

Sub Query Site Allocation and Optimization for a Distributed Query

A Dissertation submitted

By

PARMINDER KAUR

to

Department of Computer Science and Engineering

In partial fulfilment of the Requirement for the

Award of the Degree of

Master of Technology in Computer Science and Engineering

> Under the guidance of Mr. Robin Prakash Mathur

> > (Assistant professor)

(April 2015)

school of Computer Science & Engineering (CSE) DISSERTATION TOPIC APPROVAL PERFORMA - of the Student Parminder Kaus Registration No 1300/22 aton 2013-2015 Roll No RK2306A05 - 2014-15 Parent Section: \$K2306 ctaits of Supervisor: Designation: Asst- Rodesson Robin P Matter Qualification: M. Tech-CSE 14597 Research Experience: 4 4 4 5 Detabese System (pick from list of provided specialization areas b HILCIALIZATION AREA NROPOSED FORIC Query Optimization in Distributed Database System Frequentation / Partitioning in Distributed Det Date Lese Integrity in Distributed deterbase sys PAC Remarks: First soft opproved 1allaninan PROVAL OF PAC CHAIRPERSON: representation should finally encircle one topic out of three proposed topics and put up for approval before Inginal copy of this format after PAC approval will be retained by the student and must be attached use ct/Dissertation final report. ony to be submitted to Supervisor

ABSTRACT

Distributed databases are the outcomes of top notch technology advances, high speed computer networks further facilitated its growth and its suitability in satisfying various businesses needs make it more popular. As data resides at different sites in a distributed database environment, so to acquire a specific type of data; subdivision of a query into its subparts (sub-queries) is required and those sub-queries needs to be executed at different data sites. In some cases combination of data from two or more different sites may be required. To attain this goal a join operator is used. But using join is not always advantageous in terms of cost as it may sometimes result in more communication cost in cases when complete relation is not desired for join operation. In such scenario communication cost involved between two sites can be reduced using other forms of joins like inner join. Inner join is also not always useful. So a need of finding the appropriate strategy to decide and assign join operations arises. In this thesis join operator allocation has been done dynamically by dynamically calculating percentage participations for joins and inner joins for the dynamic distributed database simulated. This dynamic percentage participation is given as input to the simulator built in MATLAB based on which fragment size for join operation is calculated. The simulator by using the genetic algorithm computes the minimum communication cost involved in executing the query under different cases using joins only, using inner joins only, and mixture of both. Hence finding the optimal query design for a distributed database using mix of joins is attained.

CERTIFICATE

This is to certify that <u>Parminder Kaur</u> has completed M.Tech dissertation titled **Sub Query Site Allocation and Optimization for a Distributed Query** under my guidance and supervision. To the best of my knowledge, the present work is the result of her original investigation and study. No part of the dissertation has ever been submitted for any other degree or diploma.

The dissertation is fit for the submission and the partial fulfilment of the conditions for the award of M.Tech Computer Science & Engg

Date: 24 April,2015

Signature of Advisor Name: Robin Prakash Mathur (Asst. Professor, School of Computer Science & Engineering) Lovely Professional University Phagwara, Punjab (144402).

ACKNOWLEDGEMENT

I would like to thank LOVELY PROFESSIONAL UNIVERSITY for giving me opportunity to use their resource and work in such a challenging environment. I am grateful to the individuals whom contributed their valuable time towards my thesis.

I wish to express my sincere and heart full gratitude to my guide "Mr. Robin Prakash Mathur" Assistant professor, who guides me to take up this thesis in **Sub Query Site Allocation and Optimization for a Distributed Query**.

I would also like to offer my sincere and heartfelt thanks to Prof. Dr. R.S. Virk of Computer Science And Engineering Department, G.N.D.U., Amritsar for his continuous guidance and support throughout my dissertation.

Without his unconditional help I would never have been able to complete my work. I would also like to extend my gratitude to my friends and family who always encouraged and supported me in this thesis work.

Last but not the least; I would like to thank all the staff members of department of Computer Science & Technology who have been very patient and co-operative with us.

DECLARATION

I hereby declare that the dissertation entitled, **Sub Query Site Allocation and Optimization for a Distributed Query** submitted for the M.Tech Degree is entirely my original work and all ideas and references have been duly acknowledged. It does not contain any work for the award of any other degree or diploma.

Date: <u>24 April,2015</u>

Investigator Parminder Kaur Regn. No. <u>11300122</u>

TABLE OF CONTENTS

Chapter 1: INTRODUCTION	
1.1 Database management system	2
1.1.1 Data definition language	2
1.1.2 Data manipulation language	2
1.1.3 View mechanism	2
1.2 Benefits of distributed database systems	3
1.3 Distributed Database Design	4
1.3.1 Top Down Approach To Design	5
1.3.2 Bottom Up Design Approach	6
1.4 Query Processing	
1.4.1 Query Processing Problem	7
1.4.2Query Optimization	9
1.4.3 Layers of Query Processing	9
1.4.4 Objectives of Query Processing	11
1.5 Data Allocation and Fragmentation	12
1.6 Joins	13
1.6.1 Cartesian or Cross Join	13
1.6.2 Equijoin	13
1.6.3 Outer Joins	13
1.6.4 Left Outer Join	14
1.7 Genetic Algorithm	
1.7.1 Working of Genetic Algorithm	16
1.7.2 Outline of the Basic Genetic Algorithm	17
1.7.3 GA Operators	
1.7.4 Reproduction	
1.7.5 Crossover	19
1.7.6 Mutation	19
1.7.7 Advantages of Genetic Algorithm	

Chapter 2: Literature Review	
Chapter 3: Problem Definition and Objectives of Study	
3.1 Problem Definition	26
3.2 Research Objectives	27
3.3 Methodology	27
Chapter 4: RESULTS AND DISCUSSIONS	
4.1 Data Allocation	
4.2 Decision Variables Used By Simulator	
4.3 Local Processing Costs	
4.4 Communication Costs	
4.5 Experimental Setup	
4.5.1 Dynamic Selectivity Factors Calculated By Simulator	
4.5.2 Cost Calculation By Simulator	57
4.5.3 Results	
Chapter 5: Conclusion and Future Work	66
References	68-70
Appendix	71

LIST OF TABLES

Table1: Example of Database	8
Table 2: Comparison of different allocation strategies	29
Table 3: Communication, I/O, CPU Coefficients	35
Table 4: Intermediate Fragments used in various operations	36
Table 5: Database Instance 1	61
Table 6: Database Instance 2	62
Table 7: Database Instance 3	63
Table 8: Database Instance 4	64

LIST OF FIGURES

Figure 1: Distributed Database System	2
Figure 2: Top Down Approach to Distributed Database Design	5
Figure 3: Bottom up Approach to Distributed Database Design	7
Figure 4: Steps of Query Processing	10
Figure 5: Transfer of operands	14
Figure 6: A flowchart of working of Genetic Algorithm	16
Figure 7: Crossover Operation in GA	19
Figure 8: Query Tree for Distributed Database	35
Figure 9: Screenshot of database Table department	60
Figure 10: Screenshot of Employee Table	60
Figure 11: Percentage participations for First database instance	61
Figure 12: Percentage participations for second database instance.	62
Figure 13: Percentage participations for third database instance	63
Figure 14: Percentage participations for fourth database instance.	64
Figure 15: Percentage reduction in communication cost for inner join operations.	65

CHAPTER 1 INTRODUCTION

In the old days, programs stored data in the regular files. Each program has to maintain its own data which results in huge overhead and easily prone to error. The development of database management helped to fully achieve data independency that provides centralized and controlled data maintenance and access. Also application is immune to physical and logical organization. The advancement in database and communication technologies enhanced the popularity of distributed databases, as it provides high availability, autonomy, and affordability for managing large databases. A distributed database can be considered as a collection of data which are distributed over different sites of a computer network. Each site of the network is capable to perform local applications autonomously. However the distributed database systems are used in applications which require access to an integrated database from geographically dispersed locations. The location of data items and the degree of autonomy of individual sites play a prominent role in all aspects of the system. Data allocation is the prominent activity in the distributed database which decides that where to locate the data. [4], [5]. Data is the base of whole world of growing organizations in today's world and managing data is one of the most trivial tasks. Database Management System are used to manage whole data in organizations. In today's world of universal dependence on information systems, every user of the system whether an employee or a employee need access to company's databases. Database is managed using two approaches known as Centralized Database Management System and Distributed Database Management System [8]. Conventionally, databases of any organization were focused at one mainframe location with all over wide-reaching access. Unified system management and could be beneficial when manager in a structured style but it posed few glitches as well. Thus, substitute strategy to the centralized database is distributed database. Distributed database is a collection of logically interrelated databases that can be stored at different computer network sites. The objective of a distributed database management system (DDBMS) is to control the management of a distributed database (DDB) in such a way that it appears to the user as a centralized database.

1.1 DATABASE MANAGEMENT SYSTEM (DBMS):

Database management system (DBMS) [8] is software [9] systems, which are basically collection of interrelated data and allow definition, creation, updating of databases [24]. DBMS are applications that are designed in such a way that they can interact with users, other applications, and database itself to analyze and capture data. DBMS provide a lot of facilities, some of which are:

- **1.1.1 Data Definition Language [31]**: DBMS provide its users facility to define database, using data definition language (DDL). Users can specify structure of database, data types and constraints on data by using DDL.
- **1.1.2 Data Manipulation Language [19]:** DBMS provide its users facility to insert, retrieve, update and delete data by using Data Manipulation Language (DML). DML provide general facility to enquire about data, which is known as query language.
- **1.1.3 View Mechanism [6]:** DDL is also use to define a view. A view is basically a subset of database, but it doesn't form part of physical schema. Each user can have his or her view of database.

A distributed database (DDBMS) is such a database system in which all storage devices are not all attached to a CPU (central processing unit) and all of these storage devices are managed by distributed database management system.

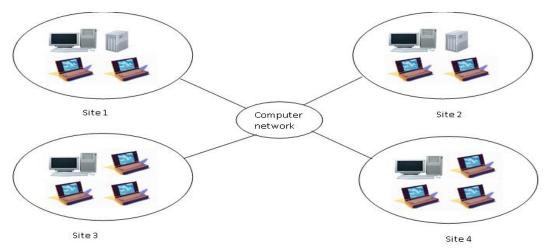


Figure 1: Distributed Database System (4 sites)

Such a database can reside in same large room, but all the fragments/replicas (stored at different sites) communicate with each other through network instead of shared memory.

1.2 BENEFITS OF DISTRIBUTED DATABASE [22]

i. It reflects organizational structure

A number of organizations in the world are distributed over several locations. For example: A bank has many offices in different cities of same district. The database used for such applications is distributed over many locations. Banks may keep database at each department containing details of employees, staff related to that department.

ii. Improved share ability and local autonomy

By distributing the database, data can be placed at site near to the use who frequently use that data. By doing so, locality of reference gets improved. Along with that, users get local control over data and can enforce policies regarding use of data. A global database administrator manages the entire global database, while duties of managing local database can be assigned to local administrator.

iii. Improved Availability

While using centralized database, failure of the central application can result in failure and unavailability of the whole system. But in case of distributed system, failure of one site, does not make whole system unavailable. Distributed databases are designed in such a way that they continue to function even in case of failure of one or two sites.

iv. Improved Reliability

Allocating data at different sites and maintaining replicas of data at various sites, the failure of a site does not make data inaccessible.

v. Improved Performance

The data, in case of distributed database is located at the site or near the site which most frequently accesses that data, because of which the speed of data access increases,

communication cost incurred while accessing data from remote site gets reduced and hence, the performance of the system improves.

vi. Modular Growth

In case of distributed databases, expanding the system becomes easy. New sites can be added to the system at any time without affecting the whole system.

1.3 Distributed Database Design

Design [7] of a distributed database system is one of the most crucial aspect behind the success or failure of such a system. Designing a distributed system involves taking decisions related to the placement of data and programs in system (includes network nodes and network design itself). While designing a distributed system, the main focus is given to the division and placement of data i.e. to the placement of data. The issues that arises while designing a distributed database system are:

- a. Why fragment at all
- b. How to fragment
- c. How much to fragment
- d. How to test correctness
- e. How to allocate

Two basic strategies used in designing distributed database system are:

- Top-down Approach
- Involves designing the system from scratch
- Used for homogeneous systems.
- Bottom-up Approach
- Used for systems where database already exists at some sites
- The aim is to connect the databases to solve common tasks.

1.3.1 TOP DOWN APPROACH TO DESIGN [27]

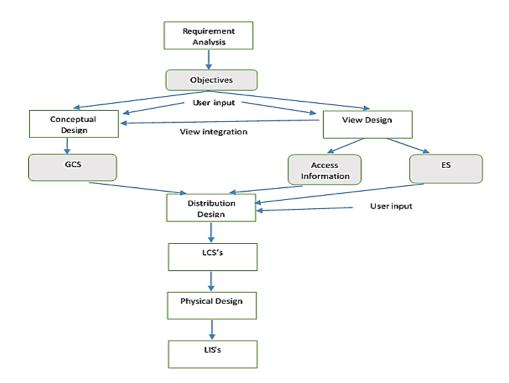


Figure 2: Top Down Approach to Distributed Database Design [4]

The top down approach to distributed design starts with requirement analysis of actual environment. It involves designing a system from scratch. This process involves creating data models which defines high level entities of the system and their relationships. Then refinements are applied to the high level data models to identify and define corresponding low level entities, their relationships and attributes.

The steps involved in top down process are:

- Analyze the requirements
- View integration and conceptual design
- Data distribution design
- Local physical schema design
- The process of designing starts with analysis of the requirements which defines the system. The requirement document is essential requirement for two parallel activities: conceptual design and view design.
- View design involves defining user interface, while conceptual design includes examining the system to determine its component types of entities and relationship

between entities. Conceptual design can also be defined as integration of user views. This integration is very important because the conceptual schema or design must not only support existing application, but must also support global conceptual schema and information about access patterns.

- So, the objectives at this step is to design conceptual schemas using local distribution entities across nodes of the system. In relational model instead of whole relation their fragments are distributed across the system.
- So, distributed design activity consists of two steps: fragmentation and allocation.
- The last step includes physical design, which involves making connections between conceptual schemas and physical storage devices on the nodes of corresponding data.

1.3.2 BOTTOM UP DESIGN APPROACH

Bottom up approach can be used for designing database of an existing system. Most of the times, existing and heterogeneous databases are integrated to a common distributed database system. This approach comprises of integrating existing schemata into a single global schema. But the following aspects must have fulfilled:

- A common database model must be selected for describing the global schema.
- Each local schema must be translated into the common data model
- The integration of common schema into common global schema: the merging common data definitions and resolving conflicts among different representations given to the same data.

The bottom up approach involves solving these three problems. The design steps are just reverse of the bottom up approach. The steps of integration for designing a new system are:

- Common data model selection
- Translation of each local schema into common model
- o Integration of the local schema into a common global schema
- Design the translation between the global and local schemes.

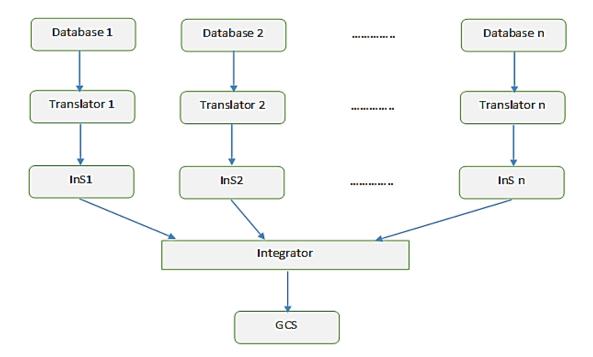


Figure 3: Bottom up Approach to Distributed Database Design

1.4 QUERY PROCESSING

Database Query is a way of instructing DBMS to update, insert, retrieve, and delete data from database. It can be defined as a request for information from database. The actual operation is performed by executing a number of low level operations. Such operations for example can be, select, project, join etc. Query Processing [5] is a process of transforming a high level query into correct and efficient execution plan, which is expressed by using a low level query and executing that query plan. All the activities involved in executing a query are included in it.

1.4.1 QUERY PROCESSING PROBLEM [13]

The main aim of query processor is to transform a high level query into low level query plan. Query processing becomes much more important in case of distributed databases. As in case of distributed systems, relations involved in query may be fragmented or replicated, and hence increase communication cost. In distributed databases, data is fragmented or replicated to increase locality of reference and parallel execution. So, the role of a distributed query processor can be defined as, mapping a query on distributed databases into a sequence of operations on fragments of relations. The data used by the low level query must be completely localized, so that operations bear on local fragments. The transformation must be correct and efficient.

Example: Consider the following query,

"Find name of all employees who manage a project",

On relational schema given as:

Table 1: Example of Database

emp:

responsibility:

ENO	ENAME	TITLE	ENO	ЛО	RESP	DUR
E1	John	Electrical Engineer	E1	J01	Manager	12
E2	Steve	System Analyst,	E2	J01	Analyst	24
E3	Bob	Mechanical. Engineer	E2	J02	Analyst	6
E4	Mary	Programmer	E3	J03	Consultant	10
E5	Maria	System Analyst	E5	J04	Manager	48

Relational calculus query equivalent to above query in SQL is:

Select ename from emp, responsibility where emp.eno= responsibility.eno and responsibility.resp="manager"

Two equivalent relational algebra queries for the above SQL query are:

 $\Pi_{ename} \left(\sigma_{resp="manager" and emp.eno=responsibility.eno} \left(emp \times responsibility)\right)$

And

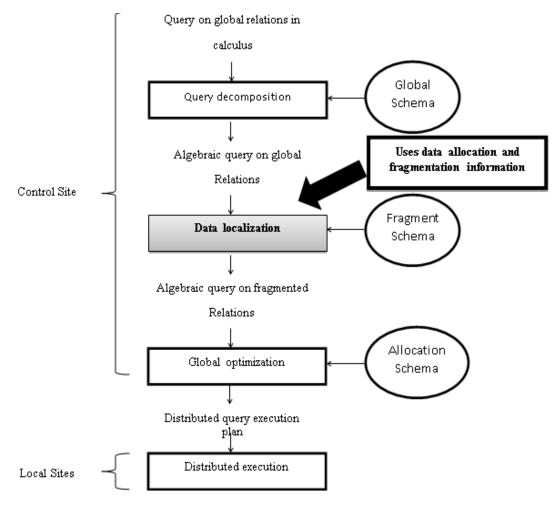
 $\Pi_{\text{ename}} (\text{emp}_{\boxtimes \text{eno}} (\sigma_{\text{resp="manager"}} \text{ responsibility}))$

From above example, it can be observed that:

I. First query uses Cartesian product, which uses more computing resources, so it must be avoided, while the second one uses join instead of Cartesian product, so it must be retained.

II. In case of a centralized system, the only task to be performed by query processor is to convert relational calculus query into the best relational algebra query (which uses minimum resources).

But in case of distributed system, execution plan is expressed by using relational algebra query along with communication operators for exchanging data between sites. The best site to process data must be selected along with the best ordering of relations and operators.


1.4.2 QUERY OPTIMIZATION[4]

As illustrated in above example, a query can be expressed by using two or more equivalent query plan. There can be a huge difference between costs of two alternative plans, depending upon the processing costs at different sites, communication costs etc. Query optimization [4] is the function of determining the most efficient query plan among all, which is performed by query optimizer.

1.4.3 LAYERS OF QUERY PROCESSING [28]

The problem of query processing has been subdivided into various layers each corresponding to various sub problems. The first three layers shown in the figure perform the task of mapping the input query to an optimized distributed query execution plan. They perform query decomposition, data localization and global optimization functions. A central control site performs functions of first three layers and uses global directory's schema information. The last layer executes the optimized query execution plan and returns the answer to that query.

I. Query Decomposition [33]: The first layer uses the information in global conceptual schema, which contains global relations. It decomposes the input calculus query into algebraic query which bears on global relations. It doesn't need any information about distribution of data on various sites. Hence, it uses techniques used in centralized system.

I. Figure 4 : Steps of Query Processing

Query decomposition is a four step procedure. The steps involved are:

- Frist of all, query is normalized to a form which is best for further manipulation. Normalization is done by manipulating query quantifiers and by applying logical operator priority.
- 2. Next step is of sematic analyses, which attempts to detect and delete incorrect queries as early as possible.

- 3. Then the query is simplified, which involves eliminating redundant predicates.
- 4. At last the query is restructured as algebraic query.
- II. Data Localization: the input to this layer is algebraic query produced in the first layer. This layer uses the data distribution information in fragment schema to localize the query's data. The main role of this layer is to determine all the fragments involved in query and then transform the query on global relations into a query which bears on fragments.
- III. Global query Optimization: it takes the query on fragments as input. The main goal of this layer is to determine the optimal execution plan for the query. An execution plan is described by using relational algebra operators and communication primitives. This layer finds out the best execution plan which involves best ordering of algebra operators and communication operators, which minimizes the total cost of executing the query. The cost function is described in terms of time units.
- IV. Distributed query execution: All sites containing the fragments involved in query perform the task of last layer. Each sub plan (sub query) is executed at one site, called local query and then is optimized using local schema. Algorithms of centralized systems can be used in local optimization.

1.4.4 OBJECTIVES OF QUERY PROCESSING [25]

- The main objective of query processor is to convert a high level query on a distributed environment, which appears a single database to users, into an efficient execution strategy in a low level language on local databases.
- An important aspect of query processing is query optimization. There may be more than one execution strategies which are correct transformation of high level query, the one that optimizes the resource consumption must be retained.
- The good indicators of optimized resource consumption are:

- The *total cost* incurred while processing the query. It is sum of all cost incurred while processing the operations of the query like, input-output cost, communication costs (in case of distributed systems), CPU costs.
- The *response time* of query. It is the time taken by system in executing the query. Because of parallel execution at one or more sites, response time of a query may be less than its total cost.
- Minimizing the total cost is one of the main objectives of query processing.

1.5 DATA ALLOCATION AND FRAGMENTATION

While designing a distributed database system, the major issues involves distributing the central database to various sites. This involves fragmenting the database and allocating fragments to various sites. The design of system must be based on both the quantitative and qualitative information.

FRAGMENTATION: The process of dividing the relation into sub relation is called fragmentation. These fragments are then distributed to different sites. Defining and allocating the fragments to sites must be based on the access pattern of different applications. Two fundamental strategies for fragmentation are:

- **a.** Horizontal Fragmentation [3]: It partitions a relation along its tuples. So, a fragment is basically a subset of tuples of relations.
- **b. Vertical Fragmentation:** Vertical fragmentation partitions a relation long its attributes i.e. fragments of a relation in vertical fragmentation produces fragments, each of which contains subset of attributes of main relation.

ALLOCATION [16]: One major task while designing a DDBMS is to allocate resources to various computer nodes or sites. Data or fragment allocation must be done in such a way that locality of reference gets maximized. Four general strategies for data allocation are:

- I. Centralized
- II. Partitioned
- III. Complete replication
- IV. Selective Replication

1.6 JOINS

The joins impact can be seen when a client prerequisite join datasets from a relational database[2]. The space has turned into a colossal. Associations gathering information because of expanding rate swinging to this information to drive their objectives. Disadvantage of gathering this information is the need to some way or another capably store and structure it. One of the key inhabitants of db configuration is to convey it to condition of standardization. It is accomplished by which imitation information is lessened, capacity is enhanced and the need to get to this standardized information that has been put away in partitioned tables gets to be vital. A join in its pith will return, erase, or redesign information from more than one information source as one arrangement of information.

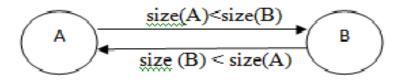
1.6.1 Cartesian join

The Cross join is the basic among rest of joins to compose and perceive. It is basically a gathering of two relations without a qualifying Where proviso. The result of this join is each tuple of the 1st connection consolidated to each tuple of the 2nd connection.

1.6.2 Equijoin

An Equijoin is the one of the straightforward kind of inward join and can be recognized by the equivalent sign predicate between two connecting variables in the Where condition.

1.6.3 Outer joins


This joins are just ready to process two tables at once. There are three principle sorts of external joins: Left, Right, and Full. Since an Outer join can just join two tables at once consider the first table as the Left hand side table and the second table as the Right Hand side table, in this manner issuing us the Left Outer Join and the Right Outer Join.

1.6.4 Left Outer Join

On account of a Left Join the table that goes before the essential word "Left Join" in the from proviso is viewed as the Master information set. That implies all lines paying little respect to whether they have a coordinating column on the Right hand side table will be kept in the last information set. For the situation where there are various columns in the Right hand side table, the Left hand side table's information will be copied.

Objective of join in distributed databases

Join query execution is more complex in a distributed database than in a centralized database. In a distributed database, to join two files that are located at different sites, data from one of the files must be transmitted to the site of the other file (or data from both files must be transmitted to a third site). This data transmission could be time-consuming if data transmission data is more. Therefore, distributed database systems need to transfer the data as fast as possible in order to improve join query performance. There are two basic join query execution methods used in the distributed database systems [26].

Figure 5: Transfer of operands

One method is to transfer the smaller table of two join query participating tables. This method can efficiently perform the join query which the quantity of result is much less than the quantity of two source tables. Another way is to transfer two tables in parallel. Parallel transmission can reduce the response time for the join query which the quantity of result is equal to or greater than the quantity of two source tables. The main objective of join query optimization is to reduce the cost of data transmission, small volume of transmitted data and move data in parallel so as to minimize the response time. Therefore, these two methods are not good for all types of join query.

To minimize the amount of data transmission between the sites inner join operator is used. Using Join, entire data most of the tuples in relation participate in the join but in case of inner join the size of relations are reduced [26].

Inner joins

In order to join two sub queries involving data from multiple sites using join query, data has to be transmitted from one site to other. This transmission of data increases the communication time. So the optimizer must consider efficient order in which tables are joined in such a way that communication overhead has cut down.

There is a problem of finding an efficient join order for a query because query Optimizer has to examine number of existing substitutions. Also, join operation affects the size of result of particular fragment to increase or decrease. The estimation of join results is quite difficult. Join query execution is time-consuming and more complicated on a distributed database than on a traditional centralized database if those two tables participating in a join query are stored on different remote sites. An approach to implement this join query on a DDB is to send one of the join participating tables to the site of the other table and perform the join at that site. Join ordering in distributed queries is done by two approaches. First one is to optimize directly the ordering of join and another is to substitute join by groupings of inner joins to reduce communication cost [5]. It is very useful in improving a join by minimizing the data transferred. Join reducers were put in to reduce the communication costs of distributed database systems [6].

1.7 Genetic Algorithm

Genetic Algorithm (GA) is initially grown by John Holland, his partners and his understudies at college of Michigan in the 1960s and 1970s. Holland's objective was to study the wonder of adjustment as it happened in nature and to create courses in which the components of common adjustment may be imported into computer frameworks. Unique objective of the examination was to clarify the adaption of characteristic frameworks and to outline simulated frameworks that attempt to grasp versatile and vigorous properties of regular frameworks [29]. Holland's Genetic Algorithm was a system for moving from one population of "chromosomes" to another population by utilizing a sort of "characteristic determination" together with the genetics inspired administrators of hybrid, change, and reversal. Every chromosome comprises of "qualities" (e.g., bits), every quality being an occasion of a specific "allele". The determination administrator picks those chromosomes in the population that will be permitted to imitate, and by and large the fitter chromosomes deliver more posterity than the less fit ones. Hybrid trades sub parts of two chromosomes, generally copying natural recombination between two single–chromosome ("haploid") creatures; transformation haphazardly changes the allele estimations of a few areas in the chromosome; and reversal inverts the request of a coterminous segment of the chromosome, in this manner revising the request in which qualities are displayed [30].

1.7.1 Working of Genetic Algorithm

Genetic algorithm starts working on a randomly generated set of solutions, known as initial population. Each solution is represented by a fixed length string of binary numbers (i.e. 101010...). Fitness is connected with every arrangement. The fitness assessment is depend on objective function. In this every string representing to the arrangement is called chromosome, every bit of the string is known as the gene. The arrangement of strings is called populace. The chromosomes advance through progressive cycles, called generations. Amid every era, the chromosomes are assessed utilizing some measure of fitness [33].

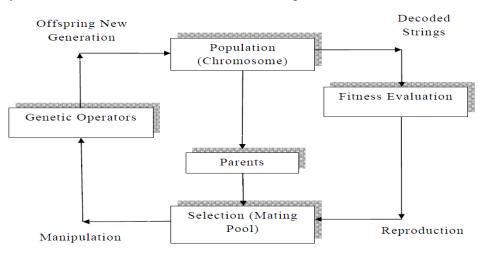


Figure 6: A flowchart of working of Genetic Algorithm [33].

To create the next generation, new chromosome called offspring, are formed by either:

- Merging two chromosomes from the parent generation using a crossover operator.
- Modifying a chromosome using a mutation operator.

A new generation is formed by:

- Selecting, according to the fitness values, some of parents and offspring.
- Rejecting others so as to keep the population size constant.

Fitter chromosome have higher probabilities of being chosen, after a few eras, the calculation meets to the best chromosome, which states to the ideal and suboptimal answer for the issue. Induction is thought to be arbitrary. Recombination regularly includes hybrid and transformation to yield offspring.

1.7.2 Outline of the Basic Genetic Algorithm

1. [Start] Chromosome of length n is produced from random population.

2. [Fitness] the fitness function of each chromosome is calculated from the population

3. [New population] New population is created by iterating following steps.

I. [Selection] Select two chromosomes are chosen from a population based on their fitness.

II. [Crossover] Cross over the parents with crossover probability.

III. [Mutation] with a mutation probability mutate new offspring at each locus (position in chromosome).

IV. [Accepting] New population is created by placing new offspring.

4. [Replace] new generated population is required for a further run of algorithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in current population

6. [Loop] Go to step 2

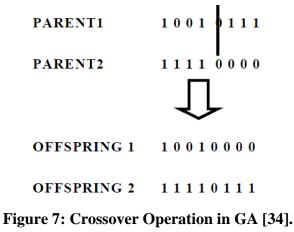
The process is iterated sequentially to produce new population. Process is iterated for criterion to met [33].

1.7.3 GA Operators

The GA includes three fundamental genetic operators: Reproduction, Crossover and Mutation. These operations are used to select and manipulate population solutions and select the most appropriate offspring to pass on to the succeeding generations [29].

1.7.4 Reproduction

Reproduction selects good strings from the population and puts them in mating pool [34]. The idea is to pick up the strings with higher fitness from current population and apply genetic operators to new strings for the successive population. The fittest chromosomes may be chosen a few times, be that as it may, the quantity of chromosome chose to replicate is equivalent to the populace size, in this way, keeping the size consistent for each era. This stage has a component of irregularity simply like the survival of life forms in nature. The most normally utilized choice techniques are taking after:


- Roulette Wheel Selection
- Stochastic universal sampling
- Ranked selection
- Truncation selection
- Tournament selection

The roulette wheel is probably the most popular technique used as the selection method for genetic algorithm. In this method, the entire population is represented by a segmented wheel [34]. The total number of segments in the wheel corresponds to the number of individuals in the population. Each individual is represented by a segment according to its fitness value. The more fit individuals will have bigger segment on the wheel and thus, will have better chances of passing their genes along to the next generation. On the other hand, poorly fitted individuals get less chances of passing the genes on to the next generation.

In the tournament selection method, n individuals are randomly selected from the population. The fit individual from this group will have its genes passed along the next generation via the crossover procedure. This procedure is repeated until enough individuals have been selected to reproduce and create the next generation.

1.7.5 Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a new chromosome (offspring). The thought behind hybrid is that the new chromosome may be superior to both of the folks in the event that it takes the best attributes from each of the folks. Hybrid haphazardly picks a locus and trades the sub arrangement previously, then after the fact that locus between two chromosomes to make two posterity, e.g.

Commonly used combination techniques are as follows:

- One point crossover
- Two point crossover
- Uniform crossover
- Partially Matched Crossover (PMX)
- Order Crossover
- Cycle Crossover

1.7.6 Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome from its initial state. This can bring about altogether new quality qualities being added to the quality pool. With these new quality values, the hereditary calculation may have the capacity to land at preferable arrangement over was already conceivable. Transformation is an essential piece of the hereditary inquiry as it serves to keep the populace from stagnating at any nearby optima. Change happens amid advancement as indicated by a client perceptible transformation likelihood [34]. This probability should usually be set fairly low (0.01 is a good first choice), e.g.

Not mutated chromosome:

Mutated

1.7.7 Advantages of Genetic Algorithm

GA has numerous favourable circumstances over other pursuit methods. These focal points include:

- **Robustness:** GA is computationally basic and effective in the quest for development and is not constrained by prohibitive suppositions of the pursuit space.
- **Intrinsic parallelism:** GA search through populations of points, not single point, which makes them intrinsically parallel.
- **Global:** GA use random operation in their evolution processes that allows a wider exploration of the search space.

These highlights have made GA alluring for utilization inside a more extensive scope of designing trains, and are turned out to be fit for yielding promising results in complex applications.

CHAPTER 2 LITERATURE REVIEW

In this chapter, some of the important techniques related to the research problem are discussed. The review of literature is a very important part as it links up the studies that have already conducted in the same field. It also puts light on the various aspects which have already been accomplished by researchers and gives us a chance to appreciate the evidences that have already been collected by researchers in their studies and supports the researchers in projecting the current research work in proper perspectives. Along with that, the researchers get chance to learn from the experience of the other studies in the same field and can enrich the proposed study. The research papers is given below.

Query processing in distributed databases is a complex task due to following two reasons:

- Data must be allocated to different sites.
- It must be efficiently accessed, processed and communicated to meet the desired retrieval and update requirements by user.

Genetic algorithm provides an efficient way to solve the above two problems.

In distributed database systems redundancy of data helps in fault tolerance and recovery but they make distributed processing complex. Query optimization is one of the key fields in distributed database systems. It uses inner joins to reduce the communication cost and improve the performance of system. Lin Zhou, Yan Chen, Taoying Li, Yingying Yu [18] in their paper had analysed the query optimization process based on semi-join operation combined with the practical application. They had also developed a new SDD-1 algorithm which is used for query optimization based on inner join operations.

Query optimization is the key factor in distributed database systems for improving the performance, reliability, efficiency of the system. Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu Yao [14] in their paper had put forward query optimization algorithm on multi relation inner join. Their experiment had proved that algorithm for query optimization on multi relation

inner join reduces the data volume of intermediate result and also decreases the overall communication cost.

Query Optimization is an important part of distributed database systems. Fan Yuanyuan, Mi Xifeng [37] in their paper had analyzed a number of optimization algorithms. They had composed another semi-associated database query calculation, which had the information of the moderate results produced from the usage of all sub-query as the unequivocal variable of system cost, and characterizes a capacity to focus the improvement advantages of this calculation. Their exploratory results had demonstrated that the enhanced semi-association inquiry improvement calculation had higher enhancement effectiveness, fundamentally decreases the measure of transitional result information, and viably diminishes the aggregate expense of the system interchanges.

In distributed database systems there are three processes by which data is distributed among various sites, these are: fragmentation, allocation, and replication. Fragmentation process requires empirical knowledge of data access and query frequencies. But Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque [21] had proposed a horizontal fragmentation technique that is capable of taking proper fragmentation decision at the initial stage by using the knowledge gathered during requirement analysis phase without the help of empirical data about query execution. It allocates the fragments properly among the sites of DDBMS.

In query processing in distributed systems the main problem is determining the sequence and the sites for performing the set of operations, if the query is subdivided into sub queries that require operations at geographically distributed databases, such that the operating cost for processing the query is minimized. For that B.M. Monjurul Alom, Frans Henskens and Michael Hannaford [10] had proposed a technique to process the query with minimum inter site data transfer. The proposed system is utilized to figure out which relations are to be apportioned into sections, and where the pieces are to be sent for preparing. The method by and large sections the relations that exist in the predicates (the WHERE condition) of the query. It picks more than one connection to stay divided which abuses parallelism, while recreating alternate relations (barring the divided relations) to the destinations of the divided relations. Thus the communication costs and local processing costs can be reduced due to the reduced size of the fragmented relations and the response time of queries can be improved.

In [5] Rho and March had designed a nested genetic algorithm that iteratively allocates data to nodes and to meet the efficient retrieval and update requirements where to process and access the data. In their nested genetic algorithm there were two genetic algorithms. The outer genetic algorithm addresses the first problem of query processing in distributed databases. That is data allocation to various sites. And the inner genetic algorithm addresses the second problem. That is efficiently accessing and processing the data.

The most important concern in query processing in distributed databases is minimizing the query execution time. So different allocation of sub queries to sites and their execution plans need to be optimized based on query type. This subquery allocation problem is NP-Hard. Therefore, Narasimhaiah Gorla and Suk-Kyu Song [23] had optimized the sub query allocation using genetic algorithm. Their proposed GA procedure was tested with simulation experiments on 20 complex queries. It had been found that GA produced better results in much less time than exhaustive method.

In distributed database design, the most important concern is for allocating data and relational operations (e.g. Select, Project, Join, Union) to various sites. Performance, cost concurrency control etc. must be taken care of while performing retrieval or updating queries at various nodes. In [36] Salvatore T. Walk and Sangkyu Rho, had added to a scientific model which figures out where information will be designated, the level of information replication, which duplicate of the information will be utilized for every recovery action, and where operations, for example, select, venture, join, and union will be performed. It has three stages. In the first place, the arrangement of query is dissected to a situated of document sections (vertical and flat segments) for allotment. Second, every query is deteriorated into a situated of steps, each of which references document sections. This may oblige extra join or union steps if asked for information has been divided. Third, the subsequent parts and inquiries are utilized as info to a numerical model that chooses a base expense information and operation portion. The scientific model considers system correspondence, neighbourhood transforming, and information stockpiling expenses. A hereditary calculation is created to settle this scientific detailing.

Distributed query processing algorithms require data reduction to reduce the communication cost. For reducing the data transfer between sites inner joins are used. Peter Scheuermann,

Eugene Inseok Chong [11] in their paper had introduced an efficient join processing algorithm for distributed database systems that makes use of bipartite graphs in order to reduce data communication costs and local processing costs. The bipartite graph represents the tuples joined by two relations. Their algorithm also reduces the relations at each site. They had represented an algorithm that can easily adapt to the changes in system configurations like additional resources available or change in data characteristics.

In distributed databases as data is located at different locations so there is need to join data from different sites to get the desired output. Joins are not always beneficial. Sometimes inner join proves to be more beneficial as it reduces the transmission cost. Manik Sharma, [12] in their paper had analyzed the performance of join and inner join in distributed database system over various parameters like query cost, memory used, CPU cost, input/output cost, Data Transmission, Total Time and Response Time. They had shown that inner joins are beneficial if the transmission cost is of main consideration, otherwise joins are beneficial.

In distributed databases data replication, join node selection, join order, and reduction by inner join all have significant impact on the efficiency of the distributed database system. Rho Sangkyu, T. March Salvatore [4] in their paper had compared the various distributed database design models. They had found that replication was most effective for retrieval intensive and high selectivity situations. Join node selection, join order, and reduction by inner join were most effective for balanced retrieval/update and low selectivity situations. There combination offered only marginal improvement. Their results had also shown that there is trade-off between total operating cost and average response time design criteria.

With the advancement in technology businesses want distributed data processing at any cost. Distributed data processing is a complex task because distributed systems can become very large involving thousands of heterogeneous sites, the state of the distributed systems may change rapidly as load over sites varies with time and new sites are added to the system. Donald Kossmann [35] in his paper had discussed query processing in distributed database and information systems. He had discussed architecture of query processing in distributed database systems including various techniques for joins, intraquery parallelism, reducing communication costs and exploiting caching and replication of data.

As the volume of data is increasing day by day relational databases today are seen with large queries containing many joins. Ordering of joins is very important as improper ordering may

have a negative effect on the efficiency of DBMS. Join ordering is NP-Complete. For smaller queries optimal join strategy can be found by dynamic programming. But for larger queries it becomes infeasible. Jim Wilenius [15] in his paper had discussed various approaches like Iterative Improvement, Simulated Annealing, Genetic Algorithms, Two phase optimization etc for producing efficient sub-optimal solutions to the join-ordering problem.

In distributed databases there is communication involved as data is located at different sites. Distributed database systems provide scalability and accessibility due to its architecture. While developing distributed database systems security cannot be compromised as it will cause a risk to integrity of data. Carolyn Mitchell [17] in her paper had discussed various security issues and there solutions for distributed database systems.

Traditional query optimizers assume that complete information about selectivity, resource availability is available at run time. But in case of distributed database systems as data is located at different sites and changes to data are possible at various sites. So static plans produced by traditional optimizers may not be optimal for many of their actual run-time invocations. Richard L. Cole [38] in his paper had proposed an optimization model for creating dynamic plans at compile time using exhaustive search in a dynamic programming framework. But his results had shown that despite using dynamic programming and memorization, dynamic plan optimization is slower than traditional optimization.

In distributed database environment, site task of relations is an imperative undertaking. At the point when there is join operations over different destinations are included then picking the site to convey join operation may have critical effect on the execution. W. Cornell Douglas, S. Yu Philip [20] in their paper had added to an approach to allot relations and focus join destinations all the while. The procedure breaks down inquiries into basic connection polynomial math steps extended with potential message steps and makes connection site and join site task together to enhance execution.

CHAPTER 3 PRESENT WORK

3.1 Problem Definition

Query Optimization in Distributed Databases is gaining popularity due to increasing business demands for distributed environment and due to advancement in technology of networks. Query optimization can be done in a number of ways like exhaustively, randomized, genetically etc. Optimization using genetic algorithm helps in finding the near optimal solution in less amount of time.

Considering the following in distributed database environment:

 $R = \{r_1, r_2, \dots, r_n\}, a \text{ set of fragments},$

 $S = \{s_1, s_2, \dots, s_m\}$, network sites,

 $Q = \{q_1, q_2, \dots, q_q\}$, set of sub queries.

As data is fragmented and located at different sites so to get the desired output there is need to join two sub queries located at different sites. So data from one of the site must be transmitted to the site of other. But using full join sometimes incurs extra communication cost when complete relation is not required for join. In such cases to reduce the communication cost involved between two sites inner join is used. But inner join reduction is not always viable approach as sometimes all attributes of relation are required for joins operation. In that case it increases the communication cost.

The present study is a humble effort made in analysing the effect of percentage participation of intermediate fragments of operations evaluating dynamically to minimize various costs like I/O cost, CPU cost and Communication cost of a distributed query. Communication cost is the cost of shipping the query and its results from the database site to the site where the query originated. Also effort is made in allocating full join and inner join operators based on dynamic percentage participation computed at run time which helps in reducing the communication cost involved in executing distributed database query. The main concentration will be on reducing the communication cost involved in transmitting the relations from one site to other in a dynamic environment by using either joins or inner joins or combination of both.

3.2 Research Objectives

The main objectives of this thesis are:

- Simulating dynamic distributed database environment in MATLAB.
- Create a database in MS ACCESS and create a connection string with MATLAB to access the database.
- Using Genetic algorithm for optimizing the results to minimize the communication cost involved in sending data from one site to other.
- Analyzing the effect of using full joins and inner joins as join operator on communication cost.
- Getting the best results with minimum communication cost involved.
- Analyzing communication cost and percentage improvement in reducing the communication cost involved by inner joins for different instances of database that is for dynamic database.

3.3 Methodology adopted for experiment

- > Convert the SQL query to relational algebra query.
- Represent the relational algebra query into query tree where each node represents different operations like selection, projection, joins etc.
- Dynamically calculate the percentage participation for nodes containing inner join, left join, right join operator.
- If (Is percentage participation for inner join (PP_{IJ}) < percentage participation for join (PP_J))

```
Then, Set PP=PP<sub>J</sub>
```

else

Set PP=PP_J

- > Calculate fragment size based on PP for join operation nodes.
- Give this dynamically computed fragment size for join operations as input to the simulator built in MATLAB.

- Simulated distributed database environment in MATLAB will use Genetic Algorithm to minimize the objective function which is communication cost involved in transferring data from one site to other while performing joins.
- Calculate the percentage reduction in communication cost for inner joins against joins for one instance of the database.
- Dynamically calculate the percentage participation for nodes containing join operator both for joins and inner joins for next instance of database.

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 DATA ALLOCATION

Data allocation is process of storing each fragment/ replica at site with optimal distribution, which increases locality of reference. It is one of the major task while designing a distributed database. There are four strategies regarding placement of fragments/ tables, which are as:

- i. **Centralized**: This strategy has one database which is stored at a central site and users at various sites access that database. Locality of reference is minimal in this case.
- ii. **Partitioned (Fragmented)**: It partitions database into various fragments and each fragment is assigned to one site. All the fragments are disjoint. Locality of reference is high, if fragments are allocated to sites where they are accessed most frequently.
- iii. Complete Replication: It consists of keeping of copies of complete database at each site.
 This strategy increases locality of reference, but sometimes problem of inconsistency arises.
- iv. Selective Replication: This strategy is a combination of above three strategies. Some relations or data items are fragmented to achieve high locality of reference, while some relations which are frequently accessed at more than one site and are not updated frequently, are replicated. This strategy provides benefits of all the above mentioned strategies.

Table 2: COMPARISON OF DIFFERENT ALLOCATION STRATGIES [8]

	Locality of	Reliability and	Performance	Storage	Communication
	Reference	Availability		costs	costs
Centralized	Lowest	Lowest	Not satisfactory	Lowest	Highest

Partitioned	High	Low for item, High for system	Satisfactory	Lowest	Low
Complete replication	Highest	Highest	Best for read	Highest	High for update, Low for read
Selective replication	High	Low for item, High for system	Satisfactory	Average	Low

Table 2: Comparison of different allocation strategies

DISTRIBUTED SUB QUERY ALLOCATION

As in case of distributed databases, database relations are allocated on different sites. So, cost incurred in executing a query does not only consists of input-output costs, but communication cost is also there. So, an optimized sub query allocation plan needs be generated which gives such a plan for execution of sub queries that the total cost for query gets reduced.

One such approach based on genetic algorithm [39] devised by Dr. Virk [40] is works as follows:

- **1.** Read the input data file which simulates the distributed environment, by providing allocation plan, communication coefficients etc.
- **2.** Generate an initial population of length equal to number of operations, giving feasible allocation plans. A chromosome is of the form:

3. Calculate the fitness function of each member of the generated initial population. Then rank and sort the population in order of fitness.

- **4. Selection Operation**: Select two parents from the population or operation allocation pool without replacement.
- 5. Crossover and mutation: Crossover the selected parent strings and then apply mutation operation to generate a new operation allocation plan. Calculate the fitness of new operation allocation plan.
- **6.** Add the new solutions in the pool and replace the worst from it by replacing it with the best of the previous generation.
- If the number of generations is less than maximum number of generations, then go to step
 4, otherwise print the fittest solution of the final population.
- 8. Stop.

I have worked on this algorithm. It had been coded in Pascal. I simulated it using java. The environment has been simulated by taking a set 'S' of data distribution sites, a set 'R' of relations and a set 'Q' of relations. Let a query 'q' be broken into a set 'j' of sub queries on the set of relations 'R'.

4.2 DECISION VARIABLES USED BY SIMULATOR

- a. Data Allocation Variable: A_{rs}
 - $A_{rs}=1$ (if there is a copy of relation/fragment 'r' at site's')
 - $A_{rs}=1$ (if there is a copy of relation/fragment 'r' at site's')

b. Variables used for site selection for sub query execution:

 S^{q}_{ys} (sequence of various sites where sub queries gets executed)

 $S^{q}_{ys}=1$ (if sub query 'y' of query 'q' is done at site's')

 $S^{q}_{ys}=0$ (otherwise)

c. A notation is proposed for Join operations to handle left previous operation of a join operation (LPO) & right previous operation of a join (RPO) as following:

 $S_{yv[p]S}=1$ (for [p]=1 for LPO(left previous operation) of a join)

 $S_{yv[p]S}=1$ (for [p]=2 for RPO(left previous operation) of a join)

 $S_{yv[p]S}=0$ (otherwise)

d. I^q_{ry} represents whether the sub query 'y' of query 'q' references intermediate relation/fragment 'r' :

 $I_{ry}^{q} = 1$ (if the base relation 'r' or intermediate fragment 'r' is used by sub query 'y' of 'q' query)

 $I^{q}_{rv}=0$ (otherwise)

e. Cost Function used:

The cost of processing a query is given by:

QC_i=LPC_i+CC_i (LPC stands for Local Processing Cost,

CC: Communication Cost)

4.3 LOCAL PROCESSING COSTS

Local Processing Costs for processing a query's simple selection & projections may be represented as costs of transforming input relation from disk to memory and CPU time for processing a selection or projection at site *S*.

$$LPC_{y}^{q} = \sum_{s} S_{ys}^{q} (IOC_{s} \sum_{r} I_{ry}^{q} M_{ry}^{q} + CPC_{s} \sum_{r} I_{ry}^{q} M_{ry}^{q})$$
(4.1)

Where $M_{ry}^q = No.$ of memory blocks of relations 'r' accessed by sub query 'y' of q.

 $IOC_s = Input Output Cost Coefficient of site s in millisecond per 8k bytes$

 $CPC_s = CPU Cost coefficient of site s.$

This equation represents input output costs in storing the intermediate results of previous operations to the site of current join operation.

Local processing costs for a join may be given as

$$LPC_{y}^{q} = \sum_{s} S_{ys}^{q} (IOC_{s} \sum_{p} \sum_{r} \rho_{p} I_{ryv}^{q} [p] M_{ryv}^{q} [p]$$

$$+ \sum_{s} S_{ys}^{q} (IOC_{s} \prod_{r} I_{ry}^{q} M_{ry}^{q} + CPC_{s} \prod_{r} I_{ry}^{q} M_{ry}^{q})$$

Where

' ρ_p ' 'Percentage Participation' & is defined as the ratio of resultant different values of a field to the domain of that field (0 <= ρ_p <= 1).

$M^q_{ryv[p]}$	is the size of an intermediate relation.
V _[p]	represents 'left previous operation' of a join for $p=1$ &
	'right previous operation' of a join for $p=2$.

This equation represents CPU & I/O costs for performing current join operations at site's'.

4.4 COMMUNICATION COSTS

These costs are involved in case of join operations and final operation only. As we have assured that selections & projections of retrievals on relations are to be done only at sites which hold a copy of those base relations. Join may be performed at any of all possible sites.

$$\therefore COMM_y^q = \sum_p \sum_s \sum_v S_{yv[p]s}^q S_{yv}^q C_{sv} \left(\sum_r I_{ryv[p]}^q M_{ryv[p]}^q \right)$$

Where C_{sv} (is the communication cost coefficient between site s and v) $C_{sv} = 0$ if (s = v) (i.e. if the previous operations and current join operation is done at the same site)

If the final operation is not done at the query originating/destination site then a Communication Cost component is added separately for costs involved in sending the final query result to the query originating/destination site.

f. Objective Function:

The Objective Function is to: Minimize the sum of all costs incurred: i.e.

$$\min_{s} \left\{ \begin{array}{cccc} (\sum_{s} S_{ys}^{q} (IOC_{s} \sum_{r} I_{ry}^{q} M_{ry}^{q} + CPC_{s} \sum_{r} I_{ry}^{q} M_{ry}^{q})) & + \\ (\sum_{s} S_{ys}^{q} (IOC_{s} \sum_{p} \sum_{r} \rho_{p} I_{ry\nu[p]}^{q} M_{ry\nu[p]}^{q}) & + \\ \sum_{s} S_{ys}^{q} (IOC_{s} \prod_{r} I_{ry}^{q} M_{ry}^{q} + CPC_{s} \prod_{r} I_{ry}^{q} M_{ry}^{q}) & + \\ (\sum_{p} \sum_{s} \sum_{\nu} S_{y\nu[p]s}^{q} S_{y\nu}^{q} C_{s\nu} (\sum_{r} I_{ry\nu[p]}^{q} M_{ry\nu[p]}^{q})) & + \\ (\sum_{p} \sum_{s} \sum_{\nu} S_{y\nu[p]s}^{q} S_{y\nu}^{q} C_{s\nu} (\sum_{r} I_{ry\nu[p]}^{q} M_{ry\nu[p]}^{q})) & 4.4 \end{array} \right)$$

4.5 EXPERIMENTAL SETUP

Consider the Department Database for experimental analysis:

Select the details of those employees who are both depositor and student in the department.

SQL Query

Select * from ID,department,student,depositor,salary,employee where employee.employee_name=depositor.employee_name AND employee.employee_name=student.employee_name AND student.salary_number=salary.salary_number AND salary.department_name=department.department_name AND department.department_name=ID.department_name

Query Tree

Assuming there are total 10 sites available. Considering that each base relation is allocated to different sites. Query tree for the above query can be drawn as shown in Figure 1.19. From the query tree it can be seen that there are

- selection operations = 7,
- projection operations = 7,
- total join operations = 6.

B1, B2, B3, B4, B5, B6, B7 denotes different base relations allocated to different sites. From the tree it is also clear that one of the base relations (student) is replicated.

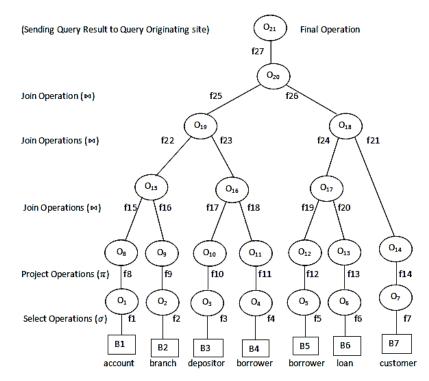


Figure 8: Query Tree for Distributed Database.

Static input provided to the simulator

Communication Coefficients, I/O Coefficients, CPU Coefficients are assumed to be static in nature and the following table shows the static coefficients provided as input to the simulator.

Communication	Sites									
Coefficients'	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
S1	0	10	12	13	14	11	12	13	14	11
S2	10	0	11	12	13	14	11	12	13	14
S3	12	11	0	11	12	13	14	11	12	13
S4	13	12	11	0	11	12	13	14	11	12
S5	14	13	12	11	0	11	12	13	14	11
S6	11	14	13	12	11	0	11	12	13	14
S7	12	11	14	13	12	11	0	11	12	13

Table 3: Communication, I/O, CPU Cost Coefficients [29].

S8	13	12	11	14	13	12	11	0	11	12
S9	14	13	12	11	14	13	12	11	0	11
S10	11	14	13	12	11	14	13	12	11	0
I/O Coefficients	1	1.1	1.2	1	1.1	1	1.2	1	1.1	1
CPU Coefficients	1.1	1	1	1.1	1	1.2	1	1	1.2	1

Table 4 shows a matrix of 0s and 1s having 1s at those places which represents different operations allocated at different fragments.

subqueries→	SE	SELECTIONS						PROJECTIONS				JOINS				Final					
↓fragments	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Opn.21
f1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
f9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
f10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
f11	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
f12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
f13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
f14	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
f15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
f16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

 Table 4: Intermediate fragments used in various operations [29].

f17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
f18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
f19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
f20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
f21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
f22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
f23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
f24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
f25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
f26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
f27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Fragment size for selection and projection operations are assumed to remain static during the whole run of simulator, also the size of final operation is kept static and constant. Assume the size of each base relation residing at different sites to be constant as 100 blocks. However the cardinalities of relation could be different. The percentage participation for selection and projection operators are assumed to be constant and are taken as 0.7 for selection and 0.9 for projection and based on these values intermediate fragment size for selection and projection are calculated as follows and these static values are provided to the simulator.

- Operation 1: Selection on B1 -- Size: $100 \ge 0.7 = 70$ blocks
- Operation 2: Selection on B2 -- Size: $100 \ge 0.7 = 70$ blocks
- Operation 3: Selection on B3 -- Size: $100 \ge 0.7 = 70$ blocks
- Operation 4: Selection on B4 -- Size: $100 \times 0.7 = 70$ blocks
- Operation 5: Selection on B5 -- Size: $100 \ge 0.7 = 70$ blocks
- Operation 6: Selection on B6 -- Size: $100 \ge 0.7 = 70$ blocks
- Operation 7: Selection on B7 -- Size: $100 \times 0.7 = 70$ blocks
- Operation 8: Projection on B1 -- Size: $70 \times 0.9 = 63$ blocks
- Operation 9: Projection on B2 -- Size: $70 \ge 0.9 = 63$ blocks
- Operation 10: Projection on B3 -- Size: $70 \ge 0.9 = 63$ blocks
- Operation 11: Projection on B4 -- Size: $70 \ge 0.9 = 63$ blocks
- Operation 12: Projection on B5 -- Size: $70 \ge 0.9 = 63$ blocks

Operation 13: Projection on B6 -- Size: $70 \times 0.9 = 63$ blocks

Operation 14: Projection on B7 -- Size: $70 \times 0.9 = 63$ blocks

Operation 21: $f_{27} \rightarrow$ Final Result to Query Site, Size: 10 blocks

4.5.1 Dynamic Percentage participation Calculated by Simulator at run time

Considering the above database schema, SQL query and query tree initially Percentage participation for both joins and inner joins are calculated for Base Relations B1, B2, B3, B4, B5, B6, and B7.

These are calculated by using the following formula [1]

$$PP_{J}(R, S) = \frac{card(R \bowtie S)}{card(R)*card(S)}$$
$$PP_{IJ} = \frac{card(\prod_{A}(S))}{card(dom [A])}$$

As inner join is a relational algebra operator so it is implemented in SQL using inner join as it gives the same output as inner join. And simply join is implemented as Full Outer Join as its output is same as simple join in relational algebra.

Decomposing the SQL query and calculating the Percentage participation for various Sub Queries

The above SQL Query can be decomposed into various sub queries. These sub queries using join and inner join are shown below and how simulator calculates their percentage participation are also shown below:

Using Joins

1. Join on $f_{22} = f_{15} \bowtie f_{16}$

j_sqlquery1='Select * from ID left join department on ID.department_name=department.department_name Union All Select * from ID right join department on ID.department_name=department.department_name'; card(ID⊳department) = 268

card(ID)*card(department) = 100 *80

 $PP_{J}(ID \bowtie department) = \frac{268}{100*80} = 0.0335$

2. Join on $f_{23} = f_{17} \bowtie f_{18}$

j_sqlquery2='Select * from depositor left join student on

depositor.employee_name=student.employee_name Union All Select * from depositor right join student on depositor.employee_name=student.employee_name'; card(depositoristudent) = 120 card(depositor)*card(student) = 70*50

 PP_J (depositor \bowtie student) = $\frac{120}{70*50} = 0.0343$

3. Join on $f_{24} = f_{19} \bowtie f_{20}$

j_sqlquery3='Select * from student left join salary on student.salary_number=salary.salary_number Union All Select * from student right join salary on student.salary_number=salary.salary_number'; card(student⋈salary) = 105 card(student)*card(salary) = 55 *50 268

 $PP_{J}(student \bowtie salary) = \frac{268}{100*80} = 0.0382$

4. Join on
$$f_{26} = f_{24} \bowtie f_{21}$$

j_sqlquery4='Select * from (student left join salary on salary.salary_number=student.salary_number) right join employee on employee.employee_name=student.employee_name'; card((student⋈salary)⋈employee) = 124 card(student⋈salary)*card(employee) = 123 *105 PP_J((student⋈salary)⋈employee)= $\frac{124}{123 * 105} = 0.0096$

Using Inner joins

1. Inner join on $f_{22} = f_{15} \ltimes f_{16}$

sj_sqlquery1='Select * from ID inner join department on ID.department_name=department.department_name'; card ($\prod_{department _name}$ (ID \ltimes department)) = 100 card(dom[department_name]) = 100 PP_{IJ} (ID \ltimes department) = $\frac{100}{100} = 1$ It comes out to be 1 because department_name is foreign key in ID relation and primary key in department relation. If R.A being a foreign key of S (S.A is a primary key). In this case the inner join percentage participations 1 since $\prod_A(S) = card(dom[A])$ [4].

2. Inner join on $f_{23} = f_{17} \ltimes f_{18}$

sj_sqlquery2='Select * from depositor inner join student on depositor.employee_name=student.employee_name'; card ($\prod_{employee _name}$ (depositor \ltimes student)) = 2 card(dom[employee_name]) = 123 PP_{IJ} (depositor \ltimes student) = $\frac{2}{123}$ = 0.0163

3. Inner join on $f_{24} = f_{19} \ltimes f_{20}$

sj_ sqlquery3= 'Select * from student inner join salary on student.salary_number=salary.salary_number'; card (\prod_{salary_number} (student \ltimes salary)) = 50 card(dom[salary_number]) = 55 PP_{IJ} (student \ltimes salary) = $\frac{50}{55}$ = 0.9091

4. Inner join on $f_{26} = f_{24} \ltimes f_{21}$

sj_sqlquery4='Select * From (student inner join salary on salary.salary_number=student.salary_number) inner join employee on student.employee_name=employee.employee_name'; card ($\prod_{employee _name}$ ((student \ltimes salary) \ltimes employee)) = 47 card(dom[employee_name]) = 123 PP_{IJ} ((student \ltimes salary) \ltimes employee) = $\frac{47}{123}$ = 0.3821

Operations O_{20} and O_{19} are implemented as simple Join not Inner join because as query tree is traversed upwards the selection is getting refined based on conditions therefore the domain of relation is coming down and hence PP_{IJ} will move up that is percentage participation for inner join will keep on increasing as query tree is traversed upwards. But still percentage participation for them are computed as they will be needed to compute the fragment size for join relations further in the code. So O_{20} and O_{19} are implemented simply using joins as follows:

- Join on f₂₅ = f₂₂ ⋈ f₂₃ sqlquery5='Select * from ID,department,student,depositor where student.employee_name=depositor.employee_name AND depositor.ID_number=ID.ID_number AND ID.department_name=department.department_name'; card(f₂₂ ⋈ f₂₃) = 2 card(f₂₂)*card(f₂₃) = 268 *2 PP_J(f₂₂ ⋈ f₂₃) = ²/_{268*2} = 0.0037
- Join on $f_{27} = f_{25} \bowtie f_{26}$

sqlquery6='Select * from ID,department,student,depositor,salary,employee where employee.employee_name=depositor.employee_name AND employee.employee_name=student.employee_name AND student.salary_number=salary.salary_number AND salary.department_name=department.department_name AND department.department_name=ID.department_name'; card(f₂₅ \bowtie f₂₆) = 2 card(f₂₅)*card(f₂₆) = 2 *124 PP_J(f₂₅ \bowtie f₂₆) = $\frac{2}{2*124}$ = 0.0081

After calculating the percentage participation, these are provided as input to the simulator which in turn calculates the fragment size for various operations. Simulator is run for three different cases. For all the cases the GA Parameters are kept same.

Case 1: Using Joins as Join Operators

In this case percentage participation for join i.e. PP_J calculated dynamically as shown above are given as input to the simulator and fragment size are calculated for them as shown below:

Operation 15: $(f_{15} \bowtie f_{16}) \rightarrow f_{22}$, Size: 63 x 0.0335 PP_J(1) =2.1105 blocks Operation 16: $(f_{17} \bowtie f_{18}) \rightarrow f_{23}$, Size: 63 x 0.0342 PP_J(2) = 2.1546 blocks Operation 17: $(f_{19} \bowtie f_{20}) \rightarrow f_{24}$, Size: 63 x 0.0381 PP_J(3) = 2.4003 blocks Operation 18: $(f_{21} \bowtie f_{24}) \rightarrow f_{26}$, Size: 63 x 0.0096 PP_J (4) = 0.6048 blocks Operation 19: $(f_{22} \bowtie f_{23}) \rightarrow f_{25}$, Size: 63 x 0.0037 PP_J (5) = 0.2331 blocks Operation 20: $(f_{21} \bowtie f_{24}) \rightarrow f_{27}$, Size: 63 x 0.0081 PP_J (6) = 0.5103 blocks With these fragment size values the simulator is run. Here out of 50 only 2 generations of GA Simulator calculating the costs are shown.

Parameters used:

Size of population: 50 Length of chromosome: 20

Crossover Probability: 0.6 Mutation Probabilities: 0.2

Generation 1					
	Chromosomes	Fit Value	I/O Cost	CPU Cost	Comm Cost
Total Cost					
1.	8 6 1 8 1 7 7 8 7 10 8 6 10 6 1 2 9 5 9 9	260.591981	143.635728	143.621480	96.484454
383.741662					
2.	10 10 1 8 3 10 6 10 1 10 4 10 7 6 7 7 2 2 6 2	260.038307	155.716263	131.614241	97.228222
384.558726					
3.	8 3 6 1 9 10 6 2 2 3 9 3 9 6 8 2 10 6 7 4	274.515161	139.855502	132.160568	92.262536
364.278606					
4.	88377531922793842375	271.736089	140.474023	135.350331	92.179765
368.004119					
5.	74418472926594811719	271.741094	135.660092	139.861025	92.476224
367.997341					
6.	8 1 9 10 10 9 8 5 1 4 4 1 10 6 3 4 4 1 8 10	288.165286	143.351571	139.893890	63.777602
347.023063					
7.	2 10 1 8 9 9 1 4 3 9 4 10 2 3 4 2 9 6 6 2	273.644284	143.802433	143.830359	77.805135
365.437927					
8.	2 4 1 6 4 2 3 10 7 5 10 2 8 8 6 2 6 9 2 3	258.346482	139.681591	147.416449	99.979034
387.077073					
9.	7 7 7 10 1 8 3 2 4 10 4 2 3 4 10 8 10 4 2 7	271.430160	135.977761	131.345890	101.095245
368.418896					
10.	10 2 2 2 4 4 3 3 9 5 5 7 8 2 7 5 9 9 3 7	281.654746	152.351056	139.318449	63.375107
355.044612					
11.	2 8 5 2 1 7 2 8 3 10 3 5 2 3 1 9 8 2 5 10	265.061571	140.159865	143.038331	94.072638
377.270835					
12.	959484984381047567657	260.544255	147.862761	139.918449	96.030745
383.811955					
13.	777103932755784759973	297.532484	152.881056	139.248449	43.968251
336.097755					
14.	7 1 1 8 10 6 2 9 4 5 8 1 1 7 7 6 8 8 8 9	264.529710	143.662433	139.719570	94.647367
378.029371					
15.	2 4 9 9 1 1 6 6 3 5 10 6 6 9 5 7 7 3 4 10	264.016095	155.964229	132.492786	90.307771
378.764787					

16.	1 3 9 1 10 2 5 2 7 7 3 5 1 5 2 2 4 2 5 4	282.790799	144.224865	135.470451	73.922979
353.618295 17.	5 5 4 8 7 8 10 10 2 6 3 4 5 3 7 2 7 1 3 5	261.204259	156.196364	131.345890	95.299896
382.842150					
18. 383.510313	7 4 9 6 4 10 9 6 7 2 7 1 3 9 9 5 4 1 8 6	260.749181	144.041571	144.093129	95.375614
19.	6 8 5 7 6 4 8 7 2 2 1 1 5 7 5 6 2 7 5 2	265.562111	143.894557	139.609331	93.055853
376.559741					
20. 355.837186	69661071084611681026314	281.027402	139.304229	140.260906	76.272051
21.	2 4 2 2 2 7 3 7 1 8 5 1 3 10 2 9 6 10 1 5	262.335408	144.232433	147.148786	89.810174
381.191394					
22.	7 3 3 10 3 8 3 5 7 5 7 7 8 4 7 5 9 9 3 7	283.551837	152.851056	139.048449	60.769697
352.669202 23.	4 2 6 4 10 7 4 10 5 7 2 4 2 6 2 9 7 4 10 7	256.754427	151.923296	139.683890	97.870032
389.477218		2001/01/2/	1011/202/0	10,10000,0	2.107.0002
24.	4 1 9 10 7 8 1 4 7 2 8 1 3 1 7 4 6 3 6 9	271.132055	143.750092	143.651480	81.422394
368.823966 25.	9821464545610722510461	204 672091	143.631571	121 049010	62 777602
25. 339.358092	9821464545610722510461	294.673981	143.031371	131.948919	63.777602
26.	5 4 8 8 2 2 5 7 8 7 3 7 5 10 2 10 8 6 5 3	273.784343	140.022761	131.140449	94.087771
365.250981					
27. 385.190082	75548487221157962522	259.612084	143.98572	147.247331	93.957023
28.	10 2 3 4 1 7 5 10 2 7 2 4 2 8 9 6 7 3 6 9	257.038397	148.145092	147.180480	93.721361
389.046933					
29.	5 10 1 8 3 3 6 7 5 3 10 10 2 2 2 7 6 1 5 8	257.119551	148.171036	139.273890	101.479212
388.924139 30.	2199991639810236510662	285.710137	139.907433	140.261359	69.836290
350.005082	2177771037010230310002	205.710157	157.707455	140.201337	07.830270
31.	9 8 2 6 4 1 4 5 2 3 5 10 3 10 2 10 8 6 1 9	286.478149	139.677433	131.742142	77.647187
349.066763		0.00.000.000		105 000001	
32. 378.883145	8 1 9 10 10 9 8 6 2 9 2 1 2 4 3 4 5 7 5 3	263.933620	147.680420	135.920331	95.282394
33.	8 5 1 3 5 3 5 1 5 9 1 10 7 10 3 7 3 7 5 4	257.393129	160.463695	131.411451	96.635614
388.510759					
34.	2 4 9 2 10 1 6 5 7 7 6 5 1 10 2 2 4 8 7 1	267.631197	143.810502	135.810451	94.027565
373.648517 35.	8 4 3 5 1 2 10 10 6 7 3 8 9 1 1 2 7 5 7 5	270.345832	147.945193	135.550331	86.401060
369.896584					
36.	8 6 7 7 1 7 5 7 9 10 8 6 9 6 10 2 9 5 9 3	273.712788	144.076591	139.832241	81.437635
365.346467	6 7 6 7 7 7 8 0 8 4 6 1 7 7 7 5 7 4 8 1	291 620707	151 001571	121 956000	71 227004
37. 355.074804	62622289846122752481	281.630797	151.881571	131.856009	71.337224
38.	8 8 3 7 10 4 7 8 5 7 2 10 2 3 8 5 8 5 2 1	284.564489	140.089865	131.131451	80.192875
351.414192					

39.	64355468552759896	3 2 7 271.	919803 139.90	0420 147.647331	80.207738
367.755489 40.	586577719461346610	0 5 3 8 276.	878724 135.91	9331 147.667331	1 77.582295
361.168957 41.	782646452311079210	8653 286.	288272 139.78	2761 131.850449	9 77.665066
349.298276 42.	8 5 1 3 2 3 5 6 5 9 6 10 7 10 3 7	3771 257.	491972 160.46	8160 131.551451	96.342012
388.361622 43.	6 10 3 7 1 4 7 8 9 10 8 6 10 6 1	29591 258	572480 143.76	4865 143.761361	99.212533
386.738759 44.	69622583846122742		833490 147.86		
345.025690					
45. 363.976640	959484984310547565	5 2 9 3 274.	742906 143.84		
46. 349.530981	987946352311071021	08653 286.	097672 140.01	2761 131.810449	9 77.707771
47. 374.399785	85897536296591811	3 8 10 267.	094170 135.88	9229 139.799331	98.711225
48. 333.662156	784189101922796821	0679 299.	704351 139.71	6364 131.930687	62.015105
49. 374.853026	7 6 4 1 8 4 7 7 2 2 9 7 5 8 8 10 9	266.	771222 139.95	6364 139.613890) 95.282772
50. 364.263269	191081348226598411	01810 274.	526719 135.47	1571 139.753890) 89.037809
Fitness Sum 1.3612e+004	Maximum Fitness Minimum 299.7044 256.754	8			
Generation 50	255.70++ 250.75-				
Generation 50	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1	Fit Value 4 2 3 270.4	I/O Cost CP 19737 136.1177	U Cost Comm C 761 135.864890	Cost Total Cost 97.812842
1. 369.795494 2.	Chromosomes	4 2 3 270.4	19737 136.1177	135.864890	
1. 369.795494 2. 375.293397 3.	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1	4 2 3 270.4 1 2 3 266.45	.19737 136.1177 58192 152.1677	761 135.864890 761 139.413890	97.812842 83.711745
1. 369.795494 2. 375.293397 3. 376.566494 4.	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6	. 4 2 3 270.4 1 2 3 266.45 7 4 3 10 265.55	19737 136.1177 58192 152.1677 57349 151.9305	761 135.864890 761 139.413890 502 131.795890	97.812842 83.711745
1. 369.795494 2. 375.293397 3. 376.566494 4. 382.712812 5.	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7	4 2 3 270.4 1 2 3 266.4 7 4 3 10 265.5 7 6 5 7 261.25	.19737 136.1177 58192 152.1677 57349 151.9305 92533 144.1077	761 135.864890 761 139.413890 502 131.795890 761 143.327449	97.812842 83.711745 92.840103 95.277602
1. 369.795494 2. 375.293397 3. 376.566494 4. 382.712812 5. 373.077677 6.	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6	. 4 2 3 270.4 1 2 3 266.4 7 4 3 10 265.5 7 6 5 7 261.2 10 10 3 6 268.04	.19737 136.1177 58192 152.1677 57349 151.9305 92533 144.1077 40695 143.6705	761 135.864890 761 139.413890 502 131.795890 761 143.327449 502 139.589570	97.812842 83.711745 92.840103 95.277602 89.817605
1. 369.795494 2. 375.293397 3. 376.566494 4. 382.712812 5. 373.077677	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6 5 4 4 8 7 8 10 10 4 2 7 4 9 6 9 5	. 4 2 3 270.4 1 2 3 266.4 7 4 3 10 265.5 7 6 5 7 261.2 10 10 3 6 268.0 8 4 3 1 281.4	.19737 136.1177 58192 152.1677 57349 151.9305 92533 144.1077 40695 143.6705 13027 136.1905	761 135.864890 761 139.413890 502 131.795890 761 143.327449 502 139.589570 502 138.974009	97.812842 83.711745 92.840103 95.277602 89.817605 80.185066
1. 369.795494 2. 375.293397 3. 376.566494 4. 382.712812 5. 373.077677 6. 355.349577	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6 5 4 4 8 7 8 10 10 4 2 7 4 9 6 9 5 8 5 3 7 10 5 7 8 5 7 2 10 2 3 8 6	. 4 2 3 270.4 1 2 3 266.4 7 4 3 10 265.5 7 6 5 7 261.29 10 10 3 6 268.04 8 4 3 1 281.41 1 3 7 5 270.98	.19737 136.1177 58192 152.1677 57349 151.9305 92533 144.1077 40695 143.6705 13027 136.1905 84649 143.9290	761 135.864890 761 139.413890 762 131.795890 761 143.327449 502 139.589570 502 138.974009 723 136.050331	97.812842 83.711745 92.840103 95.277602 89.817605 80.185066 89.045240
1. 369.795494 2. 375.293397 3. 376.566494 4. 382.712812 5. 373.077677 6. 355.349577 7. 369.024594	Chromosomes 5 6 4 5 7 7 7 3 1 4 6 7 9 9 8 10 1 8 4 3 1 8 3 4 6 3 7 5 2 8 2 3 3 6 1 3 8 1 10 8 5 6 3 5 6 6 6 3 10 7 2 8 5 2 4 7 2 6 3 10 3 10 2 9 1 6 5 4 4 8 7 8 10 10 4 2 7 4 9 6 9 5 8 5 3 7 10 5 7 8 5 7 2 10 2 3 8 6 9 1 3 1 5 1 6 2 2 3 10 9 9 1 10 3	.4 2 3 270.4 1 2 3 266.4 7 4 3 10 265.5 7 6 5 7 261.2 10 10 3 6 268.0 8 4 3 1 281.4 1 3 7 5 270.98 10 5 1 10 2 271.59	.19737 136.1177 .58192 152.1677 .57349 151.9305 .92533 144.1077 40695 143.6705 13027 136.1905 84649 143.9290 91457 148.1874	761 135.864890 761 139.413890 502 131.795890 761 143.327449 502 139.589570 502 138.974009 923 136.050331 133 131.245890	97.812842 83.711745 92.840103 95.277602 89.817605 80.185066 89.045240 88.766771

10.	5 4 8 8 2 5 5 7 8 8 3 7 7 2 1 10 10 4 6 9	271.118110	135.922433	135.108039	97.812465
368.842937	5466255766577211010409	2/1.118110	155.922455	155.108059	97.812403
11.	2 4 1 6 4 3 1 10 9 2 10 2 8 8 6 2 6 6 2 6	268.298127	139.501036	147.656687	85.561986
372.719709					
12.	9 5 9 4 8 4 9 8 4 3 8 10 2 7 5 7 2 2 9 10	274.093446	152.034865	131.904241	80.899972
364.839078					
13.	$5\ 7\ 5\ 1\ 7\ 10\ 5\ 4\ 6\ 2\ 10\ 9\ 9\ 3\ 6\ 4\ 5\ 4\ 2\ 2$	273.204515	140.041899	143.532890	82.451373
366.026162					
14.	3 3 7 3 8 8 3 2 2 1 5 1 4 10 5 9 5 10 4 2	257.385258	148.387433	139.180786	100.954421
388.522641					
15.	8 9 10 8 1 3 4 2 3 7 6 7 6 8 6 10 8 2 2 1	267.054736	135.694865	139.649451	99.110755
374.455071	(()) 4) 10 7 2 8 2 7 5 2 0 10 0 4 7 2	256 966010	144 101264	147 411200	07 704760
16. 389.308014	6 6 2 3 4 2 10 7 3 8 2 7 5 3 9 10 9 4 7 2	256.866019	144.191364	147.411890	97.704760
17.	46418478225528626323	270.769651	139.560420	147.507331	82.249857
369.317608		2701107001	1001000120	11,100,001	021217007
18.	2 4 1 6 4 2 3 10 7 5 10 2 8 8 8 2 1 5 8 10	271.054052	139.675400	135.500331	93.754374
368.930105					
19.	86371718855781359837	285.732620	152.162227	139.439331	58.375984
349.977542					
20.	578103932910821061109593	276.915823	140.011591	143.421241	77.687738
361.120570					
21.	3 3 7 3 9 10 8 10 6 10 9 9 9 3 6 1 5 4 2 2	270.185596	140.241899	143.702890	86.171167
370.115955 22.	0 4 2 1 0 0 4 6 2 7 5 0 0 2 2 2 6 1 5 2	260 462211	147 001900	120 612800	06 416019
22. 383.932707	8 4 3 1 8 9 4 6 3 7 5 8 8 2 2 3 6 1 5 2	260.462311	147.901899	139.613890	96.416918
23.	49622589846126754541	267.417896	147.725400	136.061906	90.159245
373.946551					
24.	5 3 10 8 1 3 4 9 2 8 7 9 5 8 8 10 9 4 7 10	278.116238	139.915502	139.453890	80.192498
359.561889					
25.	2968131072327181106472	269.578231	135.861364	143.512890	91.575580
370.949834					
26.	1 6 5 1 2 2 5 10 8 9 10 4 2 5 5 2 4 3 4 6	277.276518	143.709229	135.612025	81.329553
360.650807			151 000 100	100 500 100	0.5.0051.50
27. 387.012072	968861071019710759351069	258.389873	151.992433	139.782480	95.237158
28.	69622584846122752581	280.511270	151.820400	131.981451	72.690065
356.491916	07022304040122732301	200.511270	151.020400	151.701451	72.090003
29.	5 2 4 8 7 8 10 10 2 2 4 3 6 6 9 5 4 7 5 6	264.323794	143.783695	143.388570	91.151602
378.323867					
30.	7791076997281311974101	256.402182	148.396571	143.823009	97.792702
390.012282					
31.	3 4 3 1 8 3 4 4 3 1 1 2 8 2 4 3 6 1 5 2	273.122182	143.966899	143.452890	78.716712
366.136500					
32.	8 10 9 9 3 3 6 9 4 6 10 1 3 2 9 7 6 1 10 8	268.656366	148.056571	147.931890	76.234246
372.222707					

33.	935646452391	0 2 5 5 2 6 3 4 6	271.860864	143.989229	139.911025	83.934963
367.835217						
34.	1 5 9 7 2 4 5 10 2 9 7	4 7 10 2 10 8 6 5 3	283.165007	140.012761	131.650449	81.487771
353.150981						
35.	768184782969	94871972	277.116929	143.780193	136.039449	81.038860
360.858502						
36.	3 3 7 3 8 10 8 4 3 2 10	0 5 4 3 6 1 5 4 2 10	280.054644	140.211036	143.082890	73.779245
357.073172						
37.	8 4 3 5 1 2 10 8 10 10	48761072292	279.705859	147.730728	131.444241	78.343463
357.518432						
38.	3 3 1 9 8 5 8 10 5 9 3	441127875	263.013270	148.066364	135.650331	96.492258
380.208953						
39.	284827177831	3 10 2 9 6 4 1 5	263.017386	144.042433	147.183345	88.977224
380.203002						
40.	128221478688	8 10 9 1 4 4 7 6	261.249920	139.435502	147.352129	95.987607
382.775237						
41.	972935452361	0752108653	283.027252	140.282761	131.680449	81.359656
353.322866			001101001	1 10 5055 (1	100	04 400400
42.	1 10 8 2 4 4 3 3 9 8 6	251786427	274.151551	143.737761	139.623890	81.400100
364.761751	400554605501	2 4 7 10 9 5 2 9	271 415740	1 42 0 40 2 2 1	101 771001	02 017000
43.	429554685521	34/108538	271.415740	143.849331	131.771331	92.817809
368.438470	(4 2 2 1 5 2 (7 4 9 4	79514525	278 024606	120.095102	120 (40221	90.045752
44. 359.680278	643315367484	/ 8 5 1 4 5 5 5	278.024696	139.985193	139.649331	80.045753
45.	631741522325	272961015	268.176564	144.282433	139.470786	89.135442
45.	031741322323	575801015	208.170504	144.262455	139.470780	09.133442
46.	284827377851	310299565	256.818262	148.276263	147.080241	94.023905
389.380409	204027577051	510277505	250.010202	140.270205	147.000241	74.023703
47.	169732582974	25526323	262.269485	144.225420	139.679331	97.382459
381.287210	107752502771	23320323	202.209 103	111.223120	157.677551	<i>y</i> 7.50215 <i>y</i>
48.	2 2 1 6 4 2 3 10 7 5 10	288626349	258.148333	139.785092	147.309025	100.280067
387.374184						
49.	4 10 5 2 8 3 5 2 7 5 6	378323756	268.135543	156.448695	131.271570	85.225444
372.945709						
50.	711136284371	17738883	273.259962	152.193296	131.741331	82.017264
365.951891						
Fitness Sum	Maximum Fitness	Minimum Fitness	Average			
1.3503e+004	285.7326	256.4022	270.0546			

Case 2: Using Inner join as Join Operator

In this case percentage participation for inner join i.e. PP_{IJ} calculated dynamically as shown above are given as input to the simulator and fragment size are calculated for them as shown below:

Operation 15: $(f_{15} \ltimes f_{16}) \rightarrow f_{22}$, Size: 63 x 1 PP_{IJ} (1) =63 blocks

Operation 16: $(f_{17} \ltimes f_{18}) \rightarrow f_{23}$, Size: 63 x 0.0162 PP _{IJ} (2) = 1.0206 blocks
Operation 17: $(f_{19} \ltimes f_{20}) \rightarrow f_{24}$, Size: 63 x 0.9090 PP _{IJ} (3) = 57.267 blocks
Operation 18: $(f_{21} \ltimes f_{24}) \rightarrow f_{26}$, Size: 63 x 0.3821 PP _{IJ} (4) = 24.0723 blocks
Operation 19: $(f_{22} \ltimes f_{23}) \rightarrow f_{25}$, Size: 63 x 0.0037 PP _J (5) = 0.2331 blocks
Operation 20: $(f_{21} \ltimes f_{24}) \rightarrow f_{27}$, Size: 63 x 0.0081 PP _J (6) = 0.5103 blocks
With these fragment size values the simulator is run. Here again out of 50 only 2 generations
of GA Simulator calculating the costs are shown.

Generation 1

	Chromosomes	Fit Value	I/O Cost	CPU Cost	Comm Cost
Total Cost					
1.	6 5 7 7 3 6 2 6 3 3 7 1 7 10 1 4 10 9 9 9	230.247574	153.594561	156.838706	123.881840
434.315108					
2.	$1\ 8\ 4\ 1\ 6\ 6\ 7\ 1\ 3\ 10\ 7\ 1\ 8\ 5\ 7\ 5\ 3\ 2\ 4\ 2$	224.613427	171.799479	147.622658	125.787223
445.209360					
3.	2 10 1 8 2 1 2 10 8 6 9 7 9 5 9 4 6 7 8 6	225.337629	155.647178	165.869160	122.262183
443.778521					
4.	465857958675105325516	245.153411	168.003617	147.422897	92.481333
407.907847					
5.	3781110119753873107348	225.001721	168.242178	147.292658	128.906210
444.441046					
6.	5 8 6 10 5 6 8 2 1 2 6 5 6 1 1 6 8 6 10 10	246.171313	151.055056	158.259995	96.906124
406.221174					
7.	8 3 6 8 8 1 9 1 6 4 3 6 3 9 9 10 3 10 8 6	230.287388	163.580056	154.402160	116.257803
434.240019					
8.	3 6 1 9 4 10 6 1 8 3 5 2 5 4 6 2 8 8 5 6	232.238733	156.850138	154.282160	119.459097
430.591396			1	1.15.0.0005	10101010
9.	3 2 10 7 8 8 10 8 2 10 1 4 4 4 7 10 2 3 1 9	240.538933	163.758040	147.062897	104.912178
415.733115 10.	2 10 9 7 1 1 10 1 4 7 2 10 7 5 7 10 3 10 1 4	222 (24507	167.045056	1 47 200777	122 007002
449.065636	2 10 9 7 1 1 10 1 4 7 2 10 7 5 7 10 5 10 1 4	222.684597	167.845056	147.322777	133.897803
11.	10 10 9 8 1 8 7 5 7 4 1 6 7 10 8 9 10 6 5 6	223.856332	156.850138	154.051234	135.813712
446.715084	10 10 9 8 1 8 7 5 7 4 1 0 7 10 8 9 10 0 5 0	223.830332	150.850158	154.051254	155.815712
12.	4513876787210757102434	233.094099	166.910220	145.868578	116.232493
429.011290	1515676767210757102151	233.071077	100.910220	110.000070	110.252195
13.	2 5 7 7 6 7 7 6 2 10 10 6 6 8 8 10 4 2 2 10	249.622741	153.303699	149.992922	97.307906
400.604526					
14.	9 1 1 2 10 6 10 4 1 9 2 7 3 9 5 8 10 7 8 8	236.959015	155.687178	146.423922	119.902810
422.013909					
15.	5796669586319772310210	228.950031	173.500138	146.753922	116.522469
436.776529					
16.	9 2 6 8 10 8 5 2 6 5 6 3 2 7 1 8 4 8 10 8	234.032553	151.435056	154.021922	121.834007
427.290985					

17.	9 1 7 8 10 8 5 2 6 5 6 3 9 9 7 2 3 4 6 10	231.157710	171.940056	149.085930	111.579096
432.605082 18.	3 6 1 9 6 10 6 7 8 3 3 2 4 4 6 2 6 10 8 5	225.349493	155.530918	162.319922	125.904318
443.755159		22 < 020072	1 (2.002 (12	140.051004	100.0070.41
19. 440.682052	9 1 7 10 10 8 5 1 6 5 6 5 9 7 7 8 3 2 6 10	226.920973	167.903617	148.951394	123.827041
20.	4 1 2 6 1 4 1 10 6 4 3 7 7 10 7 2 10 10 7 8	241.624767	166.370220	146.313922	101.180716
413.864858 21.	10 9 8 8 1 3 7 10 2 6 3 4 10 8 9 10 9 9 5 3	225.896246	161.135424	161.918995	119.626688
442.681106	10,0015,10205,100,10,,55	223.070210	101.155 121	101.710775	119.020000
22.	67149845541312756999	221.197565	165.169561	157.138706	129.776275
452.084542 23.	1 4 4 1 6 6 3 1 3 10 9 6 8 10 7 5 3 6 4 2	221.638749	171.530918	148.061731	131.591994
451.184643					
24. 434.614298	4 5 6 9 8 1 5 9 8 2 4 8 3 4 1 10 9 10 1 9	230.089071	155.320918	159.569897	119.723483
25.	9 5 9 10 5 3 9 5 1 6 6 5 6 5 5 6 5 9 10 3	260.090177	159.875342	154.560995	70.045697
384.482033 26.	10355269815107653586710	237.605311	166.730220	146.142995	107.992799
420.866014	10555207015107055500710	257.000511	100.750220	110.112775	101.592199
27.	2 7 2 8 6 1 4 5 4 5 4 10 8 7 9 7 10 4 6 3	230.287512	163.611781	156.703930	113.924075
434.239786 28.	6 1 10 10 10 8 5 2 6 5 4 3 4 7 7 2 3 4 9 8	232.042290	173.100138	148.805930	109.049858
430.955927					
29. 444.116971	76121436743312119953	225.165906	157.320424	162.188995	124.607552
30.	10 10 3 10 7 1 8 2 8 7 3 6 9 5 7 7 4 7 8 6	234.506379	168.172178	149.753160	108.502294
426.427632	210 (22 1 2 0 0 1 0 5 0 (0 0 0 7 0 (222 712075	150 000170	162.070160	107.0415.00
31. 429.713900	2 10 6 3 2 1 2 8 8 1 9 5 9 6 9 9 8 7 8 6	232.712975	159.802178	162.070160	107.841562
32.	4 6 3 2 7 10 9 2 6 7 3 3 3 5 7 7 8 7 6 6	236.313176	168.582178	148.801633	105.783453
423.167263 33.	9910933666232107121576	239.824213	158.908781	154.422160	103.641134
416.972075	,,,.				
34. 413.940500	59931672537511245958	241.580614	161.613699	150.341995	101.984806
35.	2 4 1 9 6 10 6 2 8 10 4 5 7 9 2 8 1 4 8 9	242.865101	155.290918	150.447697	106.012597
411.751213					
36. 441.743722	10 9 2 2 10 4 9 7 10 3 3 8 5 4 6 2 3 10 8 6	226.375600	163.820056	153.912160	124.011506
37.	9 10 9 2 1 6 7 1 5 3 9 4 1 1 2 10 5 9 5 5	229.288675	161.204561	146.652995	128.273884
436.131441 38.	4769835310247381591019	229.858809	150 025019	159.259897	115.863860
38. 435.049675	+ / 0 7 0 3 3 3 10 2 4 / 3 8 1 3 9 10 1 9	227.030009	159.925918	137.237071	113.803800
39.	917810852686397723565	231.258418	172.069479	148.881394	111.465819
432.416692					

40.	5 5 6 7 7 7 9 3 2 10 1	07793810768	236.565312	160.552178	148.701394	113.462671
422.716242						
41.	51627968795	499144456	242.540274	153.025138	158.565697	100.711825
412.302660 42.	382105338126	52651686101	244.491311	151.655056	157 700114	99.567320
42. 409.012490	582105558120	2031080101	244.491511	131.033030	157.790114	99.307320
43.	867851561102	2 2 2 4 4 9 3 7 10 5	223.514748	163.798040	157.890922	125.708809
447.397771						
44.	8 10 10 2 1 4 6 8 3 2	97483491310	236.582645	166.370220	157.985458	98.329596
422.685274						
45.	4 2 1 3 3 3 10 1 7 4 2	26710885656	231.180255	157.250138	146.013234	129.299522
432.562893				1	150 005 150	101000000
46. 445.391562	26791148229	7 4 8 3 4 9 1 2 10	224.521541	165.140138	158.285458	121.965966
443.391362	368510193481	546192974	221.372048	162.493781	158.290114	130.944318
451.728214	500510175101	5 101 / 2 / 1	221.372010	102.199701	150.290111	150.511510
48.	382625296110	0682524858	230.940171	161.035138	150.062922	121.914524
433.012584						
49.	684625296910	0689524898	221.951682	160.805138	153.330394	136.412981
450.548512						
50.	655735109327	7 3 7 10 10 4 10 9 9 5	230.932157	153.634561	152.599467	126.793582
433.027610						
Fitness Sum	Maximum Fitness	Minimum Fitness	Average			
Fitness Sum 1.1627e+004	Maximum Fitness 260.0902	Minimum Fitness 221.1976	Average 232.5406			
1.1627e+004			•			
1.1627e+004	260.0902	221.1976	•	I/O Cost	CPU Cost	Comm Cost
1.1627e+004 Generation Total Cost	260.0902 50 Chromosome	221.1976 es	232.5406 Fit Value			
1.1627e+004 Generation Total Cost 1.	260.0902 50	221.1976 es	232.5406	I/O Cost 155.351781	CPU Cost 149.015930	Comm Cost 129.245209
1.1627e+004 Generation Total Cost 1. 433.612920	260.0902 50 Chromosom 3 6 8 7 4 10 8 6 2 9 4	221.1976 es 4 1 5 4 5 10 8 1 6 3	232.5406 Fit Value 230.620434	155.351781	149.015930	129.245209
1.1627e+004 Generation Total Cost 1.	260.0902 50 Chromosome	221.1976 es 4 1 5 4 5 10 8 1 6 3	232.5406 Fit Value			
1.1627e+004 Generation Total Cost 1. 433.612920 2.	260.0902 50 Chromosom 3 6 8 7 4 10 8 6 2 9 4	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1	232.5406 Fit Value 230.620434	155.351781	149.015930	129.245209
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1	232.5406 Fit Value 230.620434 220.219104	155.351781 163.410056	149.015930 165.087513	129.245209 125.595642
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3.	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1	232.5406 Fit Value 230.620434 220.219104	155.351781 163.410056	149.015930 165.087513	129.245209 125.595642
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056	155.351781 163.410056 161.203699 150.995918	149.015930 165.087513 156.469394	129.245209 125.595642 115.286570 129.354557
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5.	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2	232.5406 Fit Value 230.620434 220.219104 230.968399	155.351781 163.410056 161.203699	149.015930 165.087513 156.469394	129.245209 125.595642 115.286570
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506	155.351781 163.410056 161.203699 150.995918 165.081863	149.015930 165.087513 156.469394 156.838467 146.153922	129.245209 125.595642 115.286570 129.354557 95.859884
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669 6.	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056	155.351781 163.410056 161.203699 150.995918	149.015930 165.087513 156.469394 156.838467	129.245209 125.595642 115.286570 129.354557
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7 2 6 7 2 1 10 8 6 8	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506	155.351781 163.410056 161.203699 150.995918 165.081863	149.015930 165.087513 156.469394 156.838467 146.153922	129.245209 125.595642 115.286570 129.354557 95.859884
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669 6. 412.020887	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2 5 7 8 7 9 1 7 2 6 7 1	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7 2 6 7 2 1 10 8 6 8	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506 242.706142	155.351781 163.410056 161.203699 150.995918 165.081863 155.960056	149.015930 165.087513 156.469394 156.838467 146.153922 152.780394	129.245209 125.595642 115.286570 129.354557 95.859884 103.280438
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669 6. 412.020887 7.	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2 5 7 8 7 9 1 7 2 6 7 1	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7 2 6 7 2 1 10 8 6 8 1 1 3 4 5 2 5 7 4 8 2	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506 242.706142	155.351781 163.410056 161.203699 150.995918 165.081863 155.960056	149.015930 165.087513 156.469394 156.838467 146.153922 152.780394	129.245209 125.595642 115.286570 129.354557 95.859884 103.280438
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669 6. 412.020887 7. 453.514235	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2 5 7 8 7 9 1 7 2 6 7 1 1 6 3 9 5 9 10 10 10 9	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7 2 6 7 2 1 10 8 6 8 1 1 3 4 5 2 5 7 4 8 2	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506 245.642506 242.706142 220.500245	155.351781 163.410056 161.203699 150.995918 165.081863 155.960056 167.805918	149.015930 165.087513 156.469394 156.838467 146.153922 152.780394 146.418458	129.245209 125.595642 115.286570 129.354557 95.859884 103.280438 139.289858
1.1627e+004 Generation Total Cost 1. 433.612920 2. 454.093211 3. 432.959663 4. 437.188943 5. 407.095669 6. 412.020887 7. 453.514235 8.	260.0902 50 3 6 8 7 4 10 8 6 2 9 4 1 1 6 4 9 5 10 5 6 8 6 2 7 5 8 6 1 2 8 4 5 5 1 10 10 4 10 4 1 3 5 4 1 2 5 10 4 1 7 6 4 2 5 7 8 7 9 1 7 2 6 7 1 1 6 3 9 5 9 10 10 10 9	221.1976 es 4 1 5 4 5 10 8 1 6 3 5 5 1 7 3 9 6 8 6 1 10 8 7 9 8 5 2 9 8 5 2 6 1 10 1 1 8 6 6 2 2 7 7 6 7 5 10 10 5 7 2 6 7 2 1 10 8 6 8 1 1 3 4 5 2 5 7 4 8 2 0 6 8 9 9 3 4 8 5 8	232.5406 Fit Value 230.620434 220.219104 230.968399 228.734056 245.642506 245.642506 242.706142 220.500245	155.351781 163.410056 161.203699 150.995918 165.081863 155.960056 167.805918	149.015930 165.087513 156.469394 156.838467 146.153922 152.780394 146.418458	129.245209 125.595642 115.286570 129.354557 95.859884 103.280438 139.289858

10.	8 6 8 1 6 1 2 1 5 1 8 7 6 4 10 3 2 4 5 6	234.761631	164.700138	146.418697	114.845151
425.963986 11.	868510292381113195974	221.470103	162.533781	158.050114	130.944318
451.528214					
12.	$4\ 6\ 7\ 5\ 9\ 6\ 3\ 4\ 6\ 10\ 5\ 2\ 4\ 10\ 8\ 5\ 2\ 5\ 4\ 6$	246.810627	159.703617	147.762897	97.702427
405.168940					
13.	3 2 4 6 2 5 2 9 6 9 10 6 8 9 4 2 4 8 5 8	225.818054	157.010138	154.341922	131.482329
442.834389					
14. 434.842143	8368919164361099108859	229.968511	156.811000	154.602160	123.428982
15.	2567779621010679487788	247.550367	160.272178	150.192922	93.493098
403.958197	2307779021010079407700	247.550507	100.272170	150.172722	75.475070
16.	959114719394111024358	239.961356	157.237260	150.632922	108.863587
416.733768					
17.	67149445543317117516	232.214892	159.823617	155.660897	115.151090
430.635603					
18.	4 6 9 1 5 7 9 5 8 6 7 5 10 1 3 2 9 9 1 3	225.783523	167.935342	155.859731	119.107042
442.902115					
19.	2 6 5 8 5 7 9 5 8 6 7 2 10 8 7 2 3 8 5 10	228.437820	173.460138	145.943922	118.351825
437.755884		2 (0, 2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1	150 051005	100.055510
20.	788229223725105427516	240.298990	164.218617	150.951897	100.977719
416.148233 21.	9 3 7 7 4 5 10 3 1 4 8 3 9 3 6 7 1 10 2 4	222.872993	161.585138	157.891041	129.209858
448.686037	/ / / / / / / / / / / / / / / / / / / /	222.012995	101.505150	137.071041	129.209030
22.	1 6 9 6 7 4 10 8 7 7 5 5 6 1 8 3 3 7 6 5	231.197880	168.003040	149.171394	115.355483
432.529918					
23.	$6\ 7\ 1\ 4\ 9\ 4\ 4\ 5\ 5\ 2\ 4\ 8\ 3\ 7\ 1\ 7\ 9\ 10\ 1\ 1$	225.739270	163.720056	159.559777	119.709107
442.988940					
24.	276953531043312119953	225.135490	157.620424	161.948995	124.607552
444.176971					
25.	1 6 1 10 6 10 6 1 8 3 3 2 5 4 6 4 3 10 8 5	226.954046	159.255918	158.250922	123.110993
440.617833 26.	379212686427937676610	235.045498	168.145056	157.078467	100.226021
425.449544	575212000427557070010	255.045470	100.145050	137.070407	100.220021
27.	364681029615685524859	231.181514	160.806000	150.363160	121.391376
432.560537					
28.	83689191343639885857	231.958462	157.091863	146.523922	127.495886
431.111671					
29.	10 3 8 3 8 2 10 9 5 6 9 6 4 2 2 6 1 8 1 7	233.879683	155.521781	159.319658	112.728835
427.570274					
30.	91781085265639776310610	245.557304	167.915056	156.819394	82.502469
407.236919	7 2 9 2 1 0 4 0 9 10 4 9 9 9 2 4 9 5 9	000 045700	156 010120	150 422022	120 5000 47
31. 437 932307	728219699810689824858	228.345793	156.910138	150.432922	130.589247
437.932307 32.	384625223910228723391	225.593498	173.757260	148.601513	120.916413
443.275186	5 5 + 5 2 5 2 2 5 7 10 2 2 6 7 2 5 5 7 1	223.373+70	175.151200	170.001313	120.710413

33.	2 4 2 3 3 5 6 10 7 5 8 3 9 7 7 1 7 10 6 10	227.911933	168.285056	152.570394	117.910518
438.765968					
34.	5 1 7 8 10 8 5 2 7 5 6 9 3 9 5 1 10 2 4 8	228.599053	155.828617	151.271658	130.346857
437.447131					
35.	788269622929695610258	229.122555	157.148699	154.501922	124.797027
436.447648					
36.	2 3 2 3 10 6 6 10 4 5 8 4 3 8 7 2 3 3 4 1	235.132841	172.187178	147.322777	105.781550
425.291505					
37.	2 5 8 8 7 4 3 10 3 8 5 3 3 10 4 1 2 3 5 6	228.481682	157.547260	153.442160	126.682427
437.671847					
38.	4 6 7 5 9 6 3 5 6 10 5 2 8 10 4 6 2 4 4 6	240.304102	155.550056	159.594433	100.994892
416.139381					
39.	4 6 5 8 5 3 5 3 10 2 4 3 10 7 1 10 9 10 1 5	232.496337	155.730918	159.059658	115.323727
430.114303					
40.	456917953673105317516	240.549308	168.213617	151.691897	95.809671
415.715184					
41.	2 3 2 2 3 5 6 10 4 5 8 9 7 9 3 8 10 7 8 8	245.042790	160.242178	145.953922	101.895892
408.091991		220 22 (007	156040617	155 540,650	100 7 (() ()
42.	2567779621010639514248	230.226087	156.048617	155.540658	122.766369
434.355643 43.	103835210981032526251085	233,360294	159.855918	152 491022	115.184075
43. 428.521915	10 5 8 5 5 2 10 9 8 10 5 2 5 2 6 2 5 10 8 5	255.500294	139.633916	153.481922	113.184073
428.321913	3 6 1 9 6 10 6 1 5 6 10 8 4 2 4 6 1 8 1 7	231.827801	151.086781	163.838658	116.429212
44.	3019010013010842401817	231.827801	131.000701	105.858058	110.429212
45.	59791952763428956959	225.191673	161.544561	162.319234	120.202358
444.066153	57771752705420750757	223.171075	101.544501	102.317234	120.202556
46.	88821962394268763391	223.634506	169.292260	156.949513	120.916413
447.158186	00021/020/020/000/	2201001000	10/12/2200	10000000	1201910110
47.	4 1 6 9 9 5 10 5 8 8 6 5 10 7 3 9 4 8 3 2	227.841151	166.431083	158.250922	114.220273
438.902277					
48.	3 8 4 7 2 5 2 9 5 9 10 6 10 9 5 2 4 7 5 8	237.913287	161.532260	150.032922	108.756026
420.321207					
49.	9 1 7 8 10 8 5 2 6 5 7 3 9 7 3 2 3 10 7 6	230.465339	175.070220	145.984160	112.850346
433.904726					
50.	2 3 8 9 5 1 3 10 3 8 5 3 1 1 4 1 2 4 9 10	227.319582	157.250138	156.603930	126.055239
439.909308					
Fitness Sum	Maximum Fitness Minimum Fitness	Average			

1.1595e+004 247.5504 220.2191 231.9073

Case 3: Using Combination of Joins and Inner joins

In this case as percentage participation for joins as well as inner joins are computed the minimum out of them are provided to the simulator. That is

begin

for i=1:4

If $PP_{IJ}(i) < PP_{J}(i)$ $PP(i) = PP_{IJ}(i)$ Else $PP(i) = PP_{J}(i)$ End Therefore PP(1) = 0.0335, PP(2) = 0.0343, PP(3) = 0.0382, PP(4) = 0.0096, PP(5) = 0.0037, PP(6) = 0.0081Percentage participation for joins are computed above. Fragment size for intermediate

Percentage participation for joins are computed above. Fragment size for intermediate fragments is calculated as follows:

Operation 15: $(f_{15} \bowtie f_{16}) \rightarrow f_{22}$, Size: 63 x 0.0335 PP(1) = 2.1105 blocks Operation 16: $(f_{17} \bowtie f_{18}) \rightarrow f_{23}$, Size: 63 x 0.0162 PP(2) = 1.0206 blocks Operation 17: $(f_{19} \bowtie 20) \rightarrow f_{24}$, Size: 63 x 0.0381 PP(3) = 2.4003 blocks Operation 18: $(f_{21} \bowtie f_{24}) \rightarrow f_{26}$, Size: 63 x 0.0096 PP(4) = 0.6048 blocks Operation 19: $(f_{22} \bowtie f_{23}) \rightarrow f_{25}$, Size: 63 x 0.0037 PP(5) = 0.2331 blocks Operation 20: $(f_{21} \bowtie f_{24}) \rightarrow f_{27}$, Size: 63 x 0.0081 PP(6) = 0.5103 blocks

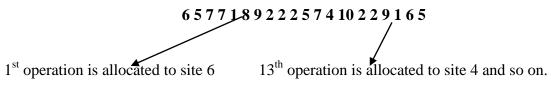
With these fragment size values the simulator is run. Here also out of 50 only 2 generations of GA Simulator calculating the costs are shown.

Generation 1

	Chromosomes		I/O Cost	CPU Cost	Comm Cost
Total Cost					
1.	1 3 1 8 10 3 1 10 4 1 10 8 1 1 9 3 2 9 3 3	263.561056	151.652200	139.529688	88.236837
379.418726					
2.	$6\ 1\ 2\ 10\ 8\ 9\ 5\ 8\ 2\ 7\ 8\ 5\ 1\ 5\ 9\ 5\ 6\ 5\ 5\ 1$	261.987297	143.706010	147.453484	90.538403
381.697896					
3.	$3 \ 10 \ 3 \ 10 \ 7 \ 3 \ 7 \ 10 \ 8 \ 6 \ 3 \ 3 \ 2 \ 2 \ 3 \ 2 \ 8 \ 6 \ 6 \ 2$	268.545275	148.562110	131.154598	92.659980
372.376688					
4.	4 10 5 3 2 1 2 2 10 2 10 6 7 3 10 8 3 6 8 10	278.802656	143.966248	131.351688	83.358704
358.676640					
5.	9 3 1 4 9 1 2 8 7 10 3 2 6 3 1 2 5 3 3 1	267.059530	144.055772	135.816484	94.576093
374.448349					
6.	8 6 10 3 5 3 9 1 8 6 10 7 7 1 3 5 3 2 2 4	262.097895	156.221010	131.687484	93.628337
381.536830					
7.	8 10 9 8 10 2 4 7 4 2 3 3 2 1 3 10 3 9 8 5	274.243992	152.002407	131.451688	81.184704
364.638799					
8.	$4 \ 10 \ 3 \ 10 \ 7 \ 3 \ 9 \ 1 \ 7 \ 6 \ 5 \ 4 \ 1 \ 7 \ 5 \ 8 \ 7 \ 1 \ 4 \ 8$	264.955497	148.191248	131.660981	97.569644
377.421873					
9.	$4\ 7\ 4\ 3\ 7\ 8\ 3\ 10\ 4\ 3\ 5\ 8\ 6\ 7\ 6\ 1\ 2\ 2\ 4\ 4$	261.165422	140.106545	143.325939	99.466598
382.899081					

10.	918564751716143231101	264.598637	155.941248	132.029646	89.960003
377.930896 11.	691718691021011037971094	256.053695	155.915713	139.958394	94.668979
390.543085 12.	17397184728913865417	262.516063	140.07297	139.628981	101.227117
380.929071 13.	7 6 10 3 10 1 3 9 4 7 10 4 3 9 5 6 3 9 5 3	273.465174	148.172735	139.669688	77.834854
365.677277 14.	3 1 4 6 8 6 1 10 8 9 1 10 7 6 1 7 3 3 5 8	260.652303	151.661307	136.026364	95.965184
383.652855 15.	4 8 10 8 2 8 2 5 5 4 3 10 2 4 7 6 7 7 7 8	260.447158	151.805772	139.185364	92.963908
383.955045 16.	824555499931071539342	268.219285	152.137704	139.636819	81.054746
372.829269 17.	1 8 2 8 6 9 4 10 6 4 8 5 7 2 10 5 10 8 5 9	285.105371	139.436576	131.817603	79.493335
350.747513 18.	1 9 9 2 2 5 2 10 9 5 6 3 3 9 3 9 10 8 4 3	257.726428	148.232973	139.866819	99.908534
388.008326 19.	474348310433897652441	263.254002	144.136248	139.459101	96.265923
379.861272 20.	6910991481043572792125	261.038117	151.961576	140.017526	91.106714
383.085815 21.	7 6 10 3 10 7 10 1 4 6 1 3 3 8 7 6 3 6 7 6	295.627560	152.125178	139.499927	46.638350
338.263455 22.	1 4 10 9 9 1 6 3 4 7 5 4 7 6 8 7 3 3 5 8	274.964168	151.941307	132.187364	79.555080
363.683751 23.	98849841039661104810791	275.797170	135.281307	136.069394	91.234600
362.585301 24.	6 7 10 1 7 5 1 4 10 1 10 7 5 3 6 10 9 7 4 1	271.417026	139.811842	147.424939	81.199944
368.436724 25.	91256479639476433958	273.427427	152.166010	136.210688	77.351061
365.727759 26.	7 1 10 3 2 1 3 3 4 6 5 6 1 6 4 2 10 2 4 2	280.581576	139.867407	135.737819	80.797363
356.402589 27.	5 5 9 8 10 2 1 7 4 2 10 4 4 7 6 8 7 7 4 8	265.733996	143.806842	139.456819	93.052511
376.316171 28.	8 10 5 10 10 3 8 4 4 10 8 1 3 3 9 1 9 7 1 9	258.427625	143.637704	151.064058	92.253774
386.955536 29.	6910991463439789215810	260.997928	143.841545	144.264364	95.038896
383.144804 30.	59858688886911792124	263.414870	151.610713	139.767646	88.250930
379.629289 31.	2 9 10 9 9 1 4 8 10 4 3 5 1 4 3 5 2 1 10 3	267.527466	151.847973	132.019526	89.925897
373.793396 32.	67101010347478472998124	261.434470	143.940713	147.325646	91.238673
382.505031					

33.	592869410848	3 1 10 2 10 7 10 3 8 9	297.359986	143.527704	131.847603	60.917417	
336.292725 34.	7 2 7 10 1 2 6 7 4 10	7785244728	266.470024	140.056307	139.315364	95.905061	
375.276732							
35.	18528546156	3 3 9 10 9 10 8 4 3	263.679405	139.672973	139.636819	99.938637	
379.248429 36.	612102911041	3918932683	273.818736	151.747973	139.899688	73.557443	
365.205104							
37.	86612777487	3888310846	269.221322	143.966248	131.579058	95.896300	
371.441606	600001027401	0 < 7 10 1 10 0 0 0 4	072 404 402	120 701240	142 504494	00 105706	
38. 365.651458	698821037421	067101109884	273.484483	139.701248	143.524484	82.425726	
39.	17352114757	733683986	276.250690	144.421545	139.319927	78.248575	
361.990047							
40.	97377969428	9288105497	268.672156	140.237438	131.962436	100.000957	
372.200832 41.	98849866175	176673358	282.708253	151.801307	140.065364	61.854874	
353.721545	98849800175	+70075558	282.708255	151.801507	140.005504	01.034074	
42.	10 6 10 3 10 1 3 3 4	966536109762	259.063787	139.782704	147.676274	98.546342	
386.005321							
43.	4 10 3 9 7 1 6 4 7 5 8	3313575417	265.642154	152.227973	131.750981	92.467324	
376.446278 44.	17857397863	3 2 2 8 2 3 6 8 10	293.545243	148.501248	131.451688	60.710053	
44. 340.662989	17857597805.	5228250810	295.545245	148.301248	131.431088	00.710055	
45.	8 10 3 8 3 2 4 7 4 2 5	5487587748	269.481441	148.071842	131.248819	91.762407	
371.083068							
46.	15796734461	1076254118	266.694469	143.986248	135.969981	95.004678	
374.960907 47.	621061034741	8114522234	275.729575	147.595475	131.857484	83.221231	
47. 362.674190	021001034741	0114522254	213.129313	147.393473	131.837484	05.221251	
48.	91856475178	6 1 4 7 5 6 2 10 3	273.922961	147.758270	139.895364	77.412513	
365.066147							
49.	192866321081	99141010715	277.531868	135.477704	136.097819	88.743458	
360.318981 50.	326519438474	1 10 2 10 5 10 8 8 9	286.615153	139.802110	131.747603	77.350193	
348.899906	52051745047	10210510000	200.013133	157.802110	131.747005	11.550175	
Fitness Sum 1.3505e+004	Maximum Fitness 297.3600	Minimum Fitness 256.0537	Average 270.0948				
Generation 50		250.0557	270.0740				
	Chromos	omes	Fit Value	I/O Cost	CPU Cost	Comm Cost	
Total Cost							
1.	1 3 1 8 4 7 5 9 9 10 7	521487331	272.451999	143.985772	135.626484	87.424875	
367.037130				100 0 / 101 0			
2. 361.003896	3 10 2 1 2 5 2 4 3 1 8	3215516551	277.005320	139.841010	143.224484	77.938403	
501.005690							


3.	1 9 2 8 6 10 8 10 4 4 7 3 10 5 8 3 2 8 4 10	265.319619	147.691248	131.648819	97.563836
376.903903		202.045255	142 225110	101 (105 (5	70 170221
4. 353.425109	6 8 8 1 1 10 10 7 4 2 8 6 10 2 10 3 10 1 8 9	282.945375	143.327110	131.619765	78.478234
5.	9942319810310310791321010	272.913178	148.166545	143.714364	74.535989
366.416897					
6.	7 3 5 2 9 8 1 1 4 1 7 6 6 2 10 4 9 1 7 9	263.230450	139.871041	143.706765	96.317453
379.895259					
7. 369.459971	9992510697796144210244	270.665316	139.876545	136.337939	93.245488
8.	918565751473171812610	292.883539	135.851545	139.658274	65.922822
341.432641					
9.	9 3 1 4 8 3 2 9 7 2 4 10 10 1 3 5 6 2 2 4	257.945444	148.031010	139.625484	100.022384
387.678877					
10.	2 6 10 3 5 6 4 1 5 7 10 7 7 3 3 2 5 3 3 1	265.380027	152.285772	131.577484	92.954854
376.818109 11.	5 4 5 3 2 1 2 2 10 2 1 6 7 3 5 8 5 4 10 7	271.828231	144.067973	131.419526	92.391877
367.879376	5455212210210755854107	271.828231	144.007975	131.419320	92.391077
12.	17357219728961865667	268.080902	140.102973	139.642598	93.276152
373.021723					
13.	967153532289103565417	262.257816	144.237973	139.588981	97.477220
381.304175					
14. 390.596258	1 7 3 5 1 1 6 5 10 3 5 4 10 5 3 7 7 8 4 9	256.018838	160.277110	131.579058	98.740089
15.	1 10 1 6 8 6 1 10 8 9 1 10 3 9 5 6 3 7 3 1	273.125957	147.440772	139.995484	78.695185
366.131440					
16.	$10\ 1\ 2\ 8\ 8\ 7\ 4\ 5\ 4\ 9\ 3\ 9\ 1\ 6\ 3\ 10\ 2\ 3\ 1\ 4$	270.642959	147.801842	131.768939	89.919712
369.490492					
17.	5 4 10 6 8 7 9 1 8 6 4 3 3 3 6 8 3 9 8 6	288.408810	143.871545	139.729927	63.128575
346.730047 18.	683753594127387731076	269.313817	160.655178	131.487603	79.171253
371.314034	000700071127007701070	209.515017	100.022170	151.107005	17.111233
19.	92124169754363297694	258.571774	152.100713	140.002718	94.636384
386.739815					
20.	481718291021011011263101	273.728648	139.401842	143.494484	82.428973
365.325298 21.	8 2 6 1 2 7 7 7 4 2 7 3 10 8 8 3 10 8 4 6	280.668976	144.136248	131.379058	80.776300
356.291606	8201277742731088310840	280.008970	144.130248	131.379038	80.770300
22.	4 5 8 8 1 10 3 7 4 8 10 6 4 10 4 10 9 10 10 4	289.436154	139.391248	143.394484	62.713608
345.499339					
23.	6 10 10 10 10 3 4 7 4 7 8 4 1 4 5 5 6 1 10 3	267.227817	143.527973	139.527526	91.157040
374.212539					
24.	9 2 4 10 4 2 6 7 4 10 7 9 5 5 2 4 4 7 2 8	270.917006	139.756307	139.755364	89.605061
369.116732 25.	49911786559975725351	262.763057	152.141307	132.127484	96.302212
380.571003			- • •		

26.	10 1 1 6 8 6 1 2 8 4 1 10 2 9 3 6 5 9 10 4	266.142809	147.356545	139.929808	88.451773
375.738125 27.	9 2 4 4 10 6 10 7 10 8 1 5 10 1 4 5 3 7 1 5	261.625567	147.562704	135.717819	98.945117
382.225640 28.	9 2 6 8 1 7 9 8 6 9 10 3 10 3 2 7 5 5 10 4	264.013783	152.091545	131.987484	94.689075
378.768104 29.	9 2 6 8 1 6 10 2 10 8 6 9 10 1 4 10 4 7 1 5	271.011537	135.207704	139.996819	93.783458
368.987981 30.	9 2 4 8 1 6 10 2 10 8 1 9 10 1 4 10 10 2 10 5	289.425143	135.202407	135.856364	74.453712
345.512484		200 5 (2005	140 1 (2110	100 500 107	
31. 334.936692	657718922257410229165	298.563885	148.162110	139.520436	47.254146
32. 371.715490	2 2 9 2 1 1 7 8 4 4 5 3 5 7 1 10 1 4 9 7	269.022956	135.882438	139.490436	96.342616
33. 383.504730	1 8 3 9 2 5 4 10 9 5 6 3 3 9 1 9 10 8 4 4	260.752977	139.941248	143.735939	99.827544
34. 371.801287	93856475178614425243	268.960876	143.863270	135.827819	92.110198
35.	973779596523687253104	277.270805	152.696842	131.827484	76.133913
360.658238 36.	39917786556443673986	274.370114	152.321545	139.869927	72.279712
364.471183 37.	3 5 8 8 4 10 3 7 4 2 7 3 10 1 9 1 9 2 6 9	261.402885	144.042407	151.095513	87.413329
382.551249 38.	5 5 5 2 10 2 7 4 4 10 8 1 3 3 8 3 5 8 7 6	263.584204	148.130178	131.217603	100.037624
379.385406 39.	8 9 1 4 8 6 5 8 8 10 7 9 1 1 4 2 10 2 4 4	269.594627	139.366545	135.857939	95.702790
370.927273 40.	918564751781188275810	268.126009	147.756545	131.817364	93.385061
372.958970 41.	6 2 6 1 2 7 7 9 4 8 10 6 1 10 2 10 8 8 8 3	284.888727	139.622973	131.927364	79.463903
351.014240 42.	499117465569457243106	275.636278	147.831842	136.266603	78.698502
362.796946 43.	5 4 9 5 8 2 3 9 10 10 6 4 7 1 1 9 5 3 8 4	263.167588	143.866842	143.634484	92.484678
379.986003 44.	9 3 1 4 8 1 2 8 7 5 4 10 6 3 4 6 7 5 8 10	261.464521	143.801545	143.624364	95.035159
382.461068		285.687068		143.321598	
45. 350.033345	3 3 5 10 9 8 9 2 2 2 5 7 7 10 2 1 9 6 9 7		144.312438		62.399309
46. 381.138246	6 5 7 10 1 7 1 6 10 3 10 5 4 4 9 1 3 2 10 10	262.371990	147.856545	143.594364	89.687337
47. 377.236079	4 2 9 1 10 9 4 10 5 5 6 3 3 9 1 3 10 3 4 3	265.085992	143.848567	135.957819	97.429693
48. 359.423421	1 8 9 2 10 7 6 8 4 7 5 7 5 7 5 1 5 1 6 5	278.223383	144.007110	135.551436	79.864875

49.	994410728691	10 3 10 3 2 4 5 5 8 7	268.895868	143.903270	135.856364	92.131541
371.891175	4 4 2 1 2 10 10 2 7 2	10757228825	265 909606	152 17(041	121 2072 (4	02 500700
50. 376.083205	4 4 2 1 3 10 10 2 7 2	10/5/558855	265.898606	152.176041	131.307364	92.599799
Fitness Sum	Maximum Fitness	Minimum Fitness	Average			
1.3559e+004	298.5639	256.0188	271.1784			

4.5.2 Cost calculation by simulator

Since there are 20 operations therefore size of chromosome is set to be 20. Chromosome in output of simulator represents the following:

Based on the above assumption and Table 3 and Table 4 different costs are calculated for each chromosome as follows:

I/O Cost= I/O Coefficients * Fragment_Size

CPU Cost= CPU Coefficients * Fragment_Size

Communication Cost = Communication Coefficients between two sites * Fragment_Size Fragment_Size for various operations are already calculated above and I/O Coefficients, CPU Coefficients, Communication Coefficients are taken from Table 3. Some of the cases are shown below:

• Operation 1: Selection Allocated to site 6

 $I/O cost = I/O coefficient for site 6 * Fragment_Size$

= 1*100 = 100

CPU cost = CPU coefficient for site 6 * Fragment_Size

$$= 1.2 * 100 = 120$$

Communication Cost = 0 as selection does not involve any communication Similarly cost is calculated for other selection operation as well.

Operation 8: Projection Allocated to site 2
 I/O cost = I/O coefficient for site 2 * Fragment_Size
 = 1.1*70 = 77

CPU cost = CPU coefficient for site 2 * Fragment_Size

= 1 *70 = 70

Communication Cost = 0 as projection does not involve any communication Similarly cost is calculated for other selection operation as well.

Only one of the cases is shown below and the best case is taken that is case 3. While calculating the cost for join operator the fragment size used here is taken from case 3 that is combination of joins and inner joins.

Operation 19: Join f₂₂ ⋈ f₂₃ Allocated to site 6
 CPU Cost = Site's CPU Coefficient*(f₂₂ size * f₂₃ size)

=1.2 *(63*1.0206) = 77.15736

Total I/O Cost = Site's I/O Coefficient *(f_{22} size * f_{23} size)

=1*(63*1.0206) = 64.2978

Communication Cost

Operation 15 is allocated to site 2, Operation 16 is allocated to site 2. Both are at same site, therefore

Communication cost = Communication Coefficient between sites 2 and 6 * (f_{22} size * f_{23} size)

= 14*(63*1.0206) = 900.1692 which is represented as 9.001692

in output due to MATLAB syntax.

On calculating the communication cost for other operators as well and summing them up gives 47.254146

In case fragments for join operations are allocated to different sites then for both operations communication costs are calculated and then added together to get the communication cost. In similar manner communication cost for other operations are also calculated.

And finally after calculating the cost for each operation all the costs are added together to get the total cost for each chromosome as shown in the GA output

4.5.3 RESULTS

Simulator is run for different instances of database so as to give image of dynamic database with varied cardinalities each time. It has been observed that when joins and inner joins are used in combinations then communication cost greatly reduces. As shown in GA output the minimum communication cost in different cases is as follows:

Case 1: Using Joins

Minimum communication cost = 72.470890

Case 2: Using Inner joins

Minimum communication cost = 82.502469

Case 3: Using combination of Joins and Inner joins

Minimum communication cost = 47.254146

It shows that when joins and inner joins are used in combination then they are useful. Individually they are incurring more communication cost than when used together.

In the graphs shown below Y1, Y2, Y3, Y4 represent the following:

 $Y1 = ID \bowtie$ department; $Y2 = creditor \bowtie$ student; $Y3 = student \bowtie$ salary; $Y4 = student \bowtie$ salary \bowtie employee

The join operation between ID and department, department_name being the foreign key in ID relation and primary key in department relation so in this case PP_{IJ} (Percentage participation for inner join) will be 1. Also changing the number of rows of these two relations will not change PP_{IJ}. This is shown in Figure 11 and Figure 12. So for the next instances of database this join for relation ID and department has been omitted and in Figure 13 and Figure 14 PP_J and PP_{IJ} has been shown for join operations Y2, Y3 and Y4. Table 5, Table 6, Table 7, Table 8 represent relations with different cardinalities at different instances of database.

department				
department_name	 department_city 	assets 👻		
Gaithersburg	Maryland	4025188		
Reno	Nevada	5958569		
Seattle	Washington	8456156		
Gresham	Oregon	9322844		
New Orleans	Louisiana	5185219		
Houston	Texas	4508766		
Birmingham	Alabama	1064468		
Salt Lake City	Utah	7386988		
Fort Collins	Colorado	7326936		
Biloxi	Mississippi	6783510		
Southaven	Southaven Mississippi			
Wichita	Wichita Kansas			
Anchorage	Alaska	8613174		
Boise	Idaho	9663276		
Tacoma	Washington	4203466		
Phoenix	Arizona	6899386		
Baton Rouge	Louisiana	7294010		
Jonesboro	Arkansas	9679925		
Auburn	Maine	2342194		
Tulsa	Oklahoma	4796138		
Nampa	Idaho	5862492		
Bangor	Maine	7008262		
Bloomington	Minnesota	8278343		
San Jose	California	9813941		

Figure 9: Screenshot of database Table department

employee_nar	me ᠇ employee_street 🔸	employee_city -	employee_Pin 👻	
Plato	Pocatello	Idaho	79656	
Flynn	Bellevue	Nebraska	69991	
Gavin	Orlando	Florida	90205	
Amal	Bridgeport	Connecticut	89272	
Kevyn	Grand Island	Nebraska	63629	
Piper	Gary	Indiana	39625	
Celeste	Green Bay	Wisconsin	77431	
Olympia	Fayetteville	Arkansas	71894	
Lewis	West Valley City	Utah	81726	
Andrew	Oklahoma City	Oklahoma	48069	
Fritz	Kapolei	Hawaii	1944	
Ezekiel	St. Petersburg	Florida	171	
Maisie	Iowa City	Iowa	406	
Idona	Springfield	Massachusetts	6056	
Mason	Gary	Indiana	1833	
Xanthus	Saint Louis	Missouri	4222	
Dante	Baltimore	Maryland	1610	
Thor	Auburn	Maine	5092	
Kiona	Chattanooga	Tennessee	3550	
Cleo	Fort Worth	Texas	43670	
Levi	Gillette	Wyoming	8527	
Lee	Norman	Oklahoma	95922	
Nero	Fairbanks	Alaska	9990	
Patrick	San Jose	California	9300:	

Figure 10: Screenshot of Employee Table

Database Instance 1:

Tables	ID	Department	Creditor	Student	Salary	Employee
Number of	88	75	70	50	54	110
Rows						

 Table 5: Database instance 1 .

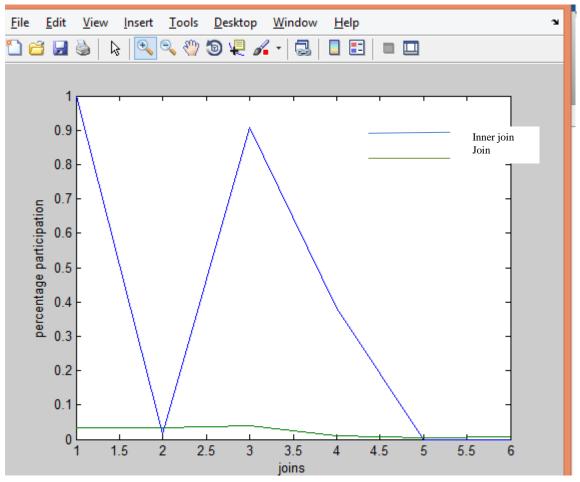


Figure 11: Percentage participations for first database instance.

Database Instance 2:

Tables	ID	Department	Creditor	Student	Salary	Employee
Number of	99	80	71	52	55	288
Rows						

Table6: Second database instance.

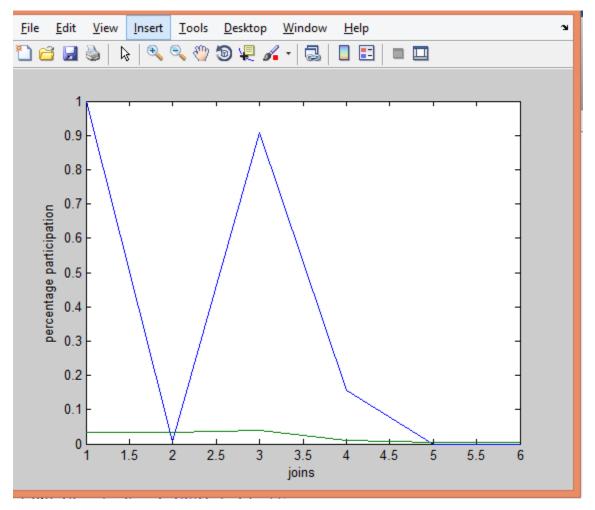


Figure 12: Percentage participations for second database instance.

Database Instance 3:

Tables	ID	Department	Creditor	Student	Salary	Employee
Number of	98	81	69	11	80	298
Rows						

Table 7: Third database instance	Table 7:	Third	database	instance.
----------------------------------	----------	-------	----------	-----------

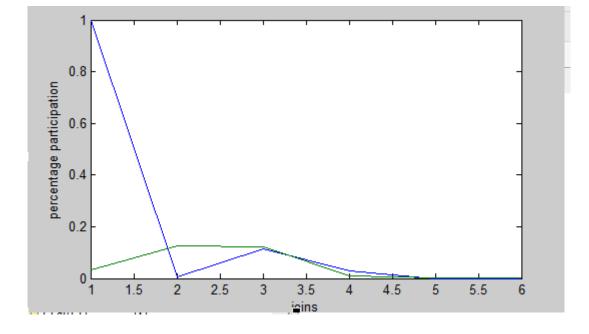


Figure 13: Percentage participations for third database instance.

Database Instance 4:

Tables	ID	Department	Creditor	Student	Salary	Employee
Number of	52	81	70	5	98	203
Rows						

 Table 8: Fourth database instance.

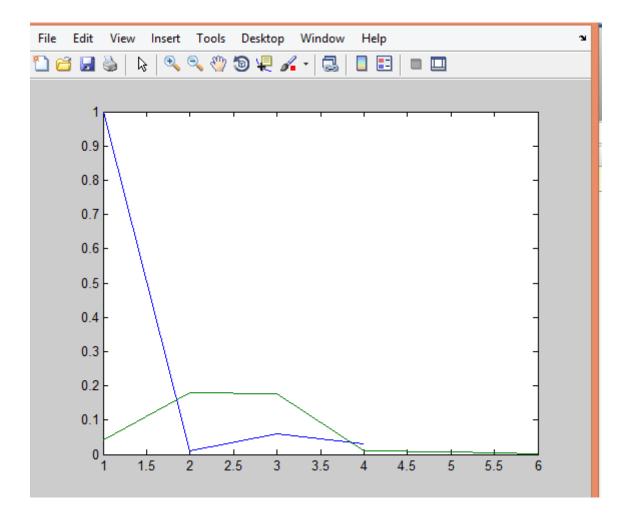


Figure 14: Percentage participations for fourth database instance.

Figure 15 denotes the percentage reduction in communication cost wherever inner join is beneficial. In this graph first bar represent that only at one place inner join was beneficial for first database instance and percentage improvement is written above the bar. Similar is the case for second database instance. For the third and fourth instance at two places it is proving to be beneficial than joins. Although in very less cases inner join is coming out to be beneficial but percentage reduction in communication cost is coming as high as 90% in those cases. So inner join greatly reduces the communication cost involved but in very few cases.

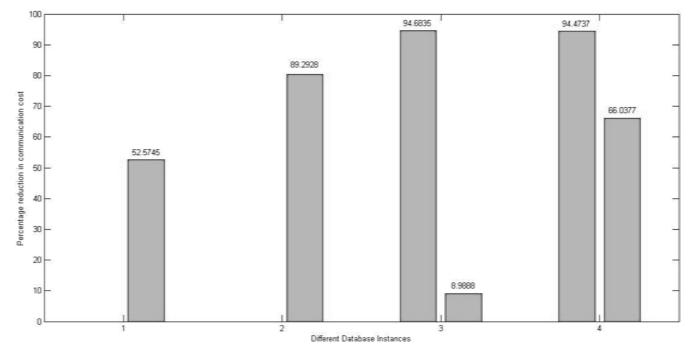


Figure 15: Percentage reduction in communication cost for inner join operations.

CHAPTER 5 CONCLUSION AND FUTURE SCOPE

Query processing in a distributed database requires transfer of data from one computer to another through a communication network. Query at a given site might require data from remote sites. In query optimization, a cost is associated with each query execution plan. Cost is the sum of local cost (I/O cost, CPU cost at each site) and the cost of transferring data between sites. The complexity and cost increases with the increasing number of relations in the query. A query execution strategy or plan is required to minimize the cost of query processing.

The cost of processing a DD query is the entire cost measure. The entire cost size is the sum of all cost components. On executing join and inner join, communication costs among various sites may be incurred along with the local processing cost.

After experimenting with the actual dynamic database on calculating the selectivity factors dynamically it is seen that in very less cases PP_{IJ}<PP_J. Whenever selectivity factor for inner join comes less than join then only inner join should be used otherwise join should be used. Whenever very few tuples are required which is a very rare case for join operation only then inner join should be used otherwise normal join should be used.

From the results it has been found that neither using only joins incur minimum communication cost nor using inner joins alone reduces communication cost. Rather when they are used in combination that is somewhere joins are used and somewhere inner joins are used then communication cost greatly reduces. So in very less cases inner join has proven to be beneficial. It has been observed that when very few tuples are required for joining the relation at other site only then inner join should be used.

Future work

Cost analysis of the distributed query can be further studied by using Genetic algorithm approach that gives optimal results within small time interval. Enumerative and Deterministic procedures are designed to find the best solution but they go almost intractable as soon as the number of sites or number of complex operations like joins are increased to double digits or more. Whereas a genetic solution does not guarantee the finding of an optimal solution but can provide a very good solution in an extremely small time as compared to deterministic one. In future efforts should be done to incorporate Genetic Based Solutions to allocation problems of Distributed Database. More work needed to be done to ensure that an optimal solution is guaranteed in most of situations by GA.

REFERENCES

[1] Chhanda Ray, (2009) *Distributed Database Systems*, Publisher: Pearson Education India Publications, New Delhi.

[2] Korth, Henry F., Abraham Silberschatz, and Henry F. Korth, (1986) *Database system concepts*. Vol. 582. New York: McGraw-Hill.

[3]Baiao, Fernanda, Marta Mattoso, and Gerson Zaverucha. (2000) "Horizontal fragmentation in object dbms: New issues and performance evaluation."*Performance, Computing, and Communications Conference, 2000. IPCCC'00. Conference Proceeding of the IEEE International.* IEEE.

[4]Bamnote, G. R., and S. S. Agrawal. (2013)"Introduction to Query Processing and Optimization." *International Journal* 3.7.

[4] Rho Sangkyu, T. March Salvatore, (2002) "A Comparison of Distributed Database Design Models", Seoul Journal of Business Vol. 8 No. 1.

[5] Rho Sangkyu, T. March Salvatore, (1994) "A Nested Genetic Algorithm for Distributed Database Design", IEEE.

[6]Bertino, Elisa. (1992) "A view mechanism for object-oriented databases." *Advances in Database Technology—EDBT'92*. Springer Berlin Heidelberg.

[7] Ceri, Stefano, Barbara Pernici, and Gio Wiederhold, (1987) "Distributed database design methodologies." *Proceedings of the IEEE* 75.5,p 533-546.

[8] Connolly, Thomas M. (2005) *Database systems: a practical approach to design, implementation, and management.* Pearson Education.

[9]Councill, Bill, and George T. Heineman. (2001) "Definition of a software component and its elements." *Component-based software engineering: putting the pieces together*: 5-19.

[10] B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, (2009) "Query Processing and Optimization in Distributed Database Systems", IJCSNS Vol. 9 No. 9.

[11] Peter Scheuermann, Eugene Inseok Chong, (1997) "Adaptive Algorithms for Join Processing in Distributed Database Systems".

[12] Manik Sharma, Gurdev Singh, Rajinder Virk, (2012) "Analysis of Joins and Semi Joins in a Distributed Database Query", IJCA.

[13] Hevner, Alan R., and S. Bing Yao, (1979) "Query processing in distributed database system." *Software Engineering, IEEE Transactions on* 3: 177-187.

[14] Xiaofeng Li, Dong Le, Hong Zhi Gao, Lu Yao, (2010) "Study of Query of Distributed Database Based on Relation Semi Join", International Conference On Computer Design And Appliations (ICCDA).

[15] Jim Wilenius, "Randomized Algorithms and Heuristics for Join Ordering", (2007) Computing Science Division, Dept. of Information Technology, Uppsala University.

[16] John, Rajan, and V. Saravanan., (2008) "Vertical Partitioning in Object Oriented Databases Using Intelligent Agents." *IJCSNS* 8.10: 205.

[17] Carolyn Mitchell, (2004) "Components of a Distributed Database", Department of Computer Science, Norfolk State University.

[18] Zhou Lin, Chen Yan, Li Taoying, Yu Yingying, (2012) "The Semi-join Query Optimization in Distributed Database System", National Conference on Information Technology and Computer Science (CITCS).

[19] Kunii, Hideko S. "Data Manipulation Language." *Graph Data Model*. Springer Japan, 1990. 29-39.

[20] W. Cornell Douglas, S. Yu Philip, 1989 "On Optimal Site Assignment for Relations in the Distributed Database Environment", IEEE.

[21] Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, (2010) "A New Technique for Database Fragmentation in Distributed Systems", IJCA Vol. 5 No. 9.

[22] Ray, Chhanda, (2009) Distributed Database Systems. Pearson Education India,.

[23] Narasimhaiah Gorla and Suk-Kyu Song, (2010) "Subquery Allocations in Distributed Databases Using Genetic Algorithms", JCS&T Vol. 10 No.1.

[24]Robbins, Robert J, (1994) "Database Fundamentals." *Johns Hopkins University, rrobbins@ gdb. org.*

[25] Rupley, M. L, (2008) "Introduction to query processing and optimization." *Indiana University at South Bend*.

[26] Sharma, Manik, et al. (2013) "Stochastic Analysis of DSS Queries for a Distributed Database Design." *International Journal of Computer Applications* 83.5: 36-42.

[27] ŞTEFAN, Ileana, and Maricel POPA, (2008) "Distributed Database Design–Top-Down Design".

[28] Tamer èOzsu, M., and Patrick Valduriez. (2011) *Principles of distributed database systems*. Springer.

[29] R.S. Virk, (2012) "Optimized Access Strategies for a Distributed Database Design", Ph.D dissertation, Dept. of Comp. Sci. & Eng., Guru Nanak Dev Univ., Amritsar.

[30]Mitchell, Melaine, (1999) "An introduction to Genetic Algorithms", 5th ed. England, The MIT Press Cambridge, Massachusetts.

[31] Wells, Garth, (2001) "Data Definition Language." *Code Centric: T-SQL Programming with Stored Procedures and Triggers*. Apress, 2001. 35-70.

[32] Gen. Mitsuo, Cheng. Runwei, "Genetic Algorithms and Engineering Optimization", 3rd ed., New York, A Wiley-Interscience publication, 2000

[33] Khurana, Namita et al., (2011) "Genetic Algorithm: A Search of Complex Spaces", in International Journal of Computer Application, Vol. 25.

[34] Tom V. Mathew, (2008) "Genetic Algorithm", Dept. of Civil Eng., Indian Institute of Technology, Mumbai.

[35] Donald Kossman, 2000 "The State of the Art in Distributed Query Processing", ACM Computing Surveys.

[36] T. March Salvatore and Rho Sangkyu, (1995) "Allocating Data and Operations to Nodes in Distributed Database Design", IEEE.

[37] Fan Yuanyuan, Mi Xifeng, (2010) "Distributed Database System Query Optimization Algorithm Research", IEEE.

[38] Richard L. Cole, (1994) "Optimization of Dynamic Query Evaluation Plans", ACM.

[39] Whitley, Darrell. (1994) "A genetic algorithm tutorial." *Statistics and computing* 4.2: 65-85.

[40] Sharma, Manik, et al. (2013)"Stochastic Analysis of DSS Queries for a Distributed Database Design." *International Journal of Computer Applications* 83.5 :36-42.

[41] Mamaghani, Ali Safari, et al. (2010) "A novel evolutionary algorithm for solving static data allocation problem in distributed database systems." *Network Applications Protocols and Services (NETAPPS), 2010 Second International Conference on*. IEEE.

Glossary of Terms

- Crossover: It is a genetic operator that combines (mates) two chromosomes (parents) to produce a new chromosome (offspring).
- Chromosome: It consists of "genes" (e.g., bits), each gene being an instance of a particular "allele".
- Data allocation: It is the prominent activity in the distributed database which decides that where to locate the data.
- Database Management System: It is used to manage whole data in organizations.
- Distributed database: It is a collection of logically interrelated databases that can be stored at different computer network sites.
- Data definition language (DDL): Users can specify structure of database, data types and constraints on data by using DDL.
- DML: It provides general facility to enquire about data, which is known as query language.
- Fragmentation: The process of dividing the relation into sub relation is called fragmentation.
- Genetic Algorithm: GA was a method for moving from one population of "chromosomes" to a new population by using a kind of "natural selection" together with the genetics-inspired operators of crossover, mutation, and inversion.
- Horizontal Fragmentation: It means to divide a relation along its rows.
- LPC: Local Processing Costs for processing a query's simple selection & projections may be represented as costs of transforming input relation from disk to memory and CPU time for processing a selection or projection at site
- Mutation: It is a genetic operator that alters one or more gene values in a chromosome from its initial state.

• Query: Database Query is a way of instructing DBMS to update, insert, retrieve, and delete data from database.

• Query optimization: It is the function of determining the most efficient query plan among all, which is performed by query optimizer.

• Replication: It consists of keeping of copies of complete database at each site.

• Reproduction: Reproduction selects good strings from the population and puts them in mating pool selection operator chooses those chromosomes in the population that will be allowed to reproduce, and on average the fitter chromosomes produce more offspring than the less fit ones.

• Vertical Fragmentation: Vertical fragmentation partitions a relation long its attributes.

Abbreviations

- A_{rs} : Data Allocation Variable
- S^{q}_{ys} : Sequence of various sites where sub queries gets executed
- LPO: Left previous operation of a join
- RPO: Right previous operation of a join)
- LPC: stands for Local Processing Cost
- CC: Communication Cost
- : No. of memory blocks of relations 'r' accessed by sub query 'y' of q.
- IOC_s: Input Output Cost Coefficient of site s in millisecond per 8k bytes
- CPC_s: CPU Cost coefficient of site s.
- ρ_p : Percentage Participation
- : It is the size of an intermediate relation.
- : It is the communication cost coefficient between site s and v