

 Sub Query Site Allocation and Optimization for a Distributed Query

A Dissertation submitted

By

 PARMINDER KAUR

to

Department of Computer
Science and Engineering

In partial fulfilment of the Requirement for the

Award of the Degree of

Master of Technology in Computer
Science and Engineering

Under the guidance of

Mr. Robin Prakash Mathur

(Assistant professor)

(April 2015)

ii

iii

ABSTRACT

Distributed databases are the outcomes of top notch technology advances, high speed

computer networks further facilitated its growth and its suitability in satisfying various

businesses needs make it more popular. As data resides at different sites in a distributed

database environment, so to acquire a specific type of data; subdivision of a query into its sub-

parts (sub-queries) is required and those sub-queries needs to be executed at different data

sites. In some cases combination of data from two or more different sites may be required. To

attain this goal a join operator is used. But using join is not always advantageous in terms of

cost as it may sometimes result in more communication cost in cases when complete relation

is not desired for join operation. In such scenario communication cost involved between two

sites can be reduced using other forms of joins like inner join. Inner join is also not always

useful. So a need of finding the appropriate strategy to decide and assign join operations

arises. In this thesis join operator allocation has been done dynamically by dynamically

calculating percentage participations for joins and inner joins for the dynamic distributed

database simulated. This dynamic percentage participation is given as input to the simulator

built in MATLAB based on which fragment size for join operation is calculated. The

simulator by using the genetic algorithm computes the minimum communication cost

involved in executing the query under different cases using joins only, using inner joins only,

and mixture of both. Hence finding the optimal query design for a distributed database using

mix of joins is attained.

iv

CERTIFICATE

This is to certify that Parminder Kaur has completed M.Tech dissertation titled Sub Query

Site Allocation and Optimization for a Distributed Query under my guidance and

supervision. To the best of my knowledge, the present work is the result of her original

investigation and study. No part of the dissertation has ever been submitted for any other

degree or diploma.

The dissertation is fit for the submission and the partial fulfilment of the conditions for the

award of M.Tech Computer Science & Engg

Date: 24 April,2015 Signature of Advisor

 Name: Robin Prakash Mathur

 (Asst. Professor, School of Computer Science & Engineering)

 Lovely Professional University

 Phagwara, Punjab (144402).

v

ACKNOWLEDGEMENT

I would like to thank LOVELY PROFESSIONAL UNIVERSITY for giving me

opportunity to use their resource and work in such a challenging environment. I am grateful

to the individuals whom contributed their valuable time towards my thesis.

I wish to express my sincere and heart full gratitude to my guide “Mr. Robin Prakash

Mathur” Assistant professor, who guides me to take up this thesis in Sub Query Site

Allocation and Optimization for a Distributed Query.

I would also like to offer my sincere and heartfelt thanks to Prof. Dr. R.S. Virk of Computer

Science And Engineering Department, G.N.D.U., Amritsar for his continuous guidance and

support throughout my dissertation.

Without his unconditional help I would never have been able to complete my work.

I would also like to extend my gratitude to my friends and family who always encouraged

and supported me in this thesis work.

Last but not the least; I would like to thank all the staff members of department of Computer

Science & Technology who have been very patient and co-operative with us.

vi

DECLARATION

I hereby declare that the dissertation entitled, Sub Query Site Allocation and

Optimization for a Distributed Query submitted for the M.Tech Degree is entirely

my original work and all ideas and references have been duly acknowledged. It does

not contain any work for the award of any other degree or diploma.

Date: 24 April,2015 _ Investigator

 Parminder Kaur

 Regn. No. 11300122

vii

TABLE OF CONTENTS

Chapter 1: INTRODUCTION .. 1-20

1.1 Database management system ...2

1.1.1 Data definition language ..2

1.1.2 Data manipulation language ..2

1.1.3 View mechanism ..2

1.2 Benefits of distributed database systems ..3

 1.3 Distributed Database Design ...4

 1.3.1 Top Down Approach To Design ...5

 1.3.2 Bottom Up Design Approach...6

 1.4 Query Processing .. 7-12

 1.4.1 Query Processing Problem ..7

 1.4.2Query Optimization ...9

 1.4.3 Layers of Query Processing ..9

 1.4.4 Objectives of Query Processing ..11

 1.5 Data Allocation and Fragmentation ..12

 1.6 Joins ..13

 1.6.1 Cartesian or Cross Join ..13

 1.6.2 Equijoin ..13

 1.6.3 Outer Joins ...13

 1.6.4 Left Outer Join ..14

 1.7 Genetic Algorithm ... 15-20

 1.7.1 Working of Genetic Algorithm ..16

 1.7.2 Outline of the Basic Genetic Algorithm ..17

 1.7.3 GA Operators ...18

 1.7.4 Reproduction ..18

 1.7.5 Crossover ...19

 1.7.6 Mutation ...19

 1.7.7 Advantages of Genetic Algorithm ...20

viii

Chapter 2: Literature Review ... 21-25

Chapter 3: Problem Definition and Objectives of Study ... 26-28

 3.1 Problem Definition..26

 3.2 Research Objectives ..27

 3.3 Methodology ...27

Chapter 4: RESULTS AND DISCUSSIONS .. 29-65

 4.1 Data Allocation ..29

 4.2 Decision Variables Used By Simulator ..31

 4.3 Local Processing Costs ...32

 4.4 Communication Costs ...33

 4.5 Experimental Setup ..34

 4.5.1 Dynamic Selectivity Factors Calculated By Simulator38

 4.5.2 Cost Calculation By Simulator ..57

 4.5.3 Results ..58

Chapter 5: Conclusion and Future Work ..66

References ... 68-70

Appendix ..71

ix

LIST OF TABLES

Table1: Example of Database ... 8

Table 2: Comparison of different allocation strategies ..29

Table 3: Communication, I/O, CPU Coefficients ..35

Table 4: Intermediate Fragments used in various operations ..36

Table 5: Database Instance 1 ………… ……………………….......................................61

Table 6: Database Instance 2 ...62

Table 7: Database Instance 3 ..63

Table 8: Database Instance 4… …………………………………....................................64

x

LIST OF FIGURES

Figure 1: Distributed Database System..2

Figure 2: Top Down Approach to Distributed Database Design ...5

Figure 3: Bottom up Approach to Distributed Database Design ...7

Figure 4: Steps of Query Processing ..10

Figure 5: Transfer of operands ...14

Figure 6: A flowchart of working of Genetic Algorithm ...16

Figure 7: Crossover Operation in GA ..19

Figure 8: Query Tree for Distributed Database ...35

Figure 9: Screenshot of database Table department ...60

Figure 10: Screenshot of Employee Table ...60

Figure 11: Percentage participations for First database instance ...61

Figure 12: Percentage participations for second database instance. 62

Figure 13: Percentage participations for third database instance ...63

Figure 14: Percentage participations for fourth database instance. ..64

Figure 15: Percentage reduction in communication cost for inner join operations. 65

1

CHAPTER 1

INTRODUCTION

In the old days, programs stored data in the regular files. Each program has to maintain its

own data which results in huge overhead and easily prone to error. The development of

database management helped to fully achieve data independency that provides centralized

and controlled data maintenance and access. Also application is immune to physical and

logical organization. The advancement in database and communication technologies

enhanced the popularity of distributed databases, as it provides high availability, autonomy,

and affordability for managing large databases. A distributed database can be considered as a

collection of data which are distributed over different sites of a computer network. Each site

of the network is capable to perform local applications autonomously. However the

distributed database systems are used in applications which require access to an integrated

database from geographically dispersed locations. The location of data items and the degree

of autonomy of individual sites play a prominent role in all aspects of the system. Data

allocation is the prominent activity in the distributed database which decides that where to

locate the data. [4], [5]. Data is the base of whole world of growing organizations in today‟s

world and managing data is one of the most trivial tasks. Database Management System are

used to manage whole data in organizations. In today‟s world of universal dependence on

information systems, every user of the system whether an employee or a employee need

access to company‟s databases. Database is managed using two approaches known as

Centralized Database Management System and Distributed Database Management System

[8]. Conventionally, databases of any organization were focused at one mainframe location

with all over wide-reaching access. Unified system management and could be beneficial

when manager in a structured style but it posed few glitches as well. Thus, substitute strategy

to the centralized database is distributed database. Distributed database is a collection of

logically interrelated databases that can be stored at different computer network sites. The

objective of a distributed database management system (DDBMS) is to control the

management of a distributed database (DDB) in such a way that it appears to the user as a

centralized database.

2

Figure 1: Distributed Database System (4 sites)

1.1 DATABASE MANAGEMENT SYSTEM (DBMS):

Database management system (DBMS) [8] is software [9] systems, which are basically

collection of interrelated data and allow definition, creation, updating of databases [24].

DBMS are applications that are designed in such a way that they can interact with users,

other applications, and database itself to analyze and capture data. DBMS provide a lot of

facilities, some of which are:

1.1.1 Data Definition Language [31]: DBMS provide its users facility to define database,

using data definition language (DDL). Users can specify structure of database, data types

and constraints on data by using DDL.

1.1.2 Data Manipulation Language [19]: DBMS provide its users facility to insert,

retrieve, update and delete data by using Data Manipulation Language (DML). DML

provide general facility to enquire about data, which is known as query language.

1.1.3 View Mechanism [6]: DDL is also use to define a view. A view is basically a subset

of database, but it doesn‟t form part of physical schema. Each user can have his or her

view of database.

A distributed database (DDBMS) is such a database system in which all storage devices

are not all attached to a CPU (central processing unit) and all of these storage devices are

managed by distributed database management system.

3

Such a database can reside in same large room, but all the fragments/replicas (stored at

different sites) communicate with each other through network instead of shared memory.

1.2 BENEFITS OF DISTRIBUTED DATABASE [22]

i. It reflects organizational structure

A number of organizations in the world are distributed over several locations. For

example: A bank has many offices in different cities of same district. The database used

for such applications is distributed over many locations. Banks may keep database at each

department containing details of employees, staff related to that department.

ii. Improved share ability and local autonomy

By distributing the database, data can be placed at site near to the use who frequently use

that data. By doing so, locality of reference gets improved. Along with that, users get

local control over data and can enforce policies regarding use of data. A global database

administrator manages the entire global database, while duties of managing local database

can be assigned to local administrator.

iii. Improved Availability

While using centralized database, failure of the central application can result in failure

and unavailability of the whole system. But in case of distributed system, failure of one

site, does not make whole system unavailable. Distributed databases are designed in such

a way that they continue to function even in case of failure of one or two sites.

iv. Improved Reliability

Allocating data at different sites and maintaining replicas of data at various sites, the

failure of a site does not make data inaccessible.

v. Improved Performance

The data, in case of distributed database is located at the site or near the site which most

frequently accesses that data, because of which the speed of data access increases,

4

communication cost incurred while accessing data from remote site gets reduced and

hence, the performance of the system improves.

vi. Modular Growth

 In case of distributed databases, expanding the system becomes easy. New sites can be

added to the system at any time without affecting the whole system.

1.3 Distributed Database Design

Design [7] of a distributed database system is one of the most crucial aspect behind the

success or failure of such a system. Designing a distributed system involves taking decisions

related to the placement of data and programs in system (includes network nodes and

network design itself). While designing a distributed system, the main focus is given to the

division and placement of data i.e. to the placement of data. The issues that arises while

designing a distributed database system are:

a. Why fragment at all

b. How to fragment

c. How much to fragment

d. How to test correctness

e. How to allocate

 Two basic strategies used in designing distributed database system are:

 Top-down Approach

o Involves designing the system from scratch

o Used for homogeneous systems.

 Bottom-up Approach

o Used for systems where database already exists at some sites

o The aim is to connect the databases to solve common tasks.

5

1.3.1 TOP DOWN APPROACH TO DESIGN [27]

The top down approach to distributed design starts with requirement analysis of actual

environment. It involves designing a system from scratch. This process involves creating data

models which defines high level entities of the system and their relationships. Then

refinements are applied to the high level data models to identify and define corresponding

low level entities, their relationships and attributes.

The steps involved in top down process are:

 Analyze the requirements

 View integration and conceptual design

 Data distribution design

 Local physical schema design

o The process of designing starts with analysis of the requirements which defines the

system. The requirement document is essential requirement for two parallel activities:

conceptual design and view design.

o View design involves defining user interface, while conceptual design includes

examining the system to determine its component types of entities and relationship

Figure 2: Top Down Approach to Distributed Database Design [4]

6

between entities. Conceptual design can also be defined as integration of user views. This

integration is very important because the conceptual schema or design must not only

support existing application, but must also support global conceptual schema and

information about access patterns.

o So, the objectives at this step is to design conceptual schemas using local distribution

entities across nodes of the system. In relational model instead of whole relation their

fragments are distributed across the system.

o So, distributed design activity consists of two steps: fragmentation and allocation.

o The last step includes physical design, which involves making connections between

conceptual schemas and physical storage devices on the nodes of corresponding data.

1.3.2 BOTTOM UP DESIGN APPROACH

Bottom up approach can be used for designing database of an existing system. Most of

the times, existing and heterogeneous databases are integrated to a common distributed

database system. This approach comprises of integrating existing schemata into a single

global schema. But the following aspects must have fulfilled:

o A common database model must be selected for describing the global schema.

o Each local schema must be translated into the common data model

o The integration of common schema into common global schema: the merging common

data definitions and resolving conflicts among different representations given to the same

data.

The bottom up approach involves solving these three problems. The design steps are just

reverse of the bottom up approach. The steps of integration for designing a new system

are:

o Common data model selection

o Translation of each local schema into common model

o Integration of the local schema into a common global schema

o Design the translation between the global and local schemes.

7

1.4 QUERY PROCESSING

Database Query is a way of instructing DBMS to update, insert, retrieve, and delete data

from database. It can be defined as a request for information from database. The actual

operation is performed by executing a number of low level operations. Such operations

for example can be, select, project, join etc. Query Processing [5] is a process of

transforming a high level query into correct and efficient execution plan, which is

expressed by using a low level query and executing that query plan. All the activities

involved in executing a query are included in it.

1.4.1 QUERY PROCESSING PROBLEM [13]

The main aim of query processor is to transform a high level query into low level query

plan. Query processing becomes much more important in case of distributed databases.

As in case of distributed systems, relations involved in query may be fragmented or

replicated, and hence increase communication cost. In distributed databases, data is

fragmented or replicated to increase locality of reference and parallel execution. So, the

role of a distributed query processor can be defined as, mapping a query on distributed

Figure 3: Bottom up Approach to Distributed Database Design

Figure 4: Query Processing

8

databases into a sequence of operations on fragments of relations. The data used by the

low level query must be completely localized, so that operations bear on local fragments.

The transformation must be correct and efficient.

Example: Consider the following query,

“Find name of all employees who manage a project”,

On relational schema given as:

Table 1: Example of Database

emp: responsibility:

Relational calculus query equivalent to above query in SQL is:

Select ename from emp, responsibility where emp.eno= responsibility.eno and

responsibility.resp=”manager”

Two equivalent relational algebra queries for the above SQL query are:

Πename (σresp=”manager” and emp.eno=responsibility.eno (emp × responsibility))

And

Πename (emp ⊠eno (σresp=”manager” responsibility))

From above example, it can be observed that:

I. First query uses Cartesian product, which uses more computing resources, so it must be

avoided, while the second one uses join instead of Cartesian product, so it must be

retained.

9

II. In case of a centralized system, the only task to be performed by query processor is to

convert relational calculus query into the best relational algebra query (which uses

minimum resources).

But in case of distributed system, execution plan is expressed by using relational algebra

query along with communication operators for exchanging data between sites. The best

site to process data must be selected along with the best ordering of relations and

operators.

1.4.2 QUERY OPTIMIZATION[4]

As illustrated in above example, a query can be expressed by using two or more

equivalent query plan. There can be a huge difference between costs of two alternative

plans, depending upon the processing costs at different sites, communication costs etc.

Query optimization [4] is the function of determining the most efficient query plan among

all, which is performed by query optimizer.

1.4.3 LAYERS OF QUERY PROCESSING [28]

The problem of query processing has been subdivided into various layers each corresponding

to various sub problems. The first three layers shown in the figure perform the task of

mapping the input query to an optimized distributed query execution plan. They perform

query decomposition, data localization and global optimization functions. A central control

site performs functions of first three layers and uses global directory‟s schema information.

The last layer executes the optimized query execution plan and returns the answer to that

query.

10

I. Query Decomposition [33]: The first layer uses the information in global conceptual

schema, which contains global relations. It decomposes the input calculus query into

algebraic query which bears on global relations. It doesn‟t need any information about

distribution of data on various sites. Hence, it uses techniques used in centralized system.

I. Figure 4 : Steps of Query Processing

Query decomposition is a four step procedure. The steps involved are:

1. Frist of all, query is normalized to a form which is best for further manipulation.

Normalization is done by manipulating query quantifiers and by applying logical operator

priority.

2. Next step is of sematic analyses, which attempts to detect and delete incorrect queries as

early as possible.

11

3. Then the query is simplified, which involves eliminating redundant predicates.

4. At last the query is restructured as algebraic query.

II. Data Localization: the input to this layer is algebraic query produced in the first layer.

This layer uses the data distribution information in fragment schema to localize the

query‟s data. The main role of this layer is to determine all the fragments involved in

query and then transform the query on global relations into a query which bears on

fragments.

III. Global query Optimization: it takes the query on fragments as input. The main goal of

this layer is to determine the optimal execution plan for the query. An execution plan is

described by using relational algebra operators and communication primitives. This layer

finds out the best execution plan which involves best ordering of algebra operators and

communication operators, which minimizes the total cost of executing the query. The cost

function is described in terms of time units.

IV. Distributed query execution: All sites containing the fragments involved in query

perform the task of last layer. Each sub plan (sub query) is executed at one site, called

local query and then is optimized using local schema. Algorithms of centralized systems

can be used in local optimization.

1.4.4 OBJECTIVES OF QUERY PROCESSING [25]

 The main objective of query processor is to convert a high level query on a distributed

environment, which appears a single database to users, into an efficient execution strategy

in a low level language on local databases.

 An important aspect of query processing is query optimization. There may be more than

one execution strategies which are correct transformation of high level query, the one that

optimizes the resource consumption must be retained.

 The good indicators of optimized resource consumption are:

12

o The total cost incurred while processing the query. It is sum of all cost incurred while

processing the operations of the query like, input-output cost, communication costs (in

case of distributed systems), CPU costs.

o The response time of query. It is the time taken by system in executing the query.

Because of parallel execution at one or more sites, response time of a query may be less

than its total cost.

 Minimizing the total cost is one of the main objectives of query processing.

1.5 DATA ALLOCATION AND FRAGMENTATION

While designing a distributed database system, the major issues involves distributing the

central database to various sites. This involves fragmenting the database and allocating

fragments to various sites. The design of system must be based on both the quantitative

and qualitative information.

FRAGMENTATION: The process of dividing the relation into sub relation is called

fragmentation. These fragments are then distributed to different sites. Defining and

allocating the fragments to sites must be based on the access pattern of different

applications. Two fundamental strategies for fragmentation are:

a. Horizontal Fragmentation [3]: It partitions a relation along its tuples. So, a fragment is

basically a subset of tuples of relations.

b. Vertical Fragmentation: Vertical fragmentation partitions a relation long its attributes

i.e. fragments of a relation in vertical fragmentation produces fragments, each of which

contains subset of attributes of main relation.

ALLOCATION [16]: One major task while designing a DDBMS is to allocate resources

to various computer nodes or sites. Data or fragment allocation must be done in such a

way that locality of reference gets maximized. Four general strategies for data allocation

are:

I. Centralized

II. Partitioned

III. Complete replication

IV. Selective Replication

13

1.6 JOINS

The joins impact can be seen when a client prerequisite join datasets from a relational

database[2]. The space has turned into a colossal. Associations gathering information

because of expanding rate swinging to this information to drive their objectives.

Disadvantage of gathering this information is the need to some way or another capably store

and structure it. One of the key inhabitants of db configuration is to convey it to condition of

standardization. It is accomplished by which imitation information is lessened, capacity is

enhanced and the need to get to this standardized information that has been put away in

partitioned tables gets to be vital. A join in its pith will return, erase, or redesign information

from more than one information source as one arrangement of information.

1.6.1 Cartesian join

The Cross join is the basic among rest of joins to compose and perceive. It is basically a

gathering of two relations without a qualifying Where proviso. The result of this join is each

tuple of the 1st connection consolidated to each tuple of the 2nd connection.

1.6.2 Equijoin

An Equijoin is the one of the straightforward kind of inward join and can be recognized by

the equivalent sign predicate between two connecting variables in the Where condition.

 1.6.3 Outer joins

This joins are just ready to process two tables at once. There are three principle sorts of

external joins: Left, Right, and Full. Since an Outer join can just join two tables at once

consider the first table as the Left hand side table and the second table as the Right Hand side

table, in this manner issuing us the Left Outer Join and the Right Outer Join.

14

1.6.4 Left Outer Join

On account of a Left Join the table that goes before the essential word "Left Join" in the from

proviso is viewed as the Master information set. That implies all lines paying little respect to

whether they have a coordinating column on the Right hand side table will be kept in the last

information set. For the situation where there are various columns in the Right hand side

table, the Left hand side table's information will be copied.

Objective of join in distributed databases

Join query execution is more complex in a distributed database than in a centralized database.

In a distributed database, to join two files that are located at different sites, data from one of

the files must be transmitted to the site of the other file (or data from both files must be

transmitted to a third site). This data transmission could be time-consuming if data

transmission data is more. Therefore, distributed database systems need to transfer the data as

fast as possible in order to improve join query performance. There are two basic join query

execution methods used in the distributed database systems [26].

Figure 5: Transfer of operands

One method is to transfer the smaller table of two join query participating tables. This

method can efficiently perform the join query which the quantity of result is much less than

the quantity of two source tables. Another way is to transfer two tables in parallel. Parallel

transmission can reduce the response time for the join query which the quantity of result is

equal to or greater than the quantity of two source tables. The main objective of join query

optimization is to reduce the cost of data transmission, small volume of transmitted data and

move data in parallel so as to minimize the response time. Therefore, these two methods are

not good for all types of join query.

15

To minimize the amount of data transmission between the sites inner join operator is used.

Using Join, entire data most of the tuples in relation participate in the join but in case of inner

join the size of relations are reduced [26].

Inner joins

In order to join two sub queries involving data from multiple sites using join query, data has

to be transmitted from one site to other. This transmission of data increases the

communication time. So the optimizer must consider efficient order in which tables are

joined in such a way that communication overhead has cut down.

There is a problem of finding an efficient join order for a query because query Optimizer

has to examine number of existing substitutions. Also, join operation affects the size of result

of particular fragment to increase or decrease. The estimation of join results is quite difficult.

Join query execution is time-consuming and more complicated on a distributed database than

on a traditional centralized database if those two tables participating in a join query are stored

on different remote sites. An approach to implement this join query on a DDB is to send one

of the join participating tables to the site of the other table and perform the join at that site.

Join ordering in distributed queries is done by two approaches. First one is to optimize

directly the ordering of join and another is to substitute join by groupings of inner joins to

reduce communication cost [5]. It is very useful in improving a join by minimizing the data

transferred. Join reducers were put in to reduce the communication costs of distributed

database systems [6].

1.7 Genetic Algorithm

Genetic Algorithm (GA) is initially grown by John Holland, his partners and his understudies

at college of Michigan in the 1960s and 1970s. Holland's objective was to study the wonder

of adjustment as it happened in nature and to create courses in which the components of

common adjustment may be imported into computer frameworks. Unique objective of the

examination was to clarify the adaption of characteristic frameworks and to outline simulated

frameworks that attempt to grasp versatile and vigorous properties of regular frameworks

16

[29]. Holland's Genetic Algorithm was a system for moving from one population of

"chromosomes" to another population by utilizing a sort of "characteristic determination"

together with the genetics inspired administrators of hybrid, change, and reversal. Every

chromosome comprises of "qualities" (e.g., bits), every quality being an occasion of a

specific "allele". The determination administrator picks those chromosomes in the population

that will be permitted to imitate, and by and large the fitter chromosomes deliver more

posterity than the less fit ones. Hybrid trades sub parts of two chromosomes, generally

copying natural recombination between two single−chromosome ("haploid") creatures;

transformation haphazardly changes the allele estimations of a few areas in the chromosome;

and reversal inverts the request of a coterminous segment of the chromosome, in this manner

revising the request in which qualities are displayed [30].

1.7.1 Working of Genetic Algorithm

Genetic algorithm starts working on a randomly generated set of solutions, known as initial

population. Each solution is represented by a fixed length string of binary numbers (i.e.

101010…). Fitness is connected with every arrangement. The fitness assessment is depend

on objective function. In this every string representing to the arrangement is called

chromosome, every bit of the string is known as the gene. The arrangement of strings is

called populace. The chromosomes advance through progressive cycles, called generations.

Amid every era, the chromosomes are assessed utilizing some measure of fitness [33].

Figure 6: A flowchart of working of Genetic Algorithm [33].

17

To create the next generation, new chromosome called offspring, are formed by either:

 Merging two chromosomes from the parent generation using a crossover operator.

 Modifying a chromosome using a mutation operator.

A new generation is formed by:

 Selecting, according to the fitness values, some of parents and offspring.

 Rejecting others so as to keep the population size constant.

Fitter chromosome have higher probabilities of being chosen, after a few eras, the calculation

meets to the best chromosome, which states to the ideal and suboptimal answer for the issue.

Induction is thought to be arbitrary. Recombination regularly includes hybrid and

transformation to yield offspring.

1.7.2 Outline of the Basic Genetic Algorithm

1. [Start] Chromosome of length n is produced from random population.

2. [Fitness] the fitness function of each chromosome is calculated from the population

3. [New population] New population is created by iterating following steps.

I. [Selection] Select two chromosomes are chosen from a population based on their fitness.

II. [Crossover] Cross over the parents with crossover probability.

III. [Mutation] with a mutation probability mutate new offspring at each locus (position in

chromosome).

IV. [Accepting] New population is created by placing new offspring.

4. [Replace] new generated population is required for a further run of algorithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in current

population

6. [Loop] Go to step 2

The process is iterated sequentially to produce new population. Process is iterated for

criterion to met [33].

18

1.7.3 GA Operators

The GA includes three fundamental genetic operators: Reproduction, Crossover and

Mutation. These operations are used to select and manipulate population solutions and select

the most appropriate offspring to pass on to the succeeding generations [29].

1.7.4 Reproduction

Reproduction selects good strings from the population and puts them in mating pool [34].

The idea is to pick up the strings with higher fitness from current population and apply

genetic operators to new strings for the successive population. The fittest chromosomes may

be chosen a few times, be that as it may, the quantity of chromosome chose to replicate is

equivalent to the populace size, in this way, keeping the size consistent for each era. This

stage has a component of irregularity simply like the survival of life forms in nature. The

most normally utilized choice techniques are taking after:

• Roulette Wheel Selection

• Stochastic universal sampling

• Ranked selection

• Truncation selection

• Tournament selection

The roulette wheel is probably the most popular technique used as the selection method for

genetic algorithm. In this method, the entire population is represented by a segmented wheel

[34]. The total number of segments in the wheel corresponds to the number of individuals in

the population. Each individual is represented by a segment according to its fitness value.

The more fit individuals will have bigger segment on the wheel and thus, will have better

chances of passing their genes along to the next generation. On the other hand, poorly fitted

individuals get less chances of passing the genes on to the next generation.

In the tournament selection method, n individuals are randomly selected from the population.

The fit individual from this group will have its genes passed along the next generation via the

crossover procedure. This procedure is repeated until enough individuals have been selected

to reproduce and create the next generation.

19

1.7.5 Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce

a new chromosome (offspring). The thought behind hybrid is that the new chromosome may

be superior to both of the folks in the event that it takes the best attributes from each of the

folks. Hybrid haphazardly picks a locus and trades the sub arrangement previously, then after

the fact that locus between two chromosomes to make two posterity, e.g.

Figure 7: Crossover Operation in GA [34].

Commonly used combination techniques are as follows:

• One point crossover

• Two point crossover

• Uniform crossover

• Partially Matched Crossover (PMX)

• Order Crossover

• Cycle Crossover

1.7.6 Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome from its

initial state. This can bring about altogether new quality qualities being added to the quality

pool. With these new quality values, the hereditary calculation may have the capacity to land

at preferable arrangement over was already conceivable. Transformation is an essential piece

of the hereditary inquiry as it serves to keep the populace from stagnating at any nearby

optima. Change happens amid advancement as indicated by a client perceptible

transformation likelihood [34].This probability should usually be set fairly low (0.01 is a

good first choice), e.g.
0

20

Not mutated chromosome: 1 0 0 0 1 1 1 1

Mutated 1 0 0 1 1 1 1

1.7.7 Advantages of Genetic Algorithm

GA has numerous favourable circumstances over other pursuit methods. These focal points

include:

 Robustness: GA is computationally basic and effective in the quest for development

and is not constrained by prohibitive suppositions of the pursuit space.

 Intrinsic parallelism: GA search through populations of points, not single point,

which makes them intrinsically parallel.

 Global: GA use random operation in their evolution processes that allows a wider

exploration of the search space.

These highlights have made GA alluring for utilization inside a more extensive scope of

designing trains, and are turned out to be fit for yielding promising results in complex

applications.

1

21

CHAPTER 2

LITERATURE REVIEW

In this chapter, some of the important techniques related to the research problem are

discussed. The review of literature is a very important part as it links up the studies that have

already conducted in the same field. It also puts light on the various aspects which have

already been accomplished by researchers and gives us a chance to appreciate the evidences

that have already been collected by researchers in their studies and supports the researchers

in projecting the current research work in proper perspectives. Along with that, the

researchers get chance to learn from the experience of the other studies in the same field and

can enrich the proposed study. The research methodologies used by different researchers

help. A comprehensive review of a few research papers is given below.

Query processing in distributed databases is a complex task due to following two reasons:

 Data must be allocated to different sites.

 It must be efficiently accessed, processed and communicated to meet the desired

retrieval and update requirements by user.

Genetic algorithm provides an efficient way to solve the above two problems.

In distributed database systems redundancy of data helps in fault tolerance and recovery but

they make distributed processing complex. Query optimization is one of the key fields in

distributed database systems. It uses inner joins to reduce the communication cost and

improve the performance of system. Lin Zhou, Yan Chen, Taoying Li, Yingying Yu [18] in

their paper had analysed the query optimization process based on semi-join operation

combined with the practical application. They had also developed a new SDD-1 algorithm

which is used for query optimization based on inner join operations.

Query optimization is the key factor in distributed database systems for improving the

performance, reliability, efficiency of the system. Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu

Yao [14] in their paper had put forward query optimization algorithm on multi relation inner

join. Their experiment had proved that algorithm for query optimization on multi relation

22

inner join reduces the data volume of intermediate result and also decreases the overall

communication cost.

Query Optimization is an important part of distributed database systems. Fan Yuanyuan, Mi

Xifeng [37] in their paper had analyzed a number of optimization algorithms. They had

composed another semi-associated database query calculation, which had the information of

the moderate results produced from the usage of all sub-query as the unequivocal variable of

system cost, and characterizes a capacity to focus the improvement advantages of this

calculation. Their exploratory results had demonstrated that the enhanced semi-association

inquiry improvement calculation had higher enhancement effectiveness, fundamentally

decreases the measure of transitional result information, and viably diminishes the aggregate

expense of the system interchanges.

In distributed database systems there are three processes by which data is distributed among

various sites, these are: fragmentation, allocation, and replication. Fragmentation process

requires empirical knowledge of data access and query frequencies. But Shahidul Islam Khan

and Dr. A. S. M. Latiful Hoque [21] had proposed a horizontal fragmentation technique that

is capable of taking proper fragmentation decision at the initial stage by using the knowledge

gathered during requirement analysis phase without the help of empirical data about query

execution. It allocates the fragments properly among the sites of DDBMS.

In query processing in distributed systems the main problem is determining the sequence and

the sites for performing the set of operations, if the query is subdivided into sub queries that

require operations at geographically distributed databases, such that the operating cost for

processing the query is minimized. For that B.M. Monjurul Alom, Frans Henskens and

Michael Hannaford [10] had proposed a technique to process the query with minimum inter

site data transfer. The proposed system is utilized to figure out which relations are to be

apportioned into sections, and where the pieces are to be sent for preparing. The method by

and large sections the relations that exist in the predicates (the WHERE condition) of the

query. It picks more than one connection to stay divided which abuses parallelism, while

recreating alternate relations (barring the divided relations) to the destinations of the divided

relations. Thus the communication costs and local processing costs can be reduced due to the

reduced size of the fragmented relations and the response time of queries can be improved.

23

In [5] Rho and March had designed a nested genetic algorithm that iteratively allocates data

to nodes and to meet the efficient retrieval and update requirements where to process and

access the data. In their nested genetic algorithm there were two genetic algorithms. The

outer genetic algorithm addresses the first problem of query processing in distributed

databases. That is data allocation to various sites. And the inner genetic algorithm addresses

the second problem. That is efficiently accessing and processing the data.

The most important concern in query processing in distributed databases is minimizing the

query execution time. So different allocation of sub queries to sites and their execution plans

need to be optimized based on query type. This subquery allocation problem is NP-Hard.

Therefore, Narasimhaiah Gorla and Suk-Kyu Song [23] had optimized the sub query

allocation using genetic algorithm. Their proposed GA procedure was tested with simulation

experiments on 20 complex queries. It had been found that GA produced better results in

much less time than exhaustive method.

In distributed database design, the most important concern is for allocating data and

relational operations (e.g. Select, Project, Join, Union) to various sites. Performance, cost

concurrency control etc. must be taken care of while performing retrieval or updating queries

at various nodes. In [36] Salvatore T. Walk and Sangkyu Rho, had added to a scientific

model which figures out where information will be designated, the level of information

replication, which duplicate of the information will be utilized for every recovery action, and

where operations, for example, select, venture, join, and union will be performed. It has three

stages. In the first place, the arrangement of query is dissected to a situated of document

sections (vertical and flat segments) for allotment. Second, every query is deteriorated into a

situated of steps, each of which references document sections. This may oblige extra join or

union steps if asked for information has been divided. Third, the subsequent parts and

inquiries are utilized as info to a numerical model that chooses a base expense information

and operation portion. The scientific model considers system correspondence, neighbourhood

transforming, and information stockpiling expenses. A hereditary calculation is created to

settle this scientific detailing.

Distributed query processing algorithms require data reduction to reduce the communication

cost. For reducing the data transfer between sites inner joins are used. Peter Scheuermann,

24

Eugene Inseok Chong [11] in their paper had introduced an efficient join processing

algorithm for distributed database systems that makes use of bipartite graphs in order to

reduce data communication costs and local processing costs. The bipartite graph represents

the tuples joined by two relations. Their algorithm also reduces the relations at each site.

They had represented an algorithm that can easily adapt to the changes in system

configurations like additional resources available or change in data characteristics.

In distributed databases as data is located at different locations so there is need to join data

from different sites to get the desired output. Joins are not always beneficial. Sometimes

inner join proves to be more beneficial as it reduces the transmission cost. Manik Sharma,

[12] in their paper had analyzed the performance of join and inner join in distributed database

system over various parameters like query cost, memory used, CPU cost, input/output cost,

Data Transmission, Total Time and Response Time. They had shown that inner joins are

beneficial if the transmission cost is of main consideration, otherwise joins are beneficial.

In distributed databases data replication, join node selection, join order, and reduction by

inner join all have significant impact on the efficiency of the distributed database system.

Rho Sangkyu, T. March Salvatore [4] in their paper had compared the various distributed

database design models. They had found that replication was most effective for retrieval

intensive and high selectivity situations. Join node selection, join order, and reduction by

inner join were most effective for balanced retrieval/update and low selectivity situations.

There combination offered only marginal improvement. Their results had also shown that

there is trade-off between total operating cost and average response time design criteria.

With the advancement in technology businesses want distributed data processing at any cost.

Distributed data processing is a complex task because distributed systems can become very

large involving thousands of heterogeneous sites, the state of the distributed systems may

change rapidly as load over sites varies with time and new sites are added to the system.

Donald Kossmann [35] in his paper had discussed query processing in distributed database

and information systems. He had discussed architecture of query processing in distributed

database systems including various techniques for joins, intraquery parallelism, reducing

communication costs and exploiting caching and replication of data.

As the volume of data is increasing day by day relational databases today are seen with large

queries containing many joins. Ordering of joins is very important as improper ordering may

25

have a negative effect on the efficiency of DBMS. Join ordering is NP-Complete. For smaller

queries optimal join strategy can be found by dynamic programming. But for larger queries it

becomes infeasible. Jim Wilenius [15] in his paper had discussed various approaches like

Iterative Improvement, Simulated Annealing, Genetic Algorithms, Two phase optimization

etc for producing efficient sub-optimal solutions to the join-ordering problem.

In distributed databases there is communication involved as data is located at different sites.

Distributed database systems provide scalability and accessibility due to its architecture.

While developing distributed database systems security cannot be compromised as it will

cause a risk to integrity of data. Carolyn Mitchell [17] in her paper had discussed various

security issues and there solutions for distributed database systems.

Traditional query optimizers assume that complete information about selectivity, resource

availability is available at run time. But in case of distributed database systems as data is

located at different sites and changes to data are possible at various sites. So static plans

produced by traditional optimizers may not be optimal for many of their actual run-time

invocations. Richard L. Cole [38] in his paper had proposed an optimization model for

creating dynamic plans at compile time using exhaustive search in a dynamic programming

framework. But his results had shown that despite using dynamic programming and

memorization, dynamic plan optimization is slower than traditional optimization.

In distributed database environment, site task of relations is an imperative undertaking. At

the point when there is join operations over different destinations are included then picking

the site to convey join operation may have critical effect on the execution. W. Cornell

Douglas, S. Yu Philip [20] in their paper had added to an approach to allot relations and

focus join destinations all the while. The procedure breaks down inquiries into basic

connection polynomial math steps extended with potential message steps and makes

connection site and join site task together to enhance execution.

26

CHAPTER 3

PRESENT WORK

3.1 Problem Definition

Query Optimization in Distributed Databases is gaining popularity due to increasing business

demands for distributed environment and due to advancement in technology of networks.

Query optimization can be done in a number of ways like exhaustively, randomized,

genetically etc. Optimization using genetic algorithm helps in finding the near optimal

solution in less amount of time.

Considering the following in distributed database environment:

 R = {r1, r2,…,rn}, a set of fragments,

 S = {s1, s2,…,sm}, network sites,

 Q = {q1, q2,…,qq}, set of sub queries.

As data is fragmented and located at different sites so to get the desired output there is need

to join two sub queries located at different sites. So data from one of the site must be

transmitted to the site of other. But using full join sometimes incurs extra communication

cost when complete relation is not required for join. In such cases to reduce the

communication cost involved between two sites inner join is used. But inner join reduction is

not always viable approach as sometimes all attributes of relation are required for joins

operation. In that case it increases the communication cost.

The present study is a humble effort made in analysing the effect of percentage participation

of intermediate fragments of operations evaluating dynamically to minimize various costs

like I/O cost, CPU cost and Communication cost of a distributed query. Communication cost

is the cost of shipping the query and its results from the database site to the site where the

query originated. Also effort is made in allocating full join and inner join operators based on

dynamic percentage participation computed at run time which helps in reducing the

communication cost involved in executing distributed database query. The main

concentration will be on reducing the communication cost involved in transmitting the

27

relations from one site to other in a dynamic environment by using either joins or inner joins

or combination of both.

3.2 Research Objectives

The main objectives of this thesis are:

 Simulating dynamic distributed database environment in MATLAB.

 Create a database in MS ACCESS and create a connection string with MATLAB to

access the database.

 Using Genetic algorithm for optimizing the results to minimize the communication

cost involved in sending data from one site to other.

 Analyzing the effect of using full joins and inner joins as join operator on

communication cost.

 Getting the best results with minimum communication cost involved.

 Analyzing communication cost and percentage improvement in reducing the

communication cost involved by inner joins for different instances of database that is

for dynamic database.

3.3 Methodology adopted for experiment

 Convert the SQL query to relational algebra query.

 Represent the relational algebra query into query tree where each node represents

different operations like selection, projection, joins etc.

 Dynamically calculate the percentage participation for nodes containing inner join,

left join, right join operator.

 If (Is percentage participation for inner join (PPIJ) < percentage participation for join

(PPJ))

Then, Set PP=PPIJ

else

Set PP=PPJ

 Calculate fragment size based on PP for join operation nodes.

 Give this dynamically computed fragment size for join operations as input to the

simulator built in MATLAB.

28

 Simulated distributed database environment in MATLAB will use Genetic Algorithm

to minimize the objective function which is communication cost involved in

transferring data from one site to other while performing joins.

 Calculate the percentage reduction in communication cost for inner joins against joins

for one instance of the database.

 Dynamically calculate the percentage participation for nodes containing join operator

both for joins and inner joins for next instance of database.

29

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 DATA ALLOCATION

Data allocation is process of storing each fragment/ replica at site with optimal

distribution, which increases locality of reference. It is one of the major task while

designing a distributed database. There are four strategies regarding placement of

fragments/ tables, which are as:

i. Centralized: This strategy has one database which is stored at a central site and users at

various sites access that database. Locality of reference is minimal in this case.

ii. Partitioned (Fragmented): It partitions database into various fragments and each

fragment is assigned to one site. All the fragments are disjoint. Locality of reference is

high, if fragments are allocated to sites where they are accessed most frequently.

iii. Complete Replication: It consists of keeping of copies of complete database at each site.

This strategy increases locality of reference, but sometimes problem of inconsistency

arises.

iv. Selective Replication: This strategy is a combination of above three strategies. Some

relations or data items are fragmented to achieve high locality of reference, while some

relations which are frequently accessed at more than one site and are not updated

frequently, are replicated. This strategy provides benefits of all the above mentioned

strategies.

Table 2: COMPARISON OF DIFFERENT ALLOCATION STRATGIES [8]

 Locality of

Reference

Reliability and

Availability

Performance Storage

costs

Communication

costs

Centralized Lowest Lowest Not satisfactory Lowest Highest

30

DISTRIBUTED SUB QUERY ALLOCATION

As in case of distributed databases, database relations are allocated on different sites. So,

cost incurred in executing a query does not only consists of input-output costs, but

communication cost is also there. So, an optimized sub query allocation plan needs be

generated which gives such a plan for execution of sub queries that the total cost for query

gets reduced.

One such approach based on genetic algorithm [39] devised by Dr. Virk [40] is works as

follows:

1. Read the input data file which simulates the distributed environment, by providing

allocation plan, communication coefficients etc.

2. Generate an initial population of length equal to number of operations, giving feasible

allocation plans. A chromosome is of the form:

3. Calculate the fitness function of each member of the generated initial population. Then

rank and sort the population in order of fitness.

Partitioned High Low for item,

High for system

Satisfactory Lowest Low

Complete

replication

Highest Highest Best for read Highest High for update,

Low for read

Selective

replication

High Low for item,

High for system

Satisfactory Average Low

Table 2: Comparison of different allocation strategies

4 2 1 5 6 5 5 4 2 3 3 2

Operation 1 at

site no 4
Operation 2 at

site no 2
Operation 5 at

site no 4

31

4. Selection Operation: Select two parents from the population or operation allocation pool

without replacement.

5. Crossover and mutation: Crossover the selected parent strings and then apply mutation

operation to generate a new operation allocation plan. Calculate the fitness of new

operation allocation plan.

6. Add the new solutions in the pool and replace the worst from it by replacing it with the

best of the previous generation.

7. If the number of generations is less than maximum number of generations, then go to step

4, otherwise print the fittest solution of the final population.

8. Stop.

I have worked on this algorithm. It had been coded in Pascal. I simulated it using java.

The environment has been simulated by taking a set ‘S’ of data distribution sites, a set ‘R’

of relations and a set „Q‟ of relations. Let a query ‘q’ be broken into a set ‘j’ of sub queries

on the set of relations ‘R’.

4.2 DECISION VARIABLES USED BY SIMULATOR

a. Data Allocation Variable: Ars

Ars=1 (if there is a copy of relation/fragment „r‟ at site„s‟)

Ars=1 (if there is a copy of relation/fragment „r‟ at site„s‟)

b. Variables used for site selection for sub query execution:

S
q

ys (sequence of various sites where sub queries gets executed)

S
q

ys=1 (if sub query „y‟ of query „q‟ is done at site„s‟)

S
q

ys=0 (otherwise)

c. A notation is proposed for Join operations to handle left previous operation of a join

operation (LPO) & right previous operation of a join (RPO) as following:

32

Syv[p]S=1 (for [p]=1 for LPO(left previous operation) of a join)

Syv[p]S=1 (for [p]=2 for RPO(left previous operation) of a join)

Syv[p]S=0 (otherwise)

d. I
q

ry represents whether the sub query „y‟ of query „q‟ references intermediate

relation/fragment „r‟ :

I
q

ry =1 (if the base relation „r‟ or intermediate fragment „r‟

 is used by sub query „y‟ of „q‟ query)

I
q

ry =0 (otherwise)

e. Cost Function used:

The cost of processing a query is given by:

 QCi=LPCi+CCi (LPC stands for Local Processing Cost,

 CC: Communication Cost)

4.3 LOCAL PROCESSING COSTS

Local Processing Costs for processing a query‟s simple selection & projections may be

represented as costs of transforming input relation from disk to memory and CPU time for

processing a selection or projection at site S.

 𝐿𝑃𝐶𝑦
𝑞

 =
𝑠 𝑆𝑦𝑆

𝑞
 (IOCs 𝑟 𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
 + CPCs 𝑟 𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
) (4.1)

Where 𝑀𝑟𝑦
𝑞

 = No. of memory blocks of relations ‘r’ accessed by sub query ‘y’ of q.

IOCs = Input Output Cost Coefficient of site s in millisecond per 8k bytes

CPCs= CPU Cost coefficient of site s.

This equation represents input output costs in storing the intermediate results of previous

operations to the site of current join operation.

Local processing costs for a join may be given as

 𝐿𝑃𝐶𝑦
𝑞

 =
𝑠 𝑆𝑦𝑆

𝑞
 (IOCs 𝑝

𝑟 ρp 𝐼𝑟𝑦𝑣 [𝑝]
𝑞 𝑀𝑟𝑦𝑣 [𝑝]

𝑞

 +

𝑠 𝑆𝑦𝑆

𝑞
 (IOCs 𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
𝑟 + CPCs 𝐼𝑟𝑦

𝑞
𝑀𝑟𝑦

𝑞
)𝑟

Where

33

 „ρp‟ „Percentage Participation‟ & is defined as the ratio of resultant

different values of a field to the domain of that field (0 <= ρp <= 1) .

 𝑀𝑟𝑦𝑣 [𝑝]
𝑞

 is the size of an intermediate relation.

 v[p] represents „left previous operation‟ of a join for p=1 &

 „right previous operation‟ of a join for p=2 .

This equation represents CPU & I/O costs for performing current join operations at site„s‟.

4.4 COMMUNICATION COSTS

These costs are involved in case of join operations and final operation only. As we have

assured that selections & projections of retrievals on relations are to be done only at sites

which hold a copy of those base relations. Join may be performed at any of all possible

sites.

∴ 𝐶𝑂𝑀𝑀𝑦
𝑞

 = 𝑝 𝑆𝑦𝑣 [𝑝]𝑆
𝑞

𝑣 𝑆𝑦𝑣
𝑞

𝑠 𝐶𝑠𝑣 (𝐼𝑟𝑦𝑣 𝑝
𝑞

r
𝑀𝑟𝑦𝑣 𝑝

𝑞

)

 Where 𝐶𝑠𝑣 (is the communication cost coefficient between site s and v)

 𝐶𝑠𝑣 = 0 if (s = v) (i.e. if the previous operations and current join operation is done at the

same site)

If the final operation is not done at the query originating/destination site then a

Communication Cost component is added separately for costs involved in sending the

final query result to the query originating/destination site.

f. Objective Function:

The Objective Function is to: Minimize the sum of all costs incurred: i.e.

34

4.5 EXPERIMENTAL SETUP

Consider the Department Database for experimental analysis:

Select the details of those employees who are both depositor and student in the department.

SQL Query

Select * from ID,department,student,depositor,salary,employee where

employee.employee_name=depositor.employee_name AND

employee.employee_name=student.employee_name AND

student.salary_number=salary.salary_number AND

salary.department_name=department.department_name AND

department.department_name=ID.department_name

Query Tree

Assuming there are total 10 sites available. Considering that each base relation is allocated to

different sites. Query tree for the above query can be drawn as shown in Figure 1.19. From

the query tree it can be seen that there are

 selection operations = 7,

 projection operations = 7,

 total join operations = 6.

 B1, B2, B3, B4, B5, B6, B7 denotes different base relations allocated to different sites. From

the tree it is also clear that one of the base relations (student) is replicated.

35

Figure 8: Query Tree for Distributed Database.

Static input provided to the simulator

Communication Coefficients ,I/O Coefficients, CPU Coefficients are assumed to be static in

nature and the following table shows the static coefficients provided as input to the simulator.

Table 3: Communication, I/O, CPU Cost Coefficients [29].

Communication

Coefficients’

Sites

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0 10 12 13 14 11 12 13 14 11

S2 10 0 11 12 13 14 11 12 13 14

S3 12 11 0 11 12 13 14 11 12 13

S4 13 12 11 0 11 12 13 14 11 12

S5 14 13 12 11 0 11 12 13 14 11

S6 11 14 13 12 11 0 11 12 13 14

S7 12 11 14 13 12 11 0 11 12 13

36

Table 4 shows a matrix of 0s and 1s having 1s at those places which represents different

operations allocated at different fragments.

 Table 4: Intermediate fragments used in various operations [29].

subqueries→

↓fragments

SELECTIONS PROJECTIONS JOINS

Final

Opn.21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f1 1 0

f2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

f10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

f11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

f12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

f13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

f14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

f15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

f16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

S8 13 12 11 14 13 12 11 0 11 12

S9 14 13 12 11 14 13 12 11 0 11

S10 11 14 13 12 11 14 13 12 11 0

I/O Coefficients 1 1.1 1.2 1 1.1 1 1.2 1 1.1 1

CPU Coefficients 1.1 1 1 1.1 1 1.2 1 1 1.2 1

37

f17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

f18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

f19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

f20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

f21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

f22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

f23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

f24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

f25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

f26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

f27 0 1

Fragment size for selection and projection operations are assumed to remain static during the

whole run of simulator, also the size of final operation is kept static and constant. Assume the

size of each base relation residing at different sites to be constant as 100 blocks. However the

cardinalities of relation could be different. The percentage participation for selection and

projection operators are assumed to be constant and are taken as 0.7 for selection and 0.9 for

projection and based on these values intermediate fragment size for selection and projection

are calculated as follows and these static values are provided to the simulator.

Operation 1: Selection on B1 -- Size: 100 x 0.7 = 70 blocks

Operation 2: Selection on B2 -- Size: 100 x 0.7 = 70 blocks

Operation 3: Selection on B3 -- Size: 100 x 0.7 = 70 blocks

Operation 4: Selection on B4 -- Size: 100 x 0.7 = 70 blocks

Operation 5: Selection on B5 -- Size: 100 x 0.7 = 70 blocks

Operation 6: Selection on B6 -- Size: 100 x 0.7 = 70 blocks

Operation 7: Selection on B7 -- Size: 100 x 0.7 = 70 blocks

Operation 8: Projection on B1 -- Size: 70 x 0.9 = 63 blocks

Operation 9: Projection on B2 -- Size: 70 x 0.9 = 63 blocks

Operation 10: Projection on B3 -- Size: 70 x 0.9 = 63 blocks

Operation 11: Projection on B4 -- Size: 70 x 0.9 = 63 blocks

Operation 12: Projection on B5 -- Size: 70 x 0.9 = 63 blocks

38

Operation 13: Projection on B6 -- Size: 70 x 0.9 = 63 blocks

Operation 14: Projection on B7 -- Size: 70 x 0.9 = 63 blocks

Operation 21: f27 → Final Result to Query Site, Size: 10 blocks

4.5.1 Dynamic Percentage participation Calculated by Simulator at run time

Considering the above database schema, SQL query and query tree initially Percentage

participation for both joins and inner joins are calculated for Base Relations B1, B2, B3, B4,

B5, B6, and B7.

These are calculated by using the following formula [1]

PPJ(R, S) =
card R⋈S

card R *card S

PPIJ =
card (A (S))

card (dom [A])

As inner join is a relational algebra operator so it is implemented in SQL using inner join as

it gives the same output as inner join. And simply join is implemented as Full Outer Join as

its output is same as simple join in relational algebra.

Decomposing the SQL query and calculating the Percentage participation for various

Sub Queries

The above SQL Query can be decomposed into various sub queries. These sub queries using

join and inner join are shown below and how simulator calculates their percentage

participation are also shown below:

Using Joins

1. Join on f22 = f15 ⋈ f16

j_sqlquery1='Select * from ID left join department on

ID.department_name=department.department_name Union All Select * from ID right

join department on ID.department_name=department.department_name';

card ID⋈department = 268

card ID *card department = 100 *80

PPJ (ID⋈department)=
268

100∗80
 = 0.0335

2. Join on f23 = f17 ⋈ f18

39

j_sqlquery2='Select * from depositor left join student on

depositor.employee_name=student.employee_name Union All Select * from

depositor right join student on depositor.employee_name=student.employee_name';

card depositor⋈student = 120

card depositor *card student = 70*50

PPJ (depositor⋈student)=
120

70∗50
 = 0.0343

3. Join on f24 = f19 ⋈ f20

j_sqlquery3='Select * from student left join salary on

student.salary_number=salary.salary_number Union All Select * from student right

join salary on student.salary_number=salary.salary_number';

card student⋈salary = 105

card student *card salary = 55 *50

PPJ (student⋈salary)=
268

100∗80
 = 0.0382

4. Join on f26 = f24 ⋈ f21

j_sqlquery4='Select * from (student left join salary on

salary.salary_number=student.salary_number) right join employee on

employee.employee_name=student.employee_name';

card (student⋈salary)⋈employee = 124

card student⋈salary *card employee = 123 *105

PPJ ((student⋈salary)⋈employee)=
124

123∗105
 = 0.0096

Using Inner joins

1. Inner join on f22 = f15 ⋉ f16

sj_sqlquery1='Select * from ID inner join department on

ID.department_name=department.department_name';

card (department _name (ID ⋉ department)) = 100

card(dom[department_name]) = 100

PPIJ (ID ⋉department) =
100

100
 = 1

40

It comes out to be 1 because department_name is foreign key in ID relation and

primary key in department relation. If R.A being a foreign key of S (S.A is a primary

key). In this case the inner join percentage participations 1 since A (S) =

card(dom[A]) [4].

2. Inner join on f23 = f17 ⋉ f18

sj_sqlquery2='Select * from depositor inner join student on

depositor.employee_name=student.employee_name';

card (employee _name (depositor ⋉ student)) = 2

card(dom[employee_name]) = 123

PPIJ (depositor ⋉student) =
2

123
 = 0.0163

3. Inner join on f24 = f19 ⋉ f20

sj_ sqlquery3= 'Select * from student inner join salary on

student.salary_number=salary.salary_number';

card (salary _number (student ⋉ salary)) = 50

card(dom[salary_number]) = 55

PPIJ (student ⋉salary) =
50

55
 = 0.9091

4. Inner join on f26 = f24 ⋉ f21

sj_sqlquery4='Select * From (student inner join salary on

salary.salary_number=student.salary_number) inner join employee on

student.employee_name=employee.employee_name';

card (employee _name ((student ⋉ salary) ⋉ employee)) = 47

card(dom[employee_name]) = 123

PPIJ ((student ⋉ salary) ⋉ employee) =
47

123
 = 0.3821

Operations O20 and O19 are implemented as simple Join not Inner join because as query tree

is traversed upwards the selection is getting refined based on conditions therefore the domain

of relation is coming down and hence PPIJ will move up that is percentage participation for

inner join will keep on increasing as query tree is traversed upwards. But still percentage

participation for them are computed as they will be needed to compute the fragment size for

41

join relations further in the code. So O20 and O19 are implemented simply using joins as

follows:

 Join on f25 = f22 ⋈f23

sqlquery5='Select * from ID,department,student,depositor where

student.employee_name=depositor.employee_name AND

depositor.ID_number=ID.ID_number AND

ID.department_name=department.department_name';

card f22 ⋈ f23 = 2

card f22 *card f23 = 268 *2

PPJ (f22 ⋈ f23) =
2

268∗2
 = 0.0037

 Join on f27= f25 ⋈f26

sqlquery6='Select * from ID,department,student,depositor,salary,employee where

employee.employee_name=depositor.employee_name AND

employee.employee_name=student.employee_name AND

student.salary_number=salary.salary_number AND

salary.department_name=department.department_name AND

department.department_name=ID.department_name';

card f25 ⋈ f26 = 2

card f25 *card f26 = 2 *124

PPJ (f25 ⋈ f26) =
2

2∗124
 = 0.0081

After calculating the percentage participation, these are provided as input to the simulator

which in turn calculates the fragment size for various operations. Simulator is run for three

different cases. For all the cases the GA Parameters are kept same.

Case 1: Using Joins as Join Operators

In this case percentage participation for join i.e. PPJ calculated dynamically as shown above

are given as input to the simulator and fragment size are calculated for them as shown below:

Operation 15: (f15⋈ f16) → f22, Size: 63 x 0.0335 PPJ (1) =2.1105 blocks

Operation 16: (f17 ⋈ f18) → f23, Size: 63 x 0.0342 PPJ (2) = 2.1546 blocks

Operation 17: (f19 ⋈ f20) → f24, Size: 63 x 0.0381 PPJ (3) = 2.4003 blocks

42

Operation 18: (f21⋈ f24) → f26, Size: 63 x 0.0096 PPJ (4) = 0.6048 blocks

Operation 19: (f22⋈ f23) → f25, Size: 63 x 0.0037 PPJ (5) = 0.2331 blocks

Operation 20: (f21⋈ f24) →f27, Size: 63 x 0.0081 PPJ (6) = 0.5103 blocks

With these fragment size values the simulator is run. Here out of 50 only 2 generations of GA

Simulator calculating the costs are shown.

Parameters used:

Size of population: 50 Length of chromosome: 20

Crossover Probability: 0.6 Mutation Probabilities: 0.2

Generation 1

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost

Total Cost

1. 8 6 1 8 1 7 7 8 7 10 8 6 10 6 1 2 9 5 9 9 260.591981 143.635728 143.621480 96.484454

383.741662

2. 10 10 1 8 3 10 6 10 1 10 4 10 7 6 7 7 2 2 6 2 260.038307 155.716263 131.614241 97.228222

384.558726

3. 8 3 6 1 9 10 6 2 2 3 9 3 9 6 8 2 10 6 7 4 274.515161 139.855502 132.160568 92.262536

364.278606

4. 8 8 3 7 7 5 3 1 9 2 2 7 9 3 8 4 2 3 7 5 271.736089 140.474023 135.350331 92.179765

368.004119

5. 7 4 4 1 8 4 7 2 9 2 6 5 9 4 8 1 1 7 1 9 271.741094 135.660092 139.861025 92.476224

367.997341

6. 8 1 9 10 10 9 8 5 1 4 4 1 10 6 3 4 4 1 8 10 288.165286 143.351571 139.893890 63.777602

347.023063

7. 2 10 1 8 9 9 1 4 3 9 4 10 2 3 4 2 9 6 6 2 273.644284 143.802433 143.830359 77.805135

365.437927

8. 2 4 1 6 4 2 3 10 7 5 10 2 8 8 6 2 6 9 2 3 258.346482 139.681591 147.416449 99.979034

387.077073

9. 7 7 7 10 1 8 3 2 4 10 4 2 3 4 10 8 10 4 2 7 271.430160 135.977761 131.345890 101.095245

368.418896

10. 10 2 2 2 4 4 3 3 9 5 5 7 8 2 7 5 9 9 3 7 281.654746 152.351056 139.318449 63.375107

355.044612

11. 2 8 5 2 1 7 2 8 3 10 3 5 2 3 1 9 8 2 5 10 265.061571 140.159865 143.038331 94.072638

377.270835

12. 9 5 9 4 8 4 9 8 4 3 8 10 4 7 5 6 7 6 5 7 260.544255 147.862761 139.918449 96.030745

383.811955

13. 7 7 7 10 3 9 3 2 7 5 5 7 8 4 7 5 9 9 7 3 297.532484 152.881056 139.248449 43.968251

336.097755

14. 7 1 1 8 10 6 2 9 4 5 8 1 1 7 7 6 8 8 8 9 264.529710 143.662433 139.719570 94.647367

378.029371

15. 2 4 9 9 1 1 6 6 3 5 10 6 6 9 5 7 7 3 4 10 264.016095 155.964229 132.492786 90.307771

378.764787

43

16. 1 3 9 1 10 2 5 2 7 7 3 5 1 5 2 2 4 2 5 4 282.790799 144.224865 135.470451 73.922979

353.618295

17. 5 5 4 8 7 8 10 10 2 6 3 4 5 3 7 2 7 1 3 5 261.204259 156.196364 131.345890 95.299896

382.842150

18. 7 4 9 6 4 10 9 6 7 2 7 1 3 9 9 5 4 1 8 6 260.749181 144.041571 144.093129 95.375614

383.510313

19. 6 8 5 7 6 4 8 7 2 2 1 1 5 7 5 6 2 7 5 2 265.562111 143.894557 139.609331 93.055853

376.559741

20. 6 9 6 6 10 7 10 8 4 6 1 1 6 8 10 2 6 3 1 4 281.027402 139.304229 140.260906 76.272051

355.837186

21. 2 4 2 2 2 7 3 7 1 8 5 1 3 10 2 9 6 10 1 5 262.335408 144.232433 147.148786 89.810174

381.191394

22. 7 3 3 10 3 8 3 5 7 5 7 7 8 4 7 5 9 9 3 7 283.551837 152.851056 139.048449 60.769697

352.669202

23. 4 2 6 4 10 7 4 10 5 7 2 4 2 6 2 9 7 4 10 7 256.754427 151.923296 139.683890 97.870032

389.477218

24. 4 1 9 10 7 8 1 4 7 2 8 1 3 1 7 4 6 3 6 9 271.132055 143.750092 143.651480 81.422394

368.823966

25. 9 8 2 1 4 6 4 5 4 5 6 10 7 2 2 5 10 4 6 1 294.673981 143.631571 131.948919 63.777602

339.358092

26. 5 4 8 8 2 2 5 7 8 7 3 7 5 10 2 10 8 6 5 3 273.784343 140.022761 131.140449 94.087771

365.250981

27. 7 5 5 4 8 4 8 7 2 2 1 1 5 7 9 6 2 5 2 2 259.612084 143.98572 147.247331 93.957023

385.190082

28. 10 2 3 4 1 7 5 10 2 7 2 4 2 8 9 6 7 3 6 9 257.038397 148.145092 147.180480 93.721361

389.046933

29. 5 10 1 8 3 3 6 7 5 3 10 10 2 2 2 7 6 1 5 8 257.119551 148.171036 139.273890 101.479212

388.924139

30. 2 1 9 9 9 9 1 6 3 9 8 10 2 3 6 5 10 6 6 2 285.710137 139.907433 140.261359 69.836290

350.005082

31. 9 8 2 6 4 1 4 5 2 3 5 10 3 10 2 10 8 6 1 9 286.478149 139.677433 131.742142 77.647187

349.066763

32. 8 1 9 10 10 9 8 6 2 9 2 1 2 4 3 4 5 7 5 3 263.933620 147.680420 135.920331 95.282394

378.883145

33. 8 5 1 3 5 3 5 1 5 9 1 10 7 10 3 7 3 7 5 4 257.393129 160.463695 131.411451 96.635614

388.510759

34. 2 4 9 2 10 1 6 5 7 7 6 5 1 10 2 2 4 8 7 1 267.631197 143.810502 135.810451 94.027565

373.648517

35. 8 4 3 5 1 2 10 10 6 7 3 8 9 1 1 2 7 5 7 5 270.345832 147.945193 135.550331 86.401060

369.896584

36. 8 6 7 7 1 7 5 7 9 10 8 6 9 6 10 2 9 5 9 3 273.712788 144.076591 139.832241 81.437635

365.346467

37. 6 2 6 2 2 2 8 9 8 4 6 1 2 2 7 5 2 4 8 1 281.630797 151.881571 131.856009 71.337224

355.074804

38. 8 8 3 7 10 4 7 8 5 7 2 10 2 3 8 5 8 5 2 1 284.564489 140.089865 131.131451 80.192875

351.414192

44

39. 6 4 3 5 5 4 6 8 5 5 2 7 5 9 8 9 6 3 2 7 271.919803 139.900420 147.647331 80.207738

367.755489

40. 5 8 6 5 7 7 7 1 9 4 6 1 3 4 6 6 10 5 3 8 276.878724 135.919331 147.667331 77.582295

361.168957

41. 7 8 2 6 4 6 4 5 2 3 1 10 7 9 2 10 8 6 5 3 286.288272 139.782761 131.850449 77.665066

349.298276

42. 8 5 1 3 2 3 5 6 5 9 6 10 7 10 3 7 3 7 7 1 257.491972 160.468160 131.551451 96.342012

388.361622

43. 6 10 3 7 1 4 7 8 9 10 8 6 10 6 1 2 9 5 9 1 258.572480 143.764865 143.761361 99.212533

386.738759

44. 6 9 6 2 2 5 8 3 8 4 6 1 2 2 7 4 2 5 2 1 289.833490 147.869865 135.880451 61.275374

345.025690

45. 9 5 9 4 8 4 9 8 4 3 10 5 4 7 5 6 5 2 9 3 274.742906 143.846591 139.912241 80.217809

363.976640

46. 9 8 7 9 4 6 3 5 2 3 1 10 7 10 2 10 8 6 5 3 286.097672 140.012761 131.810449 77.707771

349.530981

47. 8 5 8 9 7 5 3 6 2 9 6 5 9 1 8 1 1 3 8 10 267.094170 135.889229 139.799331 98.711225

374.399785

48. 7 8 4 1 8 9 10 1 9 2 2 7 9 6 8 2 10 6 7 9 299.704351 139.716364 131.930687 62.015105

333.662156

49. 7 6 4 1 8 4 7 7 2 2 9 7 5 8 8 10 9 4 7 2 266.771222 139.956364 139.613890 95.282772

374.853026

50. 1 9 10 8 1 3 4 8 2 2 6 5 9 8 4 1 10 1 8 10 274.526719 135.471571 139.753890 89.037809

364.263269

Fitness Sum Maximum Fitness Minimum Fitness Average

1.3612e+004 299.7044 256.7544 272.2441

Generation 50

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost Total Cost

1. 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 4 2 3 270.419737 136.117761 135.864890 97.812842

369.795494

2. 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 2 3 266.458192 152.167761 139.413890 83.711745

375.293397

3. 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 7 4 3 10 265.557349 151.930502 131.795890 92.840103

376.566494

4. 2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6 7 6 5 7 261.292533 144.107761 143.327449 95.277602

382.712812

5. 5 4 4 8 7 8 10 10 4 2 7 4 9 6 9 5 10 10 3 6 268.040695 143.670502 139.589570 89.817605

373.077677

6. 8 5 3 7 10 5 7 8 5 7 2 10 2 3 8 6 8 4 3 1 281.413027 136.190502 138.974009 80.185066

355.349577

7. 9 1 3 1 5 1 6 2 2 3 10 9 9 1 10 3 1 3 7 5 270.984649 143.929023 136.050331 89.045240

369.024594

8. 8 3 3 3 7 10 10 2 4 4 5 2 10 4 3 10 5 1 10 2 271.591457 148.187433 131.245890 88.766771

368.200094

9. 6 7 1 7 4 1 5 2 2 3 2 5 7 3 3 1 7 5 6 5 277.426837 152.481263 135.503241 72.470890

360.455394

45

10. 5 4 8 8 2 5 5 7 8 8 3 7 7 2 1 10 10 4 6 9 271.118110 135.922433 135.108039 97.812465

368.842937

11. 2 4 1 6 4 3 1 10 9 2 10 2 8 8 6 2 6 6 2 6 268.298127 139.501036 147.656687 85.561986

372.719709

12. 9 5 9 4 8 4 9 8 4 3 8 10 2 7 5 7 2 2 9 10 274.093446 152.034865 131.904241 80.899972

364.839078

13. 5 7 5 1 7 10 5 4 6 2 10 9 9 3 6 4 5 4 2 2 273.204515 140.041899 143.532890 82.451373

366.026162

14. 3 3 7 3 8 8 3 2 2 1 5 1 4 10 5 9 5 10 4 2 257.385258 148.387433 139.180786 100.954421

388.522641

15. 8 9 10 8 1 3 4 2 3 7 6 7 6 8 6 10 8 2 2 1 267.054736 135.694865 139.649451 99.110755

374.455071

16. 6 6 2 3 4 2 10 7 3 8 2 7 5 3 9 10 9 4 7 2 256.866019 144.191364 147.411890 97.704760

389.308014

17. 4 6 4 1 8 4 7 8 2 2 5 5 2 8 6 2 6 3 2 3 270.769651 139.560420 147.507331 82.249857

369.317608

18. 2 4 1 6 4 2 3 10 7 5 10 2 8 8 8 2 1 5 8 10 271.054052 139.675400 135.500331 93.754374

368.930105

19. 8 6 3 7 1 7 1 8 8 5 5 7 8 1 3 5 9 8 3 7 285.732620 152.162227 139.439331 58.375984

349.977542

20. 5 7 8 10 3 9 3 2 9 10 8 2 10 6 1 10 9 5 9 3 276.915823 140.011591 143.421241 77.687738

361.120570

21. 3 3 7 3 9 10 8 10 6 10 9 9 9 3 6 1 5 4 2 2 270.185596 140.241899 143.702890 86.171167

370.115955

22. 8 4 3 1 8 9 4 6 3 7 5 8 8 2 2 3 6 1 5 2 260.462311 147.901899 139.613890 96.416918

383.932707

23. 4 9 6 2 2 5 8 9 8 4 6 1 2 6 7 5 4 5 4 1 267.417896 147.725400 136.061906 90.159245

373.946551

24. 5 3 10 8 1 3 4 9 2 8 7 9 5 8 8 10 9 4 7 10 278.116238 139.915502 139.453890 80.192498

359.561889

25. 2 9 6 8 1 3 10 7 2 3 2 7 1 8 1 10 6 4 7 2 269.578231 135.861364 143.512890 91.575580

370.949834

26. 1 6 5 1 2 2 5 10 8 9 10 4 2 5 5 2 4 3 4 6 277.276518 143.709229 135.612025 81.329553

360.650807

27. 9 6 8 8 6 10 7 10 1 9 7 10 7 5 9 3 5 10 6 9 258.389873 151.992433 139.782480 95.237158

387.012072

28. 6 9 6 2 2 5 8 4 8 4 6 1 2 2 7 5 2 5 8 1 280.511270 151.820400 131.981451 72.690065

356.491916

29. 5 2 4 8 7 8 10 10 2 2 4 3 6 6 9 5 4 7 5 6 264.323794 143.783695 143.388570 91.151602

378.323867

30. 7 7 9 10 7 6 9 9 7 2 8 1 3 1 1 9 7 4 10 1 256.402182 148.396571 143.823009 97.792702

390.012282

31. 3 4 3 1 8 3 4 4 3 1 1 2 8 2 4 3 6 1 5 2 273.122182 143.966899 143.452890 78.716712

366.136500

32. 8 10 9 9 3 3 6 9 4 6 10 1 3 2 9 7 6 1 10 8 268.656366 148.056571 147.931890 76.234246

372.222707

46

33. 9 3 5 6 4 6 4 5 2 3 9 10 2 5 5 2 6 3 4 6 271.860864 143.989229 139.911025 83.934963

367.835217

34. 1 5 9 7 2 4 5 10 2 9 7 4 7 10 2 10 8 6 5 3 283.165007 140.012761 131.650449 81.487771

353.150981

35. 7 6 8 1 8 4 7 8 2 9 6 9 9 4 8 7 1 9 7 2 277.116929 143.780193 136.039449 81.038860

360.858502

36. 3 3 7 3 8 10 8 4 3 2 10 5 4 3 6 1 5 4 2 10 280.054644 140.211036 143.082890 73.779245

357.073172

37. 8 4 3 5 1 2 10 8 10 10 4 8 7 6 10 7 2 2 9 2 279.705859 147.730728 131.444241 78.343463

357.518432

38. 3 3 1 9 8 5 8 10 5 9 3 4 4 1 1 2 7 8 7 5 263.013270 148.066364 135.650331 96.492258

380.208953

39. 2 8 4 8 2 7 1 7 7 8 3 1 3 10 2 9 6 4 1 5 263.017386 144.042433 147.183345 88.977224

380.203002

40. 1 2 8 2 2 1 4 7 8 6 8 8 8 10 9 1 4 4 7 6 261.249920 139.435502 147.352129 95.987607

382.775237

41. 9 7 2 9 3 5 4 5 2 3 6 10 7 5 2 10 8 6 5 3 283.027252 140.282761 131.680449 81.359656

353.322866

42. 1 10 8 2 4 4 3 3 9 8 6 2 5 1 7 8 6 4 2 7 274.151551 143.737761 139.623890 81.400100

364.761751

43. 4 2 9 5 5 4 6 8 5 5 2 1 3 4 7 10 8 5 3 8 271.415740 143.849331 131.771331 92.817809

368.438470

44. 6 4 3 3 1 5 3 6 7 4 8 4 7 8 5 1 4 5 3 5 278.024696 139.985193 139.649331 80.045753

359.680278

45. 6 3 1 7 4 1 5 2 2 3 2 5 3 7 3 8 6 10 1 5 268.176564 144.282433 139.470786 89.135442

372.888662

46. 2 8 4 8 2 7 3 7 7 8 5 1 3 10 2 9 9 5 6 5 256.818262 148.276263 147.080241 94.023905

389.380409

47. 1 6 9 7 3 2 5 8 2 9 7 4 2 5 5 2 6 3 2 3 262.269485 144.225420 139.679331 97.382459

381.287210

48. 2 2 1 6 4 2 3 10 7 5 10 2 8 8 6 2 6 3 4 9 258.148333 139.785092 147.309025 100.280067

387.374184

49. 4 10 5 2 8 3 5 2 7 5 6 3 7 8 3 2 3 7 5 6 268.135543 156.448695 131.271570 85.225444

372.945709

50. 7 1 1 1 3 6 2 8 4 3 7 1 1 7 7 3 8 8 8 3 273.259962 152.193296 131.741331 82.017264

365.951891

Fitness Sum Maximum Fitness Minimum Fitness Average

1.3503e+004 285.7326 256.4022 270.0546

Case 2: Using Inner join as Join Operator

In this case percentage participation for inner join i.e. PPIJ calculated dynamically as shown

above are given as input to the simulator and fragment size are calculated for them as shown

below:

Operation 15: (f15⋉ f16) → f22, Size: 63 x 1 PPIJ (1) =63 blocks

47

Operation 16: (f17 ⋉ f18) → f23, Size: 63 x 0.0162 PPIJ (2) = 1.0206 blocks

Operation 17: (f19 ⋉ f20) → f24, Size: 63 x 0.9090 PPIJ (3) = 57.267 blocks

Operation 18: (f21⋉f24) → f26, Size: 63 x 0.3821 PPIJ (4) = 24.0723 blocks

Operation 19: (f22⋉f23) → f25, Size: 63 x 0.0037 PPJ (5) = 0.2331 blocks

Operation 20: (f21⋉ f24) →f27, Size: 63 x 0.0081 PPJ (6) = 0.5103 blocks

With these fragment size values the simulator is run. Here again out of 50 only 2 generations

of GA Simulator calculating the costs are shown.

Generation 1

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost

Total Cost

1. 6 5 7 7 3 6 2 6 3 3 7 1 7 10 1 4 10 9 9 9 230.247574 153.594561 156.838706 123.881840

434.315108

2. 1 8 4 1 6 6 7 1 3 10 7 1 8 5 7 5 3 2 4 2 224.613427 171.799479 147.622658 125.787223

445.209360

3. 2 10 1 8 2 1 2 10 8 6 9 7 9 5 9 4 6 7 8 6 225.337629 155.647178 165.869160 122.262183

443.778521

4. 4 6 5 8 5 7 9 5 8 6 7 5 10 5 3 2 5 5 1 6 245.153411 168.003617 147.422897 92.481333

407.907847

5. 3 7 8 1 1 10 1 1 9 7 5 3 8 7 3 10 7 3 4 8 225.001721 168.242178 147.292658 128.906210

444.441046

6. 5 8 6 10 5 6 8 2 1 2 6 5 6 1 1 6 8 6 10 10 246.171313 151.055056 158.259995 96.906124

406.221174

7. 8 3 6 8 8 1 9 1 6 4 3 6 3 9 9 10 3 10 8 6 230.287388 163.580056 154.402160 116.257803

434.240019

8. 3 6 1 9 4 10 6 1 8 3 5 2 5 4 6 2 8 8 5 6 232.238733 156.850138 154.282160 119.459097

430.591396

9. 3 2 10 7 8 8 10 8 2 10 1 4 4 4 7 10 2 3 1 9 240.538933 163.758040 147.062897 104.912178

415.733115

10. 2 10 9 7 1 1 10 1 4 7 2 10 7 5 7 10 3 10 1 4 222.684597 167.845056 147.322777 133.897803

449.065636

11. 10 10 9 8 1 8 7 5 7 4 1 6 7 10 8 9 10 6 5 6 223.856332 156.850138 154.051234 135.813712

446.715084

12. 4 5 1 3 8 7 6 7 8 7 2 10 7 5 7 10 2 4 3 4 233.094099 166.910220 145.868578 116.232493

429.011290

13. 2 5 7 7 6 7 7 6 2 10 10 6 6 8 8 10 4 2 2 10 249.622741 153.303699 149.992922 97.307906

400.604526

14. 9 1 1 2 10 6 10 4 1 9 2 7 3 9 5 8 10 7 8 8 236.959015 155.687178 146.423922 119.902810

422.013909

15. 5 7 9 6 6 6 9 5 8 6 3 1 9 7 7 2 3 10 2 10 228.950031 173.500138 146.753922 116.522469

436.776529

16. 9 2 6 8 10 8 5 2 6 5 6 3 2 7 1 8 4 8 10 8 234.032553 151.435056 154.021922 121.834007

427.290985

48

17. 9 1 7 8 10 8 5 2 6 5 6 3 9 9 7 2 3 4 6 10 231.157710 171.940056 149.085930 111.579096

432.605082

18. 3 6 1 9 6 10 6 7 8 3 3 2 4 4 6 2 6 10 8 5 225.349493 155.530918 162.319922 125.904318

443.755159

19. 9 1 7 10 10 8 5 1 6 5 6 5 9 7 7 8 3 2 6 10 226.920973 167.903617 148.951394 123.827041

440.682052

20. 4 1 2 6 1 4 1 10 6 4 3 7 7 10 7 2 10 10 7 8 241.624767 166.370220 146.313922 101.180716

413.864858

21. 10 9 8 8 1 3 7 10 2 6 3 4 10 8 9 10 9 9 5 3 225.896246 161.135424 161.918995 119.626688

442.681106

22. 6 7 1 4 9 8 4 5 5 4 1 3 1 2 7 5 6 9 9 9 221.197565 165.169561 157.138706 129.776275

452.084542

23. 1 4 4 1 6 6 3 1 3 10 9 6 8 10 7 5 3 6 4 2 221.638749 171.530918 148.061731 131.591994

451.184643

24. 4 5 6 9 8 1 5 9 8 2 4 8 3 4 1 10 9 10 1 9 230.089071 155.320918 159.569897 119.723483

434.614298

25. 9 5 9 10 5 3 9 5 1 6 6 5 6 5 5 6 5 9 10 3 260.090177 159.875342 154.560995 70.045697

384.482033

26. 10 3 5 5 2 6 9 8 1 5 10 7 6 5 3 5 8 6 7 10 237.605311 166.730220 146.142995 107.992799

420.866014

27. 2 7 2 8 6 1 4 5 4 5 4 10 8 7 9 7 10 4 6 3 230.287512 163.611781 156.703930 113.924075

434.239786

28. 6 1 10 10 10 8 5 2 6 5 4 3 4 7 7 2 3 4 9 8 232.042290 173.100138 148.805930 109.049858

430.955927

29. 7 6 1 2 1 4 3 6 7 4 3 3 1 2 1 1 9 9 5 3 225.165906 157.320424 162.188995 124.607552

444.116971

30. 10 10 3 10 7 1 8 2 8 7 3 6 9 5 7 7 4 7 8 6 234.506379 168.172178 149.753160 108.502294

426.427632

31. 2 10 6 3 2 1 2 8 8 1 9 5 9 6 9 9 8 7 8 6 232.712975 159.802178 162.070160 107.841562

429.713900

32. 4 6 3 2 7 10 9 2 6 7 3 3 3 5 7 7 8 7 6 6 236.313176 168.582178 148.801633 105.783453

423.167263

33. 9 9 10 9 3 3 6 6 6 2 3 2 10 7 1 2 1 5 7 6 239.824213 158.908781 154.422160 103.641134

416.972075

34. 5 9 9 3 1 6 7 2 5 3 7 5 1 1 2 4 5 9 5 8 241.580614 161.613699 150.341995 101.984806

413.940500

35. 2 4 1 9 6 10 6 2 8 10 4 5 7 9 2 8 1 4 8 9 242.865101 155.290918 150.447697 106.012597

411.751213

36. 10 9 2 2 10 4 9 7 10 3 3 8 5 4 6 2 3 10 8 6 226.375600 163.820056 153.912160 124.011506

441.743722

37. 9 10 9 2 1 6 7 1 5 3 9 4 1 1 2 10 5 9 5 5 229.288675 161.204561 146.652995 128.273884

436.131441

38. 4 7 6 9 8 3 5 3 10 2 4 7 3 8 1 5 9 10 1 9 229.858809 159.925918 159.259897 115.863860

435.049675

39. 9 1 7 8 10 8 5 2 6 8 6 3 9 7 7 2 3 5 6 5 231.258418 172.069479 148.881394 111.465819

432.416692

49

40. 5 5 6 7 7 7 9 3 2 10 10 7 7 9 3 8 10 7 6 8 236.565312 160.552178 148.701394 113.462671

422.716242

41. 5 1 6 2 7 9 6 8 7 9 5 4 9 9 1 4 4 4 5 6 242.540274 153.025138 158.565697 100.711825

412.302660

42. 3 8 2 10 5 3 3 8 1 2 6 2 6 5 1 6 8 6 10 1 244.491311 151.655056 157.790114 99.567320

409.012490

43. 8 6 7 8 5 1 5 6 1 10 2 2 2 4 4 9 3 7 10 5 223.514748 163.798040 157.890922 125.708809

447.397771

44. 8 10 10 2 1 4 6 8 3 2 9 7 4 8 3 4 9 1 3 10 236.582645 166.370220 157.985458 98.329596

422.685274

45. 4 2 1 3 3 3 10 1 7 4 2 6 7 10 8 8 5 6 5 6 231.180255 157.250138 146.013234 129.299522

432.562893

46. 2 6 7 9 1 1 4 8 2 2 9 7 4 8 3 4 9 1 2 10 224.521541 165.140138 158.285458 121.965966

445.391562

47. 3 6 8 5 10 1 9 3 4 8 1 5 4 6 1 9 2 9 7 4 221.372048 162.493781 158.290114 130.944318

451.728214

48. 3 8 2 6 2 5 2 9 6 1 10 6 8 2 5 2 4 8 5 8 230.940171 161.035138 150.062922 121.914524

433.012584

49. 6 8 4 6 2 5 2 9 6 9 10 6 8 9 5 2 4 8 9 8 221.951682 160.805138 153.330394 136.412981

450.548512

50. 6 5 5 7 3 5 10 9 3 2 7 3 7 10 10 4 10 9 9 5 230.932157 153.634561 152.599467 126.793582

433.027610

Fitness Sum Maximum Fitness Minimum Fitness Average

 1.1627e+004 260.0902 221.1976 232.5406

Generation 50

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost

Total Cost

1. 3 6 8 7 4 10 8 6 2 9 4 1 5 4 5 10 8 1 6 3 230.620434 155.351781 149.015930 129.245209

433.612920

2. 1 1 6 4 9 5 10 5 6 8 6 5 1 7 3 9 6 8 6 1 220.219104 163.410056 165.087513 125.595642

454.093211

3. 2 7 5 8 6 1 2 8 4 5 5 10 8 7 9 8 5 2 9 8 230.968399 161.203699 156.469394 115.286570

432.959663

4. 1 10 10 4 10 4 1 3 5 5 2 6 1 10 1 1 8 6 6 2 228.734056 150.995918 156.838467 129.354557

437.188943

5. 4 1 2 5 10 4 1 7 6 4 2 7 7 6 7 5 10 10 5 7 245.642506 165.081863 146.153922 95.859884

407.095669

6. 5 7 8 7 9 1 7 2 6 7 1 2 6 7 2 1 10 8 6 8 242.706142 155.960056 152.780394 103.280438

412.020887

7. 6 3 9 5 9 10 10 10 9 1 1 3 4 5 2 5 7 4 8 2 220.500245 167.805918 146.418458 139.289858

453.514235

8. 3 8 4 3 2 5 2 9 6 9 10 6 8 9 9 3 4 8 5 8 226.551723 165.300138 158.110922 117.989247

441.400307

9. 8 9 3 10 7 9 5 6 8 2 5 5 2 10 5 2 6 10 4 9 237.464813 159.815918 155.260897 106.038207

421.115022

50

10. 8 6 8 1 6 1 2 1 5 1 8 7 6 4 10 3 2 4 5 6 234.761631 164.700138 146.418697 114.845151

425.963986

11. 8 6 8 5 10 2 9 2 3 8 1 1 1 3 1 9 5 9 7 4 221.470103 162.533781 158.050114 130.944318

451.528214

12. 4 6 7 5 9 6 3 4 6 10 5 2 4 10 8 5 2 5 4 6 246.810627 159.703617 147.762897 97.702427

405.168940

13. 3 2 4 6 2 5 2 9 6 9 10 6 8 9 4 2 4 8 5 8 225.818054 157.010138 154.341922 131.482329

442.834389

14. 8 3 6 8 9 1 9 1 6 4 3 6 10 9 9 10 8 8 5 9 229.968511 156.811000 154.602160 123.428982

434.842143

15. 2 5 6 7 7 7 9 6 2 10 10 6 7 9 4 8 7 7 8 8 247.550367 160.272178 150.192922 93.493098

403.958197

16. 9 5 9 1 1 4 7 1 9 3 9 4 1 1 10 2 4 3 5 8 239.961356 157.237260 150.632922 108.863587

416.733768

17. 6 7 1 4 9 4 4 5 5 4 3 3 1 7 1 1 7 5 1 6 232.214892 159.823617 155.660897 115.151090

430.635603

18. 4 6 9 1 5 7 9 5 8 6 7 5 10 1 3 2 9 9 1 3 225.783523 167.935342 155.859731 119.107042

442.902115

19. 2 6 5 8 5 7 9 5 8 6 7 2 10 8 7 2 3 8 5 10 228.437820 173.460138 145.943922 118.351825

437.755884

20. 7 8 8 2 2 9 2 2 3 7 2 5 10 5 4 2 7 5 1 6 240.298990 164.218617 150.951897 100.977719

416.148233

21. 9 3 7 7 4 5 10 3 1 4 8 3 9 3 6 7 1 10 2 4 222.872993 161.585138 157.891041 129.209858

448.686037

22. 1 6 9 6 7 4 10 8 7 7 5 5 6 1 8 3 3 7 6 5 231.197880 168.003040 149.171394 115.355483

432.529918

23. 6 7 1 4 9 4 4 5 5 2 4 8 3 7 1 7 9 10 1 1 225.739270 163.720056 159.559777 119.709107

442.988940

24. 2 7 6 9 5 3 5 3 10 4 3 3 1 2 1 1 9 9 5 3 225.135490 157.620424 161.948995 124.607552

444.176971

25. 1 6 1 10 6 10 6 1 8 3 3 2 5 4 6 4 3 10 8 5 226.954046 159.255918 158.250922 123.110993

440.617833

26. 3 7 9 2 1 2 6 8 6 4 2 7 9 3 7 6 7 6 6 10 235.045498 168.145056 157.078467 100.226021

425.449544

27. 3 6 4 6 8 10 2 9 6 1 5 6 8 5 5 2 4 8 5 9 231.181514 160.806000 150.363160 121.391376

432.560537

28. 8 3 6 8 9 1 9 1 3 4 3 6 3 9 8 8 5 8 5 7 231.958462 157.091863 146.523922 127.495886

431.111671

29. 10 3 8 3 8 2 10 9 5 6 9 6 4 2 2 6 1 8 1 7 233.879683 155.521781 159.319658 112.728835

427.570274

30. 9 1 7 8 10 8 5 2 6 5 6 3 9 7 7 6 3 10 6 10 245.557304 167.915056 156.819394 82.502469

407.236919

31. 7 2 8 2 1 9 6 9 9 8 10 6 8 9 8 2 4 8 5 8 228.345793 156.910138 150.432922 130.589247

437.932307

32. 3 8 4 6 2 5 2 2 3 9 10 2 2 8 7 2 3 3 9 1 225.593498 173.757260 148.601513 120.916413

443.275186

51

33. 2 4 2 3 3 5 6 10 7 5 8 3 9 7 7 1 7 10 6 10 227.911933 168.285056 152.570394 117.910518

438.765968

34. 5 1 7 8 10 8 5 2 7 5 6 9 3 9 5 1 10 2 4 8 228.599053 155.828617 151.271658 130.346857

437.447131

35. 7 8 8 2 6 9 6 2 2 9 2 9 6 9 5 6 10 2 5 8 229.122555 157.148699 154.501922 124.797027

436.447648

36. 2 3 2 3 10 6 6 10 4 5 8 4 3 8 7 2 3 3 4 1 235.132841 172.187178 147.322777 105.781550

425.291505

37. 2 5 8 8 7 4 3 10 3 8 5 3 3 10 4 1 2 3 5 6 228.481682 157.547260 153.442160 126.682427

437.671847

38. 4 6 7 5 9 6 3 5 6 10 5 2 8 10 4 6 2 4 4 6 240.304102 155.550056 159.594433 100.994892

416.139381

39. 4 6 5 8 5 3 5 3 10 2 4 3 10 7 1 10 9 10 1 5 232.496337 155.730918 159.059658 115.323727

430.114303

40. 4 5 6 9 1 7 9 5 3 6 7 3 10 5 3 1 7 5 1 6 240.549308 168.213617 151.691897 95.809671

415.715184

41. 2 3 2 2 3 5 6 10 4 5 8 9 7 9 3 8 10 7 8 8 245.042790 160.242178 145.953922 101.895892

408.091991

42. 2 5 6 7 7 7 9 6 2 10 10 6 3 9 5 1 4 2 4 8 230.226087 156.048617 155.540658 122.766369

434.355643

43. 10 3 8 3 5 2 10 9 8 10 3 2 5 2 6 2 5 10 8 5 233.360294 159.855918 153.481922 115.184075

428.521915

44. 3 6 1 9 6 10 6 1 5 6 10 8 4 2 4 6 1 8 1 7 231.827801 151.086781 163.838658 116.429212

431.354651

45. 5 9 7 9 1 9 5 2 7 6 3 4 2 8 9 5 6 9 5 9 225.191673 161.544561 162.319234 120.202358

444.066153

46. 8 8 8 2 1 9 6 2 3 9 4 2 6 8 7 6 3 3 9 1 223.634506 169.292260 156.949513 120.916413

447.158186

47. 4 1 6 9 9 5 10 5 8 8 6 5 10 7 3 9 4 8 3 2 227.841151 166.431083 158.250922 114.220273

438.902277

48. 3 8 4 7 2 5 2 9 5 9 10 6 10 9 5 2 4 7 5 8 237.913287 161.532260 150.032922 108.756026

420.321207

49. 9 1 7 8 10 8 5 2 6 5 7 3 9 7 3 2 3 10 7 6 230.465339 175.070220 145.984160 112.850346

433.904726

50. 2 3 8 9 5 1 3 10 3 8 5 3 1 1 4 1 2 4 9 10 227.319582 157.250138 156.603930 126.055239

439.909308

Fitness Sum Maximum Fitness Minimum Fitness Average

 1.1595e+004 247.5504 220.2191 231.9073

Case 3: Using Combination of Joins and Inner joins

In this case as percentage participation for joins as well as inner joins are computed the

minimum out of them are provided to the simulator. That is

begin

for i=1:4

52

If PPIJ (i) < PPJ (i)

PP(i) = PPIJ (i)

Else

PP (i) = PPJ (i)

End

Therefore PP(1) = 0.0335, PP(2) = 0.0343, PP(3) = 0.0382, PP(4) = 0.0096, PP(5) = 0.0037,

PP(6) = 0.0081

Percentage participation for joins are computed above. Fragment size for intermediate

fragments is calculated as follows:

Operation 15: (f15 ⋈f16) → f22, Size: 63 x 0.0335 PP(1) = 2.1105 blocks

Operation 16: (f17 ⋉ f18) →f23, Size: 63 x 0.0162 PP(2) = 1.0206 blocks

Operation 17: (f19 ⋈ 20) → f24, Size: 63 x 0.0381 PP(3) = 2.4003 blocks

Operation 18: (f21 ⋈ f24) → f26, Size: 63 x 0.0096 PP(4) = 0.6048 blocks

Operation 19: (f22 ⋈ f23) →f25, Size: 63 x 0.0037 PP(5) = 0.2331 blocks

Operation 20: (f21 ⋈ f24) →f27, Size: 63 x 0.0081 PP(6) = 0.5103 blocks

With these fragment size values the simulator is run. Here also out of 50 only 2 generations

of GA Simulator calculating the costs are shown.

Generation 1

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost

Total Cost

1. 1 3 1 8 10 3 1 10 4 1 10 8 1 1 9 3 2 9 3 3 263.561056 151.652200 139.529688 88.236837

379.418726

2. 6 1 2 10 8 9 5 8 2 7 8 5 1 5 9 5 6 5 5 1 261.987297 143.706010 147.453484 90.538403

381.697896

3. 3 10 3 10 7 3 7 10 8 6 3 3 2 2 3 2 8 6 6 2 268.545275 148.562110 131.154598 92.659980

372.376688

4. 4 10 5 3 2 1 2 2 10 2 10 6 7 3 10 8 3 6 8 10 278.802656 143.966248 131.351688 83.358704

358.676640

5. 9 3 1 4 9 1 2 8 7 10 3 2 6 3 1 2 5 3 3 1 267.059530 144.055772 135.816484 94.576093

374.448349

6. 8 6 10 3 5 3 9 1 8 6 10 7 7 1 3 5 3 2 2 4 262.097895 156.221010 131.687484 93.628337

381.536830

7. 8 10 9 8 10 2 4 7 4 2 3 3 2 1 3 10 3 9 8 5 274.243992 152.002407 131.451688 81.184704

364.638799

8. 4 10 3 10 7 3 9 1 7 6 5 4 1 7 5 8 7 1 4 8 264.955497 148.191248 131.660981 97.569644

377.421873

9. 4 7 4 3 7 8 3 10 4 3 5 8 6 7 6 1 2 2 4 4 261.165422 140.106545 143.325939 99.466598

382.899081

53

10. 9 1 8 5 6 4 7 5 1 7 1 6 1 4 3 2 3 1 10 1 264.598637 155.941248 132.029646 89.960003

377.930896

11. 6 9 1 7 1 8 6 9 10 2 10 1 10 3 7 9 7 10 9 4 256.053695 155.915713 139.958394 94.668979

390.543085

12. 1 7 3 9 7 1 8 4 7 2 8 9 1 3 8 6 5 4 1 7 262.516063 140.07297 139.628981 101.227117

380.929071

13. 7 6 10 3 10 1 3 9 4 7 10 4 3 9 5 6 3 9 5 3 273.465174 148.172735 139.669688 77.834854

365.677277

14. 3 1 4 6 8 6 1 10 8 9 1 10 7 6 1 7 3 3 5 8 260.652303 151.661307 136.026364 95.965184

383.652855

15. 4 8 10 8 2 8 2 5 5 4 3 10 2 4 7 6 7 7 7 8 260.447158 151.805772 139.185364 92.963908

383.955045

16. 8 2 4 5 5 5 4 9 9 9 3 10 7 1 5 3 9 3 4 2 268.219285 152.137704 139.636819 81.054746

372.829269

17. 1 8 2 8 6 9 4 10 6 4 8 5 7 2 10 5 10 8 5 9 285.105371 139.436576 131.817603 79.493335

350.747513

18. 1 9 9 2 2 5 2 10 9 5 6 3 3 9 3 9 10 8 4 3 257.726428 148.232973 139.866819 99.908534

388.008326

19. 4 7 4 3 4 8 3 10 4 3 3 8 9 7 6 5 2 4 4 1 263.254002 144.136248 139.459101 96.265923

379.861272

20. 6 9 10 9 9 1 4 8 10 4 3 5 7 2 7 9 2 1 2 5 261.038117 151.961576 140.017526 91.106714

383.085815

21. 7 6 10 3 10 7 10 1 4 6 1 3 3 8 7 6 3 6 7 6 295.627560 152.125178 139.499927 46.638350

338.263455

22. 1 4 10 9 9 1 6 3 4 7 5 4 7 6 8 7 3 3 5 8 274.964168 151.941307 132.187364 79.555080

363.683751

23. 9 8 8 4 9 8 4 10 3 9 6 6 1 10 4 8 10 7 9 1 275.797170 135.281307 136.069394 91.234600

362.585301

24. 6 7 10 1 7 5 1 4 10 1 10 7 5 3 6 10 9 7 4 1 271.417026 139.811842 147.424939 81.199944

368.436724

25. 9 1 2 5 6 4 7 9 6 3 9 4 7 6 4 3 3 9 5 8 273.427427 152.166010 136.210688 77.351061

365.727759

26. 7 1 10 3 2 1 3 3 4 6 5 6 1 6 4 2 10 2 4 2 280.581576 139.867407 135.737819 80.797363

356.402589

27. 5 5 9 8 10 2 1 7 4 2 10 4 4 7 6 8 7 7 4 8 265.733996 143.806842 139.456819 93.052511

376.316171

28. 8 10 5 10 10 3 8 4 4 10 8 1 3 3 9 1 9 7 1 9 258.427625 143.637704 151.064058 92.253774

386.955536

29. 6 9 10 9 9 1 4 6 3 4 3 9 7 8 9 2 1 5 8 10 260.997928 143.841545 144.264364 95.038896

383.144804

30. 5 9 8 5 8 6 8 8 8 8 6 9 1 1 7 9 2 1 2 4 263.414870 151.610713 139.767646 88.250930

379.629289

31. 2 9 10 9 9 1 4 8 10 4 3 5 1 4 3 5 2 1 10 3 267.527466 151.847973 132.019526 89.925897

373.793396

32. 6 7 10 10 10 3 4 7 4 7 8 4 7 2 9 9 8 1 2 4 261.434470 143.940713 147.325646 91.238673

382.505031

54

33. 5 9 2 8 6 9 4 10 8 4 8 1 10 2 10 7 10 3 8 9 297.359986 143.527704 131.847603 60.917417

336.292725

34. 7 2 7 10 1 2 6 7 4 10 7 7 8 5 2 4 4 7 2 8 266.470024 140.056307 139.315364 95.905061

375.276732

35. 1 8 5 2 8 5 4 6 1 5 6 3 3 9 10 9 10 8 4 3 263.679405 139.672973 139.636819 99.938637

379.248429

36. 6 1 2 10 2 9 1 10 4 1 3 9 1 8 9 3 2 6 8 3 273.818736 151.747973 139.899688 73.557443

365.205104

37. 8 6 6 1 2 7 7 7 4 8 7 3 8 8 8 3 10 8 4 6 269.221322 143.966248 131.579058 95.896300

371.441606

38. 6 9 8 8 2 10 3 7 4 2 10 6 7 10 1 10 9 8 8 4 273.484483 139.701248 143.524484 82.425726

365.651458

39. 1 7 3 5 2 1 1 4 7 5 7 7 3 3 6 8 3 9 8 6 276.250690 144.421545 139.319927 78.248575

361.990047

40. 9 7 3 7 7 9 6 9 4 2 8 9 2 8 8 10 5 4 9 7 268.672156 140.237438 131.962436 100.000957

372.200832

41. 9 8 8 4 9 8 6 6 1 7 5 4 7 6 6 7 3 3 5 8 282.708253 151.801307 140.065364 61.854874

353.721545

42. 10 6 10 3 10 1 3 3 4 9 6 6 5 3 6 10 9 7 6 2 259.063787 139.782704 147.676274 98.546342

386.005321

43. 4 10 3 9 7 1 6 4 7 5 8 3 1 3 5 7 5 4 1 7 265.642154 152.227973 131.750981 92.467324

376.446278

44. 1 7 8 5 7 3 9 7 8 6 3 3 2 2 8 2 3 6 8 10 293.545243 148.501248 131.451688 60.710053

340.662989

45. 8 10 3 8 3 2 4 7 4 2 5 4 8 7 5 8 7 7 4 8 269.481441 148.071842 131.248819 91.762407

371.083068

46. 1 5 7 9 6 7 3 4 4 6 1 10 7 6 2 5 4 1 1 8 266.694469 143.986248 135.969981 95.004678

374.960907

47. 6 2 10 6 10 3 4 7 4 1 8 1 1 4 5 2 2 2 3 4 275.729575 147.595475 131.857484 83.221231

362.674190

48. 9 1 8 5 6 4 7 5 1 7 8 6 1 4 7 5 6 2 10 3 273.922961 147.758270 139.895364 77.412513

365.066147

49. 1 9 2 8 6 6 3 2 10 8 1 9 9 1 4 10 10 7 1 5 277.531868 135.477704 136.097819 88.743458

360.318981

50. 3 2 6 5 1 9 4 3 8 4 7 4 10 2 10 5 10 8 8 9 286.615153 139.802110 131.747603 77.350193

348.899906

Fitness Sum Maximum Fitness Minimum Fitness Average

 1.3505e+004 297.3600 256.0537 270.0948

Generation 50

 Chromosomes Fit Value I/O Cost CPU Cost Comm Cost

Total Cost

1. 1 3 1 8 4 7 5 9 9 10 7 5 2 1 4 8 7 3 3 1 272.451999 143.985772 135.626484 87.424875

367.037130

2. 3 10 2 1 2 5 2 4 3 1 8 2 1 5 5 1 6 5 5 1 277.005320 139.841010 143.224484 77.938403

361.003896

55

3. 1 9 2 8 6 10 8 10 4 4 7 3 10 5 8 3 2 8 4 10 265.319619 147.691248 131.648819 97.563836

376.903903

4. 6 8 8 1 1 10 10 7 4 2 8 6 10 2 10 3 10 1 8 9 282.945375 143.327110 131.619765 78.478234

353.425109

5. 9 9 4 2 3 1 9 8 10 3 10 3 10 7 9 1 3 2 10 10 272.913178 148.166545 143.714364 74.535989

366.416897

6. 7 3 5 2 9 8 1 1 4 1 7 6 6 2 10 4 9 1 7 9 263.230450 139.871041 143.706765 96.317453

379.895259

7. 9 9 9 2 5 10 6 9 7 7 9 6 1 4 4 2 10 2 4 4 270.665316 139.876545 136.337939 93.245488

369.459971

8. 9 1 8 5 6 5 7 5 1 4 7 3 1 7 1 8 1 2 6 10 292.883539 135.851545 139.658274 65.922822

341.432641

9. 9 3 1 4 8 3 2 9 7 2 4 10 10 1 3 5 6 2 2 4 257.945444 148.031010 139.625484 100.022384

387.678877

10. 2 6 10 3 5 6 4 1 5 7 10 7 7 3 3 2 5 3 3 1 265.380027 152.285772 131.577484 92.954854

376.818109

11. 5 4 5 3 2 1 2 2 10 2 1 6 7 3 5 8 5 4 10 7 271.828231 144.067973 131.419526 92.391877

367.879376

12. 1 7 3 5 7 2 1 9 7 2 8 9 6 1 8 6 5 6 6 7 268.080902 140.102973 139.642598 93.276152

373.021723

13. 9 6 7 1 5 3 5 3 2 2 8 9 10 3 5 6 5 4 1 7 262.257816 144.237973 139.588981 97.477220

381.304175

14. 1 7 3 5 1 1 6 5 10 3 5 4 10 5 3 7 7 8 4 9 256.018838 160.277110 131.579058 98.740089

390.596258

15. 1 10 1 6 8 6 1 10 8 9 1 10 3 9 5 6 3 7 3 1 273.125957 147.440772 139.995484 78.695185

366.131440

16. 10 1 2 8 8 7 4 5 4 9 3 9 1 6 3 10 2 3 1 4 270.642959 147.801842 131.768939 89.919712

369.490492

17. 5 4 10 6 8 7 9 1 8 6 4 3 3 3 6 8 3 9 8 6 288.408810 143.871545 139.729927 63.128575

346.730047

18. 6 8 3 7 5 3 5 9 4 1 2 7 3 8 7 7 3 10 7 6 269.313817 160.655178 131.487603 79.171253

371.314034

19. 9 2 1 2 4 1 6 9 7 5 4 3 6 3 2 9 7 6 9 4 258.571774 152.100713 140.002718 94.636384

386.739815

20. 4 8 1 7 1 8 2 9 10 2 10 1 10 1 1 2 6 3 10 1 273.728648 139.401842 143.494484 82.428973

365.325298

21. 8 2 6 1 2 7 7 7 4 2 7 3 10 8 8 3 10 8 4 6 280.668976 144.136248 131.379058 80.776300

356.291606

22. 4 5 8 8 1 10 3 7 4 8 10 6 4 10 4 10 9 10 10 4 289.436154 139.391248 143.394484 62.713608

345.499339

23. 6 10 10 10 10 3 4 7 4 7 8 4 1 4 5 5 6 1 10 3 267.227817 143.527973 139.527526 91.157040

374.212539

24. 9 2 4 10 4 2 6 7 4 10 7 9 5 5 2 4 4 7 2 8 270.917006 139.756307 139.755364 89.605061

369.116732

25. 4 9 9 1 1 7 8 6 5 5 9 9 7 5 7 2 5 3 5 1 262.763057 152.141307 132.127484 96.302212

380.571003

56

26. 10 1 1 6 8 6 1 2 8 4 1 10 2 9 3 6 5 9 10 4 266.142809 147.356545 139.929808 88.451773

375.738125

27. 9 2 4 4 10 6 10 7 10 8 1 5 10 1 4 5 3 7 1 5 261.625567 147.562704 135.717819 98.945117

382.225640

28. 9 2 6 8 1 7 9 8 6 9 10 3 10 3 2 7 5 5 10 4 264.013783 152.091545 131.987484 94.689075

378.768104

29. 9 2 6 8 1 6 10 2 10 8 6 9 10 1 4 10 4 7 1 5 271.011537 135.207704 139.996819 93.783458

368.987981

30. 9 2 4 8 1 6 10 2 10 8 1 9 10 1 4 10 10 2 10 5 289.425143 135.202407 135.856364 74.453712

345.512484

31. 6 5 7 7 1 8 9 2 2 2 5 7 4 10 2 2 9 1 6 5 298.563885 148.162110 139.520436 47.254146

334.936692

32. 2 2 9 2 1 1 7 8 4 4 5 3 5 7 1 10 1 4 9 7 269.022956 135.882438 139.490436 96.342616

371.715490

33. 1 8 3 9 2 5 4 10 9 5 6 3 3 9 1 9 10 8 4 4 260.752977 139.941248 143.735939 99.827544

383.504730

34. 9 3 8 5 6 4 7 5 1 7 8 6 1 4 4 2 5 2 4 3 268.960876 143.863270 135.827819 92.110198

371.801287

35. 9 7 3 7 7 9 5 9 6 5 2 3 6 8 7 2 5 3 10 4 277.270805 152.696842 131.827484 76.133913

360.658238

36. 3 9 9 1 7 7 8 6 5 5 6 4 4 3 6 7 3 9 8 6 274.370114 152.321545 139.869927 72.279712

364.471183

37. 3 5 8 8 4 10 3 7 4 2 7 3 10 1 9 1 9 2 6 9 261.402885 144.042407 151.095513 87.413329

382.551249

38. 5 5 5 2 10 2 7 4 4 10 8 1 3 3 8 3 5 8 7 6 263.584204 148.130178 131.217603 100.037624

379.385406

39. 8 9 1 4 8 6 5 8 8 10 7 9 1 1 4 2 10 2 4 4 269.594627 139.366545 135.857939 95.702790

370.927273

40. 9 1 8 5 6 4 7 5 1 7 8 1 1 8 8 2 7 5 8 10 268.126009 147.756545 131.817364 93.385061

372.958970

41. 6 2 6 1 2 7 7 9 4 8 10 6 1 10 2 10 8 8 8 3 284.888727 139.622973 131.927364 79.463903

351.014240

42. 4 9 9 1 1 7 4 6 5 5 6 9 4 5 7 2 4 3 10 6 275.636278 147.831842 136.266603 78.698502

362.796946

43. 5 4 9 5 8 2 3 9 10 10 6 4 7 1 1 9 5 3 8 4 263.167588 143.866842 143.634484 92.484678

379.986003

44. 9 3 1 4 8 1 2 8 7 5 4 10 6 3 4 6 7 5 8 10 261.464521 143.801545 143.624364 95.035159

382.461068

45. 3 3 5 10 9 8 9 2 2 2 5 7 7 10 2 1 9 6 9 7 285.687068 144.312438 143.321598 62.399309

350.033345

46. 6 5 7 10 1 7 1 6 10 3 10 5 4 4 9 1 3 2 10 10 262.371990 147.856545 143.594364 89.687337

381.138246

47. 4 2 9 1 10 9 4 10 5 5 6 3 3 9 1 3 10 3 4 3 265.085992 143.848567 135.957819 97.429693

377.236079

48. 1 8 9 2 10 7 6 8 4 7 5 7 5 7 5 1 5 1 6 5 278.223383 144.007110 135.551436 79.864875

359.423421

57

49. 9 9 4 4 10 7 2 8 6 9 10 3 10 3 2 4 5 5 8 7 268.895868 143.903270 135.856364 92.131541

371.891175

50. 4 4 2 1 3 10 10 2 7 2 10 7 5 7 3 3 8 8 3 5 265.898606 152.176041 131.307364 92.599799

376.083205

Fitness Sum Maximum Fitness Minimum Fitness Average

 1.3559e+004 298.5639 256.0188 271.1784

4.5.2 Cost calculation by simulator

Since there are 20 operations therefore size of chromosome is set to be 20. Chromosome in

output of simulator represents the following:

6 5 7 7 1 8 9 2 2 2 5 7 4 10 2 2 9 1 6 5

1
st
 operation is allocated to site 6 13

th
 operation is allocated to site 4 and so on.

Based on the above assumption and Table 3 and Table 4 different costs are calculated for

each chromosome as follows:

I/O Cost= I/O Coefficients * Fragment_Size

CPU Cost= CPU Coefficients * Fragment_Size

Communication Cost = Communication Coefficients between two sites * Fragment_Size

Fragment_Size for various operations are already calculated above and I/O Coefficients,

CPU Coefficients, Communication Coefficients are taken from Table 3. Some of the cases

are shown below:

 Operation 1: Selection Allocated to site 6

I/O cost = I/O coefficient for site 6 * Fragment_Size

 = 1*100 = 100

CPU cost = CPU coefficient for site 6 * Fragment_Size

 = 1.2 *100 = 120

Communication Cost = 0 as selection does not involve any communication

Similarly cost is calculated for other selection operation as well.

 Operation 8: Projection Allocated to site 2

I/O cost = I/O coefficient for site 2 * Fragment_Size

 = 1.1*70 = 77

CPU cost = CPU coefficient for site 2 * Fragment_Size

58

 = 1 *70 = 70

Communication Cost = 0 as projection does not involve any communication

Similarly cost is calculated for other selection operation as well.

Only one of the cases is shown below and the best case is taken that is case 3. While

calculating the cost for join operator the fragment size used here is taken from case 3

that is combination of joins and inner joins.

 Operation 19: Join f22 ⋈f23 Allocated to site 6

CPU Cost = Site‟s CPU Coefficient*(f22 size * f23 size)

 =1.2 *(63*1.0206) = 77.15736

Total I/O Cost = Site‟s I/O Coefficient *(f22 size * f23 size)

 =1*(63*1.0206) = 64.2978

Communication Cost

Operation 15 is allocated to site 2, Operation 16 is allocated to site 2. Both are at

same site, therefore

Communication cost = Communication Coefficient between sites 2 and 6 * (f22 size *

f23 size)

 = 14*(63*1.0206) = 900.1692 which is represented as 9.001692

in output due to MATLAB syntax.

On calculating the communication cost for other operators as well and summing them

up gives 47.254146

In case fragments for join operations are allocated to different sites then for both

operations communication costs are calculated and then added together to get the

communication cost. In similar manner communication cost for other operations are

also calculated.

And finally after calculating the cost for each operation all the costs are added together to get

the total cost for each chromosome as shown in the GA output

4.5.3 RESULTS

Simulator is run for different instances of database so as to give image of dynamic database

with varied cardinalities each time. It has been observed that when joins and inner joins are

59

used in combinations then communication cost greatly reduces. As shown in GA output the

minimum communication cost in different cases is as follows:

Case 1: Using Joins

Minimum communication cost = 72.470890

Case 2: Using Inner joins

Minimum communication cost = 82.502469

Case 3: Using combination of Joins and Inner joins

Minimum communication cost = 47.254146

It shows that when joins and inner joins are used in combination then they are useful.

Individually they are incurring more communication cost than when used together.

 In the graphs shown below Y1, Y2, Y3, Y4 represent the following:

 Y1 = ID⋈ department; Y2 = creditor⋈ student; Y3 = student ⋈ salary; Y4 = student ⋈

salary ⋈ employee

The join operation between ID and department, department_name being the foreign key in ID

relation and primary key in department relation so in this case PPIJ (Percentage participation

for inner join) will be 1. Also changing the number of rows of these two relations will not

change PPIJ. This is shown in Figure 11 and Figure 12. So for the next instances of database

this join for relation ID and department has been omitted and in Figure 13 and Figure 14 PPJ

and PPIJ has been shown for join operations Y2, Y3 and Y4. Table 5, Table 6, Table 7, Table

8 represent relations with different cardinalities at different instances of database.

60

Figure 9: Screenshot of database Table department

Figure 10: Screenshot of Employee Table

61

Database Instance 1:

Table 5: Database instance 1 .

Tables ID Department Creditor Student Salary Employee

Number of

Rows

88 75 70 50 54 110

Figure 11: Percentage participations for first database instance.

Inner join

Join

62

Database Instance 2:

Table6: Second database instance.

Tables ID Department Creditor Student Salary Employee

Number of

Rows

99 80 71 52 55 288

Figure 12: Percentage participations for second database instance.

63

Database Instance 3:

Table 7: Third database instance.

Tables ID Department Creditor Student Salary Employee

Number of

Rows

98 81 69 11 80 298

Figure 13: Percentage participations for third database instance.

64

Database Instance 4:

Table 8: Fourth database instance.

Tables ID Department Creditor Student Salary Employee

Number of

Rows

52 81 70 5 98 203

Figure 14: Percentage participations for fourth database instance.

65

Figure 15 denotes the percentage reduction in communication cost wherever inner join is

beneficial. In this graph first bar represent that only at one place inner join was beneficial for

first database instance and percentage improvement is written above the bar. Similar is the

case for second database instance. For the third and fourth instance at two places it is proving

to be beneficial than joins. Although in very less cases inner join is coming out to be

beneficial but percentage reduction in communication cost is coming as high as 90% in those

cases. So inner join greatly reduces the communication cost involved but in very few cases.

Figure 15: Percentage reduction in communication cost for inner join operations.

66

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

Query processing in a distributed database requires transfer of data from one computer to

another through a communication network. Query at a given site might require data from

remote sites. In query optimization, a cost is associated with each query execution plan. Cost

is the sum of local cost (I/O cost, CPU cost at each site) and the cost of transferring data

between sites. The complexity and cost increases with the increasing number of relations in

the query. A query execution strategy or plan is required to minimize the cost of query

processing.

 The cost of processing a DD query is the entire cost measure. The entire cost size is the sum

of all cost components. On executing join and inner join, communication costs among

various sites may be incurred along with the local processing cost.

After experimenting with the actual dynamic database on calculating the selectivity factors

dynamically it is seen that in very less cases PPIJ<PPJ. Whenever selectivity factor for inner

join comes less than join then only inner join should be used otherwise join should be used.

Whenever very few tuples are required which is a very rare case for join operation only then

inner join should be used otherwise normal join should be used.

From the results it has been found that neither using only joins incur minimum

communication cost nor using inner joins alone reduces communication cost. Rather when

they are used in combination that is somewhere joins are used and somewhere inner joins are

used then communication cost greatly reduces. So in very less cases inner join has proven to

be beneficial. It has been observed that when very few tuples are required for joining the

relation at other site only then inner join should be used.

Future work

Cost analysis of the distributed query can be further studied by using Genetic algorithm

approach that gives optimal results within small time interval. Enumerative and Deterministic

procedures are designed to find the best solution but they go almost intractable as soon as the

67

number of sites or number of complex operations like joins are increased to double digits or

more. Whereas a genetic solution does not guarantee the finding of an optimal solution but

can provide a very good solution in an extremely small time as compared to deterministic

one. In future efforts should be done to incorporate Genetic Based Solutions to allocation

problems of Distributed Database. More work needed to be done to ensure that an optimal

solution is guaranteed in most of situations by GA.

68

REFERENCES

[1] Chhanda Ray, (2009) Distributed Database Systems, Publisher: Pearson Education India

Publications, New Delhi.

[2] Korth, Henry F., Abraham Silberschatz, and Henry F. Korth, (1986) Database system

concepts. Vol. 582. New York: McGraw-Hill.

[3]Baiao, Fernanda, Marta Mattoso, and Gerson Zaverucha. (2000) "Horizontal

fragmentation in object dbms: New issues and performance evaluation."Performance,

Computing, and Communications Conference, 2000. IPCCC'00. Conference Proceeding of

the IEEE International. IEEE.

[4]Bamnote, G. R., and S. S. Agrawal. (2013)"Introduction to Query Processing and

Optimization." International Journal 3.7.

 [4] Rho Sangkyu, T. March Salvatore, (2002) “A Comparison of Distributed Database

Design Models”, Seoul Journal of Business Vol. 8 No. 1.

[5] Rho Sangkyu, T. March Salvatore, (1994) “A Nested Genetic Algorithm for Distributed

Database Design”, IEEE.

[6]Bertino, Elisa. (1992) "A view mechanism for object-oriented databases." Advances in

Database Technology—EDBT'92. Springer Berlin Heidelberg.

[7] Ceri, Stefano, Barbara Pernici, and Gio Wiederhold, (1987) "Distributed database design

methodologies." Proceedings of the IEEE 75.5,p 533-546.

[8] Connolly, Thomas M. (2005) Database systems: a practical approach to design,

implementation, and management. Pearson Education.

[9]Councill, Bill, and George T. Heineman. (2001) "Definition of a software component and

its elements." Component-based software engineering: putting the pieces together: 5-19.

 [10] B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, (2009) “Query

Processing and Optimization in Distributed Database Systems”, IJCSNS Vol. 9 No. 9.

[11] Peter Scheuermann, Eugene Inseok Chong, (1997) “Adaptive Algorithms for Join

Processing in Distributed Database Systems”.

69

 [12] Manik Sharma, Gurdev Singh, Rajinder Virk, (2012) “Analysis of Joins and Semi Joins

in a Distributed Database Query”, IJCA.

[13] Hevner, Alan R., and S. Bing Yao, (1979) "Query processing in distributed database

system." Software Engineering, IEEE Transactions on 3: 177-187.

[14] Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu Yao, (2010) “Study of Query of Distributed

Database Based on Relation Semi Join”, International Conference On Computer Design And

Appliations (ICCDA).

[15] Jim Wilenius, “Randomized Algorithms and Heuristics for Join Ordering”, (2007)

Computing Science Division, Dept. of Information Technology, Uppsala University.

 [16] John, Rajan, and V. Saravanan., (2008) "Vertical Partitioning in Object Oriented

Databases Using Intelligent Agents." IJCSNS 8.10: 205.

 [17] Carolyn Mitchell, (2004) “Components of a Distributed Database”, Department of

Computer Science, Norfolk State University.

[18] Zhou Lin, Chen Yan, Li Taoying, Yu Yingying, (2012) “The Semi-join Query

Optimization in Distributed Database System”, National Conference on Information

Technology and Computer Science (CITCS).

[19] Kunii, Hideko S. "Data Manipulation Language." Graph Data Model. Springer Japan,

1990. 29-39.

[20] W. Cornell Douglas, S. Yu Philip, 1989 “On Optimal Site Assignment for Relations in

the Distributed Database Environment”, IEEE.

 [21] Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, (2010) “A New Technique for

Database Fragmentation in Distributed Systems”, IJCA Vol. 5 No. 9.

 [22] Ray, Chhanda, (2009) Distributed Database Systems. Pearson Education India,.

[23] Narasimhaiah Gorla and Suk-Kyu Song, (2010) “Subquery Allocations in Distributed

Databases Using Genetic Algorithms”, JCS&T Vol. 10 No.1.

[24]Robbins, Robert J, (1994) "Database Fundamentals." Johns Hopkins University,

rrobbins@ gdb. org.

[25] Rupley, M. L, (2008) "Introduction to query processing and optimization." Indiana

University at South Bend .

[26] Sharma, Manik, et al. (2013) "Stochastic Analysis of DSS Queries for a Distributed

Database Design." International Journal of Computer Applications 83.5: 36-42.

70

[27] ŞTEFAN, Ileana, and Maricel POPA, (2008) "Distributed Database Design–Top-Down

Design".

[28] Tamer èOzsu, M., and Patrick Valduriez. (2011) Principles of distributed database

systems. Springer.

[29] R.S. Virk, (2012) “Optimized Access Strategies for a Distributed Database Design”,

Ph.D dissertation, Dept. of Comp. Sci. & Eng., Guru Nanak Dev Univ., Amritsar.

[30]Mitchell, Melaine, (1999) “An introduction to Genetic Algorithms”, 5th ed. England,

The MIT Press Cambridge, Massachusetts.

[31] Wells, Garth, (2001) "Data Definition Language." Code Centric: T-SQL Programming

with Stored Procedures and Triggers. Apress, 2001. 35-70.

 [32] Gen. Mitsuo, Cheng. Runwei, “Genetic Algorithms and Engineering Optimization”, 3rd

ed., New York, A Wiley-Interscience publication, 2000

[33] Khurana, Namita et al., (2011) “Genetic Algorithm: A Search of Complex Spaces”, in

International Journal of Computer Application, Vol. 25.

[34] Tom V. Mathew, (2008) “Genetic Algorithm”, Dept. of Civil Eng., Indian Institute of

Technology, Mumbai.

[35] Donald Kossman, 2000 “The State of the Art in Distributed Query Processing”, ACM

Computing Surveys.

[36] T. March Salvatore and Rho Sangkyu, (1995) “Allocating Data and Operations to Nodes

in Distributed Database Design”, IEEE.

[37] Fan Yuanyuan, Mi Xifeng, (2010) “Distributed Database System Query Optimization

Algorithm Research”, IEEE.

[38] Richard L. Cole, (1994) “Optimization of Dynamic Query Evaluation Plans”, ACM.

[39] Whitley, Darrell. (1994) "A genetic algorithm tutorial." Statistics and computing 4.2:

65-85.

[40] Sharma, Manik, et al. (2013)"Stochastic Analysis of DSS Queries for a Distributed

Database Design." International Journal of Computer Applications 83.5 :36-42.

[41] Mamaghani, Ali Safari, et al. (2010) "A novel evolutionary algorithm for solving static

data allocation problem in distributed database systems." Network Applications Protocols

and Services (NETAPPS), 2010 Second International Conference on. IEEE.

71

 APPENDIX

Glossary of Terms

 Crossover: It is a genetic operator that combines (mates) two chromosomes (parents) to

produce a new chromosome (offspring).

 Chromosome: It consists of "genes" (e.g., bits), each gene being an instance of a

particular "allele".

 Data allocation: It is the prominent activity in the distributed database which decides that

where to locate the data.

 Database Management System: It is used to manage whole data in organizations.

 Distributed database: It is a collection of logically interrelated databases that can be

stored at different computer network sites.

 Data definition language (DDL): Users can specify structure of database, data types and

constraints on data by using DDL.

 DML: It provides general facility to enquire about data, which is known as query

language.

 Fragmentation: The process of dividing the relation into sub relation is called

fragmentation.

 Genetic Algorithm: GA was a method for moving from one population of

"chromosomes" to a new population by using a kind of "natural selection" together with the

genetics−inspired operators of crossover, mutation, and inversion.

 Horizontal Fragmentation: It means to divide a relation along its rows.

 LPC: Local Processing Costs for processing a query‟s simple selection & projections may

be represented as costs of transforming input relation from disk to memory and CPU time for

processing a selection or projection at site

 Mutation: It is a genetic operator that alters one or more gene values in a chromosome

from its initial state.

72

 Query: Database Query is a way of instructing DBMS to update, insert, retrieve, and

delete data from database.

 Query optimization: It is the function of determining the most efficient query plan

among all, which is performed by query optimizer.

 Replication: It consists of keeping of copies of complete database at each site.

 Reproduction: Reproduction selects good strings from the population and puts them in

mating pool selection operator chooses those chromosomes in the population that will be

allowed to reproduce, and on average the fitter chromosomes produce more offspring than

the less fit ones.

 Vertical Fragmentation: Vertical fragmentation partitions a relation long its attributes.

Abbreviations

 Ars : Data Allocation Variable

 S
q

ys : Sequence of various sites where sub queries gets executed

 LPO: Left previous operation of a join

 RPO: Right previous operation of a join)

 LPC: stands for Local Processing Cost

 CC: Communication Cost

 : No. of memory blocks of relations „r‟ accessed by sub query „y‟ of q.

 IOCs : Input Output Cost Coefficient of site s in millisecond per 8k bytes

 CPCs: CPU Cost coefficient of site s.

 ρp : Percentage Participation

 : It is the size of an intermediate relation.

 : It is the communication cost coefficient between site s and v

