(1) = 2.1105 blocks 

Operation 16: (f17 ⋉ f18) →f23, Size: 63 x 0.0162 PP(2) = 1.0206 blocks 

Operation 17: (f19 ⋈ 20) → f24, Size: 63 x 0.0381 PP(3) = 2.4003 blocks 

Operation 18: (f21 ⋈ f24) → f26, Size: 63 x 0.0096 PP(4) = 0.6048 blocks 

Operation 19: (f22 ⋈ f23) →f25, Size: 63 x 0.0037 PP(5)  = 0.2331 blocks 

Operation 20: (f21 ⋈ f24) →f27, Size: 63 x 0.0081 PP(6)  = 0.5103 blocks 

With these fragment size values the simulator is run. Here also out of 50 only 2 generations 

of GA Simulator calculating the costs are shown.  

Generation     1 

                Chromosomes           Fit Value   I/O Cost          CPU Cost           Comm Cost       

Total Cost 

1.  1 3 1 8 10 3 1 10 4 1 10 8 1 1 9 3 2 9 3 3         263.561056       151.652200         139.529688          88.236837        

379.418726 

2.  6 1 2 10 8 9 5 8 2 7 8 5 1 5 9 5 6 5 5 1         261.987297       143.706010         147.453484 90.538403         

381.697896 

3.  3 10 3 10 7 3 7 10 8 6 3 3 2 2 3 2 8 6 6 2         268.545275       148.562110         131.154598 92.659980         

372.376688 

4.  4 10 5 3 2 1 2 2 10 2 10 6 7 3 10 8 3 6 8 10         278.802656       143.966248         131.351688 83.358704        

358.676640 

5.  9 3 1 4 9 1 2 8 7 10 3 2 6 3 1 2 5 3 3 1         267.059530       144.055772         135.816484 94.576093        

374.448349 

6.  8 6 10 3 5 3 9 1 8 6 10 7 7 1 3 5 3 2 2 4         262.097895       156.221010         131.687484         93.628337         

381.536830 

7.  8 10 9 8 10 2 4 7 4 2 3 3 2 1 3 10 3 9 8 5         274.243992       152.002407         131.451688 81.184704        

364.638799 

8.  4 10 3 10 7 3 9 1 7 6 5 4 1 7 5 8 7 1 4 8         264.955497       148.191248         131.660981 97.569644        

377.421873 

9.  4 7 4 3 7 8 3 10 4 3 5 8 6 7 6 1 2 2 4 4         261.165422       140.106545         143.325939 99.466598        

382.899081 
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10.  9 1 8 5 6 4 7 5 1 7 1 6 1 4 3 2 3 1 10 1         264.598637       155.941248         132.029646 89.960003         

377.930896 

11.  6 9 1 7 1 8 6 9 10 2 10 1 10 3 7 9 7 10 9 4         256.053695       155.915713         139.958394 94.668979        

390.543085 

12.  1 7 3 9 7 1 8 4 7 2 8 9 1 3 8 6 5 4 1 7         262.516063       140.07297           139.628981 101.227117      

380.929071 

13.  7 6 10 3 10 1 3 9 4 7 10 4 3 9 5 6 3 9 5 3         273.465174       148.172735         139.669688 77.834854        

365.677277 

14.  3 1 4 6 8 6 1 10 8 9 1 10 7 6 1 7 3 3 5 8         260.652303       151.661307         136.026364 95.965184        

383.652855 

15.  4 8 10 8 2 8 2 5 5 4 3 10 2 4 7 6 7 7 7 8         260.447158       151.805772         139.185364 92.963908         

383.955045 

16.  8 2 4 5 5 5 4 9 9 9 3 10 7 1 5 3 9 3 4 2         268.219285       152.137704         139.636819 81.054746        

372.829269 

17.  1 8 2 8 6 9 4 10 6 4 8 5 7 2 10 5 10 8 5 9         285.105371       139.436576         131.817603 79.493335         

350.747513 

18.  1 9 9 2 2 5 2 10 9 5 6 3 3 9 3 9 10 8 4 3         257.726428       148.232973         139.866819 99.908534         

388.008326 

19.  4 7 4 3 4 8 3 10 4 3 3 8 9 7 6 5 2 4 4 1         263.254002       144.136248         139.459101 96.265923        

379.861272 

20.  6 9 10 9 9 1 4 8 10 4 3 5 7 2 7 9 2 1 2 5         261.038117       151.961576         140.017526 91.106714        

383.085815 

21.  7 6 10 3 10 7 10 1 4 6 1 3 3 8 7 6 3 6 7 6         295.627560       152.125178         139.499927 46.638350        

338.263455 

22.  1 4 10 9 9 1 6 3 4 7 5 4 7 6 8 7 3 3 5 8         274.964168       151.941307         132.187364 79.555080         

363.683751 

23.  9 8 8 4 9 8 4 10 3 9 6 6 1 10 4 8 10 7 9 1         275.797170       135.281307         136.069394 91.234600        

362.585301 

24.  6 7 10 1 7 5 1 4 10 1 10 7 5 3 6 10 9 7 4 1         271.417026       139.811842         147.424939 81.199944        

368.436724 

25.  9 1 2 5 6 4 7 9 6 3 9 4 7 6 4 3 3 9 5 8         273.427427       152.166010         136.210688 77.351061        

365.727759 

26.  7 1 10 3 2 1 3 3 4 6 5 6 1 6 4 2 10 2 4 2         280.581576       139.867407         135.737819 80.797363        

356.402589 

27.  5 5 9 8 10 2 1 7 4 2 10 4 4 7 6 8 7 7 4 8         265.733996       143.806842         139.456819 93.052511        

376.316171 

28.  8 10 5 10 10 3 8 4 4 10 8 1 3 3 9 1 9 7 1 9         258.427625       143.637704         151.064058 92.253774        

386.955536 

29.  6 9 10 9 9 1 4 6 3 4 3 9 7 8 9 2 1 5 8 10         260.997928       143.841545         144.264364 95.038896         

383.144804 

30.  5 9 8 5 8 6 8 8 8 8 6 9 1 1 7 9 2 1 2 4         263.414870       151.610713         139.767646 88.250930        

379.629289 

31.  2 9 10 9 9 1 4 8 10 4 3 5 1 4 3 5 2 1 10 3         267.527466       151.847973         132.019526 89.925897        

373.793396 

32.  6 7 10 10 10 3 4 7 4 7 8 4 7 2 9 9 8 1 2 4         261.434470       143.940713         147.325646 91.238673        

382.505031 
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33.  5 9 2 8 6 9 4 10 8 4 8 1 10 2 10 7 10 3 8 9         297.359986       143.527704         131.847603 60.917417        

336.292725 

34.  7 2 7 10 1 2 6 7 4 10 7 7 8 5 2 4 4 7 2 8         266.470024       140.056307         139.315364 95.905061        

375.276732 

35.  1 8 5 2 8 5 4 6 1 5 6 3 3 9 10 9 10 8 4 3         263.679405       139.672973         139.636819 99.938637        

379.248429 

36.  6 1 2 10 2 9 1 10 4 1 3 9 1 8 9 3 2 6 8 3         273.818736       151.747973         139.899688 73.557443         

365.205104 

37.  8 6 6 1 2 7 7 7 4 8 7 3 8 8 8 3 10 8 4 6         269.221322       143.966248         131.579058 95.896300        

371.441606 

38.  6 9 8 8 2 10 3 7 4 2 10 6 7 10 1 10 9 8 8 4         273.484483       139.701248         143.524484 82.425726        

365.651458 

39.  1 7 3 5 2 1 1 4 7 5 7 7 3 3 6 8 3 9 8 6         276.250690       144.421545         139.319927 78.248575         

361.990047 

40.  9 7 3 7 7 9 6 9 4 2 8 9 2 8 8 10 5 4 9 7         268.672156       140.237438         131.962436 100.000957      

372.200832 

41.  9 8 8 4 9 8 6 6 1 7 5 4 7 6 6 7 3 3 5 8         282.708253       151.801307         140.065364 61.854874         

353.721545 

42.  10 6 10 3 10 1 3 3 4 9 6 6 5 3 6 10 9 7 6 2         259.063787       139.782704         147.676274 98.546342        

386.005321 

43.  4 10 3 9 7 1 6 4 7 5 8 3 1 3 5 7 5 4 1 7         265.642154       152.227973         131.750981 92.467324        

376.446278 

44.  1 7 8 5 7 3 9 7 8 6 3 3 2 2 8 2 3 6 8 10         293.545243       148.501248         131.451688 60.710053        

340.662989 

45.  8 10 3 8 3 2 4 7 4 2 5 4 8 7 5 8 7 7 4 8         269.481441       148.071842         131.248819 91.762407        

371.083068 

46.  1 5 7 9 6 7 3 4 4 6 1 10 7 6 2 5 4 1 1 8         266.694469       143.986248         135.969981 95.004678        

374.960907 

47.  6 2 10 6 10 3 4 7 4 1 8 1 1 4 5 2 2 2 3 4         275.729575       147.595475         131.857484  83.221231       

362.674190 

48.  9 1 8 5 6 4 7 5 1 7 8 6 1 4 7 5 6 2 10 3         273.922961       147.758270         139.895364  77.412513       

365.066147 

49.  1 9 2 8 6 6 3 2 10 8 1 9 9 1 4 10 10 7 1 5         277.531868       135.477704         136.097819  88.743458       

360.318981 

50.  3 2 6 5 1 9 4 3 8 4 7 4 10 2 10 5 10 8 8 9         286.615153       139.802110         131.747603  77.350193       

348.899906 

Fitness Sum Maximum Fitness Minimum Fitness Average 

  1.3505e+004   297.3600    256.0537    270.0948 

Generation    50 

                      Chromosomes       Fit Value               I/O Cost         CPU Cost           Comm Cost        

Total Cost 

1.  1 3 1 8 4 7 5 9 9 10 7 5 2 1 4 8 7 3 3 1       272.451999        143.985772          135.626484 87.424875       

367.037130 

2.  3 10 2 1 2 5 2 4 3 1 8 2 1 5 5 1 6 5 5 1       277.005320        139.841010         143.224484 77.938403       

361.003896 
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3.  1 9 2 8 6 10 8 10 4 4 7 3 10 5 8 3 2 8 4 10       265.319619        147.691248         131.648819 97.563836       

376.903903 

4.  6 8 8 1 1 10 10 7 4 2 8 6 10 2 10 3 10 1 8 9       282.945375        143.327110         131.619765 78.478234       

353.425109 

5.  9 9 4 2 3 1 9 8 10 3 10 3 10 7 9 1 3 2 10 10       272.913178        148.166545         143.714364 74.535989        

366.416897 

6.  7 3 5 2 9 8 1 1 4 1 7 6 6 2 10 4 9 1 7 9       263.230450        139.871041         143.706765 96.317453       

379.895259 

7.  9 9 9 2 5 10 6 9 7 7 9 6 1 4 4 2 10 2 4 4       270.665316        139.876545         136.337939 93.245488       

369.459971 

8.  9 1 8 5 6 5 7 5 1 4 7 3 1 7 1 8 1 2 6 10       292.883539        135.851545         139.658274 65.922822       

341.432641 

9.  9 3 1 4 8 3 2 9 7 2 4 10 10 1 3 5 6 2 2 4       257.945444        148.031010         139.625484 100.022384     

387.678877 

10.  2 6 10 3 5 6 4 1 5 7 10 7 7 3 3 2 5 3 3 1       265.380027        152.285772         131.577484 92.954854       

376.818109 

11.  5 4 5 3 2 1 2 2 10 2 1 6 7 3 5 8 5 4 10 7       271.828231        144.067973         131.419526 92.391877       

367.879376 

12.  1 7 3 5 7 2 1 9 7 2 8 9 6 1 8 6 5 6 6 7       268.080902        140.102973         139.642598 93.276152       

373.021723 

13.  9 6 7 1 5 3 5 3 2 2 8 9 10 3 5 6 5 4 1 7       262.257816        144.237973         139.588981 97.477220        

381.304175 

14.  1 7 3 5 1 1 6 5 10 3 5 4 10 5 3 7 7 8 4 9       256.018838        160.277110           131.579058 98.740089       

390.596258 

15.  1 10 1 6 8 6 1 10 8 9 1 10 3 9 5 6 3 7 3 1       273.125957        147.440772         139.995484 78.695185       

366.131440 

16.  10 1 2 8 8 7 4 5 4 9 3 9 1 6 3 10 2 3 1 4       270.642959        147.801842         131.768939 89.919712       

369.490492 

17.  5 4 10 6 8 7 9 1 8 6 4 3 3 3 6 8 3 9 8 6       288.408810        143.871545         139.729927 63.128575       

346.730047 

18.  6 8 3 7 5 3 5 9 4 1 2 7 3 8 7 7 3 10 7 6       269.313817        160.655178         131.487603 79.171253       

371.314034 

19.  9 2 1 2 4 1 6 9 7 5 4 3 6 3 2 9 7 6 9 4       258.571774        152.100713         140.002718 94.636384       

386.739815 

20.  4 8 1 7 1 8 2 9 10 2 10 1 10 1 1 2 6 3 10 1       273.728648        139.401842         143.494484 82.428973       

365.325298 

21.  8 2 6 1 2 7 7 7 4 2 7 3 10 8 8 3 10 8 4 6       280.668976        144.136248         131.379058 80.776300       

356.291606 

22.  4 5 8 8 1 10 3 7 4 8 10 6 4 10 4 10 9 10 10 4     289.436154         139.391248         143.394484 62.713608        

345.499339 

23.  6 10 10 10 10 3 4 7 4 7 8 4 1 4 5 5 6 1 10 3       267.227817        143.527973         139.527526 91.157040        

374.212539 

24.  9 2 4 10 4 2 6 7 4 10 7 9 5 5 2 4 4 7 2 8       270.917006        139.756307         139.755364 89.605061       

369.116732 

25.  4 9 9 1 1 7 8 6 5 5 9 9 7 5 7 2 5 3 5 1       262.763057        152.141307         132.127484 96.302212        

380.571003 
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26.  10 1 1 6 8 6 1 2 8 4 1 10 2 9 3 6 5 9 10 4       266.142809        147.356545         139.929808 88.451773        

375.738125 

27.  9 2 4 4 10 6 10 7 10 8 1 5 10 1 4 5 3 7 1 5       261.625567        147.562704         135.717819 98.945117        

382.225640 

28.  9 2 6 8 1 7 9 8 6 9 10 3 10 3 2 7 5 5 10 4       264.013783        152.091545         131.987484 94.689075        

378.768104 

29.  9 2 6 8 1 6 10 2 10 8 6 9 10 1 4 10 4 7 1 5       271.011537        135.207704         139.996819 93.783458       

368.987981 

30.  9 2 4 8 1 6 10 2 10 8 1 9 10 1 4 10 10 2 10 5     289.425143         135.202407         135.856364 74.453712       

345.512484 

31.  6 5 7 7 1 8 9 2 2 2 5 7 4 10 2 2 9 1 6 5       298.563885        148.162110         139.520436 47.254146       

334.936692 

32.  2 2 9 2 1 1 7 8 4 4 5 3 5 7 1 10 1 4 9 7       269.022956        135.882438         139.490436 96.342616        

371.715490 

33.  1 8 3 9 2 5 4 10 9 5 6 3 3 9 1 9 10 8 4 4       260.752977        139.941248         143.735939 99.827544        

383.504730 

34.  9 3 8 5 6 4 7 5 1 7 8 6 1 4 4 2 5 2 4 3       268.960876        143.863270         135.827819 92.110198       

371.801287 

35.  9 7 3 7 7 9 5 9 6 5 2 3 6 8 7 2 5 3 10 4       277.270805        152.696842         131.827484 76.133913       

360.658238 

36.  3 9 9 1 7 7 8 6 5 5 6 4 4 3 6 7 3 9 8 6       274.370114        152.321545         139.869927 72.279712       

364.471183 

37.  3 5 8 8 4 10 3 7 4 2 7 3 10 1 9 1 9 2 6 9       261.402885        144.042407         151.095513 87.413329        

382.551249 

38.  5 5 5 2 10 2 7 4 4 10 8 1 3 3 8 3 5 8 7 6       263.584204        148.130178         131.217603 100.037624     

379.385406 

39.  8 9 1 4 8 6 5 8 8 10 7 9 1 1 4 2 10 2 4 4       269.594627        139.366545         135.857939 95.702790       

370.927273 

40.  9 1 8 5 6 4 7 5 1 7 8 1 1 8 8 2 7 5 8 10       268.126009        147.756545         131.817364 93.385061       

372.958970 

41.  6 2 6 1 2 7 7 9 4 8 10 6 1 10 2 10 8 8 8 3       284.888727        139.622973         131.927364 79.463903       

351.014240 

42.  4 9 9 1 1 7 4 6 5 5 6 9 4 5 7 2 4 3 10 6       275.636278        147.831842         136.266603 78.698502        

362.796946 

43.  5 4 9 5 8 2 3 9 10 10 6 4 7 1 1 9 5 3 8 4       263.167588        143.866842         143.634484 92.484678        

379.986003 

44.  9 3 1 4 8 1 2 8 7 5 4 10 6 3 4 6 7 5 8 10       261.464521        143.801545         143.624364 95.035159       

382.461068 

45.  3 3 5 10 9 8 9 2 2 2 5 7 7 10 2 1 9 6 9 7       285.687068        144.312438         143.321598 62.399309        

350.033345 

46.  6 5 7 10 1 7 1 6 10 3 10 5 4 4 9 1 3 2 10 10       262.371990        147.856545         143.594364 89.687337        

381.138246 

47.  4 2 9 1 10 9 4 10 5 5 6 3 3 9 1 3 10 3 4 3       265.085992        143.848567         135.957819 97.429693       

377.236079 

48.  1 8 9 2 10 7 6 8 4 7 5 7 5 7 5 1 5 1 6 5       278.223383        144.007110         135.551436 79.864875       

359.423421 
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49.  9 9 4 4 10 7 2 8 6 9 10 3 10 3 2 4 5 5 8 7       268.895868        143.903270         135.856364 92.131541        

371.891175 

50.  4 4 2 1 3 10 10 2 7 2 10 7 5 7 3 3 8 8 3 5      265.898606         152.176041         131.307364 92.599799       

376.083205 

Fitness Sum Maximum Fitness Minimum Fitness Average 

  1.3559e+004   298.5639    256.0188  271.1784 

4.5.2 Cost calculation by simulator 

Since there are 20 operations therefore size of chromosome is set to be 20. Chromosome in 

output of simulator represents the following: 

 

6 5 7 7 1 8 9 2 2 2 5 7 4 10 2 2 9 1 6 5 

 

1
st
 operation is allocated to site 6           13

th
 operation is allocated to site 4 and so on. 

Based on the above assumption and Table 3 and Table 4 different costs are calculated for 

each chromosome as follows: 

I/O Cost= I/O Coefficients * Fragment_Size 

CPU Cost= CPU Coefficients * Fragment_Size 

Communication Cost = Communication Coefficients between two sites * Fragment_Size 

Fragment_Size for various operations are already calculated above and I/O Coefficients, 

CPU Coefficients, Communication Coefficients are taken from Table 3. Some of the cases 

are shown below: 

 Operation 1: Selection                    Allocated to site 6 

I/O cost = I/O coefficient for site 6 * Fragment_Size 

              = 1*100 = 100 

CPU cost = CPU coefficient for site 6 * Fragment_Size 

                 = 1.2 *100 = 120 

Communication Cost = 0 as selection does not involve any communication 

Similarly cost is calculated for other selection operation as well. 

 

 Operation 8: Projection                        Allocated to site 2 

I/O cost = I/O coefficient for site 2 * Fragment_Size 

              = 1.1*70 = 77 

CPU cost = CPU coefficient for site 2 * Fragment_Size 
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                  = 1 *70 = 70 

Communication Cost = 0 as projection does not involve any communication 

Similarly cost is calculated for other selection operation as well. 

Only one of the cases is shown below and the best case is taken that is case 3. While 

calculating the cost for join operator the fragment size used here is taken from case 3 

that is combination of joins and inner joins. 

 

 Operation 19: Join f22 ⋈f23                                  Allocated to site 6 

CPU Cost = Site‟s CPU Coefficient*(f22 size * f23 size) 

                  =1.2 *(63*1.0206) = 77.15736 

Total I/O Cost = Site‟s I/O Coefficient *( f22 size * f23 size) 

                        =1*(63*1.0206) = 64.2978 

Communication Cost  

Operation 15 is allocated to site 2, Operation 16 is allocated to site 2. Both are at 

same site, therefore  

Communication cost = Communication Coefficient between sites 2 and 6 * (f22 size * 

f23 size) 

                                   = 14*(63*1.0206) = 900.1692 which is represented as 9.001692 

in output due to MATLAB syntax. 

On calculating the communication cost for other operators as well and summing them 

up gives 47.254146        

In case fragments for join operations are allocated to different sites then for both 

operations communication costs are calculated and then added together to get the 

communication cost. In similar manner communication cost for other operations are 

also calculated. 

And finally after calculating the cost for each operation all the costs are added together to get 

the total cost for each chromosome as shown in the GA output 

4.5.3 RESULTS 

Simulator is run for different instances of database so as to give image of dynamic database 

with varied cardinalities each time. It has been observed that when joins and inner joins are 
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used in combinations then communication cost greatly reduces. As shown in GA output the 

minimum communication cost in different cases is as follows: 

Case 1: Using Joins  

Minimum communication cost = 72.470890 

Case 2: Using Inner joins  

Minimum communication cost = 82.502469 

Case 3: Using combination of Joins and Inner joins  

Minimum communication cost = 47.254146  

It shows that when joins and inner joins are used in combination then they are useful. 

Individually they are incurring more communication cost than when used together.             

 In the graphs shown below Y1, Y2, Y3, Y4 represent the following: 

 Y1 = ID⋈ department; Y2 = creditor⋈ student; Y3 = student ⋈ salary; Y4 = student ⋈ 

salary ⋈ employee 

The join operation between ID and department, department_name being the foreign key in ID 

relation and primary key in department relation so in this case PPIJ (Percentage participation 

for inner join) will be 1. Also changing the number of rows of these two relations will not 

change PPIJ. This is shown in Figure 11 and Figure 12. So for the next instances of database 

this join for relation ID and department has been omitted and in Figure 13 and Figure 14 PPJ 

and PPIJ has been shown for join operations Y2, Y3 and Y4. Table 5, Table 6, Table 7, Table 

8 represent relations with different cardinalities at different instances of database. 



 

60 
 

Figure 9: Screenshot of database Table department 

 

Figure 10: Screenshot of Employee Table 
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Database Instance 1: 

 

Table 5: Database instance 1 . 

Tables ID Department Creditor Student Salary Employee 

Number of 

Rows 

88 75 70 50 54 110 

  

 

 

Figure 11: Percentage participations for first database instance. 

  

Inner join 

Join 
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Database Instance 2: 

 

Table6: Second database instance. 

Tables ID Department Creditor Student Salary Employee 

Number of 

Rows 

99 80 71 52 55 288 

 

 

 

  

Figure 12: Percentage participations for second database instance. 

  



 

63 
 

Database Instance 3: 

 

Table 7: Third database instance. 

 

Tables ID Department Creditor Student Salary Employee 

Number of 

Rows 

98 81 69 11 80 298 

 

 

 

 

 

Figure 13: Percentage participations for third database instance. 
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Database Instance 4: 

 

Table 8: Fourth database instance. 

Tables ID Department Creditor Student Salary Employee 

Number of 

Rows 

52 81 70 5 98 203 

 

 

 

 

 

Figure 14: Percentage participations for fourth database instance. 
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Figure 15 denotes the percentage reduction in communication cost wherever inner join is 

beneficial. In this graph first bar represent that only at one place inner join was beneficial for 

first database instance and percentage improvement is written above the bar. Similar is the 

case for second database instance. For the third and fourth instance at two places it is proving 

to be beneficial than joins. Although in very less cases inner join is coming out to be 

beneficial but percentage reduction in communication cost is coming as high as 90% in those 

cases. So inner join greatly reduces the communication cost involved but in very few cases. 

 

Figure 15: Percentage reduction in communication cost for inner join operations. 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

 

Query processing in a distributed database requires transfer of data from one computer to 

another through a communication network.  Query at a given site might require data from 

remote sites. In query optimization, a cost is associated with each query execution plan. Cost 

is the sum of local cost (I/O cost, CPU cost at each site) and the cost of transferring data 

between sites. The complexity and cost increases with the increasing number of relations in 

the query. A query execution strategy or plan is required to minimize the cost of query 

processing. 

 The cost of processing a DD query is the entire cost measure. The entire cost size is the sum 

of all cost components. On executing join and inner join, communication costs among 

various sites may be incurred along with the local processing cost. 

After experimenting with the actual dynamic database on calculating the selectivity factors 

dynamically it is seen that in very less cases PPIJ<PPJ. Whenever selectivity factor for inner 

join comes less than join then only inner join should be used otherwise join should be used. 

Whenever very few tuples are required which is a very rare case for join operation only then 

inner join should be used otherwise normal join should be used. 

From the results it has been found that neither using only joins incur minimum 

communication cost nor using inner joins alone reduces communication cost. Rather when 

they are used in combination that is somewhere joins are used and somewhere inner joins are 

used then communication cost greatly reduces. So in very less cases inner join has proven to 

be beneficial. It has been observed that when very few tuples are required for joining the 

relation at other site only then inner join should be used.  

 

Future work  

Cost analysis of the distributed query can be further studied by using Genetic algorithm 

approach that gives optimal results within small time interval. Enumerative and Deterministic 

procedures are designed to find the best solution but they go almost intractable as soon as the 
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number of sites or number of complex operations like joins are increased to double digits or 

more. Whereas a genetic solution does not guarantee the finding of an optimal solution but 

can provide a very good solution in an extremely small time as compared to deterministic 

one. In future efforts should be done to incorporate Genetic Based Solutions to allocation 

problems of Distributed Database. More work needed to be done to ensure that an optimal 

solution is guaranteed in most of situations by GA.  
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                                                                                                                     APPENDIX 

Glossary of Terms 

        Crossover: It is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring). 

         Chromosome: It consists of "genes" (e.g., bits), each gene being an instance of a 

particular "allele". 

         Data allocation: It is the prominent activity in the distributed database which decides that 

where to locate the data. 

         Database Management System: It is used to manage whole data in organizations. 

         Distributed database: It is a collection of logically interrelated databases that can be 

stored at different computer network sites. 

         Data definition language (DDL): Users can specify structure of database, data types and 

constraints on data by using DDL. 

         DML: It provides general facility to enquire about data, which is known as query 

language. 

         Fragmentation: The process of dividing the relation into sub relation is called 

fragmentation. 

         Genetic Algorithm: GA was a method for moving from one population of 

"chromosomes" to a new population by using a kind of "natural selection" together with the 

genetics−inspired operators of crossover, mutation, and inversion. 

         Horizontal Fragmentation: It means to divide a relation along its rows. 

         LPC: Local Processing Costs for processing a query‟s simple selection & projections may 

be represented as costs of transforming input relation from disk to memory and CPU time for 

processing a selection or projection at site 

         Mutation: It is a genetic operator that alters one or more gene values in a chromosome 

from its initial state. 
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         Query: Database Query is a way of instructing DBMS to update, insert, retrieve, and 

delete data from database. 

         Query optimization: It is the function of determining the most efficient query plan 

among all, which is performed by query optimizer. 

         Replication:  It consists of keeping of copies of complete database at each site. 

         Reproduction: Reproduction selects good strings from the population and puts them in 

mating pool selection operator chooses those chromosomes in the population that will be 

allowed to reproduce, and on average the fitter chromosomes produce more offspring than 

the less fit ones. 

         Vertical Fragmentation: Vertical fragmentation partitions a relation long its attributes. 

  

Abbreviations 

         Ars : Data Allocation Variable 

         S
q

ys : Sequence of various sites where sub queries gets executed 

         LPO: Left previous operation of a join 

         RPO: Right previous operation of a join) 

         LPC: stands for Local Processing Cost 

         CC: Communication Cost 

         : No. of memory blocks of relations „r‟ accessed by sub query „y‟ of q. 

         IOCs : Input Output Cost Coefficient of site s in millisecond per 8k bytes 

         CPCs: CPU Cost coefficient of site s. 

         ρp  : Percentage Participation 

          : It is the size of an intermediate relation. 

         : It is the communication cost coefficient between site s and v 


