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Objectives

After studying this unit, you will be able to:

 Discuss the basic concepts of sets and functions

 Explain the system of real numbers

 Describe the representation of real numbers

Introduction

As we know that one of the main features of Mathematics is the identification of the subject
matter, its analysis and its presentation in a satisfactory manner. In other words, the language
should be a vehicle which carries ideas through the mind without affecting their meaning in any
way. Set Theory comes closest to being such a language. Introduced between 1873 and 1895 by a
famous German mathematician, George Cantor (1845-1918), Set Theory became the foundation
of almost all the branches of Mathematics. Besides its universal appeal, it is quite amazing in its
simplicity and elegance.

A rigorous presentation of Set Theory is not the purpose here because we believe that you are
already familiar with it. We shall briefly recall some of its basic concepts which are essential for
a systematic study of Real Analysis. Closely linked with the sets, is the notion of a function,
which also you have learnt in your previous studies. In this unit, we shall review this as well as
other related concepts which are necessary for our discussion.
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Real Analysis

Notes ‘Real Analysis’ is an important branch of Mathematics which mainly deals with the study of real
numbers. What is, then, the system of the real numbers? We shall try to find an answer to this
question as well as some other related questions in this unit. Also, we shall give the geometrical
representation of the real numbers.

1.1 Sets and Functions

As you all know modern Mathematics is based on the ideas that are expressed in the language of
sets and functions. Here you set knowledge of certain basic concepts of Set Theory which are
quite familiar to you. These concepts will also serve an important purpose of recalling certain
notations and terms that will be used throughout our discussion with you.

1.1.1 Sets

As you are used to the phrases like the ‘team’ of cricket players, the ‘army’ of a country, the
‘committee’ on the education policy, the ‘panchayat’ of a village, etc. The terms ‘team’, ‘army’,
‘committee’, panchayat’, etc., indicate the notion of a ‘collection’ or ‘totality’ or ‘aggregate’ of
objects. These are well-known examples of a set.

Therefore, our starting point is an informal description of the term ‘set’. A set is treated as an
undefined term just as a point in Geometry is undefined. However, for our purpose we say that
a set is a well-defined collection of objects. A collection os well-defined of it is possible to say
whether a given object belongs to the collection or not.

The following are some examples of sets:

1. The collection of the students registered in Excel Books.

2. The collection of the planets namely Jupiter, Saturn, Earth, Pluto, Venus, Mercury, Mars,
Uranus and Neptune.

3. The collection of all the countries in the world. (Do you know how many countries are
there in the world?)

4. The collection of numbers, 1, 2, 3, 4, ……

If we consider the collection of tall persons or beautiful ladies or popular leaders, then these
collections are not well-defined and hence none of them forms a set. The reason is that the words
‘tal’ ‘beautiful’ or ‘popular’ are not well-defined. The objects constituting a set are called its
elements or members or points of the set. Generally, sets are denoted by the capital letters A, B,
C etc. and the elements are denoted by the small letters a, b, c etc. If S is any set and x is an
element of S, we express it by writing that x  S, where the symbol means ‘belongs to’ or ‘is a
member of’. If x is not an element an element of a set S, we write xS. For example , if S is the set
containing 1, 2, 3, 4 only, then 2 S and 5  S.

You know that there are two method of describing a set. One is known as the Tabular method
and the other is the Set-Builder method. In the tabular method we describe a set by actually
listing all the elements belonging to it.

Example: If S is the set consisting of all small letters of English alphabet, then we write

S = {a, b, c,...,x, y, z}.

If N is the set of all natural numbers, then we write

N = {1, 2, 3....}.
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Unit 1: Sets and Numbers

NotesThis is also called an explicit representation of a set.

In the set-builder method, a set is described by stating the property which determines the set as
a well-defined collection. Suppose p denotes this property and x is an element of a set S. Then

S = {x: x satisfies p).

Example: The two sets S and N can be written as

S = {x: x is a small letter of English alphabet}

N = {n: n is a natural number).

This is also called an implicit representation of a set.

Note that in the representation of sets, the elements of a set are not repeated. Also, the elements
may be listed in any manner.

Example: Write the set S whose elements are all natural numbers between 7 and 12
including both 7 and 12 in the tabular as well as in the set-builder forms.

Solution: Tabular form is S = {7, 8, 9, 10, 11, 12, }.

Set-builder form is S = { n  N: 7  n  12, }.

The following standard notations are used for the sets of numbers:

N = Set of all natural numbers

= {1, 2, 3....}

= {n:n is a natural number)

= Set of all positive integers.

Z = Set of all integers

= { ....–3, –2, –1, 0, 1, 2, 3, ....}

= {p:p is an integer).

Q = Set of all rational numbers

= {x : x = 
P
q , p Z, q  Z, q  0).

R = Set of real numbers

= {x : x is a real number).

We shall, however, discuss the development of the system of real numbers.

A set is said to be finite if it has a finite number of elements. A set is said to be infinite if it is not
finite. We shall, however, give a mathematical definition of finite and infinite sets in Unit 2.

Note that an element of a set must be carefully distinguished from the set consisting of this
element. Thus, for instance, you must distinguish

x, {x}, {{x}}

from each other

We talk of equality of numbers, equality of objects, etc.

The question, therefore, arises: What is the notion of the equality of sets?
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Real Analysis

Notes Definition 1: Equality of Sets

Any two sets are equal if that are identical. Thus the two sets S and T are equal, written as S = T
if they consist of exactly the same elements. When the two sets S and T are unequal, we write

S  T.

It follows from the definition that S = T if any one of x  S implies x  T and y  T implies y  S.
Also S is different from T (S +T) if there is at least one element in one of them which is not in the
other.

If every member of a given set S is also a member of T, then we say that S is a subset of T or
“S is contained in T” and write:

S  T

or equivalently we say that “T contains S” or T is a superset of S, and write

T  S

The relation

S  T

means that S is not a subset of T i.e. there is at least one element in T which is not in S.

Thus, you can easily see that any two sets S and T are equal if and only if S is a subset of T and T
is a subset of S i.e.

S = T  S  T and T  S.

If S  T but T  S, then we say that S is a proper subset of T. Note that S  S i.e. every set is a subset
of itself.

Another important concept is that of a set having no elements. Such a set, as you know, is called
an empty set or a null set or a void set and is denoted by O.

You can easily see that there is only one empty set i.e. O is unique. Further O is a subset of every
set.

Now why don’t you try an exercise?

Task Justify the following statements:

1. The set N is a proper subset of Z.

2. The set R is not a subset of Q.

3. If A, B, C are any three sets such that A  B, and B  C, then A  C.

So far, we have talked about the elements and subsets of a given set. Let us now recall the
method of constructing new sets from the given sets.

While studying subsets, we generally fix a set and consider the subsets of this set throughout our
discussion. This set is usually called the Universal set. This Universal set may vary from situations
to situations. For example, when we consider the subsets of R, then R is the Universal set.
When we consider the set of points in the Euclidean plane, then the set of all points in the
Euclidean plane is the Universal set. We shall denote the Universal set by X.
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NotesNow, suppose that the Universal set X is given as

X = {1, 2, 3, 4,  }

and

S = {1, 2, 3}

is a subset of X. Consider a subset of X whose elements do not belong to S. This set is (4, 2}.

Such, a set, as you know is called the complement of S.

We define the complement of a set as follows:

Definition 2: Complement of a Set

Let X be the Universal set and S be a subset of X. The complement of the set S is the set of all those
elements of the Universal set X which do not belong to S. It is denoted by S.

Thus, if S is an arbitrary set contained in the Universal Set X, then the complement of S is the set

Sc = {x:x S}.

Associated with each set S is the Power set P(S) of S consisting of all the subsets of S. It is written
as

P(S) = {A : A  S).

Now try the following exercise.

Let us consider the sets S and T given as

S = {1, 2, 3, 4, 5}, T = {3, 4, 5, 6, 7}.

Construct a new set {1, 2, 3, 4, 5, 6, 7). Note that all the elements of this set have been taken from
S or T such that no element of S and T is left out. This new set is called the union of the sets S and
T and is denoted by S  T.

Thus

S  T = {1, 2, 3, 4, 5, 6, 7).

Again let us construct another set {3, 4, 5). This set consists of the elements that are common to
both S and T i.e. a set whose elements are in both S and T. This set is called the intersection of S
and T. It is denoted by S  T. Thus

S  T = {3, 4, 5).

These notions of Union and Intersection of ‘two sets’ can be generalized for any sets in the
following way: Note, all the sets under discussion will be treated as subsets of the Universal set
X.

Definition 3: Union of Sets

Let S and T be given sets. The collection of all elements which belong to S or T is called the union
of S and T. It is expressed as

S  T = {x : x S or x T}.

Note that when we say that x  S or x  T, then it means that x belong to S or x belong to T or x
belong to both S and T.

Definition 4: Intersection of Sets

The intersection S  T of the sets S and T is defined to be the set of all those elements which
belong to both S and T i.e.

S  T = {x : x S and x T}.
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Real Analysis

Notes Note that the sets are disjoint or mutually exclusive when S  T = 0 i.e., when their intersection
is empty.

You can now verify (or even prove) by means of examples the following laws of union and
intersection of sets given in the next exercise.

Also, you can easily see that

A  A = A, A  A = A, A  = A, A   = .

Given any two sets S and T, we can construct a new set in such a way that it contains only those
elements of one of the sets which do not belong to the other. Such a set is called the difference of
the given sets. There will be two such sets denoted by S—T and T—S. For example, let

S = {2, 4, 8, 10, 11}, T = {1, 2, 3.4).

Then

S – T = {8, 10, 11), T – S = {1, 3).

Thus, we can define the difference of two sets in the following way.

Definition 5: Difference of two Sets

Given two sets S and T, the difference S – T is a set consisting of precisely those members of S
which are not in T.

Thus

S – T = {x:x  S and x  T).

Similarly, we can define T – S.

Consider a collection of sets S1, where i varies over some index set J. This simply means that to
each element i  J, there is a corresponding set Si. For example, the collection {S1, S2, S3,...) could
be expressed as {Si}i  N, where N is the index set.

With the introduction of an index set, the notions of the union and the intersection of sets can be
extended to an arbitrary collection of sets. For example,

(i) i i
i J i J

S = {x : x S for at least one i J}.
 

  

(ii) i i
i J i J

S = {x : x S for all i J}.
 

  

(iii) c c
i i J i

i J
( S ) = S .



 

1.1.2 Functions

Let S be the set of Excel Books and let N be the set of all natural numbers. Assign to each book the
number of pages the book contains. Here each book corresponds to a unique natural number. In
other words, there is a correspondence between the books and the natural numbers, i.e., there is
a rule or a mechanism by which we can associate to each book one and only one natural number.
Such a rule or correspondence is named as a function or a mapping.

Definition 6: Function

Let S and T be any two non-empty sets. A function f from S to T denoted as f: ST is a rule which
assigns to each element of the set S, a unique element in the set T.



LOVELY PROFESSIONAL UNIVERSITY 7

Unit 1: Sets and Numbers

NotesThe set S is called the domain of the function f and T is called its co-domain. If an elements x in
S corresponds to an element y in T under the function f, then y is called the image of x under f.
This is expressed by writing y = f (x). The set {f(x): x  S} which is a subset of T is called the range
of f. If range of f = co-domain of f, then f is called onto or surjective function; otherwise f is called
an into function.

Thus, a function f: ST is said to be onto if the range of S is equal to its co-domain T.

Suppose S = {1, 2, 3, 4) and T = {1, 2, 3, 4, 5, 6) and f: ST is defined by f(n) = n+l,   n  S. Then the
range of f = {2, 3, 4, 5). This shows that f is an into function. On the other hand, if S = {1, 2, 3, 4},
T = {1, 4, 9, 16} and if f: ST is defined by f(n) = nZ, then f is onto. You can verify that the range of
f is, in fact, equal to T.

Refer back to the example on the books in Excel Books. It just possible that two books may have
the same number of pages. If it is so, then under this function, two different books shall have the
same natural number as their image. However if for a function any two distinct elements in the
domain have distinct images in the co-domain, then the function is called one-one or injective.

Thus a function f is said to be one-one if distinct elements in the domain of f have distinct image
or in other words, if f(x1) = f(x2)  x1 = x2, for any x1, x2 in the domain of f.

A function which is one-one and onto, is called a bijection or a 1-1 correspondence.

Example:

(i) Let S = {1, 2, 3) and T = {a, b, c} and let f: ST be defined as f(1) = a, f(2) = b, f(3) = c. Then f
is one-one and onto.

(ii) Let N = {1, 2, 3, 4,...} and f: NN be defined as f(n) = n+1. As 1 does not belong to the range
of f, therefore f is not onto. However, f is one-one.

(iii) Let S = (1, –1, 2, 3, –3) and let T = (1, 4, 9). Define f: ST by f(n) = n2   n  S. Then f is not
one-one as f(1) = f(–l) = 1. However, f is onto.

Definition 7: Identity Function

Let S be any non-empty set. A function f: SS defined by f(x) = x for each x in S is called the
identity function.

It is generally denoted by Is. It is easy to see that Is is one-one and onto.

Definition 8: Constant Function

Let S and T be any two non-empty sets. A function f: ST defined by f(x) = c, for each x in S, where
c is fixed element of T, is called a constant function.

For example f: SR defined as f(x)=2, for every x in S, is a constant function. Is this function one-
one and onto? Verify it.

Definition 9: Equality of Functions

Any two functions with the same domain are said to be equal if for each point of their domain, they
have the same image. Thus if f and g are any two functions defined on an non-empty set S, then

f = g if f(x) = g(x),   x  S.

In other words, f = g if f and g are identical.
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Real Analysis

Notes Let us now discuss another important concept in this section. This is about the composition or
combination of two function. Consider the following situation:

Let S = {1, 2, 3, 4}, T = {1, 4, 9, 16}, N = {1, 2, 3, 4....} be any three sets Let f: ST be defined by f(x) = x2,
  x  S and g: TN be defined by g(x) = x +1,   x  T. Then, by the function f, an element x  S
is mapped to f(x) = x2. Further by the function g the element f(x) is mapped to f(x) + 1 = x2 + 1.
Denote this as g(f(x)). Define a function h: SN by h(x) = g(f(x)). This function h maps each x in
S to some unique elements g(f(x)) = x2 + 1 of N. The function h is called the composition or the
composite of the functions f and g. Thus, we have the following definition:

Definition 10: Composite of Functions

Let f: ST and g: TV be any two functions. A function h: SV denoted as h = gof and defined by

h(x) = (gof) (x) = g(f(x)),   x  S

is called the composite of f and g.

Note that the domain of the composite function is the set S and its co-domain is the set V. The set
T which contains the range of f is equal to the domain of g.

But in general, the composition of the two functions is meaningful whenever the range of the
first is contained the domain of the second.

Example: Let S = T = {1, 2, 3, 4...}, Define

f(x) = 2x and g(x) = x + 5. Then

“gof is defined as (gof) (x) = g(f(x)) = g(2x) = 2x + 5.

Note that we can also define fog the composite of g and f. Here (fog) (x) = f(g(x)) = f(x + 5) =
2 (x + 5) = 2x = 10, Also (fog) (1) = 12 and (gof) (1) = 7. This shows that ‘fog’ need not be equal to ‘gof’.

Let S = {1, 2, 3} and T = {a, b, c). Let f: ST be f(1) = a, f(2) = b, f(3) = c. Define a function g: TS as
g(a) = 1, g(b) = 2 and g(c) = 3. Under the function g, the element f(x) in T is taken back to the
element x in S. This mapping g is called the inverse of f and is given by g(f(x)) = x, for each in S.
You may note that f(g(a)) = a, f(g(b)) = b and f(g(c)) = c. Thus, we have the following definition:

Definition 11: Inverse of a Function

Let S and T be two non-empty sets. A function f: ST is said to be invertible if there exists a
function g: TS such that

(gof)(x) = x for each x in S,

and

(fog)(x) = x for each x in T.

In this case, g is said to be the inverse of f and we write it as g = f–1.

Did u know? Do all function possess inverses?

No, all functions do not possess inverses. For example, let S = {1, 2, 3} and T = {a, b). If f: ST
is defined as f(1) = f(2) = a and f(3) = b, then f is not invertible. For, if g: ST is inverse of f,
then

(gof) (1) = g(f(l)) = g(a)

and (gof) (2) = g(f(2)) = g(a).

Therefore, 1 = 2, which is absurd.
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NotesThis raises another question: Under what conditions a function is as an inverse? If a function
f: ST is one-one and onto, then it is invertible * conversely, if f is invertible, then f is both
one-one and onto. Thus if a function is one-one and onto, then it must have an Inverse.

1.2 System of Real Numbers

You are quite familiar with some number systems and some of their properties. You will,
perhaps recall the following properties:

(i) Any number multiplied by zero is equal to zero,

(ii) The product of a positive number with a negative number is negative,

(iii) The product of a negative number with a negative number is positive among takers.

To illustrate these properties, you will most likely use the natural numbers or integers or even
rational numbers. The questions, which begin to arise are: What are these various types of
numbers? What properties characterise the distinction between these various sets of numbers?

In this section, we shall try to provide answers to these and many other related questions. Since
we are dealing with the course on Real Analysis, therefore we confine our discussion to the
system of real numbers. Nevertheless, we shall make you peep into the realm of a still larger
class of numbers, the so called complex numbers.

The system of real numbers has been evolved in different ways by different mathematicians. In
the late 19th Century, the two famous German mathematicians Richard Dedekind [1815-1897]
and George Cantor [1845-1918] gave two independent approaches for the construction of real
numbers. During the same time, an Italian mathematician, G.  Peano [1858-1932] defined the
natural numbers by the well-known Peano Axioms. However, we start with the set of natural
numbers as the foundation and build up the integers. From integers, we construct the rational
numbers and then through the set of rational numbers, we reach the stage of real numbers. This
development of number system culminates into the set of complex numbers. A detailed study of
the system of numbers leads us to a beautiful branch of Mathematics namely. The Number Theory,
which is beyond the scope of this course. However, we shall outline the general development of
the system of the real numbers in this section. This is crucial to understand the characterization
of the real numbers in terms of the algebraic structure to be discussed in Unit 2. Let us start our
discussion with the natural numbers.

1.2.1 Natural Numbers

The notion of a number and its counting is so old that it is difficult to trace its origin. It developed
much before the time of even the recorded history that its manner of development is based on
conjectures and guesses. The mankind, even in the most primitive times, had some number
sense. The man, at least, had the sense of recognizing ‘more’ and ‘less’, when some objects were
added to or taken out from a small collection. Studies have shown that even some animals
possess such a sense. With the gradual evolution of society, simple counting became imperative.
A tribe had to count how many members it had, how many enemies and how many friends. A
shepherd or a cowboy found it necessary to know if his flock of sheep or cows was decreasing or
increasing in size. Various ways were evolved to keep such a count. Stones, pebbles, scratches on
the ground, notches on a big piece of wood, small sticks, knots in a string or the fingers of hands
were used for this purpose. As a result of several refinements of these counting methods, the
numbers were expressed in the written symbols of various types called the digits. These digits
were written differently according to the different languages and cultures of the societies. In the
ultimate development, the numbers denoted by the digits 1, 2, 3, .... became universally acceptable
and were named as natural numbers.
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Notes Different theories have been advanced about the origin and evolution of natural numbers. An
axiomatic approach, as evolved by G. Peano, is often used to define the natural numbers. Some
mathematicians like L. Kronecker [1823-1891] have remarked that the natural numbers are a
creation of God while all else is the work of man.

However, we shall not go into the origin of the natural numbers. In fact, we accept that the
natural numbers are a gift of nature to the mankind.

We denote the set of all natural numbers as

N = {1,2, 3, ....}.

One of the basic properties of these numbers is that there is a starting number 1. Then for each
number there is a next number. This nextness property is an important idea that you may find
fascinating with the natural numbers. You may think of any big natural number. Yet, you can
always tell its next number. What’s the next number after forty nine? After seventy seven? After
one hundred twenty three? After three thousand and ninety nine? Thus you have an endless
chain of natural numbers.

Some of the basic properties of the natural numbers are concerning the well-known fundamental
operations of addition, multiplication, subtraction and division. You know that the symbol ‘+’
is used for addition and the symbol ‘x’ is used for multiplication. If we add or multiply any two
natural numbers, we again get natural numbers. We express it by saying that the set of natural
numbers is closed with respect to these operations.

However, if you subtract 2 from 2, then what you get is not a natural number. It is a number
which we call zero denoted as ‘0’. The word, zero, in fact is a translation of the Sanskrit ‘shunya’.
It is universally accepted that the concept of the number zero was given by the ancient Hindu
mathematicians. You come across with certain concrete situations indicating the meaning of
zero. For example, the temperature of zero degree is certainly not an absence of temperature.

After having fixed the idea of the number zero, it should not be difficult for you to understand
the notion of negative natural numbers. You must have heard the weather experts saying that
the temperature on the top of the hills is minus 5 degrees written as –5°. What does it mean?
The simple and straight explanation is that –5 is the negative of 5 i.e. –5 is a number such that
5 + (–5) = 0. Hence –5 is a negative natural number. Thus for each natural n, there is a unique
number –n, called the negative of n such that

n + (–n) = 0.

1.2.2 Integers

You have seen that in the set N of natural numbers, if we subtract 2 from 2 or 3 from 2, we do not
get back natural numbers. Thus set of natural numbers is not closed with respect to the operation
of subtraction. After the operation of subtraction is introduced, the need to include 0 and negative
numbers becomes apparent. To make this operation valid, we must enlarge the system of
natural numbers, by including in it the number 0 and all the negative natural numbers. This
enlarged set consisting of all the natural numbers, zero and the negatives of natural numbers, is
called the set of integers. It is denoted as

Z = {.... –3, –2, –1, 0, 1, 2, 3 ….}.

Now you can easily verify that the set of integers is closed with respect to the operations of
addition, multiplication and subtraction.

The integers 1, 2, 3 .... are also called positive integers which are in fact natural numbers. The
integers –1, –2, –3,.... are called negative integers which are actually the negative natural numbers.
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the positive integers and 0 is called the set of non-negative integers. Similarly we talk of the set
of non-positive integers. Can you describe it?

1.2.3 Rational Numbers

If you add or multiply the integers 2 and 3, then the result is, of course, an integer in each case.
Also if you subtract 2 from 2 or 2 from 3, the result once again in each case, is an integer. What
do you get, when you divide 2 by 3? Obviously, the result is not an integer. Thus if you divide
an integer by a non-zero integer, you may not get an integer always. You may get the numbers
of the form

1 1 2 4 5, , , , so on.
2 3 3 5 6

 


Such numbers are called rational numbers.

Thus the set Z of integers is inadequate when the operation of division is introduced. Therefore,
we enlarge the set Z to that of all rational numbers. Accordingly, we get a bigger set which
includes all integers and in which division by non-zero integers is possible. Such a set is called

the set of rational numbers. Thus a rational number is a number of the form p ,
q

q  0, where

p and q are integers. We shall denote the set of all rational numbers by Q. Thus,

Q = {x = p ,
q

 P  Z, q  Z, q  0).

Now if you add or multiply any two rational numbers you again get a rational number. Also if
you subtract one rational number from another or if you divide one rational number by a non-
zero rational, you again get a rational numbers in each case. Thus the set Q  of rational numbers
looks to be a highly satisfactory system of numbers in the sense that the basic operations of
addition, multiplication, subtraction and division are defined on it. However, Q is also inadequate
in many ways. Let us now examine this aspect of Q.

Consider the equation x2 = 2. We shall show that there is no rational number which satisfies this
equation. In other words, we have to show that there is no rational number whose square is 2.
We discuss this question in the form of the following example:

Example: Prove that there is no rational number whose square is 2.

Solution: If possible, suppose that there is a rational number x such that x2 = 2.  Since x is a rational
number, therefore x must be of the form

x = p ,
q

 p  Z, q  Z, q  0.

Note that the integers p and q may or may not have a common factor. We assume that p and q
have no common factor except 1.

Squaring both sides, we get

2

2

p
q

 = 2.

Then we have

p2 = 2q2.
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Notes This means that p2 is even and hence p is even (verify it). Therefore, we can write p = 2k for some
integer k. Accordingly, we will have

p2 = 4k2 = 2q2

or

q2 = 2k2.

Thus p and q are both even. In other words, p and q have 2 as a common factor. This contradicts
our supposition that p and q have no common factor.

Hence there is no rational number whose square is 2.

Why don’t you try the following similar exercises?

Thus you have seen that there are numbers which are not rationals. Such numbers are called
irrational. In other words, a number is irrational if it cannot be expressed as p/q, p  Z, q  Z,
q  0. In this way, 2 , 3 , 5 ,  etc. are irrational numbers. In fact, such numbers are infinite.
Rather, you will see in Unit 2 that such numbers are even uncountable. Also you should not
conclude that all irrational numbers can be obtained in this way. For example, the irrational
numbers e and  are not of this form. We denote by I, the set of all irrational numbers.

Thus, we have seen that the set Q is inadequate in the sense that there are number which are not
rationals.

A number which is either rational or irrational is called a real number. The set of real numbers
is denoted by R. Thus the set R is the disjoint union of the sets of rational and irrational numbers
i.e. R = Q  I, Q  I = O.

Now in order to visualise a clear picture of the relationship between the rationals and irrationals,
their geometrical representation as points on a line is of great help. We discuss this in the next
section.

1.3 The Real Line

Draw a straight line L as shown in the Figure 1.1.

Choose a point O on L and another point P, to the right of O. Associate the number O (zero) to the
point O and the number 1 to the point P1. We take the distance between the points P and P1 as a
unit length. We mark a succession of points P2, P3, …… to the right of P1 each at a unit distance
from the preceding one. Then associate the integers 2, 3, .... to the points P 2, P3, ..., respectively.
Similarly, mark the points P–1, P–2,..., to the left of the point O, Associate the integers –1, –2,… to
the points P–1, P–2,…. Thus corresponding to each integer, we have associated a unique point of
the line L.

Now associate every rational number to a unique point of L. Suppose you want to associate the

rational number 
2
7  to a point on the line L. Then 

2
7 = 2 ×

1
7  i.e., one unit is divided into seven

parts, out of which 2 are to be taken. Let us see how you do it geometrically.

Figure 1.1
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Through O, draw a line OM inclined to the line L. Mark the points A, A,..., A 7 on the line OM at
equal distances. Join P1A,. Now if you draw a line through A, parallel to P1P7 to meet the line L

in H. Then H corresponds to the rational number 
2
7  i.e., OH = 

2
7 .

You can do likewise for a negative rational number. Such points, then, will be to the left of O.

By having any line through O, you can see that the point P does not depend upon chosen line
OM. Thus, you have associated every rational number to a unique point on the line L.

Now arises the important question:

Have you used all the points of the line L while representing rational numbers on it?

The answer to this question is NO. But how? Let us examine this.

At the point P, draw a line perpendicular to the line and mark A such that P1A = 1 unit. Cut off
OB = OA on the line, as shown in the Figure 1.3.

Then B is a point which correspond to a number whose square is 2. You have already seen that
there is no rational number whose square is 2. In fact, the length OA = 2  by Pythagorean
Theorem. In other words, the irrational number 2  is associated with the point B on the line L.
In this way, it can be shown that every irrational number can be associated to a unique point on
the line L.

Thus, it can be shown that to every real number, there corresponds a unique point on the line L.
In other words, all the real numbers are represented as points on a line. Is the converse true? That
is to say, does every point on the line correspond to a unique real number? This is true but we are
not going to prove it here. Therefore, hence onwards, we shall say that every real number

Figure 1.2

Figure 1.3
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a unique real number. In this sense, the line L is called the Real Line.

Now let L be the real line.

We may define addition (+) and multiplication (.) of real numbers geometrically as follows:

Suppose A represents a real number r and B represents a real number s so that OA = r and OB = s.
Shift OB so that O coincides with A. The point C which is the new position of B is defined to
represent r + s. See the Figure 1.4.

The construction is valid for positive as well as negative values of r and s. A real number r is said
to be positive if r corresponds to a point on the line L on the right of the point O. It is written as
r > 0. Similarly, r is said to be negative if it corresponds to a point on the left of the point O and
is written as r < 0. Thus if r is a real number then either r is zero or r is positive or r is negative
i.e. either r = 0 or r > 0 or r < 0. You should try the following exercise:

What about the product r.s of two real numbers r and s? We shall consider the case when r and
s are both positive real numbers.

Though O draw some other line OM. On L, let A represent the real number s. On OM take a point
D so that OD = r. Let Q be a point on I, so that OQ = 1 unit. Join QD. Through A draw a straight
line parallel to QD to meet OM at C. Cut off OP on the line equal to OC. Then F represents the
real number r.s.

Figure 1.4

Figure 1.5
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r such that r = –r where r is a positive real numbers. Therefore, the product rs can be defined on
L as

rs = (– r)s = –(rs).

Similarly you can state that rs = r(–s) = – (rs) where s is negative and s = –s for some positive s,
while r is positive.

If both r and s are negative and r = –r and s = –s where r and s are positive real numbers, then
we define

rs = rs = (–r) (–s).

We can also similarly define 0, r = r! 0 = 0 for each real number r.

1.4 Complex Numbers

So far, we have discussed the system of real numbers. We have yet, another system of numbers.
For example, if you have to find the square root of a negative real number say –5, then you will
write at as 1, 5.  You know that 5  is a real number but what about 1 ?  Again you can
verify that a simple equation x2 + 1 = 0 does not have a solution in the set of real numbers because
the solution involves the square root of a negative real number. As a matter of fact, the problem
is to investigate the nature of the number 1  which we denote by such that i2 = –1. Let us
discuss the following example to know the nature of i.

Example: Show that i is not a real number.

We claim that i is not a real number. If it is so, then either i = 0 or i > 0 or I < 0.

If i = 0, then i2 = 0. This implies that –1 = 0 which is absurd. If i > 0, then i2 > 0 which implies that
–1 > 0. This is also absurd. Finally, if i < 0, then again i 2 > 0 which implies that –1 > 0. This again
is certainly absurd. Thus i is not a real number. This number ‘i’ is called the imaginary number.
The symbol ‘i’ is called ‘iota’ in Greek language. This generates another class of numbers, the so
called complex numbers.

The basic idea of extending the system of real numbers to the system of complex numbers arose
due to the necessity of finding the solutions of the equations, like x2 + 1 = 0 or x2 + 2 = 0 and so on.
The first contribution to the notion of such a number was made by the most celebrated Indian
Mathematician of the 9th century, Mahavira, who showed that a negative real number does not
have a square root in the set of real numbers. But it was an Italian mathematician, G. Cardon
[1501-1576] who used imaginary numbers in his work without bothering about their existence.
Due to notable contributions made by a large number of mathematicians, the system of complex
numbers came into existence in the 18th century. Since we are dealing with real numbers,
therefore, we shall not go into the detailed discussion of complex numbers. However, we shall
give a brief introduction to the system of complex numbers. We denote the set of complex
numbers as

C = {z = a + i b, a and b real numbers}

In a complex number, z = a + i b, a is called its real part and b is called its imaginary part.

Any two complex numbers z1 = a1 + i b1 and z2 = a2 + i b2 are equal if only their corresponding real
and imaginary parts are equal.

If z1 = a1 + i b1 and z2 = a2 + i b2 are any two complex numbers, then we define addition (+) and
multiplication (.) as follows:
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z1.z2 = (a1a2 – b1b2) + i (a1b1 – a2b2).

The real numbers represent points on a line while complex numbers are identified as points on
the plane.

Before concluding this section, we would like to mention yet another classification of numbers
as enunciated by some mathematicians. Consider the number 2 . This is an example of what is
called an Algebraic Number because it satisfies the equation

x2 – 2 = 0.

A number is called an Algebraic Number if it satisfies a polynomial equation

a0xn + a1xn–l t .... + an–1 x + a,, + an = 0

where the coefficients a0, a1, a2,.... a, are integers, a,  0 and n > 1. The rational numbers are always
algebraic numbers. The numbers defined in terms of the square root etc., are also treated as
algebraic numbers. But there are some real numbers which are not algebraic. Such numbers are
called the Transcendental numbers. The numbers  and  are transcendental numbers.

You may think that the operations of algebraic operations viz. addition, multiplication, etc. are
the only aspects to be discussed about the set of real numbers. But certainly there are some more
important aspects of the set of real numbers as points on the real line. We shall discuss these
aspects in Unit 3 namely the point sets of the real line called also the topology of the real line. But
prior to that, we shall discuss the structure of real numbers in Unit 2.

We conclude this unit by talking briefly about an important hypothesis-closely linked with the
system of natural numbers. This is called the Principle of Induction.

1.5 Mathematical Induction

The Principle of Induction and the natural numbers are inseparable. In Mathematics, we often
deal with the proofs of various theorems and formulas. Some of these are derived by the direct
proofs, while some others can be proved by certain indirect methods. Consider, for example, the
validity of the following two statements:

(i) The number 4 divides 5n –1 for every natural number n.

(ii) The sum of the first n natural numbers is n(n 1)
2
+  i.e.

1 + 2 + 3 + ... + n = n(n 1)
2
+ .

In fact, you can provide most of the verifications for both statements in the following way:

For (i), if n = 1, then 5n –1 = 5 –1 = 4 which is obviously divisible by,

if n = 2, then 52 –1 = 24, which is also divisible by 4;

if n = 6, then 56 –1 = 15624, which is indeed divisible by 4.

Similarly for (ii) if n = 10 then 1 + 2 + .... 4 – 10 = 55, while the formula

n(n 1)
2
+  = 55 when n = 10.

Again, if n = 100; then also you can verify that in each way, the sum of the first hundred natural
numbers is 5050 i.e.
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+

 = 5050 for n = 100.

What do these statements have in common and what do they indicate? The answer is obvious
that each statement is valid for every natural number.

Thus to a great extent, a large number of theorems, formulas, results etc. whose statement
involves the phrase, “for every natural number n” are those for which an indirect proof is most
appropriate. In such indirect proofs, clearly a criterion giving a general approach is applied. One
such criterion is known as the criterion of Mathematical Induction. The principle of Mathematical
Induction is Stated (without proof) as follows:

Principle of Mathematical Induction

Suppose that, for each n  N, P (n) is a statement about the natural number n. Also, suppose that

(i) P(1) is true,

(ii) if P(n) is true, then P(n + 1) is also true.

Then P(n) is true for every n  N.

Let us illustrate this principle by an example:

Example: The sum of the first n natural numbers is n(n 1)
2
+

Solution: In other words, we have to show that for each n  N,

l + 2 + 3+ … + n = n(n 1)
2
+

Sn = 1 + 2 + 3 + … + n

=
n

k 1
k.

=

å

Let P(n) be the statement that

Sn=
n(n 1)

2
+

We, then, have Si = 1 and 
1(1 1)

2
+

 = 1. Hence P(1) is true.

This proves part (i) of the Principle of Mathematical Induction. Now for (ii), we have to verify
that if P(n) is true, then P(n + 1) is also true. For this, let us assume that P(n) is true and establish
that P(n + 1) is also true. Indeed, if we assume that

Sn =
n(n 1) ,

2
+

then we claim that

Sn + 1 =
(n 1) (n 2)

2
+ +

Indeed

Sn + 1 = 1 + 2 + 3 + … + n + (n + 1)

= Sn + (n + l)
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=

1
2  n(n + l) + (n + 1)

=
(n 1) (n 2)

2
+ +

Thus P(n + 1) is also true.

Similarly, by using the Principle of Induction, you can prove that

(i) the sum of the squares of the first n natural numbers is 
1
6  n(n + l) (2n +1); and

(ii) the sum of the cubes of the first n natural numbers is 
1
4  n2 (n + 1)2.

Self Assessment

Choose appropriate answer for the following:

1. The complement of the set S is the set of all those element of ................which do not belong
to S. It is denoted by S.

(a) universal set (b) empty set

(c) union set (d) intersection set

2. Let S and T all two sets. The collection of all elements which belong to S or T is called
.........................

(a) universal (b) union

(c) intersection (d) Difference of two set

3. The intersection .................. of sets S and T is defined to be the set of all those elements
which belong to both S and T.

(a) S  T (b) S  T

(c) S  T (d) S  T

4. If let S = {1, 2, 3} and T = {a, b, c} and let f : S  T be defined as f(1) = a, f(2) = b, f(b) = c. Then
f is.....................

(a) one-one (b) onto

(c) one-one and onto (d) one-one and surjection

5. The set S is called the domain of the function f and T is called its ....................

(a) Range (b) pre-domain

(c) co-domain (d) bijection

1.6 Summary

 We have recalled some of the basic concepts of sets and functions in section 1.2. A set is a
well-defined collection of objects. Each object is an element or a member of the set. Sets are
generally designated by capital letters and the members by small letters enclosed with
braces. There are two ways to indicate the members of a set. The tabular method or listing
method in which we list each element of a set individually and the set-builder method
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elements of a set.

 A set with a limited number of elements is a Finite set. A set with an unlimited number of
elements is an infinite set. A set with no elements is a null-set. A set S is a subset of a set T
if every element of S is in T. The set S is said to be a proper subset of T if every element of
S is in T and there is at-least one element of T which does not belong to S. The sets S and T
are equal if S is a subset of T and T is a subset of S. The null set is a subset of every set and
every set is a subset of itself.

 The union of two sets S and T, written as S  T, includes elements of S and T without
repetitions. The intersection of S and T, written as S n T, includes all those elements that are
common to both S and T. The complement of a set S in a Universal set X is denoted as Sc and
it consists of all those elements of X which do not belong to S. The laws with respect to
union, intersection and complement have been asked in the form of exercises. Also, these
notions have been extended to an arbitrary family of sets.

 A function f: ST is a rule by which you can associate to each element of S, a unique
element of T. The set S is the domain and the set T is the co-domain of f. The set {f(x):x  S}
is the Range of f, where f(x) is an image of x under f. The function f is one-one if f(x 1) = f(x2)
 x, = x, for any x, x, in the domain of f. It is said to be onto if the range of f is equal to the
domain of f. A function f is said to be a one-one correspondence if it is both one-one and
onto. A function i: SS defined by i(x) = x,   x  S is called an identity function, while a
function f; ST is said to be constant if f(x) = c, x  S, c being a fixed element of T.

 Any two functions with the same domain are said to be equal if they have the same image
for each point of the domain. The composite of the functions f: ST and g: TV is a
function denoted as ‘g o f’: SV and defined by (g o f) (x) = g(f(x)). The function f: ST is
said to be invertible if there exists a function g: TS such that both ‘g o f’ and ‘f o g’ are
identity functions. Also, a function is invertible if it is both one-one and onto. The inverse
of f exists if f is invertible and it is denoted as f.

 We have discussed the development of the system of numbers starting from the set of
natural numbers. These are the following:

Natural Numbers (Positive Integers):

N = {1, 2, 4 ....}

Integers:

Z = {.... 3, –2, –1, 0, 1, 2, 3 ....}

Rational Numbers:

Q = {
p
q : p  z, q  Z, q  0}

Real Numbers:

R = Disjoint Union of Rational and Irrational Numbers

R = Q  I, Q  I = 

Complex Numbers:

C = {z = x + iy : x  R, y  R}, i = 1.
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 We have discussed the geometrical representation of the real numbers and stated the
continuum Hypothesis. According to this, every real number can be represented by a
unique point on the line and every point on the line corresponds to a unique real number.
In view of this, we call this line as the Real Line.

1.7 Keywords

Constant Function: Let S and T be any two non-empty sets. A function f: ST defined by
f(x) = c, for each x in S, where c is fixed element of T, is called a constant function.

Co-domain: The set S is called the domain of the function f and T is called its co-domain.

Finite: A set with a limited number of elements is a Finite set.

Function: A function f: ST is a rule by which you can associate to each element of S, a unique
element of T.

Figure 1.6: A Mathematical Development of Numbers Systems
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1. Write the following in the set-builder form:

A = {2, 4, 6, ...}

A = {1, 3, 5, ...}

2. Write the following in the tabular form:

A = {x:x is a factor of 15}

A = {x:x is a natural number between 20 and 30}

A = {x:x is a negative integer}

3. Let X be a universal set and let S be a subset of X. Prove that

(i) P(0) = {}

(ii) (Sc)c = S.

4. Let A, B and C be any three sets. Then prove the following:

(i) A  B = B  A, A  B = B  A (Commutative laws).

(ii) A  (B  C) = (A  B)  C, A  (B  C) = (A  B)  C (Associative laws).

(iii) A (B  C) = (A  B)  (A  C)

A  (B  C) = (A  B)  (A  C) (Distributive laws).

(iv) (A  B)C =AC  BC, (A  B)C = AC  BC (DeMorgan laws).

5. Justify that

(i) N is a proper subset of Z.

(ii) Z is a proper subset of Q.

Answers: Self Assessment

1. (a) 2. (b)

3. (c) 4. (c)

5. (c)

1.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,
Ch.14, Ch.15(15.2, 15.3, 15.4)

T.M. Apostol : Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik : Mathematical Analysis.

H.L. Royden : Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the order relation – extended real number system

 Explain the field structure of the set of real numbers

 Describe the order-completeness

 Discuss countability to various infinite sets

Introduction

In Unit 1 we have discussed the construction of real numbers from the rational numbers which,
in turn, were constructed from integers. In this unit, we show that the set of real numbers has an
additional property which the set of rational numbers does not have, namely it is a complete
ordered field. The questions, therefore, that arise are: What is a field? What is an ordered field?
What does it mean for an ordered field to be complete? In order to answer these questions we
need a few concepts and definitions, e.g., those of order inequalities and intervals in R. We shall
discuss these concepts. Also in this unit, we shall explain the extended real number system.

You know that a given set is either finite or infinite. In fact a set is finite, if it contains just n
elements where n is some natural number. A set which is not finite is called an infinite set. The
elements of a finite set can be counted as one, two, three and so on, while those of an infinite set
can not be counted in this way. Can you count the elements of the set of natural numbers? Try it.
We shall show that this notion of counting can be extended in certain sense to even infinite sets.
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We have demonstrated that every real number can be represented as a unique point on a line
and every point on a line represents-% unique real number. This helps us to introduce the notion
of inequalities and intervals on the real line which we shall frequently use in our subsequent
discussion through out the course.

You know that a real number x is said to be positive if it lies on the right side of O, the point
which corresponds to the number 0 (zero) on the real line. We write it as x > 0. Similarly, a real
number x is negative, if it lies on the left side of O. This is written as x < 0. If x > 0, then x is a
non-negative real number. The real number x is said to be non-positive if x  0.

Let x and y be any two real numbers. Then, we say that x is greater than y if x – y > 0. We express
this by writing x > y. Similarly x is less than y if x – y < 0 and we write x < y. Also x is greater than
or equal to y (x  y) if x – y  0. Accordingly, x is less than or equal to y (x  y) if x – y  0. Given
any two real numbers x and y, exactly one of the following can hold:

either (i) x > Y
or (ii) x < y
or (iii) x = y.

This is called the law of trichotomy. The order relation  has the following properties:

Property 1
For any x, y, z in R,
(i) If x  y and y  x, then x = y,
(ii) If x  y an y  z, then x  z,
(iii) If x  y then x + z  y + z,
(iv) If x < y and o  z, then x z  y z.

The relation satisfying (i) is called anti-symmetric. It is called transitive if it satisfies (ii). The
property (iii), shows that the inequality remains unchanged under addition of a real number.
The property (iv) implies that the inequality also remains unchanged under multiplication by a
non-negative real number. However, in this case the inequality gets reversed under multiplication
by a non-positive real number. Thus, if x  y and z  0, then xz  yz. For instance, if z = –1, we see
that

–2  4  2 (–1)  4 (–1)  –2  –4.

We state the following results without proof:

 There lie an infinite number of rational numbers between any two distinct rational
numbers.

 As a matter of fact, something more is true.

 Between any two real numbers, there lie infinitely many rational (irrational) numbers.
Thus there lie an infinite number or real numbers between any two given real numbers.

2.1.1 Intervals

Now that the notion of an order has been introduced in R, we can talk of some special subsets of
R defined in terms of the order relation. Before we formally define subset, we first introduce the
notion of ‘betweenness’, which we have already used intuitively in the previous results. If 1, 2,
3 are three real numbers, then we say that 2 lies between 1 and 3. Thus, in general, if a, b and c are
any three real numbers such that a 5  b  c then we say that b lies ‘between’ a and c. Closely
related to notion of betweenness is the concept of an interval.
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An interval in R is an non-empty subset of R which has the property that, whenever two numbers
a and b belong to it, all numbers between a and b also belong to it.

The set N of natural numbers is not an interval because while 1 and 2 belong to N, but 1.5 which
lies between 1 and 2, does not belong to N.

We now discuss various forms of an interval.

Let a, b  R with a  b.

(i) Consider the set {x  R : a  x  b}. This set is denoted by ]a, b[, and is called a closed
interval. Note that the-end points a and b are included in it.

(ii) Consider the set{x  R : a < x < b}. This set is denoted by [a, b], and is called an open
interval. In this case the end points a and b are not included in it,

(iii) The interval {x  R: a  x < b} is denoted by [a, b[.

(iv) The interval {x  R : a < x  b} is denoted by ]a, b].

You can see the graph of all the four intervals in the Figure 2.1.

Intervals of these types are called bounded intervals. Some authors also call them finite
intervals. But remember that these are not finite sets. In fact these are infinite sets except for the
case [a, a] = {a}.

You can easily verify that an open interval ]a, b[ as well as ]a, b] and [a, b[ are always contained
in the closed interval [a, b].

Figure 2.1
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Example: Test whether or not the union of any two intervals is an interval.

Solution: Let [2, 5] and [7, 12] be two intervals. Then [2, 5]  [7, 12] is not an interval as can be seen
on the line in Figure below.

However, if you take the intervals which are not disjoint, then the union is an interval. For
example, the union of [2, 5] and [3, 6] is [2, 6] which is an interval. Thus the union of any two
intervals is an interval provided the intervals are not disjoint.

2.1.2 Extended Real Numbers

The notion of the extended real number system is important since we need it in this unit as well
as in the subsequent units.

You are quite familiar with the symbols +  and – . You often call these symbols are ’plus
infinity’ and ‘minus infinity’, respectively. The symbols +  and –  are extremely useful. Note
that these are not real numbers.

Let us construct a new set R* by adjoining –  and +  to the set R and write it as

R* = R  {– , + }.

Let us extend the order structure to R* by a relation < as –  < x < + , for every x  R. Since the
symbols –  and +  do not represent any real numbers, you should, therefore, not apply any
result stated for real numbers, to the symbols +  and – . The only purpose of using these
symbols is that it becomes convenient to extend the notion of (bounded) intervals to unbounded
intervals which are as follows:

Let a and b be any two real numbers. Then we adopt the following notations:

[a, ] = {X  R: x  a}

[a, do] = {X  R: x  a}

[– , b] = {x  R: x  b}

[–, b] = {x  R: x < b}

[–,] = {X  R: –  < x < }.
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All these unbounded intervals are also sometimes called infinite intervals.

You can perform the operations of addition and multiplication involving –  and +  in the
following way: For any x  R, we have

x + (+ ) = + ,

x + (+ ) = – ,

x. (+ ) = + , if x > 0

x. (+ ) = – , if x < 0

x. (+ ) = – , if x > 0

x. (– ) = + , if x < 0

 +  = + , –  –  = – 

. (– ) = – , (– ). (– ) = + .

Note that the operations  – , 0. , 



 are not defined.

2.2 Algebraic Structure

During the 19th Century, a new trend emerged in mathematics to use algebraic structures in
order to provide a solid foundation for Calculus and Analysis. In this quest, several methods
were used to characterise the red numbers. One of the methods was related to the least upper
bound principle used by Richard Dedekind which we discuss in this section.

This leads us to the description of the real numbers as a complete ordered field. In order to
define a complete ordered field. We need some definitions and concepts.

You are quite familiar with the operations of addition and multiplication on numbers, union
and intersection on the subsets of a universal set. For example, if you add or multiply any two

Figure 2.2
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multiplications on the sets of numbers are examples of a binary operation on a set. In general,
we can define a binary operation on a set in the following way:

Definition 2: Binary Operation

Given a non-empty set S, a binary operation on S is a rule which associates with each pair of
elements of S, a unique element of S.

We denote this rule by symbols such as ., *, +, etc.

By an Algebraic Structure, we mean a non-empty set together with one or more binary operations
defined on it. A field is an algebraic structure which we define, as follows:

Definition 3: Field Structure

A field consists of a non-empty set F together with two binary operations defined on it, denoted
by the symbols ‘+’(addition) and ‘.’ (multiplication) and satisfying the following axioms for any
elements x, y, z of the set F.

A1: x + y  F (Additive Closure)

A2: x + (y + z) = (x + y) + z (Addition is Associative)

A3: x + y = y + x (Addition is Commutative)

A4: There exists an element in F, denoted by ‘0’ and (Additive Identity)
called the zero or the zero element of F
such that x + 0 = 0 + x = x "  x  F

A5: For each x  F, there exists an element –x  F with (Additive Inverse)
the property

x + (– x) = (–x) + x = 0

The element – x is called additive inverse of x.

M1: x.y  F (Multiplicative Closure)

M2: (x.y).z = x. (y.z) (Multiplication is Associative)

M3: x.y = y.x (Multiplication is Commutative)

M4: There exists an element 1 different from (Multiplicative Identity)
0 called the unity of F, such that

1.x = x. 1 = x "  x  F

M5: For each x  F, x  0, there (Multiplicative Inverse)
exists an element x–1  F such that

x.x–l = .x–1 x = 1.

The element x–1 is called the multiplicative inverse of x.

D: x.(y + z) = x.y + x.z (Multiplication is distributive over Addition).

(x + y) z = x.z + y.z.

Since the unity is not equal to the zero i.e. 1  0 in a field, therefore any field must contain at least
two elements. Note that the axioms A1 (closure under addition) and M1 (closure under
multiplication) are unnecessary because the closures are implied in the definition of a binary
operation. However, we include them, for the sake of emphasis.
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with respect to the ordinary addition and multiplication. Thus, the set Q forms a field under the
operations of addition and multiplication, and so does, the set R of all the real numbers.

We state (without proof) some important properties satisfied by a field. They follow from the
field axioms. Can you try?

Property 2

For any x, y, z in F,

1. x + z = y + z  x = y,

2. x, 0 = 0 = 0.x,

3. (–x). y = – x,y = x. (–y),

4. (–x), (– y) = x.y,

5. x.z = y.z, z  0 x = y,

6. x.y = 0  either x = 0 or y = 0.

Thus by now you know that the sets Q, R and C form fields under the operations of addition and
multiplication.

2.2.1 Ordered Field

We defined the order relation   in R. It is easy to see that this order relation satisfies the
following properties:

Property 3

Let x, y, z be any elements of R. Then

O1: For any two elements x and y of R, one and only of the following holds:

(i) x < y, (ii) y < x, (iii) x = y,

O2: x  y, y  x  x  z,

O3: x  y  x  z  y + z,

O4: x  y, 0 < z  x.z  y.z

We express this observation by saying that the field R is an ordered field (i.e. it satisfies the
properties 01 – 04). It is easy to see that these properties are also satisfied by the field Q of rational
numbers. Therefore, Q is also an ordered field. What about the field C of Complex numbers?

2.2.2 Complete Ordered Field

Although R and Q are both ordered fields, yet there is a property associated with the order
relation which is satisfied by R but not by Q. This property is known as the Order-Completeness,
introduced for the first time by Richard Dedekind. To explain this situation more precisely, we
need a few more mathematical concepts which are discussed as follows:

Consider set S = {1, 3, 5, 7). You can see that each element of S is less than or equal to 7. That is
x  7, for each x  S. Take another set S, where S = {x  R : x  17). Once again, you see that each
element of S is less than 18. That is,  x < 18, for each x  S. In both the examples, the sets have
a special property namely that every element of the set is less than or equal to some number.
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above. Thus, we have the following definition:

Definition 4: Upper Bound of a Set

Let S  R. If there is a number u  R such that x  u, for every x  S, then S is said to be bounded
above. The number u is called an upper bound of S.

Example: Verify whether the following sets are bounded above. Find an upper bound of
the set, if it exists.

(i) The set of negative integers

{–1, –2, –3, ......}.

(ii) The set N of natural numbers.

(iii) The sets Z, Q and R.

Solution:

(i) The set is bounded above with –1 as an upper bound,

(ii) The set N is not bounded above.

(iii) All these sets are not bounded above.

Now consider a set S = {2, 3, 4, 5, 6, 7). You can easily see that this set is bounded above because
7 is an upper bound of S. Again this set is also bounded below because 2 is a lower bound of S.
Thus S is both bounded above as well as bounded below. Such a set is called a bounded set.
Consider the following sets:

S1 = {... –3, –2, –1, 0, 1, 2, ......},

S2 = {0, 1, 2, ......},

S3 = (0, –1, –2, ......}.

You can easily see that S, is neither bounded above nor bounded below. The set S4 is not bounded
above while S, is not bounded below. Such sets are known as Unbounded Sets.

Thus, we can have the following definition.

Definition 5: Bounded Sets

A set S is bounded if it is both bounded above and bounded below.

In other words, S has an upper bound as well as a lower bound. Thus, if S is bounded, then there
exist numbers u (an upper bound) and v (a lower bound) such that v  x  u, for every x  S.

If a set S is not bounded then S is called an unbounded set. Thus S is unbounded if either it is not
bounded above or it is not bounded below.

Example:

(i) Any finite set is bounded.

(ii) The set Q of rational numbers is unbounded.

(iii) The set R of real numbers is unbounded.

(iv) The set P = {sin x, sin 2x, sin 3x,......, sin nx, ......} is bounded because –1  sin nx  1, for every
n and x.
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given set will become the bounds of the subset.

Now consider any two bounded sets say S = {1, 2, 5, 7} and T = {2, 3, 4, 6, 7, 8}. Their union and
intersection are given by

S  T = {1, 2, 3, 4, 5, 6, 7, 8}

and

S  T = {2, 7}.

Obviously S  T and S  T are both bounded sets. You can prove this assertion in general for any
two bounded sets.

Task  Prove that the union and the intersection of any two bounded sets are bounded.

Now consider the set of negative integers namely

S = {–1, –3, –2, –4, ....}.

You know that –1 is an upper bound of S. Is it the only upper bound of S? Can you think of some
other upper bound of S? Yes, certainly, you can. What about 0? The number 0 is also an upper
bound of S. Rather, any real number greater than –1 is an upper bound of S. You can find
infinitely many upper bounds of S. However, you can not find an upper bound less than –1. Thus
–1 is the least upper bound of S.

It is quite obvious that if a set S is bounded above, then it has an infinite number of upper
bounds. Choose the least of these upper bounds. This is called the least upper bound of the set S
and is known as the Supremum of the set S. (The word ’Supremum’ is a Latin word). We formulate
the definition of the Supremum of a set in the following way:

Definition 6: The Supremum of a Set

Let S be a set bounded above. The least of all the upper bounds of S is called the least upper
bound or the Supremum of S. Thus, if a set S is bounded above, then a real number m is the
supremum of S if the following two conditions are satisfied:

(i) m is an upper bound of S,

(ii) if k is another upper bound of S, then m 5  k.

Task  Give an example of an infinite set which is bounded below. Show that it has an
infinite number of lower bounds and hence develop the concept of the greatest lower
bound of the set.

The greatest lower bound, in Latin terminology, is called the Infimum of a set.

Let us now discuss a few examples of sets having the supremum and the infimum:

Example: Each of the intervals ]a, b[, [a, b] ]a, b], [a, b[ has both the supremum and the
infimum. The number a is the infimum and b is the supremum in each case. In case of [a, b] the
supremum and the infimum both belong to the set whereas this is not the case for the set ]a, b[.
In case of the set ]a, b], the infimum does not belong to it and the supremum belongs to it.
Similarly, the infimum belongs to [a, b[ but the supremum does not belong to it.
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What does it mean? It simply means that the supremum of a set, if it exists, is unique i.e. a set can
not have more than one supremum. Let us prove it in the form of the following theorem:

Theorem 1: Prove that the supremum of a set, if it exists, is unique.

Proof: If possible, let there be two supremums (Suprema) say m and m’ of a set $.

Since m is the least upper bound of S, therefore by definition, we have

m  m

Similarly, since m the least upper bound of S, therefore, we must have

m  m.

This shows that m = m which proves the theorem.

You can now similarly prove the following result:

Task  Prove that the infimum of a set, if it exists, is unique.

In example 3, you have seen that supremum or the infimum of a set may or may not belong to
the set. If the supremum of a set belongs to the set, then it is called the greatest member of the set.
Similarly, if the infimum of a set belongs to it, then it is called the least member of the set.

Example:

(i) Every finite set has the greatest as well as the least member.

(ii) The set N has the least member but not the greatest. Determine that number.

(iii) The set of negative integers has the greatest member but not the least member. What is
that number?

You have seen that whenever a set S is bounded above, then S has the supremum. In fact this is
true in general. Thus, we have the following property of R without proof:

Property 4: Completeness Property

Every non-empty subset S of R which is bounded above, has the supremum.

Similarly, we have

Every non-empty subset S of R that is bounded below, has the infimum.

In fact, it can be easily shown that the above two statements are equivalent.

Now, if you consider a non-empty subset S of Q, then S considered as a subset of R must have, by
property, a supremum. However, this supremum may not be in Q. This fact is expressed by
saying that Q considered as a field in its down right is not Order-Complete. We illustrate this
observation as follows:

Construct a subset S of Q consisting of all those positive rational numbers whose squares are less
than 2 i.e.

S = {x  Q: x > 0, x2 < 2}.

Since the number 1 ES, therefore S is non-empty. Also, 2 is an upper bound of S because every
element of S is less than 2. Thus the set S is non-empty and bounded, above. According to the
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supremum does not belong to Q.

Suppose m is the supremum of the set S. If possible, let m belong to Q. Obviously, then m > 0.
Now either m2 < 2 or m2 = 2 or m2 > 2.

Case (i) When m2 < 2. Then a number y defined as

y =
4 3 m
3 2 m
+

+

is a positive rational number and

y – m =
22(2 m )

3 2 m
-

+

Since m2 < 2, therefore 2 – m2 > 0, Hence

y – m =
23(2 m )

3 2 m
-

+
 > 0

which implies that y > m.

Again,

y2 – 2 =
2

4 3 m 2
3 2 m

æ ö+
-ç ÷+è ø

=
2

2

m 2
(3 2 m)

-

+

Since m2 < 2, therefore

y2 – 2 < 0 i.e. y2 < 2.

This shows that y  S and also it is greater than m (the supremum of S). This is absurd. Thus the
case m2 < 2 is not possible.

Case (ii) When m2 = 2.

This means there exists a rational number whose square is equal to 2 which is again not possible.

Case (iii) When m2 > 2

In this case consider the positive rational number y defined in case (i). Accordingly, we have

y – m =
22(2 m )

3 2 m
-

+
 < 0 (check yourself)

i.e. y < m.

Also 2 – y2 = 2 – 
4 3 m)
3 2 m

æ ö+
ç ÷+è ø

 2 = 
2

2

2 m
(3 2 m)

-

+

i.e. 2 – y2 < 0 or y2 > 2,

which shows that y is an upper bound of S.
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supremum of S. This is again absurd. Thus m2 > 2 is also not possible. Hence none of three
possibilities is true. This means there is something wrong with our supposition. In other words,
our supposition is false and therefore the set, S does not possess the suprernum in Q.

This justifies that the field Q of rational numbers is not order-complete.

Now you can also try a similar exercise.

2.3 Countability

As we recalled the notion of a set and certain related concepts. Subsequently, we discussed
certain properties of the sets of numbers N, Z, Q, R and C. A few more important properties and
related aspects concerning these sets are yet to be examined. One such significant aspect is the
countability of these sets. The concept of countability of sets was introduced by George Cantor
which forms a corner stone of Modern Mathematics.

2.3.1 Countable Sets

You can easily count the elements of a finite set. For example, you very frequently use the term
‘one hundred rupees’ or ‘fifty boxes’, ‘two dozen eggs’, etc. These figures pertain to the number
of elements of a set. Denote the number of elements in a finite set S by n (S). If S = {a, b, c, d}, then
n (S) = 4. Similarly n (S) = 26, if S is the set of the letters of English alphabet. Obviously, then
n () = 0, where  is the null set.

You can make another interesting observation when you count the number of elements of a
finite set. While you are counting these elements, you are indirectly and perhaps unconsciously,
using a very important concept of the one-one correspondence between two sets. Recall the
concept of one-one correspondence. Here one of the sets is a finite subset of the set of natural
numbers and the other set is the set consisting of the articles/objects like rupees, boxes, eggs, etc.
Suppose you have a basket of oranges. While counting the oranges, you are associating a natural
number to each of the oranges. This, as you know, is a one-one correspondence between the set
of oranges and a subset of natural members. Similarly, when you count the fingers of your
hands, you are in fact showing a one-one correspondence between the set of the fingers with a
subset, say N10 = (1, 2, .... 10) of N.

Although, we have an intuitive idea of finite and infinite sets, yet we give a mathematical
definition of these sets in the following way:

Definition 7: Finite and Infinite Sets

A set S is said to be finite if it is empty or if there is a positive integer k such that there is one-one
correspondence between the elements of the set S and the set NK = {1, 2, 3 ..... k}. A set is said to be
infinite if it is not finite.

The advantage of using the concept of one-one correspondence is that it helps in studying the
countability of infinite sets. Let E = {2, 4, 6, ....} be the set of even natural numbers. If we define a
mapping f: N  E as

f(n) = 2n "  n  N,

then we find that f is a one-one correspondence between N and E.

Consider another examples, Suppose S = {1, 2, .... n} and T = {x1, X2, .... xn}. Define a mapping
f: S T as

f(n) = xn  n  S.
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Such sets are known as equivalent sets. We define the equivalent sets in the following way:

Definition 8: Equivalent Sets

Any two sets are equivalent if there is one-one correspondence between them.

Thus if two sets S and T are equivalent, we write, as S – T.

You can easily show; that S, T and P are any three sets such that S ~ T and T – P, then S – P.

The notion of the equivalent sets is very important because it forms the basis of the ’counting’ of
the infinite sets.

Now, consider any two line segments AB and CD.

Let M denote the set of points on AB and N the set of points on CD. Let us check whether M and
N are equivalent.

Join CA and DB to meet in the point P. Let a line through P meet AB in E and CD in F. Define
f: M N as f(x) = y where x is any point on AB and y is any point on CD. The construction shows
that f is a one-one correspondence. Thus M and N are equivalent sets.

The following are some examples of equivalent sets: Let I be an interval with end points a and
b, and J be an interval with end points c and d. Also, we assume that I and J are intervals of the
same type. Define f : I  J, by

f(t) =  d +  c, for t  I.

Then, it is not difficult to see that f is a one-to-one correspondence between intervals I and J.
Hence, all the intervals of same type are equivalent to each other.

Now, we introduce the following definition:

Definition 9: Denumerable and Countable Sets

A set which is equivalent to the set of natural numbers is called a denumerable set. Any set
which is either finite or denumerable, is called a Countable set.

Any set which is not countable is said to be an uncountable set.

Example:

(i) A mapping f: Z  N defined by

f(n) =
– 2n, if n is a negative integer
2n + 1, if n is non-negative integer

ì
í
î

Figure 2.3
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and hence a countable set.

(ii) Let E denote the set of all even natural numbers. Then the mapping f: N  E defined as
f(n) = 2n is a one-one correspondence. Hence the set E of even natural numbers is a
denumerable set and hence a countable set.

(iii) Let D denote the set of all odd integers and E the set of even integers. Then the, mapping
f: E  D, defined as f(n) = n + 1 is a one-one correspondence. Thus E ~ D, But, E – N,
therefore D – N. Hence D is a denumerable set and hence a countable set.

We observe that a set S is denumerable if and only if it is of the form {a,, a,, a, ....} for distinct
elements a,, a,, a, ..... For, in this case the mapping f(a n) = n is one-one mapping of S onto N i.e. the
sets {a,, a,, a3, .....} and the set N are equivalent.

If we consider the set S2 = {2, 3, 4, .....}, we find that the mapping f: N  S2 defined as f(n) = n + 1
is one-one and onto. Thus S2 is denumerable. Similarly if we consider S3 = {3, 4,....} or Sk = {k, k +
1, .....}, then we find that all these are denumerable sets and hence are countable sets.

We have seen that the set of integers is countable.

Now we discuss the countability of the rational and real numbers. Here is an interesting theorem.

Theorem 2: Every infinite subset of a denumerable set is denumerable.

Proof: Let S be a denumerable set. Then S can be written as

S = {a,, a,, a3, ....}.

Let A be an infinite subset of S. We want to show that A is also denumerable.

You can see that the elements of S are designated by subscripts 1, 2, 3, .... Let n, be the smallest
subscript for which an1  A. Then consider the set A – {an1}. Again, in this new set, let n2 be the
smallest subscript such that an2  A – {a,,,}.

Let nk be the smallest subscript such that

ank  A – {an1, an2, ......, ank–1}.

Note that such an element ank always exists for each k  N as A is infinite. For, then

A = { }1 2 kn n na , a , ...., a  Æ

for each k  N. Thus, we can write

A = { }1 2 3 kn n n na , a , a , ...., a , .... .

Define f: N  A by f(k) = ank. Then it can be verified that f is a one-one correspondence. Hence A
is denumerable. This completes the proof of the theorem.

Now consider the sets S = {6, 8, 10, 12, ....} and T = {3, 5, 7, 9, 11, ....}, which are both denumerable.
Their union S  T = {3, 5, 6, 7, 8, 9, ....} is an infinite subset of N and hence its denumerable. Again,
if S = (–1, 0, 1, 2} and T = {20, 40, 60, 80, ....}, then we see that S  T = (–1, 0, 1, 2, 20, 40, 60, ....} is a
denumerable set. Note that in each case S  T = 0. In fact, you can prove a general result in the
following exercise.

Thus, it follows that the union of any two countable sets is countable.

Indeed, let S and T be any two countable sets. Then S and T are either finite or denumerable.

If S and T are both finite, then S  T is also a finite set and hence S  T is countable.
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Notes If S is denumerable and T is finite, then also we know that S  T is denumerable. Hence S T is
countable. Again, if S is finite and T is denumerable, then again S T is denumerable and
countable.

Finally, if both S and T are denumerable, then S  T is also denumerable and hence countable. In
fact, this result can be extended to countably many countable sets. We prove this in the following
theorem:

Theorem 3: The union of a countable number of countable sets is countable.

Proof: Let the given sets be A,, An, A,,.... Denote the elements of these sets, using double subscripts,
as follows:

A1 = {a11, a12, a13, ....}

A2 = {a21, a22, a23, ....}

A3 = {a31, a32, a33, ....},

and so on. Note that the double subscripts have been used for the sake of convenience only. Thus
aij is the jth element in the set A. Now, let us try to form a single list of all elements of the union
of these given sets.

One method of doing this is by using Cantor’s diagonalised counting as indicated by arrows in
the following table:

Diagonalised Counting of j
i 1

A .


=



Enlist the elements as indicated through the arrows. This is a scheme for making a single list of
all the elements.

Following the arrows in above table, you can easily arrive at the new single list:

a,,, a,,, a,,, a31 a22 > a13, a,,, a,,, .......

Note that while doing so, you must omit the duplicates, if any.

Now, if any of the sets A,, A,, ......, are finite, then this will merely shorten the final list. Thus, we
have

i Ai = i {a,,, ai2, .....}, i = 1, 2, 3, ......

which each element appears only once. This set is countable and, so, complete the proof of the
theorem.

We are now in a position to discuss the countability of the sets of rational and real numbers.

2.3.2 Countability of Real Numbers

We have already established that the sets N and Z are countable. Let us, now, consider the case
of the set Q of rational numbers. For this we need the following theorems:
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Proof: Make a systematic scheme in an order for listing the rational numbers x where *  x  1,
(without duplicates) of the following sets

A1 = {0, 1}

A2 = { }1 1 1 1, , , ,
2 3 4 5



A3 = { }2 2 2, , ,
3 5 7



A4 = { }3 3 3 3, , , ,
4 5 7 8



.........................................................................................................................................................................................

.........................................................................................................................................................................................

You can see that each of the above sets is countable. Their union is given by

Ai = { }1 1 2 1 3 1 2 3 4 10, , , , , , , , , , ,
2 3 3 4 4 5 5 5 5 6

  = [0, 1]  Q,

which is countable by Theorem 3.

Theorem 5: The set of all positive rational numbers is countable.

Proof: Let Q, denote the set of all positive rational numbers. To prove that Q, is countable,
consider the following sets:

A1 = {1, 2, 3, ........}

A2 = { }1 2 5, , , ..
2 2 2



A3 = { }1 2 4, , , ..
3 3 3



A4 = { }1 3 5, , , ..
4 4 4



.........................................................................................................................................................................................

.........................................................................................................................................................................................

Enlist the elements of these sets in a manner as you have done in Theorem 3 or as known below:
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Notes You may follow the method of indicating by arrows for making a single list or you may follow
another path as indicated here. Accordingly, write down the elements of Q+ as they appear in the
figure by the arrows, while omitting those numbers which are already listed to avoid the
duplicates. We will have the following list:

Q+ = { }1 1 1 2 31, , 2, 3, , , , , 4, ..
2 3 4 3 2



= i
i

A (i = 1, 2, 3, ......),

which is countable by Theorem 3. Thus Q+ is countable.

Now let Q– denote the set of all negative rational numbers. But Q+ and Q– are equivalent; sets
because there is one-one correspondence between Q+ and Q–, f: Q+  Q–, given by

f(x) = –x, "  x  Q+.

Therefore Q– is also countable. Further {0} being a finite set is countable. Hence,

Q =
i

Q {0} Q+ -

is a countable set. Thus, in fact, we have proved the following theorem:

Theorem 6: The set Q of all rational numbers is countable.

Proof: You may start thinking that perhaps every finite set is denumerable. This is not true. We
have not yet discussed the countability of the set of real numbers or of the set of irrational
numbers. To do so, we first discuss the countability of the set of real numbers in an interval with
end points 0 and 1, which may be closed or open or semi-closed.

Consider the real numbers in the interval ]0, 1[.

Each real number in ]0, l[ can be expressed in the decimal expansion. This expansion may  be non-
terminating or may be terminating, e.g.

1
3

 = .333, ......

is an example of non-terminating decimal expansion, whereas

1
4  = .25,

1
2  = .5, ......,

are terminating decimal expansions. Even the terminating expansion can also be expressed  as
non-terminating expansion in the sense that you can write

1
4  = .25 = .24999 .....

Thus, we agree to say that each real number (rational of irrational) in the ]0, 1[ can be expressed
as a non-terminating decimal expansion in terms of the digits from 0 to 9.

Suppose x ]0, 1[. Then it can be written as

x = .C1C2C3 .....

where c1, c2,.... take their values from the set {0, l, 2, 3, 4, 5, 6, 7, 8, 9) of ten digits.

Similarly, let y be another, real number in (0, l). Then y can also be expressed as

y = .d1d2d3 .....
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identical. Thus, if there is even a single decimal places, say, 10th place such that d 10  c10, then

x  y.

We now discuss the following result due to George Cantor.

Theorem 7: The set of real numbers in the interval ]0, 1[ is not countable.

Proof: Since the set of numbers in ]0, 1[ is an infinite set, therefore, it is enough to how that the set
of real numbers in ]0, 1[ is not denumerable.

If possible, suppose the set of real numbers in ]0, 1[ is denumerable. Then there is a one-one
correspondence between N and the elements of ]0, 1[ i.e. there is a function f: N  ]0, 1[ which is
one-one and onto. Thus, if

f(1) = x1, f(2) = x2, ........, f(k) = xk, ....., then

]0, 1[ = {x1, x2, ....., xk, .....}.

We shall show that there is at least one real number ]0, 1[ which is not an image of any element
of N under f. In other words, there is an element of ]0, 1[ which is not in the list x 1, x2, ....

Let x1, x2, ...... be written as

x1 = 0, a11 a12 a13 a14 ....

x2 = 0, a21 a22 a23 a24 ....

x3 = 0, a31 a32 a33 a34 ....

x4 = 0, a41 a42 a43 a44 ....

...........................................................

...........................................................

...........................................................

From this we construct a real number

z = b1 b2 b3 b4 .....,

where b1, b2, ..... can take any digits from {0, 1, 2,........., 9} in such a way that b ]  a11, a2  a22,
b3 = a33, ....... Thus,

z = b1 b2 b3 ....

As a real number in ]0, 1[ such that z  x1 because b1  a11, z  x2 because b2  a22. In general z  xn

because ann  bn. Therefore z is not in the list {x1, x2 x3,....}.

Hence ]0, 1[ is not countable.

We have already mentioned that the intervals [0, 1], [0, 1[, ]0, 1] and ]0, 1[ are equivalent sets.
Since the set of real numbers in ]0, 1[ is not countable, therefore none of the intervals is a
countable set of real numbers.

Now you can easily conclude that the set of irrational numbers in ]0, 1[ is not countable. If
possible, suppose that the set of irrational numbers in ]0, 1[ is countable. Also you know that the
set of rational numbers in ]0, 1[ is countable and that the union of two countable sets is countable.
Therefore, the union of the set of rational numbers and the set of irrational numbers ]0, 1[ is
countable i.e. the set of all real numbers in ]0, 1[ is countable which by above theorem is not so.
Hence the set of irrational numbers in ]0, 1[ is not countable.

In fact, every interval ]a, b[ or [a, b], ]a, b], [a, b[ is an uncountable set of real numbers.
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Suppose that R is countable. Then an interval ]0, 1[, being an infinite subset of R, must be
countable. But then, we have already proved that the set ]0, 1[ is not countable. Hence R cannot
be countable.

Thus even by the method of countability of sets, we have established the much desired distinction
between Q and R in the sense that Q is countable but R is not countable.

Also, we observe that although R is not countable, yet it contains subsets which are countable.
For example R has subsets as Q, Z and N which are countable. At the same time R is an infinite
set. We sum up this observation in the form of the following theorem:

Theorem 8: Every infinite set contains a denumerable set.

Proof: Let S be an infinite set. Consider some element of S. Denote it by n 1. Consider the set
S – {a1}. Now pick up an element from the new set and denote it by a2.

Consider the set

S = {a1, a2}.

Proceeding in this way, having chosen ak–l, you can have the set

S = {a1, a2, ..... ak–1,}.

This set is always non-empty because S is an infinite set. Hence, we can choose an element in this
set. Denote the element by ak. This can be done for each k  N. Thus the set

{a1, a2, ....., ak, .....}

is a denumerable subset of S and hence a countable subset of S. This proves the theorem.

The importance of this theorem is that it leads us to an interesting area of Cardinality of sets by
which we can determine and compare the relative sizes of various infinite sets,

This, however, is beyond the scope of this course.

Self Assessment

Fill in the blanks:

1. Let E denote the set of all even natural numbers. Then the mapping f: N  E defined as
.......................... is a one-one correspondence. Hence, the set E of even natural numbers is a
denumerable set and hence a countable set.

2. Let D denote the set of all odd integers and E the set of even integers. Then the, mapping
f: E  D , defined as .......................... is a one-one correspondence. Thus E ~ D, But, E – N,
therefore D – N. Hence D is a denumerable set and hence a countable set.

3. Every ...................... of a denumerable set is denumerable.

4. The set of all rational numbers between [0, 1] is ...................

5. The set of all .................... numbers is countable.

2.4 Summary

 We have discussed the order-relations (inequalities) in the set R of real numbers. Given
any two real numbers x and y, either x > y or x = y or x < y.
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to the inequality ‘’. The first property states that the inequality  is antisymmetric. The
second states the transitivity of . The third allows us to add or subtract across the inequality,
while preserving the inequality. The last property gives the situation in which the
inequality is preserved if multiplied by a positive real number, while it is reversed if
multiplied by a negative real number.

 We have also defined the bounded and unbounded intervals. The bounded intervals are
classified as open intervals, closed intervals, semi-openor semi-closed intervals. The
unbounded intervals are introduced with the help of the extended real number system
R  {– , ) using the symbols +  (called plus infinity) and – , (called minus infinity).

 There are three important aspects of the real numbers: algebraic, order and the
completeness. To describe these aspects, we have specified a number of axioms in each
case. In the algebraic aspect, an algebraic structure called the field is used. A field is a non-
empty set F having at least two distinct elements 0 and 1 together with two binary
operations + (addition) and . (multiplication) defined on F such that both + and . are
commutative, associative, 0 is the additive identity, 1 is the multiplicative identity, additive
inverse exists for each element of F, multiplicative inverse exists for each element other
than 0 and multiplication is distributive over addition. The second aspect is concerned
with the Order Structure in which, we use the axioms of the law of trichotomy, the
transitivity property, the property that preserve the inequality under addition and the
property that preserve the inequality under multiplication by a positive real number.

 In the completeness aspect, we introduce the notions of the supremum (or infimum) of a
set and state the axiom of completeness. We find that both Q and R are ordered fields but
the axioms of completeness distinguishes Q from R in the sense that Q does not satisfy the
axiom of completeness. Thus, we conclude that R is a complete-ordered Field whereas Q is
not a complete-ordered field.

 We introduce the notion of the countability of sets. A set is said to be denumerable if it is
in one-one correspondence with the set of natural numbers. Any set which is either finite
or denumerable is called a countable set. We have shown that the sets N, Z Q are countable
sets but the sets 1 (set of irrational numbers) and R are not countable.

 Thus in this unit, we have discussed the algebraic structure, the order structure and the
countability of the real numbers.

2.5 Keywords

Countable Set: A set which is equivalent to the set of natural numbers is called a denumerable
set. Any set which is either finite or denumerable, is called a Countable set.

Uncountable Set: Any set which is not countable is said to be an uncountable set.

2.6 Review Questions

1. State the properties of order relation in the set R of real numbers with respect to the
relation 3 (is greater than or equal to) and illustrate the inequality under multiplication by
a negative real number.

2. Give examples to show that the intersection of any two intervals may not be an interval.
What happens, if the two intervals are not disjoint? Justify your answer by an example.
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tables:

0 1
0 0 1
1 1 0

+

  

. 0 1
0 0 0
1 0 1

4. Show that the zero and the unity are unique in a field.

5. Do the sets N (of natural numbers) and Z (set of integers) form fields? Justify your answers.
Also verify that the set C of complex numbers is a field.

6. Show that the field C of Complex numbers is not an ordered field.

7. (i) Define a set which is bounded below. Also define a lower bound of a set.

(ii) Give at least two examples of a set (one of an infinite set) which is bounded below
and mention a lower bound in each case.

(iii) Is the set of negative integers bounded below? Justify your answers.

8. Test which of the following sets are bounded above, bounded below, bounded and
unbounded.

(i) The intervals ]a, b], [a, b], ]a, b] and [a, b[, where a and b are any two real numbers.

(ii) The intervals [2, [, ]–, 3[, ]5,  [ and ] –, 4].

(iii) The set {cos e, cos 2 , cos 3 e, ......}.

(iv) S = {x  R : – a  x  a} for some a R.

Answers: Self Assessment

1. f(n) = 2n 2. f(n) = n + 1

3. infinite subset 4. countable

5. positive rational

2.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define the modulus of a real number

 Describe the notion of a neighbourhood of a point on the line

 Define an open set and give examples

 Discuss the limit points of a set

 Define a closed set and establish its relation with an open set

 Explain the meaning of an open covering of a subset of real numbers

Introduction

You all are quite familiar with an elastic string or a rubber tube or a spring. Suppose you have
an elastic string. If you first stretch it and then release the pressure, then the string will come
back to its original length. This is a physical phenomenon but in Mathematics, we interpret it
differently. According to Geometry, the unstreched string and the stretched string are different
since there is a change in the length. But you will be surprised to know that according to another
branch of Mathematics, the two positions of the string are identical and there is no change. This
branch is known as Topology, one of the most exciting areas of Mathematics.
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Notes The word 'topology' is a combination of the two Greek words 'topos' and 'logos'. The term
'topos' means the top or the surface of an object and 'logos' means the study. Thus 'topology'
means the study of surfaces. Since the surfaces are directly related to geometrical objects, therefore
there is a close link between Geometry and Topology. In Geometry, we deal with shapes like
lines, circles, spheres, cubes, cuboids, etc. and their geometrical properties like lengths, areas,
volumes, congruences etc. In Topology, we study the surfaces of these geometrical objects and
certain related properties which are called topological properties. What are these topological
properties of the surfaces of a geometrical figure? We shall not answer this question at this stage.
However, since our discussion is confined to the real line, therefore, we shall discuss this question
pertaining to the topological properties of the real line. These properties are related to the
points and subsets' of the real line such as neighbourhood of a point, open sets, closed sets, limit
points of a set of the real line, etc. We shall, therefore, discuss these notions and concepts in this
unit. However, prior to all these, we discuss the modulus of a real number and its relationship
with the order relations or inequalities.

3.1 Matric Spaces

Definition

A metric space is an ordered pair (M, d) where M is a set and d is a metric on M, i.e., a function

d : M  M 

such that for any x, y, z M, the following holds:

1. d(x, y)  0 (non-negative),

2. d(x, y) = 0 iff x = y (identity of indiscernibles),

3. d(x, y) = d(y, x) (symmetry) and

4. d(x, z)  d(x, y) + d(y, z) (triangle inequality).

The first condition follows from the other three, since:

2d(x, y) = d(x, y) – d(y, x)  d(x, x) = 0

The function d is also called distance function or simply distance. Often, d is omitted and one just
writes M for a metric space if it is clear from the context what metric is used.

Example:

1. The prototype: the line R with its usual distance d(x, y) = |x – y|.

2. The plane R2 with the “usual distance” (measured using Pythagoras’s theorem):

d((x1, y1), (x2, y2)) = [(x1 – x2)2 + (y1 – y2)2].

This is sometimes called the 2-metric d2.



LOVELY PROFESSIONAL UNIVERSITY 45

Unit 3: Matric Spaces

Notes3. The same picture will give metric on the complex numbers C interpreted as the Argand
diagram. In this case the formula for the metric is now: d(z, w) = |z – w| where the || in
the formula represent the modulus of the complex number rather than the absolute value
of a real number.

4. The plane with the taxi cab metric d((x1, y1), (x2, y2)) = |x1 – x2| + |y1 – y2|.

This is often called the 1-metric d1.

5. The plane with the supremum or maximum metric d((x1, y1), (x2, y2)) = max(|x1 – x2|,
|y1 – y2|). It is often called the infinity metric d


.

These last examples turn out to be used a lot. To understand them it helps to look at the
unit circles in each metric. That is the sets {x R2|d(0, x) = 1}. We get the following picture:

6. Take X to be any set. The discrete metric on the X is given by: d(x, y) = 0 if x = y and
d(x, y) = 1 otherwise. Then this does define a metric, in which no distinct pair of points are
“close”. The fact that every pair is “spread out” is why this metric is called discrete.

7. Metrics on spaces of functions. These metrics are important for many of the applications in
analysis.  Let C[0, 1] be the set of all continuous R-valued functions on the interval [0, 1].
We define metrics on by analogy with the above examples by:

(a) d1(f, g) = 1
D|f(x) g(x)|dxò -

So the distance between functions is the area between their graphs.
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(b) d2(f, g) = 1 2

D f(x) g(x) dxòé ù-ë û

Although this does not have such case straight forward geometric interpretation as
the last example, this case turns out to be the most important in practice. It corresponds
to who doing a “least squares approximation”.

(c) d(f, g) = max {|f(x) – g(x))|| 0  x  1}

Geometrically, this is the largest distance between the graphs.

Remarks:

1. The triangle inequality does hold for these metrics

2. As in the R2 case one may define dp for any p  1 and get a metric.

3.1.1 Space Properties

Metric spaces are paracompact Hausdorff spaces and hence normal (indeed they are perfectly
normal). An important consequence is that every metric space admits partitions of unity and
that every continuous real-valued function defined on a closed subset of a metric space can be
extended to a continuous map on the whole space (Tietze extension theorem). It is also true that
every real-valued Lipschitz-continuous map defined on a subset of a metric space can be extended
to a Lipschitz-continuous map on the whole space.

Metric spaces are first countable since one can use balls with rational radius as a neighborhood
base.

The metric topology on a metric space M is the coarsest topology on M relative to which the
metric d is a continuous map from the product of M with itself to the non-negative real numbers.

3.1.2 Distance between Points and Sets; Hausdorff Distance and
Gromov Metric

A simple way to construct a function separating a point from a closed set (as required for a
completely regular space) is to consider the distance between the point and the set. If (M, d) is a
metric space, S is a subset of M and x is a point of M, we define the distance from x to S as

d(x, S) = inf {d(x, s) : s  S}
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generalization of the triangle inequality:

d(x, S)  d(x, y) + d(y, S)

which in particular shows that the map is continuous.

Given two subsets S and T of M, we define their Hausdorff distance to be

dH(S, T) = max {sup {d(s, T) : s  S}, sup {d(t, S) : t  T}}

In general, the Hausdorff distance dH(S, T) can be infinite. Two sets are close to each other in the
Hausdorff distance if every element of either set is close to some element of the other set.

The Hausdorff distance dH turns the set K(M) of all non-empty compact subsets of M into a metric
space. One can show that K(M) is complete if M is complete. (A different notion of convergence
of compact subsets is given by the Kuratowski convergence.)

One can then define the Gromov–Hausdorff distance between any two metric spaces by
considering the minimal Hausdorff distance of isometrically embedded versions of the two
spaces. Using this distance, the set of all (isometry classes of) compact metric spaces becomes a
metric space in its own right.

3.1.3 Product Metric Spaces

If (M1, d1), ....., (Mn, dn) are metric spaces, and N is the Euclidean norm on Rn, then (M1 x .. x Mn,
N(d1, ..., dn)) is a metric space, where the product metric is defined by

N(d1, ..., dn) ((x1, ...., xn), (y1, . . ., yn)) = N(d1(x1, y1), . . ., dn(xn, dn)),

and the induced topology agrees with the product topology. By the equivalence of norms in
finite dimensions, an equivalent metric is obtained if N is the taxicab norm, a p-norm, the max
norm, or any other norm which is non-decreasing as the coordinates of a positive n-tuple
increase (yielding the triangle inequality).

Similarly, a countable product of metric spaces can be obtained using the following metric

d(x, y) = i i
i

i 1 i i i

di(x , y )1
2 1 d (x , y )



=

å
+

.

An uncountable product of metric spaces need not be metrizable. For example, RR is not first-
countable and thus isn’t metrizable.

Continuity of Distance

It is worth noting that in the case of a single space (M, d), the distance map d: M  M  R+ (from
the definition) is uniformly continuous with respect to any of the above product metrics N(d, d),
and in particular is continuous with respect to the product topology of M  M.

Quotient Metric Spaces

If M is a metric space with metric d, and ~ is an equivalence relation on M, then we can endow the
quotient set M/~ with the following (pseudo)metric. Given two equivalence classes [x] and [y],
we define

d’([x], [y]) = inf {d(p1, q1) + d(p2, q2) + . . . + d(pn, qn)
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= [x], [qn] = [y], [qi] = [pi + 1], i = 1, 2, . . ., n – 1. In general this will only define a pseudometric, i.e.
d’([x], [y]) = 0 does not necessarily imply that [x] = [y]. However for nice equivalence relations
(e.g., those given by gluing together polyhedra along faces), it is a metric. Moreover if M is a
compact space, then the induced topology on M/~ is the quotient topology.

The quotient metric d is characterized by the following universal property. If f : (M, d)  (X, )
is a metric map between metric spaces (that is,  (f(x), f(y))  d(x, y) for all (x, y) satisfying
f(x) = f(y) whenever x  y, then the induced function f : M/ X, given by [ ]( )f x f(x)= , is a

metric map f : (M / , d') (X, )  . A topological space is sequential if and only if it is a quotient
of a metric space

Generalizations of Metric Spaces

 Every metric space is a uniform space in a natural manner, and every uniform space is
naturally a topological space. Uniform and topological spaces can therefore be regarded
as generalizations of metric spaces.

 If we consider the first definition of a metric space given above and relax the second
requirement, or remove the third or fourth, we arrive at the concepts of a pseudometric
space, a quasimetric space, or a semi-metric space.

 If the distance function takes values in the extended real number line R{+}, but otherwise
satisfies all four conditions, then it is called an extended metric and the corresponding
space is called an -metric space.

 Approach spaces are a generalization of metric spaces, based on point-to-set distances,
instead of point-to-point distances.

 A continuity space is a generalization of metric spaces and posets, that can be used to unify
the notions of metric spaces and domains.

Metric Spaces as Enriched Categories

The ordered set (, ) can be seen as a category by requesting exactly one morphism a  b if
a  b and none otherwise. By using + as the tensor product and 0 as the identity, it becomes a
monoidal category R*. Every metric space (M, d) can now be viewed as a category M* enriched
over R*:

 Set Ob(M*) : M=

 For each set X, Y  M set Hom(X, Y) : = d(X, Y) Ob(R*).

 The composition morphism Hom(Y, Z)  Hom(X, Y)  Hom(X, Z) will be the unique
morphism in R* given from the triangle inequality d(y, z) + d(x, y)  d(x, z).

 The identity morphism 0  Hom(X, X) will be the unique morphism given from the fact
that 0  d(X, X).

 Since R* is a strict monoidal category, all diagrams that are required for an enriched
category commute automatically.

3.2 Modulus of Real Number

You know that a real number x is said to be positive if x is greater than 0. Equivalently, if 0
represents a unique point 0 on the real line, then a positive real number x lies on the right side
of 0. Accordingly, we defined the inequality x > y (in terms of this positivity of real numbers) if
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or the inequalities. Such as the one concerning the multiplication of inequalities, it is essential to
specify that some of the numbers involved should be positive. For example, it is necessary that
z > 0 so that x > y implies xz > yz. Again, the fractional power of a number will not be real if the
number is negative, for instance x1/2 when x = –4. Many of the fundamental inequalities, which
you may come across in higher Mathematics, will involve such fractional powers of numbers. In
this context, the concept of the absolute value or the modulus of a real member is important to
which you are already familiar. Nevertheless, in this section, we recall the notion of the modulus
of a real number and its related properties which we need for our subsequent discussion.

Defination: Modulus of Real Number

Let x be any real number. The absolute value or the modulus of x denoted by |x| is defined as
follows:

|x| = x if x > 0

= –x if x < 0

= 0 if x = 0.

You can easily see that

x  = x , x R"  .

Not that |–x| is different from –|x|.

3.2.1 Properties of the Modulus of Real Number

Since the modulus of a real number is essentially a non-negative real number, therefore the
operations of usual addition, subtraction, multiplication and division can be performed on
these numbers. The properties of the modulus are mostly related to these operations.

Property 1: For any real number x, |x| = Maximum of (x, – x),

Proof: Since x is any real number, therefore either x  0 or x < 0. If x  0, then by definition,
we have

|x| = X.

Also, x > 0 implies that – x  0. Therefore, maximum of (x, – x} = x = |x|

Again x < 0, implies that –x > 0. Therefore again maximum of {x, –x} = –x = |x|.

Thus,

Maximum (x, – x} = |x|

Now consider the numbers |5|2, |–4.5|, 4
5

. It is easy to see that

|5|2 = |5| =  5.5 = 52 = |–5|2

|–4.5| = |–20| = 20 Also |–4|. |5| = 4.5 = 20

i.e. |–4.5| = |–4|. |5|

and

4
5  =

4
5  and 

4
5

 = 
4
5  i.e.
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All this lead us to the following properties:

Property 2: For any real number x

|x|2 = x2 = |–x|2

Proof: We know that |x| = x for x 2'0.

Thus |x|2 = |x||x| = x, x = x, for x  0

Again for x < 0, we know that |x| = –x. Therefore

|x2| = |x| |x| = –x. –x = x2

Therefore, it follows that

|x|2 = x2 for any xR.

Now you should try the other part as an exercise.

Property 3: For any two real numbers x and y, prove that |x.y| = |x|.|y|.

Proof: Since x and y are any two real numbers, therefore, either both are positive or one is
positive and the other is negative or both are negative i.e. either x  0, y  0 or x  0, y  0 or
x  0, y  0 or x  0, y  0. We discuss the proof for all the four possible cases separately.

Case (i): When x  0, y  0.

Since x  0, therefore, we have, by definition,

|x| = x, |y| = y

Also x  0, y  0 simply that xy 0 and hence

|xy| = xy = |x||y|

which proves the property.

Case (ii): When x  0, y  0. Then obviously xy  0. Consequently by definition, it, follows that

|x| = x, |y| = –Y, |xy| = –xy

Hence

|xy| = –xy = x(–y) = |x||y|

which proves the property.

Case (iii): When x  = 0, y 0.

Interchange x and y in (ii).

Case (iv): When x  0, y  0, then xy = 20. Accordingly, we have

|x| = –x, |y| = –y, |xy| = xy.

Hence

|xy| = xy = (–x)(–y) = |x||y|

using the field properties stated. This concludes the proof of the property.
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|xy|2 = (xy)2 = x2 y2 = |x|2.|y|2

= (|x|.|y|)2

Therefore

|xy| =  (|x||y|)

Since |xy|, |x| and |y| are  non-negative, therefore we take the positive sign only and we have

|xy| = |x||y|

which proves the property.

You can use any of the two methods to try the following exercise.

The next property is related to the modulus of the sum of two real members. This is one of the
most important properties and is known as Triangular Inequality:

Property 4: Triangular Inequality

For any two real numbers x and y, prove that

|x + y|  |x| + |y|.

Proof: For any two real numbers x and y the number x + y  0 or x + y < 0.

If x + y  0, then by definition

|x + y| = x + y. . . .(1)

Also, we know that

|x| x " xR

|x| x " yR

Therefore

|x| + |y|  x + y

x + y  |x| + |y|. . . .(2)

From (1) and (2), it follows that

|x + y| |x| + |y|

Now, if x + y < 0, then again by definition, we have.

|x + y|= – (x + y)

or |x + y|= (–x) + (–y) . . .(3)

Also we know that (see property 1)

–x  |x| and –y  |y|.

Consequently, we get

(–x) + (–y)  |x|+|y|

or (–x) + (–y)  |x|+|y| . . .(4)

From (3) and (4), we get

|x + y| |x|+|y|
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You can try the following exercise similar to this property.

Now let us see another interesting relationship between the inequalities and the modulus of a
real number.

By definition, |x| is a non-negative real number for any xR. Therefore, there always exists a
non-negative real number u such that

either (x| < u or |x| > u or |x| =  u.

Suppose |x| < u. Let us choose u = 2. Then

|x| < C  Max. {-x, x} < 2

–x < 2, x < 2

x > –2, x < 2

–2 < x, x < 2

–2 < x <2.

i.e. |x| < 2 –2 < x < 2

Conversely, we have

–2 < x < 2 –2 < x < 2

 2 > –x, x < 2

 –x < 2, x < 2

 Max. {–x, x} < 2

 |x| < 2.

i.e.

 –2 < x < |x| < 2

Thus, we have shown that

|x| <  –2 < x < 2.

This can be generalised as the following property.

Property 5: Let x and u be any two real numbers.

|x|  u  –u  x  u.

Proof: |x|  u  Max. {–x, x}  u

   –x  u, x  u

   x  –u, x  u

   –u  x, x  u

   –u  x  u

which proves the desired property.

The property 5 can be generalized in the form of the following exercise.
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Task  For any real numbers x, a and d,

|x – a|  d  a – d  x  a + d.

Example: Write the inequality 3 < x < 5 in the modulus form.

Solution: Suppose that there exists real numbers a and b such that

a – b = 3, a + b = 5.

Solving these equations for a and b, we get

a = 4 > b = 1.

Accordingly,

3 < x < 5  4 – 1 < x < 4 + 1

 –l < x – 4 < l

|x – 4| < 1

Task 1. Write the inequality 2 < x < 7 in the modulus form.

2. Convert |x – 2| < 3 into the corresponding inequality.

3.3 Neighbourhoods

You are quite familiar with the word 'neighbourhood'. You use this word frequently in your
daily life. Loosely speaking, a neighbourhood of a given point c on the real line is a set of all
those points which are close to c. This is the notion which needs a precise meaning. The term
'close to' is subjective and therefore must be quantified. We should clearly say how much 'close
to'. To elaborate this, let us first discuss the notion of a neighbourhood of a point with respect to
a (small) positive real number .

Let c be any point on the real line and let 6 > 0 be a real number. A set consisting of all those
points on the real line which are at a distance of 6 from c is called a neighbourhood of c. This set
is given by

{x R : |x – c| < 6}

= {x R : c –  < x < c + 6)

= ]c – 6, c + [

Which is an open interval. Since this set depends upon the choice of the positive real number ,
we call it a 6-neighbourhood of the point c.

Thus, a -neighboured of a point c on the real line is an open interval ]c – 6, c + 6[,  > 0 while c
is the mid point of this neighbourhood. We can give the general definition of neighbourhood of
a point in the following way.
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A set P is said to be a Neighbourhood (NBD) of a point V if there exists an open interval which
contains c and is contained in P.

This is equivalent to saying that there exists an open interval of the form ]c – , c + [, for some
6 > 0, such that

]c – 6, c + [  P.

Example: (i) Every open interval ]a, b[ is a NBD of each of its points.

(ii) A closed interval [a, b] is a NBD of each of its points except the end point i.e. [a, b] is not a
NBD of the points a and b, because it is not possible to find an open interval containing a
or b which is contained in [a, b]. For instance, consider the closed interval [0,1]. It is a NBD
of every point in ]0, l[. But, it is not a NBD of 0 because for every  > 0, ]-, [[0, 1].
Similarly [0, 1] is not a NBD of 1.

(iii) The null set 0 is a NBD of each of its point in the sense there is no point in 0 of which it is
not a NBD.

(iv) The set R of real numbers is a NBD of each real number x because for every 5 > 0, the open
interval ]x - 6, x + [ is contained in R.

(v) The set Q of rational numbers is not a NBD of any of its points x because any open interval
containing x will also contains an infinite number of irrational numbers and hence the
open interval can not be a subset of Q.

Now consider any two neighbourhoods of the point 0 say ] – 1
10

, 1
10

 [ and ] – 1
5

, 1
5

[ as shown in

the Figure below.

The intersection, of these two neighbourhood is

] – 1
10

, 1
10

[] – 1
5

, 1
5

 [=] – 1
10

, 1
10

[

which is again a NBD of 0. The union of these two neighbourhoods is ] – 1
5

, 1
5

 [, which is also a

NBD of 0. Let us now examine these results in general.

Example: The intersection of any two neighbourhoods of a point is a neighbourhood of
the point.

Solution: Let A and B be any two NBDS of a point c in R. Then there exist open intervals ]c – 1,
c + 1] and ]c –2, c + 2 [such that]c – 1, c + 1] A, for some 1 > 0, and ]c – 2, c + 2 [B, for some
2 > 0.

Let 6 = Min. {1, 2) = minimum of 1, 2.

This implies that ]c – 6, c +  [C A B which shows that A  B is a NBD of c.
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Example: Show that the superset of a NBD of a point is also a NBD of the point.

Solution: Let A be a NBD of a point c. Then there exists an open interval ]c – 6, – c + 6[, for some
6 > 0 such that

]c – 6, c + [ C A.

Now let S be a super set which contains A. Then obviously

A  S  [c – , c + [  S

which shows that S is also a NBD of c.

For instance, if ] 1
10

, 1
10

[ is a NBD of the point 0.

Then, ] – 1
5

 1
5

[ is also a NBD of 0 as can be seen from Figure below.

Is a subset of a NBD of a point also a NBD of the point? Justify your answer.

Now you can try the following exercise.

Task  Prove that the Union of any two NBDS of a point is a NBD of the point.

The conclusion of the Exercise, in fact, can be extended to a finite or an infinite or an arbitrary
number of the NBDS of a point.

However, the situation is not the same in the case of intersection of the NBDS. It is true that the
intersection of a finite number of NBDS of a point is a NBD of the point. But the intersection of
an infinity collection of NBDS of a point may not be a NBD of the point. For example, consider
the class of NBDS given by a family of open intervals of the form

I1 = ] –1, 1 [, I2 = ] – 1
2

, 1
2

 [ I3 = ] – 1
3

, 1
3

[,.

In = ] – 1
n

, 1
n

[...

which are NBDS of the point 0. Then you can easily verify that

I1  I2  I3 I4  In 

or
n 1



=

 In = {0}

3.4 Open Sets

You have seen from the previous examples and exercises that a given set may or may not be a
NBD of a point. Also, a set may be a NBD of some of its points and not of its other points. A set
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open set.

Definition: X a set S is said to be open if it is a neighbourhood of each of its points.

Thus, a set S is open if for each x in S, there exists an open interval ]x – 6, x + [,  > 0 such that

x] x – , x + [ S.

It follows at once that a set S is not open if it is not a NBD of even one of its points.

Example: An open interval is an open set

Solution: Let ]a, b[ be an open interval. Then a < b. Let c] a, b[. Then a < c < b and therefore

c – a > 0 and b – c > 0

Choose

 = Minimum of {b – c, c – a)

= Min (b – c, c – a).

Note that b – c > 0, c –  a > 0. Therefore > 0.

Now  c – a  a  c – 

and  b – c c + < b.

i.e.

Therefore, ]c – 6, c + [  ]a, b[ and hence ]a, b[ is a NBD of c.

Example: (i) The sat R of real numbers is an open set

(ii) The null set f is an open set

(iii) A finite set is not an open set

(iv) The interval ]s, b] is not an open set.

Example: Prove that the intersection of any two open sets is an open set.

Solution: Let A and B be any two open sets. Then we have to show that A  B is also an open set.
If A  B = , then obviously A  B is an open set. Suppose A  B .

Let x be an arbitrary element of A  B. Then xA B  xA and xB.

Since A and B are open sets, therefore A and B are both NBDS of x. Hence A  B is a NBD of x. But
xA  B is chosen arbitrarily. Therefore, A B is a NBD of each of its points and hence A  B is
an open set. This proves the result. In fact, you can prove that the intersection of a finite number
of open sets is an open set. However, the intersection of an infinite number of open sets may not
be an open set.

Task

 1. Give an example to show that intersection of an infinite number of open sets need
not be an open set.

2. Prove that the union of any two open sets is an open set. In fact, you can show that
the union of an arbitrary family of open sets is an open set.
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You have seen that the concept of an open set is linked with that of a neighbourhood of a point
on the real line. Another closely related concept with the notion of neighbourhood is that of a
limit point of a set. Before we explain the meaning of limit point of a set, let us study the
following situations:

(i) Consider a set S = [1, 2[> Obviously the number 1 belongs to S. In any NBD of the point 1,
we can always find points of S which are different from 1. For instance ]0-5, l[ is a NBD of
1. In this NBD, we can find the point 1.05 which is in S but at the same time we note that
1.05  1,

(ii) Consider another set S = {1 : n N
n

ö
 ÷ø

. The number 0 does not belong to this set.

Take any NBD of 0 say, ] –0.1, 0.1 [. The number 1
20

= 0.05 of S is in this NBD of 0. Note that

0.05  0.

(i) Again consider the same set S of (ii) in which the number 1 obviously belongs to S. We can
find a NBD of 1, say ]0.9, 1.1[ in which we can not find a point of S different from 1.

In the light of the three situations, we are in a position to define the following:

Limit Point of a Set

A number p is said to be a limit point of a set S of real numbers if every neighbourhood of p
contains at least one point of the set S different from p.

Examples: (i) In the set S = [1, 2[, the number 1 is a limit point of S. This limit point belongs

to S. The set S = {1 : n N
n

ö
 ÷ø

 has only one limit point 0. You may note that 0 does not belong to S.

(ii) Every point in Q, (the set of rational numbers), is a limit point of Q, because for every
rational number r and  > 0, i.e. ] r – 6, r +  [ has at least one rational number different from
r. This is because of the reason that there are infinite rationals between any two real
numbers. Now, you can easily see that every irrational number is also a limit point of the
set Q for the same reason.

(iii) The set N of natural numbers has no limit point because for every real number a, you can
always find  > 0 such that ]a – 6, a + [ does not contain a point of the set N other than a.

(iv) Every point of the interval ]a, b] is its limit point. The end points a and b are also the limit
points of ]a, b]. But the limit point a does not belong to it whereas the limit point b belongs
to it.

(v) Every point of the set [a, [ is a limit point of the sets. This is also true for ] –, a[.

From the foregoing examples and exercises, you can easily observe that

(i) A limit point of set may or may not belong to the set,

(ii) A set may have no limit point,

(iii) A set may have only one limit point.

(iv) A set may have more than one limit point.
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obvious fact is that a finite set can not have a limit point. Can you give a reason for it? Try it. But
then there are examples where even an infinite set may not have a limit point e.g. the sets N and
Z do not have a limit point even though they are infinite 'sets. However, it is certainly clear that
a set which has a limit point, must necessarily be an infinite set. Thus our question takes the
following form:

"What are the conditions for a set to have a limit point?"

This question was first studied by a Czechoslovakian Mathematician, Bemhard Bulzano [ 1781-
1848] in 1817 and he gave some ideas.

Unfortunately, his ideas were so far ahead of their time that the world could not appreciate the
full significance of his work. It was only much later that Bulzario's work was extended by Karl
Weierstrass [1815-1897], a great German Mathematician, who is known as the "father of analysis".
It was in the year 1860 that Weierstrass proved a fundamental result, now known as Bulzano-
Weierstrass Theorem for the existence of the limit points of a set. We state and prove this
theorem as follows.

3.5.1. Bulzano Weierstrass Theorem

Theorem 1: Every infinite bounded subset of set R has a limit point (in K).

Proof: Let S be an infinite and bounded subset of R. Since A is bounded, therefore A has both
a- lower bound as well as an upper bound.

Let m be a lower bound and M be an upper bound of A. Then obviously

m  x  M, " xA.

Construct a set S in the following way:

S = (xR: x exceeds at most finite number of the elements of A}. Now, let us examine the
following two questions:

(i) Is S a non-empty set?

(ii) Is S also a bounded set?

Indeed, S is non-empty because m  x,  M, " xA, implies that mS. Also M is an upper bound
of S because no number greater than or equal to M can belong to S. Note that M cannot belong
to S because it exceeds an infinite number of elements of A.

Since the set S is non-empty and bounded above, therefore, by the axiom of completeness, S has
its supremum in R. Let p be the supremum of S. We claim that p is a limit point of the set A.

In order to show that p is a limit point of A, we must establish that every NBD of p has at least
one point of the set A other than p. In other words, we have to show that every NBP of p has an
infinite number of elements of A. For this, it is enough to show that any open interval ]p – ,
p +  [, for  > 0, contains an infinite number of members of set A. For this, we proceed as follows.

Since p is the supremum of S, therefore, by the definition of the Supremum of a set, there is at
least one element y in S such that y > p – , for  > 0. Also y is a member of S, therefore, y exceeds
at the most a finite number of the elements of A. In other words, if you visualise it on the line as
shown in the Figure below, the number of elements of A lying on the left of p –  is finite at the
most. But certainly, the number of elements of A lying on the right side of the point p –  is
infinite.
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p –  p p + 

Again since p is the supremum of S, therefore, by definition p +  can not belong to S. In other
Words, p +  exceeds an infinite number of elements of A. This means that there lie an infinite
number of elements of A on the left side of the point p + .

Thus we have shown that there lies, an infinite number of elements of A on the right side of
p –  and also there ia an infinite number of elements of A on the left side of p + . What do you
conclude from this? In other words, what is the number of elements of A in between (i.e., within)
the interval ]p – , p + [. Indeed, this number is infinite i.e., there is an infinite number of
elements of A in the open interval ]p + [. Hence the interval ] p – , p +  [ contains an infinite
number of elements of A for some > 0. Since  > 0 is chosen arbitrarily, therefore every interval
]p – , p + [ has an infinite number of elements of A. Thus, every NBD-of p contains an infinite
number of elements of A. Hence p is a limit point of the set A.

This completes the proof of the theorem.

Example: (i) The intervals [0, 1], ]0,1[, ] 0, 1], [0,1[ are all infinite and bounded sets.
Therefore each of these intervals has a limit point. In fact, each of these intervals has an infinite
number of limit points because every point in each interval is a limit point of the interval.

(ii) The set [a, [ is infinite and unbounded set but has every point as a limit point. This shows
that the condition of boundedness of an infinite set is only sufficient in the theorem.

From the previous examples and exercises, it is clear that it is not necessary for an infinite set to
be bounded to possess a limit point. In other words, a set may be unbounded and still may have
a limit point. However, for a set to have a limit point, it is necessary that it is infinite.

Another obvious fact is that a limit point of a set may or may not belong to the set and a set may
have more than one limit point. We shall further study how sets can be characterized in terms of
their limit points.

3.6 Closed Sets

You have seen that a limit point of a set may or may not belong to the set. For example, consider
the set S = {xR : 0   5 x < 1}. In this set, 1 is a limit point of S but it does not belong to S. But if
you take S = {x: 0  x  1}, then all the limit points of S belong to S. Such a set is called a closed set.
We define a closed set as follows:

Definition

A set is said to be closed if it contains all its limit points.

Example: (i) Every closed and bounded interval such as [a, b] and [0, 1] is a closed set.

(ii) An open interval is not a closed set. Check Why?

(iii) The set R is a closed set because every real number is a limit point of R and it belongs to R.

(iv) The null set  is a closed set.

(v) The set S = { }1 : n N
n

e  is not a closed set. Why?

(vi) The set ]a, [ is not a closed set, but ] –, a] is a closed set.
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guessing some relation between the two terms, then you are hundred per cent correct. Indeed,
there is a fundamental connection between open and closed sets. What exactly is the relation
between the two? Can you try to find out? Consider, the following subsets of R:

(i) ]0, 4[

(ii) [–2, 5]

(iii) ]0, = [

(iv) ] – > 6].

The sets (i) and (iii) are open while (ii) and (iv) are closed. If you consider their complements,
then the complements of the open sets are closed while those of the closed sets are open. In fact,
we have the following concrete situation in the form of following theorem.

Theorem 2: A set is closed if and only if its complement is open.

Proof: We assume that S is a closed set. Then we prove that its complement Sc is open.

To show that Sc is open, we have to prove that Sc is a NBD of each of its points. Let xSC. Then, x
Sc  x  S. This means x is not a limit point of S because S is given to be a closed set. Therefore,
there exists a  > 0 such that ]x – , x + [ contains no points of S. This means that ]x – , x + [ is
contained in Sc. This further implies that Sc is a NBD of x. In other words, Sc is an open set, which
proves the assertion.

Conversely, let a set S be such that its complement Sc is open. Then we prove that S is closed.

To show that S is closed, we have to prove that every limit point x of S belongs to S. Suppose
x S, Then x SC.

This implies that SC is a NBD of x because Sc is open. This means that there exists an open interval
]x – , x + [, for some 6 > 0, such that

]x – , x + [Sc

In other words, ]x – , x + [ contains no point of S. Thus x is not a limit point of S, which is a
contradiction. Thus our supposition is wrong and hence, x S is not possible. In other words, the
(limit) point x belongs to S and thus S is a closed set.

Note that the notions of open and closed sets are not mutually exclusive. In other words, if a set
is open, then it is not necessary that it can not be closed. Similarly, if a set is closed, then it does
not exclude the possibility of its being open. In fact, there are sets which are both open and
closed and there are sets which are neither open nor closed as you must have noticed in the
various examples we have given in our discussion. For example the set R of all the real numbers
is both an open sets as well as a closed set. Can you give another example? What about the null
set. Again Q, the set of rational numbers is neither open nor closed.

Task  Give examples of two sets which are neither closed nor open.

We have discussed the behaviour of the union and intersection of open sets. Since closed sets are
closely connected with open sets, therefore, it is quite natural that we should say something
about the union and intersection of closed sets. In fact, we have the following results:
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Example: Prove that the union of two closed sets is a closed set.

Solution: Let A and B be any two closed sets. Let S = A B, we have to show that S is a closed set.
For this, it is enough to prove that the complement Sc is open

Now

Sc = (A B)c = Bc  Ac = Ac  Bc

Since A and B are closed sets, therefore Ac and Bc are open sets. Also, we have proved in the
intersection of any two open sets is open. Therefore Ac  Bc is an open set and hence S is open.

This result can be extended to a finite number of closed sets. You can easily verify that the union
of a finite number of closed sets is a closed set. But, note that the union of an arbitrary family of
closed sets may not be closed.

For example, consider the family of closed sets given as

Sl = [l, 2], S2= [ 1
2

, 2], S3 = [ 1
3

, 2],....

and in general

Sn = [ 1
n

, 2]..... for n = 1, 2, 3, ....

Then,

   n 1
n 1

S S


=

= S2  S3 ..... Sn.....

= I0, 2]

which is not a closed set.

Definition: Derived Set

The set of all limit points of a given set S is called the derived set and is denoted by S'.

Example: (i) Let S be a finite set. Then $' = 

(ii) S = ( 1
n

: n N), the derived set S' = {0}

(iii) The derived set of R is given by R' = R

(iv) The derived set of Q is given by Q' = R

We define another set connected with the notion of the limit point of a set. This is called the
closure of a set.

Definition: Closure of a Set

Let S be any set of real numbers (S  R). The closure of S is defined as the union of the set S and

its derived set S. It is denoted by S , Thus

S  = S  S'

In other words, the closure of a set is obtained by the combination of the elements of a given set
S and its derived set S'.
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For example, S  of S = { 1

n
: nN} is given by.

S  = { 1
n

, nN}{0} = {0, 1, 1
2

, 1
3

, .......}

Similarly, you can verify that

Q


 = Q  Q = Q R = R

R


 = R  R = R R = R

3.7 Compact Sets

We discuss yet another concept of the so called compactness of a set. The concept of compactness
is formulated in terms of the notion of an open cover of a set.

Definition: Open Cover of a Set

Let S be a set and {G

} be a collection of some open subsets of R such that S  G


. Then {G} is

called an open cover of S.

Example: Verify that the collection Gn = {G}n=, where Gn = ] – n, n[ is an open cover of the
set R.

Solution:

As shown in the Figure above, we see that every real number belongs to some Gn.

Hence,

R = nn 1
G



=


Example: Examine whether or not the following collections are open covers of the
interval [1, 2].



LOVELY PROFESSIONAL UNIVERSITY 63

Unit 3: Matric Spaces

NotesSolution: (i) Plot the subsets of G, on the real line as shown in the Figure.

From above figure, it follows that every element of the set S = [1, 2] – {x : 1  x  2) belongs to at
least one of the subsets of G. Since each of the subsets in G, is an open set, therefore G, is an open
cover of S.

(ii) Again plot the subsets of Gj on the real line as done in the case of (i).

You will find that none of the points in the interval [ 5 3,
4 2

,] belongs to any of the subsets of G2.

Therefore G2 is not an open cover of S.

Now consider the set [0, 1] and two classes of open covers of this set namely G, and G given as

G1 = {] – 1
n

, 1 + 1
n

 [
n 1
}


=

, G2 = {] – 1 – 1
2n

, 1 + 1
2n

[
n 1
}


=

.

You can see that G2 G,. In this case, we say that G, is a subcover of G. In general, we have the
following definition.

Definition: Subcover and finite subcover of a set

Let G be an open cover of a set S. A subcollection E of G is called a subcover of S if E too is a cover
of S. Further, if there are only a finite number of sets in E, then we say that E is a finite subcover
of the open cover G of S. Thus, if G is an open cover of a set S, then a collection E is a finite
subcover of the open cover G of S provided the following three conditions hold.

(i) E is contained in G.

(ii) E is a finite collection.

(iii) E is itself a cover of S.

From the forgoing example and exercise, it follows that an open cover of a set may or may not
admit of a finite subcover. Also, there may be a set whose every open cover contains a finite
subcover. Such a set is called a compact set. We define a compact set in the following way.

Definition: Compact set

A set is said to be compact if every open cover of it admits of a finite subcover of the set.

For example, consoder the finite set S = {1, 2, 3} and an open cover {G

} of S. Let G1, G2, G3, be the

sets in G which contain 1, 2, 3 respectively. Then {G 1, G2, G3} is a finite subcover of S. Thus S is a
compact set. In fact, you can show that every finite set in R is a compact set.
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of R. Therefore the set R is not a compact set.

Thus you have seen that every finite set is always compact. But an infinite set may or may not be
a compact set. The question, therefore, arises, "What is the criteria to determine when a given set
is compact?" This question has been settled by a beautiful theorem known as Heine-Borel Theorem
named in the honour of the German Mathematician H.E. Heine [1821-1881] and the French
Mathematician F.E.E. Borel [1871-1956], both of whom were pioneers in the development of
Mathematical Analysis.

We state this theorem without proof.

Theorem: Heine-Borel Theorem

Every closed and bounded subset of R is compact.

The immediate consequence of this theorem is that every bounded and closed interval is compact.

Self Assessment

Fill in the blanks:

1. A number p is said to be a ............................ of real numbers if every neighbourhood of p
contains at least one point of the set S different from p.

2. Let S be an infinite and bounded subset of R. Since A is bounded, therefore A has both a
lower bound as well as an .............................

3. A set is said to be closed if it contains all its .......................

4. A set is closed if and only if its .......................... is open.

5. Let S be a set and {G

} be a collection of some open subsets of R such that ........................

Then {G} is called an open cover of S.

6. A set is said to be compact if every open cover of it admits of a ............................ of the set.

3.8 Summary

 We have defined the absolute value or the modulus of a real number and discussed certain
related properties. The modulus of real number x is defined as

|x| = x if x  0

= –x if x < 0.

Also, we have shown that

|x – a| < d  a – d < x < a + d

 We have discussed the fundamental notion of NBD of a point on the real line i.e. first we
have defined it as a – neighbourhood and then, in general, as a set containing, an open
interval with the point in it.

 With the help of NBD of a point we have defined, an open set in the sense that a set is open
if it is a NBD of each of its points.

 We have introduced the notion of the limit point of a set. A point p is said to be a limit
point of a set S if every NBD of p contains a point of S different from p. This is equivalent
to saying that a point p is a limit point of S if every NBD of p contains an infinite number
of the members of S. Also, we have discussed Bulzano-Weiresstrass theorem which gives
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set must have a limit point. This condition is not necessary in the sense that an unbounded
set may have a limit point.

 The limit points of a set may or may not belong to the set. However, if a set is such that
every limit point of the set belongs to it, then the set is said to be a closed set. The concept
of a closed set has been discussed. Here, we have also shown a relationship between a
closed set and an open set in the sense that a set is closed if and only if its complement is
open. Further, we have also defined the Derived set of a set S as the set which consists of all
the limit points of the set S. The Union of a given set and its Derived set is called the closure
of the set. Note the distinction between a closed set and the closure of a set S.

 Finally, we have introduced another topological notion. It is about the open cover of a
given set. Given a set S, a collection of open sets such that their Union contains the set S is
said to an open cover of S. A set S is said to be compact if every open cover of S admits of
a finite subcover. The criteria to determine whether a given set is compact or not, is given
by a theorem named Heine-Borel Theorem which states that every closed and bounded
subset of R is compact. An immediate consequence of this theorem is that every bounded
and closed interval is compact.

3.9 Keywords

Bulzano Weierstrass Theorem: Every infinite bounded subset of set R has a limit point (in K).

Compact Set: A set is said to be compact if every open cover of it admits of a finite subcover of
the set.

Heine-Borel Theorem: Every closed and bounded subset of R is compact.

3.10 Review Questions

1. Prove that –|x| = Min. {x, – x} for any x R. Deduce that –|x|  x, for every |x|R.
Illustrate it with an example.

2. Prove that |x|2 = x2, for my xR.

3. For any two real numbers x and y (y ), prove that

x
y

 = 
x
y

.

4. Prove that |x – y|  ||x| – |y|| for any real numbers x and y.

5. Test which of the following are open sets:

(i) An interval [a, b] far aR, b R, a < b

(ii) The intervals [0, l [; and ] 0, 1[

(iii) The set Q of rational numbers

(iv) The set N of natural numbers and the set Z of integers.

(v) The set { }1 : n N
n



(vi) The intervals ]a, [ and [a, [ for aR.
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1. limit point of a set S 2. upper bound

3. limit points 4. complement

5. S  G


6. finite subcover

3.11 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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4.1 Compactness

4.2 Compactness of Subsets

4.3 Intersections of Closed Sets

4.4 Compactness of Products

4.5 Compactness and Continuity

4.6 Compact Sets in n

4.7 Sequential Compactness

4.8 Summary

4.9 Keywords

4.10 Review Questions

4.11 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the compactness of a set

 Explain intersection of closed set

 Discuss compactness and continuity

 Describe sequential compactness

Introduction

In last unit you have studied about matric spaces. You all go through concept of open sets, limit
points of sets in last unit. This unit will provide you explanations of compactness of a set.

4.1 Compactness

Definition:

 A cover of A is a collection U of sets whose union contains A.

 A subcover is a subcollection of U which still covers A.

 A subcover is open if its members are all open.

Definition: Topological space T is compact if every open cover has finite subcover.

Theorem: (Heine-Borel). Any closed bounded interval [a, b]  is compact.

Proof: Let U be open cover of [a, b]. Let

A = {x  [a, b] : [a, x] covered by finite subfamily of U}
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so  > 0 s.t. (c – , c + ) U.

c = sup A so  x  A s.t. x > c – . [a, c + )  [a, x]  (c – , c + ) can be covered by finite subfamily
of U so (c, c +)  [a, b] =  (since any point in here is in A but > c sup A). So c = b.

4.2 Compactness of Subsets

Proposition: Any closed subset C of compact space compact.

Proof: Let U be cover of C by sets open in T. Adding open T\C get open cover of T. Finite subcover
of this cover contains finite subcover of C of sets from U.

Proposition: Compact subspace C of Hausdorff T is closed in T.

Proof: a T\C." x  C  disjoint Ux ' x, Vx ' a open in T since T Hausdorff. Ux open cover of C so

has finite subcover Uxl,... , Uxn. Then V = n
i 1 xiV= open, a V and disjoint from C. Hence

a  (T\C)° and T\C open.

Proposition: Compact subspace C of metric space M is bounded.

Proof: Let a  M. Balls B(a, r) (r > 0) are open and cover C, so  r1,... , rn s.t. C  n
i 1 iB(a, r )= =

B (a, max {r1, .... , rn}).

4.3 Intersections of Closed Sets

Theorem: Let F be collection of non-empty closed subsets of compact T s.t. every finite subcollection
of F has non-empty intersection. Then intersection of all sets from T non-empty.

Proof: Assume intersection of all sets empty. Let U be collection of complements. U covers T by
DeMorgan. U open cover so exists finite subcover U1,..., Un. Then Fi : = T\Ui  F and empty
intersection by DeMorgan. This contradicts the assumption of the theorem.

Corollary: Let F1 F2 ... sequence of non-empty closed subsets of compact T. Then k 1 kF¥
=   .

Corollary: Let F1  F2  ... sequence of non-empty compact subsets of Hausdorff T.

Then k 1 kF¥
=   .

Proof: By proposition 4.4 compact subsets of Hausdorff space are closed.

4.4 Compactness of Products

Lemma: T, S compact, U open cover of T S. If s  S there exists open V  S, s  V s.t. T  V can
be covered by finite subfamily of U.

Proof: " x  T find Wx  U s.t. (x, s) Wx. Exists open Ux  T, Vx  S s.t. (x, s)  Ux Vx  Wx.

{Ux : x  T} open cover of T so Ux1,..., Uxn which cover T. Let V = n
i 1 xiV= . V  S open and

T  V 
n n

xi xi xi
i 1 i 1

U V W
= =

 

Theorem: (Tychonov). S,T compact  T  S compact.

Proof: By lemma 3.8 " y  S  Vy S open s.t. T  Vy can be covered by finite subfamily of U. S
compact, {Vy : y  S} form open cover so  Vyi,..., Vym which cover S.
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j 1 yiT V=  . Finite union, each T  Vyj can be covered by finite subfamily of U, so T  S can

be covered by finite subfamily of U.

4.5 Compactness and Continuity

Proposition: Cts image of compact space compact.

Proof: f: T S cts, T compact. U open cover of f(T). f–1 (U) open "U  U.

Cover T since " x  T f(x) in some U  U. Hence  f–1 (U1),... , f–1(Un) subcover of T. " y  f(T) have
y = f(x) where x  T so x  f–1 (Ui) for some i so y  Ui. Hence U1,... ,Un.

Theorem: Cts bijection of compact T onto Hausdorff S is homeomorphism.

Proof: U open in T, T\U closed so compact.

Therefore (f–1)–1 (U) = f(U) = S\f(T\U) open, so f–1 cts.

Corollary: Let T be compact. Cts f : T    is bdd and attains max and min.

Proof: f(T) compact so closed.

Then sup f(T)  f(T)  = f(T).

Alternative proof: Let c = supx T f(x). If f not attain c then f(x) < c" x so {x : f(x) < r} = f–1 (–¥, a) where

r < c s.t. T  n
i 1 i{x : f(x) r }= < . Then f(x) < max {r1,..., rn}" x so c = supxT f(x)  max {r1,..., rn} < c

Contradiction.

Definition: Given cover U of metric M,  > 0 called Lebesgue number of U if " x M U U s.t.
B(x, )  U.

Proposition: Every open cover U of compact metric space has a Lebesgue number.

Proof: " x M pick r(x) > 0 s.t. B(x, r(x)) contained in some set of U. Then M ( )r(x)
x M 2B x,  so x1,.

. . , xj s.t. M  ( )ir(x )j
i 1 2iB x ,= . Let  = 1 jmin {r(x ),... ,r(x )}

2
. Then " x  M pick i s.t. x B ( )ir(x )

2ix ,  and

B(x, )  B (xi, r(xi)) subset of some set from U.

Theorem: Cts map of compact metric M to metric N is uniformly cts.

Proof: Let  > 0. Then sets Uz = f–1 (BN (f(z), 2
e

)) z  M open cover of M. Let be Lebesgue number.

If x, y  M, dM(x, y) <  y  B(x, )  Uz some z so dN(f(x), f(y))  dN(f(x), z) + dN(f(y), z) < e.

4.6 Compact Sets in n

Theorem: (Heine-Borel). A  n compact if f closed and bdd.

Proof: () Metric spaces are Hausdorff, so A closed.

() C  n bdd  [a, b]   n s.t. C  [a, b]  . . .  [a, b]. This compact by Tychanov. If C closed
then closed subset of compact space so compact.
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Theorem: Metric M is compact if f every sequence in M has convergent subsequence.

Lemma: Ak sequence of subsets of metric M. Then " x  j 1 jA¥
=  xk Ak s.t. xk  x.

Proof: Take xk  Ak  B ( )1
kx,  .

Corollary: xk  M and j 1 j j 1{x , x ...}.¥
= +  then xk have convergent

Proof: Let x  j 1 j j 1{x , x ...}.¥
= +  As  kj  j s.t. xkj  x. kj ¥ so can choose subsequence kji s.t. kji+1 >

kji (as kjs not necessarily in order). Then xkji subsequence converging to x.

Proof of () of theorem 3.16. Let xk  M, Fj = j j 1{x , x ...}.+  Fj form decreasing sequence of non-

empty closed subsets of M.

By corollary 3.6 j 1 jF¥
=    so xk have convergent subsequence by corollary 3.18.

Notation

U open cover of M. " x M

r(x) = sup {r  1 :  U  U s.t. B(x, r) C U}

Lemma: If yk  x  K s.t. yk+1  k
r(x)B y ,

2
æ ö
ç ÷è ø

 for k  K.

Proof: Let U U be s.t. ( )r(x)
2B x,   U. Take K s.t. d(yk, x) < 

r(x)
16  for k  K. Then k  K 

k k
r(x)B y , d(x, y )

2
æ ö

-ç ÷è ø


r(x)B x,
2

æ ö
ç ÷è ø

  U, so r(yk)  
r(x)

2  – d(x, yk)  
r(x)

4 , so

d(yk+1, yk)  d(yk+1, x) + d(yk, x) < 
r(x)

8  kr(y )
2

M1 : = M, s1 : = supxM1 r(x). Find x1 M1 s.t. r(x1) > 1s
2 ,  choose U1 U s.t. 1

1
r(x )B x ,

2
æ ö
ç ÷è ø

U1.

If x1, ...., xj have been defined,

Mj+1 : = M\ j
j

r(x )
B x ,

2
æ ö
ç ÷è ø

 = 
j j

j
i 1

r(x )
M \ B x ,

2=

æ ö
ç ÷è ø



If Mj+1 =  then j ji
i 1 i 1i i

r(x )M B x , U
2= =

æ ö
 ç ÷è ø
  has finite subcover.

If Mj+1  let sj+1 = supxMJ+1{r(x)}, find xj+1 s.t. r(xj+1) > j 1s
2
+ , choose Uj+1  U s.t. j 1

j 1 j 1

r(x )
B x , U .

2
+

+ +

æ ö
ç ÷è ø

If procedure stops we have finite subcover. If it runs forever we have infinite sequence xj s.t. xi 
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j

j

r(x )
B x ,

2
æ ö
ç ÷è ø

 for i > j. This has convergent subsequence xjk by assumption, so   k s.t. jk
jk

r(x )
B x ,

2
æ ö
ç ÷è ø

.

This is a contradiction, so the procedure stops.

Self Assessment

Fill in the blanks:

1. T, S compact, U open cover of ............... If s  S there exists open V  S, s  V s.t. T  V can
be covered by finite subfamily of U.

2. Let T be compact. Cts ............................ is bdd and attains max and min.

3. Given cover U of metric M,  > 0 called ...................... of U if " x M U U s.t. B(x, )  U.

4.8 Summary

 Let F1 F2 ... sequence of non-empty closed subsets of compact T. Then k 1 kF¥
=   . Let F1

 F2 ... sequence of non-empty compact subsets of Hausdorff T. Then k 1 kF¥
=   .

 " x  T find Wx  U s.t. (x, s) Wx. Exists open Ux  T, Vx  S s.t. (x, s)  Ux Vx  Wx.

{Ux : x  T} open cover of T so Ux1,..., Uxn which cover T. Let V = n
i 1 xiV= . V  S open and

T  V 
n n

xi xi xi
i 1 i 1

U V W
= =

 

 Let x  j 1 j j 1{x , x ...}.¥
= +   kj  j s.t. xkj  x. kj ¥ so can choose subsequence kji s.t. kji+1 > kji

(as kjs not necessarily in order). Then xkji subsequence converging to x.

 Let xk  M, Fj = j j 1{x , x ...}.+  Fj form decreasing sequence of non-empty closed subsets of M.

j 1 jF¥
=    so xk have convergent subsequence.

4.9 Keywords

Space Compact: Cts image of compact space compact.

Homeomorphism: Cts bijection of compact T onto Hausdorff S is homeomorphism.

Lebesgue Number: Every open cover U of compact metric space has a Lebesgue number.

Convergent Subsequence: Metric M is compact iff every sequence in M has convergent subsequence.

4.10 Review Questions

1. Discuss the compactness of a set.

2. Explain intersection of closed set.

3. Discuss compactness and Continuity.

4. Describe sequential compactness.
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1. T S 2. f : T 

3. Lebesgue number

4.11 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define Connectedness

 Discuss the Connectedness in metric spaces

 Explain connected spaces from others

 Describe connected components and Path connected

Introduction

In last unit you have studied about the compactness of the set. As you all come to know about the
compactness and continuity. After understanding the concept of compactness let us go through
the explanation of connectedness.

5.1 Connected, Separated

Definition: Topological T connected if for every decomposition T = AB into disjoint open A, B
either A or B is empty.

Definition: T  S separated by sets U, V  S if T  UV, U  V  T = , U  T , V  T .

Proposition: T  C  S disconnected if T is separated by some U, V  S.

Proof: () If disconnected  A, B  T, A, B  s.t. T = A  B and A  B = . T  S so U, V open in
S s.t. A = U T, B = V T. Then U, V separate T.

() If U, V separate T let A = U T, B = V T then T not connected.

Proposition: TFAE:

1. T disconnected
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Notes 2. T has subset which is open, closed, different from , T

3. T admits non-constant cts function to two point discrete space.

Proof: (1.  2.)  decomposition T = A B with A, B open, non-empty. Hence A = T\B is open and
closed, different from , = T.

(2.  3.) , T    A  T  open, closed.  Define f : T  {0,1} by f(x) = 




Î

Ï

0  
1

x A
x A

This cts as pre-images open

(3.1.) f: T  {0, 1} non-constant and cts. Define A = F–1(0), B = f–1

5.2 Connectedness in Metric Spaces

Theorem:  T  M (M metric) disconnected iff  disjoint open U,V  M s.t. TU  T  V and
T  U  V.

Proof: () Clear

() T = A U B. Let

U = {x Î M : d(x, A) < d(x, B)}

V = {x Î M : d(x, A) > d(x, B)}

U, V disjoint, open.

Going to prove A  U: Let x Î A. A open in T so  > 0 s.t. B(x, )T  A. B  T disjoint from A
so B(x, )B = , so d(x, B)   > 0. Since d(x, A) = 0 we have x ÎU. Similarly B  V.

Lemma: I  is an interval iff " x, yÎI, "  z Î,

x < z < y  z Î I

Proof: Intervals clearly have this property. Conversely suppose I has above property, non-empty,
not single point. Let a = inf I, b = sup I.

Show (a, b)  I: If z Î (a, b)  x, y Î with x < z < y so z ÎI. Hence (a, b)  I  (a, b)  {a, b}.

Theorem: T  connected iff it is an interval.

Proof: () Suppose I not interval. Then by lemma 4.4  x, y Î I, z Î  s.t. x < z < y and z Ï I. Let
A = (–, z)  I, B = (z, )  I. A, B disjoint, non-empty, open and I = A B.

() Suppose I not connected. Then 3 cts non-constant f : I  {0, 1} where {0, 1} has discrete
contradicting IVT.

() I partitioned into non-empty A, B open. Choose a Î A, b Î B, a < b. A, B open cover of [a, b].

Let  be its Lebesgue number. Then a, a
2
é ù

+ê ú
ë û

  A, 2a , a
2 2
 é ù

+ +ê ú
ë û

A, .... until we get to an

interval containing b. So b Î A and A, B not disjoint.

5.3 Connected Spaces from Others

Proposition: Cts image of connected space connected.

Proof: Suppose f : T  S cts, T connected. If f(T) disconnected  U, V  S open separating f(T). Then
f–1(U), f–1(V) open, disjoint, cover T. Contradiction as T connected.
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NotesProposition: If C, Cj (j Î J) connected subspaces of topological T and if cj  C   "  j ÎJ then

K = j
j J

C C
Î

 

is connected.

Proof: Suppose K disconnected. Hence  U, V  T open that separate K.

C connected so cannot be separated by U,V, so does not meet one of them. Suppose w.l.o.g C 
V = . Then C  U. Since V open C  V = , so K  C  U. Then Cj  U  " j.

Cj connected so Cj  U or Cj  V. Cj  U  so Cj  U.

Then K  U contradicting V  K .

Corollary: C  T connected and C  K  C . Then K connected.

Proof: K = x KC Î {x} and {x}  C  " x.

Proposition: Product of connected spaces is connected.

Proof: Let T, S connected, so Î S. Define C = T  {s0} and Ct = {t}  S (for some t Î T). Then C, Ct

homeomorphic to T and S are connected. Ct  C  and T S = C t TÎ  Ct connected.

Example: 2

I

,
1Sin {(0 t) : ( 1, 1)}
t

æ ö
 Î Î -ç ÷è ø

  is connected.

Proof:

C =
1t, sin : t 0
t

 üæ öæ ö
> ýç ÷ç ÷è øè ø þ

D =
1t, sin : t 0
t

 üæ öæ ö
< ýç ÷ç ÷è øè ø þ

C, D, I cts images of intervals so connected.

(0, 0) Î I is in C  as (tk) sin 
k

1
t

æ ö
ç ÷è ø

  (0, 0) when tk = 1
kp

. Then I C connected. Similarly I  D.

5.4 Connected Components

Definition: x  y if x, y belong to a common connected subspace of T. Equivalence classes are
connected components of T.

Are maximal connected subsets of T. Number of connected components is topological invariant.

Property T\{x} connected " x ÎT topological invariant.

5.5 Path Connectedness

Definition: a, b Î T. : [0, 1]  T cts with (0) = a, (1) = b called a path from a to b.

Definition: T path connected if any two points can be joined by a path.
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Proof: a Î T. " x Î T image Cx of path a to x is connected, and all Cx contain a. Then T = x TÎ Cx

connected by 4.7.

5.6 Open Sets in n

Theorem: Any U C n open, connected is path connected.

Proof: Let a ÎU, V = {x ÎU :  path from a to x}.

Let z Î U  V . Find  > 0 s.t. B(z,)  U. z V  so y Î V  B(x, ).

Then B(z, )  V since join path from a to y to path from y to z.

Theorem: All components of open U  n open.

Proof: C component of U, x ÎC. Find  > 0 with B(x, )  U. B(x, ) connected and C union of
all connected subsets of U containing x so B(x, )  C, so C open.

Theorem: U   open iff disjoint union of countably many open intervals.

Proof: () Any union of open sets open.

() U   open, Cj (j Î J) its components. Cj connected and open so are open intervals. For each
j  rational rj ÎCj. CS

j mutually disjoint so j  rj injection into , so can order J into a sequence.

Self Assessment

Fill in the blanks:

1. Topological T connected if for every decomposition ................. into disjoint open A, B
either A or B is empty.

2. T  M (M metric) disconnected iff  ............... U,V  M s.t. TU  T  V and T  U  V.

3. .................... is an interval iff " x, yÎI, "  z Î, x < z < y z Î I

4. Suppose f : T  S cts, T connected. If f(T) disconnected  U, V  S open separating f(T). Then
f–1(U), f–1(V) open, disjoint, cover T. Contradiction as ...........................

5. C  T connected and C  K  C . Then ........................

6. x  y if x, y belong to a common connected subspace of T. ........................ are connected
components of T.

5.7 Summary

 Topological T connected if for every decomposition T = AB into disjoint open A, B either
A or B is empty.

 T  S separated by sets U, V  S if T  UV, U  V  T = , U  T , V  T .

 T  C  S disconnected iff T is separated by some U, V  S.

 Proof. () If disconnected  A, B  T, A, B  s.t. T = A  B and A  B = . T  S so U, V open
in S s.t. A = U T, B = V T. Then U, V separate T.

 Suppose K disconnected. Hence  U, V  T open that separate K.
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 C component of U, x ÎC. Find  > 0 with B(x, )  U. B(x, ) connected and C union of
all connected subsets of U containing x so B(x, )  C, so C open.

5.8 Keywords

Path Connected: T path connected if any two points can be joined by a path.

Topological Invariant: Number of connected components is topological invariant.

5.9 Review Questions

1. Define Connectedness.

2. Discuss the Connectedness in metric spaces.

3. Explain connected spaces from others.

4. Describe connected components and Path connected.

Answers: Self Assessment

1. T = AB 2. disjoint open

3. I  4. T connected

5. K connected 6. Equivalence classes

5.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define Completeness

 Discuss the Cauchy

 Explain contraction mapping theorem

 Describe total boundness

Introduction

In earlier unit you have studied about the compactness and connectedness of the set. As you all
come to know about the connected components and Path connectedness. After understanding
the concept of compactness and connectedness let us go through the explanation of completeness.

6.1 Completeness

This is a concept that makes sense in metric spaces only.

Definition: Metric M is complete if every Cauchy sequence in M converges (to a point of M).

Remark: This is not a topological invariant: (0, 1) – incomplete and  complete are homeomorphic.

Proposition: Cvgt  Cauchy.

Proof: "  > 0  N s.t. d(xn, x) < 
2
  for n  N. If m, n  N then

d(xm, xn) < d(xm, x) + d(xn, x) < 
2
  + 

2
  = 
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NotesProposition:

1. Complete subspace S of metric M is closed.

2. Closed subset S of complete M is complete.

Proof:

1. Let xn  S, xn  x  M. (xn) Cauchy in S so cvgs in S to y  S. S  M so xn  y in M. By
uniqueness of limits x = y  S.

2. Let (xn) S Cauchy. Cauchy in M so cvgs to point of M which in S as S closed.

Proposition: " S B(S) of bdd functions S   with sup norm is complete.

Proof: Let (fn) Cauchy,  > 0.  3 N s.t. ||fm – fn|| <  for n, m  N. Hence for fixed x (fn(x)) Cauchy
in , so cvgs to f(x) .

For n  N|fm(x) – fn(x)|  "m  N. Let m  then

|f(x) – fn(x)|  " x  S, n  N

Then f bdd and fn  f.

6.2 Proving Cauchy

Proposition: A sequence (xn)  M is Cauchy iff  sequence n  0 s.t. n n 0


 ¾¾¾ and d(xm, xn) n

for m > n.

Proof: () Suppose (xn) Cauchy. Then let n = m>n d(xm, xn) n
¾¾¾  0.

() Given  > 0 find k s.t. n <  for n  k. Then d(xn, xn)  n <  for m > n  k. Exchanging m, n gives
d(xm, xn) <  " n, m  k.

Proposition:  (xn)  M sequence s.t. n  0 with n 1 n

=å  <   and d(xn, xn+1) n " n. Then (xn) is

Cauchy.

Proof: Follows from 6.4 with n = n 1 n

=å  . Then

d(xm, xn)
m 1 m 1

k k 1 n nineq k n k n
d(x ,x )

- -

+
D = =

å å    

Example: If K compact topological space then space C(K) with sup norm is complete.

Proof: Each f bdd, attains max. Suffices to show C(K) closed in B(K).

Suppose fn C(K) cvg to f  B(K). Then "  > 0  N s.t.

n
x K
sup|f(x) f (x)| n N


- <  " 

" a  {x : f(x) > a} = N
0
{x : f (x) a }

 >

> + 

RHS are pre-images of open sets so open. Hence LHS is open. Similarly {x : f(x) < a} open. (–, a),
(a, ) from sub-basis for  so f cts.

Example: C[0, 1] with norm ||f||1 =  f1
0|f(x)|dx is incomplete.
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fn(x) =
1min n , x 0
x

n x 0

ì ì ü
>ï í ý

í î þ
ï =î

so (fn)  C[0, 1].

1

m n0
|f (x) f (x)|dx-ò = ( )

1 1
m n

1
m0

1m n dx n dx
x

æ ö
- + -ç ÷è øò ò


1 2
m n

+

 n
3 0
n 
¾¾¾

so (fn) Cauchy.

Let f  C[0, 1]. Find k  s.t. |f|  k. Then for n > k

1

m n0
|f (x) f (x)|dx-ò  = ( )

1 1
m n

1
m0

1m n dx n dx
x

æ ö
- + -ç ÷è øò ò


1 1 12

nk k
æ ö

- -ç ÷è ø

= n
1 2 0

nk 
- ¾¾¾>

6.3 Completion

Definition: S  M is dense in M if S  = M.

Definition: A completion of metric space M is:

 Complete metric space N s.t. M dense subset of N.

 Complete metric space N and isometry i: M  A  N s.t i(M) is dense in N.

Theorem: Any metric M can be isometrically embedded into complete metric space.

Proof: Find isometry of M onto subset of B(M), complete. Fix a  M, define F : M  B(M) by F(x)(z)
= d(z,x) – d(z, a). |F(x)(z)|  d(x, a) so F(x)  B(M).

|F(x)(z) - F(y)(z)| = |d(z, x) – d(z, y)|

 d(x, y)

Equality occurs when z = y. Then ||F(x) – F(y)|| = d(x, y) so F isometry.

Corollary: Any metric space M has a completion.

Proof: Embet M into complete N. Then M  (closure taken in N) is complete by 6.2, M dense in M .

Then M  completion of M.
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Definition: f : M  M contraction if  k < 1 s.t.

d(f(x), f(y))  kd(x, y) " x, y  M

Theorem: Banach

If f contraction on complete metric M then f has unique fixed point.

Proof: Uniqueness: If f(x) = x, f(y) = y then

d(x, y) = d(f(x), f(y))  kd(x, y)  d(x, y) = 0

Existence: Pick x0  M, xn+1 = f(fn). By repeated application of the contraction property we get that

d(xj, xj+1)  kj d(x0, x1). 
j

j 1 k
=å d(x0, x1)  so (xn) Cauchy.

M complete so xn  x  M, so f(xn)  f(x). But also f(xn) = xn+1  x so f(x) = x.

6.5 Total Boundedness

Definition: Metric M totally bounded if "  > 0  finite set F  M s.t. M  x F B(x, )  .

Proposition: Subspace M of metric N is totally bounded iff "  > 0  finite H  N s.t. M 

z H B(z, )  .

Proof: () Obvious.

() Given  > 0 let H  N be finite set s.t. M  z H B (z, )
2


 . From each non-empty M  B(z, 2


)

pick one point. Let F be set of these points.

F M finite.

If y  M then y in one of B (z, 2


) so M B (z, 2


)  so  x M  B (z, 2


). Hence y  B(x, ) and

M  z F B(z, )  .

Corollary: Subspace of totally bounded metric space is totally bounded.

Theorem: Metric M totally bounded iff every sequence in M has Cauchy subsequence.

Proof: () Let xn  M. M covered by finitely many balls radius 1/2 so  B1 s.t. N1 = {n   : xn  B1}
has |N1| = .

Suppose inductively have defined infinite Nk–1  . Since M covered by finitely many balls of

radius 
1

2k  one ball Bk s.t. Nk = {n  Nk–1 : xn  Bk} is infinite.

Let n(1) be least element of N1, n(k) least element of Nk s.t. n(k) > n(k – 1).

Then ( ) ( )n n n 1n 1
x (k) x 

==
  s.t.  " k xn(i)  Bk for i  k. Hence d(xn(i), xn(j)) <

1
k i, j k"   so (xn(k)) Cauchy.

() Suppose M not totally bounded. Then for some  > 0 /  finite F with all points of M within

 of it. Choose x1  M, inductively xk s.t. d(xk, xi) " i < k. xk exists by assumption M not totally
bounded.

This gives sequence k k 1(x )=  s.t. d(xi, xj)   " i  j. Then no subsequence of (xk) Cauchy.
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Fill in the blanks:

1. A completion of metric space M is ........................... N s.t. M dense subset of N.

2. Any metric M can be .............................. into complete metric space.

3. Metric M totally ....................... if "  > 0  finite set F  M s.t. M  x F B(x, )  .

4. Subspace M of ................ is totally bounded iff "  > 0  finite H  N s.t. M   z H B(z, )  .

6.6 Summary

 Complete subspace S of metric M is closed.

 Closed subset S of complete M is complete.

 " S B(S) of bdd functions S   with sup norm is complete.

 A sequence (xn)  M is Cauchy iff  sequence n  0 s.t. n n 0


 ¾¾¾ and d(xm, xn) n for m

> n.

 (xn)  M sequence s.t. n  0 with n 1 n

=å  <   and d(xn, xn+1) n " n. Then (xn) is Cauchy.

6.7 Keywords

Cauchy Sequence: Metric M is complete if every Cauchy sequence in M converges (to a point of M).

Cauchy: A sequence (xn)  M is Cauchy iff  sequence n  0 s.t. n n 0


 ¾¾¾ and d(xm, xn) n for

m > n.

Completion: Any metric space M has a completion.

6.8 Review Questions

1. Define Completeness.

2. Discuss the Cauchy.

3. Explain contraction mapping theorem.

4. Describe total boundness.

Answers: Self Assessment

1. Complete metric space 2. isometrically embedded

3. bounded 4. metric N
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Notes6.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define convergent sequence

 Discuss the properties of convergent sequence

 Explain subsequences and compact metric spaces

 Describe subsequence limits

 Explain the Cauchy sequences and convergent sequences

Introduction

In earlier unit you have studied about the compactness and connectedness of the set. After
understanding the concept of compactness and connectedness let us go through the explanation
of convergent sequence.

7.1 Convergent Sequence

Definition: A sequence {pn} in a metric space (X, d) is said to converge if there is a point p  X with
the following property:

("> 0)(N) (" n > N) d(pn, p) < 
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NotesIn this case we also say that {pn} converges to p or  that p is the limit of {pn} and we write pn  p
or lim nn

limp p
¥

=

If {pn} does not converge we say it diverges

If there is any ambiguity we say {pn} converges/diverges in X

The set of all pn is said to be the range of {pn} (which may be infinite or finite). We say {pn} is
bounded if the range is bounded.

Example: Notice that our definition of convergent depends not only on {pn} but also
on X.

For example {1/1 : n  } converges in 1 and diverges in (0, ¥). Consider the following
sequence of complex number (i.e. X = 2)

(a) If Sn = 1/n then nn
lim S 0
¥

= ; the range is infinite, and the sequence is bounded.

(b) If Sn = n2 then the sequence {Sn} is divergent; the range is infinite, and the sequence is
unbounded.

(c) If Sn = 1 + [(–1)n/n] then the sequence {Sn} converges to 1, is bounded, and has infinite range.

(d) If Sn = in the sequence {Sn} is divergent, is bounded and has finite range.

(e) If Sn = 1 (n = 1, 2, 3, ...) then {Sn} converges to 1 is bounded.

7.2  Properties of Convergent Sequences

Theorem:

(a) {pn} converges to p  X if and only if every neighbourhood of p contains pn for all but
finitely many n.

(b) If p, p’  X and if {pn} converges to p and to p’ then p = p’

(c) If {pn} converges then {pn} is bounded.

(d) If E  X and if p is a limit point of E, then there is a sequence {pn} in E such that p = nn
limp
¥

Theorem: Suppose {Sn}, {tn} are complex sequence with nn
lim S S
¥

=  and nn
lim t t
¥

= . Then

(a)
n
lim
¥

(Sn + tn) = S + t

(b)
n
lim
¥

C Sn = C  S and n
lim
¥

C + Sn = C + S for any number C.

(c)
n
lim
¥

Sn tn = St

(d)
n

n

1 1lim
S S¥

=

Theorem:

(a) Suppose xn  k (n  ) and xn = (1, n, . . . k,n). Then {xn} converges to x = (1, . . ., k) if and
only if

n
lim
¥

j,n = j(1  j  k)
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n  . Then

n
lim
¥

(xn + yn) = x + y

n
lim
¥

(xn  yn) = x  y

n
lim
¥

n xn = x

7.2.1 Subsequences

Definition:

Given a sequence {pn}, consider a sequence {nk} of positive integers such that n1 < n2 < n3 . . . Then
the sequence {pni} is called a subsequence of {pn}. If {pni} converges its limit is called a subsequential
limit of {pn}.

It is clear that {pn} converges to p if and only if every subsequence of {pn} converges to p.

7.3 Subsequences and Compact Metric Spaces

Theorem:

(a) If {pn} is a sequence in a compact metric space X, then some subsequence of {pn} converges
to a point of X.

(b) Every bounded sequence in  k contains a convergent subsequence.

7.4 Subsequences Limits

Theorem:

The subsequential limits of a sequence {pn} in a metric space X form a closed subset of X.

7.5 Cauchy Sequence

A sequence {pn} in a metric space (X, d) is said to be a Cauchy sequence if for every  > 0 there is
an integer N such that d(pn, pm) <  for all n, m  N.

Definition:

Let E be a non-empty subset of a metric space (X, d), and let S = {d(p, q) : p, q  E}. The diameter
of E is sup S.

If {pn} is a sequence in X and if En consists of the points pN, pN+1, . . ., it is clear that {pn} is a Cauchy
sequence if and only if

N
lim
¥

diam EN = 0

7.6 Cauchy Sequence and Closed Sets

Theorem:

(a) If E  is the closure of a set E in a metric space X, then

diam E  = diam E
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Notes(b) If Kn is a sequence of compact sets in X such that Kn  Kn+1 (n  ) and if 
n
lim
¥

 diam Kn = 0

then 1 nK¥  consists of exactly one point.

7.7 Cauchy Sequences and Convergent Sequences

Theorem:

(a) In any metric space X, every convergent sequence is a Cauchy sequence.

(b) If X is a compact metric space and if {pn} is a Cauchy sequence in X then {pn} converges to
some point of X.

(c) In k every Cauchy sequence converges.

7.7.1 Complete Spaces

Definition:

A metric space is said to be complete if every Cauchy sequence converges.

Notice that all compact metric spaces are complete but there are metric spaces (like k) which are
complete but not compact.

Lemma

Every closed subset of a complete metric space is complete.

7.8 Increasing/Decreasing Sequences

Definition:

A sequence {Sn} of real numbers is said to be

(a) Monotonically increasing if Sn  Sn+1 for all n 

(b) Monotonically decreasing if Sn  Sn+1 for all n 

(c) Monotonic if it is monotonically increasing or monotonically decreasing.

Theorem: Suppose {Sn} is monotonic. Then {Sn} converges if and only if {Sn} is bounded.

Self Assessment

Fill in the blanks:

1. If there is any ambiguity we say {pn} ........................ in X.

2. The set of all pn is said to be the range of {pn} (which may be infinite or finite). We say {pn}
is bounded if the range is ........................ .

3. If {pn} is a sequence in a ........................ space X, then some subsequence of {p n} converges to
a point of X.

4. Every bounded sequence in  k contains a ........................ .

5. A metric space is said to be complete if every ........................ .
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 A sequence {pn} in a metric space (X, d) is said to converge if there is a point p  X with the
following property:

("> 0)(N) (" n > N) d(pn, p) < 

 In this case we also say that {pn} converges to p or  that p is the limit of {pn} and we write
pn  p or lim nn

limp p
¥

= .

 If {pn} does not converge we say it diverges.

 If there is any ambiguity we say {pn} converges/diverges in X.

 The set of all pn is said to be the range of {pn} (which may be infinite or finite). We say {pn}
is bounded if the range is bounded.

 Properties of convergent sequences

(a) {pn} converges to p  X if and only if every neighbourhood of p contains pn for all but
finitely many n.

(b) If p, p’  X and if {pn} converges to p and to p’ then p = p’

(c) If {pn} converges then {pn} is bounded.

(d) If E  X and if p is a limit point of E, then there is a sequence {pn} in E such that
p = nn

limp
¥

 Theorem of couchy sequences and convergent sequences

(a) In any metric space X, every convergent sequence is a Cauchy sequence.

(b) If X is a compact metric space and if {pn} is a Cauchy sequence in X then {pn} converges
to some point of X.

(c) In k every Cauchy sequence converges.

7.10 Keywords

Subsequential: Given a sequence {pn}, consider a sequence {nk} of positive integers such that
n1 < n2 < n3 . . . Then the sequence {pni} is called a subsequence of {pn}. If {pni} converges its limit
is called a subsequential limit of {pn}.

Subsequential Limits: The subsequential limits of a sequence {pn} in a metric space X form a
closed subset of X.

Cauchy Sequency: A sequences {pn} in a metric space (X, d) is said to be a Cauchy sequency if for
every  > 0 there is an integer N such that d(pn, pm) <  for all n, m  N.

7.11 Review Questions

1. Define convergent sequence.

2. Discuss the properties of convergent sequence.

3. Explain subsequences and compact metric spaces.

4. Describe subsequence limits.

5. Explain the Cauchy sequences and convergent sequences.
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1. converges/diverges 2. bounded

3. compact metric 4. convergent subsequence

5. Cauchy sequence converges

7.12 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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CONTENTS

Objectives

Introduction

8.1 Completeness and Compactness

8.2 Cantor's Theorem

8.3 Perfect Set

8.3.1 Perfect Sets are Uncountable

8.4 Cantor Middle Third Set

8.5 Baire Category Theorem

8.6 Compactness and Cantor Set

8.7 Summary

8.8 Keywords

8.9 Review Questions

8.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Completeness and Compactness

 Describe the Cantor's theorem

 Explain Baire category theorem

 Describe Compactness and Cantor set

Introduction

In earlier unit you have studied about the compactness and connectedness of the set. As you all
come to know about the Contraction Mapping Theorem. After understanding the concept of
Total boundedness let us go through the explanation of completeness and connectedness.

8.1 Completeness and Compactness

Theorem: Subspace C of complete metric M compact iff closed and totally bounded.

Proof: () C closed, totally bounded since "  > 0 open cover B(x, ) (x  C) has finite subcover.

() Every sequence in C has Cauchy subsequence, converges to point of M since M complete. C
closed so limit in C.

Lemma: If M subspace of N totally bounded so is M.

Proof: Fix  > 0. Let F cM be finite s.t. M xF B(x, 2


). Then

x F
M B x,

2

æ ö
 ç ÷è ø
 B(x, ) 
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NotesTheorem: Subspace S of complete metric M totally bounded iff S  compact.

Proof: () S  totally bounded and so compact.

() S  totally bounded so is S  S .

8.2 Cantor's Theorem

Definition: Diameter of 0  S  M defined by

diam (S) =
x, y S
supd(x, y)



Theorem: Cantor

Let Fn decreasing sequence of non-empty closed subsets of metric M s.t. diam (Fn) n®¥
¾¾¾®  0.

Then n 1 nF¥
=  .

Proof: Pick xn  Fn. Then " i  n, xi  Fi  Fn.

Hence, for i, j n, d(xi, xj)  diam (Fn). Hence (xn) Cauchy. Converges to some x as M complete.

Fn closed so x  Fn. Hence x  n 1 nF¥
= .

8.3 Perfect Set

A set S is perfect if it is closed and every point of S is an accumulation point of S.

Example: Find a perfect set. Find a closed set that is not perfect. Find a compact set that
is not perfect. Find an unbounded closed set that is not perfect. Find a closed set that is neither
compact nor perfect.

Solution:

 A perfect set needs to be closed, such as the closed interval [a, b]. In fact, every point in that
interval [a, b] is an accumulation point, so that the set [a, b] is a perfect set.

 The simplest closed set is a singleton {b}. The element b in then set {b} is not an accumulation
point, so the set {b} is closed but not perfect.

 The set {b} from above is also compact, being closed an bounded. Hence, it is compact but
not perfect.

 The set {–1} [0, ¥) is closed, unbounded, but not perfect, because the element –1 is not an
accumulation point of the set.

 The set {–1}[0, ¥) from above is closed, not perfect, and also not compact, because it is
unbounded.

Example: Is the set {1, 1/2, 1/3, ...} perfect? How about the set {1, 1/2, 1/3, ...}{0}?

Solution: The first set is not closed. Hence it is not perfect.

The second set is closed, and {0} is an accumulation point. However, every point different from
0 is isolated, and can therefore not be an accumulation point. Therefore, this set is not perfect
either.
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of points:

8.3.1 Perfect Sets are Uncountable

Every non-empty perfect set must be uncountable.

Proof: If S is perfect, it consists of accumulation points, and therefore can not be finite. Therefore
it is either countable or uncountable. Suppose S was countable and could be written as

S = {x1, x2, x3, ...}

The interval U1 = (x1 – 1, x1 + 1) is a neighbourhood of x1. Since x1 must be an accumulation point
of S, there are infinitely many elements of S contained in U1.

Take one of those elements, say x2 and take a neighbourhood U2 of x2 such that closure (U2) is
contained in U1 and x1 is not contained in closure (U2). Again, x2 is an accumulation point of S, so
that the neighbourhood U2 contains infinitely many elements of S.

Select an element, say x3, and take a neighbourhood U3 of x3 such that closure (U3) is contained in
U2 but x1 and x2 are not contained in closure (U3).

Continue in that fashion: we can find sets Un and points xn such that:

 closure (n + 1) n

 xj is not contained in n for all 0 < j < n

 xn is contained in n

Now consider the set

 V = (closure (n)  S)

Then each set closure (n)S) is closed and bounded, hence compact. Also, by construction,
(closure (n + 1)S) (closure (n)S). Therefore, by the above result, V is not empty. But which
element of S should be contained in V? It can not be x1, because x1 is not contained in closure (U2).
It can not be x2 because x2 is not in closure (3), and so forth.

Hence, none of the elements {x1, x2, x3, ...} can be contained in V. But V is non-empty, so that it
must contain an element not in this list. That means, however, that S is not countable.

8.4 Cantor Middle Third Set

Start with the unit interval

S0 = [0, 1]

Remove from that set the middle third and set

S1 = S0\(1/3, 2/3)

Remove from that set the two middle thirds and set

S2 = S1\{(1/9, 2/9) (7/9, 8/9) }

Continue in this fashion, where

Sn+1 = Sn\{middle thirds of subintervals of Sn}

Then the Cantor set C is defined as

C = Sn
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NotesThe Cantor set gives an indication of the complicated structure of closed sets in the real line. It
has the following properties:

Example: The Cantor set is compact.

Solution: The definition of the Cantor set is as follows: let

A 0 = [0, 1]

and define, for each n, the sets An recursively as

A n = A n – 1/ n n
k 0

1 3k 2 3k,
3 3

¥

=

+ +æ ö
ç ÷è ø



Then the Cantor set is given as:

C = A n

Each set n n
k 0

1 3k 2 3k,
3 3

¥

=

+ +æ ö
ç ÷è ø

  is open. Since A0 is closed, the sets An are all closed as well, which

can be shown by induction. Also, each set An is a subset of A0, so that all sets An are bounded.

Example: The Cantor set is perfect and hence uncountable.

The definition of the Cantor set is as follows: let

A0 = [0, 1]

and define, for each n, the sets An recursively as

An = An – 1\ n n
k 0

1 3k 2 3k,
3 3

¥

=

+ +æ ö
ç ÷è ø



Then the Cantor set is given as:

C = An

From this representation it is clear that C is closed. Next, we need to show that every point in the
Cantor set is a limit point.

One way to do this is to note that each of the sets An can be written as a finite union of 2n closed
intervals, each of which has a length of 1/3n, as follows:

A0 = [0, 1]

A1 = [0, 1/3] [2/3, 1]

A2 = [0, 1/9][2/9, 3/9] [6/9, 7/9]  [8/9, 1]

...

Note that all endpoints of every subinterval will be contained in the Cantor set. Now take any
x C =An. Then x is in An for all n. If x is in An, then x must be contained in one of the 2n intervals
that comprise the set An. Define xn to be the left endpoint of that subinterval (if x is equal to that
endpoint, then let xn be equal to the right endpoint of that subinterval). Since each subinterval
has length 1/3n, we have:

|x – xn| < 1/3n

Hence, the sequence {xn} converges to x, and since all endpoints of the subintervals are contained
in the Cantor set, we have found a sequence of numbers contained in C that converges to x.
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C is also closed, it is then perfect.

Note that this proof is not yet complete. One still has to prove the assertion that each set An is
indeed comprised of 2n closed subintervals, with all endpoints being part of the Cantor set. But
that is left as an exercise.

Since every perfect set is uncountable, so is the Cantor.

Hence, C is the intersection of closed, bounded sets, and therefore C is also closed and bounded.
But then C is compact.

Example: The Cantor set has length zero, but contains uncountably many points.

Solution: The definition of the Cantor set is as follows: let

A0 = [0, 1]

and define, for each n, the sets An recursively as

An = An – 1\ n n
k 0

1 3k 2 3k,
3 3

¥

=

+ +æ ö
ç ÷è ø



Then the Cantor set is given as:

C = An

To be more specific, we have:

A0 = [0, 1]

A1 = [0, 1] \ (1/3, 2/3)

A2 = A1 \ [(1/9, 2/9)(7/9, 8/9)] =

[0, 1] \ (1/3, 2/3) ) \ (1/9, 2/9) \ (7/9, 8/9)

...

That is, at the n-th stage (n > 0) we remove 2n – 1 intervals from each previous set, each having
length 1/3n. Therefore, we will remove a total length from the unit interval [0, 1]. Since we
remove a set of total length 1 from the unit interval, the length of the remaining Cantor set must
be 0.

The Cantor set contains uncountably many points because it is a perfect set.

Example: The Cantor set does not contain any open set

The definition of the Cantor set is as follows: let

A0 = [0, 1]

and define, for each n, the sets An recursively as

An = An – 1\ n n
k 0

1 3k 2 3k,
3 3

¥

=

+ +æ ö
ç ÷è ø



Then the Cantor set is given as:

C = A n
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NotesAnother way to write the Cantor set is to note that each of the sets An can be written as a finite
union of 2n closed intervals, each of which has a length of 1/3n, as follows:

A0 = [0, 1]

A1 = [0, 1/3]  [2/3, 1]

A2 = [0, 1/9][2/9, 3/9]  [6/9, 7/9]  [8/9, 1]

...

Now suppose that there is an open set U contained in C. Then there must be an open interval
(a, b) contained in C. Now pick an integer N such that

1/3N < b – a

Then the interval (a, b) can not be contained in the set AN, because that set is comprised of
intervals of length 1/3N. But if that interval is not contained in AN it can not be contained in C.
Hence, no open set can be contained in the Cantor set C.

8.5 Baire Category Theorem

Definition: S  M is

 Dense in M if S  = M.

 Nowhere dense in M if M\ S  is dense in M.

 Meagre in M if it is the union of a sequence of nowhere dense sets.

Proposition: S  M nowhere dense in M iff S = 0/

Proof: S = 0/  = M\ (M \ S)  so if RHS = 0/  then M\ S  is dense in M so S is nowhere dense.

Conversely if S is nowhere dense in M then M\ S  = M so RHS = 0/ .

Theorem: Baire Category

A complete metric space is not meagre in itself.

I.e. if Sn are the nowhere dense subsets of non-empty complete M then

n 1
M \ Sn 0

¥

=

/

Proof: IDEA: Find decreasing sequence of dense sets with non-empty intersection of their closures
by Cantor. Any point in this intersection cannot be in any nowhere dense set.

Gk := M\ kS  dense in M, open.

Then G1  0/ . Choose x1  G1 and i > 0 s.t. B(xi, i)  G1.

Continue inductively: Having defined xk–i, k–i use fact that Gk dense to find xk  Gk  B

k 1
k 1x ,

2
-

-

æ ö
ç ÷è ø

. Find 0 < k < k 1

2
-  s.t. B(xk, k)  Gk.

k k 0
®¥

 ¾¾¾®  and " k, k kB(x , )   B(xk–i, k–i).
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= /  . Let x be in this intersection. Then x  B(xk, k)  Gk " k

so x  Sk " k. Hence, there is a point x that is not in the union of all nowhere dense subsets of M,
so M cannot be meagre.

Proposition: The Cantor set C is uncountable.

Proof: " x  C there are points y  C, y  x arbitrarily close to x. In other words, C\{x} is dense in
C. Therefore {x} is nowhere dense in C as it is closed.

If C were countable would have C = j j{x }¥  showing C meagre in itself. This contradicts Baire's

theorem.

Lemma: Let f: [1, ¥) ®  be cts s.t. for some a    arbitrarily large x with f(x) < a. Then " k 

 : S = n k {x [1, ) : f(nx) a}¥
=  ¥  is nowhere x with dense.

Proof: f cts so S closed. Let 1  < < ¥. RTP (,)\S  0/

For large n, n 1
n
+  < 


 so (n + 1) < n. Then n k (n , n )¥

=    contains some (r, ¥) and so a point y

s.t. f(y) < a.

Find n s.t. y  (n, n). Then x = y
n
 (,) and f(nx) < a so x  S.

Proposition: Let f: [1, ¥) ®  be cts s.t. " x  1, 
n
lim f(nx)
®¥

 exists. Then 
x
lim f(x)
®¥

 exists.

Proof: If 
x
lim f(x)
®¥

 not exist then  a, b;  a < b s.t.  arbitrarily large x,y with f(x) < a, f(y) > b.

Then by previous lemma:

k 1 n 1 k 1 n 1
{x [1, ) : f(nx) a} {x [1, ) : f(nx) b}

¥ ¥ ¥ ¥

= = = =

 ¥    ¥    

is meagre. By Baire  x T.

x not in first union so " k  n  k s.t. f(nx) < a. x not in second union so " k  m  k s.t. f(mx) > b.
Hence f(nx) not converge.

Theorem:  f  C[0, 1] not differentiable at any point.

Proof: IDEA: C[0, 1] is complete. Functions with derivative at at least one point form a meagre
subset. Result by Baire.

Define Sn:

Sn = {f  C[0, 1] : ( x  [0, 1])( " y  [0, 1]) |f(y) – f(x)| n|y – x|}

8.6 Compactness and Cantor Set

Theorem: Every compact metric M is continuous image of Cantor set C.

Proof: Let Ak  M be finite s.t. " x M d(Ak, x)  2–k.

By induction construct sequence of cts functions fk : C ® M s.t. fk (C) = Ak, d(fk(x), fk+1 (x))  2k " x
C.
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Notes(fk) Cauchy in C(C, M) so converge to cts f : C ® M. f(C) dense in M. Also compact, so closed, hence
f(C) = M.

Corollary: continuous surjective map f : [0, 1] ® [0, 1].

Proof: Extend surjective cts f : (C ® [0, 1]2 linearly to each interval removed during construction
of C.

Self Assessment

Fill in the blanks:

1. A complete .................... is not meagre in itself.

2. The Cantor set C is .........................

3. Let f: [1, ¥) ®  be cts s.t. for some a    ....................... x with f(x) < a. Then " k   : S =

n k {x [1, ) : f(nx) a}¥
=  ¥  is nowhere x with dense.

4. Subspace S of complete metric M totally .......................  compact.

8.7 Summary

 Sn closed.

 Sn nowhere dense as has dense complement and closed.

 If f'(x) exists for some x then f  Sn for some n.

 Let fk  Sn, fk ® f. Find xk  [0, 1] s.t. " y [0, 1],

|fk(y) – fk(xk)|  n|y – xk|

xk has convergent subsequence so assume xk ® x. By uniform convergence

|f(y) – f(x)|  n|y – x|

Therefore f  Sn, so Sn closed.

 Let g  C[0, 1],  > 0. g uniformly cts so  > 0 s.t.

|x – y||g(x) – g(y)|< 
4
 . . . (1)

Let xi 
i
k

 = (x) = kmin0 i  k|x – xi|. Then 0   
2
  show suffices to show f =  + g  Sn.

Suppose f  Sn and find x "responsible for it".

Choose 1  j  k s.t. x  [xj–1, xj]. Let y = j 1 jx x
2

- +

2
  = |(y) – (xi)|

 |f(y) – f(xj)| + |g(y) – g(xj)|

(1)
 |f(y) – f(x)| + |f(xj) – f(x)| + 

4
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 |n|y – x| + n|xj – x| + 

4



2n
k

 + 
4



2


This is a contradiction. So f  Sn.

 If f(x) exists find  > 0 s.t. " 0 < |y – x| <,

f(y) f(x) f(y) f(x)f (x) 1 |f (x)|
y x y x
- -

-  < < + 
- -

Function f(y) f(x)y
y x
-

-
  is continuous on [0, 1]\(x – , x + ) which is compact. Hence the

function is bounded, so  n   s.t.

f(y) f(x)y [0, 1]\(x , x ) n
y x
-

 -  +   
-

May take n > 1 + |f(x)| so get inequality holding " y  [0, 1]\{x}.

Then |f(y) – f(x)|  n|y – x| " y  [0, 1]. (This clearly holds for y = x and holds by the above
for y  x.) So if  f  C[0, 1] s.t. f(x) exists for some x then f  Sn.

 These three parts together complete the proof, since by Baire (5.17) C[0, 1] is not meagre,
so there must be a function which is not differentiable at any point, as any that are
differentiable at at least one point are in a nowhere dense subset.

8.8 Keywords

Complete Metric: Subspace C of complete metric M compact iff closed and totally bounded.

Cantor: Let Fn decreasing sequence of non-empty closed subsets of metric M s.t. diam

(Fn) n®¥
¾¾¾®  0. Then n 1 nF 0¥

= / .

Continue Inductively: Having defined xk–i, k–i use fact that Gk dense to find xk  Gk  B

k 1
k 1x ,

2
-

-

æ ö
ç ÷è ø

. Find 0 < k < k 1

2
-  s.t. B(xk, k)  Gk.

k k 0
®¥

 ¾¾¾®  and " k, k kB(x , )   B(xk–i, k–i).

8.9 Review Questions

1. Discuss Completeness and Compactness.

2. Describe the Cantor's theorem.

3. Explain Baire category theorem.

4. Describe Compactness and Cantor set.
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1. metric space 2. uncountable

3. arbitrarily large 4. bounded iff S

8.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the different types of algebraic functions

 Explain the trigonometric and the inverse trigonometric functions

 Describe the exponential and logarithmic functions

 Explain some special functions including thus bounded and monotonic functions

Introduction

Real Analysis is often referred to as the Theory of Real Functions. The word 'function' was first
introduced in 1694 by L.G. Leibniz [1646-1716], a famous German mathematician, who is also
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Notescredited along with Isacc Newton for the invention of Calculus, Leibniz used the term function
to denote a quantity connected with a curve. A Swiss mathematician, L. Euler [1707-1783] treated
function as an expression made up of a variable and some constants. Euler's idea of a function
was later generalized by an eminent French mathematician J. Fourier [1768-1830]. Another
German mathematician, L. Dirichlet (1805-1859) defined function as a relationship between a
variable (called an independent variable) and another variable (called the dependent variable).
This is the definition which, you know, is now used in Calculus.

The concept of a function has undergone many refinements. With the advent of Set Theory in
1895, this concept was modified as a correspondence between any two non-empty sets. Given
any two non-empty sets S and T, a function f from S into T, denoted as f: S  T, defines a rule
which assigns to each x  S, a unique element Leonard Euler y  T. This is expressed by writing
as y = f (x). This definition, as you will recall, was given in Section 1.2. A function f S  T is
said to be a

1. Complex-valued function of a complex variable if both S and T are sets of complex numbers;

2. Complex-valued function of a real variable if S is a set of real numbers and T is a set of
complex numbers;

3. Real-valued function of a complex variable if S is a set of complex numbers and T is a set
of real numbers;

4. Real-valued function of a real variable if both S and T are some sets of real numbers.

Since we are dealing with the course on Real Analysis, we shall confine our discussion to those
functions whose domains as well as co-domains are some subsets of the set of real numbers. We
shall call such functions as Real Functions.

In this unit, we shall deal with the algebraic and transcendental functions. Among the
transcendental functions, we shall define the trigonometric functions, the exponential and
logarithmic functions. Also, we shall talk about some special real functions including the bounded
and monotonic functions. We shall frequently use these functions to illustrate various concepts
in Blocks 3 and 4.

9.1 Algebraic Functions

In Unit 1, we identified the set of natural numbers and built up various sets of numbers with the
help of the algebraic operations of addition, subtraction, multiplication, division etc. In the
same way, let us construct new functions from the real functions which we have chosen for our
discussion. Before we do so, let us review the algebraic combinations of the functions under the
operations of addition, subtraction, multiplication and division on the real-functions.

9.1.1 Algebraic Combinations of Functions

Let f and g be any two real functions with the same domain S C  R and their co-domain as the set
R of real numbers. Then we have the following definitions:

Definition 1: Sum and Difference of Two Functions

1. The Sum of f and g, denoted as f + g, is a function defined from S into R such that

(f + g) (x) = f(x) + g(x), If x  S.

2. The Difference of f and g, denoted as f – g, is a function defined from S to R such that

(f – g) (x) = f(x) – g(x), " x  S.
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unique member of R.

Definition 2: Product of Two Functions

Let f: S R and g: S  R be any two functions. The product of f and g, denoted as f, g, is defined
as a function f. g: S  R by

(f . g) (x) = f(x) . g(x), " x S.

Definition 3: Scalar Multiple of a Function

Let f: S  R be a function and k be same fixed real number. Then the scalar multiple of ‘f’ is a
function k f S  R defined by

(kf (x) = k. f(x), " x  S.

This is also called the scalar multiplication.

Definition 4: Quotient of Two Functions

Let f: S  R and g: S  R be any two functions such that g(x)  0 for each x in S. Then s function
f
g

: S  R defined by

f
g

 
 
 

 (x) = 
f(x)
g(x) ," x  S

is called the quotient of the two functions.

Exercise 1: Let f, g, h be any three functions, defined on S and taking values in R, as f (x) = ax2,
g(x) = bx for every x in S, where a, b, are fixed real numbers. Find f + g, f – g, f, g, f/g and kf,
when k is a constant.

9.1.2 Notion of an Algebraic Function

You are quite familiar with the equations ax + b = 0 and ax2 + bx + c = 0, where a, b, c  R,
a  0. These equations, as you know are, called linear (or first degree) and quadratic (or second
degree) equations, respectively. The expressions ax + b and ax2 + bx + c are, respectively, called
the first and second degree polynomials in x. In the same way an expression of the form ax  +
bx2 + cx + d (a  0, a, b, c, d ER) is called a third degree polynomial (cubic polynomial) in x. In
general, an expression of the form ao xn + a1 xn–l + a2 xn–2 + .... + an where a0  0, a ER, i = 0, 1, 2,
...., n, is called an nth degree polynomial in x.

A function which is expressed in the form of such a polynomial is called a polynomial function.
Thus, we have the following definition:

Definition 5: Polynomial Function

Let a1 (i = 0, 1, ...., n) be fixed real numbers where n is some fixed non-negative integer. Let S be
a subset of R. A function f: S  R defined by

f(x) = a0 xn + a1 xa–1 + a2 xn–2 + .... + an, " x S, a0  0.

is called a polynomial function of degree n.

Let us consider some particular cases of a polynomial function on R:

Suppose f : S  R is such that

(i) f(x) = k, " x  S (k is a fixed real number). This is a polynomial function. This is generally
called a constant function on S.
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Example:

f(x) = 2, f(x) = – 3, f(x)= , "  x  R, are all constant functions.

(ii) One special case of a constant function is, obtained by taking

k = 0 i.e. when

f(x) = 0, " x  S.

This is called the zero function on S.

Let f: S  R be such that

(iii) f(x) = a0 x + a1, " x  S, a,  0.

This is a polynomial function and is called a linear function on S. For example,

f(x) = 2x + 3, f(x) = – 2 x + 3,

f(x) = 2x – 3, f(x) = –2x – 3, f(x) = 2x for every

x  S are all linear functions

(iv) The function f: S   R defined by

f(x) = x, " x  S

s called the identity function on S,

(v) f: S  R given as .

f(x),=a0.x2 + a1 x + a2," x  R, ao # O.

is a polynomial function of degree two and is called a quadratic function on S.

Example: f(x) = 2x2 + 3x – 4, f(x) = x2 + 3, f(x) = x2 + 2x,

f(x) = – 3x2,

for every x  S are all quadratic functions.

Definition 6: Rational Function

A function which can be expressed as the quotient of two polynomial functions is called a
rational function.

Thus a function f: S  R defined by

n n 1
0 1 n

m m 1
0 1 m

a x a x ... af(x)
b x b x ... b





  


  
, " x  S

is called a rational function.

Here a0  b0  0, ai, bj  R where i, j are some fixed real numbers and the polynomial function in
the denominator is never zero.

Example: The following are all rational functions on R.

2

2

2x 3 4x 3x 1 3x 54, (x ) and (x 4).
x 1 3x 4 3 x 4
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irrational function is the square root function which we define as follows:

Definition 7: Square Root Function

Let S be the set of non-negative real numbers. A function f: S  R defined by

f(x) = x ,  " x  S

is called the square root function.

You may recall that x  is the non-negative real number whose square is x. Also it is defined for
all x  0.

Polynomial functions, rational functions and the square root function are some of the examples
of what are known as algebraic functions. An algebraic function, in general, is defined as follows

Definition 8: Algebraic Function

An algebraic function f : S  R is a function defined by y = f(x) if it satisfies identically an
equation of the form

p0(x)yn + p1 (X)yn–1+. . . . + pn–1 (x)y + pn (x) = 0

where p(x), pl(x), .... pn–1 (x), pn (x) are Polynomials in x for all x in S and n is a positive integer.

Example: Show that f: R  R defined by

f(x) =
2x 3x 2
4x 1
 



is an algebraic function.

Solution:

Let y = f(x) =
2x 3x 2
4x 1
 



Then (4 x – 1) y2 – (x2 – 3x + 2) = 0

Hence f(x) is an algebraic function.

In fact, any function constructed by a finite number of algebraic operations (addition, subtraction,
multiplication, division and root extraction) on the identity function and the constant function,
is an algebraic function.

Example: The functions f : R  R defined by

(i) f(x) =
2

2
(x 2) x 1

x 4
 



or f(x) =
2

2

x 2x
x.(3x 5)





are algebraic functions.
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Example: Prove that every rational function is an algebraic function.

Solution: Let f : R  R be given as

f(x) = p(x)
q(x)

, " x R,

where p(x) and q(x) are some polynomial functions such that q(x)  0 for any x  R.

Then we have

y = f(x) = p(x)
q(x)

q(x) y– p(x) = 0

which shows that y = f(x) can be obtained by solving the equation

q(x) y – p(x) = 0.

Hence f(x) is an algebraic function.

A function which is not algebraic is called a Transcendental Function. Examples of elementary
transcendental functions are the trigonometric functions, the exponential functions and the
logarithmic functions, which we discuss in the next section.

9.2 Transcendental Functions

In earlier unit, we gave a brief introduction to the algebraic and transcendental numbers. Recall
that a number is said to be an algebraic if it is a root of an equation of the form

a0 xn + a1 xn–1 + .... x + an–1 x + an = 0

with integral coefficients and a0  0, where n is a positive integer. A number which is not
algebraic is called a transcendental number. For example the numbers e and IT are transcendental
numbers. In fact, the set of transcendental numbers is uncountable. Based on the same analogy,
we have the transcendental functions. We have discussed algebraic functions. The functions that
are non-algebraic are called transcendental functions. In this section, we discuss some of these
functions.

9.2.1 Trigonometric Functions

You are quite familiar with the trigonometric functions from the study of Geometry and
Trigonometry. The study of Trigonometry is concerned with the measurement of the angles and
the ratio of the measures of the sides of a triangle. In Calculus, the trigonometric functions have
an importance much greater than simply their use in relating sides and angles of a triangle. Let
us review the definitions of the trigonometric functions sin x, cos x and some of their properties.
These functions form an important class of real functions.

Consider a circle x2 +y2 = r2 with radius r and centre at O. Let P be a point on the circumference
of this circle. If  is the radian measure of a central angle at the centre of the circle as shown in the
Figure 9.1 then you know that the lengths of the arc AP is given by

s = r.



106 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes

You already know how the trigonometric ratios sin , cos , etc., are defined for an angle 
measured in degrees or radians. We now define sin x, cos x, etc., for x R.

If we put r = 1 in above relation, then we get  = s. Also the equation of circle becomes x2 + y2 = 1.
This, as you know, is the Unit Circle. Let C represents this circle with centre O and radius 1.
Suppose the circle meets the x-axis at a point A as shown in the Figure 9.2.

Figure 9.2

Figure 9.1
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positive direction upwards. Now, let t be any real number and we will think of this as a point on
this verticle number line i.e., t-axis.

Imagine this t-axis as a line of thread that can be wrapped around the circle C. Let p(t) = (x, y) be
the point where ‘t’ ends up when this wrapping takes place. In other words, the line segment
from A to point (t, 0) becomes the arc from A to P, positive or negative i.e., counterclockwise or
clockwise, depending on whether t > 0 or t < 0. Of course, when t = 0, P = A. Then, the trigonometric
functions 'sine' and 'cosine', for arbitrary t R, are defined by

sin t = sin  = y, and cos t = cos  = x,

where '' is the radian measure of the angle subtended by the arc AP at the centre of the circle C.
More generally, if t is any real number, we may take (0 <  < 2) to be the angle (rotation) whose
radian measure is t. It is then clear that

sin (t + 2) = sin t and cos (t + 2) = cos t.

You can easily see that as  increases from '' to /2, PQ increases from 0 to 1 and OQ decreases

from 1 to 0. Further, as increases from 
2
  to , PQ decreases from 1 to 0 and OQ decreases from

0 to –1. Again as  increases from  to 3
2
 , PQ decreases from 0 to –1 and OQ increases from –1

to 0. As  increases from –1 to 0. The graphs of these functions take the shapes as shown in Figure
9.3.

  

Thus, we define sin x and cos x as follows:

Definition 9: Sine Function

A function f : R  R defined by

f(x) = sin x, " x R

is called the sine of x. We often write y = sin x.

Definition 10: Cosine Function

A function f : R  R defined by

f(x) = cos x, " x R

is called the cosine of x and we write y = cos x.

Figure 9.3
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cosine, the other four trigonometric functions can be defined as follows:

(i) A function f : S  R defined by

f(x) = tan x = sin x
cosx

, cos x  0, " x S = R – {(2n + 1) 
2
 }

is called the cos x Tangent Function. The range of the tangent function is ] –, +  [ = R and

the domain is S = R – {(2n + 1) 
2
 }, where n is a non-negative integer.

(ii) A function f : S  R defined by

f(x) = cot x = cosx
sin x

, sin x  0, " x S = S – {n },

is said to be the Cotangent Function. Its range is also same as its co-domain i.e. range
= ] – ,  [= R and the domain is S = R – {n} where n is a non-negative integer.

(iii) A function f : S  R defined by

f(x) = sec x = 1
cosx

, cos x  0, " x S = S – {2n + 1) 
2
 },

is called the Secant Function. Its range is the set

S = ] –, –1]  [1, [ and domain is S = R – {2n + 1) 
2
 }.

(iv) A function f : S  R defined by

f(x) = cosec x = 1
sin x

 , sin x  0, x S = R – {n},

is called the Cosecant function. Its range is also the set S = ] –, –1]  [1, [ and domain is
S = R – { n ),

The graphs of these functions are shown in the Figure 9.4.

Example: Let S = [ –
2
 , 

2
 ]. Show that the function f : S  R defined by

f(x) = sin x, " x S

is one-one. When is f only onto? Under what conditions f is both one-one and onto?

Solution: Recall from Unit 1 that a function f is one-one if

f(X1) = f(X2)  X1 = X2

for every x1, X2 in the domain of f.

Therefore, here we have for any X1, X2  S,

f(x1) = f(x2)  sin x1 = sin x2

 sin x1 – sin X2 = 0

 2 sin 1 2x x
2
  cos 1 2x x

2
  = 0
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 Either sin 1 2x x

2
  = 0, or cos 1 2x x

2
 = 0.

If sin 1 2x x
2
 = 0, then 1 2x x

2
  = 0,  , + 2, ...

If cos 1 2x x
2
 = 0, then 1 2x x

2
  = 0,  

2
 ,  3

2
 , ...

Since x1, x2  [–
2



2
 ]. Therefore we can only have

–
2
   1 2x x

2
   

2


and –
2
   1 2x x

2
   

2


Thus, 1 2x x
2
 = 0 i.e., x1 = x2. Also, if 1 2x x

2
  =  

2


i.e. then x1 + x2 =  x.

Since x,, x,  [– x
2

, x
2

],

therefore, x1 = x2 = 
2
  or x, = x1 = –

2


Hence (x1) = f(x2)  x, = x,, which proves that f is one-one. Then function f(x) = sin x defined as
such, is not onto because you know that the range of sin x is [–1, 1]  R.

Figure 9.4
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Figure 9.6
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If you define f : R  [–1, 1] as

f(x) = sin x, " x R

Then f is certainly onto. But then it is not one-one. However the function.

f : 
2
 [–, 

2
 ] [–1, 1] defined by

f(x) = sin x, " x R

is both one-one and onto.

Exercise 2: Two functions g and h are defined as follows:

(i) g : S  R defined by

g(x) = cos x, x S = [0, ]

(ii) h : S  R defined by

h(x) = tan x, x S = ]–
2
 , 

2
 [

Show that the functions are one-one. Under what conditions the function are one-one and onto?

Figure 9.7
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Here we discussed inverse functions. You know that if a function is one-one and onto, then it
will have an inverse. If a function is not one-one and onto, then sometimes it is possible lo
restrict its domain in some suitable manner such that the restricted function is one-one and onto.
Let us use these ideas to define the inverse trigonometric functions. We begin with the inverse
of the sine function.

Refer to the graph of f(x) = sin x in Figure 9.8. The x-axis cuts the curve y = sin x at the points
x = 0, x = , x = 2. This shows that function f(x) = sin x is not one-one. If we restrict the domain
of f(x) = sinx to the interval [–/2, 71/21], then the function

f : [–
2
 , 

2
 ] [–1, 1] defined by

f(x) = sin x, – 71
21

  x  71
21

is one-to-one as well as onto. Hence it will have the inverse. The inverse function is called the
inverse sine of x and is denoted as sin x. In other words,

y = sin-'x  x = sin y,

where – 71
21

 y 
2
  and –1 x  1.

Thus, we have the following definition:

Definition 11: Inverse Sine Function

A function g : [–1, 1]  [–
2
 , 

2
 ] defined by

g(x) = sin–x x, " x s [–1, 1]

is called the inverse sine function.

Again refer back to the graph of f(x) = cos x in Figure. You can easily see that cosine function is
also not one-one. However, if you restrict the domain of f(x) = cos x to the interval [0, ], then the
function f : [0, ]  [–1, 1] defined by

f(x) = cos 0, | x  ,

is one-one and onto. Hence it will have the inverse. The inverse function is called the inverse
cosine of x and is denoted by cos–1 x (or by arc cos x). In other words,

y = cos–1 x  x = cos y,

where 0 I y   and –1  x  I.

Thus, we have the following definition:

Definition 12:

A function g : [–1, 1]  {0, ] defined by

g(x) = cos–1 x, " x [–1, 1],

is called the inverse cosine function.

You can easily see from Figure that the tangent function, in general, is not one-one. However,
again if we restrict the domain of f(x) = tan x to the interval ]–/2, /2[, then the function.
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f : ] –

2
 , 

2
 [  R defined by

f(x) = tan x, –
2
 , < x < 

2


is one-one and onto. Hence it has an inverse. The inverse function is called the inverse tangent
of x and is denoted by tan –1 x (or by arctan x). In other words,

y = tan–1 x  x = tan y,

where –
2
 < y < 

2
  and –  < x < + .

Thus, we have the following definition:

Definition 13: Inverse Tangent Function

A function g : R  ], –
2
 , 

2
  [ defined by

g(x) = tan–1 x, " x R

is called the inverse tangent function.

Task  Define the inverse cotangent, inverse secant and inverse cosecant function. Specify
their domain and range.

Now, before we proceed to define the logarithmic and exponential functions, we need the
concept of the monotonic functions. We discuss these functions as follows:

9.3.1 Monotonic Functions

Consider the following functions:

(i) f(x) = x, " x  R.

(ii) f(x) = sin x, " x [–/2, /2].

(iii) f(x) = –x2, " x [0, [,

(iv) f(x) = cos x, " x [0, ].

Out of these functions, (i) and (ii) are such that for any x,, x2 in their domains,

x, < x2  f(X1)  f(x2),

whereas (iii) and (iv) are such that for any x,, x 2 in their domains,

x, < x2  f(X1)  f(x2).

The functions given in (i) and (ii) are called monotonically increasing while those of (iii) and (iv)
are called monotonically decreasing. We define these functions as follows:

Let f : S  R (S  R) be a function

(i) It is said to be a monotonically increasing function on S if

x1 < x,  f(X1) < f(X1) for any x,, x2 S
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x1 < x2 f(x1)  f(x2) for any x,, x2 S.

(iii) The function f is said to be a monotonic function on S if it is either monotonically increasing
or monotonically decreasing.

(iv) The function f is said to be strictly increasing on S if

x < x2  f(X1) < f(x2), for x,, x2 S,

(v) It is said to be strictly decreasing on S if

x1 < x2  f(x1) > f(X2), for x,, x2 S.

You can notice immediately that if f is monotonically increasing then –f i.e. –f: R  R defined by
(–f)(x) = –f(x), " x R

is monotonically decreasing and vice-versa.

Example: Test the monotonic character of the function f: R  R defined as

f(x) =
2

2
x , x 0
x , x 0

ì 
í
 >î

Solution: For any X1, x2 R, X1  0; X2  0

X1 < X2  X2
1 > X2

2  f(x1) > f(X2)

which shows that f is strictly decreasing.

Again if X1 > 0, X2 > 0, then

X1 < X2  X2
1 < x2

2  –X2
1 > –X2

2  f(X1) > f(X2)

which shows that i is strictly decreasing for x > 0. Thus f is strictly decreasing for every x  R.

Now, we discuss an interesting property of a strictly increasing function in the form of the
following theorem:

Theorem 1: Prove that a strictly increasing function is always one-one.

Proof: Let f : S  T be a strictly increasing function. Since f is strictly increasing, therefore,

X1 < X2  f(x1) < f(x2) for any X1, x2  S.

Now to show that f : S T is one-one, it is enough to show that

f(x1) = f(x2)  X1 = X2.

Equivalently, it is enough to show that distinct elements in S have distinct images in T

i.e. X1  X2  f(x1)  f(x2), for X1, X2  S.

Indeed,

x1  x2  x1 < x1 or x1 > x2

 f(x1) < f(x2) or f(x1) > f(x2)

 f(xl)  f(x2)

which proves the theorem.
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Example: Let f : S  T be a strictly increasing function such that f(S) = T. Then prove that

f is invertible and f1 : T  S is also strictly increasing.

Solution:

Since f : S  T is strictly increasing, therefore, f is one-one. Further, since f (S) = T, therefore f is
onto. Thus f is one-one and onto. Hence f is invertible. In other words, f–1 : T  S exists.

Now, for any y1, y2 T, we have y1= f(x1), y2 – f(x2). If y1 < y2) then we claim x1 < x2.

Indeed if x1  x2, then f(x1)  f(x2) (why?).

This implies that y1  y2 which contradicts that y1 < y2.

Hence y1 < y2  x1 < x2 f–1 (y1) < f–1 (y2)

which shows that f–1 is strictly increasing.

You can similarly solve the following exercise for a strictly decreasing function:

Exercise 3: Let f : S  T be a strictly decreasing function such that f(S) = T. Show that f is invertible
and f–1 : T S is also strictly decreasing.

9.3.2 Logarithmic Function

You know that a definite integral of a function represents the area enclosed between the curve of
the function, X-axis and the two Ordinates. You will now see that this can be used to define
logarithmic function and then the exponential function.

We consider the function f(x) = 1
x

 for x > 0, We find that the graph of the function is as shown in

the figure 9.8.

Definition 14: Logarithmic Function

For x  1, we define thus natural logarithmic function log x as

log x =
x

1

1 dt
tò

Figure 9.8
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In the Figure 9.9, log x represents the area between the curve f(t) = 1

t
, x-Axis and the two

ordinates at 1 and at x. For 0 < x < 1, we define

logx =
1

x

1 dt
tò

This means that for 0 < x < 1. log x is the negative of the area under the graph of f(t) = 1
t

, X-Axis

and the two ordinates at x and at 1.

 

We also see by this definition that

log x < 0 if 0 < x < l

log 1 = 0

and

log x > 0 if x > 1.

It 'also follows by definition that if.

x1 > x2 > 0, then log x1 > log x2. This shows that log x is strictly increasing. The reason for this is
quite clear if we realise by log x1 as the area under the graph as shown in the Figure 9.10.

The logarithmic function defined here is called the Natural logarithmic function. For any x > 0,
and for any positive real number a  1, we can define

log x = log x
log a

This function is called the logarithmic function with respect to the base a. If a = 10, then this
function is called the common logarithmic function.

Figure 9.9
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Logarithmic function to the base a has the following properties:

(i) log, (x1 x2) = log, X1 + log, X2

(ii) log a 1

2

x
x
é ù
ê 
ë û

 = loga x1 – loga x2.

(iii) log, xm = m log, x for every integer m.

(iv) loga
a = I.

(v) loga
1 = 0

By the definition of log x, we see that log 1 = 0 and as x becomes larger and larger, the area

covered by the curve f(t) = 1
t

, X-axis and the ordinates at 1 and x, becomes larger and larger. Its

graph is as shown in the Figure 9.11,

You already know what is meant, by inverse of s function. You had also seen in Unit 1 that if f is
1 – 1 and onto, then f is invertible. Let us apply that study to logarithmic function.

Figure 9.10

Figure 9.11
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We now come to define exponential function. We have seen that

log x : ]0, [ R

is strictly increasing function. The graph of the logarithmic function also shows that

log x : ]0, [ R

is also onto. Therefore this function admits of inverse function. Its inverse function, called the
Exponential function, Exp (x) has domain as the set R of all real numbers and range as ]0, [. If

log x = y, then Exp (y) = x.

The graph of this function is the mirror image of logarithmic function as shown in the Figure 9.12.

The Exp (x) satisfies the following properties:

(i) E^p (x + y) = Exp x Exp y

(ii) Exp (x – y) = Exp x/Exp y

(iii) (Exp x)n = Exp (nx)

(iv) Exp(0) = 1

We now come to define ax for a > 0 and x any real number. We write

ax = Exp (x log a)

If x is any rational number, then we know that log ax = x log a. Hence

Exp (x log a) – Exp (log ax) = ax. Thus our definition agrees with the already known definition of
a in case x is a rational number. The function ax satisfies the following properties

(i) ax ay = ax+y

(ii)
x

y
a
a

 = ax–y

Figure 9.12
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(iv) ax bx – (ab)x, a > 0, b > 0.

Denote E (I) = e, so that log e = 1. The number e is an irrational number and its approximation say
up to five places of decimals is 2.71828. Thus

ex = Exp (x log e) = Exp (x).

Thus Exp (x) is also denoted as ex and we write for each a > 0, ax = ex log a

Example: Plot the graph of the function I : R  R defined by f(x) = 2x.

Solution:

x –2 –1 0 1 2

2x
1
4

1
2 1 2 4

The required graph takes the shape as shown in the Figure 9.13.

9.4 Some Special Functions

So far, we have discussed two main classes of real functions – Algebraic and Transcendental.
Some functions have been designated as special functions because of their special nature and
behaviour. Some of these special functions are of great interest to us. We shall frequently use
these functions in our discussion in the subsequent units and blocks.

9.4.1 Identity Function

We have already discussed some of the special functions. For example, the Identity function
i : R  R, defined as i (x) = x, " x ER has already been discussed as an algebraic function.

Figure 9.13
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characteristics, which are as follows:

(i) Domain of i = Range of i = Codomain of i

(ii) The function i is one-one and onto. Hence it has an inverse i–1 which is also one-one and
onto.

(iii) The function i is invertible

(iv) The graph of the identity function is a straight line through the origin which forms an
angle of 45° along the positive direction of X-axis as shown in the Figure 9.14.

9.4.2 Periodic Function

You know that

sin (2 + x) = sin (4 + x) = sin x,

tan ( + x) = tan (2 + x) = tan x.

This leads us to define a special class of functions, known as Periodic functions. All trigonometric
functions belong to this class.

A function f : S  R is said to be periodic if there exists a positive real number k such that

f(x + k) = f(x), " x S

where S C R.

The smallest such positive number k is called the period of the function.

You can verify that the functions sine, cosine, secant and cosecant are periodic each with a period
2n while tangent and cotangent are periodic functions each with a period.

Figure 9.14



LOVELY PROFESSIONAL UNIVERSITY 121

Unit 9: Functions

Notes9.4.3 Modulus Function

The modulus or the absolute (numerical) value of a real number has already been defined in
Unit 1. Here we define the modulus (absolute value) function as follows:

Let S be a subset of R. A function f : S  R defined by

f(x) = |x|, " x S

is called the modulus function.

In short, it is written as Mod function.

You can easily see the following properties of this function:

(i) The domain of the Modulus function may be a subset of R or the set R itself.

(ii) The range of this function is a subset of the set of non-negative real numbers.

(iii) The Modulus function f : R  R is not an onto function (Check why?).

(iv) The Modulus function f : R  R is not one-one. For instance, both 2 and –2 in the domain
have the same image 2 in the range.

(v) The modulus function f : R  R does not have an inverse function (why)?

(vi) The graph of the Modulus function is R  R given in the Figure 9.15.

It consists of two straight lines:

(i) y = x (y  0)

and (ii) y = –x (y  0)

through 0, the origin, making an angle of /4 and 3/4 with the positive direction of X-axis:

9.4.4 Signum Function

A function f : R R defined by

f(x) =
|x|

x when x 0
x 0 if x 0

ì
ï

í
ï î

Figure 9.15
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f(x) =
1 if x 0
0 if x 0
1 if x 0

 <ì
ï

í
ï >î

is called the signum function. It is generally written as sgn (x).

Its range set is {–1, 0, 1}. Obviously sgn x is neither one-one nor onto. The graph of sgn x is shown
in the Figure 9.16.

9.4.5 Greatest Integer Function

Consider the number 4.01. Can you find the greatest integer which is less than or equal to this
number? Obviously, the required integer is 4 and we write it as [4.01] = 4.

Similarly, if the symbol [x] denotes the greatest integer contained in x then we have

[3/4] = 0, [5.01] –5,

[–.005] = –1 and [–3.96] = –4.

Based on these, the greatest integer function is defined as follows:

A function f : R  R defined by

f(x) = [x], " x R,

where [x] is the largest integer less than or equal to x is called the greatest integer function.

The following properties of this function are quite obvious:

(i) The domain is R and the range is the set Z of all integers.

(ii) The function is neither one-one nor onto.

(iii) If n is any integer and x is any real number such that x is greater than or equal to n but less
than n + 1 i.e., if n  x < n + 1 (for some integer n), then [x] = n i.e.,

Figure 9.16
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Example: Prove that

[x + m] = [x] + m, " x R and m Z,

Solution: You know that for every x R, there exists an integer n such that

n < x < n + 1.

Therefore,

n + m <  + m < n + 1 + m,

and hence

[x + m] = n + m = [x] + m,

which proves the result.

Task  Test whether or not the function f : R  R defined by f(x) = x – [x] " x R, is periodic.
If it is so, find its period.

Figure 9.17
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Consider a function f : R  R defined as

f(x) = 2x, " x R.

If you change x to –x, then you have

f(–x) = 2 (–x) = –2x – f(x).

Such a function is called an odd function.

Now, consider a function f : R  R defined as

f(x) = x2 " x R

Then changing x to –x we get

q – x) = (–x)2 = x2 = f(x)

Such a function is called an even function.

The definitions of even and odd functions are as follows:

A function f : R  R is called even if f (–x) = f(x), " x R,

It is called odd if f(–x) = –f(x), " x R

Example: Verify whether the function f : R  R defined by

(i) f(x) = Sin2 x + Cos3 2x

(ii) f(x) = 2 2 2 2a ax x a ax x      are even or odd.

Solution:

(i) f(x) + sin2 x + cos3 2x, " x R

 sin2 (–x) + cos3 2(–x)

sin2 x + cos3 2x = f(x), " x R

 f is an even function.

(ii) f(x) = 2 2 2 2a ax x a ax x , x R     " 

 f(–x) = 2 2 2 2a ax x a ax x    

= –(x), " x R

 f is an odd function.

Task  Determine which of the following functions are even or odd or neither:

(i) f(x) = x

(ii) A constant function

(iii) sin x, cos x, tan x,

(iv) f(x) = 2
x 4
x 9



 = –(x), " x R
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In Unit 2, you were introduced to the notion of a bounded set, upper and lower bounds of a set.
Let us now extend these notions to a function.

You know that if f : S  R is a function, (S C R), then

{f(x) : x S)}

is called the range set or simply the range of the function f.

A function is said to be bounded if its range is bounded.

Let f : SR be a function. It is said to be bounded above if there exists a real number K such that

f(x)  k " x S

The number K is called an upper bound of it. The function f is said to be bounded below if there
exists a number k such that

f(x)  k " x S

The number k (is called a lower bound of f).

A function f : S R, which is bounded above as well as bounded below, is said to be bounded.
This implies that there exist two real numbers k and K such that

k  f(x)  K " x S.

This is equivalent to say that a function f : S R is bounded if there exists a real number M such
that

|f(x)|  M, " x S.

A function may be bounded above only or may be bounded below only or neither bounded
above nor bounded below.

Recall that sin x and cos x are both bounded functions. Can you say why? It is because of the
reason that the range of each of these functions is [–1, 1].

Example: A function f : R  R defined by

(i) f(x) = –x2, " xR is bounded above with 0 as an upper bound

(ii) f(x) = x, " x  0 is bounded below with 0 as a lower bound

(iii) f(x) = for |x| –l is bounded because |f(x)|  1 for |x||.

Self Assessment

1. Test whether the following are rational numbers:

(i) I7 (ii) 8 (iii) 3 + 2

2. The inequality x2 – 5x + 6 < 0 holds for

(i) x < 2, x < 3 (ii) x > 2, x < 3

(iii) x < 2, x > 3 (iv) x > 2, x > 3
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(i) The set Z of integers is not a NBD of any of its points.

(ii) The interval ]0, 1] is a NBD of each of its points

(iii) The set ]1, 3[  ] 4, 5[ is open.

(iv) The set [a,[  ] –, a] is not open.

(v) N is a closed set.

(vi) The derived set of Z is non-empty.

(vii) Every real number is a limit point of the set Q of rational numbers.

(viii) A finite bounded set has a limit point.

(ix) [4, 5]  [7, 8] is a closed set.

(x) Every infinite set is closed.

9.5 Summary

 In this unit, we have discussed various types of real functions. We shall frequently use
these functions in the concepts and examples to be discussed in the subsequent units
throughout the course.

 We have introduced the notion of an algebraic function and its various types. A function f:
S  R (S  R) defined as y = f(x), " x  S is said to be algebraic if it satisfies identically an
equation of the form

p0(x) yn + p1(x) yn–1 + p2(x) yn–2 + .... + p(x) y + pn(x) = 0,

 where p0(x), p1(x), pn(x) are polynomials in x for all x  S and n is a positive integer. In fact,
any function constructed by a finite number of algebraic operations—addition, subtraction,
multiplication, division and root extraction – is an algebraic function. Some of the examples
of algebraic functions are the polynomial functions, rational functions and irrational
functions.

 But not all functions are algebraic. The functions which are not algebraic, are called
transcendental functions. Some important examples of the transcendental functions are
trigonometric functions, logarithmic functions and exponential functions which have been
defined in this section. We have defined the monotonic functions also in this section.

 We have discussed some special functions. These are the identity function, the periodic
functions, the modulus function, the signum function, the greatest integer function, even
and odd functions. Lastly, we have introduced the bounded functions and discussed a few
examples.

9.6 Keywords

Upper Bound: Let f : SR be a function. It is said to be bounded above if there exists a real
number K such that f(x)  k " x S. The number K is called an upper bound of it.

Lower Bound: The function f is said to be bounded below if there exists a number k such that
f(x)  k x S. The number k is called a lower bound of f.

Cotangent Function: A function f : S  R defined.
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1. Show the graph of f : R  R defined by F(x) = ( 1
2

)x

2. Find the period of the function f where f(x) = |sin3 x|

3. Test which of the following functions with domain and co-domain as R are bounded and
unbounded:

(i) f(x) = tan x

(ii) f(x) = [x]

(iii) f(x) = ex

(iv) f(x) = log x

4. Suppose t : S  R and g : S  R are any bounded functions on S. Prove that f + g and f. g are
also bounded functions on S.

5. If a, b, c, d are real numbers such that

a2 + b2 = I, c2 + d2 = 1,

then show that ac + bd  1.

6. Prove that |a + b + c| |a|+|b|+|c| for all a, b, c,  R.

7. Show that

|a1 + a2 + .... + an|  |a1|+|a2| + .... +|an| for a1, a2,.... a,  R.

8. Find which of the sets in question 8 are bounded below. Write the infemum if it exists.

9. Which of the sets in question 8 are bounded and unbounded.

10. Justify the following statements:

(i) The identity function is an odd function.

(ii) The absolute value function is an even function.

(iii) The greatest integer function is not onto.

(iv) The tangent function is periodic with period .

(v) The function f(x) = |x| for –2  x  3 is bounded.

(vi) The function f(x) = ex is not bounded

(vii) The function f(x) = sin x, for x [ –
2
 , 

2
 ] is monotonically increasing.

(viii) The function f(x) = cos x for 0  x  is monotonically decreasing.

(ix) The function f(x) = tan x is strictly increasing for x [0, 
2
 ].

(x) f(x) = 
22x 3x 2
3x 2
 


 is an algebraic function.
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Notes Answers: Self Assessment

1. None is a rational number 2. For (ii) only since 2 < x < 3.

3. (i) True (ii) False

(iii) True (iv) False

(v) True (vi) False

(vii) True (viii) False

(ix) True (x) False

9.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define limit of a function at a point and find its value

 Know sequential approach to limit of a function

 Find the limit of sum, difference, product and quotient of functions

Introduction

In earlier unit, we dealt with sequences and their limits. As you know, sequences are functions
whose domain is the set of natural numbers. In this unit, we discuss the limiting process for the
real functions with domains as subsets of the set R of real numbers and range also a subset of R.
What is the precise meaning for the intuitive idea of the values f(x) of a function f tending to or
approaching a number A as x approaches the number a? The search for an answer to this question
shall enable you to understand the concept of the limit which you have used in calculus. The
effect of algebraic operations of addition, subtraction, multiplication and division on the limits
of functions.

10.1 Notion of Limit

The intuitive idea of limit was used both by Newton and Leibnitz in their independent invention
of Differential Calculus around 1675. Later this notion of limit was also developed by D’Alembert.
“When the successive values attributed to a variable approach indefinitely a fixed value so as to
end by differing from it by as little as one wishes, this last is called the limit of all the others.”

Consider a simple example in which a function f is defined as

f(x) = 2x + 3, " x  R, x  1.

Give x the values which are near to 1 in the following way:

When x = 1.5, 1.4, 1.3, 1.2, 1.1, 1.01, 1.001
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Notes f(x) = 6, 5.8, 5.6, 5.4, 5.2, 5.02, 5.002

When x = .5, .6, .7, .8, .9, .99, .999

f(x) = 4, 4.2, 4.4, 4.6, 4.8, 4.98, 4.998

You can form a table for these values as follows:

X .5 .6 .7 .8 .9 .99 .999 1.001 1.01 1.1 1.2 1.3 1.4 1.5 

f(x) 4 4.2 4.4 4.6 4.8 4.98 4.998 5.002 5.02 5.2 5.4 5.6 5.8 6 

 The limit of a function f at a point a is meaningful only if a is a limit point of its domain. That is,
the condition f(x)   as n  a would make sense only when there does not exists a nbd. U of a
for which the set U n Dom (f)\{a} is empty i.e., a  (Dom 0))’.

You see that as the values of x approach 1, the values of f(x) approach 5. This is expressed by
saying that limit of f(x) is 5 as x approaches 1. You may note that when we consider the limit of
f(x) as x approaches 1, we do not consider the value of f(x) at x = 1.

Thus, in general, we can say as follows:

Let f be a real function defined in a neighbourhood of a point x = a except possibly at a. Suppose
that as x approaches a, the values taken by f approach more and more closely a value A. In other
words, suppose that the numerical difference between A and the values taken by f can be made
as small as we please by taking values of x sufficiently close to a. Then we say that f tends to the
limit A as x tends to a. We write

f(x)  A as x  a or 
x a
lim


 f(x) = A.

This intuitive idea of the limit of a function can be expressed mathematically as formulated by
the German mathematician Karl Veierstrass in the 18th Century. Thus, we have the following
definition:

Definition 1: Limit of a Function

Let a function f be defined in a neighbourhood of a point ‘a’ except possibly at ‘a’. The function
f is said to tend to or approach a number A as x tends to or approaches a number ‘a’ if for any
 > 0 > there exists a number  > 0 such that

|f(x) – A| <  for 0 < |x – a| < 6.

We write it as x a
lim


 f(x) = A. You may note that

|f(x) – A| <  for 0 < |x – a| < 6.

can be equivalently written as

f(x) ]A – , A +  [ for x ] a – 6, a +  [ and  a.

Geometrically, the above definition says that, for strip SA of any given width around the point A,
if it is possible to find a strip Sa of some width around the point a such that the values that f(x)
takes, for x in the strip Sa (x  a), lies in the shaded box formed by the intersection of strips SA and
Sa, then 

x a
lim


 f(x) = A.

This is shown geometrically in Figure 10.1 below. The inequality 0 < |x – a| < 6 determines the
interval ] a – 6, a + [ minus the point ‘a’ along the x-axis and the inequality |f(x) – A| < 
determines the interval ]A – , A + [ along the y-axis.
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Example: Let a function f: R  R be defined as

f(x) = x2, "  x  R.

Find its limits when x  2.

Solution: By intuition, it follows that

x 2
Lim



 f(x) =
x 2

Lim


 x2 = 4.

In other words, we have to show that for a given E > 0, there exists a  > 0 such that

0 < |x – 2| <   |f(x) – 4| < .

Suppose that an  > 0 is fixed. Then consider the quantity |f(x) – 4|, which we can write as

|f(x) – 4| = |x2 – 4| = |(x – 2)(x + 2)|.

Note that the term |x – 2| is exactly the same that appears in the 6–inequality in the definition.
Therefore, this term should be less than . In other words,

|x – 2| < 

 2 –  < x < 2 + 

 x ] 2 – , 2 + [.

We restrict  to a value 2 so that x lies in the interval ] 2 – , 2 + [  ] 0, 4[. Accordingly, then
|x + 2| < . Thus, if   2, then

|x – 2| < 2  0 < |x + 2| < ,

and further that

|x – 2| <   2  |x + 2| |x – 2| <  |x – 2| < 6.

If 6 is small then so is 6. In fact it can be made less than  by choosing  suitably. Let us, therefore,
select 6 such that  = min.(2, /6). Then

0 < |x – 2| <   |f(x) – 4| <  |x – 2| < .   6. / = .

Figure 10.1
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Note that the first step is to manipulate the term |f(x) – A| by using algebra. The second step is
to use a suitable strategy to manipulate |f(x) – A| into the form

|x – a| (trash)

where the ‘trash’ is some expression which has the property that: it is bounded provided that 6
is sufficiently small. Why we use the term ‘trash, for the expression as a multiple of |x – a|? The
reason is that once we know that it is bounded, we can replace it by a number and forget about
it.

The number 6 arose by virtue of this ‘trash’. If you take 6  3 (instead of 6  2), you can still show
that 6 will be replaced by 7. In that case you can set  as

 = min.(3, /7)

and the proof will be complete. Thus, there is nothing special about 6. The only thing is that such
a number (whether 6 or 7) has to be evaluated by the restriction placed on 6.

Finally, note that in general, 6 will depend upon .

Task  For a function f: R  R defined by f(x) = x2, find its limit when x tends to 1 by the
 –  approach.

In Unit 5, we proved that a convergent sequence cannot have more than one limit. In the same
way, a function cannot have more than one limit at a single point of its domain. We prove it in
the following theorem:

Theorem 1: If x a
lim
-  f(x) = A, 

x a
lim
-

 f(x) = B, then A = B.

Proof: In short, we have to show that if 
x a
lim
-

f(x) has two values say A and B, then A = B. Since

x a
lim
-

 f(x) = A, 
x a
lim
-

f(x) = B, given a number E > 0, there exists numbers 1, 2 > 0 such that

|f(x) – A| < /2 whenever 0 < |x – a| < 1

and

|f(x) – B| < /2 whenever 0 < |x – a| < 2.

If we take  equal to minimum of 1 and 2, then we have

|f(x) – A| < /2 and |f(x) – B| < /2 whenever 0 < |x – a| < .

Choose an x0 such that 0 < |X0 – a| < . Then

|A – B| = (A – f(x0) + f(x0) – B|  (A – f(x0)| + |f(x0) – B|

< /2 + /2 = .

E is arbitrary while A and B are fixed. Hence |A – B| is less than every positive number  which
implies that |A – B| = 0 and hence A = B. (For otherwise, if A  B then A – B = C  0 (say). We can
choose  < |C| which will be a contradiction to the fact that |A – B| <  for every  > 0.)

In the example considered before defining limit of a function, we allowed x to assume values
both greater and smaller than 1. If we consider values of x greater than 1 that is on the right of 1,
we see that values of f(x) approaches 5. We say that f(x) tends to 5 as x tends to 1 from the right.
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smaller than 1. This leads us to define right hand and left hand limits as under:

Definition 2: Right Hand Limits and Left Hand Limits

Let a function f be defined in a neighbourhood of a point ‘a’ except possibly at ‘a’. It is said to tend
to a number A as x tends to a number ‘a’ from the right or through values greater than ‘a’ if given
a number  > 0, there exists a number  > 0 such that

|f(x) –A| <  for a <x < a + .

We write, it as

x a
lim
- +

 f(x) = A or 
x a 0
lim
- +

 f(x) = A or f(a+) = A.

See Figure 10.2(a).

The function f is said to tend to a number A as x tends to ‘a’ from the left or through values
smaller than ‘a’ if given a number E > 0, there exists a number  > 0 such that

|f(x) – A| <  for a – 6 < x < a.

We write it as

x a–
lim
-

 f(x) = A or 
x a 0
lim
- -

 f(x) = A or f(a–) = A.

See Figure 10.2(b).

Since the definition of limit of a function employs only values of x different from ’a’ it is totally
immaterial what the value of the function is at x = a or whether f is defined at x = a at all. Also it
is obvious that 

x a
lim
-

 f(x) = A if and only if f(a+) = A, f(a–) = A.

This we prove in the next theorem. First we consider the following example to illustrate it.

Example: Find the limit of the function f defined by

f(x) =
2x 3x
2x
+

 for x  0

Figure 10.2(a)

Figure 10.2(b)
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Solution: The given function is not defined at x = 0 since f(0) = 
0
0  which is meaningless.

If x  0, then f(x) =
x 3

2
+

. Therefore

Right Hand Limit =
x 0 0
lim
- +

f(x)

=
h 0
lim

-

(0 h) 3
2

+ +
 (h > 0)

= 3/2.

Left Hand Limit =
x 0 0
lim
- -

f(x)

=
h 0
lim

-
f(x) = 

(0 h) 3
2

- +
 (h > 0)

= 3/2.

Since both the right hand and left hand limits exist and are equal,

x 0
lim
-

f(x) = 3/2.

We, now, discuss the theorem concerning the existence of limit and that of right and the left hand
limits.

Theorem 2: Let f be a real function. Then

x a
lim
-

f(x) = A if and only if 
x a
lim
- +

 f(x) and 
x a –
lim
-

 f(x)

both exist and are equal to A.

Proof: If 
x a
lim
- +

 f(x) = A, then corresponding to any  > 0, there exists a  > 0 such that

|f(x) – A| <  whenever 0 < |x – a| < 

i.e., | f(x) – A| <  whenever  a –  < x < a + , x  a

This implies that |f(x) – A| <  whenever a –  < x < a

and |f(x) – A| <  whenever a < x < a + .

Hence both the left hand and right hand limits exist and are equal to A. Conversely, if f(a+) and
f(a–) exist and are equal to A say, then corresponding to E > 0, there exist positive numbers 1 and
2 such that

|f(x) – A | < E whenever a < x < a + 1

and

|f(x) – A| <  whenever a – 2 < x < a.

Let 6 be the minimum of 1 and 2. Then

|f(x) – A| < E whenever a –  < x < a + , x  a

i.e. |f(x) – A| <  if 0 < |x – a| < 

which proves that

x a
lim
-

f(x) exists and 
x a
lim
-

 f(x) = A.
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Example: Consider the function I defined by

f(x) =
2x 1

x 1
-

-
, x  R, x  1

Find its limit as x  1.

Solution: Note that f(x) is not defined at x = 1. (Why?).

For any x  1, f(x) =
2x 1

x 1
-

-
  = x + 1.

x 1
lim
- +

f(x) =
x 1
lim
- +

(x + 1) = 2

x 1
lim
- -

f(x) =
x 1
lim
- -

(x + 1) = 2

Since
x 1
lim
- +

f(x) =
x 1
lim
- -

f(x), by Theorem 2, 
x 1
lim
-

f(x) = 2,

x 1
lim
-

f(x) = 2 can be seen by  –  definition as follows:

Corresponding to any number E > 0, we can choose 8 =  itself. Then, it is clear that

0 < |x – 1| <  =  

|f(x) – 2| =
2x 1 2

x 1
-

-
-

= |x + 1 – 2| = |x – 1| < .

From Theorem 2, it follows that f(l+) and f(l–) also exist and are both equal to 2.

Example: Let f: R  R be defined as

f(x) =
|x|, x 0

3, x 0.
ì

í
»î

Find its limit when x  0.

Solution: You are familiar with the graph of f as given in Unit 4. It is easy to see that 
x 0
lim
-

f(x) = 0
= f(0+) = f(0–). The fact that f(0) = 3 has neither any bearing on the existence of the limit of f(x) as
x tends to 0 nor on the value of the

x 0
lim
-

f(x).

Example: Define f on the whole of the real L in  as follows:

f(x) =
1 if x 0
0 if x 0
1 if x 0.

>ì
ï

=í
ï- <î

Find its limit when x tends to 0.

Solution: Since f(x) = 1 for all x > 0,

f(0+) =
x 0
lim
 +

f(x) = + 1.

Similarly f(0–) = –1. Since 
x 1
lim
 +

f(x)  
x 1–
lim


f(x), 
x 0
lim


f(x) does not exist.

Now, we give another proof using  – S definition.
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x 0
lim


f(x) = A, then for a given  > 0, there must exist some  > 0, such that |f(x) – A| < . Let
us choose x, > 0, x, < 0 such that |x1| < S and |x2| < . Then

2 = |f(x1) – f(x2)|

 |f(x1) – A| + |A – f(x2)|

< 2, (because |x1 – 0| <  and |x2 – 0| < )

for every  which is clearly impossible if  < 1. Non-existence of
x 0
lim


f(x) also follows from
Theorem 2, since f(0+)  f(0–).

The above example shows clearly that the existence of both f(a+) and f(a–) alone is not sufficient
for the existence of 

x 0
lim


f(x). In fact, for 
x a
lim


f(x) to exist, they both should be equal.

Now consider, the function f defined by f(x) = 
1
x

 for x  0.

The graph of f looks as shown in the Figure 10.3. You know that it is a rectangular hyperbola.
Here none of the 

x 0
lim
 +

f(x) and 
x 0
lim
 +

f(x) exists. Hence 
x 0
lim


f(x) does not exist.

This can be easily seen from the fact that 1/x becomes very large numerically as x approaches 0
either from the left or from the right. If x is positive and takes up larger and larger values, then
values of 1/x i.e. f(x) is positive and becomes smaller and smaller. This is expressed by saying
that f(x) approaches 0 as x tends to . Similarly if x, is negative and numerically takes up larger
and larger values, the values of f(x) is negative and numerically becomes smaller and smaller
and we say that f(x) approaches 0 as x tends to –. These two observations are related to the
notion of the limit of a function at infinity.

Let us now discuss the behaviour of a function f when x tends to .

Figure 10.3
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NotesLet a function f be defined for all values of x greater than a fixed number c. That is to say that f is
defined for all sufficiently large values of x. Suppose that as x increases indefinitely, f(x) takes a
succession of values which approach more and more closely a value A. Further suppose that the
numerical difference between A and the values f(x) taken by the function can be made as small
as we please by taking values of x sufficiently large. Then we say f tends to the limit A as x tends
to infinity. More precisely, we have the following definition:

Definition 3: A function f tends to a limit A, as x tends to infinity if having chosen a positive
number , there exists a positive number k such that

|f(x – A)| >  "  x  k.

The number E can be made as small as we like. Indeed, however small  we may take, we can
always find a number k for which the above inequality holds. We rewrite this definition in the
following way:

A function f(x)  A as x  w if for every  > 0, there exists k > 0 such that

|f(x) – A| <  for all x  k.

We write it as,

x
lim


f(x) = A.

This notion of the limit of a function needs a slight modification when x tends to –. This is as
follows:

We say that 
x
lim
-

f(x) = A, if for a given  > 0, there exists a number k < 0 such that

|f(x) – A| < E whenever x  k.

We write it as 
x
lim
-

f(x) = A.

Instead of f(x) approaching a real number A as x tends to + or –m, we may also have f(x)
approaching + or – as x tends to a real number ‘a’. For example, if f(x) = l/xZ, x  0 and x takes
values near 0, the values of f(x) becomes larger and larger. Then we say that f(x) is tending to +
as x tends to 0. We can also have f(x) tending to +m or – as x tends to + or –. For example
f(x) = x tends to + or – as x tends to + or –. Again, the function f(x) = –x tends to + or –
as x tends to – or +. We formulate the following definition to cover all such cases of infinite
limits.

Definition 4: Infinite Limits of a Function

Suppose a is a real number. We say that a function f tends to +m when x tends to a, if for a given
positive real number M there exists a positive number  such that

f(x) > M whenever 0 < |x – a| < .

We write it as

x a
lim
-

f(x) = + .

In this case we say that the function becomes unbounded and tends to + as x tends to a.

In the same way, f is said to – as x tends to a if for every real number –M, there is a positive
number  such that

f(x) < – M whenever 0 < |x – a| < .

We write it as

x a
lim


f(x) = –.
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for f(a+) = +, f(a–) = +, f(a+) = –, f(a–) = –.

Now we define 
x
lim


f(x) = .

f is said to tend to  as x tends to  if given a number M > 0, there exists a number k > 0 such that

f(x) > M for x  k.

We may similarly define

x
lim
-

f(x) = + , 
x
lim
+

f(x) = –, 
x
lim
-

f(x) = –.

In all such cases we say that the function f becomes unbounded as x tends to + or – as the case
may be.

It is easy to see from the definition of limit of a function that the limit of a constant function at
any point in its domain is the constant itself. Similarly if 

x a
lim
-

f(x) = A, then 
x a
lim
-

cf(x) = cA for any
constant c where c is a real number.

Example: Justify that

x 2
lim
- ( )

2
1

x 2-
= .

Solution: You have to verify that corresponding to a given positive number M, there exists a
positive number 6, such that

( )
2

1
x 2-

> M whenever 0 < |x – 2| < 6.

Indeed for x  2,

( )
2

1
x 2-

> M  (x – 2)2 < 1
M

 |x – 2| < 
1 .
M

Take  =
1 .
M

 Then you can see that

( )
2

1
x 2-

> M whenever 0 < |x – 2| < 6.

Hence

x 2
lim
- ( )

2
1

x 2-
 = .

Task

1. Consider f(x) = |x|, x  R. Show that 
x
lim
+

f(x) = +, and 
x
lim
-

f(x) = +w and f (0 +) =
f (0–) = 0 = f(0)

2. Let f(x) = –|x|, x  R. Prove that 
x
lim
+

f(x) = – and 
x
lim
-

f (x) = +  and f(0) = f (0+) =
f(0–) = 0.
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NotesWe have already stated that if a function t is define a by f(x) = 1/x, x  0, then the limits f(0+) and
f(0–) and 

x 0
lim
-

f(x) do not exist. It simply means that these limits do not exist as real numbers. In
other words, there is no (finite) real number A such that f (0+) = A f(0–) = A, or 

x 0
lim
-

f(x) = A.

10.2 Sequential Limits

In Unit 5, you studied the notion of the limit of a sequence. You also know that a sequence is also
a function but a special type of function. What is special about a sequence? Do you remember it?
Recall it from Unit 5. Naturally, you would like to know the relationship of a sequence and an
arbitrary real function in terms of their limit concepts. Both require us to find a fixed number A
as a first step. Both assume a small positive number  as a test for closeness. For functions we
need a positive number  corresponding to the given positive number E and for sequences we
need a positive integer m which depends on . So, then what is the difference between the two
notions? The only difference is in their domains in the sense that the domain of a sequence is the
set of natural numbers whereas the domain of an arbitrary function is any subset of the set of
real numbers. In the case of a sequence, there are natural numbers only which exceed any choice
of m. But for a function with a domain as an arbitrary set of real numbers, this is not necessary
the case. Thus in a way, the notion of the limit of a function at infinity is a generalization of that
of limit of a sequence.

Let us now, therefore, examine the connection between the limit of a function and the limit of a
sequence called the sequential limit. We state and prove the following theorem for this purpose:

Theorem 3: Let a function f be defined in a neighbourhood of a point ‘a’ except possibly at ‘a’.
Then f(x) tends to a limit A as x tends to ‘a’ if and only if for every sequence (xn), xn  a for any
natural number n, converging to ‘a’, f(xn) converges to A.

Proof: Let, 
x a
lim
-

f(x) = A. Then for a number E > 0, there exists a 6 > 0 such that for 0 < |x – a| < 6 we

have

|f(x) – A| < 

Let (x,) be a sequence (xn  a for any n  N) such that (xn) converges to a i.e. xn  a.

Then corresponding to  > 0, there exists a natural number m such that for all n  m

|xn – a| < .

Consequently, we have

|f(Xn) – A| < , "  n  m.

This implies that f(xn) converges to A.

Conversely, let f(xn) converge to A for every sequence xn which converges to a, xn  a for any n.

Suppose 
x a
lim
-

f(x)  A.

Then there exists at least one , say  = 0 such that for any  > 0 we have an x

 such that

0 < |x

 – a| < 

and

|f(x

) – A|  0.

Let  =
1
n , n = 1, 2, 3......
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 where 6 = 1/n and

0 < |xn – a| < 
1
n for n = 1, 2,.....

and

|f(xn) – A|  0.

0 < |xn – a|  x,  a for any n.

Since 
1
n  0 and |xn – a| < 

1
n , it follows that x,  a.

But |f(xn) – A |  0  f(xn)  A i.e. f(xn) does not tend to A.

Therefore xn  a "  a and xn tends to a as n tends to  whereas f(Xn) does not converge to A,
contradicting our hypothesis. This completes the proof of the theorem.

You may note that the above theorem is true even when either a or A is infinite or both a and A
are infinite (i.e. + or –).

By applying this theorem, we can decide about the existence or non-existence of limit of a
function at a point. Consider the following examples:

Example: Let f(x) = 
0 if x is rational
1 if x is irrational
ì
í
î

Show that an point a in the real line R 
x R
lim


f(x) exists.

Solution: Consider any point ‘a’ of the real line. Let (pn) be a sequence of rational numbers
converging to the point ‘a’. Since pn is a rational number, f(Pn) = 0 for all n and consequently
lim f(Pn) = 0, Now, consider a sequence (q) of irrational numbers converging to ‘a’. Since q, is an
irrational number, f(qn) = 1 for all n and consequently lim f(qn) = 1. So for two sequences (pn) and
(q,) converging to ‘a’; sequences (f(pn)) and (f(qn)) do not converge to the same limit. Therefore

x a
lim
-

f(x) cannot exist for if it exists and is equal to A, then both (f(pn)) and (f(qn)) would have
converged to the same limit A.

Example: Show that for the function f: R  R defined by f(x) = x Q x  R, 
x p
lim
-

f(x) exists
for every a  R.

Solution: Consider any point a  R. Let (x,) be a sequence of points of R converging to ‘a’. Then
f(xn) = x, and consequently lim f(xn) = lim (xn) = a. So for every sequence <xn> converging to ‘a’
(f(Xn)) converges to ‘a’. So by Theorem 3, 

x a
lim
-

f(x) = a. Consequently 
x a
lim
-

f(x) exists for every a  R.

Task  Show that 
x 1
lim


2x = 2 by proving that for any sequence (xn), xn  1, converging to 1,
2xn converges to 2.

10.3 Algebra of Limits

We discussed the algebra of limits of sequences. In this section, we apply the same algebraic
operations to limits of functions. This will enable us to solve the problem of finding limits of
functions. In other words we discuss limits of sum, difference, product and quotient of functions.



LOVELY PROFESSIONAL UNIVERSITY 141

Unit 10: Limit of a Function

NotesDefinition 5: Algebraic Operations on Functions

Let f and g be two functions with domain D  R. Then the sum, difference, product, quotient of
f and g denoted by f + g, f – g, fg, f/g are functions with domain D defined by

(f + g) (x) = f(x) + g(x)

(f – g) (x) = f(x) – g(x)

(fg) (x) = f(x). g(x)

(f/g) (x) = f(x)/g(x)

provided in the last case g(x)  0 for all x in D.

Now we prove the theorem.

Theorem 4: If 
x a
lim


f(x) = A and 
x a
lim


g(x) = B, where A and B are real numbers,

(1)
x a
lim


(f + g) (x) = A + B = 
x a
lim


f(x) + 
x a
lim


g(x),

(ii)
x a
lim


(f – g) (x) = A – B = 
x a
lim


f(x) – 
x a
lim


g(x),

(iii)
x g
lim


(f  g) (x) = A  B = 
x a
lim


f(x)   
x a
lim


g(x),

(iv) If further 
x a
lim


g(x)  0, then 
x g
lim


f/g(x) exists and 
x g
lim


f
g (x) = A/B = 

x a

x a

f(x)lim

lim g(x)




.

Proof: Since 
x a
lim


f(x) = A and 
x a
lim


g(x) = B, corresponding to a number  > 0. There exist numbers

1 > 0 and 2 > 0 such that

0 < |x – a| < 1  |f(x) – A| < /2 (1)

0 < |x – a| < 2  |g(x) – B| < /2 (2)

Let  = minimum (1, 2). Then from (1) and (2) we have that

0 < |x – a| <   |f(x) + g(x) – (A + B)|  |f(x) – A| + |g(x) – B|
< /2 + /2 = .

Which shows that 
x a
lim


(f + g) (x) = 
x a
lim


f(x) + g(x) = A + B

This proves part (i).

The proof of (ii) is exactly similar. Try it yourself.

(iii) |f(x) g(x) – AB| = |(f(x) – A) g(x) + A (g(x) – B)|

 |f(x) – A| |g(x)| + |A|. |(g(x) – B)|. (3)

Since 
x a
lim


g(x) = B corresponding to 1, there exists a number 0 > 0

such that

0 < |x – a| < 0  |g(x) – B| < 1.

which implies that |g(x)  |g(x) – B| + |B|  1 + |B| = K (say) (4)

Since f(x) = A, corresponding to  < 0, there exists a number 1 > 0 such that number 1 < 0 such that

0 < |x – a| < 1  |f(x) – A| < /2K (5)
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x a
lim


g(x) = B, corresponding to a number  > 0, there exists a number 2 > 0 such that

0 < |x – a| < 2  |f(x) – B| < 
E

2( A 1)+
(6)

Let  = min (a1, 1, 2). Then using (4), (5) and (6) in (3), we have for 0 < |x – a| < ,

|f(x) g(x) – AB|  |f(x) – A| |g(x)| + |A| |g(x) – B|
 |f(x) – A|. K + |A| |(g(x) – B)|

< 2K


. K + 2( A 1)


+
|A| < /2 + /2 = . (7)

Therefore, 
x a
lim


g(x) = AB i.e. 
x a
lim


(fg) (x) = AB = 
x a
lim


f(x). 
x a
lim


g(x), which proves part (iii) of the
theorem.

(iv)  First we show that g does not vanish in a neighbourhood of a.

x a
lim


g(x) = B and B  0. Therefore |B| > 0. Then corresponding to 
B
2

we have a number > 0 such

that for 0 < |x – a| < , |g(x) – B| <
B
2

.

Now by triangle inequality, we have

||g(x)| – |B||  |g(x) – B| <
B
2

.

i.e., |B| – 
B
2

 < |g(x)| < |B| + 
B
2

. (8)

In other words, 0 < |x – a| <   |g(x)| > 
B
2

.

Again since 
x a
lim


g(x) = B, for a given number  > 0, we have a number  > 0 such that 0 < |x – a|
<  implies that

|g(x) – B| <
2B

2


.

Let 6 = min (, p). Then if 0 < |x – a| < , from (7) and (8) we have

1 1
g(x) B

-  =
2

2 2

B g(x) 2 B g(x) 2 B
g(x) B B 2 B
- - 

< <  = .

This proves that 
x a
lim


1
g(x) = 

1
B .

Now by part (iii) of this theorem, we get that

x a
lim


f(x)
g(x)  =

x a
lim


f(x).
1

g(x) = 
x a
lim


f(x).
x a
lim


1
g(x)

 = A. 
1
B  = A/B.

i.e.,
x a
lim


f
g
æ ö
ç ÷
è ø

(x) = A/B = x a

x a

f(x)lim

g(x)lim




.
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You may also see that while proving (iv), we have proved that if

x a
lim


g(x) = B  0, then 
x a
lim


1
g(x) = 

1
B .

Before we solve some examples, we prove two more theorems.

Theorem 5: Let f and g be defined in the domain D and let f(x)  g(x) for all x in D. Then if  
x a
lim


f(x)
and 

x a
lim


g(x) exist,

x n
lim


f(x) 
x a
lim


g(x).

Proof: Let 
x a
lim


f(x) = A, 
x a
lim


g(x) = B. If possible, let A > B.

for  =
A B

2
-

, there exist 1, 2 > 0 such that

0 < |x – a| < 1  |f(x) – A| < E

and 0 < |x – a| < 2  |g(x) – B| < E.

If 6 = min. (1, 2), then for 0 < |x – a| < 6, g(x)  ]B – , B + [ and f(x)  ] A – , A +  [. But B +  =

A – E = 
A B

2
+

. Therefore g(x) < f(x) for 0 < |x – a|< 6 which contradicts the given hypothesis.

Thus A  B.

Theorem 6: Let S and T be non-empty subsets of the real set R, and let f: S  T be a function of
S onto T. Let g: U  R be a function whose domain U C R contains T. Let us assume that  

x a
lim


f(x)
exists and is equal to b and 

x b
lim


g(y) exists and is equal to c. Then 
x a
lim


g(f(x)) exists and is equal
to c.

Proof: Since 
x b
lim


g(y) = c, given a number E > 0, there exists a number 0 > 0 such that

0 < |y – b| < 0  |g(y) – c| < .

Since 
x a
lim


f(x) = b, corresponding to 0 > 0, there exists  > 0 such that

0 < |x – a| <   |f(x) – b| < 0.

Hence, taking y = f(x) and combining the two we get that for

0 < |x – a| < , |g(f(x)) – c| = |g(y) – c| < 
(since |f(x) – b| < 0).

This completes the proof of the theorem. Finally we give one more result without proof.

Result: If 
x a
lim


f(x) = A, A > 0 and 
x a
lim


g(x) = B where A and B are finite real numbers then

x a
lim


f(x)g(x) = AB.

Now we discuss some examples. You will see how the above results help us in reducing the
problem of finding limit of complicated functions to that of finding limits of simple functions.

Example: Find 3x

(2x 7)(3x 11)(4x 5)
lim

4x x 1

+ - +

+ -

Solution:

3x

(2x 7)(3x 11)(4x 5)
lim

4x x 1

+ - +

+ -
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=

3

x 3
2 3

lim

7 11 5x 2 3 4
x x x

1 1x 4
x x



é ùæ ö æ ö æ ö
+ - +ç ÷ ç ÷ ç ÷ê úè ø è ø è øë û

æ ö
+ -ç ÷è ø

We divide the numerator and denominator by x3 since x3 is neither zero nor .

= 3x
lim

(2x 7)(3x 11)(4x 5)
4x x 1

+ - +

+ -

=
x

2 3

lim

7 11 52 3 4 2 3 4x x x
1 1 44
x x



æ ö æ ö æ ö
+ - +ç ÷ ç ÷ ç ÷è ø è ø è ø ´ ´

-

+ -
= .6.

Example: Find 
2

2x 3

x 9
lim

x 4x 3

-

- +

Solution:
2

2x 3

x 9
lim

x 4x 3

-

- +
=

x 3

(x 3)(x 3)
lim

(x 3)(x 1)

- +

- -

Hence
2

2x 3

x 9
lim

x 4x 3

-

- +
 =

x 3

x 3
lim

x 1

+

-

= x 3

x 3

(x 3)lim

(x 1)lim




+

-
= 

6
2 = 3.

The function f(x) = 
2

2

x 9
x 4x 3

-

- +
 is not defined at x = 3. But we are considering only the values of

the function at those points x in a neighbourhood of 3 for which x  3 and hence we can cancel
x – 3 factor.

Example: Evaluate 
1 2

1 3x 0

(1 x) 1
lim

(1 x) 1

+ -

+ -
.

Solution: To make the problem easier, we make a substitution which enables us to get rid of
fractional powers 1/2 and 1/3. L.C.M. of 2 and 3 is 6. So, we put 1 + x = y 6.

Then we have

1 2

1 3x 0

(1 x) 1
lim

(1 x) 1

+ -

+ -
 =

3 2

2y 1 y 1

y 1 (y 1)(y y 1)=lim lim
y 1 (y 1)(y 1) 

- - + +

- - +

=
2

y 1

y y 1 3 .lim
y 1 2

+ +
-

+

Self Assessment

Fill in the blanks:

1. The intuitive idea of limit was used both by Newton and Leibnitz in their independent
invention of Differential Calculus around ........................

2. The limit of a function that a point a is meaningful only if a is a limit point of its ..................

3. For a function f: R  R defined by f(x) = x2, find its limit when x tends to 1 by the .
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Notes4. The function f is said to tend to a number A as x tends to ‘a’ from the left or through values
smaller than ‘a’ if given a number E > 0, there exists a number  > 0 such that ..............
.....................................

10.4 Summary

 We started with the intuitive idea of a limit of a function. Then we derived the rigorous
definition of the limit of a function, popularly called  –  definition of a limit. Further,
we gave the notion of right and left hand limits of a function. It has been proved that

x a
lim


f(x) = A if and only if both right hand and left hand limits are equal to A i.e. 
x a
lim
 +

f(x)

= 
x a–
lim


f(x) = A. In the same section we discussed the limit of a function as x tends to + or

–. Also we discussed the infinite limit of a function.

 We studied the idea of sequential limit of a function by connecting the idea of limit of an
arbitrary function with the limit of a sequence. It has been shown how this relationship
helps in finding the limits of functions.

 We defined the algebraic operations of sum, difference, product, quotient of two functions.
We proved that the limit of the sum, difference, product and quotient of two functions at
a point is equal to the sum, difference, product and quotient of the limits of the functions
at the point provided in the case of quotient, the limit of the function in the denominator
is non-zero. Finally in the same section, the usefulness of the algebra of limits in finding
the limits of complicated functions has been illustrated.

10.5 Keywords

Function: A function f tends to a limit A, as x tends to infinity if having chosen a positive number
, there exists a positive number k such that

f(x – A)| >  "  x  k.

Infinite Limits of a Function: Suppose a is a real number. We say that a function f tends to +m
when x tends to a, if for a given positive real number M there exists a positive number  such that

f(x) > M whenever 0 < |x – a| < .

10.6 Review Questions

1. Show that 
x 2

Lim


2x x 18
3x 1
- +

-
= 4, using the  –  definition.

2. Find the limit of the function f defined as

f(x) = 
22x x
3x
+

, x  0 when x tends to 0.

3. Find, if possible, the limit of the following functions.

(i) f(x) = 
x 2
x 2
-

-
, x 2

when x tends to 2.

(ii) f(x) = 1 x

1
e 1

-

+
, x  0

when x tends to 0.
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4. (i) Let f(x) = 

1
x , x  0. Show that 

x 0
lim
 +

f(x) = +, 
x 0–
lim


f(x) =  and 
x 0
lim
-

f(x) = + .

(ii) Let f(x) = –
1
x , x  0. Show that 

x 0
lim
 +

f(x) = –, 
x 0–
lim


f(x) = – and 
x 0
lim
-

f(x) = –.

(iii) Let f(x) = 
1
x

, x  0. Prove that 
x 0
lim
 +

f(x) = +, 
x 0–
lim


f(x) = –.

(iv) Let f(x) = –
1
x

, x  0. Prove that 
x 0
lim
 +

f(x) = –, 
x 0–
lim


f(x) = .

5. Show that for the function f: R  R defined by

f(x) = x2,

f(x) exists for every a  R.

6. Find

(i)
3 2

5x w

(2x 3) (3x 2)
lim

x 5-

+ -

+

(ii)
1 33

x w

(x 1)
lim

x 1-

+

+
.

7. If g(x) = 
2x for 0 s x 1
4 for x = 1
5 3x for 1 x 2.

<ì
ï
í
ï - < î

find  
x 1
lim


g(x)

8. Find

(i)
x 4

x 2
lim

x 4

-

-
(v)

x

x

x 1
lim

x 1

-æ ö
ç ÷è ø+

(ii) Find 
2

2x 2

3x x 10
lim

x 5x 14

- -

+ -
(vi)

1 x

x 0

sin 2x
lim

x

+



æ ö
ç ÷è ø

(iii) 2x 0

1 cosx
lim

x

-
(vii)

2x

x

x 1
lim

2x 1

+æ ö
ç ÷è ø+

(iv)
x a

sin x sin a
lim

x a

-

-

Answers: Self Assessment

1. 1675 2. domain

3.  –  approach 4. |f(x) – A| <  for a – 6 < x < a
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Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define the continuity of a function at a point of its domain

 Determine whether a given function is continuous or not

 Construct new continuous functions from a given class of continuous functions

Introduction

The values of a function f(x) approaching a number A as the variable x approaches a given point
a. When there is break (or jump) in the graph, then this property fails at that point. This idea of
continuity is, therefore, connected with the value of 

x a
lim
-

f(x) and the value of the function f at the
point a. We define in this unit the continuity of a function at a given point a in precise mathematical
language. Therefore extend it to the continuity of a function on a non-empty subset of the
domain of f which could be the whole of the domain of f also. We study the effect of the algebraic
operations of addition, subtraction, multiplication and division on continuous functions.

Here we discuss the properties of continuous functions and the concept of uniform continuity.

11.1 Continuous Functions

We have seen that the limit of a function f as the variable x approaches a given point a in the
domain of a function f does not depend at all on the value of the function at that point a but it
depends only on the values of the function at the points near a. In fact, even if the function f is not
defined at a then 

x a
lim
-

f(x) may exist.

For example 
x – 1
lim f(x) exists when

f(x) =
2x 1

x 1
-

-
 though f is not defined at x = 1.

We have also seen that 
x a
lim
-

f(x) may exist, still it need not be the same as f(a) when it exists.

Naturally, we would like to examine the special case when both 
x a
lim
-

f(x) and f(a) exist and are
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give the precise definition as follows:

Definition 1: Continuity of a Function at a Point

A function f defined on a subset S of the set R is said to be continuous at a point a  S, if

(i)
x a
lim
-

f(x) exists and is finite

(ii)
x a
lim
-

f(x) = f(a).

Note that in this definition, we assume that S contains some open interval containing the point a.
If we assume that there exists a half open (semi-open) interval [a, c[ contained in S for some c  R,
then in the above definition, we can replace 

x a
lim
-

f(x) by 
x a
lim
- +

f(x) and say that the function is
continuous from the right of a or f is right continuous at a.

Similarly, you can define left continuity at a, replacing the role of 
x a
lim
-

f(x) by 
x a
lim
- -

f(x). Thus, f is
continuous from the right at a if and only if

f(a+) = f(a)

It is continuous from the left at a if and only if

f(a–) = f(a).

From the definition of continuity of a function f at a point a and properties of limits it follows
that f(a+) = f(a–) = f(a) if and only if, f is continuous at a. If a function is both continuous from the
right and continuous from the left at a point a, then it is continuous at a and conversely.

The definition X is popularly known as the Limit-Definition of Continuity.

Since 
x a
lim
-

f(x) is also defined, in terms of  and , we also have an equivalent formulation of the
definition X. Note that whenever we talk of continuity of a function f at a in S, we always assume
that S contains a neighbourhood containing a. Also remember that if there is one such
neighbourhood there are infinitely many such neighbourhoods. An equivalent definition of
continuity in terms of  and  is given as follows:

Definition 2: (, )-Definition of Continuity

A function f is continuous at x = a if f is defined in a neighbourhood of a and corresponding to a
given number E > 0, there exists some number  > 0 such that |x – a | <  implies |f(x) – f(a)| < E.

Note that unlike in the definition of limit, we should have

|f(x) – f(a)|< E for |x – a| < 6.

The two definitions are equivalent. Though this fact is almost obvious, it will be appropriate to
prove it.

Theorem 1: The limit definition of continuity and the (, )-definition of continuity are equivalent.

Proof: Suppose f is continuous at a point a in the sense of the limit definition. Then given  > 0, we
have a  > 0 such that 0 < |x – a| <  implies |f(x) – f(a)| < . When x = a, we trivially have

|f(x) – f(a)| = 0 < .

Hence, |x – a| <   |f(x) – f(a)| < E

which is the (, )-definition.

Conversely we now assume that f is continuous in the sense of (, )-definition. Then for every
E > 0 there exists a  > 0 such that

|x – a| <   |f(x) – f(a)| < .



150 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes Leaving the point ‘a’, we can write it as

0 < (x – a) <   |f(x) – f(a)| < E.

This implies the existence, of 
x a
lim
®

f(x) and that 
x a
lim
®

f(x) = f(a).

Note that  in the definition 2, in general, depends on the given function f,  and the point a. Also
|x – a| <  if and only if a –  < x < a +  and ]a – , a + [ is an open interval containing a. Similarly
|f(x) – f(a)| <  if and only if

f(a) –  < f(x) < f(a) + E.

We see that f is continuous at a point a, if corresponding to a given (open) -neighbourhood U of
f(a) there exists a (open) -neighbourhood V of a such that f(V)  U. Observe that this is the same
as x  V  f(x)  U. This formulation of the continuity at a is more useful to generalise this
definition to more general situations in Higher Mathematics.

A function f is said to be continuous on a set S if it is continuous at every point of the set S. It is
clear that a constant function defined on S is continuous on S.

Example: Examine the continuity of the following functions:

(i) The absolute value (Modulus) function,

(ii) The signum function.

Solution:

(i) You know that the absolute value function

f: R ® R is defined as f(x) = |x|, V x  R.

The function is continuous at every point x  R. For given  > 0, we can choose  =  itself.
If a  R be any point them |x – a| <  =  implies that

|f(x) – f(a)| = ||x| – |a||  |x – a| < .

(ii) The signum function, as you know a function f: R ® R defined as

f(x) = 1 if x > 0

= 0 if x = 0

= –1 if x < 0

This function is not continuous at the point x = 0. We have already seen that f(0+) = 1, f(0–) = –1.
Since f(0+)  f(0–), 

x – 0
lim f(x) does not exist and consequently the function is not continuous at

x = 0. For every point x  0 the function f is continuous. This is easily seen from the graph of
the function f. There is a jump at the point x = 0 in the values of f(x) defined in a neighbourhood
of 0.

Note that if f: R ® R is defined as,

f(x) = 1 if x  0.

= –1 if x < 0.

then, it is easy to see that this function is continuous from the right at x = 0 but not from the left.
It is continuous at every point x  0.

Similarly, if f is defined by f(x) = 1 if x > 0

= –1 if x  0

then f is continuous from the left at x = 0 but not from the right.
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Example: Discuss the continuity of the function sin x on the real line R.

Solution: Let f(x) = Sin x"  x  R.

We show by the (, )-definition that f is continuous at every point of R.

Consider an arbitrary point a  R. We have

|f(x) – f(a)| = |sin x – sin a| = 
x a x a2 sin cos

2 2
- +

=
x a x a2 sin cos

2 2
- +


x a x a2 sin since cos I

2 2
- +æ ö

ç ÷è ø

From Trigonometry, you know that |Sin |  ||.

Therefore x a x asin
2 2
- -

 =
x a

2
-

Consequently |f(x) – f(a)|  |x – a|

<  if |x – a] <  where  = .

So f is continuous at the point a. But a is any point of R. Hence Sin x is continuous on the real
line R.

Task  Discuss the continuity cos x on the real R.

As we have connected the limit of a function with the limit of a sequence of real numbers. In the
same way, we can discuss the continuity of a function in the language of the sequence of real
numbers in the domain of the function. This is explained in the following theorem.

Theorem 2: A function f: S ® R is continuous at point a in S if and only for every sequence (xn),
(xn  S) converging do a, f(xn) converges to f(a).

Proof: Let us suppose that f is continuous at a. Then 
x a
lim
®

f(x) = f(a).

Given  > 0, there exists a  > 0 such that

|x – a| < 6  |f(x) – f(a)| < .

If xn is a sequence converging to ‘a’, then corresponding to  > 0, there exists a positive integer M
such that

|xn – a| <  for n  M.

Thus, for n  M, we have |xn – a| <  which, in turn, implies that

|f(xn) – f(a)| < ,

proving thereby f(xn) converges to f(a).
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to prove that f is continuous at a. For this, we have to show that corresponding to an E > 0, there
exists some  > 0 such that

|f(x) – f(a)|  , whenever |x – a| < .

If not, i.e., if f is not continuous at a, then there exists an E > 0 such that whatever  > 0 we take
there exists an x


 such that

|x

 – a| <  but |f(x


) – f(a)|  .

By taking  = 1, 1/2, 1/3,.... in succession we get a sequence (xn), where xn = x

 for  = 1/n, such that

|f(xn) – f(a)|  . The sequence (xn) converges to a. For, if m > 0, these exists M such that 1/n < m
for n  M and therefore |xn – a| < m for n  M. But f(xn) does not converge to f(a), a contradiction
to our hypothesis. This completes the proof of the theorem.

Theorem 2 is sometimes used as a definition of the continuity of a function in terms of the
convergent sequences. This is popularly known as the Sequential Definition of Continuity
which we state as follows:

Definition 3: Sequential Continuity of a Function

Let f be a real-valued function whose domain is a subset of the set R. The function f is said to be
continuous at a point a if, for every sequence (xn) in the domain of f converging to a, we have,

n
lim
®¥

f(Xn) = f(a)

The next example illustrates this definition.

Example: Let f: R ® R be defined as

f(x) = 2x2 + 1, "  x  R

Prove that f is continuous on R by using the sequential definition of the continuity of a function.

Solution: Suppose (xn) is a sequence which converges to a point ‘a’ of R. Then, we have

n
lim
®¥

f(xn) = n
lim
®¥

(2x2
n+ 1) = 2(

n – m
lim xn)2 + 1 = 2a2 + 1 = f(a)

This shows that f is continuous at a point a  R. Since a is an arbitrary element of R, therefore, f
is continuous everywhere on R.

Task  Prove by sequential definition of continuity that the function f : R ® R defined by
f(x) = x is continuous at x = 0.

11.2 Algebra of Continuous Functions

As we have proved limit theorems for sum, difference, product, etc. of two functions, we have
similar results for continuous functions also. These algebra operations on the class of continuous
functions can be deduced from the corresponding theorems on limits of functions, using the
limit definition of continuity. We leave this deduction as an exercise for you. However, we give
a formal proof of these algebraic operations by another method which illustrates the use of
Theorem 2. We prove the following theorem:
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(i) f defined by (f) (x) = f(x), is continuous for any real number ,

(ii) f + g defined by (f + g) (x) = f(x) + g(x) is continuous at a,

(iii) f – g defined by (f – g) (x) = f(x) – g(x) is continuous at a,

(iv) fg defined by (fg) (x) = f(x) g(x) is continuous at a,

(v) f/g defined by (f/g) (x) = f(x)
g(x)

, is continuous at a provided g(a)  0.

Proof: Let xn be an arbitrary sequence converging to a. Then the continuity of f and g imply that
the sequences f(xn) and g(xn) converge to f(a) and g(a) respectively. In other words, lim f(xn) = f(a),
lim g(xn) = g(a).

Using the algebra of sequences, we can conclude that

lim f(xn) = f(a),

lim (f + g) (xn) = lim f(xn) + lim g(xn) = f(a) + g(a),

lim (f – g) (xn) = lim f(xn) – lim g(xn) = f(a) – g(a),

lim (f  g) (xn) = lim f(xn) lim g(xn) = f(a) g(a).

If infinite number of xn’s are such that g(xn) = 0, then g(Xn) – g(a) implies that g(a) = 0, a
contradiction.

This proves the parts (i), (ii), (iii) and (iv). To prove the part (v) we proceed as follows:

Since g(a)  0, we can find a > 0 such that the interval ]g(a) – , g(a) + [ is either entirely to the
right or to the left of zero depending on whether g(a) > 0 or g(a) < 0. Corresponding to a > 0, there
exists a 1 > 0 such that |x – a| < 1 implies |g(x) – g(a)| < , i.e., g(a) –  < g(x) < g(a) + at. Thus,
for x such that |x – a| < i, g(x)  0. If (xn) converges to a, omitting a finite number of terms of the

sequence if necessary, then we can assume that g(xn)  0, for all n. Hence, n

n

f(x )
g(x )

 converges to
f(a)
g(a)

 and so f
g

 is continuous at a. This completes the proof of the theorem.

In part (v) if we define f by f(x) = 1, then it follows that if g is continuous at ‘a’ and g(a)  0, then
its reciprocal function 1/g is continuous at ‘a’.

Now, we prove another theorem, which shows that a continuous function of a continuous
function is continuous.

Theorem 4: Let f and g be two real functions such that the range of g is contained in, the domain
of f. If g is continuous at x = a, f is continuous at b = g(a) and h(x) = f(g(x)), for x in the domain of
g, then h is continuous at a.

Proof: Given  > 0, the continuity of f at b = g(a) implies the existence of an  > 0 such that for

|y – b| < , |f(y) – f(b)| <  ...(l)

Corresponding to  > 0, from the continuity of g at x = a, we get a  > 0 such that

|x – a| <  implies |g(x) – g(a)| <  ...(2)

Combining (1) and (2) we get that

|x – a| <  implies that

|h(x) – h(a)| = |f(g(x)) – f(g(a))|

= |f(y) – f(b)| < ,
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Let us now study the following example:

Example: Examine for continuity the following functions:

(i) The polynomial function f R ® R defined by

f(x) = a, + a1x + a2x2 +... + axxn.

(ii) The rational function f: R ® R defined as

f(x) = f(x)
q(x)

, "  x for which q(x)  0.

Solution:

(i) It is obvious that the function f(x) = x, x  R, is continuous on the whole of the real line. It
follows from theorem 3 that the functions xZ, x3,...., are all continuous. The fact that constant
functions are continuous, we get that any polynomial f(x) in x, i.e., the function f defined
by

f(x) = a, + a1x+ a2x2 +... + an xn,

is continuous on R.

(ii) It follows from theorem 3(v) that a rational function f, defined by,

f(x) = p(x)
q(x)

 = 
n

0 1 n
m

0 1 m

a a x a x
b b x b x

+ + +

+ + +




is continuous at every point a  R for which q(a)  0.

11.3 Non-continuous Functions

You have seen that a function may or may not be continuous at a point of the domain of the
function. Let us now examine why a function fails to be continuous.

A function f: S ® R fails to be continuous on its domain S if it is not continuous at a particular
point of S. This means that there exists a point a  S such that, either

(i)
x a
lim
-

f(x) does not exist, or

(ii)
x a
lim
-

f(x) exists but is not equal to f(a).

But you know that a function f is continuous at a point a if and only if

f(a+) = f(a–) = f(a).

Thus, if f is not continuous at a, then one of the following will happen:

(i) either f(a+) or f(a–) does not exist (this includes the case when both f(a+) and f(a–) do not
exist).

(ii) both f(a+) and f(a–) exist but f(a+)  f(a–).

(iii) both f(a+) and f(a–) exist and f(a+) = f(a–) but they are not equal to f(a).

If a function f: S ® R is discontinuous for each b  S, then we say that totally discontinuous an S.
Functions which are totally discontinuous are often encountered but by no means rare. We give
an example.
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Example: Examine whether or not the function f: R ® R defined as,

f(x) =
1, if x is irrational
0, if x is rational
ì
í
î

is totally discontinuous.

Solution: Let b be an arbitrary but fixed real number. Choose  = 1/2. Let  > 0 be fixed. Then the
interval defined by

|x – b| < 

is (x: b –  < x < b + )

or ]b – , b + [

This interval contains both rational as well as irrational numbers. Why?

If b is rational, then choose x in the interval to be irrational, If b is irrational then choose x in the
interval to be rational. In either case,

0 < |x – b|< 

and

|f(x) – f(b)| = I > .

Thus, f is not continuous at b. Since b is an arbitrary element of S, f is not continuous at any point
of S and hence is totally discontinuous.

There are certain discontinuities which can be removed. These are known as removable
discontinuities. A discontinuity of a given function f: S ® R is said to be removable if the limit
of f(x) as x tends to a exits and that

x a
lim
®

f(x)  f(a)

In other words, f has removable discontinuity at x = a if f(a+) = f(a–) but none is equal to f(a).

The removable discontinuities of a function can be removed simply by changing the value of the
function at the point a of discontinuity. For this a function with removable discontinuities can be
thought of as being almost continuous. We discuss the following example to illustrate a few
cases of removable discontinuities.

Example: Discuss the nature of the discontinuities of the following functions:

(i) f(x) = 
2x 4

x 4
-

-
, x  2

= 1 x = 2

at x = 2.

(ii) f(x) = 3, x  3

= 1 x = 3

at x = 3.

(iii) f(x) = x2, x  ] – 2, 0 (U) 0, 2 [

= 1 x = 0

at x = 0.
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(i) This function is discontinuous at x = 2. This is a removable discontinuity, for if we redefine
f(x) = 4, then we can restore the continuity of f at x = 2.

(ii) This is again a case of removable discontinuity at 3. Therefore, if f is defined by f(x) = 3 "
x  R, then it is continuous at x = 3.

(iii) This function is discontinuous at x = 0. Why? This is a case of discontinuity which is
removable. To remove the discontinuity, set f(0) = 0. In other words, define f as

f(x) = x2, x  ] – 2, 0  [] 0, 2 [

= 0, x = 0

This is continuous at x = 0. Verify it.

Example: Let a function f: R ® R be defined as,

(i) f(x) = 1
x

, x  0

= 0, x = 0

(ii) f(x) = 1
x

, if x > 0

= 1, if x < 0

(iii) f(x) = 1
x

, if x < 0

= 1, if x > 0

Test the continuity of the function. Determine the type of discontinuity if it exists.

Solution:

(i) Here f(0+) and f(0–) both do not exist (as finite real numbers) and so function is discontinuous.
This is not a case of removable discontinuity.

(ii) In this case, f(0) does not exist whereas f(0+) exists and f(0–) = f(0) = 1. This is not a case of
removable discontinuity.

Task  Prove that the function f defined by f(x) = x sin 1/x if x  0 and f(0) = 1 has a
removable discontinuity at x = 0.

Self Assessment

Fill in the blanks:

1. A function f is said to be .......................... on a set S if, it is continuous at every point of the
set S. It is clear that a constant function defined on S is continuous on S.

2. A function f: S ® R is continuous at point a, in S if and only 31 far every sequence (xn),
(xn  S) converging do a, f(xn) ..................... to f(a).
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be continuous at a point a if, for every sequence (xn) in the domain of f converging to a, we
have, 

n
lim
®¥

f(Xn) = f(a).

4. Let f and g be two real functions such that the range of g is contained in, the domain of f.
If g is continuous at x = a, f is continuous at b = g(a) and ......................, for x in the domain
of g, then h is continuous at a.

5. A function f : S ® R fails to be ............................ on its domain S if it is not continuous at a
particular point of S.

11.4 Summary

The concept of the continuity of a function at a point of its domain and on a subset of its domain.
The limit definition and (, –)-definition of continuity. It has been proved that both the definitions
are equivalent. Sequential definition of continuity has been discussed and illustrations regarding
its use for solving problems have been given. The algebra of continuous functions is considered
and it has been proved that the sum, difference, product and quotient of two continuous functions
at a point is also continuous at the point provided in the case of quotient, the function occurring
in the denominator is not zero at the point. In the same section, we have proved that a continuous
function of a continuous function is continuous. Finally in Section 9.4, discontinuous and totally
discontinuous functions are discussed. Also in this section, one kind of discontinuity that is
removable discontinuity has been studied.

11.5 Keywords

Continuity: A function f is continuous at x = a if f is defined in a neighbourhood of a and
corresponding to a given number E > 0, there exists some number  > 0 such that |x – a | < 
implies |f(x) – f(a)| < E.

Sequential Continuity of a Function: Let f be a real-valued function whose domain is a subset of
the set R. The function f is said to be continuous at a point a if, for every sequence (xn) in the
domain of f converging to a, we have, 

n
lim
®¥

f(Xn) = f(a)

11.6 Review Questions

1. Examine the continuity of the following functions:

(i) The function f: R – (0) ® R defined as

f(x) =
x
x

,

at the point x = 0

(ii) The function f: R ® (1) – R defined as

f(x) =
2x 1

x 1
-

-
,

(iii) The function f: R – (0) – R defined as

f(x) = 1
x

.
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(i) f(x) = x3 at a point a  R;

(ii) f(x) = 

2x 4 , if x 2
x 2

1, if x 2

ì -
ï

-í
ï =î

3. Show that the function f: R ® R defined by

f(x) =
1, if x is rational
0, if x is irrational
ì
í
î

is totally discontinuous. Does f(a+) and f(a–) exist at any point a  R?

4. Prove that the function |f| defined by |f|(x) = |f(x)| for every real x is continuous on R
whenever f is continuous on R.

5. (i) Find the type of discontinuity at x = 0 of the function f defined by

f(x) = x + 1 if x > 0, f(x) = – (x + 1) if x < 0 and f(0) = 0.

(ii) The function f is defined by

f(x) = sin 1
x

, x  0

= 0, x = 0

Is f continuous at 0?

Answers: Self Assessment

1. continuous 2. converges

3. real-valued function 4. h(x) = f(g(x))

5. continuous

11.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol : Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik : Mathematical Analysis.

H.L. Royden : Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the properties of continuous functions on bounded closed intervals

 Explain the important role played by bounded closed intervals in Real Analysis

 Describe the concept of uniform continuity and its relationship with continuity

Introduction

Having studied in the last two units you have studied about limit and continuity of a function at
a point, algebra of limits and continuous functions, the connection between limits and continuity,
etc., we now take up the study of the behaviour of continuous functions and bounded closed
intervals on the real line. You will learn that continuous functions on such intervals are bounded
and attain their bounds; they take all values in between any two values taken at points of such
intervals. You will also be introduced to the concept of uniform continuity and further you will
see that a continuous function on a bounded closed interval is uniformly continuous. This means
that continuous functions are well-behaved on bounded closed intervals. Thus, we will see that
bounded closed intervals form an important subclass of the class of subsets of the real line which
are known as compact subsets of the real line. You will study more about this in higher
mathematics at a later stage. We will henceforth call bounded closed intervals of R as compact
intervals.

The results of this unit play an important and crucial role in Real Analysis and so for further
study in analysis, you must understand clearly the various theorems given in this unit.

It may be noted that an interval of R will not be a compact interval if it is not a bounded or closed
interval.

12.1 Continuity on Bounded Closed Intervals

We now consider functions continuous on bounded closed intervals. They have properties
which fail to be true when the intervals are not bounded or closed. Firstly, we prove the properties
and then with the help of examples we will show the failures of these properties. To prove these
properties, we need an important property of the real line that was discussed in Unit 1.
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Any non-empty subset of the Seal Hue R which is bounded above has the least upper bound or
equivalently, any non-empty subset of R which is bounded below has the greatest lower bound.

In the following theorems we prove the properties of functions continuous on bounded closed
intervals. In the first two theorems we show that a continuous function on a bounded closed
interval is bounded and attains its bounds in the interval. Recall that f is bounded on a set S, if
there exists a constant M > 0 such that |f(x)|  M for all x  S. Note also that a real function f
defined on a domain D (whether bounded or not) is bounded if and only if its range f(D) is a
bounded subset of R.

Theorem 1: A function f continuous on a bounded and closed interval [a, b] is necessarily a
bounded function.

Proof: Let S be the collection of all real numbers c in the interval [a, b] such that f is bounded on
the interval [a, c]. That is, a real number c in [a, b] belongs to S if and only if there exists a constant
Mc such that |f(x)| Mc for all x in [a, c]. Clearly, S   since a  S and b is an upper bound for S.
Hence, by completeness property of R, there exists a least upper bound for S. Let it be k (say).
Clearly, k  b. We prove that k  S and k = b which will complete the proof of the theorem.

Corresponding to  = 1, by the continuity of f at k( b) there exists a d > 0 such that

|f(x) – f(k)| <  = 1 whenever |x – k| < d, x [a, b].

By the triangle inequality we have

|f(x)| – |f (k)|  |f(x) – f(k)| < 1

Hence, for all x in [a. b] for which |x – k| < d, we have that

|f(x)| < |f(k)| + 1 ...(1)

Since k is the least upper bound of S, k – d is not an upper bound of S. Therefore, there is a number
c  S such that

k – d < c  k

Consider any t such that k  t < k + d. If x belongs to the interval [c, t] then |x – k| < d. For,

x  [c, t] =  c  x  t  k – d < c  x  t < k + d ...(2)

Now c  S implies that there exists Mc > 0 such that for all

x  [a, c], |f(x)|  Mc

x  [a, t] = [a, c] U [c, t]  either x [a, c] or x [c, t].

If x  [a, c], by (3) we have

|f(x)|  Mc < Mc + |f(k)| + 1.

If, however, x [c, t] then by (1) and (2) we have

|f(x)| < |f(k)| + 1 < Mc + |f(k)| + 1

In any case we get that x  [a, t] implies that

|f(x)| < Mc + |f(k)| + 1

This shows that f is bounded in the interval [a, t] thus proving that t  S whenever k  t < k + d.
In particular k  S. In such a case k = b. For otherwise we can choose a ‘t’ such that k < t < k + d and
t  S which will contradict the fact that k is an upper bound. This completes the proof of the
theorem.
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now prove that the function attains its bounds, that is, it has the greatest and the smallest values.

Theorem 2: If f is a continuous function on the bounded closed interval [a, b] then there exists
points x1 and x2 in [a, b] such that f(x1) S f(x)  f(x2) for all x [a, b] (i.e. f attains its bounds).

Proof: From Theorem 1, we know that f is bounded on [a, b].

Therefore there exists M such that |f(x)|  M " x [a, b].

Hence, the collection {f(x) : a a x  b] has an upper bound, since f(x)  |f(x)|  M " x [a, b].

So by the completeness property of R, the set (f(x) : a  x  b) has a least upper bound.

Let us denote by K the least upper bound of {f(x) : a  x b].

Then f(x)  K for all x such that a  x  b. We claim that there exists x2 in [a, b] such that f(x2) = K.
If there is no such x2, then K – f(x) > 0 for all a  x  b. Hence, the function g given by,

g(x) =
1

K f(x)-

is defined for all x in [a, b] and g is continuous since f is continuous. Therefore by Theorem 1,
there exists a constant M’ > 0 such that

|g(x)|  M’ " x [a, b]

Thus, we get

|g(x)| =
1

|K f(x)|-
 = 

1
K f(x)-

  M’

i.e., f(x)  K – 1
M

 " x [a, b].

But this contradicts the choice of K as the least upper bound of the set (f(x) : a | x  b). This
contradiction, therefore, proves the existence of an x2 in [a, b] such that f(x2) = K  f(x) for a  x  b.
The existence of x1 in [a, b] such that f(x1)  f(x) for a  x | b can be proved on exactly similar lines
by taking the g.l.b. of {f(x) : a  x  b} instead of the l.u.b. or else by considering –f instead of f.

Theorems 1 and 2 are usually proved using what is called the Heine-Borel property on the real
line or other equivalent properties. The proofs given in this unit straightaway appeal to the
completeness property of the red line (Unit 2) namely that any subset of the real line bounded
above has least upper bound. These proofs may be slightly longer than the conventional ones
but it does not make use of any other theorem except the property of the real line stated above.

As remarked earlier, the properties of continuous functions fail if the intervals are not bounded
or closed, that is, the intervals of the type

]a, b[, 1a, b], [a, b[, [a,’[, 1a, [, ] –, a], ] –, a [ or ] –, [.

Example: Show that the function f defined by f(x) = 3 V x  [0, [ is continuous but not
bounded.

Solution: The function f being a polynomial function is continuous in [0, [. The domain of the
function is an unbounded closed interval. The function is not bounded since the set of values of
the function that is the range of the function is {x2 : x  [0, [ } = [0, [ which is not bounded.
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Example: Show that the function f defined by f(x) = 

1
x  V x  ] 0, 1[ is continuous but not

bounded.

Solution: The function f is continuous being the quotient of continuous  functions F(x) = 1 and G(x)
= x with

G(x)  0, x  ]0, 1[

Domain of f is bounded but not a closed interval. The function is not bounded since its range is
(1/x : x ] 0, l [ ] = ]1, [ which is not a bounded set.

Example: Show that the function f such that f(x) = x " x ]0, 1[ is continuous but does not
attain its bounds.

Solution: As mentioned the identity function f is continuous in ]0, 1[. Here the domain of f is
bounded but is not a closed interval. The function f is bounded with least upper bound (1.u.b) =
1 and greatest lower bound (g.l.b) = 0 and both the bounds are not attained by the function, since
range of f = ]0, 1[.

Example: Show that the function f such that

f(x) = 2
1
x

 " x [0, 1[.

is continuous but does not attain its g.l.b.

Solution: The function G given by G(x) = x2 " x ]0, 1[ is continuous and G(x)  0 " x ]0, 1[
therefore its reciprocal function f(x) = 1/x2 is continuous in ]0, 1[. Here the domain f is bounded
but is not a closed interval.

Further l.u.b. of f does not exist whereas its g.l.b. is 1 which is not attained by f.

Task  Show that the function f given by f(x) = sin x, x  ]0, /2[ is continuous but does not
attain any of its bounds.

Task  Prove that the function f given by f(x) = x2 " x ] –, 0[ is continuous but does not
attain its g.l.b.

We next prove another important property known as the intermediate value property of a
continuous function on an interval I. We do not need the assumption that I is bounded and  losed.
This property justifies our intuitive idea of a continuous function namely as a function f which
cannot jump from one value to another since it takes on between any two values f(a) and f(b) all
values lying between f(a) and f(b).

Theorem 3: (Intermediate Value Theorem). Let f be a continuous function on an interval
containing a and b. If K is any number between f(a) and f(b) then there is a number c, a  c S b
such that f(c) = K.

Proof: Either f(a) = f(b) or f(a) < f(b) or f(b) < f(a). If f(a) = f(b) then K = f(a) = f(b) and so c can be
taken to be either a or b. We will assume that f(a) < f(b). (The other case can be dealt with
similarly.) We can, therefore, assume that f(a) < K < f(b).



LOVELY PROFESSIONAL UNIVERSITY 163

Unit 12: Properties of Continuous Functions
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S  and b is an upper bound for S. Hence, by completeness property of R, S has least upper bound
and let us denote this least upper bound by c. Then a  c  b. We want to show that f(c) = K.

Since f is continuous on [a, b], f is continuous at c. Therefore, given  > 0, there exists a 6 > 0 such
that whenever x is in [a, b] and |x – c| < 6, |f(x) – f(c) ( < G,

i.e., f(c) –  < f(x) < f(c) + . .. . (4)

If c  b, we can clearly assume that c + 6 < b. Now c is the least upper bound of S. So c –  is not
‘an upper bound’ of S. Hence, there exists a y in S such that c – 6 < y  c. Clearly |y – c| <  and
so by (4) above, we have

f(c) –  < f(y) < f(c) + .

Since y is in S, therefore f(y) < K. Thus, we get

f(c) – S < K

If now c = b then K –  < K < f(b) = f(c), i.e., K < f(c) + E. If c  b, then c < b; then there exists an x
such that c < x < c + 6, 6, x [a, b] and for this x, f(x) < f(c) +  by (4) above. Since x > c, K  f(x), for
otherwise x would be in S which will imply that c is not an upper bound of S. Thus, again we
have K  f(x) < f(c) + E.

In any case,

K < f(c) +  ...(6)

Combining (5) and (6), we get for every  > 0

f (c) –  < K < f(c) + 

which proves that K = f(c), since  is arbitrary while K, f(c) are fixed. In fact, when f(a) < K < f(b)
and f(c) = K, then a < c < b.

Corollary 1: If f is a continuous function on the closed interval [a, b] and If  f(a) and f(b) have
opposite signs (i.e., f(a) f(b) < 0), then there is a point x0  in ]a, b[ at which f vanishes. (i.e., f(x0) = 0).

Corollary follows by taking K = 0 in the theorem.

Corollary 2: Let f be a continuous function defined on a bounded closed  interval [a, b] with
values in [a, b]. Then there exists a point c in [a, b] such that f(c) = c. (i.e., there exists a fixed point
c for the function f on [a, b]).

Proof: If f(a) = a or f(b) = b then there is nothing to prove. Hence, we assume that f(a)  a and f(b)
 b.

Consider the function g defined by g(x) = f(x) – x, x [a, b]. The function being the difference of
two continuous functions, is continuous on [a, b]. Further, since f(a), f(b) are in [a, b], f(a) > a
(since f(a)  a, f(a) [a, b]) and f(b) < b. (Since f(b)  b, f(b) [a, b]). So, g(a) > 0 and g(b) < 0. Hence,
by Corollary 1, there exists a c in ]a, b[ such that g(c) = 0, i.e., f(c) = c. Hence, there exists ac in [a,
b] such that f(c) = c.

The above Corollary 1 helps us sometimes to locate some of the roots of polynomials. We
illustrate this with the following example.

Example: The equation x4 + 2x – 11 = 0 has a real root lying between 1 and 2.

Solution: The function f(x) = x4 + 2x – 11 is a continuous function on the closed interval [1, 2],
f(1) = –8 and f(2) = 9. Hence, by Corollary 1, there exists an x0 ]1, 2[ such that f(x0) = 0, i.e., x0 is
a real root of the equation x4 + 2x – 11 = 0 lying in the interval ]1, 2[.
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Task  Show that the equation 16x4 + 64x3 – 32x2 – 117 = 0 has a real root > 1.

12.2 Pointwise Continuity and Uniform Continuity

Here you will be introduced with the concept of uniform continuity of a function. The concept of
uniform continuity is given in the whole domain of the function whereas the concept of continuity
is pointwise that is it is given at a point of the domain of the function. If a function f is continuous
at a point a in a set A, then corresponding to a number E > 0, there exists a positive number (a)
(we are denoting 6 as (a) to stress that 6 in general depends an the point a chosen) such that
|x – a| < (a) implies that |f(x) – f(a)| < . The number (a) also depends on E. When the point a
varies (a) also varies. We may or may not have a 6 which serves for all points a in A. If we have
such a 6 common to all points a in A, then we say that f is uniformly continuous on A. Thus, we
have the following definition of uniform continuity.

Definition 1: Uniform Continuity of a Function

Let f be a function defined on a subset A contained in the set R of all reals. If corresponding to any
number  > 0, there exists a number  > 0 (depending only on G) such that

|x – y| < , x, y  A |f(x) – f(y)| < *

then we say that f is uniformly continuous on the subset A.

An immediate consequence of the definition of uniform continuity is that uniform continuity in
a set A implies pointwise continuity in A. This is proved in the following theorem.

Theorem 4: If a function f is uniformly continuous in a set A, then it is continuous in A.

Proof: Since f is uniformly continuous in A, given a positive number E, there corresponds a
positive number 6 such that

|x – y| < ; x, y  A  |f(x) – f(y)| <  ... (7)

Let a be any point of A. In the above result (1), take y = a. Then we get,

|x – a| < ; x  A  |f(x) – f(a)| < 

which shows that f is continuous at ‘a’. Since ‘a’ is any point of A, it follows that f is continuous
in A.

Now we consider some examples.

Example: Show that the function f : R

f(x) = x V x R,

is uniformly continuous on R

Solution: For a given  > 0, 6 can be chosen to be  itself so that

|x – y| < 6 = G  |f(x) – f(y)| = |x – y| < .

Example: Show that the function f : R – R given by

f(x) = x2 " x R

is not uniformly continuous on R.
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NotesSolution: Let  be any positive number. Let  > 0 be any arbitrary positive number. Choose
x > / and y = x + /2. Then

|x – y| = 2


 < .

(fix) – f(y)| = |x2 – y2| = |x + y||x – y|

= 2
æ ö

ç ÷è ø
|x + y| = 2

æ ö
ç ÷è ø

2x
2


+

> 2


22
2 4

  æ ö
+ =  + > ç ÷è ø

That is whatever  > 0 we choose, there exist real numbers x, y such that |x – y| <  but |f(x) –
f(y)|> G which proves that f is not uniformly continuous.

But we know that f is a continuous function on R.

Example: In the above example if we restrict the domain of f to be the closed interval
[–1, 1], then show that f is uniformly continuous on [–1, 1].

Solution: Given E > 0, choose  < 
8
2 . If |x – y| <  and x, y [–1, 1],

then using the triangle inequality for || we get,

|f(x) – f(y)| = |x2 – y2| = |x + y||x – y|

<  (|x| + |y|)

 2 (since |x|1, |y| 1)

You should be able to solve the following exercises:

Task 1. Show that f(x) = xn, n > 1 is not uniformly continuous on R even though for
each a > 1, it is a continuous function on R.

2. Show that the function f(x) = 
1
x

 for 0 < x < 1 is continuous for every x but not

uniformly on ]0, 1[.

3. Show that the function f(x) = sin 
1
x

 is not uniformly continuous on the interval ]0, 1[

even though it is continuous in that interval.

4. Show that f(x) = cx where c is a fixed non-zero real number is a uniformly continuous
function on R.

We have seen that the function defined by f(x) = 1/x on the open interval ]0, 1 [ is not uniformly
continuous on ]0, 1[ even though it is a continuous function on ]0, 1[. Similarly the function f
defined as f(x) = x2 is continuous on the entire real line R but is not uniformly continuous on R.

However, if we restrict the domain of this function to the bounded closed interval [–1, 1], then it
is uniformly continuous. This property is not a special property of the function f, where f(x) = x2
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We prove it in the following theorem.

Theorem 5: If f is a continuous function on a bounded and closed interval [a, b] then f is uniformly
continuous on [a, b].

Proof: Let f be a continuous function defined on the bounded closed interval [a, b]. Let S be the set
of all real numbers c in the interval [a, b] such that for a given  > 0, there exists positive number
dc such that for points x1, x2 belonging to closed interval [a, c],

|f(x1) – f(x2)| <  whenever |x2 – x2| < d,.

(In other words f is uniformly continuous on the interval [a, c]. Clearly a  S so that S is non-
empty. Also b is an upper bound of S. Prom completeness property of the real line S has least
upper bound which we denote by k. k  b.

f is continuous at k. Hence given E > 0, there exists positive real number dk such that

|f(x) – f(k)| < /2 whenever |x – k| < dk ...(8)

Since k is the least upper bound of S, k – 1
2

 is not an upper bound of S.

Therefore there exists a point c  S such that

k – 1/2 dk < c  k. ...(9)

Since c S; from the definition of S we see that there exists dc such that

|f(x1) – f(x2)| <  whenever |x1 – x2| < dc, x1, x2  [a, c], ...(10)

Let d = min ((1/2) dk, dc) and b’ = min. (k + (1/2) dk, b).

Now let x1, x2 [a, b’] and |x1 – x2|. Then if x1, x2 [a, c], |x1 – x2| < d  dc by the choice of d and
dc, then |f(x1) – f(x2)| <  by (10). If one of x1 x2 is not in fa, cl, then both x1, x2 belong to the interval
]k – dk, k + dk[. For x1  [a, c], implies b’x1 > c > k – (1/2)dk > k – dk by (9)  above. This means
x1  b’ implies x1  k + (1/2)dk < k – dk by the choice of b’. i.e.

k – dk < k – (1/2) dk < x1 < k + (1/2)dk < k + dk ...(11)

|x1 – x2| < d implies that x1 – (1/2) dk < x2 < x1 + (1/2)dk since d  (1/2)dk by this choice of d. Thus
we get from (11) above that

|x1 – x2| < x1 – (1/2)dk < x2 < x1 + (1/2)dk < k + 
1
2

æ ö
ç ÷è ø

dk + 1
2

dk = k + dk ...(12)

Then (11) and (12) show that x 1, x2 ]k – dk, k + dk[.

Thus we get that |x1 – k| < dk and |x2 – k| < dy, which in turn implies, by (8) above, that
|f(x1) –  (k)| < /2 and |f(x2) – f(k)| < /2 .

Thus |f(x1) – f(x2)| < |f(x1) – f(k)| + |f(k) – f(x2)| < /2 + /2 = E. In other words, if |x1 – x2| <
d and x1, x2 are in [a, b’] then |f(x1) – f(x2)| < E which proves that b’  S i.e. b’  k. But k  b’ by
the choice of b’ since k  k + (1/2) dk and k a b. Thus we get that k = b’. This can happen only
when k = b. For if k < b. i.e. k = b’ = min (k + (l/2) dk, b) < b, then it implies that min (k + (l/2)
dk, b) = (k + (1/2) dk = b’, where b’  S i.e. k + (1/2) dk is in S and is greater than k which is a
contradiction to the fact that k is the l.u.b of S. Thus we have shown that k = b  S. In other
words there exists a positive number dk (corresponding to b) such that |x1– x2| < dk, x1, x2 [a,
b] implies |f(x1) – f(x2)| < . Therefore f is uniformly continuous in [a, b].

You may note that uniform continuity always implies continuity but not conversely. Converse
is true when continuity is in the bounded closed interval.
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NotesBefore we end this unit, we state a theorem without proof regarding the continuity of the
inverse function of a continuous function.

Theorem 6: Inverse Function Theorem

Let f : I – J be a function which is both one-one and onto. If f is continuous on I, then f–1 : J  I is
continuous on J. For example the function.

f : ,
2 2
- é ù
ê úë û

[–1, 1] defined by

f(x) = sin x,

is both one-one and onto. Besides f is continuous on ,
2 2
- é ù
ê úë û

. Therefore, by Theorem 6, the

function

f–1 : – 11  ,
2 2
- é ù
ê úë û

 defined by

f–1(x) =  sin –x

is continuous on [–1, 1].

Self Assessment

1. Give an example of the following:

(i) A function which is nowhere continuous but its absolute value is everywhere
continuous.

(ii) A function which is continuous at one point only.

(iii) A linear function which is continuous and satisfies the equation f(x + y) = f(x) + f(y).

(iv) Two uniform continuous functions whose product is not uniformly continuous.

2. State whether the following are true or false:

(i) A polynomial function is continuous at every point of its domain.

(ii) A rational function is continuous at every point at which it is defined.

(iii) If a function is continuous, then it is always uniformly continuous.

(iv) The functions ex and log x are inverse functions for x > 0 and both are continuous for
each x > 0.

(v) The functions cos x and cos–1 x are continuous for all real x.

(vi) Every continuous function is bounded.

(vii) A continuous function is always monotonic.

(viii) The function sin x is monotonic as well as continuous for s [0, 3]

(ix) The function cos x is continuous as well as monotonic for every x  R.

(x) The function |x|, x  R is continuous.
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 In this unit you have been introduced to the properties of continuous functions on bounded
closed intervals and you have seen the failure of these properties if the intervals are not
bounded and closed. These properties have been studied. It has been proved that if a
function f is continuous on a bounded and closed interval, then it is bounded and it also
attains its bounds. In the same section we proved the Intermediate Value Theorem that is
if f is continuous on an interval containing two points a and b, then f takes every value
between f(a) and f(b). The notion of uniform continuity is discussed. We have proved that
if a function f is uniformly continuous in a set A, then it is continuous in A. But converse is
not true. It has been proved that if a function is continuous on a bounded and closed
interval, then it is uniformly continuous in that interval. These properties fail if the intervals
are not bounded and closed. This has been illustrated with a few examples.

12.4 Keywords

Bounded Function: A function f continuous on a bounded and closed interval [a, b] is necessarily
a bounded function.

Boundedness: If f is a continuous function on the bounded closed interval [a, b] then there exists
points x1 and x2 in [a, b] such that f(x1) S f(x)  f(x2) for all x [a, b].

Intermediate Value Theorem: Let f be a continuous function on an interval containing a and b.
If K is any number between f(a) and f(b) then there is a number c, a  c S b such that f(c) = K.

12.5 Review Questions

1. Find the limits of the following functions:

(i) f(x) = x cos 1
x

, x  0, as x  0.

(ii) f(x) = x
x

, x  0, as x  .

(iii) f(x) = sin x
x

, x  0, as x  .

2. For the following functions, find the limit, if it exists:

(i) f(x) = 
x b
x b
-

-
 for x  b where b > 0, as x  b

(ii) f(x) = 1/x
1

1 e-+
 for x  0, as x  0

(iii) f(x) = 
3 x when x 1

as x 1.
2x when x 1
- ì

í
>î

3. Test whether or not the limit exists for the following:

(i) f(x) = 
3 x when x 1
1 when x 1, as x 1.
2x when x 1

- >ì
ï

= í
ï <î
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(ii) f(x) = 

2

2
x 4
x 4

-

+
, x R, as x  1.

(iii) f(x) = 4 x 2
x
+ - , x  O as x  0.

(iv) f(x) = 1 1 2
x 1 x 3 3x 5

æ ö
-ç ÷è ø- + +

 as x 1.

4. Discuss the continuity of the following functions at the points noted against each.

(i) f(x) =
2x for x 1

as x 1.
0 for x 1
ì ï

í
=ïî

(ii) f(x) = 
1 for 0 x 1

as x 1.
0 otherwise

 <ì
í

î

(iii) f(x) = 
2x 4

x 1
-

-
 when x  1.

f(1) = 2

as x  1.

(iv) f(x) = 
1/x(1 x) if x 0

as x 1.
1 if x 0
ì + ï

í
=ïî

(v) f(x) = 
2 1x sin if x 0

as x 1.x
1 if x 0

ì
ï

í
ï =î

5. Show that the function f : R  R defined as

1
1 |x|+

does not attain its infimum.

6. Show that the function f : R  R such that

f(x) = x is not bounded but is continuous in [1, [.

7. Which of the following functions are uniformly continuous in the interval noted against
each? Give reasons.

(i) f(x) = tan x, x [0,/4J

(ii) f(x) = 2
1

x 3-
 on [1, 4].

Answers: Self Assessment

1. (i)
f(x) 1 if xis rational

1 if x is irrational
=ì

í
= -î

(ii)
f(x) x if xis rational

x if x is irrational
=ì

í
= -î

the only point of continuity is 0.
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Notes (iii) f(x) = Cx, " x R where C is a fixed constant.

(iv) f(x) = x, g(x) = sin x, " x R

Both f(x) and g(x) are uniformly continuous but their product

f(x) g(x) = x sin x

is not uniformaly continuous on R.

2. (i) True (ii) True

(iii) False (iv) True

(v) True (vi) False

(vii) False (viii) True

(ix) False (x) True

12.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define Discontinuous Functions

 Describe Classification of Discontinuities

 Explain Monotone Function

 Describe the Discontinuities of Monotone Functions

 Discuss the Discontinuities of Second Kind

Introduction

In mathematics, a monotonic function (or monotone function) is a function that preserves the
given order. This concept first arose in calculus, and was later generalized to the more abstract
setting of order theory. In calculus, a function f defined on a subset of the real numbers with real
values is called monotonic (also monotonically increasing, increasing or non-decreasing), if for
all x and y such that x d” y one has f(x) d” f(y), so f preserves the order. Likewise, a function is
called monotonically decreasing (also decreasing or non-increasing) if, whenever x d” y, then
f(x) e” f(y), so it reverses the order.

13.1 Discontinuous Functions

If a function fails to be continuous at a point c, then the function is called discontinuous at c, and
c is called a point of discontinuity, or simply a discontinuity.
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Task  Consider the following functions:

1.

2x 9 if x 3k(x) x 3
1, if x 3

ì -
¹ï

= -í
ï =î

2.
1, if x 0

h(x) 0, If x 0
1, if x 0

>ì
ï

= =í
ï- <î

3.
sin(1/x), if x 0

f(x)
0, If x 0

¹ì
= í

¹î

4.
1, if x rational

g(x)
0, If x irrational

=ì
= í

=î

Which of these functions, without proof, has a ‘fake’ discontinuity, a ‘regular’ discontinuity,
or a ‘difficult’ discontinuity?

13.2 Classification of Discontinuities

Suppose f is a function with domain D and c  D is a point of discontinuity of f.

1. If 
x c
lim f(x)
®

 exists, then c is called removable discontinuity.

2. If 
x c
lim f(x)
®

 does not exist, but both 
x c
lim f(x)

-®
 and 

x c
lim f(x)

+®
 exist, then c is called a discontinuity

of the first kind, or jump discontinuity.

3. If either 
x c
lim f(x)

-®
 or 

x c
lim f(x)

+®
 does not exist, then c is called a discontinuity of the second

kind, or essential discontinuity.

Example: Prove that k(x) has a removable discontinuity at x = 3, and draw the graph of k(x).

Solution:

2x 9
if x 3k(x) x 3

1, if x 3

We can easily check that the limit as x approaches 3 from the right and from the left is equal to
4. Hence, the limit as x approaches 3 exists, and therefore the function has a removable
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Notesdiscontinuity at x = 3. If we define k(3) = 4 instead of k(3) = 1 then the function in fact will be
continuous on the real line

Example: Prove that h(x) has a jump discontinuity at x = 0, and draw the graph of h(x)

Solution:

1, if x 0
h(x) 0, If x 0

1, if x 0

It is easy to see that the limit of h(x) as x approaches 0 from the left is –1, while the limit of h(x)
as x approaches 0 from the right is +1. Hence, the left and right handed limits exist and are not
equal, which makes x = 0 a jump discontinuity for this function.

Example: Prove that f(x) has a discontinuity of second kind at x = 0

Solution:

sin(1 /x), if x 0
f(x)

0, If x 0

This function is more complicated. Consider the sequence xn = 1/(2n). As n goes to infinity, the
sequence converges to zero from the right. But f(xn) = sin(2n) = 0 for all k. On the other hand,
consider the sequence xn = 2/ (2n + 1). Again, the sequence converges to zero from the right as n
goes to infinity. But this time f(xn) = sin((2n + 1)/2) which alternates between +1 and –1. Hence, this
limit does not exist. Therefore, the limit of f(x) as x approaches zero from the right does not exist.

Since f(x) is an odd function, the same argument shows that the limit of f(x) as x approaches zero
from the left does not exist.

Therefore, the function has an essential discontinuity at x = 0.

Example: What kind of discontinuity does the function g(x) have at every point (with
proof).

Solution:

1, if x rational
g(x)

0, If x irrational
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graph. Nonetheless, take an arbitrary point x0 on the real axis. We can find a sequence {xn} of
rational points that converge to x0 from the right. Then g(xn) converges to 1. But we can also find
a sequence {xn} of irrational points converging to x0 from the right. In that case g(xn) converges
to 0. But that means that the limit of g(x) as x approaches x0 from the right does not exist. The
same argument, of course, works to show that the limit of g(x) as x approaches x 0 from the left
does not exist. Hence, x0 is an essential discontinuity for g(x).

It is clear that any function is either continuous at any given point in its domain, or it has a
discontinuity of one of the above three kinds. It is also clear that removable discontinuities are

‘fake’ ones, since one only has to define f(c) = 
x c
lim f(x)
®

 and the function will be continuous at c.

Of the other two types of discontinuities, the one of second kind is hard. Fortunately, however,
discontinuities of second kind are rare, as the following results will indicate.

13.3 Monotone Function

A function f is monotone increasing on (a, b) if f(x)  f(y) whenever x < y. A function f is
monotone decreasing on (a, b) if f(x)  f(y) whenever x < y.

A function f is called monotone on (a, b) if it is either always monotone increasing or monotone
decreasing.

Some basic applications and results

The following properties are true for a monotonic function f : R ® R:

 f has limits from the right and from the left at every point of its domain;

 f has a limit at infinity (either  or –) of either a real number, , or –.

 f can only have jump discontinuities;

 f can only have countably many discontinuities in its domain.

These properties are the reason why monotonic functions are useful in technical work in analysis.
Two facts about these functions are:

 if f is a monotonic function defined on an interval I, then f is differentiable almost
everywhere on I, i.e. the set of numbers x in I such that f is not differentiable in x has
Lebesgue measure zero.

 if f is a monotonic function defined on an interval [a, b], then f is Riemann integrable.

An important application of monotonic functions is in probability theory. If X is a random
variable, its cumulative distribution function

FX(x) = Prob (X  x)

is a monotonically increasing function.

A function is unimodal if it is monotonically increasing up to some point (the mode) and then
monotonically decreasing.
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Note  If f is increasing if -f is decreasing, and visa versa. Equivalently, f is increasing if

 f(x)/f(y)  1 whenever x < y

 f(x) – f(y)  0 whenever x < y

These inequalities are often easier to use in applications, since their left sides take a very nice
and simple form. Next, we will determine what type of discontinuities monotone functions can
possibly have. The proof of the next theorem, despite its surprising result, is not too bad.

13.4 Discontinuities of Monotone Functions

If f is a monotone function on an open interval (a, b), then any discontinuity that f may have in
this interval is of the first kind.

If f is a monotone function on an interval [a, b], then f has at most countably many discontinuities.

Proof: Suppose, without loss of generality, that f is monotone increasing, and has a discontinuity
at x0. Take any sequence xn that converges to x0 from the left, i.e. xn x0. Then f( xn) is a monotone
increasing sequence of numbers that is bounded above by f( x0). Therefore, it must have a limit.
Since this is true for every sequence, the limit of f(x) as x approaches x0 from the left exists. The
same prove works for limits from the right.

Notes  This proof is actually not quite correct. Can you see the mistake? Is it really true that
if xn converges to x0 from the left then f(xn) is necessarily increasing? Can you fix the proof
so that it is correct?

As for the second statement, we again assume without loss of generality that f is monotone
increasing. Define, at any point c, the jump of f at x = c as:

j(c) =
x c x c
lim f(x) lim f(x)

+ -® ®
-

Note that j(c) is well-defined, since both one-sided limits exist by the first part of the theorem.
Since f is increasing, the jumps j(c) are all non-negative. Note that the sum of all jumps can not
exceed the number f(b) – f(a). Now let J(n) be the set of all jumps c where j(c) is greater than 1/n,
and let J be the set of all jumps of the function in the interval [a, b]. Since the sum of jumps must
be smaller than f(b) – f(a), the set J(n) is finite for all n. But then, since the union of all sets J(n)
gives the set J, the number of jumps is a countable union of finite sets, and is thus countable.

This theorem also states that if a function wants to have a discontinuity of the second kind at a
point x = c, then it can not be monotone in any neighbourhood of c.

13.5 Discontinuities of Second Kind

If f has a discontinuity of the second kind at x = c, then f must change from increasing to
decreasing in every neighbourhood of c.

Proof: Suppose not, i.e. f has a discontinuity of the second kind at a point x = c, and there does exist
some (small) neighbourhood of c where f, say, is always decreasing. But then f is a monotone
function, and hence, by the previous theorem, can only have discontinuities of the first kind.
Since that contradicts our assumption, we have proved the corollary.
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Example: What kind of discontinuity does the function f(x) = exp(1/x) have at x = 0?

f(x) exp(1/x)

As x approaches zero from the right, 1/x approaches positive infinity. Therefore, the limit of f(x)
as x approaches zero from the right is positive infinity.

As x approaches zero from the left, 1/x approaches negative infinity. Therefore, the limit of f(x)
as x approaches zero from the left is zero.

Since the right-handed limit fails to exist, the function has an essential discontinuity at zero.

Example: What kind of discontinuity does the function f(x) = x sin(1/x) have at x = 0?

f(x) x sin(1/x)

Since |x sin(1/x)| < |x|, we can see that the limit of f(x) as x approaches zero from either side is
zero. Hence, the function has a removable discontinuity at zero. If we set f(0) = 0 then f(x) is
continuous.

Example: What kind of discontinuity does the function f(x) = cos (1/x) have at x = 0?

f(x) cos(1/x)



LOVELY PROFESSIONAL UNIVERSITY 177

Unit 13: Discontinuities and Monotonic Functions

NotesBy looking at sequences involving integer multiples of  or /2 we can see that the limit of f(x)
as x approaches zero from the right and from the left both do not exist. Hence, f(x) has an
essential discontinuity at x = 0.

Self Assessment

Fill in the blanks:

1. The class of monotonic functions consists of both the ………………..

2. ……………….. have no discontinuities of second kind.

3. Let f be monotonic on (a; b), then the set of points of (a; b) at which f is ………………… at
most countable.

4. A function f(x) is said to be ……………….. over an interval (a, b) if the derivatives of all
orders of f are nonnegative at all points on the interval.

5. The term ……………….. can also possibly cause some confusion because it refers to a
transformation by a strictly increasing function

13.6 Summary

 If a function fails to be continuous at a point c, then the function is called discontinuous at
c, and c is called a point of discontinuity, or simply a discontinuity.

 In calculus, a function f defined on a subset of the real numbers with real values is called
monotonic (also monotonically increasing, increasing or non-decreasing), if for all x and
y such that x  y one has f(x)  f(y), so f preserves the order (see Figure 1).

 Suppose f is a function with domain D and  D is a point of discontinuity of f.

if 
x c
lim f(x)
®

 exists, then c is called removable discontinuity.

if 
x c
lim f(x)
®

 does not exist, but both 
x c x c
lim f(x) and lim f(x)

- +® ®
 exit, then c is called a discontinuity

of the first kind, or jump discontinuity

if either 
x c x c
lim f(x) or lim f(x)

- +® ®
 does not exist, then c is called a discontinuity of the second

kind, or essential discontinuity

If f is a monotone function on an open interval (a, b), then any discontinuity that f may
have in this interval is of the first kind.

If f is a monotone function on an interval [a, b], then f has at most countably many
discontinuities.

13.7 Keywords

Monotonic Transformation: The term monotonic transformation can also possibly cause some
confusion because it refers to a transformation by a strictly increasing function.

Monotonically Decreasing: A function is called monotonically decreasing (also decreasing or
non-increasing) if, whenever x  y, then f(x)  f(y), so it reverses the order.

Monotonic Function: In mathematics, a monotonic function (or monotone function) is a function
that preserves the given order.
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Notes 13.8 Review Questions

1. Define Discontinuous Functions.

2. Describe Classification of Discontinuities.

3. Explain Monotone Function.

4. Describe the Discontinuities of Monotone Functions.

5. Discuss the Discontinuities of Second Kind.

Answers: Self Assessment

1. Increasing and decreasing functions 2. Monotonic functions

3. Discontinuous 4. Absolutely monotonic

5. Monotonic transformation

13.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol : Mathematical Analysis, (2nd Edition) 7.30 and 7.31.
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Objectives

After studying this unit, you will be able to:

 Define sequence and series of functions

 Distinguish between the pointwise and uniform convergence of sequences and series of
functions

 Know the relationship of uniform convergence with the notions of continuity,
differentiability, and integrability

Introduction

In earlier unit, we have studied about, convergence of the infinite series of real numbers. In this
unit, we want to discuss sequences and series whose members are functions defined on a subset
of the set of real numbers. Such sequences or series are known as sequences or series of real
functions. You will be introduced to the concepts of pointwise and uniform convergence of
sequences and series of functions. Whenever they are convergent, their limit is a function called
limit function. The question arises whether the properties of continuity, differentiability,
integrability of the members of a sequence or series of functions are preserved by the limit
function. We shall discuss this question also in this unit and show that these properties are
preserved by the Uniform convergence and not by the pointwise convergence.

14.1 Sequences of Functions

As you have studied that a sequence is a function from the set N of natural numbers to a set B. In
that unit, sequences of real numbers have been considered in detail. You may recall that for
sequences of real numbers, the set B is a sub-set of real numbers. If the set B is the set of real
functions defined on a sub-set A of R, we get a sequence called sequence of functions. We define
it in the following way:

Definition 1: Sequence of Functions

Let A be a non-empty sub-set of R and let B be the set of all real functions each defined on A.
A mapping from the set N of natural numbers to the set B of real functions is called a sequence
of functions.
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Notes The sequences of functions are denoted by (fn), (g) etc., it (fn) is a sequence of functions defined on
A, then its members f1, f2, f3,.... are real functions with domain as the set A. These are also called
the terms of the sequence (fn).

Example:  Let fn(x) = xn, n = 1, 2, 3,...., where x A = {x : 0  x  I}. Then (fn) is a sequence of
functions defined on the closed interval [0, 1].

Similarly consider (fn), where fn(x) = sin nx, n = 1, 2, 3,.... x R. Then {fn}, is a sequence of functions
defined on the set R of real numbers.

Suppose (fn) is a sequence of functions defined on a set A and we fix a point x of A, then the
sequence (fn(x)), formed by the values of the members of (fn), is a sequence of real numbers. This
sequence of real numbers may be convergent or divergent. For example suppose that fn(x) = xn,

x [–1, 1]. If we consider the point x = 
1
2 , then the sequence (fn(x)) is ((

1
2 )n) which converges to 0.

If we take the point x = –1, the sequence (fn(x)) is the constant sequence (1, 1, 1.....) which converges
to 1. If x = –1, the sequence (f, (x)) is (–1, I, –1, 1,....) which is divergent.

Thus, you have seen that the sequence (fn(x)) may or may not be convergent. If for a sequence (fn)
of functions defined on a set A, the sequence of numbers (fn(x)) converges for each x in A, we get
a function f with domain A whose value f(x) at any point x of A is 

n
lim
®¥

 fn(x). In this case (fn) is said

to be pointwise convergent to f. We define it in the following way:

Definition 2: Pointwise Convergence

A sequence of functions (fn) defined on a set A is said to be convergent pointwise to f if for each
x in A, we have lim fn (x) = f(x). Generally, we write fn ® f (pointwise) on A.

or 
n
lim
®¥

fn(x) = f(x) pointwise on A. Also f is called pointwise limit or limit function of (fn) on A.

Equivalently, we say that a sequence {fn} converges to f pointwise on the set A if, for each > 0
and each xA, there exists a positive integer in depending both on  and x such that

|fn(x) – f(x)| < , whenever n  m,

Now we consider some examples.

Example: Show that the sequence (fn) where fn(x) = xn, x  [0, 1] is pointwise convergent.
Also find the limit.

Solution: If 0 x < 1, then 
n
lim
®¥

 fn(x) = 
n
lim
®¥

xn = 0.

If x = 1, then 
n
lim
®¥

f(x) = 
n
lim
®¥

1 = 1.

Thus (f,) is pointwise convergent to the limit function f where f(x) = 0 for 0  x  1 and f(x) = 1 for
x = 1.

Task  Show that the sequence of functions (fn) where fn(x) = xn, for x[–1, 1] is not pointwise
convergent.
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Example: Define the function fn, n = 1, 2,....., as follows:

fn(x) =

2

2

x 00, if
12n x, if 0 x

2n
1 12n 2n x, if x

2n 2n
10, if x 1
n

=ì
ï

< <ï
ï
í

-  
ï
ï

< ï
î

Show that the sequence (fn) is pointwise convergent.

Solution: The graph of function fn looks as shown in the Figure.

When x = 0, fn(x) = 0 for n = 1, 2,.....

Therefore, the sequence (fn(0)) tends to 0.

If x is fixed such that 0 < XIP; then choose m large enough so that 1
m

 < x or m > 1
X

. Then

fm(x) = fm+1 (x) = .... = 0. Consequently the sequence (fn(x)) –> 0 as n – 3 ¥.

Thus, we see that fn(x) tends to 0 for every x in 0 < x  1 and consequently (fn) tends pointwise to
f where f(x) = 0 " x [0, I].

Example: Consider the sequence of functions fn defined by fn(x) = cos nx for –¥ < x < ¥ i.e.
x R. Show that the sequence is not convergent pointwise for every real x.

Solution: If x = /4 then (fn(x)) is the sequence

(1/2, 0, – 1/2, – 1, – 1/2, 0,.....) which is not convergent.
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Task  Show that the sequence (fn) where fn(x) = 
sin nx

n
, x R, is pointwise convergent.

Also find the pointwise limit.

If the sequence of functions (fn) converges pointwise to a function f on a subset A of R, then the
following question arises: “If each member of (fn) is continuous, differentiable or integrable, is the
limit function f also continuous; differentiable or integrable?”. The answer is no if the convergence
is only pointwise. For instance each of the functions fn is continuous (in fact uniformly continuous)
but the sequence of these functions converges to a limit function f(x)

f(x) =
0 for 0 x 1
1, for x 1

 <ì
í

=î

which is not continuous. Thus, the pointwise convergence does not preserve the property of
continuity. To ensure the passage of the properties of continuity, differentiability or integrability
to the limit function, we need the notion of uniform convergence which we introduce in the next
section.

14.2 Uniform Convergence

From the definition of the convergence of the sequence or real numbers, it follows that
the sequences (fn) of functions converges pointwise to the function f on A if and only if for each
x A and for every number  > 0, there exists a positive integer m such that

|fn(x) – f(x)| <  whenever n  m.

Clearly for a given sequence (f,,) of functions, this m will, in general, depend on the given  and
the point x under consideration. Therefore it is, sometimes, written as m (, x). The following
example illustrates this point.

Example: Define fn(x) = x
n

 for < x < ¥.

For each fixed x the sequence (fn(x)) clearly converges to zero. For a given  > 0, we must show
the existence of an m, such that for all n  m,

|fn(x) – f(x)| = xx 0
n n
- = <

This can be achieved by choosing m = |x|é ù
ê úë û

 + 1 where |x|é ù
ê úë û

 denotes the integral part of |x|


 (i.e.

the integer m is next to |x| in the real line). Clearly this choice of m depends both on  and x.

For example, let = 3
1

10 . If x = 3
1

10  then |x|


 = 1 and, so, m can be chosen to be 2. If x = 1, then

|x| = 103 and, so, m should be larger than 106. Note that it is impossible to find an m that serve

for all x. For, if  it were, then |x|
m

 > E, for all x,

Consequently |x| is smaller than m, which is not possible. Geometrically, the fn’s can be
described as shown in the Figure.
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By putting  y = fn(x), we see that y = 
1
?

x is the line with slope 1
n

. fn is the line y = x with slope 1,

f2 is the line with slope 1
2

 and so on. As n tends to ¥, the lines approach the X-axis. But if we take

any strip of breadth 2 around X-axis, parallel to the X-axis as shown in the figure, it is impossible
to find a stage m such that all the lines after the stage m, i.e. fm, fm+1,.... lie entirely in this strip.

If it is possible to find m which depends only on  but is independent of the point x under
consideration, we say that (fn) is uniformly convergent to f. We define uniform convergence as
follows:

Definition 3: Uniform Convergence

A sequence of functions (fn) defined on a set A is said to be uniformly convergent to a function f
on A if given a number  > 0, there exists a positive integer m depending only on  such that

fn(x) – f(x)| <  for n  m and " x A.

We write it as fn ® f uniformly on A or lim fn(x) = f(x) uniformly on A. Also f is called the uniform
limit of f on A.

Note that if fn ® f uniformly on the set A, for a given > 0, there exists m such that

f(x) –  < fn(x) < f(x) + 

for all x A and n  m. In other words, for n  m, the graph of fn lies in the strip between the
graphs of f– and f + . As shown in the figure below, the graphs of fn Tor n  m will all lie
between the dotted lines.
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From, the definition of uniform convergence, it follows that uniform convergence of a sequence
of functions implies its pointwise convergence and uniform limit is equal to the pointwise limit.
We will show below by suitable examples that the converse is not true.

Example: Show that the sequence (fn) where fn(x) = x
n

, x  R is pointwise but not uniformly

convergent in R.

Solution: You have seen that (fn) is pointwise convergent to f where f(x) = 0 " x  R. In the same
example, at the end, it is remarked that given  > 0, it is not possible to find a positive integer m

such that |x|
n

 < for n  m and " x R i.e., |fn(x) – f(x)| <  for n  m and " x R. Consequently

(fn) is not uniformly convergent in R.

Example: Show that the sequence (fn) where fn(x) = xn is convergent pointwise but not
uniformly on [0, 1].

Solution: You have been shown that (fn) is pointwise convergent to, f on [0, l] where

f(x) = 0 " x [0, l [ and f(l) = l

Let  > 0 be any number. For x = 0 or x = 1, |fn(x) – f(x)| <  for n  1.

For 0 < x < l, |fn(x) – f(x)| <  if xn <  i.e. n log x < log  i.e. n > log
log x

 .

since log x is negative for 0 < x < 1. If we choose m = log 1
log x
é ù

+ê ú
ë û

, then |fn(x) – f(x)| <  for n  m.

Clearly m depends upon  and x.

We will now prove that the convergence is not uniform by showing that it is not possible to find
an m independent of x.

Let us suppose that 0 <  < l. If there exists m independent of x in [0, 1] so that

<|fn(x) – f(x)| <  for all n  m,

 then x’’ < for all n  m, whatever may be x in 0 < x < 1.
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NotesIf the same m serves for all x for a given  > 0 then xm < for all x, 0 < x < 1. This implies that

m > log
log x

  (since log x is negative). This is not possible since log x decreases to zero as x tends to

1 and so log /log x is unbounded.

Thus we have shown that the sequence (fn) does not converge to the function f uniformly in [0, 1]
even though it converges pointwise.

Example: Show that the sequence (g,) where gn(x) = 
x

1 nx+
, x [0,¥[ is uniformly

convergent in [0, ¥[.

Solution: 
n
lim
®¥

gn(x) = 0 for all x in the interval [0, ¥[. Thus (gn) is pointwise converge of where

f(x) = 0 " x [0, ¥[.

Now |gn(x) – f(x)| = 
x

1 nx+
 < 

1
n  for all x in [0, ¥[.

Since 
n

1lim
n®¥

 = 0, therefore given  > 0, there exists a positive integer m such that 
1
n < for n  m

Thus m depends only on . Therefore,

|gn(x) – f(x)| <  for n  m and " x [0, ¥[.

Therefore (g,) ® f uniformly in [0, ¥[.

Just as you have studied Cauchy’s Criterion for convergence of sequence of real numbers, we
have Cauchy’s Criterion for uniform convergence of sequence of functions which we now state
and prove.

Theorem 1: Cauchy’s Principle of Uniform Convergence

The necessary and sufficient condition for a sequence of functions (fn) defined on A to converge
uniformly on A is that for every  > 0, there exists a positive integer m such that

|fn(x) –fk(x)| < for n > k  m and " x A

Proof: Condition is necessary. It is given that (fn) is uniformly convergent on A.

Let fn – f uniformly on A. Then given  > 0, there exists a positive integer m such that

|fn(x) – f(x)| < /2 for n  m and " x A.

|fn(x) – fk(x)| = |fn(x) – f(x)| + |f(x) – fk(x)|

< |fn(x) – f(x)| + |f(x) – fk(x)| (By triangular inequality)

< 
2 2
 
+  + for n > k  m and " x A

This proves the necessary part. Now we prove the sufficient part.

Condition is sufficient: It is given that for every  > 0, there exists a positive integer m such that
|fn(x) – fk(x)| <  for n > k  m and for all x in A. But by Cauchy’s principle of convergence of
sequence of real numbers, for each fixed point x of A, the sequence of numbers (fn (x)) converges.
In other words, (fn) is pointwise convergent say to f on A. Now for each  > 0, there exists a
positive integer m such that
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|fn(x) – f(x)| < 

2
  for n > k  m.

Fix k and let n ® ¥. Then fn(x) ® f(x) and we get

|f(x) – fk(x)| < 
2
  i.e., |fk(x) – f(x)| < .

This is true for k  m and for all x in A. This shows that (f) is uniformly convergent to f on A,
which proves the sufficient part.

As remarked in the introduction, uniform convergence is the form of convergence of the sequence
of function (fn) which preserves the continuity, differentiability and integrability of each term fn

of the sequence when passing to the limit function f. In other words if each member of the
sequence of functions (fn) defined on a set A is continuous on A, then the limit function f is also
continuous provided the convergence is uniform. The result may not be true if the convergence
is only pointwise. Similar results hold for the differentiability and integrability of the limit
function f. Before giving the theorems in which these results are proved, we discuss some
examples to illustrate the results.

Example: Discuss for continuity the convergence of a sequence of functions (f), where
f (x) = 1 – |1 – x2|n, x {x||1 – x2|  1} = [ –2, 2].

Solution: Here 
2

2n

1, when |1 x | 1
lim f(x)

0, when 1 x | 1 i.e. x 0 2®¥

ì - <ï
= í

- = = ±ïî

Therefore the sequence (fn) is pointwise convergent to f where

f(x) =
2

2

1, when | x | 1
0, when |1 x | 1
ì - <ï
í

- =ïî

Now each member of the sequence (f,) is continuous at 0 but f is discontinuous at 0. Here (fn) is
not uniformly convergent in [–2, 2] as shown below.

Suppose (fn) is uniformly convergent in [–2, 2], so that f is its uniform limit.

Taking  = 1
2

, there exists an integer m such that

f(x) = < 
1
2  for n  m and " x [2, 2].

in particular |fm(x) – f(x)| < 
1
2 for x [2, 2]

Now |fm(x) – f(x)| = 
2 2

2

|1 x |"' when |1 x | 1
0 when |1 x | 1
ì - - <ï
í

- =ïî

Since 
x 0
lim
®

|1 – x2|m = 1,  a + v no.  such that

|1 – x2|m – 1| < 1/4 for 0 < |x | < 

i.e. 3/4  <|1 – x2|m < 5/4 for |x| < 
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So (1 – x2|m > 

1
2  for |x| < which is a contradiction.

Consequently (f,,) is not uniformly convergent in [–2, 2].

Example: Discuss, for continuity, the convergence of the sequence ((fn) where

fn(x) =
x

1 nx+
x [0, ¥[.

Solution: As you have seen that (f,,) ® f uniformly in [0, ¥[ where f(x) = 0, x [0,¥[.

Here each f,, is continuous in [0, ¥[ and also the uniform limit is continuous in [0, ¥[.

Example: Discuss for differentiability the sequence (fn) where

fn(x) = sin nx
n

, " x [0, ¥[.

Solution: Here (fn) ® f uniformly where f(x) = 0 " x R. You can see that each fn and fare
differentiable in R and

fn’(x) = n  cos nx and f’(x) = 0 " x R.

fn’(0) = n  ®¥ whereas f’(0) = 0

n
lim
®¥

f’n (0)  f’(0)

i.e. limit of the derivatives is not equal to the derivative of the limit.

As you will see in the theorem for the differentiability of f and the equality of the limit of the
derivatives and the derivative of the limit, we require the uniform convergence of the sequence
(fn).

Example: Discuss for integrability the sequence (f,,) where

f(x) = n x
2nxe- , x [0, 1],

Solution: If x = 0, then fn(0) = 0

and lim fn(0) = 0. If x  0, 
n
lim
®¥

fn(x) = 
n
lim
®¥

2nx

nx
e

 which is of the form ¥
¥

.

Applying L’ Hopital’s Rule, we have

n
lim
®¥

2nx

nx
e

 =
n
lim
®¥

2nx

x
2n xe

= 0

So (fn) ® f, pointwise, where f(x) = 0, " x [0, 1]

You may find that 
1 1

n
n

0 0

1f (x) dx (1 e ) and f(x) dx 0
2

-= - =ò ò
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Therefore, 

1 1 1 1

n nn n
0 0 0 0

1lim f (x) dx f(x) dx f(x) dx lim (f (x))dx
2®¥ ®¥

=  = =ò ò ò ò . That is, the integral of the limit

is not equal to be limit of the sequence of integrals. In fact, (fn) is not uniformly convergent to f
in [0, 1]. This we prove by the contradiction method. If possible, let the sequence be uniformly

convergent in [0, 1]. Then, for  = 1
4

, there exists a positive integer m such that |f(x) – f(x)| < 
1
4 ,

for n  m and " x [0, l].

i.e., 2nx

nx
e

 < 1
4

, for n  m and V x [0, 1]

Choose a positive integer M  m such that 
1

M
 [0, 1],

Take n = M and x 1
M

. We get

1
M  < 1

4
 i.e., M < 

2e
16

 < 1.

which is a contradiction. Hence (f) is not uniformly convergent in [0, 1].

Now we give the theorems without proof which relate uniform convergence with continuity,
differentiability and integrability of the limit function of a sequence of functions.

Theorem 2: Uniform Convergence and Continuity

If (fn) be a sequence of continuous functions defined on [a, b] and (fn) ® f uniformly on [a, b], then
f is continuous on [a, b].

Theorem 3: Uniform Convergence and Differentiation

Let (fn) be a sequence of functions, each differentiable on [a, b] such that (fn(x0)) converges for some
point x0 of [a, b]. If (fn) converges uniformly on [a, b] then (fn) converges uniformly on [a, b] to a
function f such that

f’(x) =
n
lim
®¥

f’n(x); x [a, b].

Theorem 4: Uniform Convergence and Integration

If a sequence (fn) converges uniformly to f on [a, b] and each function fn is integrable on [a, b],
then f is integrable on [a, b] and

b

a
J f(x) dx =

n
lim
®¥

b

a
J  fn(x) dx

14.3 Series of Functions

Just as we have studied series of real numbers, we can study series formed by a sequence of
functions defined on a given set A. The ideas of pointwise convergence and uniform convergence
of sequence of functions can be extended to series of functions.
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A series of the forth f1 + f2 + f3 +......+ fn +..... where the fn are real functions defined on a given set

ACR is called a series of functions and is denoted by n
n 1

f
¥

=

å . The function fn is called nth term of

the series.

For each x in A, f1(x) + f2 (x) + f3 (x) +....... + is a series of real numbers. We put Sn(x) = 
n

k
k 1

f (x)
=

å . Then

we get a sequence (S,) of real functions defined on A. We say that the given series f1 + f1 +....+ fn

+..... of functions converges to a function pointwise if the sequence (S„) associated to the given
series of functions converges pointwise to the function f. i.e. (S,, (x)) converges to f(x) for every
x in A.

We also say that f is the pointwise sum of the series fn on A.

If the sequence (Sn) of functions converges uniformly to the function f, then we say that the given
series f1 + f2 +....... + fn +........, of functions converges uniformly to the function f on A and f is

called uniform sum of n
i 1

f
¥

=

å on A. The function Sn is called the sum of n terms of the given series

or the n partial sum of the series and the sequence (Sn) is called the sequence of partial sums of the

series n
i 1

f
¥

=

å . To make the ideas clear, we consider some examples.

Example: Let fn(x) = xn-1 where x0 = 1 and –r  x  r where 0 < r < 1. Then the associated
series is 1 + x + x2 +.....

In this case, Sn(x) = 1, + x + x2 + ......+ xn–1. It is clear that Sn(x) = 
n1 x

1 x
-

-
.

This sequence (S, (x)) of functions is easily seen to converge pointwise to the function f(x) = 1
I x-

,

since xn ® 0 as n ®¥, since |x| < r < I but the convergence is not uniform as shown below:

Let  > 0 be given.

|Sn(x) – f(x)| = 
n n|x| r

|1 x| 1 r


- -
 if rn <  (1 – r)

i.e. n > log ( (1 r))
log r
 -

If m = 
log ( (1 r))

log r
é ù -
ê ú
ë û

= 1, then

|s,(x) – f(x)| <  if n  m and for –r  x  r.

Therefore (Sn) converges uniformly in [–r, r]. Thus the geometric series 1 + x + x 2 +..... converges

uniformly in [–r, r] to the sum function f(x) = I
1 x-

.
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Example: Let fn(x) = n x

2nxe- – (n – 1) x
2(n 1)xe- - , x [0, 1].

Consider the series 
n

n
k 1

f (x)
=

å .

In this case Sn(x) = 
22n (k 1)xkx

k 1
(k x (k 1)xe )- --

=

å - - = n x
2nxe-

As you have seen that this sequence (S,) is pointwise but not uniformly convergent to the
function f where f(x) = 0, x (0, 1). Thus the series  fn(x) is pointwise convergent but not
uniformly to the function f where f(x) = 0, x [0, 1].

There is a very useful method to test the uniform convergence of a series of functions. In this
method, we relate the terms of the series with those of a series with constant terms. This method
is popularly called Weierstrass’s M-test given by the German mathematician K.W.T. Weierstrass
(1815-1 897). We state this test in the form of the following theorem (without proof) and illustrate
the method by an example.

Theorem 5: Weierstrass M-Test

Let fn be a series of functions defined on a subset A of R and let (Mn) be a sequence of real
numbers such that Mn is convergent and |fn,(x)|  Mn, " n and " x A. Then fn is uniformly
and absolutely convergent on A.

Example: Test the uniform convergence of the series 2
n 1

x
n (n 1)

¥

=

å
+

Solution: Since n 2 3

x k|f (x)| , n
n (n 1) n

=  "
+

 and [0, k] .

Now the series Mn = k 
3

k
n

 is known to be convergent, by p-test.

Therefore, by Weierstrass M-test, the given series is uniformly convergent in the set [0, k].

Task  Show that the series 4 2
n 1

1
n x

¥

=

å
+

 converges uniformly, " x R.

Self Assessment

Fill in the blanks:

1. A sequence of functions (fn) defined on a set A is said to be convergent pointwise to f if for
each x in A, we have given fn (x) = f(x). Generally, we write ............................. on A.

2. A sequence of functions (fn) defined on a set A is said to be uniformly convergent to a
function f on A if given a number  > 0, there exists a positive integer m depending only
on  such that .............................

3. If (fn) be a sequence of continuous functions defined on [a, b] and (fn) ® f uniformly on [a,
b], then f is continuous on [a, b] is known as .............................
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Notes4. Let (fn) be a sequence of functions, each differentiable on [a, b] such that (fn(x0)) converges for
some point x0 of [a, b]. If (fn) converges uniformly on [a, b] then (fn) converges uniformly on
[a, b] to a function f such that .............................

5. If a sequence (fn) converges uniformly to f on [a, b] and each function fn is integrable on
[a, b], then f is integrable on [a, b] and .............................

14.4 Summary

 In this unit you have learnt how to discuss the pointwise and uniform convergence of
sequences and series of functions. Sequence of functions is defined and pointwise
convergence of the sequence of functions has been discussed. We say that a sequence of
functions (fn) is pointwise convergent to f on a set A if given a number e > 0, there is a
positive integer m such that

|fn(x) – f(x)| <  for n  m, x  A.

m in general depends on  and the point x under consideration. If it is possible to find m
which depends only on s and not the point x under consideration, then (f n) is said to be
uniformly convergent are f on A. Cauchy’s criteria for uniform convergence are discussed.
Also in this section you have seen that if the sequence of functions (fn) is uniformly
convergent to a function f on [a, b] and each fn’ is continuous or integrable, then f is also
continuous or integrable on [a,b]. Further it has been discussed that if (fn) is a sequence of
functions, differentiable on [a,b] such that (fn (x,)) converges for some point x0 of [a, b] and
if (fn) converges uniformly on [a, b], then (fn) converges uniformly to a differentiable
function f such that f’(x) = 

n
lim
®¥

f’n(x); x [a, b].

 Finally pointwise and uniform convergence of series of functions is given. The series of
functions is said to be pointwise or uniformly convergent on a set A according as the
sequence of partial sums (sn) of the series is pointwise or uniformly convergent on A.

14.5 Keywords

Uniform Convergence and Continuity: If (fn) be a sequence of continuous functions defined on
[a, b] and (fn) ® f uniformly on [a, b], then f is continuous on [a, b].

Uniform Convergence and Differentiation: Let (fn) be a sequence of functions, each differentiable
on [a, b] such that (fn(x0)) converges for some point x0 of [a, b]. If (fn) converges uniformly on [a, b]
then (fn) converges uniformly on [a, b] to a function f such that

f’(x) =
n
lim
®¥

f’n(x); x [a, b].

Uniform Convergence and Integration: If a sequence (fn) converges uniformly to f on [a, b] and
each function fn is integrable on [a, b], then f is integrable on [a, b] and

b

a
J f(x) dx =

n
lim
®¥

b

a
J  fn(x) dx

14.6 Review Questions

1. Examine which of the following sequences of functions converge pointwise

(i) fn(x) =  sin nx, –¥ < x < + ¥

(ii) fn(x) = 2 2
mx

1 n x+
, – ¥< x < + ¥
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Notes 2. Test the uniform convergence of the following sequence of functions in the specified
domains

(i) fn(x) = 
1

nx
 in  0 < x < ¥

(ii) fn(x) = 2 2
nx

1 n x+
, – ¥< < x < ¥

(iii) fn(x) = 
n

n
x

1 x+
, 0 x  1

(iv) fn(x) = 
1
n , 0  x < ¥

3. Show that the limit function of the sequence (f,) where (fn) (x) = 
x
n , x  R, is continuous in

R while (f,,) is not uniformly convergent.

4. Show that for the sequence (f,) where (fn) (x) = nx (1 – x2)n, x [0, 1], the integral of the limit
is not equal to the limit of the sequence of integrals.

5. Show that the series

x x x
x 1 (x 1)(2x 1) (2x 1)(3x 1)

+ +
+ + + + +

+...... is uniformly convergent in ]k, ¥[ where k is a

positive number.

6. Show that the series xX
n(n 1)+

 is uniformly convergent in [0, k] where k is any positive

number but it does not converge uniformly in [0, ¥].

Answers: Self Assessment

1. fn ® f (pointwise) 2. fn(x) – f(x)| <  for n  m and " x A.

3. Convergence and Differentiation 4. f’(x) = 
n
lim
®¥

f’n(x); x [a, b].

5.
b

a
J f(x) dx = 

n
lim
®¥

b

a
J  fn(x) dx

14.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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15.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Define uniform convergence

 Explain the testing pointwise and uniform convergence

 Discuss the covers and subcovers

 Explain Dini's theorem

Introduction

In earlier unit as you all studied about sequences in metric spaces. This unit will explain that
pointwise convergence of a sequence of functions was easy to define, but was too simplistic of a
concept. We would prefer a type of convergence that preserves at least some of the shared
properties of a function sequence. Such a concept is uniform convergence.

15.1 Uniform Convergence

Definition 1: Let I and 1{ }¥=n nf  be a sequence of real-valued functions on I. We say that fn

converges to f pointwise on I as n ¥if:

: ( ) ( ) as" Î  ¥nx I f x f x

Example: Let I = (0, 1) and ( )2 3
1 3( ) , ( ) , ( ) ,.... .= = =n

nf x x f x x f x x  It can be observed that

:" Îx I  ( ) 0.= n
nf x x  So nf  converges pointwise to the zero function on I.
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Definition 2: Let I  and 1{ }¥=n nf  be a sequence of real-valued functions on I. We say that fn

converges of f uniformly on I if:

0 : ( ) ( )e" > $ Î " Î - < ex nN I f x f x

Meaning: For any e-tube around f all functions fn starting from some N will be lying inside the
tube.

 

Example: Let us take (0,1)=I  and = n
nf x . Does it converge to ( ) 0=f x  uniformly on I?

In this case answer is no. But the converge holds in general.

Theorem 1: If nf f  uniformly then nf f  pointwise.

Proof: Pointwise convergence (N is allowed to depend on x):

0 : ( ) ( )" Î "e > $ Î " ³ - < enx I N n N f x f x

Uniform convergence ( N cannot depend on x):

0 : ( ) ( )  "e > $ Î " ³ " Î - < enN n N x I f x f x

Figure 15.1: Pointwise convergence
of .= n

nf x  First 10 terms of fn.

Figure 15.2: Uniform convergence. f1 in red, f2 in
yellow, f in blue, e-tube arund f in green.
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NotesHence, for any given 0e >  in  pointwise definition it suffices to take 
e=N N  taken from uniform

definition.

15.2 Testing Pointwise and Uniform Convergence

1. Test the pointwise convergence.

2. If there is no pointwise convergence, there is no uniform convergence.

3. If fn converges pointwise to some f test the uniform convergence to f.

Example: Let [0,1], ( ) .= = n
nI f x x  We see that nf  converges pointwise to ( )

0, 1
1, 1

=
¹ì

í
=î

f x
x
x

.

Does it converge uniformly to f on I? the answer is no.

Proof: Negation of uniform convergence is

0 : ( ) ( )$e > " Î $ ³ $ Î - ³ enN n N x I f x f x

Take 
1
4

e = . Then " ÎN  we have to find n and x such that ( ) ( ) .- ³ enf x f x  Take .=n N  Now we

want to find x. If we take any 1 , 1
4

Î
æ ö
ç ÷è øn

x  we get

1( ) ( ) ( ) ( ) 0 .
4

- = - = - = ³ = eN N
n Nf x f x f x f x x x

 

Example: Let [0, 1]=I  and 
1, [0, 1/ ]

( ) .
0, [1, 2/ , 1]

Îì
=í

Îî
n nf

x n
x f

x n
 converges pointwise to

f(x) =  
1, 0
0, otherwise

=ì
í
î

x
 but does not converge uniformly to f.

Proof: If 0=x  then (0) 1.nf  If (0,1)x Î  then ( ) 0.nf x  Therefore nf f  pointwise. To prove

that nf  does not converge to f uniformly fix 1/2.e =  Then " ÎN  choose n = N and 1/2 .=x N
Then

Figure 15.3: Suitable x’s (green) for function f2(x) = x2

(red). Limit function f is blue, e-tube and f in yellow.
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2 2 2

æ ö æ ö
- = - = - ³ = eç ÷ ç ÷è ø è øn Nf x f x f f

N N

Example: Let [0,1]=I  and 2

0, [1/ , 1]
( ) .

[0,1/ ]nf
x n

x
n n x x n

Îæ ö
= ç ÷- Îè ø

 Then xf  does not converge to

any f pointwise nor uniformly.

Proof: Look at 0.=x  Here (0) .¥nf  Therefore, nf  does not converge pointwise to any f.

Contrapositive tells us that nf  does not converge uniformly to any f.

Example: Let [0,1]=I  and nf  be from Figure 15.4

 

Proof: Fix 0.=x  Here (0) 0 0.= nf  Now look at (0,1].Îx  Put 1 1.=
é ù

+ê úë û
N

x
 Then :" ³ ³n N n

1/ 1/Þ ³x x n  and from image we can see that ( ) 0.nf x  Let us prove that nf  does not converge

uniformly to the zero function. Take 1.e =  Then " ÎN  choose n = N and x = 1/2N. We have

( ) ( ) (1/2 ) (1/2 ) 0 1 .- = - = - = ³ = en Nf x f x f N f N N N

Example: Let I = [0, 1] and nf  to from Figure 15.5. Then nf  converges to the zero function
pointwise and uniformly.

Proof: Pointwise convergence is clear since 1/ : 0.( ) 0" > =nn x f x  For proof of uniform

convergence of every 0e >  choose [1/ ] 1.= e +N  Then " ³n N  and [0,1]" În  we have

( ) ( ) 1/ 1/ .- = £ £ £ en nf x f x f n N

Figure 15.4: First 5 element of 1{ }¥=n nf  on [0, 1]. fn starts at 0, has value of the
peak equal of n at 1/2n and then returns to 0 at 1/n, value of the rest of 0.
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Example: Let (0, )= ¥I  and 2
1( ) .

( )
=

+
nf x

x n  Then nf  converges to ( ) 0=f x  pointwise and

uniformly.

Proof: Fix .Îx I We see that 0( )nf x  as ¥n . Hence nf  converges pointwise. For proof of

uniform convergence fix 0,e >  choose [1/ ] 1.= e +N  Then " ³n N  and " Îx I  we have

1 1 1( ) ( ) .- = £ £ < e
+

nf x f x
x n n N

Uniform Convergence and Continuity

If all nf  are continuous and nf f  pointwise, does f have to be continuous? The answer is no, it
suffices to look at Example. Hence, pointwise convergence does not preserve continuity but on
the other hand uniform does.

Theorem 2: Let 1{ }¥=n nf  be a sequence of real-valued functions on [ , ]a b . If all nf  are all continuous
and nf f  uniformly on [ , ]a b  then the limit function f is continuous.

Proof: We need to prove f is continuous at every , .Îx a b  That is fix [ , ]Îx a b  and show

0 0 [ , ] : ( ) ( )"e > $d > " Î - -< d Þ < ey a b y x f y f x

Let 0.e >  Since nf f  uniformly

[ , ] : ( ) ( ) /3.$ Î " ³ " Î - < enN n z a b f z f z

In particular,

[ , ] : ( ) ( ) /3." Î - < eNz a b f z f z

Since Nf  is continuous at x,

0 [ , ] : ( ) ( ) /3 $d > " Î - < d Þ - < eN Ny a b y x f y f x

Therefore take d = d  and we get

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+= - + - - £N N N Nf y f x f y f y f y f x f x f x

Figure 15.5: First 5 1{ }¥=n nf  on [0, 1]. fn is the same one as in
Figure 15.4 but having value of the peak equal to 1/n instead of n.
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Remark: This theorem also work for nf  defined on any .I  Fix .Îx I  This can be either
isolated point in I or the limit point of I. In both cases we use exactly the same argument as for
[ , ]a b  case.

We should compare uniform with pointwise convergence:

 For pointwise convergence we could first fix a value for x and then choose N. Consequently,
N depends on both and x.

 For uniform convergence fn(x) must be uniformly close to f(x) for all x in the domain. Thus
N only depends on but not on x.

Let's illustrate the difference between pointwise and uniform convergence graphically:

Pointwise Convergence Uniform Convergence 

For pointwise convergence we first fix a 
value x0. Then we choose an arbitrary 
neighborhood around f(x0), which 
corresponds to a vertical interval centered 
at f(x0).  

 
Finally we pick N so that fn(x0) intersects 
the vertical line x = x0 inside the interval 
(f(x0) - , f(x0) + )  

For uniform convergence we draw an -
neighborhood around the entire limit 
function f, which results in an “ -strip” 
with f(x) in the middle.  

 
Now we pick N so that fn(x) is completely 

inside that strip for all x in the domain. 

 
Uniform convergence clearly implies pointwise convergence, but the converse is false as the
above examples illustrate. Therefore uniform convergence is a more "difficult" concept. The
good news is that uniform convergence preserves at least some properties of a sequence.

15.3 Covers and Subcovers

Consider a collection of open intervals { } ,a a ÎAI  where A is an index set:

1. Finite collection: 1 2{ }., , ..., mI I I  In this case {1, ..., }.=A m

Example: 1 2(0, 2), (4, 5).I I= =

Table 15.1
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Notes2. Infinite collection indexed by 1 2: { }., , ... I I  In this case .=A

Example:  ( 1/3, 1/3).= - +nI n n

3. Infinite collection indexed by . In this case .=A

Example:  { }( 1, 1)
Î

- +
x

x x . This set contains all open intervals of length 2.

Definition 3: A collection of open intervals { }a a ÎAI  is a cover of a set S  if .aÎ a È AS I

Definition 4: Given a set S and its cover { } ,a aÎAI  a subcover of { }a aÎAI  is a subcollection of

{ } ,a aÎAI  which itself is a cover for S.

Example: Let 1 2(0, 2), (4,5).= =I I  A collection containing these two intervals covers
(0, 1) and {1} È (4, 4.5), but does not cover [0, 1).

Example: Let ( 1/3, 1/3), .= - + ÎnI n n n  Then { } În nI  covers  , but does not cover

  or {1/2}. Let {1} (3 1/4, 3 1/4).= È - +S  Then { } În nI  is a cover for S. Moreover, 1 3{ , }I I  is a

finite subcover. Consider another case where { } În nI  is a cover of . Here { } În nI  has no finite
subcover.

Example: Let ( 1 1/ , 1 1/ ), \{1}.= - + - ÎnI n n n  We see that the collection {(–3/4, 3/4)}
is a finite subcover for set [ 17 /24, 17 /24].= -S  Now, consider set ( 1,1).= -S  Is 2{ } ³n nI  a cover

for S? The answer is positive and 2{ } ³n nI  has no finite subcover.

Example: We can observe that given a set S and its cover { }a a ÎAI  sometimes it’s possible
to extract a finite subcover and sometimes isn’t.

Theorem 3: (Heine-Borel). Every cover of closed interval [ , ]a b  has a finite subcover.

Proof: Definite a set { [ , ] : [ , ]= ÎB x a b a x  has a finite subcover. We see that ,Îa B  since [ , ]a a  is
a single point. We need to prove that .Îb B  Define c = sub B. Now, we have to prove two claims:

Claim 1: =c b (Figure 13.6, left).

Assume that .<c b  Then there is an interval bI  s.t. .bÎc I  Pick 0e >  s.t. ( , ) b- e + e c c I  and
( , ) [ , ].- e + e c c a b  Since c = sup B there is Îx B  s.t. ( , ]Î - ex c c . Since , [ , ]Îx B a x  can be
covered by finitely many intervals 1{ ,..., }.a amI I  Pick ( , )y c cÎ + e  and see that [ , ]a y  is covered
by finite subcover 1{ , ..., , }.mI I Ia a b  Hence .y BÎ  But y c>  what implies that supc B¹ ? What is
contradiction? Therefore .c b=

Claim 2: b BÎ (Figure 15.6, right)

Pick Ib  covering b. Take 0e >  s.t. ( , ] .b b Ib- e   Since supb B=  there exists x BÎ  s.t. ( , ].x b bÎ - e

Since , [ , ]x B a xÎ  can be covered by finitely many intervals 1{ , ..., }.mI Ia a  Then [ , ]a b  is covered
by finitely many intervals 1{ , ..., , }.mI I Ia a b
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15.4 Dini’s Theorem

Now, we are above to state in certain sense a converse to Theorem 1.

Theorem 4: (Dini’s Theorem). Let 1{ }n nf ¥

=  be a sequence of real-valued functions on [ , ].a b  If:
(a) nf f pointwise, (b)  all nf  are continuous, (c)  f is continuous and (d) 1[ , ] : { ( )}n nx a b f x ¥

=" Î

is monotone then nf f  uniformly.

Proof: Given 0e >  we want

0 [ , ] : ( ) ( ) .nN n x a b f x f x"e > $ Î " ³ " Î - < e

Let [ , ].x a bÎ  Since nf f  pointwise

( ) ( ) : ( ) /2.nN x n N x f x$ Î " ³ < e

In particular,

( )( ) ( ) /2.N xf x f x- < e

Let ( )( ) ( ) ( ).N xg y f y f y= -  Then ( )g y  is continuous by (b) and (c). In particular ( )g y  is continuous
at x

( ) 0 . . [ , ] : ( ) ( ) ( ) /2x s t y a b y x x g y g x$d > " Î - < d Þ - < e

which implies

( )( ) ( ) ( ) ( ) ( ) ( )N xf y f y g y g y g x g x- = £ - + =

( )( ) ( ) ( ) ( ) /2 /2 .N xg y g x f x f x= - + - < e + e < e

Moreover,

( ) [ , ] : ( ) ( ) ( )nn N x y a b y x x f y f y" ³ " Î - < d Þ - < e

since, by (d)

( )( ) ( ) ( ) ( ) .n N xf y f y f y f y- £ -

Denote ( ) ( ( ), ( )) [ , ].I x x x x x x a b= -d +d " Î  We have shown

( ) ( ) ( ) [ , ] : ( ) ( ) .nN x n N x y I x a b f y f y$ Î " ³ " Î Ç - < e

Note that, [ , ]{ ( )}x a bI x Î  is a cover for [ , ],a b  since x"  is covered at least by ( ).I x  By Heine-Borel

Theorem 3 there is finite subcover 1 2{ ( ), ( ),..., ( )}.mI x I x I x  Choose 1max{ ( ), ..., ( )}mN N x N x=  for

any 0.e >  Let n N³  and [ , ].x a bÎ  Let ( )iI x  be an interval converging x. Then ( ).i ix x x- < d

Since n N³  we have ( )in N x³  and therefore ( ) ( ) .nf x f x- < e

Are all conditions of Dini’s Theorem 4 important? The answer is yes, look at following examples.

Figure 15.6: Claim 1 (left) and
Claim 2 (right) visualizations.
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Example: If (b) is not satisfied: let [0, 1]I =  and nf  is in the figure 15.7. We see that:

(a)  0nf   pointwise.

(c) ( ) 0f x =  is continuous

(d) { ( )} {1,1, 1, 0, 0, ...}nf x =  is decreasing

But nf  does not converge to ( ) 0f x =  uniformly.

 

Example: If (c) is not satisfied: Let [0,1]I =  ( ) .n
nf x x=  We see that:

(a) .nf f  Where 
0, 1

( ) .
1, 1

x
f x

x
¹ì

= í
=î

(b) All nf  are continuous.

(d) { }nf  is decreasing.

But nf  does not coverage to f uniformly.

Example: If (d) is not satisfied: Let [0,1]I =  and nf  here we see that:

(a) 0nf   pointwise

(b) All nf  are continuous

(c) ( ) 0f x =  is continuous

(d) Put 1/4.x =  Then (1/4) { , , ,...}nf a b c=  where a b<  and .c b<  Hence not satisfied.

But nf  does not converge to ( ) 0f x =  uniformly.

Figure 15.7: Sequence of Real-valued Functions fn being
1 in (0,1/n) and 0 elsewhere on [0, 1].
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Example: If the interval is not closed. Let (0,1)I = and ( ) .n

nf x x=

(a) 0nf   pointwise

(b) nx  is continuous.

(c) ( )f x = 0 is continuous

(d) { }nf  is monotonic (0, 1).x" Î

But nf  does not converge to ( ) 0f x =  uniformly.

Self Assessment

Fill in the blanks:

1. If there is no pointwise convergence, there is no ..............................

2. If fn ............................ to some f test the uniform convergence to f.

3. A collection of open intervals { }a a ÎAI  is a cover of a set ..........................

4. Given a set S and its cover { } ,a aÎAI  a ................................. is a subcollection of { } ,a aÎAI  which
itself is a cover for S.

15.5 Summary

 Let f1 f2 f3 … be a sequence of functions from one metric space into another, such that for
any x in the domain, the images f1(x) f2(x) f3(x) … form a convergent sequence. Let g(x) be
the limit of this sequence. Thus the function g is the limit of the functions f1 f2 f3 etc.

 This sequence of functions is uniformly convergent throughout a region R if, for every 
there is n such that fj(x) is within e(g(x), for every x in R and for every j ³ n. The functions
all approach g(R) together, one n fits all. This is similar to uniform continuity, where one
d fits all.

 If the range space is complex, or a real vector space, the sequence of functions is uniformly
convergent iff. All the component functions are uniformly convergent. Given an e, find fn

that is close to g, and the components of fn must be close to the components of g, for all x.
Conversely, if the components are within e then the n dimensional function is within ne,
for all x.

 Without uniform convergence, g is rather unpredictable. Let the domain be the closed
interval [0, 1], and let fn = xn. Note that the sequence f approaches a function g that is
identically 0, except for g(1) = 1. Each function in the sequence is uniformly continuous, yet
the limit function isn’t even continuous.

15.6 Keywords

Heine-Borel: Every cover of closed interval [ , ]a b  has a finite subcover.

Dini’s Theorem: Let 1{ }n nf ¥

=  be a sequence of real-valued functions on [ , ].a b  If:

(a) nf f pointwise, (b)  all nf  are continuous, (c) f is continuous and (d) 1[ , ] : { ( )}n nx a b f x ¥

=" Î

is monotone then nf f  uniformly.
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1. Let I = [1, 2] and 
1, [0, 1/ ]

( ) .
0, [1, 2/ , 1]

Îì
=í

Îî
n nf

x n
x f

x n
 converges pointwise to

f(x) =  
1, [0, 1/ ]

( ) .
0, [1, 2/ , 1]

Îì
=í

Îî
n nf

x n
x f

x n
 but does not converge uniformly to f.

2. Let [0, 1]=I  and nf  to from Figure 15.5. Then nf  converges to the zero function pointwise
and uniformly.

3. Let (0, )= ¥I  and 2
1( ) .

( )
=

+
nf x

x n  Then nf  converges to ( ) 0=f x  pointwise and uniformly.

4. 1{ }¥=n nf  be a sequence of real-valued functions on [ , ]a b . If all nf  are all continuous and
nf f  uniformly on [ , ]a b  then the limit function f is continuous.

5. Let ( 1/3, 1/3), .= - + ÎnI n n n  Then { } În nI  covers  , but does not cover   or {1/2}.
Let {1} (3 1/4, 3 1/4).= È - +S  Then { } În nI  is a cover for S. Moreover, 1 3{ , }I I  is a finite
subcover. Consider another case where { } În nI  is a cover of ¥. Here { } În nI  has no finite
subcover.

6. Let ( 1 1/ , 1 1/ ), \{1}.= - + - ÎnI n n n  We see that the collection {(–3/4, 3/4)} is a finite
subcover for set [ 17 /24, 17 /24].= -S  Now, consider set ( 1,1).= -S  Is 2{ } ³n nI  a cover for
S? The answer is positive and 2{ } ³n nI  has no finite subcover.

Answers: Self Assessment

1. uniform convergence 2. converges pointwise

3. S  if aÎ a È AS I 4. subcover of { }a aÎAI

15.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7 (7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,
Ch.14, Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.



204 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes Unit 16: Uniform Convergence and Continuity

CONTENTS

Objectives

Introduction

16.1 Uniform Convergence Preserves Continuity

16.2 Uniform Convergence and Supremum Norm

16.3 Uniform Convergence and Integrability

16.4 Convergence almost Everywhere

16.5 Lebesgue’s Bounded Convergence Theorem

16.6 Summary

16.7 Keywords

16.8 Review Questions

16.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Uniform Convergence preserves Continuity

 Explain the Supremum Norm

 Discuss Sup-norm and Uniform Convergence

Introduction

In earlier unit as you all studied about uniform convergence. Uniform convergence clearly
implies pointwise convergence, but the converse is false. Therefore uniform convergence is a
more “difficult” concept. The good news is that uniform convergence preserves at least some
properties of a sequence. This unit will explain Uniform Convergence preserves Continuity.

16.1 Uniform Convergence Preserves Continuity

If a sequence of functions fn(x) defined on D converges uniformly to a function f(x), and if each
fn(x) is continuous on D, then the limit function f(x) is also continuous on D.

All ingredients will be needed, that fn converges uniformly and that each fn is continuous. We
want to prove that f is continuous on D. Thus, we need to pick an x0 and show that

|f(x0) – f(x)| <  if |x0 – x| < 

Let’s start with an arbitrary  > 0. Because of uniform convergence we can find an N such that

|fn(x) – f(x)| < /3 if n N

for all x D. Because all fn are continuous, we can find in particular a  > 0 such that

|fN(x0) – fN(x)| < /3 if |x0 - x| < 
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|f(x0) – f(x)| |f(x0) – fN(x0)| + |fN(x0) – fN(x)| + |fN(x) – f(x)| /3 + /3 + /3 =

as long as |x0 – x| < . But that means that f is continuous at x0.

Before we continue, we will introduce a new concept that will somewhat simplify our discussion
of uniform convergence, at least in terms of notation: we will use the supremum of a function to
define a ‘norm’ of f

16.2 Uniform Convergence and Supremum Norm

Definition 1: The supremum norm of a function :f I ®  is

sup
sup ( ) .

x I
f f f x

¥


= =

Example: Let I =   and ( ) sin( ).f x x=  Then sup
1.f =

Example: Let [0,1]I =  and ( ) 2 .f x x= -  Then sup
2.f =  The norm stays the same even if

we change the interval [0, 1] to (0, 1).

Theorem 1: Let 1{ }n nf ¥

=  be a sequence of real-valued functions on I. Then nf f®  uniformly if and

only if sup
0.nf f- ®  Note that supnf f-  is just a sequence of number.

Proof: nf f®  uniformly : ( ) ( ) : supn x IN n N x I f x f x N n N Û " $ "  "  -   Û " $ " 

( ) ( ) :n nf x f x N n N f f-   Û " $ "  -  

Example: Let ( ) n
nf x x=  on (0, 1). We can observe that (0 ,1)sup

sup 0n
n xf f x- = -  =

1 0.®  As 0nf ®  uniformly.

Example: Let 
1,

( )
0,n

x n
f x

x n
ì

= í
<î

 on .  Then sup
sup ( ) 0 1 0.x nf f x= - = ®  So 0nf ®

uniformly.

Using this proposition it can be easy to show uniform convergence of a function sequence,
especially if the sequence is bounded. Still, even with this idea of sup-norm uniform convergence
can not improve its properties: it preserves continuity but has a hard time with differentiability.

Example: Consider the sequence fn(x) = 1/n sin(nx):

 Show that the sequence converges uniformly to a differentiable limit function for all x.

 Show that the sequence of derivatives fn’ does not converge to the derivative of the limit
function.

This example is ready-made for our sup-norm because |sin(x)| < 1 for all x. As for our proof: the
sequence converges uniformly to zero because:

||fn – f||D = ||1/n sin(n x) – 0||D  1/n ® 0
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f‘(x) = cos(nx)

Which does not converge (take for example x = ).

Example: Find a sequence of differentiable functions that converges uniformly to a
continuous limit function but the limit function is not differentiable

we found a sequence of differentiable functions that converged point wise to the continuous,
non-differentiable function f(x) = |x|. Recall:

fn(x)= 2

1 1x if 1 x
2n n

n 1 1x if x
2 n n

1 1x if x 1
2n n

ì
- - -   -ï
ï
ï

- < <í
ï
ï

-  ï
î

That same sequence also converges uniformly, which we will see by looking at ‘|| f n – f||D.
We will find the sup in three steps:

If 1  x –1/n:

fn(x) – f(x)| = |–x – 1/2n + x| = 1/2n

If –1/n < x < 1/n:

|fn(x) – f(x)| |n/2 x2| + |x|  n/2 1/n
2 + 1/n = 3/2n

If 1/n x  1:

|fn(x) – f(x)| = |x – 1/2n – x| = 1/2n

Thus, || fn – f||D < 3/2n which implies that fn converges uniformly to f. Note that all fn are
continuous so that the limit function must also be continuous (which it is). But clearly f(x) = |x|
is not differentiable at x = 0.

16.3 Uniform Convergence and Integrability

Theorem 2: Let 1{ }n nf ¥

=  be a sequence of real-valued functions on [ , ].a b  If all nf  are Riemann-

integrable and nf f®  uniformly then f is Riemann-integrable and

( ) ( ) .
b b

na a
f x dx f x dx®ò ò

Proof: Recall partition 0 1: ... .nP a t t t b= < < < =  The upper Darboux sum 
1[ , ]1

( , ) sup
i i

n
t ti

U f p
-=

=å

1( )( )i if x t t --  and the lower Darboux sum 
1[ , ] 11

( , ) inf ( ) ( ).
i i

n
t t i ii

L f P f x t t
- -=

= -å  f is Riemann-

integrable on [ , ]a b  if and only if 0 ( , ) ( , ) .PU f P L f P" > $ - < 

Claim 1: f is Riemann-integrable.

Let 0. >  Since nf f®  uniformly n$ s.t. sup
.

4( )nf f
b a


- <
-

 Since nf  is R-integrable P$  s.t.

( , ) ( , ) /2.n nU f P L f P- <   We have
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sup ( ) ( ) ( ) ,

4( ) 4( ) 4( )n n nf f f x f x f x x
b a b a b a
  

- < Þ   + "
- - -

i.e.

1 1[ , ] [ , ]
sup ( ) sup ( ) .

4( )i i i i

n
t t t t

f x f x
b a

- -


 +

-

Then

1 1

1 1
[ , ] [ , ]1 1

( , ) sup ( )( ) sup ( ) ( )
4( )i i i i

n n

i i n i i
t t t ti i

U f P f x t t f x t t
b a

- -

- -

= =

æ ö
= -  + - =ç ÷-è ø
å å

1
1

( , ) ( ) ( , ) .
4( ) 4

n

n i i n
i

U f P t t U f P
b a -

=

 
= + - = +

-
å

Similarly,

( , ) ( , ) .
4nL f P L f P 

 -

So

( , ) ( , ) ( , ) ( , )
4 4 2 4 4n nU f P L f P U f P L f P    

-  + - +  + + = 

Claim 2: ( ) ( ) .
b b

na a
f x dx f x dx®ò ò

Since sup
0,nf f- ®  given 0 >  there exists N   s.t. sup

: /( ).nn N f f b a"  - <  -  Therefore,

:n N" 

( ) ( ) ( ) ( ) ( )
b b b b

n n na a a a
f x dx f x dx f x dx f x f x dx- =  - ò ò ò ò

sup sup

number

( ) ( ) .
( )

b

n na
f f dx f f b a b a

b a


- = - - < - = 
-ò

Much more can be said about convergence and integration if we consider the Lebesgue integral
instead of the Riemann integral. To focus on Lebesgue integration, for example, we would first
define the concept of “convergence almost everywhere”:

16.4 Convergence almost Everywhere

A sequence fn defined on a set D converges (pointwise or uniformly) almost everywhere if there
is a set S with Lebesgue measure zero such that fn converges (pointwise or uniformly) on D\S.
We say that fn converges (point wise or uniformly) to f a.e.

In other words, convergence a.e. means that a sequence converges everywhere except on a set
with measure zero. Since the Lebesgue integral ignores sets of measure zero, convergence a.e. is
ready-made for that type of integration.
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Example: Let rn be the (countable) set of rational numbers inside the interval [0, 1],

ordered in some way, and define the functions

1 2 3 n1 if x r ,r ,r ,...r 1 if x rational
and g(x)

0 otherwise 0 if x irrational
= =ì ì

í í
=î î

Show the following:

 The sequence gn converges pointwise to g but the sequence of Riemann integrals of gn does
not converge to the Riemann integral of g.

 The sequence gn converges a.e. to zero and so does the sequence of Lebesgue integrals of gn.

Solution:

Each gn is continuous except for finitely many points of discontinuity. But then each gn is integrable
and it is easy to see that

gn(x)dx 0ò =

But the limit function is not Riemann-integrable and hence the sequence of Riemann integrals
does not converge to the Riemann integral of the limit function.

Please note that while each gn is continuous except for finitely many points, the limit function g
is discontinuous everywhere

On the other hand, each gn is zero except on a set of measure zero, and so is the limit function.
Thus, using Lebesgue integration we have that all integrals evaluate to zero. But then, in particular,
the sequence of Lebesgue integrals of gn converge to the Lebesgue integral of g.

There are many theorems relating convergence almost everywhere to the theory of Lebesgue
integration. They are too involved to prove at our level but they would certainly be on the
agenda in a graduate course on Real Analysis. For us we will be content stating, without proof,
one of the major theorems.

16.5 Lebesgue’s Bounded Convergence Theorem

Let {fn} be a sequence of (Lebesgue) integrable functions that converges almost everywhere to a
measurable function f. If |fn(x)|  g(x) almost everywhere and g is (Lebesgue) integrable, then
f is also (Lebesgue) integrable and:

nn
lim f f dm 0
®¥

ò - =

Self Assessment

Fill in the blanks:

1. Let I =   and ( ) sin( ).f x x=  Then .........................

2. Let [0,1]I =  and ( ) 2 .f x x= -  Then ...................... The norm stays the same even if we change
the interval [0, 1] to (0, 1).

3. Let 1{ }n nf ¥

=  be a sequence of real-valued functions on I. Then nf f®  uniformly if and only
if ............................ Note that supnf f-  is just a sequence of number.

4. Let 1{ }n nf ¥

=  be a sequence of real-valued functions on [ , ].a b  If all nf  are Riemann-integrable
and nf f®  uniformly then f is ....................... and

( ) ( ) .®ò ò
b b

na a
f x dx f x dx
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 If a sequence of functions fn(x) defined on D converges uniformly to a function f(x), and if
each fn(x) is continuous on D, then the limit function f(x) is also continuous on D.

 All ingredients will be needed, that fn converges uniformly and that each fn is continuous.
We want to prove that f is continuous on D.

 Before we continue, we will introduce a new concept that will somewhat simplify our
discussion of uniform convergence, at least in terms of notation: we will use the supremum
of a function to define a ‘norm’ of f.

 A sequence fn defined on a set D converges (point wise or uniformly) almost everywhere
if there is a set S with Lebesgue measure zero such that fn converges (pointwise or uniformly)
on D\S. We say that fn converges (pointwise or uniformly) to f a.e.

 Much more can be said about convergence and integration if we consider the Lebesgue
integral instead of the Riemann integral. To focus on Lebesgue integration, for example,
we would first define the concept of “convergence almost everywhere”.

 In other words, convergence a.e. means that a sequence converges everywhere except on
a set with measure zero. Since the Lebesgue integral ignores sets of measure zero,
convergence a.e. is ready-made for that type of integration.

 Let { fn } be a sequence of (Lebesgue) integrable functions that converges almost everywhere
to a measurable function f. If |fn(x)|  g(x) almost everywhere and g is (Lebesgue) integrable,
then f is also (Lebesgue) integrable and:

nn
lim f f dm 0
®¥

ò - =

16.7 Keywords

Convergence almost Everywhere: A sequence fn defined on a set D converges (pointwise or
uniformly) almost everywhere if there is a set S with Lebesgue measure zero such that fn converges
(point wise or uniformly) on D\S. We say that fn converges (pointwise or uniformly) to f a.e.

Uniform Convergence Preserves Continuity: If a sequence of functions fn(x) defined on D converges
uniformly to a function f(x), and if each fn(x) is continuous on D, then the limit function f(x) is also
continuous on D.

Lebesgue’s Bounded Convergence Theorem: Let {fn} be a sequence of (Lebesgue) integrable functions
that converges almost everywhere to a measurable function f. If |fn(x)|  g(x) almost everywhere
and g is (Lebesgue) integrable, then f is also (Lebesgue) integrable and:

nn
lim f f dm 0
®¥

ò - =

16.8 Review Questions

1. Let ( ) n
nf x x=  on (0, 1). We can observe that (0 ,1)sup

sup 0n
n xf f x- = -  = 1 0.®  By

Theorem 0nf ®  uniformly.

2. Let {n
1, x nf (x) 0, x n


=

<
 on .  Then 

sup
sup ( ) 0 1 0.x nf f x= - = ®  So 0nf ®  uniformly.
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1.
sup

f 1= 2.
sup

f 2=

3. n sup
f f 0- ® 4. Riemann-integrable

16.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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17.2 Series of Functions

17.3 Central Principle of Uniform Convergence
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17.7 Keywords

17.8 Review Questions

17.9 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the uniform convergence and differentiability

 Explain the series of the functions

 Describe the central principle of uniform convergence

Introduction

In last unit you have studied about uniform convergence and continuity. Simple or pointwise
convergence is not enough to preserve differentiability, and neither is uniform convergence by
itself. However, if we combine pointwise with uniform convergence we can indeed preserve
differentiability and also switch the limit process with the process of differentiation. It remains
to clarify the connection between uniform convergence and differentiability.

17.1 Uniform Convergence and Differentiability

Is it true that if all nf  are differentiable and nf f®  uniformly then f is differentiable and

?nf f¢ ® ¢  The answer is no. Look at the following examples.

Example: Let 21: , ( ) sin( )n nf f x n x
n

® =  .

We see that all nf  are differentiable and that nf f®  uniformly 2
sup

1 sin( ) 1/ 0 .nf f n x n
n

æ ö
- = = ®ç ÷è ø

2
sup

1 sin( ) 1/ 0 .nf f n x n
n

æ ö
- = = ®ç ÷è ø

 But 2( ) cos( ) 0nf x n n x¢ = ®  neither uniformly nor pointwise, although the zero function

is differentiable.
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Example: Let 1 1/( ) n

nf x x +
=  be defined on [–1, 1]. See Figure 17.1.

We can observe that all nf  are differentiable, nf  converges uniformly to ( )f x x=  by Dini’s

Theorem ( ( )nf x x®  pointwise, ( )nf x  are continuous, ( )f x  is continuous, x"  in [–1, 1],

1{ ( )}n nf x ¥

=  is increasing). But x  is not even differentiable.

The reason why this theorem cannot hold is that the uniform convergence, in fact, does not tell
anything about slopes of .nf  See Figure 17.2.

 

 

Theorem 1: Let 1{ }n nf ¥

=  be a sequence of real-valued function on [ , ].a b  If (a) all nf  are differentiable,

(b) all nf
¢  are continuous, (c) nf h¢ ®  uniformly, for some function :[ , ] ,h a b ®  (d) [ , ]c a b$ Î

s.t. ( )nf c  converges then nf  converges uniformly to some : [ , ] ,f a b ®  in addition, this uniform

limit f is differentiable and ( ) ( ).f x h x¢ =

Proof: Firstly, we define a function ( )f x  which satisfies ( ) ( )f x h x¢ =  in Part 1 and then we show

that nf f®  uniformly in Part 2.

Figure 17.1: First 4 terms of 1 1/
1{ }n

nx + ¥

=

Figure 17.2: Slopes are Independent of Uniform Convergence
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Part 1: Define ( ) : lim ( ) and ( ) : ( ) ( ) .

x

n cn
f c f c f x f c h t dt

®¥
= = + ò

Note that ( )h t  is R-integrable since it is a uniform limit of continuous functions nf
¢  (Theorem 1).

Therefore, according to the definition of ( )f x  and by the fundamental theorem of calculus we can

see that ( ) ( ( ) ( ) ) ( ( ) ( ) ( ) ) ( ) ( ),
x x a x

c a c a

d d df x f c h t dt f c h t dt h t dt h t h x x
dx dx dx

¢ = + = + + = = "ò ò ò ò  [ , ].a bÎ

Part 2: We want to show that nf f®  uniformly on [ , ].a b  By the fundamental theorem of calculus:

( ) ( ) ( ) .
x

n n nc
f x f c f t dt¢= + ò

Put 0.e >  Since ( ) ( )nf c f c®  we have ( ) ( ) /2nf c f c- < e  for all 1.n N³  Also nf h¢ ®  uniformly,

so we have sup
/(2( ))nf h b a¢ - < e -  for all 2 .n N³  Therefore put 1 2max{ , }.N N N=  Then

[ , ]n N x a b" ³ " Î  we get

( ) ( ) ( ) ( ) ( ) ( )
x x

n n nc c
f x f x f c f c f t dt h t dt¢- = - + - £ò ò

( ) ( ) ( ) ( )
x

n nc
f c f c f t h t dt¢£ - + - £ò

( ) ( ) ( ) ( )
x

n nc
f c f c f t h t dt¢£ - + - £ò

sup
( ) ( ) 1

x

n n c
f c f c f h dt¢£ - + - =ò

sup
( ) ( )n nf c f c f h x c¢= - + - - £

sup
( ) ( ) ( )n nf c f c f h b a¢£ - + - - £

/2 ( )
2( )

b a
b a
e

< e + - = e
-

Example: Theorem 1 is not true if we replace [ , ]a b  by .  Look at ( ) sin( / )nf x x n=  on .

Then 
1( ) cos( / ) 0nf x x n
n

¢ = ®  uniformly 
sup

1 cos( / ) 1/ 0}.x n n
n

= ®  Conditions (a) – (d) of

Theorem 1 are satisfied but 0nf ®  uniformly.

17.2 Series of Functions

Definition 1: Let I Ì   and 1{ }n ng ¥

=  be a sequence of real-valued functions on I. Then

1
n

n
g

¥

=

å
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is a series of functions. Partial sums: 

1
( ) ( ).n

n ii
f x g x

=
=å  We say that 

1 nn
g¥

=å  converges pointwise/

uniformly to :f I ®  if nf f®  pointwise/unformly.

Example: Consider a series 
0

n
n

x¥

=å  on [–1/2, 1/2] and on (–1, 1). We want to investigate
convergence of this series, whether it is pointwise of n uniform and eventually, what is the limit.

Partial sums are in this case 
1

2
0

1( ) 1 ... .
1

n
n i n

n i

xf x x x x x
x

+

=

-
= = + + + + =

-
å  If we fix ( 1, 1)x Î -  we

see that 
1 1 1( )

1 1

n

n
xf x

x x

+ -
= ®

- -
 pointwise on (–1, 1) and therefore also on [–1/2, 1/2]. Does not

series converge to the 
1

1 x-
 also uniformly on the same intervals? Look at the modulus

1 11 1( ) ( )
1 1 1

n n

n
x xf x f x

x x x

+ +-
- = - =

- - -

On [–1/2, 1/2] our series converges uniformly to f since partial sums do

1

1sup
[ 1/2 , 1/2]

1 1sup 2 0.
1 2 2

n

n n n
x

xf f
x

+

+
Î -

- = £ = ®
-

On (–1, 1) the series does not converge to f since partial sums do not.

1

sup
( 1, 1)

sup if 1.
1

n

n
x

xf f x
x

+

Î -

- = = ¥ ®
-

Let us fix a sequence of real-valued functions 1{ }n ng ¥

=  on [ , ].a b

Theorem 2:  Continuity for Series

 If (a) all gn are continuous and (b) 
1 nn
g¥

=å  converges uniformly then 
1 nn
g¥

=å  is continuous.

Proof: Consider partial sum 1 2 ... .n nf g g g= + + +  We see that nf  is continuous, since it is a sum of

continuous functions. Also, by (b), 
1n nn

f g¥

=
®å  uniformly. Therefore, the continuity of the

uniform limit 
1 nn
g¥

=å  is Riemann-integrable and we can integrate the series term by term

1 1
.

b b

n na a
n n

g dx g dx
¥ ¥

= =

=å åò ò

Proof: Since sum of R-integrable functions is R-integrable, we see that the partial sum

1 21
...n

i ni
g g g g

=
= + + +å  is R-integrable and by (b) 

1 1

n
i ii i

g g¥

= =
®å å

1 1 1
lim lim

nb b b

i i i ia a an ni i i
g dx g dx g dx g dx

¥ ¥

®¥ ®¥
= = =

= = =å å åò ò ò
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If (a) all ng  are differentiable, (b) all ng ¢  are continuous, (c) 
1 nn
g¥ ¢

=å  converges uniformly and (d)

[ , ]c a b$ Î  s.t. 
1

( )nn
g c¥

=
< ¥å  then 

1 nn
g¥

=å  converges uniformly and

1 1
.n

n n
gn g

¥ ¥
¢

= =

æ ö
¢ =ç ÷è ø

å å

Proof: Since sum of differentiable functions is differentiable we observe that the partial sum

1 2 ...n nf g g g= + + +  is differentiable. Similarly, all 1 2 ...n nf g g g¢ ¢ ¢ ¢= + + +  are continuous. By (c)

1n nn
f g¥¢ ¢

=
®å  uniformly and by (d) [ , ]c a b$ Î  s.t. 

1
( ) ,nn

g c¥

=
¥å  i.e. lim ( )nn

f c
®¥

< ¥ . Therefore we

can apply Theorem to nf  and observe that 
1n nn

f g¥

=
®å  uniformly and ( )1 1n nn n

g g¥ ¥ ¢

= =
¢ =å å

17.3 Central Principle of Uniform Convergence

Definition 2: Let 1{ }n nf ¥

=  be a sequence of real-valued functions on .I Ì   Then 1{ }n nf ¥

=  is called
a uniform Cauchy sequence if:

sup
0 , : .n mN n m N f f"e > $ Î " ³ - < e

Theorem 4:  Central Principle of Uniform Convergence, CPUC

Let 1{ }n nf ¥

=  be a sequence of real-valued functions on .I Ì   Then 1{ }n nf ¥

=  converges uniformly

of I if and only if 1{ }n nf ¥

=  is a uniform Cauchy sequence on I.

Proof: ‘’ : Suppose nf  converges uniformly to some f. Let 0e > , since nf f®  uniformly we
have

: ( ) ( ) /4.nN n x I f x f x$ Î " ³ " Î - < e

Then , :n m x I" ³ " Î

( ) ( ) ( ) ( ) ( ) ( )n m n mf x f x f x f x f x f x- = - + + £

( ) ( ) ( ) ( ) /4 /4 /2n mf x f x f x f x£ - + - < e + e = e

Therefore,

sup
sup ( ) ( ) /2 .n m n m
x I

f f f x f x
Î

- = - £ e < e

’’ : Let { }nf  be a uniform Cauchy sequence i.e.

sup
0 , : ( ) /2.n mN n m N f f x"e > $ Î " ³ - < e

In particular ( ) ( ) /2n mf x f x- < e  for any .x IÎ  Look at the sequence of numbers 1{ ( )}n nf x ¥

=

which is usual sequence of number and hence converges. Denote its limit ( ).f x  Now let m ®¥

and get
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what by definition means that nf f®  uniformly.

Theorem 5: Weierstrass M-test

Let 1{ }n ng ¥

=  be a sequence of real-valued functions on .I Ì   Let 1{ }n nM ¥

=  be a sequence of

number s.t. 
1

.nn
M¥

=
< ¥å  If ( ) ,n ng x M x I n£ " Î " Î  then 

1 nn
g¥

=å  converges uniformly.

Proof: 
1 ii
M¥

=
< ¥å  means { }1 1

n
ii n

M
¥

= =
å  converges and therefore is a Cauchy sequence i.e. given

0e >  we can find N Î  s.t. without loss of generality

1 1 1 1
, , : /2.

n m n n

i i i i
i i i m i m

n m n m N M M M M
= = = + = +

" Î > ³ - = = < eå å å å

Let’s prove that { }1 1

n
ii n

g
¥

= =
å  is a uniform Cauchy sequence. Given 0,e >  pick N as above. Then

n m N x I" > ³ Î " Î

1 1 1
( ) ( ) ( )

n m n

i i i
i i i m

g x g x g x
= = = +

- = £å å å

1 1
( ) /2.

n n

i i
i m i m

g x M
= + = +

£ £ < eå å

We get

1 1 sup

/2 .
n m

i i
i i

g g
= =

- £ e < eå å

Therefore { }1 1

n
ii n

g
¥

= =
å  is a uniform Cauchy sequence and converges uniformly and so does

1
.ii

g¥

=å

Example: Consider series 1

sin( )
2ni

nx¥

=å  on .  By Weierstrass M-test, we see that this

series converges uniformly on   since

1

sin( ) 1 1and
2 2 2n n n

n

nx ¥

=

£ < ¥å

Example: Consider series 21

1
n n x
¥

= +
å  on [0, ).¥  By Weierstrass M-test, we can obtain

uniform convergence of this series on [0, )¥  since

2 2 2
1

1 1 1and
nn x n n

¥

=

£ < ¥
+

å
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Example: Look at the uniform convergence of series 1

n
n

x¥

=å  both on [ , ], 0 1r r r- < <

and (–1, 1). In the first case we see that the series converges uniformly by Weierstrass M-test
Since

1
andn n n

n
x r r

¥

=

£ < ¥å

In the second one we will try to show that there is no uniform convergence. Look at the partial
sums .nf  If we can prove that { }nf  is not a uniform Cauchy sequence then { }nf  is not uniformly
convergent and therefore the series will not converge uniformly. Often it suffices to look at

1 supn nf f+ -  and show that it does not converge to 0.

1
1

1 sup
( 1,1) ( 1,1)1 1

sup sup 1.
n n

i n
n n i

x xi i
f f x x x

+
+

+
Î - Î -= =

- = - = =å å

Therefore, take 1/2,e =  and N" e   put 1n N= +  and 1.m N= +  We see that supn mf f- =

1 1/2 .> = e

In conclusion, use M-test to prove uniform convergence.

17.4 Power Series and Uniform Convergence

Recall, from Analysis 2, that a power series is the series of functions of the form 
1

,n
nn

a x¥

=å

where na  is sequence of real numbers. We define a radius of convergence R of the series such

that 
1

n
nn

a x¥

=å  converges absolutely on ( , )R R-  and diverges for .x R>

Example: Consider 
0

.n
n

x¥

=å  The series converges pointwise on (–1, 1), but this
convergence is not uniform, whereas on [ , ]r r-  converges uniformly.

Theorem 6: Let 
0

n
nn

a x¥

=å  be a power series with a radius of convergence R. Then for any 0 r R£ <

the series converges uniformly on [ , ].r r-

Proof: Fix ( , )r R RÎ -  and define a sequence 
0

.n
n n nn

M a r M¥

=
= å  converges absolutely by our

choice of r and we get

[ , ] : n n
n n nx r r a x a r M" Î - £ =  and 

0
.n

n
M

¥

=

< ¥å

Therefore by Weierstrass M-test, the power series 
0

¥

=

å n
n

n
a x  converges uniformly on [–r, r].
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Theorem 7: There is a function f :  ®  which is continuous but nowhere differentiable.

Proof: The idea of a proof is to find a function with a kind of fractal behaviour. Let g(x) = |x| on
[–1, 1] extended by 2-periodicity on  and let

f(x) = 
0

3 (4 )
4

¥

=

æ ö
ç ÷è øå

n
n

n
g x

Figure 17.3 denotes the partial sums of f(x) by sn(x) = 
0

3 (4 )
4

¥

=

æ ö
ç ÷è øå

i
i

n
g x . On the left-hand side, we

start with the red s0(x) = g(x). Then refine g(x) to the yellow 
3 (4 )
4

g x . The iteration is obtained by

adding these two together into the blue one, that is s1(x) = g(x) + 
3 (4 )
4

g x . s2(x) is obtained by

adding refinement of 
3 (4 )
4

g x  which is 9 (16 )
16

g x . Repeat this process at infinitum and get the

limit function f(x) visualised on the right-hand side.

Now, we prove that the series is convergent and that the limit function f is continuous, but not
differentiable.

Claim 1: The series 
0

3 (4 )
4

¥

=

æ ö
ç ÷è øå

n
n

n
g x  converges uniformly on .

Since

0

3 3 3(4 ) and
4 4 4

¥

=

æ ö æ ö æ ö
£ < ¥ç ÷ ç ÷ ç ÷è ø è ø è øå

n n n
n

n
g x

Claim 2: The limit function f is continuous on .

Firstly, we prove that f is continuous on arbitrary interval [–M, M]. Each practical sum sn(x) =

1

3 (4 )
4=

æ ö
ç ÷è øå

k
n k
k

g x  is continuous on [–M, M] and sn ® f uniformly. Then we see, that the limit

function f is continuous on [–M, M]. So for any x Î  take sufficiently large s.t. x Î (–M, M).
Continuity of f on [–M, M] implies continuity in x. Therefore, f is continuous on .

Figure 17.3
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Let x Î . Let us show that f is not differentiable at x. We will construct a sequence hm, such that
hm ® 0 and

( ) ( ) as+ -
®¥ ®¥m

m

f x h f x m
h

Consider interval (4m x – 1
2 , 4m x + 1

2 ]. Clearly, it is a half-closed interval of length 1 and
therefore, can contain, only 1 integer. Define

hm =
1 1
2 2

1 1
2 2

4 , if there is no integer in (4 ,  4   )
4 , if there is no integer in (4 ,  , 4 )

-

-

ì+ +ï
í
- -ïî

m m m

m m m

x x
x x

We see that hm ® 0 as m ® ¥. Let us define an as

an =
(4 ( )) (4 )3

4
+ -æ ö

ç ÷è ø

n n n
m

m

g x h g x
h

.

Then we can rewrite the derivative as

( ) ( )+ -m

m

f x h f x
h

 =
0

¥

=

å n
n

a .

Note that |g(x) – g(y)| = |x – y|, if x, y Î [k, k + 1] for Îk   and g|(x) – g(y)|£ |x – y|, otherwise
see Figure 17.4.

Figure that |g(x) – g(x)| £ |x – y| with equality when x, y Î[k, k + 1], for some Îk  .

Let us prove the following three points,

(a) an = 0, if n > m

g(4n(x + hm)) – g(4nx ±  
1
2
div. by 2

4 -n m ) – g(4nx) = 0, due to 2-periodicity.

(b) |an| = 3m = 3n, if n = m

g(4n(x + hm)) – g(4nx ±
1
2

= 1

4 -n m – g(4nx) = 0,

= |g(4mx ±  1
2

) – g(4mx) |.

According to the definition of hm, we see that interval with endpoints 4m x ±  1
2

 and 4mx

does not contain any integer so by Figure 17.4 we obtain

Figure 17.4



220 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes 1 1 1(4 ) (4 ) 4 4
2 2 2

± - = ± - =m m m mg x g x x x

and finally

1
2

3 1 1 3 3
4 2 4

æ ö
= = =ç ÷è ø

m
m n

n ma

(c) 3 , if £ <n
na n m .

|g(4n(x + hm)) – g(4nx)| = |g(4nx ±  
1
2 4n–m) – g(4nx)| £ |4m x ±

1
2 4n–m – 4mx|= 

1
2 4n–m,

and therefore

3 1 14 314 2 4
2

n
m n n

n
m

a -æ ö
£ =ç ÷è ø

Putting all things together we get

1 1 2
0 = 0 by (a)

( ) ( ) ... ...
¥

+ +

=

+ -
= = + + + + + =åm

n m m m
nm

f x h f x a a a a a
h 

= ||a1 + a2 + ... +am ³ |am| – |a1 +... + am–1| ³

... ³|am| – |a1| – |a2| – ... – |am–1| 
by(b)
=  3m –|a1| – |a2| – ... –|am–1| ³

by(c)
³  3m – 31

 – 32 – ... – 3m–1 = 3m – 13 3 3 (3 1)
3 1 2

--
= - ®¥

-

m
m .

Remark: In original constructive proof  of this theorem in 1872, Karl Weierstrab used f(x) =

0
cos( )¥

=
på n n

n
a b x  with a a Î (0, 1) and with positive odd integer b both satisfying ab > 1 + 3/4p.

Interesting is, that despite of the differentiability of cosine, the limit function will not be
differentiable anywhere.

Figure 17.5
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NotesIn Figure 17.5, uniform approximation of continuous function f (in blue) by polynomial (in red)
in e-tube around f (in green).

Self Assessment

Fill in the blanks:

1. Let I Ì   and 1{ }n ng ¥

=  be a sequence of real-valued functions on I. Then 
1

¥

=

å n
n

g  is a

..................................

2. Let 1{ }n nf ¥

=  be a sequence of real-valued functions on .I Ì   Then ................. is called a
uniform Cauchy sequence if:

sup
0 , : .n mN n m N f f"e > $ Î " ³ - < e

3. Let 1{ }n nf ¥

=  be a sequence of real-valued functions on .I Ì   Then 1{ }n nf ¥

=  ..................................
of I if and only if 1{ }n nf ¥

=  is a uniform Cauchy sequence on I.

4. Let 
0

n
nn

a x¥

=å  be a power series with a ....................... R. Then for any 0 r R£ <  the series
converges uniformly on [ , ].r r-

5. There is a function f :  ®  which is continuous but nowhere ..................................

17.6 Summary

 Let 1{ }n nf ¥

=  be a sequence of real-valued function on [ , ].a b  If (a) all nf  are differentiable,
(b)’ all nf

¢  are continuous, (c) nf h¢ ®  uniformly, for some function :[ , ] ,h a b ®  (d)
[ , ]c a b$ Î  s.t. ( )nf c  converges then nf  converges uniformly to some : [ , ] ,f a b ®  in

addition, this uniform limit f is differentiable and ( ) ( ).f x h x¢ =

 Let I Ì   and 1{ }n ng ¥

=  be a sequence of real-valued functions on I. Then

1
n

n
g

¥

=

å

is a series of functions.

 Let 
0

n
nn

a x¥

=å  be a power series with a radius of convergence R. Then for any 0 r R£ <  the

series converges uniformly on [ , ].r r-

 There is a function f :  ®  which is continuous but nowhere differentiable.

17.7 Keywords

Series of Functions: Let I Ì   and 1{ }n ng ¥

=  be a sequence of real-valued functions on I. Then

1
n

n
g

¥

=

å

is a series of functions.

Continuity for Series: If (a) all gn are are continuous and (b) 1 nn
g¥

=å  converges uniformly then

1 nn
g¥

=å  is continuous.
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1 nn
g¥ ¢

=å

converges uniformly and (d) [ , ]c a b$ Î  s.t. 
1

( )nn
g c¥

=
< ¥å  then 

1 nn
g¥

=å  converges uniformly

and 
1 1

.n
n n

gn g
¥ ¥

¢

= =

æ ö
¢ =ç ÷è ø

å å

17.8 Review Questions

1. Prove that 21: , ( ) sin( )n nf f x n x
n

® =  .

2. Consider a series 
0

¥

=å n
n

x  on [–1/2, 1/2] and on (–1, 1). We want to investigate convergence

of this series, whether it is pointwise of n uniform and eventually, what is the limit.

3. Consider series 
1

sin( )
2ni

nx¥

=å  on .  By Weierstrass M-test, we see that this series converges

uniformly on   since

1

sin( ) 1 1and
2 2 2n n n

n

nx ¥

=

£ < ¥å

4. Consider series 21

1
n n x
¥

= +
å  on [0, ).¥  By Weierstrass M-test, we can obtain uniform

convergence of this series on [0, )¥  since

2 2 2
1

1 1 1and
nn x n n

¥

=

£ < ¥
+

å

Answers: Self Assessment

1. series of functions 2. 1{ }n nf ¥

=

3. converges uniformly 4. radius of convergence

5. differentiable

17.9 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Explain the equicontinuity

 Describe the properties of equicontinuous

 Discuss the equicontinuity and uniform convergence

 Define stochastic equicontinuity

Introduction

In last unit, you have studied about the uniform converges and differentiation. This unit provides
you the explanation of Equicontinuity. In mathematical analysis, a family of functions is
equicontinuous if all the functions are continuous and they have equal variation over a given
neighbourhood, in a precise sense described herein. In particular, the concept applies to countable
families, and thus sequences of functions.

18.1 Equicontinuity

The equicontinuity appears in the formulation of Ascoli’s theorem, which states that a subset of
C(X), the space of continuous functions on a compact Hausdorff space X, is compact if and only
if it is closed, pointwise bounded and equicontinuous. A sequence in C(X) is uniformly convergent
if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous
a-prior). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous
functions fn on either metric space or locally compact space is continuous. If, in addition, fn are
homomorphic, then the limit is also homomorphic.

The uniform boundedness principle states that a pointwise bounded family of continuous linear
operators between Banach spaces is equicontinuous.
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Let X and Y be two metric spaces, and F a family of functions from X to Y.

The family F is equicontinuous at a point x0  X if for every  > 0, there exists a  > 0 such that
d(f(x0), f(x)) <  for all f  F and all x such that d(x0, x) < . The family is equicontinuous if it is
equicontinuous at each point of X.

The family F is uniformly equicontinuous if for every  > 0, there exists a  > 0 such that d(f(x1),
f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .

For comparison, the statement all functions f in F are continuous’ means that for every  > 0,
every ƒ  F, and every x0  X, there exists a  > 0 such that d(f(x0), f(x)) <  for all x  X such that
d(x0, x) < . So, for continuity,  may depend on , x0 and f; for equicontinuity,  must be
independent of f; and for uniform equicontinuity,  must be independent of both f and x0.

More generally, when X is a topological space, a set F of functions from X to Y is said to be
equicontinuous at x if for every  > 0, x has a neighbourhood Ux such that

dY(f(y), f(x)) < 

for all y  Ux and f  F. This definition usually appears in the context of topological vector
spaces.

When X is compact, a set is uniformly equicontinuous if and only if it is equicontinuous at every
point, for essentially the same reason as that uniform continuity and continuity coincide on
compact spaces.

Some basic properties follow immediately from the definition. Every finite set of continuous
functions is equicontinuous. The closure of an equicontinuous set is again equicontinuous.
Every member of a uniformly equicontinuous set of functions is uniformly continuous, and
every finite set of uniformly continuous functions is uniformly equicontinuous.

Example:

 A set of functions with the same Lipschitz constant is (uniformly) equicontinuous. In
particular, this is the case if the set consists of functions with derivatives bounded by the
same constant.

 Uniform boundedness principle gives a sufficient condition for a set of continuous linear
operators to be equicontinuous.

 A family of iterates of an analytic function is equicontinuous on the Fatou set.

Properties of Equicontinuous

 If a subset C(X, Y) is totally bounded under the uniform metric, and then  is
equicontinuous.

 Suppose X is compact. If a sequence of functions {fn} in C(X k) is equibounded and
equicontinuous, then the sequence {fn} has a uniformly convergent subsequence. (Arzelà’s
theorem)

 Let {fn} be a sequence of functions in C(X, Y). If {fn} is equicontinuous and converges
pointwise to a function f : X  Y, then f is continuous and {fn} converges to f in the compact-
open topology.
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Let X be a compact Hausdorff space, and equip C(X) with the uniform norm, thus making C(X)
a Banach space, hence a metric space. Then Ascoli’s theorem states that a subset of C(X) is
compact if and only if it is closed, pointwise bounded and equicontinuous. This is analogous to
the Heine-Borel theorem, which states that subsets of n are compact if and only if they are
closed and bounded. Every bounded equicontinuous sequence in C(X) contains a subsequence
that converges uniformly to a continuous function on X.

In view of Ascoli’s theorem, a sequence in C(X) converges uniformly if and only if it is
equicontinuous and converges pointwise. The hypothesis of the statement can be weakened a
bit: a sequence in C(X) converges uniformly if it is equicontinuous and converges pointwise on
a dense subset to some function on X (not assumed continuous). This weaker version is typically
used to prove Ascoli’s theorem for separable compact spaces. Another consequence is that the
limit of an equicontinuous pointwise convergent sequence of continuous functions on a metric
space, or on a locally compact space, is continuous.

In the above, the hypothesis of compactness of X cannot be relaxed. To see that, consider a
compactly supported continuous function g on  with g(0) = 1, and consider the equicontinuous
sequence of functions {fn} on  defined by fn(x) = g(x – n). Then, fn converges pointwise to 0 but
does not converge uniformly to 0.

This criterion for uniform convergence is often useful in real and complex analysis. Suppose we
are given a sequence of continuous functions that converges pointwise on some open subset G
of n. As noted above, it actually converges uniformly on a compact subset of G if it is
equicontinuous on the compact set.

In practice, showing the equicontinuity is often not so difficult. For example, if the sequence
consists of differentiable functions or functions with some regularity (e.g., the functions are
solutions of a differential equation), then the mean value theorem or some other kinds of
estimates can be used to show the sequence is equicontinuous.

It then follows that the limit of the sequence is continuous on every compact subset of G; thus,
continuous on G. A similar argument can be made when the functions are homomorphic. One
can use, for instance, Cauchy’s estimate to show the equicontinuity (on a compact subset) and
conclude that the limit is homomorphism. Note that the equicontinuity is essential here. For
example, fn(x) = arctan nx converges to a multiple of the discontinuous sign function.

18.4 Equicontinuity Families of Linear Operators

Let E, F be Banach spaces, and G  be a family of continuous linear operators from E into F. Then
G  is equicontinuous if and only if

Sup{||T|| : T  G } < 

that is, G is uniformly bounded in operator norm. Also, by linearity, G is uniformly
equicontinuous if and only if it is equicontinuous at 0.

The uniform boundedness principle (also known as the Banach-Steinhaus theorem) states that
G  is equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each x  E. The
result can be generalized to a case when F is locally convex and E is a barreled space.

Alaoglu’s theorem states that if E is a topological vector space, then every equicontinuous subset
of E* is weak-* relatively compact.
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The most general scenario in which equicontinuity can be defined is for topological spaces
whereas uniform equicontinuity requires the filter of neighbourhoods of one point to be somehow
comparable with the filter of neighbourhood of another point. The latter is most generally done
via a uniform structure, giving a uniform space. Appropriate definitions in these cases are as
follows:

A set A of functions continuous between two topological spaces X and Y is topologically
equicontinuous at the points x  X and y  Y if for any open set O about y, there are neighbourhoods
U of x and V of y such that for every f  A, if the intersection of f[U] and V is non-empty, f(U)  O.
One says A is said to be topologically equicontinuous at x  X if it is topologically equicontinuous
at x and y for each y  Y. Finally, A is equicontinuous if it is equicontinuous at x for all points
x  X.

A set A of continuous functions between two uniform spaces X and Y is uniformly equicontinuous
if for every element W of the uniformity on Y, the set

{(u, v)  X  X : for all f  A. (f(u), f(v))  W }

is a member of the uniformity on X

A weaker concept is that of even continuity:

A set A of continuous functions between two topological spaces X and Y is said to be evenly
continuous at x  X and y  Y if given any open set O containing y there are neighbourhoods U
of x and V of y such that f[U]  O whenever f(x)  V. It is evenly continuous at x if it is evenly
continuous at x and y for every y  Y, and evenly continuous if it is evenly continuous at x for
every x  X.

For metric spaces, there are standard topologies and uniform structures derived from the matrices,
and then these general definitions are equivalent to the metric-space definitions.

18.6 Stochastic Equicontinuity

Stochastic equicontinuity is a version of equicontinuity used in the context of sequences of
functions of random variables, and their convergence.

Let {Hn() : n  1} be a family of random functions defined from, where  where  is any
normed metric space. Here {Hn()} might represent a sequence of estimators applied to datasets
of size n, given that the data arises from a population for which the parameter indexing the
statistical model for the data is . The randomness of the functions arises from the data generating
process under which a set of observed data is considered to be a realisation of a probabilistic or
statistical model. However, in {Hn()},  relates to the model currently being postulated or fitted
rather than to an underlying model which is supposed to represent the mechanism generating
the data. Then {Hn} is stochastically equicontinuous if, for every  > 0, there is a  > 0 such that:

n nn ' B( , )
lim Pr sup sup H ( ') H ( )


    

æ ö
 -  >  < ç ÷è ø

Here B(, ) represents a ball in the parameter space, centered at  and whose radius depends on.

Self Assessment

Fill in the blanks:

1. The ……………………..states that a pointwise bounded family of continuous linear
operators between Banach spaces is equicontinuous.
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Notes2. The family F is ……………………x0  X if for every  > 0, there exists a  > 0 such that
d(f(x0), f(x)) <  for all ƒ  F and all x such that d(x0, x) < . The family is equicontinuous if
it is equicontinuous at each point of X.

3. Suppose X is compact. If a sequence of functions {fn} in C(X, k) is equibounded and
equicontinuous, then the sequence {fn} has a …………………………..

4. The uniform boundedness principle is also known as …………………….. states that G is
equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each x  E.
The result can be generalized to a case when F is locally convex and E is a barreled space.

5. …………….. is a version of equicontinuity used in the context of sequences of functions of
random variables, and their convergence.

18.7 Summary

 In particular, the limit of an equicontinuous pointwise convergent sequence of continuous
functions fn on either metric space or locally compact space is continuous. If, in addition, fn

are holomorphic, then the limit is also holomorphic.

 The uniform boundedness principle states that a pointwise bounded family of continuous
linear operators between Banach spaces is equicontinuous.

 The family F is equicontinuous at a point x0  X if for every  > 0, there exists a  > 0 such
that d(f(x0), f(x)) <  for all f  F and all x such that d(x0, x) < . The family is equicontinuous
if it is equicontinuous at each point of X.

 The family F is uniformly equicontinuous if for every  > 0, there exists a  > 0 such that
d(f(x1), f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .

 If a subset  C(X, Y) is totally bounded under the uniform metric, and then  is
equicontinuous.

 Suppose X is compact. If a sequence of functions {fn} in C(X, k) is equibounded and
equicontinuous, then the sequence {fn} has a uniformly convergent subsequence. (Arzelà’s
theorem)

 Let fn be a sequence of functions in C(X, Y). If {fn} is equicontinuous and converges pointwise
to a function f : X  Y, then f is continuous and {fn} converges to f in the compact-open
topology.

 The uniform boundedness principle (also known as the Banach-Steinhaus theorem) states
that G is equicontinuous if it is pointwise bounded; i.e., sup{||T(x)|| : T  G } <  for each
x  E. The result can be generalized to a case when F is locally convex and E is a barreled
space.

 Stochastic equicontinuity is a version of equicontinuity used in the context of sequences of
functions of random variables, and their convergence.

18.8 Keywords

Stochastic Equicontinuity: Stochastic equicontinuity is a version of equicontinuity used in the
context of sequences of functions of random variables, and their convergence

Uniformly Equicontinuous: The family F is uniformly equicontinuous if for every  > 0, there
exists a  > 0 such that d(f(x1), f(x2)) <  for all f  F and all x1, x2  X such that d(x1, x2) < .
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Notes Equicontinuous at a Point: The family F is equicontinuous at a point x0 X if for every  > 0,
there exists a  > 0 such that d(f(x0), f(x)) <  for all ƒ  F and all x such that d(x0, x) < . The family
is equicontinuous if it is equicontinuous at each point of X.

Uniform Boundedness: The uniform boundedness principle states that a pointwise bounded
family of continuous linear operators between Banach spaces is equicontinuous.

18.9 Review Questions

1. Explain the Equicontinuity and Families of Equicontinuous.

2. Describe the Properties of equicontinuous.

3. Discuss the Equicontinuity and uniform convergence.

4. Describe Equicontinuity families of linear operators.

5. Explain the Equicontinuity in topological spaces.

6. Define Stochastic equicontinuity.

Answers: Self Assessment

1. uniform boundedness principle 2. equicontinuous at a point

3. uniformly convergent subsequence 4. the Banach-Steinhaus theorem

5. Stochastic equicontinuity

18.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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NotesUnit 19: Arzelà’s Theorem and Weierstrass
Approximation Theorem

CONTENTS

Objectives

Introduction

19.1 Arzelà–Ascoli Theorem

19.2 Fourier Series

19.3 Summary

19.4 Keyword

19.5 Review Questions

19.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the Arzelà’s Theorem

 Describe the Weierstrass Approximation Theorem

Introduction

In last unit you have studied about the uniform convergence and Equicontinuity. This unit
provides you the explanation of Arzelà’s Theorem and Weierstrass Approximation theorem.
Our setting is a compact metric space X which you can, if you wish, take to be a compact subset
of Rn, or even of the complex plane (with the Euclidean metric, of course). Let C(X) denotes the
space of all continuous functions on X with values in C (equally well, you can take the values to
lie in R). In C(X) we always regard the distance between functions f and g in C(X) to be

dist(f , g) max{ f(x) g(x) : x X}= - Î

19.1 Arzelà–Ascoli Theorem

A sequence {fn}n ÎN of continuous functions on an interval I = [a, b] is uniformly bounded if there
is a number M such that

|fn(x)|  M

for every function fn belonging to the sequence, and every x Î [a, b]. The sequence is equicontinuous
if, for every  > 0, there exists a  > 0 such that

|fn(x) – fn(y)| <  Whenever |x – y| < 

for every fn belonging to the sequence. Succinctly, a sequence is equicontinuous if and only if all
of its elements have the same modulus of continuity. In simplest terms, the theorem can be
stated as follows:

Consider a sequence of real-valued continuous functions (fn)nÎN defined on a closed and bounded
interval [a, b] of the real line. If this sequence is uniformly bounded and equicontinuous, then
there exists a subsequence (fnk) that converges uniformly.
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valued functions on a closed and bounded interval:

Let I = [a, b]  R be a closed and bounded interval. If F is an infinite set of functions ƒ : I  R which
is uniformly bounded and equicontinuous, then there is a sequence fn of elements of F such that
fn converges uniformly on I.

Fix an enumeration {xi}i = 1,2,3,... of rational numbers in I. Since F is uniformly bounded, the set of
points {f(x1)}f ÎF is bounded, and hence by the Bolzano-Weierstrass theorem, there is a sequence
{fn1} of distinct functions in F such that {fn1(x1)} converges. Repeating the same argument for the
sequence of points {fn1(x2)}, there is a subsequence {fn2} of {fn1} such that {fn2(x2)} converges.

By mathematical induction this process can be continued, and so there is a chain of subsequences

{fn1} {fn2} . . .

such that, for each k = 1, 2, 3,…, the subsequence {fnk} converges at x1,...,xk. Now form the diagonal
subsequence {f} whose mth term fm is the mth term in the mth subsequence {fnm}. By construction,
fm converges at every rational point of I.

Therefore, given any  > 0 and rational xk in I, there is an integer N = N(, xk) such that

|fn(xk) – fm(xk)| < /3, n, m  N.

Since the family F is equicontinuous, for this fixed å and for every x in I, there is an open interval
Ux containing x such that

|f(s) – f(t)| < /3

for all f Î F and all s, t in I such that s, t ÎUx.

The collection of intervals Ux, x ÎI, forms an open cover of I. Since I is compact, this covering
admits a finite subcover U1, ..., UJ. There exists an integer K such that each open interval U j,
1  j  J, contains a rational xk with 1  k  K. Finally, for any t Î I, there are j and k so that t and
xk belong to the same interval Uj. For this choice of k,

|fn(t) – fm(t)|  |fn(t) – fn(xk)| + |fn(xk) – fm(xk)| + |fm(xk) – fm(t)| < /3 + /3 + /3

for all n, m > N = max{N(, x1), ..., N(, xK)}. Consequently, the sequence {fn} is uniformly Cauchy,
and therefore converges to a continuous function, as claimed. This completes the proof.

Theorem 1: Weierstrass Approximation Theorem

Let f: [a, b]   be continuous. Then there is a sequence of polynomials n n 1{P }¥= such that pn  f
uniformly.

Notes It is important that [a, b] is a closed interval. If it was open, we could take (0, 1) and
f(x) = 1/x, which is unbounded. But every polynomial is bounded on (0, 1) and therefore
no sequence of polynomials could converge to f uniformly.

It will suffice to prove Weierstrass Approximation Theorem on [0, 1] from which the general
case can be easily obtained. Recall the notion of uniform continuity from Analysis 1.

Let I   and f be a real-valued function on I. We say that f is uniformly continuous on I if

"  > 0  > 0 " x, y Î I : |x – y| <   |f(x) – f(y)| < .

Also remind, that a continuous function on [a, b] is always uniformly continuous.
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pkn(x) = n
k

æ ö
ç ÷è ø

xk (1 – x)n–k, " n Î  and 0  k  n.

Note that, pkn(x) becomes a probability mass function of binomial distribution with probability
of successful trial equal to x if x Î [0, 1].

Lemma: (a) " n Î : n
k 0=å pkn(x) = 1, (b) " n Î : n

k 0=å kpkn(x) = nx, (c) " n Î : n
k 0=å (k – nx)2

pkn(x) = nx(1 – x).

Proof: (a) If x Î [0, 1] the equality follows from normalisation of probability distribution. In
general

(a + b)n =
n k n k

k 0

n a b ,
k

-

=

æ ö
å ç ÷è ø

therefore

n

k 0=
å pkn(x) =

n

k 0

n
k=

æ ö
å ç ÷è ø

xk(1 – x)n – k = (x + 1 – x)n = 1.

(b) If x Î [0, 1], we can define a random variable Yn,x the number of heads observed on unfair
x-coin tossed n-times. Then

(Yn,x = k) = n
k

æ ö
ç ÷è ø

xk(1 – x)n – k = pkn(x).

Moreover, we find the following relation with (b)

[Yn,x] =
n

k 0=
å kpkn

(x) = nx.

In general

k n
k

æ ö
ç ÷è ø

 = k
n!

k!(n k)!-
= n

(n 1)!
(k 1)!((n 1) (k 1))!

-

- - - -
= n n 1

k 1
-æ ö

ç ÷è ø-
,

so

n

k 0=
å kpkn

(x) =
n

k 0

n
k

k=

æ ö
å ç ÷è ø

xk(1 – x)n – k = 
n

k 0

n 1n
k 1=

æ ö-
å ç ÷-è ø

xk(1 – x)n – k =

=
n

k 1

n 1n
k 1=

æ ö-
å ç ÷-è ø

xk(1 – x)n – k = nx
n

k 1

n 1
k 1=

æ ö-
å ç ÷-è ø

xk – 1(1 – x)n – k =

= nx
n 1

i 0

n 1
i

-

=

-æ ö
å ç ÷è ø

xi(1 – x)n – 1 – i = nx(x + 1 – x)n – 1 = nx.

(c) If x Î [0, 1], we can rewrite the formula as

Var(Yn,x) =
n

k 0=
å (k – nx)2pkn(x) = nx (1 – x).

In general

k(k – 1) n
k

æ ö
ç ÷è ø

 = n(n – 1) (n 2)!
(k 2)!((n 2) (k 2))!

-

- - - -
= n(n – 1) n 2

k 2
æ ö-
ç ÷-è ø

,
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k 0=
å k(k – 1)p

kn
(x) =

n

k 0=
å k(k – 1) n

k
æ ö
ç ÷è ø

xk(1 – x)n – k

=
n

k 2=
å n(n – 1) n 2

k 2
æ ö-
ç ÷-è ø

xk(1 – x)n – k

= n(n – 1)x2
n

k 2=
å

n 2
k 2

æ ö-
ç ÷-è ø

xk – 2(1 – x)n – k

= n(n – 1)x2
n 2

i 0

-

=

å
n 2

i
-æ ö

ç ÷è ø
xi(1 – x)n – 2 – i = n(n – 1)x2.

Hence

n

k 0=
å (k – nx)2pkn(x) =

n

k 0=
å (k2 – 2knx + n2x2)pkn(x)

=
n

k 0=
å (k(k – 1) + k – 2knx + n2x2)pkn(x)

= n(n – 1)x2 + nx – 2nxnx – n2x

n2x – nx2 + nx – 2n2x2 + n2x2 = nx(1 – x).

Definition 2: For any f: [0, 1]   define its Bernstein polynomials f
nB (x) such that

f
nB (x)  =

n

k 0

kf
n=

æ ö
å ç ÷è ø

pkn(x).

Theorem 2: Weierstrass Approximation Theorem, special case

Let f be a real-valued function on [0, 1]. If f is continuous then f
nB   f uniformly.

Proof: We want

" > 0 N Î  n"  N x" Î [0, 1] : | f
nB (x) – f(x)| < .

Let  > 0 be given. Since f is uniformly continuous on [0, 1]

 > 0 x,y" Î [0, 1] : |x – y| <  |f(x) – f(y)| < /2.

Using this fact we can estimate

| f
nB (x) – f(x)|=

n n

kn kn
k 0 k 0

kf p (x) f(x) p (x)
n = =

æ ö
-å åç ÷è ø

=
n

kn
k 0

(f(k /n) f(x))p (x)
=

-å  
n

kn
k 0

(f(k /n) f(x) p (x)
=

-å

=
k
n

n

kn
k: x

(f(k /n) f(x) p (x)
- <

-å +
k
n

n

kn
k: x

(f(k /n) f(x) p (x)
- 

-å

k k
n n

n n

kn knsup
k: x k: x

p (x) 2 f 1 p (x).
2 - < - 


< + ×å å

We used estimate

|f(k/n) – f(x)|  |f(k/n)| +|f(x)|  2||f||sup.

Now observe that in the second sum we have the following condition on k
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|k/n – x| 

2k nx
n
-æ ö

ç ÷è ø
 2 

2

2 2

(k nx)
n
-


 1.

By using this remark in the second sum and by increasing number of summants in the first sum
we get

k
n

n n

kn knsup
k 0 k: x

p (x) 2 f 1 p (x)
2 = - 


+ ×å å

k
n

nsup 2
kn2 2

k: x

2 f
1 (k nx) p (x)

2 n - 


 × + -å



nsup 2
kn2 2

k 0

2 f
(k nx) p (x)

2 n =


 + -å


= 

sup sup
2 2 2

1

2 f 2 f
n x(1 x) .

2 n 2 n


 
+ -  +

 

Let N be such that 
sup
2

2 f
N 2


<


. Then n N"   and x" Î[0, 1]

sup supf
n 2 2

2 f 2 f
B (x) f(x) = .

2 n 2 N 2 2
   

- < +  + < + 
 

Proof: In this proof we shrink our function f to [0, 1], where it can be approximated uniformly by
Bernstein polynomials and then scale these polynomials from [0, 1] to [a, b] where they will
approximate the original function. Define g : [0, 1]  , g(t) = f(x(t)). Where x(t) = a + (b – a)t for
t Î [0, 1]. We see that g is continuous since it is a composite of two continuous functions. As g

nB 

g uniformly. Define qn(x) = g
nB (t(x)) = g

n
x aB
b a
-æ ö

ç ÷è ø-
. Then

n supa f- = n
x [a,b]
sup q (x) f(x)
Î

- = g
n

x [a,b]
sup B (t(x)) g(t(x))
Î

-

 = g g
n n supt [0 ,1]

sup B (t) g(t) = B g
Î

- -  0, since g
nB  g uniformly.

Figure 19.1, the original function f(x) = |x – 1/2| on [–2, 2], is shrinked to [0, 1], and approximated
uniformly by Bernstein polynomials. These polynomials are then scaled to [–2, 2], to approximate
uniformly the original function f on [–2, 2].

Figure 19.1
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19.2 Fourier Series

Firstly, let us look at some definitions. We denote the set of all Riemann integrable functions on
[a, b] by [a, b].

Definition 3: For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò

Recall from Linear Algebra that the inner product space is finite-dimensional vector space V
equipped with mapping ·,·: V  V  (or ), satisfying these three properties:

1. u + v, w = u, w + v, w

2. v, u = v, u

3. u, u Î  and u, u  0 with equality  u = 0

We see that our inner product does not satisfy all three properties since f, f =

0 f(x) = 0 does not hold. It suffices to take f(x) = 
1 for x [0,1)

.
0 for x = 1

Îì
í
î

Definition 4: We define the two-norm ||· ||2 on f Î[a, b] such that

2f  = b 2
af , f = f(x) dx.ò

Definition 5: A collection of Riemman integrable functions n n 1{ }¥=f  on [a, b] is called an orthogonal
system if

m n,f f = b
m na (x) (x)dx = 0, m n.f f " ¹ò

If in addition n" Î : n 2f = 1 we call n n 1{ }¥=f  an orthonormal system.

Example: Consider two continuous functions as on Figure 17.3. We have fg = 0, hence
f,g = 0. Therefore, they are orthogonal.

Figure 19.2: Approximation of f(x) = |—|x—1/3| + 1/2| on [0,1] by
B2(x),BI(x), B (5(x),B10(x) and Bi500(x)
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Example: A collection  = 1 1 1, cos(nx), sin(nx) ,
2

ì ü
í ý

p p pî þ
n Î  , is called the

trigonometrical orthonormal system on [—p, p], since 2f = 1 for all f Î  and f, g = 0 for all

f ¹ g.

Example: For another example of orthonormal system see Figure 19.4.

Orthonormal system of functions fn: [0, 1]  {–1, 1}. Each fn divides interval [0, 1] into 1/2n

subintervals. 1 2
n0 (x) dx = 1ò f  and 1

n m0 (x) (x)dx = 0ò f f  if n ¹ m

Definition 6: Let n n 1{ }¥=f  be an o.n.s. on [a,b] and f Î [a, b]. We define Fourier coefficients of f
w.r.t. n n 1{ }¥=f  as

an = f, fn = b
a f(x) (x)dx, nf Îò  .

n 1
¥

=å anfn is called the Fourier series of f w.r.t. n n 1{ }¥=f .

Notes

1. n 1
¥

=å anfn does not necessarily converge.

2. f(x) is not necessarily equal to its Fourier series.

Figure 19.3: Two Orthogonal Continuous
Functions on [—2,2]

Figure 19.4
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Example: Let f(x) = x on [0, 1] and n n 1{ }¥=f . We get Fourier coefficients an = x, fn =

2 n
1
0 n n 1

1 2 1x (x)dx = =
2 2 2 +

æ ö
f - -ò ç ÷è ø

. Therefore, we can compute Fourier series for f(x) = x which is

n 1 nn 1

1 (x)
2

¥

= +
- få .

Self Assessment

Fill in the blanks:

1. For any f: [0, 1]   define its .................................. f
nB (x) such that

f
nB (x)  =

n

k 0

kf
n=

æ ö
å ç ÷è ø

pkn(x).

2. Let f be a real-valued function on [0, 1]. If f is continuous then ............................ .

3. Define the two—norm ||· ||2 on f Î[a, b] such that ......................... .

4. A collection of Riemman integrable functions n n 1{ }¥=f  on [a, b] is called an .........................

m n,f f = b
m na (x) (x)dx = 0, m n.ò f f " ¹

19.3 Summary

 Let I   and f be a real-valued function on I. We say that f is uniformly continuous on I if

"  > 0  > 0 " x, y Î I : |x – y| <   |f(x) – f(y)| < .

Also remind, that a continuous function on [a, b] is always uniformly continuous.

 " n Î : n
k 0=å pkn(x) = 1, (b) " n Î : n

k 0=å kpkn(x) = nx, (c) " n Î : n
k 0=å (k – nx)2 pkn(x) =

nx(1 – x).

If x Î [0, 1], we can define a random variable Yn,x the number of heads observed on unfair
x-coin tossed n-times. Then

(Yn,x = k) = n
k

æ ö
ç ÷è ø

xk(1 – x)n – k = pkn(x).

Moreover, we find the following relation with (b)

[Yn,x] = 
n

k 0=
å kpkn

(x) = nx.

 For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò

 Recall from Linear Algebra that the inner product space is finite-dimensional vector space
V equipped with mapping ·,·: V  V  (or ).

19.4 Keyword

Fourier Series: For any f, g Î [a, b] define inner product of f and g .,. such that

f, g = b
a f(x)g(x)dx.ò
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NotesRecall from Linear Algebra that the inner product space is finite-dimensional vector space V
equipped with mapping ·,·: V  V  (or ), satisfying these three properties.

19.5 Review Questions

1. The Arzela-Ascoli Theorem is the key to the following result: A subset F of C(X) is compact
if and only if it is closed, bounded, and equicontinuous. Prove this.

2. You can think of Rn as (real-valued) C(X) where X is a set containing n points, and the
metric on X is the discrete metric (the distance between any two different points is 1). The
metric thus induced on Rn is equivalent to, but (unless n = 1) not the same as, the Euclidean
one, and a subset of Rn is bounded in the usual Euclidean way if and only if it is bounded
in this C(X). Show that every bounded subset of this C(X) is equicontinuous, thus
establishing the Bolzano-Weierstrass theorem as a generalization of the Arzela-Ascoli
Theorem.

3. Let f(x) = x on [0, 1] and let n n 1{ }¥=f  be as in Ex. 2.3. We get Fourier coefficients an = x, fn

= 
2 n

1
0 n n 1

1 2 1x (x)dx = = ,
2 2 2 +ò

æ ö
f - -ç ÷è ø

(computation of the integral is left as exercise). Therefore,

we can compute Fourier series for f(x) = x which is n 1 nn 1

1 (x)
2

¥

= +
- få .

Answer: Self Assessment

1. Bernstein polynomials 2. f
nB   f uniformly

3. 2f  = b 2
af , f = f(x) dx.ò 4. Orthogonal System
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Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define the Riemann Integral of a function

 Derive the conditions of Integrability and determine the class of functions which are
always integrable

 Discuss the algebra of integrable functions

 Compute the integral as a limit of a sum

Introduction

You are quite familiar with the words ‘differentiation’ and distinguishing ‘integration’. You
know that in ordinary language, differentiation refers to separating things while integration
means putting things together. In Mathematics, particularly in Calculus and Analysis,
differentiation and integration are considered as some kind of operations on functions. You
have used these operations in our study of Calculus.

There are essentially two ways of describing the operation of integration. One way is to view it
as the inverse operation of differentiation. The other way is to treat it as some sort of limit of a
sum.

The first view gives rise to an integral which is the result of reversing the process of
differentiation. This is the view which was generally considered during the eighteenth century.

Accordingly, the method is to obtain, from a given function, another function which has the first
function as its derivative. This second function, if it be obtained, is called the indefinite integral
of the first function. This is also called the 'primitive' or anti-derivative of the first function.
Thus, the integral of a function f(x) is obtained by finding an anti-derivative or primitive function
F(x) show that F’(x) = f (x). The indefinite integral of f(x), is symbolized by the notation f(x) dx.
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NotesThe second view is related to the limiting process. It gives rise to an integral which is the limit
of all the values of a function in an interval. This is the integral of a function f(x) over an interval
[a,b,]. It is called the definite integral and is denoted by

b

a
f(x)dx

The definite integral is a number since geometrically it corresponds an area of a region enclosed
by the graph of a function.

Although both the notions of integration are closely related, yet, you will see later, the definite
integral turns out to be a mare fundamental concept. In fact, it is the starting point for some
important generalizations like the double integrals, triple integrals, line integrals etc., which
you may study on Advanced Calculus.

The integral in the anti-derivative sense was given by Neyrtan. This notion was found to be
adequate so long as the functions to be integrated were continuous. But in the early 19th century,
Fourier brought to light the need for making integration meaningful for the functions that are
not continuous. He came across such functions in applied problems. Cauchy formulated rigorous
definition of the integral of a function. He essentially provided a general theory of integration
but only for continuous functions. Cauchy's theory of Integration for continuous functions is
sufficient for piece-wise continuous functions as well as for the functions having isolated
discontinuities. However, it was G.B.F. Riemann [1826-1866] a German mathematician who
extended Cauchy's integral to the discontinuous functions also. Riernann answered the question
"what is the meaning of  f(x) dx?"

The concept of definite integral was given by Riemann in the middle of the nineteenth century.
That is why, it is called Riemann Integral. Towards the end of 19th Century, T.J. Stieltjes [1856-
1894] of Holland, introduced a broader concept of integration replacing certain linear functions
used in Riemann Integral by functions of more general forms. In the beginning of this century,
the notion of the measure of a set of real numbers paved the way to the foundation of modern
theory of Lebesgue Integral by an eminent French Mathematician H. Lebesgue [1875-1941], a
beautiful generalisation of Riemann Integral which you may study in some advanced courses of
Mathematics. In this unit, the Riemann Integral will be defined without bringing in the idea of
differentiation. As you have been go through the usual connection between the Integration and
Differentiation. Just by applying the definition, it is not always easy to test the integrability of
a function. Therefore, condition of integrability will be derived with the help of which it becomes
easier to discuss the integrability of functions. Then just as in the case of continuity and
derivability, we will also consider algebra of integrable functions. Finally, in this unit, second
definition of integral as the limit of a sum will be given to you and you will be shown the
equivalence of the two definitions.

20.1 Riemann Integration

The study of the integral began with the geometrical consideration of calculating areas of plane
figures. You know that the well-known formula for computing the area of a rectangle is equal to
the product of the length and breadth of the rectangle. The question that arises from this formula
is that of finding the correct modification of this formula which we can apply to other plane
figures. To do so, consider a function defined on a closed interval [a,b] of the real line, which
assumes a constant value K  0 throughout the interval. The graph of such a function gives rise
to a rectangular region bounded by the X-axis and the ordinates x = a, x = b as shown in the
Figure 20.1.
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Obviously, the area enclosed is k (b-a). NOW, suppose that ]a, b[ is further divided into smaller
intervals by inserting points of division, say

1 2 3 4a x, x x x x b,= £ £ £ £ =

and the function f is defined so as to take a constant value at each of the resulting sub-intervals
i.e.,

1 0 1

2 1 2

3 2 3

4 1 4

k , if x [x ,x [
k , if x [x ,x [f(x) k , if x [x ,x [
k , if x [x ,x ]

Îì
ï Î

= í Î
ï

Îî

Further, suppose that di = length of the ith interval ]xi, xi-1 [ i.e.,

1 1 0 2 2 1 3 3 2 4 4 3d x x , d x x , d x x ,  and d x x .= - = - = - = -

Then, we get four rectangular regions and the area of each region is A, = k 1d1, A, = k2d2, A, = k3,d3,
and A, = k4,d4, as shown in Figure 20.2.

 

Figure 20.1

Figure 20.2
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the sum of these areas i.e.

Area = A1 + A2 + A3 + A4

= k1d1 + k2d2 + k3d3 + k4d4.

Note that in the last equation, we have generalized the notion of area. In other words, we are
able to compute the area of a region which is not of rectangular shape. How did we get it? By
breaking up the region into a series of non-overlapping rectangles which include the totality of
the figure and summing up their respective areas. This is simply a slight obstraction of the same
process which is used in Geometry.

Since the graph of the function in figure 20.2 consists of 4 different steps, such a function, is called
a step function. What we have obtained is the area of a region bounded by

1. a non-negative step function

2. the vertical lines defined by x=a and x=b

3. the X-axis.

This area is just the sum of the areas of a finite number of f non-overlapping rectangles resulting
from the graph of the given function. The area is nothing but a real number.

Now suppose that the graph of a given function is as shown in the Figure 20.3.

Does it make any sense to obtain the area of the region under the graph off? If so, how can we
compute its value? To answer this question, we introduce the notion of the integral of a function
as given by Riemann.

 

To introduce the notion of an integral of a function, we will require such a real number which
results for applying the function and which represents the area of the region bounded by the
graph off, the vertical lines x=a, x=b and the X-axis. This can be achieved by approximating the
given function by suitable step functions. The area of the region will, then, be approximated by
the areas enclosed by these step functions, which in turn are obtained as sum of the areas of non-
overlapping rectangles as we have computed for the Figure 20.2. This is precisely the idea
behind the formal treatment of the integral which we discuss here. First, we introduce some
terminology and basic notions which will be used throughout the discussion.

Figure 20.3
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Recall that a real function f is said to be bounded if the range of f is a bounded subset of R, that
is, if there exist numbers m and M such that m £ f(x) £ M for each x Î[a,b]. M is an upper bound
and m is a lower bound of f in [a,b]. You also know that when f is bounded, its supremum and
infimum exist. We introduce the concept of a partition of [a,b] and other related definitions:

Definition 1: Partition

Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points {x0, xl, ...., x,},
where

a = x0, < x1 <… < xn-1 <xn = b.

We write xi = xi – xi-1, (i=l, 2, ..., n). So xi is the length of the ith sub-interval given by the
partition P.

Definition 2: Norm of a Partition

Norm of a partition P, denoted by P ,  is defined by P max Ax,.
t i n
=

£ £

 Namely, the norm of P is the

length of largest sub-interval of [a, b] induced by P. Norm of P is also denoted by (P).

There is a one-to-one correspondence between the partitions of [a,b] and finite subsets of ]a, b[.
This induces a partial ordering on the set of partitions of [a,b]. So, we have the following
definition.

Definltion 3: Refinement of a Partition

Let P, and P, be two partitions of [a,b]. We say that P, is finer than P, or P2, refines P, or P2 is a
refinement of P1 if P1  P2, that is, every point of P1 is a point of P,.

You may note that, if P, and P2, are any two partitions of [a,b], then P,  P2 is a common

refinement of P, and P2. For example, if { } { }1 2
1 1 1 1 1 1 1 1P 0, , , ,1  and P 0, , , , , ,1
4 3 2 6 5 4 3 2

= =  are

partitions of [0, 1], then P2 is a refinement of P1 and { }1 2
1 1 1 1 1P P 0, , , , , ,1
6 5 4 3 2

 =  is their common

refinement.

We now introduce the notions of upper sums and lower sums of a bounded function f on an
interval [a, b], as given by Darboux. These are sometimes referred to as Darboux Sums.

Definition 4: Upper and Lower Sums

Let f: [a,b]  R be a bounded function, and let P = (x0, X1 ... x,) be a partition of [a,b]. For i = 1, 2
....., n, let Mi and mi be defined by

Mi = lub (f(x) : xi-1 £x £ xi)

mi = glb (f(x) : xi-1 £ x £ xi)

i.e. Mi and mi be the supremum and infimum of f in the sub-interval [xi-1, xi].

Then, the upper (Riemann) sum of f corresponding to the partition P, denoted by U (P,f), is
defined by

n

i i
i 1

U(P,f) M x
=

å= 
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n

i i
i 2

U(P,f) M x .
=

å= 

Before we pass on to the definition of upper and lower integrals, it is good for you to have the
geometrical meaning of the upper and lower sums and to visualize the above definitions
pictorially. You would, then, have a feeling for what is going on, and why such definitions are
made. Refer to Figure 20.4.

 

In figure 20.4(i) the graph off: [a,b]  R is drawn. The partition P = {x0, x,1 , .... xn} divides the
interval [a,b] into sub-intervals [x0, x1], [x1, x2], .... [xn-1, xn]. Consider the area S under the graph
off. In the first sub-interval [x0, x1], m1 is the g.l.b. of the set of values f(x) for x in [x0, x1]. Thus m1

x1 is the area of the small rectangle with sides ml and x1 as shown in the figure 20.4(ii).

Similarly m2 x2 ... mn A xn are areas of such small rectangles and 
n

i 1
m,

=

å  Ax, i.e. lower sum L (P,f)

is the area S2 which is the sum of areas of such small rectangles. The area S 1 is less than the area
S under the graph of f.

In the same way MI  X1 I is the area of the Large rectangle with sides M I and  X1 and 
n

i
i 1

M 1x,
=

å -

i.e., the upper sum U(P, f) is the area S2 which is the sum of areas or such large rectangles as
shown in Figure 20.4(iii). The area S 2 is more than the area S under the graph off. It is intuitively
clear that if the points in the partition P are increased, the areas S1 and S2 approach the area S.

Figure 20.4

(i) (ii)

(iii)
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bounded. Indeed, let m and M be the infimum and supremum of f in [a.b].

Then i im m M M£ £ £ and so

1 i i i i im x m x M x M x £  £  £ 

Putting i = 1, 2, ........ n and adding, we get

n n

i 1 i 1
m x, L(P,f) U(P,f) M A x,.

= =

å å £ £ £

n n

i i i 1 n 0
i 1 i 1

x (x x ) x x b a-
= =

å å = - = - = -

Thus m(b a) L(P,f) U(P,f) M(b a)- £ £ £ -

For every partition P, there is a lower sum and there is an upper sum. The above inequalities
show that the set of lower sums and the set of upper sums are bounded, so that their supremum
and infimum exist. In particular, the set of upper sums have an infimum and the set of lower
sums have a supremum. This leads us to concepts of upper and lower in tegrals as given by
Riemann and popularly known as Upper and Lower Riemann Integrals.

Definition 5: Upper and Lower Riemann Integral

Let f: [a,b]  R be a bounded function. The infimum or the greatest lower bound of, the set of all
upper sums is called the upper (Riemann) integral o f f on [a,b] and is denoted by,

h

a
f(x)dx.

i.e.

b

a
f(x)dx. g.l.b. =  {U(P,f): P is a partition of [a,b]}.

The supremum or the least upper bound of the set of all lower sums is called the lower (Riemann)
integral of f on [a,b] and is denoted by

b

a
f(x)dx

i.e.

b

a
f(x)dx l.u.b =  {L(P,f): P is a partition of [a,b]}.

Now we consider some examples where we calculate upper and lower integrals.

Example: Calculate the upper and lower integrals of the function f defined in [a, b] as
follows:

1 when x is rationalf(x) 0 when x is irrational=

Solution: Let P = {x0, x1 … xn} be any partition of [a,b]. Let Mi and m1 be respectively the sup. f and
inf. f in [xi-1, x,]. You know that every interval contains infinitely many rational as well as
irrational numbers. Therefore, m i = 0 and M, = I for i = 1, 2 ... n. Let us find U(P,f) and L(P,f).
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i i i
i 1 i 1

U(P,f) M x x b a
= =

å å=  =  = -

n

i i
i 1

U(P,f) m x 0
=

å=  =

Therefore U(P,f) = b – a and L(P,f) = 0 for every, partition P of [a,b]. Hence

b

a
f(x) dx = g.l.b. {U(P,f): P is a partition of [a,b]]

= g.l.b. {b – a] = b – a.

b

a
f(x)dx = l.u.b. {L(P,f): P is a partition of [a,b]]

= l.u.b. {0] = 0.

Example: Let f be a constant function defined in [a,b]. Let f(x) = k  x Î [a,b]. Find the
upper and lower integrals of f.

Solution: With the same notation as in example 1, M i = k and mi = k  i.

n n

i i i
i 1 i 1

U(P,f) M A x A x k(b a)
= =

å å= = = -

n n

i i
i 1 i 1

and L(P,f) m A x A xi k(b a)
= =

å å= = = -

Therefore U(P,f) = k(b – a) and L(P,f) = k (b – a) for every partition P of [a,b].

Consequently 
b b

a a
f(x)dx k(b a) and f(x)dx k(b a) = - = -

Now try the following exercise.

Exercise

Find the upper and lower Riemann integrals of the function f defined in [a,b] as follows:

1 when x is ratinal
f(x)

1 when x is irrational
ì

= í
-î

You have seen that sometimes the upper and lower integrals are equal (as in Example) and
sometimes they are not equal (as in Example). Whenever they are equal, the function is said to
be integrable. So integrability is defined as follows:

Definition 6: Riemann Integral

Let f: [a,b] – R be a bounded function. The function f is said to be Riemann integrable or simply

integrable or R-integrable over [a,b] if 
b b

a _
f(x) dx f(x) dx =  and iff is Riemann integrable, we

denote the common value by 
b

a
f(x) dx.  This is called the Riemann integral a r simply the integral

off on [a, b].
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Example: Show at the function f considered in example is not Riemann integrable.

Solution: As shown in above example, 
b

a
f(x) dx b a = -  and 

b b b

a a
f(x) dx 0 and so f(x) dx f(x) dx  = ¹

and consequently f is not Riemann integrable.

Example: Show that a constant function is Riemann integrable over [a,b] and find 
h

1
f(x) dx.

Solution: As proved in above example, 
b b

a 1
f(x) dx k(b a) f(x) dx = - =

Therefore, f is Riemann integrable on [a,b] and 
h

1
f(x) dx k(b a). = -

Theorem 1: If the partition P2 is a refinement of the partition P, of [a,b], then L(P1,f) £ L(P2,f) and
U(P2,f) £ U(P1,f).

Proof: Suppose P2 contains one point more than P,. Let this extra point be c. Let P1 = {x0, x,, …, xn}
and xi-1 < c < xi. Let Mi and mi be respectively the sup. f and inf. f in [xi-1, xi]. Suppose sup. f and inf.
f in [xi-1, c] are p, and q1 and those in [c, xi] are p2 and q2, respectively. Then,

2 1L(P ,f) L(P ,f)- 1 i 1 2 i i iq (c x ) q (x c) m x-= - + - - 

1 i i 1 2 i i(q m )(c x ) (q m )(x c)-= - - + - -

( )i i i 1since A x (x c) (c x )-= - + -

Similarly 2 1 1 i i 1 2 i iU(P ,f) U(P ,f) (p M )(c x ) (p M )(x c)-- = - - + - -

Now i 1 1 im q p M£ £ £

i 2 2 im q p M£ £ £

Therefore

2 1 2 1L(P ,f) L(P ,f) 0 and U(P ,f) U(P ,f) 0-  - £

Therefore

1 2 2 1L(P ,f) L(P ,f) 0 and U(P ,f) U(P ,I).-  -

Is P2 contains p points more than P1, then adding these extra points one by one to P1 and using the
above results, the theorem is proved. We can also write the theorem as

1 2 2 1L(P ,f) L(P ,f) U(P ,f) U(P ,f)£ £ £

from which it follows that 2 2 1 1U(P ,f) L(P ,f) U(P ,f) L(P ,f).- £ -  As an illustration of theorem 1,
we consider the following example.

Example: Verify Theorem 1 for the function f(x) = x + 1 defined over [0, 1] and the

partition { } { }1 2
1 1 1 3 1 1 1 1 2 3P 0, , , , ,1  and P 0, , , , , , ,1 .
4 3 2 4 6 4 3 2 3 4

=



LOVELY PROFESSIONAL UNIVERSITY 247

Unit 20: The Riemann Integration

Notes
Solution: For partition 1 0 1 2 1 4 4

1 1 1 3P , n 5, x 0, x , x , x , x , x 1
4 3 2 4

= = = = = = =  and so 1
1x ,
4

 =

2 3 4 5
1 1 1 1x , x , x , x .

12 6 4 4
 =  =  =  =

Further Mi = f(xi) & mi = f(xi-1) for i = 1, 2, 3, 4, 5 and therefore 1 2
5 4M , M ,
4 3

= =  3 4
3 7M , M ,
2 4

= =

5 1 2 3 4 5
5 4 3 7M 2, m 1, m , m , m , m .
4 3 2 4

= = = = = =  We have 
5

1 i i
i 1

25L(P , f) m x
18=

å=  =  and

5

1 1
i 1

29U(P ,f) M A x, .
18=

å= =  Similarly, 2
17L(P ,f) ,
12

=  and 2
19U(P ,f) .
12

=  Hence 1 2L(P ,f) L(P ,f)£

and 2 1U(P ,f) U(P ,f).£

Theorem 2: 
b b

a a
f(x) dx f(x) dx. £

Proof: If P1 & P2, are two partitions of [a,b] and P = P1 U P, is their common refinement, then using
Theorem 1, we have 1 1L(P ,f) L(P,f) U(P,f) U(P ,f)£ £ £  and

2 2L(P ,f) L(P,f) U(P,f) U(P ,f).£ £ £

Therefore, 1 2L(P ,f) U(P ,f).£

Keeping P2 fixed and taking l.u.b. over all P1, we get

b

2
a
f(x) dx U(P ,f) £

Now taking g.l.b. over all P2, we obtain

b b

a a
f(x) dx f(x) dx £

This proves the result.

In Theorem 1, we have compared the lower and upper sums for a partition P 1 with those for a
finer partition P2. Next theorem, which we state without proof, gives the estimate of the difference
of these sums.

Theorem 3: If a refinement P, of P1 contains p more points and f(x) k,£  for all x [a,b],Î  then

1 2 1L(P ,f) L(P ,f) L(P ,f) 2pk ,£ £ + d

and 1 2 1U(P ,f) U(P ,f) U(P ,f) 2p k ,  - d  where d is the norm of P1.

This theorem helps us in proving Darboux's theorem which will enable us to derive conditions
of integrability. Firstly, we give Darboux's Theorem.

Theorem 4: Darboux's Theorem

If f: [a,b]  R is a bounded function, then to every Î > 0, there corresponds d > 0 such that

(i)
b

a
U(P,f) f(x) dx< + Î
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(ii)

b

a
L(P,f) f(x) dx< - Î

for every partition P of [a,b] with P .< d

Proof: We consider (i). As f is bounded, there exists a positive number k such that
b

a
f(x) k x [a,b]. As f(x) dx£  Î  is the infimum of the set of upper sums, therefore to each Î > 0,

there is a partition P1 of [a,b] such that

b

1
a

U(P ,f) f(x) dx ,
2
Î

< + (1)

Let P1 = {x0, x1, ...., xp} and d be a positive number such that 2 k (p – 1) d = Î/2. Let P be a partition
of [a,b] with P .< d  Consider the common refinement P2 = P U P1 of P and P1.

Each partition has the same end points 'a' and 'b'. So P2 is a refinement of P having at the most
(p – 1) more points than P. Consequently, by Theorem 3,

U(P,f) –2(p – 1) k d £ U(P2,f)

£ U(P2,f)

b

a
f(x) dx /2.< + Î (using (1))

Thus

U(P,f)
b

a
f(x) dx 2(p 1) k

2
Î

< + + - d

6

a
f(x) dx ,  with P .= + Î < d

Task  Write down the proof of part (ii) of Darboux's Theorem.

As mentioned earlier, Darboux's Theorem immediately leads us to the conditions of integrability.
We discuss this in the form of the following theorem:

Theorem 5: Condition of Integrability

First Form: The necessary and sufficient condition for a bounded function f to be integrable over
[a,b] is that to every number Î > 0 there corresponds d > 0 such that

U(P,f) L(P,f) , P with P .- < Î  < d

Proof: We firstly prove the necessity of the condition.

Since the bounded function f is integrable on [a, b], we have

b b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Let Î > 0 be any number. By Darboux Theorem, there is a number d > 0 such that
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a
U(P,f) f(x) dx /2< + Î

b

a
f(x)dx /2 P with P= + Î  < d (2)

Also,

b

a
L(P,f) f(x) dx /2> - Î

b

a
f(x) dx /2= - Î (3)

i.e. 
b

a
L(P,f) f(x) dx /2 P with P

-

- < + Î  < d

Adding (2) and (3), we get

U(P,f) L(P,f) P with P .- < Î < d

Next, we prove that condition is sufficient.

It is given that, for each number Î > 0, there is a number d  > 0 such that

U(P,f) L(P,f) , P with P .- < Î  < d

Let P be a fixed partition with P .< d  Then

b b

a a
L(P,f) f(x)dx f(x)dx U(P,f). £ £ £

Therefore, 
b b

a a
f(x) dx f(x) dx U(P,f) L(P,f) . - £ - <Î

Since Î is arbitrary, therefore the non-negative number

b b

a a
f(x) dx f(x) dx -

is less than every positive number. Hence it must be equal to zero that is 
b b

a a
f(x) dx f(x) dx =  and

consequently f is integrable over [a,b].

Second Form: The necessary and sufficient condition for a bounded function f to be integrable
over [a,b] is that to every number Î > 0, there corresponds a partition P of [a,b] such that

U (P,f) – L(P,f) < Î.

20.2 Riemann Integrable Functions

As we derived the necessary and sufficient conditions for the integrability of a function, we can
now decide whether a function is Riemann integrable without finding the upper and lower
integrals of the function. By using the sufficient part of the conditions, we test the integrability
of the functions. Here we discuss functions which are always integrable. We will show that a
continuous function is always Riemann integrable. The integrability is not affected even when
there are finites number of points of discontinuity or the set of points of discontinuity of the
function has a finite number of limit points. It will also be shown that a monotonic function is
also always Riemann integrable.

We shall denote by R(a,b), the family of all Riemann integrable functions on [a,b]. First we
discuss results pertaining to continuous functions in the form of the following theorems.
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f Î R(a,b).

Proof: If f is a continuous function on [a,b] then f is bounded and is also uniformly continuous.

To show that f Î R [a,b] you have to show that to each number Î > 0, there is a partition P for
which

U(P,f) – L(P,f) < Î

Let Î> 0 be given. Since f is uniformly continuous on [a,b], there is a number d > 0 such that

Ef(x) f(y)  whenever x y .
b a

- < - < d
-

 Let P be any partition of [a,b] with P .< d

We show that, for such a partition P, U (P, f) – L(P, f) < Î.

Now, U(P,f) – L(P,f)
n n

i i i i
i 1 i 1

M x m x
= =

å å=  - 

n

i 1 i
i 1

(M m ) x ,
=

å= -  (4)

where i i i 1x x x ,- = -  and Mi = sup { }i 1 1 1f(x) x x x f( )- £ £ = x  (say), for same 1 i 1 1[x ,x ].-x Î  Such

a xi exists because a continuous function f attains its bounds on [xi-1 – x1].

Similarly, mi = inf { }i 1 i if(x) x x x f( )- £ £ = h  (say), for some i i 1 i[x ,x ].-h Î  Hence

i i i i i iM m f( ) f( ) f( ) f( ) /b a,- = x - h £ x - h < Î -  for all i,

since i i iA x .x - h £ < d  Substituting in (4) we obtain

U(P,f) – L(P,f)
n

i i i
i 1

(M m ) x
=

å= - 

( )
n

i
i 1

x
b a =

å
Î

< 
-

E (b a) .
b a

- = Î
-

Thus, every continuous function is Riemann integrable,

But as remarked earlier, even when there are discontinuous of the function, it is integrable. This
is given in the next two concepts which we state without proof.

Theorem 7: Let the bounded function f: [a, b]  R have a finite number of discontinuities. Then
f Î R (a,b).

Theorem 8: Let the sec of points of discontinuity of a, bounded function f: [a, b]  R  has a finite
number of limit points, then f Î R (a, b).

We illustrate these theorems with the help of examples.

Example: Show that the function f where f(x) = x2 is integrable in every interval [a,b].

Solution: You know that the function f(x) = x2 is continuous. Therefore it is integrable in every
interval [a,b].
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Example: Show that the function f where f(x) = [x] is integrable in [0,2] where [x] denotes

the greatest integer not greater than x.

Solution: 
0 if 0 x 1

[x] 1 if 1 x 2
2 if x 2

£ <

= £ <

=

The points of discontinuity of f in [0,2] are 1 and 2 which are finite in number and so it is
integrable in [0,2].

Example: Show that the function F defined on the interval [0,1] by

1 12rx, when x ,  where r is a positive integer
F(x) r 1 r

0, elsewhere,

ì
< £ï

= +í
ï
î

is Riemann integrable.

Solution: The function F is discontinuous at the points 1 10, 1, , , .
2 3

¼  The set of points of

discontinuity has 0 as the only limit point. So, the limit points are finite in number and hence the
function F is integrable in [0,1], by Theorem 8.

There is one more class of integrable functions and this class is that monotonic functions. This
we prove in the following theorem.

Theorem 9: Every monotonic function is integrable.

Proof: We shall prove the theorem for the case where I: [a,b]  R is a monotonically increasing
function. The function is bounded. f(a) and f(b) being g.l.b. and l.u.b. Let Î > 0 be given number,
Let n be a positive integer such that

(b a)[f(b) f(a)]n - -
>

Î

Divide the interval [a,b] into n equal sub-intervals, by the partition P = {x0, x1 …, x0} of [a, b]. Then
n

i i i
i 1

U(P,f) L(P,f) (M m )( x )
=

å- = - 

n

i

b a [f(xi) f(xi 1)]
n

å
-

= - -

(b a)[f(b) f(a)] .
n
-

= - <Î

This proves that f is integrable. Discuss the case of monotonically decreasing function as an
exercise. Do it by yourself.

Exercise: Show that a monotonically decreasing function is integrable.

Now we give example to illustrate the theorem.
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Example: Show that the function f defined by the condition 

n

1f(x)
2

=

n 1 n

1 1when x ,n 0,1,2
2 2+

< £ = ¼

is integrable in [0,1]

Solution: Here we have f (0) = 0,

f(x)
11 when x 1
2

= < £

f(x)
21 1 1 when x

2 2 2
æ ö

= < £ç ÷è ø

------------------------------------------------

------------------------------------------------

Clearly f is monotonically increasing in [0, 1]. Hence it is integrable.

20.3 Algebra of Integrable Functions

As we discussed the algebra of the derivable functions. Likewise, we shall now study the algebra
of the integrable functions. In the previous class, you have seen that there are integrable as well
as non-integrable functions. In this section you will see that the set of all integrable functions on
[a,b] is closed under addition and multiplication by real numbers, and that the integral of a sum
equals the sum of the integrals. You will also see that difference, product and quotient of two
integrable functions is also integrable.

All these results are given in the following theorems.

Theorem 10: If f Î R (a , b), and  is any real number, then  f Î R (a,b) and

b b

a a
f(x) dx f(x) dx.  = 

Proof: Let P = {x,, x1,...., xn) be a partition of [a,b]. Let Mi and mi be the respective l.u.b. and g.l.b. of
the function f in [xi-1, xi]. Then  Mi and  mi are the respective l.u.b. and g.l.b. of the function  f
in [xi-1, xi], if A  0, and  mi and  Mi are the respective l.u.b. and g.l.b. of h f in [x i-1, xi], if
h < 0.

n n

i i i
i 1 i 1

When 0,  then U(P, f) A M x M Ax, U(P,f).
= =

å å   =  =  = 


6 b

a
f(x) dx f(x) dx.  = 

Similarly L(P,  f) = A L(P,f).



b b

a a
f(x) dx f(x) dx  = 

If 
n

i i
i 1

0, U(P, f) m x L(P,f).
=

å <  =   = 
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b b

a a
f(x) dx f(x) dx  = 

Similarly L(P, f) =  U L(P,f).


h b

a a
f(x) dx A f(x) dx  =

Since f is integrable in [a,b], therefore

6 b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Hence 
6 6 b

a
f(x) dx f(x) dx f(x) dx,   =  = 

whether  0 or  < 0.

Hence 
b b

a a
f R [a,b] and f(x) dx f(x) dx.  Î  = 

Now suppose that  = –1. In this case the theorem says that if f Î R [a,b], then ( f) R[a,b]- Î

b b

a a
[ f(x)]dx f(x) dx.

-

 - =

Theorem 11: If f Î R [a,b], g Î R [a,b],. then f + g Î R [a,b] and

b b b

a a
(f g)(x)dx f(x) dx g(x) dx.  + = +

Proof: We first show that f+g Î R [a,b]. Let Î > 0 be a given number. Since f Î R [a,b], g Î R [a,b],
there exist partitions P and Q of [a,b] such that U(P,f) – L(Pf) < Î/2 and U (Q,g) – L (Q,g)
< Î/2

If T is a partition of [a,b] which refines both P and Q, then

U(T,f) – L(T,f) < Î/2 [U(T,f) – L(T,f) £ U(P,f) – L(P,f)].

Similarly,

U(T,g) – L(T,g) < Î/ 2 (5)

Also note that, if Mi = sup {f(x) : xi-1 £ x £ xi}

and

Ni = sup {g(x): xi-1 6 x £ xi}

then,

sup {f(x) + g(x): xi-1 £ x £ xi} £ M1 + Ni.

Using this, it readily follows that

U(T, f+g) £ U(T,f) + U(T,g)

for every partition T of [a,b]. Similarly

L(T,f+g) L(T,f) + L(T,g)

for every partition T of [a,b].

Thus U (T,f+g) – L (T,f+g) £ [U(T,f) + U(T,g) – L [(T,f) + L(T,g)]
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= [U(T,f) – L(T,f)] + [U(T,g) – L(T,g)] 

2 2
Î Î

< + = Îfor T occurring in (5). This shows that f + g Î R(a,b)

It remains to show that 
b b b

a a a
[f(x) g(x)]dx [f(x) dx g(x)  + = +

Now

b b

a
(f g)(x)dx (f g) (x) dx U(P,f g) U(P,f) U(P,g) + = + £ + £ + (6)

for any partition P of [a,b]. Given any Î > 0 we can find a partition P of [a,b] such that

b

a
U(P,f) f(x) (x) dx /2< + Î

b

a
U(P,g) g(x) dx /2< + Î (7)

Substituting (7) in (6), we obtain

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + < + + Î (8)

Since (8) holds for arbitrary Î > 0, we obtain

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + £ + (9)

Replacing f and g by –f and –g in (9) we obtain

b b b
( f g) (x) dx { f (x)} dx { g(x)} dx  - - £ - + -

or

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + £ - -

This is equivalent to

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  +  +

Combining (9) and (10), we get

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx  + =

Which proves the theorem.

Theorem 12: If f Î R(a,b) and g Î R (a,b), then f – g Î R(a, b) and

b b b

a a a
(f g) (x) dx f(x) dx g(x) dx.  - = -

Proof: Since g E R [a,b], therefore -g Î R [a,b] and

b b
[g(x)]dx g(x) dx - = -
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therefore,

b b b

a a a
[f ( g)](x) dx f(x) dx [ g(x)] dx  + - = + -

that is (f – g) Î R [a,b] and

b b b

a a
(f g) (x) dx f(x) dx g(x) dx.  - = -

For the product and quotient of two functions, we state the theorems without proof.

Theorem 13: If f Î R(a,b) and g ÎR(a,b), then f g ÎR(a,b).

Theorem 14: If f ÎR(a,b), g Î R(a,b) and there exists a number t > 0 such that g(x) t, x [a,b],  Î

then f/g Î R(a,b).

Now we give some examples.

Example: Show that the function f, where f(x) = x + [x] is integrable is [0, 2].

Solution: The function F(x) = x, being continuous is integrable in [0, 2] and the function G(x) = [x]
is integrable as it has only two points namely, 1 and 2 as points of discontinuity. So their sum is,
f(x) is integrable in [0, 2].

Example: Give an example of function f and g such that f + g is integrable but f and g are
not integrable in [a, b].

Solution: Let f and g be defined in [a, b] such that

0, when x is rational
f(x)

1, when x is irrational,
ì

= í
î

1, when x is rational
g(x)

0, when x is irrational
ì

= í
î

f and g are not integrable but (f g) 1 x [a,b],+ =  Î  being a constant function, is integrable.

20.4 Computing an Integral

So far, we have discussed several theorems for testing whether a given function is integrable on

a closed interval [a,b]. For example, we can see that a function 2f(x) x x [0,2]=  Î  is continuous
as well as monotonic on the given interval and hence it is integrable over [0,2]. But this information
does not give us a method for finding the value of the integral of this function. In practice, this
is not so easy as we might think of. The reason is that there are some functions which are
integrable by conditions of integrability but it is difficult to find the values of their integrals.

For example, suppose a function is given by 
2xf(x) e=  This is continuous over every closed

interval and hence it is integrable. But we cannot find its integral by our usual method of anti

derivative since there is no function for which 2xf(x) e=  is the derivative. If possible, try to find

the anti derivative for this function.
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integral to evaluate its integral. Indeed, the definition of integral as a limit of sum helps us in
such situations.

In this section, we demonstrate this method by means of certain examples. We have found the

integral 
b

a
f(x) dx  via the sums U(P,f) and L(P,f). The numbers Mi and mi which appear in these

sums are not necessarily the values of f(x), i f f is not continuous. In fact, we shall now show that
f(x) dx  can be considered as limit of sums in which M i and m, are replaced by values of f. This

approach gives us a lot of latitude in evaluating 
b

a
f(x) dx,  as we shall see in several examples.

Let f: [a,b]  R be a bounded function. Let

la = x0 < X1 < ...... xn = b]

be a partition P of [a,b]. Let us choose points t1, .... tn, such that

xi-1 £ ti £ xi (i = 1, ... n). Consider the sum

n n

i i i i i 1
i 1 i 1

S(P,f) f(t ) x f(t ) (x x ).-
= =

å å=  = -

Notice that, instead of Mi in U(P, f) and mi in L(P,f), we have f(ti) in S(P, f). Since ti ‘s are arbitrary
points in [xi-1, xi], S(P, f) is not quite well-defined. However, this will not cause any trouble in case
of integrable functions.

S(P,f) is called Riemann Sum corresponding to the partition P.

We say that lim S(P,f) = A

or 
P 0

S(P,f) A as P 0 if for every number 0 0 such that 
S(P,f) A for P with P 6.

-

  Î< $ d >

- < Î <

We give a theorem which expresses the integral as the limit of S(P,f).

Theorem 15: If 
P 0
lim


 S(P,f) exists, then f Î R (a,b) and 
b

P 0 a
lim S(P,f) f(x)dx.


=

Proof: Let 
P 0
lim


 S(P,f) = A. Then, given a number Î > 0, there exists a number d > 0 such that

S(P,f) A /4,  for P with P .- < Î < d

i.e., A /4 S(P,f) A /4,  for P with P .- Î < < + Î < d (11)

Let P = {x0, x,, ....., xn). Suppose the points t, ..., tn vary in the intervals [x0, x,], ..., [xn-1, xn],
respectively. Then, the l.u.b. of the numbers S(P,f) are given by

l.u.b. S(P,f) ( )
n n

i i i i
i 1 i 1

l.u.b. f(t ) x M x U(P,f).
= =

å å=  =  =

Similarly, g.1.b. S(P,f) = L(P,f). Then, from (11), we get

A – Î/4 £ L(P,f) £ U(P,f) 5 A + Î/4 (12)
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U(P,f) – L(P,f) £ (A + Î/14) – (A – Î/4)

= Î/2 < Î.

In other words, f Î R(a,b). Thus

b b b

a a a
f(x) dx f(x) dx f(x) dx.  = =

Since 
b h

a
L(P,f) f(x) dx f(x) dx U(P,f), £ £ £  therefore

L(P,f)
b

a
f(x) dx U(P,f).£ £ (13)

From (12) and (13), we get

A – Î/4
b

a
f(x) dx A /4.£ £ + Î

That is,

b

a
f(x) dx A - £ Î/4 < e.

Since Î is arbitrary, therefore 
b

a
f(x) dx A 0, - =  that is, 

b

P 0a
f(x) dx A lim S(P,f).


 = =  This completes

the proof of the theorem.

To illustrate this theorem, we give two examples.

Example: Show that 
b b

a a
dx 1 dx b a. = = -

Solution: Here, the function f: [a,b]  R is the constant function f(x) = 1.

Clearly, for any partition P = (x0, x,, ...., xn) of [a,b], we have

S(P,f) = (x1 – x0)f(t1) + (x2 – xl) f(t2) + ....... + (xn – xn-1)f(tn)

= (x1 – x0)1 + (x2 – x1)1 + ....... + (xn – xn-1)1 = b – a.

Since S(P,f) = b – a, for all partitions, 
b

P 0a
1 dx lim S(P,f) b a.


 = = -

Example: Show that 
2 2b

a

b ax dx .
2
-

=

Solution: The function f:[a,b]  R in this example is the identity function f(x) = x.

Let P = (a = x,, x,, …, xa = b) be any partition of [a,b]. Then

S(P, f) = (x1 – x0) f(tl) + (x2 – x1) f(t2) + .... + (xn – xn) f(tn), where t1 Î [x0, x1,], t2 Î [x1, x2], …

tn Î [xn-1, xn] are arbitrary. Let us choose

0 1 1 2 n 1 n
1 2 n

x x x x x xt , t , , t .
2 2 2

-+ + +
= = ¼ =
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Then, S(P,f) 1 0 2 1 n n 1

1 0 2 1 n n 1
x x x x x x(x x ) (x x ) (x x )

2 2 2
-

-

+ + +
= - + - +¼+ -

( ) ( ) ( )2 0 2 1 2 2
1 2 2 2 n n 1

1 x x x x x x
2 -
é ù= - + - +¼+ -ë û

( ) ( )2 2 2 2
n 0

1 1x x b b .
2 2

= - = -

Here again, ( )2 21S(P,f) b a ,
2

= -  no matter what the partition P we may take, Hence

b b
2 2

P 0
a a

1f(x) dx x dx lim S(P,f) (b a ).
2

= = = - 

The converse of Theorem 15 is also true which we state without proof as the next theorem.

Theorem 16: If a function f is Riemann integrable on a closed interval [a,b], then
b

P 0 P 0
a

lim S(P,f) exists and lim S(P,f) f(x) dx.
 

= 

One of the important application of Theorem 16 is in computing the sum of certain power series.
For, let us consider a partition P of [a,b] having n sub-intervals, each of length h so that nh =
b – a. Then P can be written as P = (a, a + h, a + 2h, ..., a + nh = b).

Let t, = a + ih, i = 1,2 ,...., n. Then

S(P,f)
n

i i
i 1

f(t ) x h[f(a h) f(a 2h) f(a nh)].
=

å  = + + + +¼+ +

When 
P 0
lim S(P,f)


 exists, then

h

n
ah 0

lim h[f(a h) f(a 2h) f(a nh)] f(x) dx.
¥


+ + + +¼+ + = 

In the above formulae, we can change the limits of integration from a, b to 0, a, where a Î N. For,

by changing h to b a ,
an
-  it is easy to deduce from above formula that

bn

n
a

(b a) 1 (b a) rlim f a f(x) dx.
n h¥

=

- -é ù
+ =ê úa aë û

å  (14)

But,
b

a 0

(b a) (b a)f(x) dx f a x dx.
a

- -é ù
= +ê úa aë û

 

Therefore, from (14), we get

n

n r 1 0

1 (b a) r (b a)lim f a f a x dx.
n n

a

¥
=

- -é ù é ù
+ = +ê ú ê úa aë û ë û

å  (15)

In (15), put a = 0, b = a. We get the following result:

If f is integrable in [0,a], then

n

n r 1 0

1 rlim f f(x) dx.
n n

a

¥
=

æ ö
=ç ÷è øå 
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1. Write the general rth term of the series.

2. Express it as 1 rf ,
n n

æ ö
ç ÷è ø

 the product of 1
n

 and a function of r .
n

3. Change r
n

 to x and 1
n

 to dx and integrate between the limits 0 and a. The n value of the

resulting integral gives the limit of the sum of n terms of the series.

Since each term of a convergent series tends to 0, the addition or deletion of a finite number of
terms of the series does not affect the value of the limit. Similarly, you can verify that

2n

n r 1

1 rlim
n n¥ =

å
é ùæ ö

f ç ÷ê úè øë û

2

0
(x) dx,= f

3n

n r 1

1 rlim
n n¥ =

å
é ùæ ö

f ç ÷ê úè øë û

3
(x) dx,= f  and so on.

As an illustration of these results, consider the following examples.

Example: Find the limit, when n tends to infinity, of the series

1 1 1 1 .
n 1 n 2 n 3 n n

+ + +¼+
+ + + +

Solution: General (rth) term of the series is 
n n

r 1 r 1

1 1 1 .rn r n 1
n

= =

å å

æ ö
ç ÷

= ç ÷+ +ç ÷è ø

Hence, 
1n

n r 1 0

1 1 1lim dx log 2.rn 1 x1
n

¥ =

å 

æ ö
ç ÷

= = =ç ÷ ++ç ÷è ø

Example: Find the limit, when n tends to infinity, of the series

2 2 2 2 2 2

1 1 1 1 .
n n 1 n 2 n (n 1)

+ + +¼+
- - - -

Solution: Here the rth term 
n

2 2r 1

1
n (r 1)=

å=
- -

Since it contains (r – 1), we consider its (r + l)th term i.e.,

the term 
n n

22 2r 0 r 0

1 1 1
n rn r 1

n
= =

å å=
- æ ö

+ ç ÷è ø
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Therefore, 

1n

2 2n r 1 0
n

1 1lim dx.
1 xr1

n

¥ =

å = -
-æ ö

+ ç ÷è ø

 because 
n

1lim 0.
n¥
=

The value of this integral, on the r.h.s. of last equality, is ,
2
p

Example: Find 
n 23

n 3n r 1

nlim .
(3 r)¥ =

å
+

Solution: We have

n

2

33

n 1 .
(3 r) n r3

n

æ ö
ç ÷1
ç ÷=

+ ç ÷æ ö
+ç ÷ç ÷è øè ø

Since the number of terms in the summation is 3n, the resulting definite integral will have the
limits from 0 to 3.

Therefore, 
( )

n n2 33 3

3 3 3n nr 1 r 1n 0

n 1 1 dxlim lim
n (3 r) (3 x)3 r¥ ¥= =

å å = =
+ ++

This integral you can evaluate easily.

Self Assessment

Fill in the blanks:

1. Let P, and P, be two partitions of [a,b]. We say that P, is finer than P, or P 2, refines P, or P2

is a refinement of P1 if ................., that is, every point of P1 is a point of P,.

2. Let f: [a,b]  R be a bounded function. The infimum or the greatest lower hound of, the set
of ail upper sums is called the upper (Riemann) integral of f on [a, b] and is denoted
by,..........................................

3. If the partition P2 is a refinement of the partition P, of [a,b], then L(P1,f) £ L(P2,f) and
.............................................

4. The integrability is not affected even when there are finites number of points of
................................ or the set of points of discontinuity of the function has a finite number
of limit points.

5. If f : [a, bJ  R is a ......................, then f is integrable over [a, b], that is f Î R(a,b).

20.5 Summary

 In this unit, you have been introduced to the concept of integration without bringing in
the idea of differentiation. As upper and lower sums and integrals of a bounded function
f over closed interval [a,b] have been defined. You have seen that upper and lower Riemann
integrals of a bounded function always exist. Only when the upper and lower Riemann
integrals are equal, the function f is said to be Riemann integrable or simply integrable
over [a,b] and we write it as f Î R [a,b] and the value of the integral of f over [a,b] is
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denoted by 

b

a
f(x) dx.  Also in this section, it has been shown that in passing from a partition

PI to a finer partition P2, the upper sum does not increase and the lower sum does not
decrease. Further, you have seen that the lower integrable of a function is less than or
equal to the upper integral. Further condition of integrability has been derived with the
help of which the integrability of a function can be decided without finding the upper and
lower integrals. Using the condition of integrability, it has been shown that a function f is
integrable on [a,b] if it is continuous or it has a finite number of points of discontinuities
or the set of points of discontinuities have finite number of limit points. Also you have
seen that a monotonic function is integrable. As in the case of continuous and derivable
functions, the sum, difference, product and quotient of integrable functions is integrable.
Riemann sum S(P,f) of a function f for a partition P has been defined and you have been
shown that 

P 0
lim S(P,f)


 exists if and only if f Î R [a,b] and 
b

P 0a
f(x) dx lim S(P,f).


 =  Using this

idea a number of problems can be solved.

20.6 Keywords

Partition: Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points
{x0, xl, ...., x,}, where

a = x0, < x1 <… < xn-1 <xn = b.

We write xi = xi – xi-1, (i=l, 2, ..., n). So xi is the length of the ith sub-interval given by the
partition P.

Norm of a Partition: Norm of a partition P, denoted by P ,  is defined by P max Ax,.
t i n
=

£ £

 Namely,

the norm of P is the length of largest sub-interval of [a, b] induced by P. Norm of P is also
denoted by (P).

Darboux's Theorem: If f: [a,b]  R is a bounded function, then to every Î > 0, there corresponds
d > 0 such that

(i)
b

a
U(P,f) f(x) dx< + Î

(ii)
b

a
L(P,f) f(x) dx< - Î

20.7 Review Questions

1. Find the upper and lower Riemariri integrals of the function f defined in [a, b] as follows

1 when x is ratinal
f(x)

1 when x is irrational
ì

= í
-î

2. Show that the function f where f(x) = x[x] is integrable in [0, 2].

3. Show that the function f defined in LO, 21 such that f(x) = 0, when nx
n 1

=
+

 or

n 1 (n 1,2,3, ),
n
+

= ¼  and f(x) = 1, elsewhere, is integrable.
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Notes 4. Prove that the function f defined in [0, 1] by the condition that if r is a positive integer,

f(x) = (–1)r-1 when 1 1x ,
r 1 r

< £
+

 and f(x) = 0, elsewhere, is integrable.

5. Show that the function f defined in [0, 1], for integer a > 2, by r 1

1f(x) ,
a -

=  when r r 1

1 1x
a a -

< <

r 1

1(r 1,2,3)
a -

= , and f(0) = 0, is integrable.

6. Give example of functions f and g such that f – g, fg, f/g are integrable but f and g may not
be integrable over [a, b].

7. Find the limit, when n tends 10 infinity, of the series

3 3 3 3

n n n n
n (n 4) (n 8) [n 4(n 1)]

+ + +¼+
+ + + -

8. Find the limit, when 11 tends to infinity, of the series

1 1 1 1 .
n n 1 n 2 3n
+ + +¼+

+ +

Answers: Self Assessment

1. P1  P2 2.
h

a
f(x)dx.

3. U(P2,f) £ U(P1,f) 4. discontinuity

5. continuous function

20.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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CONTENTS

Objectives

Introduction

21.1 Properties of Riemann Integral

21.2 Summary

21.3 Keyword

21.4 Review Questions

21.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Identify the properties of the integral and

 Use them to find the Riemann Stieltjes integral of functions

Introduction

In last unit you have studied about Riemann integral. In this unit, we are going to see the
properties of Riemann Stieltjes integral.

21.1 Properties of Riemann Integral

As you were introduced to some methods which enabled you to associate with each integrable

function f defined on [a,b], a unique real number called the integral 
b

a
f(x) dxò  in the sense of

Riemann. A method of computing this integral as a limit of a sum was explained. All this leads
us to consider some nice properties which are presented as follows:

Property 1: If f and g are integrable on [a, b] and if

f(x) g(x) x [a,b],£ " Î

then

b b
f(x) dx g(x) dxò ò£

Proof: Define a function h: [a,b]  R as

h = g – f .

Since f and g are integrable on [a, b], therefore, the difference h is also integrable on [a, b].

Since

f(x) £ g(x)  g(x) – f(x)  0,

therefore h(x)  0 for all x E [a,b].
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Notes Consequently, if P = {x0, x1, … xn} be any partition of [a,b]

and m, be the inf. of h in [x, 1, x,], then

im 0 i 1, 2, n " = ¼

n

i i
i 1

m x 0
=

åÞ D 

L(P,h) 0Þ 

Thus for every partition P, the lower sum L(P,h)  0.

In other words, Sup. (1 (P,h): P is a partition of [a,b])  0

or

h

a
f(x) dxò

Since h is integrable in [a,b], therefore

b b b

a a a
h(x) dx h(x) dx h(x) dx.ò ò ò= =

Thus

b

a
h(x) dx 0ò 

or

b

a
(g f) (x) dx 0ò - 

Þ
b b

a a
g(x) dx f(x) dxò ò

which proves the property

Property 2: If f, is integrable on [a, b] then f  is also integrable on

b b

a a
[a,b] and f(x) dx f(x) dxò ò£

Proof: The inequality follows at once from Property 1 provided it is known that f  is integrable

on [a,b]. Indeed, you know that f f f .- £ £

Therefore,

b b b

a a
f(x) dx f(x) dx f(x) dx

-

ò ò ò£ £

which proves the required result. Thus, it remains to show that f  is integrable.

Let Î > 0 be any number. There exists a partition P of [a, b]
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U(P,f) – L(P,f) £Î

Let P = {x0, x1, x2, …, xn}.

Let i iM  and m¢ ¢  denote the supremum and infimum of f  and Mi and mi denote the supremum
and infimum of f in [xi-1, xi].

You can easily check that

' '
i i i iM m M m .-  -

This implies that 
n n

i i i 1 1 i
i 1 i 1

(M m ) A x (M m ) x ,¢ ¢

= =

å å-  - D

i.e., ( ) ( )U P, f L P, f U(P,f) L(P,f) ,- £ - <Î

This shows that f  is integrable on [a,b].

Note that the inequality established in Property 2 may be thought of as a Integrability and
differentiability generalization of the well-known triangle inequality

a b a b+ £ +

In other words, the absolute value of the limit of a sum never exceeds the limit of the sum of the
absolute values.

You know that in the integral 
b

a
f(x) dx,ò  the lower limit a is less than the upper limit b. It is not

always necessary. In fact the next property deals with the integral in which the lower limit a may
be less than or equal to or greater than the upper limit b.

For that, we have the following definition:

Definition 1: Let f be integrable on [a,b], that is, 
b

a
f(x) dxò  exists when b > a. Then

b

a
f(x) dxò = 0, if a = b

a

b
f(x) dx,  if a b.ò= - >

Now have the following property.

Property 3: If a function f is integrable in [a,b] and f(x) k x [a,b],£ " Î  then 
b

a
f(x) dx k b a .ò £ -

Proof: There are only three possibilities namely either a < b or a > b or a = b. We discuss the cases
as follows:

Case (i): a < b

Since f(x) k£ x [a,b]," Î  therefore

– k £ f(x) £ k x [a,b]" Î
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Þ

h b b

a a
kdx f(x) dx k dx (why?)ò ò ò- £ £

Þ
b

a
k(b a) f(x) dx k(b a)ò- - £ £ -


b

a
f(x)dx k(b a) k b aò £ - = -

which completes the proof of the theorem.

Case (ii): a > b

In this case, interchanging a and b in the Case (i), you will get

a

b
f(x) dx k(a b)ò £ -

i.e.
b
f(x) dx k(a b)ò- £ -

i.e.
b
f(x) dx k(a b) k b a .ò £ - = -

Case (iii): a = b

In this case also, the result holds,

since 
b

a
f(x) dx 0 for a b and k b a 0 for a b.ò = = - = =

Let [a,b] be a fixed interval. Let R [a,b] denote the set of all Riemann integrable functions on this
interval. We have shown that if f,g C R [a,b], then f + g f.g and f for A Î R belong to R [a,b].
Combining these with Property, we can say that the set R [a,b] of Riemann integrable functions
is closed under addition, multiplication, scalar multiplication and the formatian of the absolute
value.

If we consider the integral as a function Int: R[a,b]  R defined by

Int (f) = 
b

a
f(x) dxò

with domain R [a,b] and range contained in R, then this function has the following properties:

lnt (f+g) = Int (f) + Int (g), lnt (f) = Int (f)

In other words, the function lnt preserves 'Vector sums' and the scalar products. In the language
of Linear Algebra, the function lnt acts as a linear transformation. This function also has an
additional interesting property such as

lnt (f) £ lnt(g)

whenever

f £ g .

We state yet another interesting property (without proof) which shows that the Riemann Integral
is additive on an interval.
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NotesProperty 4: If f is integrable on [a,b] and c Î [a,b], then f is integrable on [a,c] and [c,b] and
conversely. Further in either case

b c b

a a c
f(x) dx f(x) dx f(x) dx.ò ò ò= +

According to this property, if we split the interval over which we are integrating into two parts,
the value of the integral over the whole will be the sum of the two integrals over the subintervals.
This amounts to dividing the region whose area must be found into two separate parts while the
total area is the sum of the areas of the separate portions.

We now state a few more properties of the definite integral 
b

a
f(x) dxò , these are:

(i)
n a
f(x) dx f(a x) dx.ò ò= -

(ii)
2a a a

0 0 0
f(x) dx f(x) dx f(2a x)dx.ò ò ò= + -

(iii)
a

a
0

a

2 f(x) dx if f is an even function
f(x) dx

0 iff is an old function.-

ò
ò

ì
ï

= í
ïî

(iv)
na a

0 0
f(x) dx n f(x) dxò ò=  if f is periodic with period 'a' and n is a positive integer provided the

integrals exist.

Self Assessment

Fill in the blanks:

1. If f, is ...................... on [a, b] then f  is also integrable on 
b b

a a
[a,b] and f(x) dx f(x) dx.ò ò£

2. The inequality follows at once from Property 1 provided it is known that f  is .........................

on [a, b]. Indeed, you know that f f f .- £ £

3. If a function f is integrable in [a, b] and ..................................,  then 
b

a
f(x) dx k b a .ò £ -

4. If f is integrable on [a, b] and ................., then f is integrable on [a, c] and [c, b] and conversely.

21.2 Summary

 Sum of two Riemann Stieltjes integrable functions is also Riemann Stieltjes integrable.

 Scalar product of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 Modulus of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 Square of a Riemann Stieltjes integrable function is also Riemann Stieltjes integrable.

 If a function is Riemann Stieltjes integrable on an interval, then it is also Riemann Stieltjes
integrable on any of its subinterval.
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Notes 21.3 Keyword

Riemann Stieltjes Integrable: Sum of two Riemann Stieltjes integrable functions is also Riemann
Stieltjes integrable.

21.4 Review Questions

1. Calculate if a < b, a
b fdò a

2. Suppose f is a bounded valued function on [a, b] and f2 Î R on [a, b]. Does it follow that
f ÎR on [a, b]?

3. Show that 0ò1 x2dx = 3/5 where a(n) = x3

4. Show that 0ò2 [x]dx = 3/5 where a(x) = x2 = 3.

Answers: Self Assessment

1. integrable 2. integrable

3. f(x) k x E[a, b]£ " 4. c Î [a, b]

21.5 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Integration, using Riemann Sums

CONTENTS

Objectives

Introduction

22.1 Riemann-Stieltjes Sums

22.2 More Notation: The Mesh (Size) of a Partition

22.3 The Riemann-Stieltjes – sum Definition of the Riemann-Stieltjes Integral

22.4 A Difficulty with the Definition; The Cauchy Criterion for Riemann-Stieltjes
Integrability

22.5 Functions of Bounded Variation: Definition and Properties

22.6 Some Properties of Functions of Bounded Variation

22.7 Summary

22.8 Keywords

22.9 Review Questions

22.10 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss Riemann–Stieltjes sums

 Know the Cauchy Criterion for Riemann–Stieltjes Integrability

Introduction

We will approach Riemann-Stieltjes integrals using Riemann-Stieltjes sums instead of the upper
and lower sums. The main reasons are to study Riemann-Stieltjes integrals with “integrators”
(x) that are not monotone, but are “of bounded variation,” and (most important) here you are
able to define Riemann-Stieltjes integrals when the values of my functions belong to an infinite
dimensional vector space, where upper and lower sums don’t make sense. This makes little
difference in the case of real-valued functions, since functions of bounded variation can always
be expressed as the difference of two monotone functions. At first, we don’t need “bounded
variation,” so that concept’s development will wait until it is needed.

Throughout this note, our functions f(x) will be “finite-valued.” They may be real, complex, or
vector-valued. Their values will thus lie in a vector space. They can thus be added pointwise, and
multiplied by scalars, and their values always have finite “distance from zero,” denoted |f(x)|,
which can denote absolute value or norm, such as the length of a vector, or the “Lp norm” and the
“Lq norm”. In case f(x) is actually a function of t for each x... We always assume that the ”absolute
value” is complete; Cauchy sequences converge.
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A Riemann-Stieltjes sum for a function f(x) defined on an interval [a, b] is formed with the help
of

1. A partition  of [a, b], namely an ordered, finite set of points xi, with a = x0 < x1 < < xn = b
(where n is a positive integer that can be any positive integer, and one that we will often
write as n = n


),

2. A selection vector  = (1, ..., n) that has n

 components that must satisfy xi – 1  i  xi, for

i = 1, 2, ..., n.

and

3. An integrator (x), which is a function defined on [a, b] that plays the role of the x in dx ...

A Riemann-Stieltjes sum for f over [a, b] with respect to the partition , using the selection
vector , and integrator , may be denoted (in greatest detail!) as follows, and it is given
by the value of the sum following it:

4. RS (f, , [a, b], , ):=
n

i i i 1
i 1

f( )( (x ) (x ))


-
=

  - å .

22.2 More Notation: The Mesh (Size) of a Partition

In this definition, as in the Riemann-sums definition, we can write xi:= xi—xi – 1 or i:= (xi) –
(xi – 1). These are convenient because they are short and suggest the dx or d in an integral. But
they can cause confusion because they leave out the dependence they have on xi – 1. The xi is used
in the Riemann-Stieltjes context.

A partition  can be thought of as “dividing” the interval [a, b] into subintervals. We may write
|[a, b] and read this as “ divides [a, b],” or “partitions [a, b].” We will denote the intervals of
 by Ii:= [xi – 1, xi]. When we wish to work with 2 partitions at the same time we will have to
distinguish between them somehow, for example we can use y j to denote the other’s points and
Jj to denote its intervals, etc.

We measure the fineness of a partition using the length of the longest interval in the partition.
This number is written

mesh():=
1 i n
max

 
(xi – xi – 1) = 

1 i n
max

 
xi.

This definition of mesh size is used and not 
1 i n
max

 
((xi) –(xi – 1)) even in the Riemann-Stieltjes

context.

22.3 The Riemann-Stieltjes – sum Definition of the
Riemann-Stieltjes Integral

Definition: A real-valued function f(x) defined on the bounded and closed interval [a, b] is
Riemann-Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for
all  > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

We write

b
a f dò = b

a f(x) d (x)ò := RSI
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Notesand we call this the Riemann-Stieltjes integral of f over [a, b] with respect to .

If f and  are real-valued and we imagine the set of all numbers RS(f, , ) that can be formed
(using all possible appropriate selection vectors and all possible partitions whose mesh sizes
are less than ), the definition demands that they all lie in the open interval (RSI – , RSI + ).
When we had (x) = x this led to a Theorem.

Theorem: If f is Riemann integrable on [a, b] then f is bounded on [a, b].

This Theorem has to be modified in the Riemann-Stieltjes context! A simple example: suppose
that [a, b] is [0, 1] and that (x) = 0 if 0  x  c, where 0 < c < 1, and (x) = 1 if c < x  1. Then every
function f(x) that is continuous at c is Riemann-Stieltjes integrable on [0, 1] with respect to this .
In particular the function that is 1/x except at zero, where we define it to be zero, is Riemann-
Stieltjes integrable on [0, 1] with respect to this , but f is not bounded. The difference is that
when (x) was just x, we had xi > 0 for every i. In our example, i = 0 unless Ii contains c and
some d with c < d. What we need is that on the set where the function  “really” varies, f must be
bounded. To make a definition, we will extend the definitions of f and  beyond the interval [a,
b] by setting them equal to their values at the endpoints. Thus we think of f(x) = f(a) if x < a and
f(x) = f(b) if x > b, with the same idea used to extend . We now define the oscillation of f on an
interval U by

(f, U) :=
x, y U
sup

Î

|f(x) – f(y)|.

We allow the interval to be open or half-open now!

As before, we will let i = i(f) = (f, Ii) when Ii is an interval (closed!) of a partition . But now we
need to use oscillations of  as well.

Definition: If (x) is defined for x Î [a, b], we denote by  = (, [a, b]) the set of all c Î [a, b] such
that every open interval U that contains c contains x1 < c < x2 with |(x1) –(x2)| > 0.

Notes Here c can be a or b because of our extension beyond [a, b]! For instance, if for all
 > 0 there exists x2 such that a < x2 < a +  and |(a) –(x2)| > 0, then a Î (, [a, b]) because
for every x1 < a we have |(x1) –(x2)| = |(a) –(x2)| > 0.

Task  Prove that (, [a, b]) is closed.

Theorem: If f is Riemann-Stieltjes integrable on [a, b] with respect to  then f is bounded on
(, [a, b]).

Proof: There exists a sequence {xn} in := (, [a, b]) such that |f(xn)| > n. Since f(x) is finite at
every point x in , there are infinitely many distinct xn, and so some subsequence (that we will
still denote {xn}) converges to a point x* in . We now choose  = 1 in the definition of Riemann-
Stieltjes integrability, and obtain a corresponding  > 0. We can then construct a partition o with
mesh size less than  in such a way that x* is contained in the interior of some interval I io

 of o

(unless x* is an endpoint of [a, b]; in that case, we can, by the Note, still use the following
argument, with Iio

 = I1 or Iio
 = In

). We know that every neighbourhood of x* contains infinitely
many of the xn. Now we will refine o. We know that Int(Iio

) contains points 1x̂ < x* < 2x̂  with
|( 1x̂ )—( 2x̂ )| > 0. We add these points to o, giving us a new partition , and mesh() < . We
will now call [ 1x̂ , 2x̂ ], which is an interval of , Î . Next we pick the components i of a selection
vector  in an arbitrary way when Ii  Î , and we let ̂  be some xN Î Î . Then |RS(f, , ) – RSI| <
1. We next modify  by changing only ̂ = xN to ̂¢ := xM, where x

M
Î Î , and we call the new
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Notes selection vector ¢. Then |RS(f, ,¢) – RSI|< 1, RS(f,,¢) – RS(f,,) = (f(xM) – f(xN))((xi) – (x2))
and

RS(f, p, ¢) – RSI = RS(f, , ) – RSI + (f(xM) – f(xN))(( 1x̂ ) – ( 2x̂ )).

By choosing M very large compared to N we can arrange that |f(x
M
) – f(xN)||( 1x̂ ) – ( 2x̂ )| > 2.

Then

1 > |RS(f, , ’) – RSI|  |RS(f, , ’) – RS(f, ,)| – |RS(f, , ) – RSI| > 2 – 1 = 1.

The definition of Riemann-Stieltjes integrability is contradicted. Hence f is bounded on (, [a, b])
if f is Riemann-Stieltjes integrable with respect to .

Notes From now on, we will usually say “f is Riemann-Stieltjes integrable” instead of
“f is Riemann-Stieltjes integrable with respect to .”

22.4 A difficulty with the Definition; The Cauchy criterion for
Riemann-Stieltjes integrability

In order to tell whether f is Riemann-Stieltjes integrable we have to know b
a f(x) d (x).ò  The idea

of a Cauchy sequence leads to the following Theorem, which gives an equivalent definition.

Theorem: Cauchy criterion for Riemann-Stieltjes Integrability

A function defined on [a, b] is Riemann-Stieltjes integrable over [a, b] with respect to , defined
on [a, b], if and only if for all  > 0 there exists  > 0 such that for all partitions  and ¢ of [a, b],
and for all selection vectors  and ¢ associated with  and ¢, respectively,

mesh() <  and mesh(¢) <   |RS(f, , , ) – RS(f, , ¢, ¢)| < .

Proof: First we suppose that f is Riemann-Stieltjes integrable over [a, b] with respect to . Then,
using /2 in the definition of Riemann-Stieltjes integrability, we obtain  > 0 and RSI such that
for all partitions  of [a, b],

mesh() <   |RS() – RSI| < /2

Now we suppose that  and ¢ are partitions of [a, b] and that

mesh() <  and mesh(¢) < .

Then for all selection vectors  and ¢ associated with  and ¢, respectively,

|RS(f, , , ) – RS(f, , ¢, ¢)|  |RS(, ) – RSI| + |RSI – RS(¢, ¢)| < /2 + /2 = .

This completes half the proof.

Next we suppose that the Cauchy condition, given in the Theorem, is satisfied. We have to find
a candidate for b

a f(x) d (x).ò  We first construct a sequence of partitions of [a, b]. We let n denote

the partition that divides [a, b] into n equal parts n ni
b ahas points x : a i .

n
-æ ö

 = +ç ÷è ø
 Finally we

define selection vectors n by

ni := a + i b a
n
- , i = 1, ..., n and define n:= 

n

ni ni n ,i 1
i 1

f( )( (x ) (x )),-
=

  - å

a Riemann-Stieltjes sum (n = RS(f, , n, n)). Now, given  > 0, we use /2 in the Cauchy
criterion, and obtain  > 0 such that

mesh() <  and mesh(¢) <  |RS(f, , , ) – RS(f, , ¢, ¢)| < /2.
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NotesThen, if n and n¢ are so large that (b – a)/n <  and (b – a)/n¢ < , we have

mesh(n) <  and mesh(n¢) <   |n – n¢| < /2.

This means (since  was arbitrary) that {n} is a Cauchy sequence in our space. Thus we define

RSI := 
n
lim
®¥

n

and it remains to show that if |[a, b] then

mesh() <   |RS() – RSI| <.

This is essentially done. We choose the first n such that mesh(n) < , and we suppose that
mesh() < . Then

|RS() – RI|  |RS() – n| + | n – RSI| < /2 + /2 = ,

since RS()—n = RS() – RS(f, , n, n). The proof is complete.

Notes Nothing is said at first about the functions f and , beside the demand that the
integrability definition hold.

If f and  have a discontinuity at the same point, then the Riemann-Stieltjes integral does not
exist.

They also show that if the Riemann-Stieltjes integral exists, then this integration-by-parts formula
holds:

b

a
f dò =

b

a
df f(b) (b) f(a) (a)-  +  - ò

(in the applications have far, far back in my mind, the integral on the right would have to be
b
a df ,ò  in order to keep the order of “multiplication” the same). The proof amounts to rearranging

the Riemann-Stieltjes sums, adding and subtracting terms in such a way that the i become
partition points and the xi become selection-vector components when 1 < i < n


. There are some

leftovers, and these turn out to be the “boundary” term f(x)(x)|b
a.

Wheeden and Zygmund state several properties, routine to prove, about Riemann-Stieltjes
integrals:

b

a
f dò is linear in both f and 

as long as all the integrals involved exist, and if 
b

a
f dò  exists and a < c <b, then both of 

c

a
f dò

and 
b

c
f dò  exist, and 

c

a
f dò  + 

b

c
f dò  = 

b

a
f dò .

What has been covered applies to all Riemann-Stieltjes integrals. That continuity plays a role
has already been mentioned.

22.5 Functions of Bounded Variation: Definition and Properties

In what we do from now on, at least one of f and  will be a function of bounded variation, unless
otherwise stated. We will begin by discussing real-valued functions of bounded variation. This
material can also be found in Measure and Integral, by Wheeden and Zygmund.

Definition: A function f: [a, b] ®  is a function of bounded variation on [a, b] if

V(f, [a, b]) :=
|[a,b]
sup


n

1



å|f(xi) – f(xi – 1)| < ¥ and we say that f Î BV[a, b].
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Notes To go farther it will be useful to have some more notation. If  is a partition of [a, b] we will
write

V

 = V


(f, [a, b]) :=

n

1



å|f(xi) – f(xi – 1)|,

so that V = 
|[a,b]
sup


 V

 (here, f and [a, b] are “assumed”).

We can call V

 the “-variation” of f over [a, b]. Since f has a finite value for each |[a, b], V


 is

always finite. However, V can be infinite. This is so, for example, if f is the Dirichlet function.

Each V

 pays attention only to the absolute value of the difference between the values at the

opposite ends of an interval of the partition . We will need to take the signs of those differences
into account, and they will lead to two new “variations.”

For a real number x we define its positive part to be x+ := max{0, x} and we define its negative part
to be x– := max{0, –x}. Both “parts” are non-negative, and we have x + + x– = |x| and x+ – x– = x.

Example: Prove that for all real numbers x and y, (x + y)+  x+ + y+ and (x + y)–  x– + y–.
These are “triangle inequalities!” What can be said about (xy)+ and (xy)–?

We now define the “positive” and “negative” “ -variations” of f over [a, b]:

P

 = P


(f, [a, b]) := 

n

1



å (f(xi) – f(xi – 1))+ and N

= N


(f, [a, b]) := 

n

1



å (f(xi) – f(xi – 1))–.

Definition: The positive variation, P = P(f, [a, b]) and the negative variation N = N(f, [a, b]) of f
over [a, b] are given by P = 

|[a,b]
sup


P

 and N = 

|[a,b]
sup


N

 respectively.

For example, if f increases on [a, b], P

 = V


 = f(b) – f(a) and N


 = 0. If we look at f(x) := |x| on

[–1, 1] we will always have 0  P

  1 and 0  N


  1, and 0  V


  2.

Because of how x+ and x– were defined, we always have (for any function)

P

 + N


 = V


 and P


 – N


 = f(b) – f(a)

If  is a refinement of , we always have O

  O


, where O stands for any of the letters N, P or V.

This follows from several applications of the triangle inequality.

22.6 Some Properties of Functions of Bounded Variation

If f Î BV[a, b] then f is bounded on [a, b].

Proof: Suppose a  x  b. Then, if we let := {a, x, b},

|f(x)| = |f(x) – f(a) + f(a)|  |f(a)| + |f(x) – f(a)| +|f(b) – f(x)| = |f(a)| + V

  |f(a)| + V.

The space BV[a, b] is a vector space. For all c Î  and all f Î BV[a, b], V(cf, [a, b]) = |c|V(f, [a, b]).
For all f Î BV[a, b] and g Î BV[a, b], V(f, [a, b])  V(f, [a, b]) + V(g, [a, b]); V(f, [a, b]) = 0 if and only
if f is constant.

Proof: The second assertion follows from these facts: for all | [a, b], V

(cf, [a, b]) = |c|V


(f,

[a, b]); sup{|c|x: x Î E} = |c| sup{x: x Î E} = |c| sup E. The first assertion and the first part of the
third one follow from the second one and the triangle inequality. Finally, suppose that V(f, [a,
b]) = 0 and that a  x  b. Then, with := {a, x, b}, |f(x) – f(a)| |f(x) – f(a)| + |f(b) – f(x)| = V


 = 0.

Therefore f(x)  f(a).

If f Î BV[a, b] and a < c <b then f Î BV[a, c] and f Î BV[c, b], and conversely. Moreover, V =
V(f, [a, b]) = V(f, [a, c]) + V(f, [c, b]).
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NotesProof: If f Î BV[a, b] and a < c < b, let partitions | [a, c] and | [c, b] be given. Then :=  U  is
a partition of [a, b] so V


 + V


 = V


  V, hence V


  V and V


  V. Thus f Î BV[a, c] and f Î BV[c, b].

Conversely, suppose that a < c < b and that f Î BV[a, c] and f Î BV[c, b]. Let |[a, b]. Then
c: = U {c} is a refinement of . Therefore V


  V

c
 = V


 + V


, where := c[a, c] and  is defined

similarly. By hypothesis, V

  V

c
 = V


 + V


  V(f, [a, c]) + V(f, [c, b]). Thus V(f, [a, b])  V(f, [a, c])

+ V(f, [c, b]) < ¥. This proves part of the asserted equality. To show the other inequality, now
that we know V < ¥ let partitions | [a, c] and | [c, b] be given. We recall that earlier we had
V


 + V


 = V

c
  V, so V


 + V


  V whenever | [a, c] and | [c, b] were arbitrary partitions of [a, c]

and [c, b], respectively.

Thus 
|[a,c]
sup


(V

 + V


) = V(f, [a, c]) +V


  V, and so 

|[c,b]
sup


(V(f, [a, c]) + V

) = V(f, [a, c]) + V(f, [c, b])  V.

Note  The first inequality holds for an arbitrary |[c, b], making the second one valid.

Example: Prove that the equality in (25) holds for every function f: [a, b] ® , whether f
is a function of bounded variation or not.

Motivated by (25), when f: [a, b] ®  and a  x  b we can define the three functions

V(x) := V(f, [a, x]), P(x) := P(f, [a, x]) and N(x) := N(f, [a, x]).

Each of these is an increasing function of x. Jordan’s Theorem asserts that if f Î BV[a, b] we can
represent f in terms of P(x) and N(x).

Theorem: Jordan

A function f Î BV[a, b] if and only if there exist functions g and h, both increasing on [a, b], such
that f(x) = g(x) – h(x) for a  x  b. If this is the case, then P(x)  g(x) – g(a), N(x)  h(x) – h(a) and
f(x) = f(a) + P(x) – N(x) for a  x  b.

Proof: Suppose first that f(t) = g(t) – h(t), t Î [a, b], where the functions g and h are both increasing
on [a, b]. Let |[a, b] (later, we will apply this when x Î [a, b] and |[a, x]). Then

fi = f (xi) – f(xi – 1) = gi – hi { i

i

g
h

 

 -
.

Thus –hi  fi  gi, so |fi|  max{gi, hi}  gi +hi for 1  i  n

. Hence V


(f)  V


(g) + V


(h) =

g(b) – g(a) + h(b) – h(a) < ¥, so f Î BV[a, b].

Next, we show that f(x) = f(a) + P(x) – N(x) for a  x  b. But we will do this just by showing it for
x = b. Then we can use (25) and let each x Î [a, b] play the role of b. This will show the existence
of the functions g(x)(= f(a) + P(x)) and h(x)(= N(x)). After that is done, we’ll prove the P–g and
N–h inequalities.

By the definitions of P, N and V we know there exist sequences {k}, {k} and {k} such that P
k 
® P,

N
k

 ® N and V
k

 ® V. Let us define k := k  k  k. As P
k

  P
k

  P. By the Squeeze Principle
P
k

 ® P. Similarly, N
k

 ® N and V
k 
® V. By Limit Theorems

P + N = V and P – N = f(b) – f(a) and the second is the same as f(x) = f(a) + P(x) – N(x)

when x = b. By above we can use any x Î [a, b] in place of b by restricting our attention to f on
[a, x].

Now suppose that f(x) is defined as the difference of two increasing functions on [a, b]: f(t) =
g(t) – h(t). We have the following observation: t1 ® t+ is increasing and t1 ® t– is decreasing.
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Notes Therefore, with the help of (28), applied to partitions of [a, x], (fi)+  (gi)+ = gi and hi =
(–hi)–  (fi)–.

Hence P

(f, [a, x])  P


(g, [a, x]) = g(x) – g(a). Similarly, h(x) – h(a) = N


(–h, [a, x])  N


(f, [a, x]).

When, in each case, we take the supremum over all |[a, x], we get P(x)  g(x) – g(a) and N(x)   h(x)
– h(a). These ”say” that there is no “wasted cancellation” in the formula f(x) = f(a) + P(x) – N(x).

Task  Prove that if f(x) Î BV[a, b] and f(x) is continuous at xo Î [a, b] then so are P(x), N(x)
and V(x).

Self Assessment

Fill in the blanks:

1. A ..................................... f(x) defined on the bounded and closed interval [a, b] is Riemann-
Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for all
 > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

2. If f is Riemann integrable on [a, b] then f is .................................

3. If (x) is defined for x Î [a, b], we denote by  = (, [a, b]) the set of all c Î [a, b] such that
every open interval U that contains c contains x1 < c < x2 with .....................................

4. If f is ...........................................  on [a, b] with respect to  then f is bounded on (, [a, b]).

5. If f and  have a ................................... at the same point, then the Riemann-Stieltjes integral
does not exist.

22.7 Summary

 A Riemann-Stieltjes sum for a function f(x) defined on an interval [a, b] is formed with the
help of

(a) A partition  of [a, b], namely an ordered, finite set of points xi, with a = x0 < x1 < <
xn = b (where n is a positive integer that can be any positive integer, and one that we
will often write as n = n


),

(b) A selection vector  = (1, ..., n) that has n

 components that must satisfy xi – 1  i  xi,

for i = 1, 2, ..., n. and

(c) An integrator (x), which is a function defined on [a, b] that plays the role of the x in
dx ...

A Riemann-Stieltjes sum for f over [a, b] with respect to the partition , using the
selection vector , and integrator , may be denoted (in greatest detail!) as follows,
and it is given by the value of the sum following it:

(d) RS (f, , [a, b], , ):=
n

i i i 1
i 1

f( )( (x ) (x ))


-
=

  - å .

We try to allow context to let us drop some of the items inside the RS(...).

 In this definition, as in the Riemann-sums definition, we can write xi:= xi—xi – 1 or i:=
(xi) –(xi – 1). These are convenient because they are short and suggest the dx or d in an
integral. But they can cause confusion because they leave out the dependence they have on
xi – 1. The xi is used in the Riemann-Stieltjes context.



LOVELY PROFESSIONAL UNIVERSITY 277

Unit 22: Introduction to Riemann-Stieltjes Integration, using Riemann Sums

Notes A partition  can be thought of as “dividing” the interval [a, b] into subintervals. We may
write |[a, b] and read this as “ divides [a, b],” or “partitions [a, b].” We will denote the
intervals of  by Ii: = [xi – 1, xi]. When we wish to work with 2 partitions at the same time we
will have to distinguish between them somehow, for example we can use y j to denote the
other’s points and Jj to denote its intervals, etc.

 A real-valued function f(x) defined on the bounded and closed interval [a, b] is Riemann-
Stieltjes integrable on [a, b] with respect to  if there exists a number RSI such that for all
 > 0 there exists  > 0 such that for every partition  of [a, b],

mesh() <   |RS(f, ) – RSI| < .

22.8 Keywords

Cauchy Criterion for Riemann-Stieltjes Integrability: A function defined on [a, b] is Riemann-
Stieltjes integrable over [a, b] with respect to , defined on [a, b], if and only if for all  > 0 there
exists  > 0 such that for all partitions  and ¢ of [a, b], and for all selection vectors  and ¢
associated with  and ¢, respectively,

mesh() <  and mesh(¢) <   |RS(f, , , ) – RS(f, , ¢, ¢)| < .

Jordan: A function f Î BV[a, b] if and only if there exist functions g and h, both increasing on [a,
b], such that f(x) = g(x) – h(x) for a  x  b. If this is the case, then P(x)  g(x) – g(a), N(x)  h(x) – h(a)
and f(x) = f(a) + P(x) – N(x) for a  x  b.

22.9 Review Questions

1. Identify the properties of the integral.

2. Use them to find the Riemann stieltjes integral of functions.

Answers: Self Assessment

1. real-valued function 2. bounded on [a, b]

3. |(x1) –(x2)| > 0 4. Riemann-Stieltjes integrable

5. discontinuity

22.10 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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23.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Differentiation of Integrals

 Discuss the Theorems on the Differentiation of Integrals

Introduction

In this unit, we are going to study about differentiation of integrals. Suppose  is a function of
two variables which can be integrated with respect to one variable and which can be differentiated
with respect to another variable. We are going to see under what conditions the result will be
the same if these two limit process are carried out in the opposite order.

23.1 Differentiation of Integrals

In mathematics, the problem of differentiation of integrals is that of determining under what
circumstances the mean value integral of a suitable function on a small neighbourhood of a
point approximates the value of the function at that point. More formally, given a space X with
a measure  and a metric d, one asks for what functions f : X  R does

rB (x)r u
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for all (or at least -almost all) x  X? (Here, as in the rest of the article, Br(x) denotes the open ball
in X with d-radius r and centre x.) This is a natural question to ask, especially in view of the
heuristic construction of the Riemann integral, in which it is almost implicit that f(x) is a “good
representative” for the values of f near x.

23.2 Theorems on the Differentiation of Integrals

Lebesgue Measure

One result on the differentiation of integrals is the Lebesgue differentiation theorem, as proved
by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure n on n-dimensional
Euclidean space Rn. Then, for any locally integrable function f : Rn  R, one has
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r

n
n B (x)r 0

r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for n-almost all points x  Rn. It is important to note, however, that the measure zero set of
“bad” points depends on the function f.

Borel Measures on Rn

The result for Lebesgue measure turns out to be a special case of the following result, which is
based on the Besicovitch covering theorem: if  is any locally finite Borel measure on Rn and
f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all points x Rn.

Gaussian Measures

The problem of the differentiation of integrals is much harder in an infinite-dimensional setting.
Consider a separable Hilbert space (H, ,) equipped with a Gaussian measure . As stated in the
article on the Vitali covering theorem, the Vitali covering theorem fails for Gaussian measures
on infinite-dimensional Hilbert spaces. Two results of David Preiss (1981 and 1983) show the
kind of difficulties that one can expect to encounter in this setting:

 There is a Gaussian measure  on a separable Hilbert space H and a Borel set M  H so that,
for -almost all x  H,

r

r 0
r

(M B (x))lim 1
(B (x))

 Ç
=



 There is a Gaussian measure  on a separable Hilbert space H and a function f  L1(H, ; R)
such that

Ds(x)r 0
s

1lim inf f(y)d (y) x II, 0 s r
(B (x))

ò
ì ü

  < < - +¥í ý
ï ïî þ

However, there is some hope if one has good control over the covariance of . Let the covariance
operator of  be S : H  H given by

H
Sx, y x, z y, z d (z)  =     ò

or, for some countable orthonormal basis (ei)iN of H,

2
1 i i

i N
Sx x, e e .



å= s  

In 1981, Preiss and Jaroslav Tišer showed that if there exists a constant 0 < q < 1 such that

2 2
i 1 iq ,+s £ s

then, for all f  L1 (H, ; R),

r
r 0B (x)

r

1 f(y)d (y) f(x)
(B (x))




 ¾¾¾

 ò
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Notes where the convergence is convergence in measure with respect to . In 1988, Tišer showed that if

2
2 i
i 1 i+ a

s
s £

for some a > 5/2, then

r
r 0B (x)

r

1 f(y)d (y) f(x)
(B (x)) 

 ¾¾¾
 ò

for -almost all x and all f  Lp (H, ; R), p > 1.

As of 2007, it is still an open question whether there exists an infinite-dimensional Gaussian
measure  on a separable Hilbert space H so that, for all f  L1 (H, ; R),

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all x  H. However, it is conjectured that no such measure exists, since the si would
have to decay very rapidly.

Example: If 10, ( ) arctanæ ö
a ¹ f a = ç ÷è øa

The function 2 2x
a

+ a
 is not continuous at the point (x, a) = (0, 0) and the function f(a) has a

discontinuity a = 0, because f(a) approaches as 0
2

+p
+ a  and approaches as 0

2
-p

- a .

If we now differentiate f(a) = 
1

2 20
dx

x
a

+ aò  with respect to a under the integral sign, we get

12 21

2 2 2 2 20
0

d x x 1( ) dx
d x x a 1

- a
f a = = - = -

a + a + + aò  which is, of course, true for all values of a except

a= 0.

Example: The principle of differentiating under the integral sign may sometimes be
used to evaluate a definite integral.

Consider integrating 2

0
( ) ln(1 2 cos(x) )dx (for 1)

p

f a = - a + a a >ò

Now,

20

2 cos(x) 2d ( ) dx
d 2 cos(x)

p - + a
f a =

a - a + aò

2

20

1 (1 )1 dx
1 2 cos(x)

p æ ö- a
= -ç ÷a - a + aè ø

ò

0

2 1 xarctan tan
1 2

p

ì üp + aæ öæ ö
= - ×í ýç ÷ç ÷è øè øa a - aî þ
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As x varies from 0 to p, 1 xtan

1 2
+ aæ öæ ö

× ç ÷ç ÷è øè ø- a
 varies through positive values from 0 to ¥ when –1 < a

< 1 and 1 xtan
1 2
+ aæ öæ ö

× ç ÷ç ÷è øè ø- a
 and varies through negative values from 0 to –¥ when a< –1 or a > 1.

Hence,

0

1 xarctan tan when 1 1
1 2 2

p

+ a pæ öæ ö
× = - - < a <ç ÷ç ÷è øè ø- a

and

0

1 xarctan tan when 1 or 1.
1 2 2

p

+ a pæ öæ ö
× = - a < - a >ç ÷ç ÷è øè ø- a

Therefore,

d ( ) 0 when 1 1
d

f a = - < a <
a

 d 2( ) when 1 or 1
d

p
f a = a < - a >

a a
.

Upon integrating both sides with respect to a, we get f(a) = C1 when –1 < a < 1 and f(a) = 2p In
|a| + C2 when a< –1 or a> 1.

C1 may be determined by setting a= 0 in

2

0
( ) ln(1 2 cos(x) a )dx

p

f a = - a +ò

0
(0) ln(1)dx

p

f = ò

0
0 dx

p

= ò

 = 0

Thus, C1 = 0. Hence, f(a) = 0 when –1 < a< 1.

To determine C2 in the same manner, we should need to substitute in ( )f a =

2

0
ln(1 2 cos(x) )dx

p

- a + aò  a value of a greater numerically than 1. This is somewhat

inconvenient. Instead, we substitute, 1 , where 1 1. Thena = - < b <
b

,

( )2

0
( ) ln 1 2 cos(x) ) 2 ln| | dx

p

f a = - b + b - bò

 = 0 – 2p ln |b|

 = 2p ln |a|

Therefore, C2 = 0 and f(a) = 2p ln |a| when a<  –1 or a> 1.)

The definition of f(a) is now complete:

( ) 0 when 1 1 andf a = - < a <

( ) 2 ln| |when 1 or 1f a = p a a < - a >
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Notes The foregoing discussion, of course, does not apply when a = ±1 since the conditions for
differentiability are not met.

Example: Here, we consider the integration of

( )
2

2 20

1I dx
a cos x bsin x

p

=
+

ò

where both a, b > 0, by differentiating under the integral sign.

Let us first find 2

2 20

1J dx
a cos x bsin x

p

=
+ò

Dividing both the numerator and the denominator by cos2 x yields

2
2

20

sec xJ dx
a btan x

p

=
+ò

  

2

20
2

1 1 d(tan x)
b a tan x

b

p

=
æ ö

+ç ÷è ø

ò

 

2

1

0

1 btan tan x
aa, b 2 a, b

p

-
æ öæ ö p

= = ×ç ÷ç ÷
è øè ø

The limits of integration being independent of a, 2
0 2 2

1J dx
a cos x bsin x

p

ò=
+

 gives us

( )
2

2

22 20

J cos xdx
a acos x bsin x

p¶
= -

¶ +
ò

Whereas J
2 ab
p

=  gives us

3

J
a 4 a b
¶ p

= - ×
¶

Equating these two relations then yields

( )
2

2

2 32 20

cos x dx
4 a ba cos x bsin x

p p
=

+
ò

In a similar fashion, J
b
¶

¶
 pursuing yields

( )
2

2

2 32 20

sin x dx
4 a ba cos x bsin x

p p
=

+
ò

Adding the two results then produces

( )
2

22 20

1 1 1I dx
a b4 a ba cos x bsin x

p p æ ö
= = +ç ÷è ø+
ò

Which is the value of the integral I.
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( )
2

n n2 20

1I dx
acos x bsin x

p

=
+

ò

it can easily be shown that

n 1 n 1
n

I I (n 1) I 0.
a b
- -¶ ¶
+ + - × =

¶ ¶

Given I1 this partial-derivative-based recursive relation (i.e., integral reduction formula) can then
be utilized to compute all of the values of In for n > 1 (I1, I2, I3, I4, etc.).

Example: Here, we consider the integral

2

0

ln(1 cos cosx)I( ) dx
cos x

p + a
a = ò .

for 0 < a < p.

Differentiating under the integral with respect to awe have

d I( )
d

a
a

 = 
2

0

ln(1 cos cosx) dx
cos x

p æ ö+ a¶
ç ÷¶a è ø

ò

= – 2

0

sin dx
1 cos cosx

p a

+ aò

= – 2

0 2 2 2 2

sin dxx x xcos sin cos cos sin
2 2 2 2

p a

pæ ö æ ö
+ + a -ç ÷ ç ÷è ø è ø

ò

= – 2

0 2 2

sin 1 sin dxx1 cos 1 cos xcos tan2 1 cos 2

pa a

- a é ùæ ö+ a
+ê úç ÷- aè øê úë û

ò

= – 2

2

20
22

2
2

1 xsec2 sin 2 2 dx
1 cos 2 cos xtan

2sin 2

p

a

a

a

- a é ùæ ö
+ê úç ÷è øê úë û

ò

= – 2

20
22

2

2 2sin cos 1 x2 2 d tan
2cos x2sin tan2 sin 2

p

a

a

a aæ ö
ç ÷è ø æ ö

ç ÷a è øé ùæ ö
ê ú+ç ÷è øê úë û

ò

= – 2

0 2 2

1 x2 cot d tanx2 2cot tan
2 2

pa æ ö
ç ÷è øaé ù

+ê úë û

ò

= –
2

0

x2 tan 1 tan tan
2 2

p

aæ öæ ö
- ç ÷ç ÷è øè ø

= –a
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Now, when 

2
p

a = , we have, from

 I(a) = 2

0

ln(1 cos cosx) dx, I 0
cosx 2

p + a pæ ö
=ç ÷è øò

Hence,

 I(a) = 
2

d
p

a

-a aò

= 
2

21
2 p

a

- a

= 
2 2

8 2
p a

- ,

which is the value of the integral I(a).

Example: Here, we consider the integral 
2 cos

0
e cos(sin )d

p
q

q qò .

We introduce a new variable f, and rewrite the integral as

2 cos

0
f( ) e cos( sin )d

p
qff = f q qò

Note that for 
2 cos

0
1, f( ) f(1) e cos(sin )d

p
q

f = f = = q qò

Thus, we proceed

 ( )
2 cos

0

df e cos( sin ) d
d

p
qf¶

= f q q
f ¶fò

= 
2 cos

0
e (cos cos( sin ) sin sin( sin ))d

p
qf q f q - q f q qò

= ( )
2 cos

0

1 e sin( sin ) d
p

qf¶
f q q

f ¶qò

= ( )
2 cos

0

1 d e sin( sin )
p

qf f q
f ò

= ( )
2

cos

0

1 e sin( sin )
p

qf f q
f

= 0.

From the equation for f(f) we can see f(0) = 2p. So, integrating both sides of df 0
d

=
f

 with respect

to f between the limits 0 and 1, yields

 
f(1) 1

f(0) 0
df d 0= f =ò ò

 f(1) – f(0) = 0
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Notes f(1) – 2p = 0

 f(1) = 2p.

which is the value of the integral 
2 cos

0
e cos(sin )d

p
q q qò .

Example: Find 
cos x 2

sin x

d cosh t dt
dx ò

.

In this example, we shall simply apply the above given formula, to get

cos x 2 2 2

sin x

d d dcosh t dt cosh(cos x) (cosx) cosh(sin x) (sin x)
dt dx dx

= - +ò

cos x 2 2 2

sin x
cosh t dt cosh(cos x)sin x cosh(sin x)cosx

x
¶

= - -
¶ò

Where the derivative with respect to x of hyperbolic cosine t squared is 0. This is a simple
example on how to use this formula for variable limits.

Self Assessment

Fill in the blanks:

1. The differentiation of integrals is the Lebesgue differentiation theorem, as proved by
Henri Lebesgue in ................................. .

2. The result for ................................. turns out to be a special case of the following result,
which is based on the Besicovitch covering theorem.

3. The problem of ........................................ is that of determining under what circumstances
the mean value integral of a suitable function on a small neighbourhood of a point
approximates the value of the function at that point.

4. The problem of the differentiation of integrals is much harder in an infinite-dimensional
setting. Consider a separable Hilbert space (H, ) equipped with a ............................... .

23.3 Summary

 In mathematics, the problem of differentiation of integrals is that of determining under
what circumstances the mean value integral of a suitable function on a small neighbourhood
of a point approximates the value of the function at that point.

 One result on the differentiation of integrals is the Lebesgue differentiation theorem, as
proved by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure n on
n-dimensional Euclidean space Rn.

 The result for Lebesgue measure turns out to be a special case of the following result,
which is based on the Besicovitch covering theorem: if  is any locally finite Borel measure
on Rn and f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

ò  =


 for -almost all points x  Rn.

 The problem of the differentiation of integrals is much harder in an infinite-dimensional
setting. Consider a separable Hilbert space (H, ) equipped with a Gaussian measure .
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Notes 23.4 Keywords

Differentiation of Integrals: In mathematics, the problem of differentiation of integrals is that of
determining under what circumstances the mean value integral of a suitable function on a small
neighbourhood of a point approximates the value of the function at that point.

Borel measures on Rn: The result for Lebesgue measure turns out to be a special case of the
following result, which is based on the Besicovitch covering theorem: if  is any locally finite
Borel measure on Rn and f : Rn  R is locally integrable with respect to , then

rB (x)r 0
r

1lim f(y)d (y) f(x)
(B (x))

 =
 ò

for -almost all points x  Rn.

23.5 Review Questions

1. Explain Differentiation of Integrals with the help of example.

2. Discuss the Theorems on the differentiation of integrals.

Answers: Self Assessment

1. 1910 2. Lebesgue measure

3. differentiation of integrals 4. Gaussian measure 

23.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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CONTENTS

Objectives

Introduction

24.1 Fundamental Theorem of Calculus

24.2 Primitive of a Function

24.3 Summary

24.4 Keywords

24.5 Review Questions

24.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the fundamental  theorem  of calculus

 Explain the primitive of a function

Introduction

In this unit we will discuss about, what is the relationship between the two notions of
differentiation and integration? Now we shall try to find an answer to this question. In fact, we
shall show that differentiation and Integration are intimately related in the sense that they are
inverse operations of each other.

Let us begin by asking the following question: "when is a function f : [a, b]  R, the derivative
of some function F : [a, b]  R?"

For example consider the function f : [–1, 1]  R defined by

0 if 1 x 0
f(x)

i if 0 x 1
- £ <ì

= í
£ <î

This function is not the derivative of any function F : [–1, 1]  R. Indeed if f is the derivative of
a function F : [–1, 1]  R then f must have the intermediate value property. But clearly, the
function f given above does not have the intermediate value property.

Hence f cannot be the derivative of any function F : [–1, 1]  R.

However if f : [–1, 1]  R is continuous, then f is the derivative of a function F : [–1, 1]  R. This
leads us to the following general theorem.

24.1 Fundamental Theorem of Calculus

Theorem 1: Let f be integrable on [a, b]. Define a function P on [a, b] as

x

a

F(x) f(t) dt, x [a,b].= " Îò

Then F is continuous on [a, b]. Furthermore, if f is continuous at a point x, of [a, b], then F is
differentiable at x0 and F’1(x0) = f(x0).
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Notes Proof: Since f is integrable on [a,b], it is bounded. In other words, there exists a positive number

M such that f(x) M, x [a,b].£ " Î

Let  > 0 be any number. Choose x,y Î [a,b], x < y, such that ex y .
M

- <  Then

F(y) F(x)-

y x

a a

f(t) dt f(t) dt= -ò ò

yx x

a x a

f(t) dt f(t) dt f(t) dt= + -ò ò ò

y

x

f(t) dt= ò

y

x

f(t) dt£ ò

y

x

Mdt M(y x)£ = - < Îò

Similarly you can discuss the case when y < x. This shows that F is continuous on [a,b]. In fact this
proves the uniform continuity of F.

Now, suppose f is continuous at a point x0 of [a, b]

We can choose some suitable h  0 such that x0 + h Î [a, b].

Then,

F(x0 + h) – F(x0)
0 0x h x

a a

f(t) dt f(t) dt
+

= -ò ò

0 0 0 0

0 0

x x h x x h

a x a x

f(t) dt f(t) d(t) f(t) dt f(t) dt
+ +

= + - =ò ò ò ò

Thus,

F(x0 + h) – F(x0)
0x h

xn

f(t) dt
+

= ò …(1)

Now

0 0
0

F(x h) F(x ) f(x )
h

+ -
-

0x hx0 h

0
x0 0

1 1f(t) dt f(x ) dt
h h

++

= - ´ò ò

0

0

x h

0
x

1 [f(t) f(x )]dt .
h

+

= -ò

Since f is continuous at x0, given a number Î >0, 3 a number  > 0 such that 0f(x) f(x ) /2,- < 

whenever 0x x- <   and x Î [a,b]. So, if h ,<   then 0f(t) f(x ) /2,- < Î for [ ]0 0t x ,x h ,Î +  and
consequently
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0

0

x h

0
x

[f(t) f(x )]dt h .
+

- £ -ò  Therefore

0 0
0

F(x h) F(x ) f(x ) , if h .
h 2

+ - 
- £ <  < 

Therefore, 0
0 0 0h 0

F(x h) F(x)lim f(x ), i.e., F'(x ) f(x )
h

+ -
=

which shows that F is differentiable at x0 and F'(x0) = f(x0). From Theorem 1, you can easily
deduce the following theorem:

Theorem 2: Let f: [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by

x

a
F(x) f(t) dt, x E[a,b].ò=

Then F'(x) = f(x), a £ x £ b.

This is the first result which links the concepts of integral and derivative. It says that, if f is
continuous on [a,b] then there is a function F on [a, b] such that F'(x) f(x), x [a,b].= " Î

You have seen that if f: [a, b]  R is continuous, then there is a function F: [a, b]  R such that F'
(x) = f(x) on [a, b]. Is such a function F unique? Clearly the answer is 'no'. For, if you add a

constant to the function F, the derivative is not altered. In other words, if 
x

1
G(x) c f(t) dtò= +  for

a £ x £ b then also G' (x) = f(x) on [a, b].

Such a function F or G is called primitive off. We have the formal definition as follows:

24.2 Primitive of a Function

If f and F are functions defined on [a,b] such that F’(x) = f(x) for x Î [a,b] then F is called a
'primitive' or an 'antiderivative' of f on [a,b].

Thus from Theorem 1, you can see that every continuous function on [a,b] has a primitive. Also
there are infinitely many primitives, in the sense that adding a constant to a primitive gives
another primitive.

"Is it true that any two primitives differ by a constant?"

The answer to this question is yes. Indeed if F and G are two primitives of f in [a,b], then
F'(x) G'(x) f(x) x [a,b]= = " Î  and therefore [F(x) – G(x)’ = 0. Thus F(x) – G(x) = k (constant), for x
Î [a,b].

Let us consider an example.

Example: What is the primitive of f(x) = log x in [1, 2]

Solution: Since d (xlog x x) log x x [1,2],
dx

- = " Î  therefore F (x) = x log x – x is a primitive of f in

[1,  2].

Also G(x) = x lag x – x + k, k being a constant, is a primitive of f.
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We now discuss a theorem which establishes the required relationship between differentiation
and integration. This is called the Fundamental Theorem of Calculus.

It states that the integral of the derivative of a function is given by the function itself.

The Fundamental Theorem of Calculus was given by an English mathematician Isaac Barrow
[1630-1677], the teacher of great Isaac Newton.

Theorem 3: Fundamental Theorem of Calculus

If f is integrable on [a,b] and F is a primitive of f on [a,b], then 
tb

a

f(x) dx F(b) F(a).= -ò

Proof: Since f Î R [a,b], therefore 
b

P 0
a

lim S(P,f) f(x) dx
-

= ò

where P = {x0, x1, x2,...., xn] is a partition of [a,b]. The Riemann sum S(P,f) is given by

n n

i i i i i 1 i i i
i 1 i 1

S(P,f) f(t ) x f(t )(x x ); x 1 t t .-
= =

å å= D = - - £ £

Since F is the primitive of f on [a, b], therefore F' (x) £ f(x), x Î [a, b].

Hence 
n

i i i 1
i 1

S(P,f) F'(t )(x x ).-
=

å= -  We choose the points t, as follows:

By Lagrange's Mean Value theorem of Differentiability, there is a point t, in ]x i-1, xi[ such that

F(xi) – F(xi-1) = F' (ti) (x, – xi-1)

Therefore, 
n

i i 1 n 0
i 1

S(P,f) [F(x ) F(x )] F(x ) F(x ) F(b) F(a).-
=

å= - = - = -

Take the limit as P 0.  Then 
b

a

f(x) dx F(b) F(a).= -ò  This completes the proof.

Alternatively, the Fundamental Theorem of Calculus is also interpreted by stating that the
derivative of the integral of a continuous function is the function itself.

If the derivative f of a function f is integrable on [a, b], then 
b

a

f '(x) dx f(b) f(a).= -ò

Applying this theorem, we can find the integral of various functions very easily.

Consider the following example:

Example: Show that 
t

0

sin x dx 1 cost.= -ò

Solution: Since g(x) = – cos x is the primitive of f(x) = sin x in the interval [0, t], therefore
t

0

Sin x dx g(t) g(o) 1 cos t.= - = -ò

We have, thus, reduced the problem of evaluating 
b

a

f(x) dxò  to that of finding primitive of f on

[a, b]. Once the primitive is known, the value of 
b

a

f(x) dxò  is easily given by the Fundamental

Theorem of Calculus.
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NotesYou may note that any suitable primitive will serve the purpose because when the primitive is
known, then the process described by the Fundamental Theorem is much simpler than other
methods. However, it is just possible that the primitive may not exist while you may keep on
trying to find it. It is, therefore, essential to formulate some conditions which can ensure the
existence of a primitive. Thus now the next step is to find the conditions on the integral,  (function
to be integrated) which will ensure the existence of a primitive. One such condition is provided
by the theorem.

According to theorem 2 if f is continuous in [a, b], then the function F given by

x

a

F(x) f(t) dt x [a,b]= Îò  is differentiable in [a, b] and F'(x) f(x) x [a,b]= " Î

i.e. F is the primitive of f in [a, b]

The following observations are obvious from the theorems 1 and 2:

(i) If f is integrable on [a, b], then there is a function F which is associated with f through the
process of integration and the domain of F is the same as the interval [a, b] over which f is
integrated.

(ii) F is continuous. In other words, the process of integration generates continuous function.

(iii) If the function f is continuous on [a, b], then F is differentiable on [a, b]. Thus, the process
of integration generates differentiable functions.

(iv) At any point of continuity of f, we will have f(c) = f(c) for c  [a, b]. This means that if f is
continuous on the whole of [a, b], then F will be a member of the family of primitives of
f on [a, b].

In the case of continuous functions, this leads us to the notion

f(x) dxò

for the family of primitives of f. Such an integral, as you know, is called an Indefinite integral of
f. It does not simply denote one function, but it denotes a family of functions. Thus, a member of
the indefinite integral of f will always be an antiderivative for f.

Theorem 3 gives US a condition on the function to be integrated which ensures the existence of
a primitive. But how to obtain the primitives, once this condition is satisfied. In the next section,
we look for the two most important techniques for finding the primitives. Before we do so, we
need to study two important mean-values theorems of integrability.

Self Assessment

Fill in the blanks:

1. This function is not the derivative of any function F : [–1, 1]  R. Indeed if f is the derivative
of a function F : [–1, 1]  R then f must have the ................................... .

2. Let f : [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by
..................................... .

3. If f and F are functions defined on [a, b] such that F’(x) = f(x) for x Î [a, b] then F is called a
'primitive' or an '...............................' off on [a, b].
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Notes 24.3 Summary

 The main thrust of this unit has been to establish the relationship between differentiation
and integration with the help of the Fundamental Theorem of Calculus.

 We have discussed some important properties of the Riemann Integral. We have shown
that the inequality between any two functions is preserved by their corresponding Riemann
integrals; the modulus of the limit of a sum never exceeds the limit of the sum of their
module and if we split the interval over which we are integrating a function into two
parts, then the value of the integral over the whole will be the sum of the two integrals
over the subintervals.

 Let f: [a, b]  R be a continuous function. Let F : [a, b]  R be a function defined by

x

a

F(x) f(t) dt, x E[a,b].= ò

Then F'(x) = f(x), a £ x £ b.

This is the first result which links the concepts of integral and derivative. It says that, if f is
continuous on [a, b] then there is a function F on [a, b] such that F'(x) f(x), x [a,b].= " Î

You have seen that if f: [a, b]  R is continuous, then there is a function F: [a, b]  R such
that F' (x) = f(x) on [a, b]. Is such a function F unique? Clearly the answer is 'no'. For, if you
add a constant to the function F, the derivative is not altered. In other words, if

x

1
G(x) c f(t) dtò= +  for a £ x £ b then also G' (x) = f(x) on [a, b].

 It states that the integral of the derivative of a function is given by the function itself.

 The Fundamental Theorem of Calculus was given by an English mathematician Isaac
Barrow [1630-1677], the teacher of great Isaac Newton.

 The following observations are obvious from the theorems 1 and 2.

(i) If f is integrable on [a, b], then there is a function F which is associated with f through
the process of integration and the domain of F is the same as the interval [a, b] over
which f is integrated.

(ii) F is continuous. In other words, the process of integration generates continuous
function.

(iii) If the function f is continuous on [a, b], then F is differentiable on [a, b]. Thus, the
process of integration generates differentiable functions.

(iv) At any point of continuity of f, we will have f(c) = f(c) for c e [a, b]. This means that
if f is continuous on the whole of [a, b], then F will be a member of the family of
primitives of f on [a, b].

24.4 Keywords

Primitive of a Function: If f and F are functions defined on [a, b] such that F’(x) = f(x) for x Î [a, b]
then F is called a 'primitive' or an 'antiderivative' off on [a, b].

Fundamental Theorem of Calculus: If f is integrable on [a, b] and F is a primitive of f on [a, b],

then 
tb

a

f(x) dx F(b) F(a).= -ò



LOVELY PROFESSIONAL UNIVERSITY 293

Unit 24: Fundamental Theorem of Calculus

Notes24.5 Review Questions

1. Find the primitive of the function f defined in [0, 2] by

x if x [0,1]
f(x)

I if x [1,2]
Îì

= í
Îî

2. Find 
2

0

f(x) dxò  where f is the function given in f(x) = 
x if x [0, 1]
1 if x [1, 2]

¬ì
í

¬î

3. Evaluate 
b

n

1

x dxò  where n is a positive integer.

Answers: Self Assessment

1. intermediate value property 2.
x

a

F(x) f(t) dt, x E[a,b].= ò

3. antiderivative

24.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the first mean value theorem

 Explain the generalized first mean value theorem

 Describe the second mean value theorem

Introduction

In last unit, we discussed some mean-value theorems concerning the differentiability of a function.
Quite analogous, we have two mean value theorems of integrability which we intend to discuss
here. You are quite familiar with the two well-known techniques of integration namely the
integration by parts and integration by substitution which you must have studied in your
earlier classes.

25.1 First Mean Value Theorem

Let f : [a, b]  R be a continuous function. Then there exists c  [a, b] such that

b

f(x) dx (b a)f(c).= -ò

Proof: We know that

h

a

m(b a) f(x) dx M(b a), thus- £ £ -ò

b

a
f(x) dx

m M, where
(b a)

ò

£ £
-

m = glb {f(x) : x [a,b]}, and

M = lub {f(x) : x  [a,b]}.
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NotesSince f is continuous in [a, b], it attains its bounds and it also attains every value between the
bounds. Consequently, there is a point c Œ [a, b] such that

b

a

f(x)dx f(c) (b a),= -Ú

which, equivalently, can be written as

b

a

1
f(c) f(x) dx.

b a
=

-

Ú

This theorem is usually referred to as the Mean Value theorem for integrals. The geometrical
interpretation of the theorem is that for a non-negative continuous function f, the area between
f, the lines x = a, x = b and the x-axis can be taken as the area of a rectangle having one side of
length (b – a) and the other f(c) for some c Œ [a, b] as shown in the Figure 25.1.

We now discuss the generalized form of the first mean value theorem.

25.2 The Generalised First Mean Value Theorem

Let f and g be any two functions integrable in [a, b]. Suppose g(x) keeps the same sign for all
x Œ [a, b]. Then there exists a number m lying between the bounds of f such that

b b

a a

f(x) g(x) dx g(x) dx.= mÚ Ú

Proof: Let us assume that g(x) is positive over [a,b]. Since f and g are both integrable in [a, b],
therefore both are bounded. Suppose that m and M are the g.l.b. and l.u.b. of f in [a, b]. Then

m f(x) M, x [a,b].£ £ " Œ

Consequently,

mg(x) f(x)g(x) Mg(x), x [a,b].£ £ " Œ

Figure 25.1
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b b b

a a a

m g(x) dx f(x) g(x) dx M g(x) dx.£ £ò ò ò

It then follows that there is a number  [m, M] such that

b b

a a

f(x) g(x) dx g(x) dx.= ò ò

Corollary: Let f, g be continuous functions on [a,b] and let g(x)  0 on [a,b]. Then, there exists
a c  [a,b] such that

b b

a a

f(x) g(x) dx f(c) g(x) dx.=ò ò

Proof: Since f is continuous on [a,b], so, there exists a point c  [a,b] such that

b b

a a

f(x) g(x) dx f(c) g(x) dx,=ò ò  where  = f(c) is as in Theorem.

We use the first Fundamental Theorem of Calculus for integration by parts. We discuss it in the
form of the following theorem.

Theorem 1: If f and g are differentiable functions Qn [a,b] such that the derivatives f'and g' are
both integrable on [a,b], then

b b

a a

f(x) g ' dx [f(b) g(b) f(a) g(b)] f '(x) g(x) dx.= - -ò ò

Proof: Since f and g are given to be differentiable on [a,b], therefore both f and g are continuous
on [a,b]. Consequently both f and g are Riemann integrable on [a,b]. Hence both fg' as well as
f' g are integrable.

fg' + f'g = (fg)'.

Therefore (fg)' is also integrable and consequently, we have

b b b

a a a

(fg) fg f g.¢ = ¢ + ¢ò ò ò

By Fundamental Theorem of Calculus, we can write

b
b

a
a

(fg) fg f(b) g(b) f(a) g(a)¢ = = -ò

Hence, we have

b b

a a

fg f(b) g(b) f(a) g(a) f g.¢ = - - ¢ò ò

i.e.

b b
b
a

a a

f(x) g (x) dx [f(x) g(x)] f (x) g(x) dx.¢ = - ¢ò ò

This theorem is a formula for writing the integral of the product of two functions.
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NotesWhat we need to know is that the primitive of one of the two functions should be expressible
in a simple form and that the derivative of the other should also be simple so that the product
of these two is easily integrable. You may note here that the source of the theorem is the
well-known product rule for differentiation.

The Fundamental Theorem of Calculus gives yet another useful technique of integration. This is
known as method by Substitution also named as the change of variable method. In fact this is the
reverse of the well-known chain Rule for differentiation. In other words, we compose the given
function f with another function g so that the composite f o g admits an easy integral. We deduce
this method in the form of the following theorem:

Theorem 2: Let f be a function defined and continuous on the range of a function g. If g' is

continuously differentiable on c,d ,  then

b d

a c

f(x) dx (f o g) (x) g '(x) dx,=ò ò

where a = g(c) and b = g(d).

Proof: Let 
b

a

F(x) f(x) dt= ò  be a primitive of the function 1:

Note that the function F is defined on the range of g.

Since f is continuous, therefore, by Theorem 2, it follows that F is differentiable and F ¢(t) = f(t),
for any t. Denote G(x) = (F o g) (x).

Then, clearly G is defined on [c,d] and it is differentiable there because both F and g are so. By the
Chain Rule of differentiation, it follows that

G¢(x) = (F o g)¢ (x) g¢(x) = (f o g) (x) g¢(x).

Also f og is continuous since both f and g are continuous. Therefore, f o g is integrable.

Since g¢ is integrable, therefore (f o g) g¢ is also integrable. Hence

d

(f o g)(x) g (x) dx¢ò
d

c

G (x) dx= ¢ò

= G(d) – G(c) (Why?)

= F(g (d)) – F(g (c))

= F(b) – F(a)

b

a

f(x) dx.= ò

you have seen that the proof of the theorem is based on the Chain Rule for differentiation. In
fact, this theorem is sometimes treated as a Chain Rule for Integration except that it is used
exactly the opposite way from the Chain Rule for differentiation. The Chain Rule for
differentiation tells us how to differentiate a composite function while the Chain Rule for
Integration or the change of variable method tells us how to simplify an integral by rewriting
it as a composite function.

Thus, we are using the equalities in the opposite directions.

We conclude this section by a theorem (without Proof) known as the Second Mean Value Theorem
for Integrals. Only the outlines of the proof are given.
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Notes 25.3 Second Mean Value Theorem

Let f and g be any two functions integrable in a,b  and g be monotonic in a,b ,  then there exists

c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò

Proof: The proof is based on the following result known as Bonnet's Mean Value Theorem, given
by a French mathematician O. Bonnet [1819–1892].

Let f and g be integrable functions in [a,b]. If  is any monotonically decreasing function and
positive in [a,b], then there exists a point c  [a,b] such that

b

a

f(x) (x) dxò
c

a

(a) g(x) dx.=  ò

Let g be monotonically decreasing so that  where (x) = g(x) – g(b), is non-negative and
monotonically decreasing in [a,b]. Then there exists a number c  [a,b] such that

b

a

f(x) [g(x) g(b)] dx-ò
c

a

[g(a) g(b)] f(x) dx= - ò

i.e.

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx.= +ò ò

Now let g be monotonically increasing so that –g is monotonically decreasing. Then there exists
a number c  [a,b] such that

b

a

f(x)[ g(x)] dx-ò
c b

g(a) f(x) dx g(b) f(x) dx= - -ò ò

i.e.

b

a

f(x) g(x) dxò
c h

a c

g(a) f(x) dx g(b) f(x) dx.= +ò ò

This completes the proof of the theorem.

There are several applications of the Second Mean Value Theorem. It is sometimes used to
develop the trigonometric functions and their inverses which you may find in higher
Mathematics. Here, we consider a few examples concerning the verification and application of
the two Mean Value Theorems.

Example: Verify the two Mean Value Theorems for the functions f(x) = x, g(x) = ex in the
interval [–1, 1].

Solution: Verification of First Mean Value Theorem

Since f and g are continuous in [–1, 1], so they are integrable in [–1,1]. Also g(x) is positive in
[–1, 1]. By first Mean Value Theorem, there is a number  between the bounds of f such that

1

1

f(x) g(x) dx
-

ò
1 1 1

x x

1 1 1

g(x) dx i.e., x e dx e dx.
- - -

=  = ò ò ò
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x

1

x e dx
-

ò
1 1

1x x x
1

1 1

2 1x e e dx  and e dx e .
e e-

- -

= - = = -ò ò


2
e 2 2

1 2 2 2e  i.e., 
e e 1 (2.7) 1 6.29

æ ö
=  -  = = =ç ÷è ø - -

g.l.b. {f(x) 1 x 1} 1- £ £ = -  and l.u.b. {f(x) 1 x 1} 1- £ £ =  and, so, [ 1,1].  -  First Mean Value
Theorem is verified.

Verification of Second Mean Value Theorem

As shown above, f and g are integrable in [–1, 1]. Also g is monotonically increasing in [-1, 1].
By second mean value theorem there is a points c [–1, 1] such that

1

1

f(x) g(x) dx
-

ò
c 1

1

g( 1) f(x) dx g(1) f(x) dx
-

= - +ò ò



1
x

1

x e dx
-

ò
1

c

'I ' x dx e x dx= + ò



2 22 1 c 1 1 ce .
e e 2 2 2 2

æ ö æ ö
- - + -ç ÷ ç ÷è ø è ø

Therefore
2

2
2

2 29e 5 2.29c i.e. c [ 1,1]
e 1 6.29 6 29

-
= = = ±  -

-

Thus second mean value theorem is verified.

Now we show the use of mean value theorems to prove some inequalities.

Example: By applying the first mean value theorem of Integral calculus, prove that

1/2

22 2 2 1
0 4

1 1/6 dx
6 (1 k )(1 x) (1 k x )
p

p £ × £
-é ù- -ë û

ò

Solution: In the first mean value theorem, take 
2 2 2

1 1 1f(x) , g(x) , x 0, .
2(1 k x ) 1 x

é ù
= = ê úë û- -

 Being

continuous functions, f and g are integrable in 10, .
2

é ù
ê úë û

By the first mean value theorem, there is a number [m,M]   such that

1 1
2 2

22 2 2
0 0

1 dxdx / ,
1 x(1 x )(1 k x )

= =  p d
-é ù- -ë û

ò ò

where in = g.l.b. { }1f(x) 0 x
2

£ £  and 1M l.u.b. f(x) 0 x .
2

ì ü
= £ £í ý

î þ
 Now m = 1 and 

2

1M .
k1
4

=

-
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2

1 11  i.e. ,
4 6 6 6 k1

4

p p p
£  £ £ £ -

-

1
2

22 2 2
0

1 1and; so,  dx .
6 6 k(1 x )(1 k x ) 1

4

p p
£ £

é ù- -ë û -

ò

Example: Prove that 
q

p

sin x 2dx ,
x p

£ò  if q > p > 0.

Solution: Let 1f(x) sin x, (x) ,x [p,q].
x

=  =   Being continuous, these functions are integrable in

[p, q]. By Bonnet form of second mean value theorem, there is a point [p, q] such that

q

p a

f(x) (x) dx (p) f(x) dx


 = ò ò

i.e., 
q

p p

sin x 1 1dx sin x dx (cosp cos ).
x p P



= = - ò ò

Hence 
q

p

sin x 1 2dx cosp cos
x P P

é ù£ +  £ë ûò

Self Assessment

Fill in the blanks:

1. Let f : [a, b]  R be a continuous function. Then there exists c  [a, b] such that .......................

2. Since f is continuous in [a, b], it attains its bounds and it also attains every value between
the ...........................

3. The geometrical interpretation of the theorem is that for a ....................................... function
f, the area between f, the lines x = a, x = b and the x-axis can be taken as the area of a
rectangle having one side of length (b-a) and the other f(c) for some c  [a, b].

4. If f and g are differentiable functions Qn [a,b] such that the derivatives f' and g' are both
................................ on [a, b], then

b b

a a

f(x) g ' dx [f(b) g(b) f(a) g(b)] f '(x) g(x) dx.= - -ò ò

5. Let f and g be any two functions integrable in a,b  and g be .............................. then there

exists c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò
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 It has been proved that a continuous function has a primitive. Using the idea of a primitive,
Fundamental Theorem or Calculus has been proved which shows that differentiation and
integration are inverse process.

 Indefinite integral also called the integral function of an integrable function is defined and
you have seen that this function is continuous. This function is differentiable whenever
the integrable function is continuous. Finally in this section the First and Second Mean
Value theorem have been discussed.

 The First Mean Value theorem states that if f is a continuous function in [a,b], then the

value of the integral 
b

a

f(x) dxò  is (b – a) times f(c) where c  [a, b]. According to Generalised

First Mean Value Theorem, if f and g are integrable in [a, b] and g(x) keeps the same sign,

then the value 
h

a

f(x) g(x).dxò  is 
b b

a a

f(x) g(x) dx g(x) dx= ò ò  where  lies between the bounds

of f. But in the second mean value theorem, if out of the integrable functions f and g, g is

monotonic in [a, b], then the value 
h c b

a a c

f(x) g(x) dx is g(a) f(x) dx g(b) f(x) dx+ò ò ò  where c is

point of [a, b].

25.6 Keywords

First Mean Value Theorem: Let f : [a, b]  R be a continuous function. Then there exists c  [a, b]
such that

b

f(x) dx (b a)f(c).= -ò

The Generalised First Mean Value Theorem: Let f and g be any two functions integrable in [a, b].
Suppose g(x) keeps the same sign for all x  [a, b]. Then there exists a number  lying between
the bounds off such that

b b

a a

f(x) g(x) dx g(x) dx.= ò ò

Second Mean Value Theorem: Let f and g be any two functions integrable in a,b  and g be

monotonic in a,b ,  then there exists c a,b  such that

b

a

f(x) g(x) dxò
c b

a c

g(a) f(x) dx g(b) f(x) dx= +ò ò

25.6 Review Questions

1. Show that the second mean value theorem does not hold good in the interval [–1, 1] for
f(x) = g(x) = x2.

2. What do you say about the validity of the first mean value theorem.

{1, 2] for f(x) = g(x) = x3.

3. Show that 
b

2

a

1sin x dx , if b a 0.
a

£ > >ò
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1.
b

f(x) dx (b a)f(c)= -ò 2. bounds

3. non-negative continuous 4. integrable

5. monotonic in a , b

25.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the definition of outer measure of sets

 Define outer measure of an interval

 Explain some important properties of outer measure

 Define measurable sets

 Describe measure of countable union of measurable sets

 Measure countable intersection of measurable sets

Introduction

In last unit you have studied about mean value theorems of Riemann Stieltjes integral. In this
unit we are going to study about Lebesgue outer measure of a set, measurable sets and Lebesgue
measure, their important properties.

We know that the length of an interval is defined to be the difference between two end points.
In this unit, we would like to extend the idea of “length” to arbitrary (or at least, as many as
possible) subsets of . To begin with, let’s recall two important results in topology.

26.1 Lindelof’s Theorem

Proposition: Every open subset V of  is a countable union of disjoint open intervals.

Proof: For each x  V, there is an open interval Ix with rational endpoints such that x  Ix  V. Then
the collection {Ix}xV is evidently countable and

x
x V

V I .


= 
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Notes Next, we prove it is always possible to have a disjoint collection. Since {Ix}xV is a countable
collection, we can enumerate the open intervals as I1 = (a1, b 1), I2 = (a2,b2),.... For each n  ,
define

n = inf{ x   : x  an and (x, bn)  V}

and

n = sup{ x   : x  bn and (an, x)  V}.

Then { (n, ) }n is a disjoint collection of open intervals with union V.

Theorem 1 (Lindelof’s Theorem): Let C be a collection of open subsets of . Then there is a
countable sub-collection {Oi}i of C such that

O C
O



  = i
i 1

O
¥

=



Proof: Let U = o C O.  For any x  U there is O  C with x  O. Take an open interval Ix with
rational endpoints such that x  Ix  O. Then U = x U xI  is a countable union of open intervals.
Replace Ix by the set O  C which contains it, the result follows.

26.2 Lebesgue Outer Measure

As in the Archimedean idea of finding area of a circle (approximated polygons), we define the
Lebesgue outer measure m*: ()  [0, ¥] by

m*(A) = { }k k k
k 1 k 1

inf (I ) : A I and each I being open interval in .
¥ ¥

= =

å   

Notes By Lindelof’s Theorem, the countability of the covering is not important here.

Here are some basic properties of Lebesgue outer measure, all of them can be proved easily by
the definition of m*.

(i) m*(A) = 0 if A is at most countable.

(ii) m* is monotonic, i.e. m*(A)  m*(B) whenever A  B.

(iii) m*(A) = inf {m*(O): A  O and O is open}. (Hint: it suffices to prove m*(A)  R.H.S., which
is equivalent to m*(A) +> R.H.S. for any  > 0.)

(iv) m*(A + x) = m*(A) for all x  . (Translation-invariant)

(v) m* k k 1k K( A ) m* (A ).¥

 = å   (Countable subadditivity)

(vi) If m*(A) = 0, then m*(A  B) = m*(B) and m*(B\A) = m*(B) for all B  R.

(vii) If m*(A B) = 0, then m*(A) = m*(B).

Notes In (v), even if Ak’s are disjoint, the equality may not hold.

Theorem 2: For any interval I  R, m*(I) = (I).

Proof: We first assume I = [a, b] is a closed and bounded interval. Consider the countable open
interval cover {(a – , b + )} of I, we have m*(I)  b – a + 2. Since  > 0 is arbitrary, m*(I)  b – a.
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NotesTo get the opposite result, we need to show for any  > 0, m*(I) +   b – a. Note that there is a
countable open interval cover {Ik}k of I satisfying

m *(I) +> k(I ) .å

By Heine-Borel Theorem, there is a finite subcover {Ink
} of {Ik}. Then

kn(I ) b a> -å (why?)

and it follows that

m*(I) +> 
kk n(I ) (I ) b a. > -å å 

Letting   0, m*(I)  b – a. Hence, m*(I) = b – a.

Next, we consider the case where I = (a, b), [a, b), or (a, b] which is bounded but not closed.
Clearly, m*(I)  m* ( I ) = b – a. On the other hand, if  > 0 is sufficiently small then there is a closed
and bounded interval I = [a + , b – ]  I. By monotonicity, m*(I)  m*(I) = b – a – 2. Letting
  0 gives m*(I)  b – a. Hence, m*(I) = b – a.

Finally, if I is unbounded then the result is trivial since in that case I contains interval of
arbitrarily large length.

26.3 Non-measurability

Theorem 3: Let M  () be a translation-invariant -algebra containing all er that intervals, and
m : M  [0, ¥] be a translation-invariant, countably additive measure such

m(I) = (I) for all interval I.

Then there exists a set S  M.

Proof: Define an equivalent relation x ~ y if and only if x – y is rational. Then  is partitioned into
disjoint cosets [x] = {y  : x ~ y}.

By Axiom of Choice and Archimedean property of , there exists S  [0,1] such that the intersection
of S with each coset contains exactly one point.

Enumerate   [–1, 1] into r1, r2,.... Then the sets S + ri are disjoint and

[0, 1]  i
i

(S r )


+


 [–1, 2].

If S S  M, then by monotonicity and countable additivity of m we have

i
i

1 m(S r ) 3 ,


 + å


which is impossible since m(S + ri) = m(S) for all i  .

26.4 Measurable Sets and Lebesgue Measure

As it is mentioned before, the outer measure does not have countable additivity. One may try to
restrict the outer measure m* to a -algebra M  () such that the new measure has all the
properties we wanted.

Definition (Measurability): A set E   is said to be measurable if, for all A  , one has

(1) m*(A)= m*(A  E) + m*(A  Ec).

Since m* is known to be subadditive, (1) is equivalent to
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Notes m*(A) > m*(A  E) + m*(A  Ec).

The family of all measurable sets is denoted by M. We will see later M is a -algebra and
translation-invariant containing all intervals. The set function m: M  [0, ¥] defined by

m(E) = m*(E) for all E  M

is called Lebesgue measure.

Observe that

 E  M  Ec  M.

   M and   M because m*(A) = m*(A  ) + m*(A  ) for all A  .

 m*(E) = 0  E M because m*(A  E) + m*(A  Ec) = m*(A  Ec)  m*(A) for all A  .

Proposition: If E1, E2  M then E1  E2  M. (Therefore, M is an algebra.)

Proof: For all A  R one has

m*(A) = m*(A  E1) +m*(A  E1
c) ( E 1  M)

= m*(A  E1) + m*(A  Ec
1  E2) +m*(A  Ec

1  E2
c) ( E2  M)

= m*(A  (E1  E2)) + m*(A  (E1  E2)c)

because m* is subadditive and

A  (E1  E2) = (A  E1)  (A  E1
c  E2).

Notes Above proposition can be easily extended to a finite union of measurable sets, in
fact it can be extended to a countable union. In order to do so, we need the following result.

Lemma 1: Let E1,E2,...,En be disjoint measurable sets. Then for all A  R, we have

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n

i
i 1

m* (A E ).
=

å

Proof: Since En  M, we have

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n n c
i n i n

i 1 i 1
m* A E E m* A E E

= =

æ ö æ öé ù é ù  +  ç ÷ ç ÷ê ú ê úè ø è øë û ë û
 

=
n

n i
i 1

m* (A E ) m* A E
=

æ öé ù + ç ÷ê úè øë û


Repeat the process again and again, until we get

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
  =

n

i
i 1

m* (A E ).
=

å

Notes If {Ei}i is a sequence of disjoint measurable sets, then

i
i 1

m* A E
¥

=

æ öé ùç ÷ê úè øë û
  = i

i 1
m* (A E ).

¥

=

å

This is because for all n   one has
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Notes
i

i 1
m* A E

¥

=

æ öé ùç ÷ê úè øë û
  

n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û


 =
n

i
i 1

m* (A E ).
=

å

Letting n  ¥ lead to

i
i 1

m* A E
¥

=

æ öé ùç ÷ê úè øë û
   i

i 1
m* (A E ).

¥

=

å

The opposite inequality follows from countable subadditivity.

Theorem 4: Let { }i nE
 be a sequence of measurable sets, then E = i 1 iE¥

= is also measurable.
Moreover, if E1,E2,... are disjoint then m(E) = i 1 im(E ).¥

=å

This is called the countable additivity which can be proved by putting A = 

Proof: We first assume E1,E2,...are disjoint. Then for all A  R, n   we have

m*(A) =
n

i
i 1

m* A E
=

æ öé ùç ÷ê úè øë û
 ( )

cn

i
i 1

m* A E
=

æ ö
+ ç ÷è ø



 
n c

i
i 1

m* (A E ) m* (A E ).
=

 + å

Letting n  ¥,

m*(A)  c
i

i 1
m* (A E ) m* (A E )

¥

=

 + å

= m*(A  E) +m*(A  Ec).

This proved E is measurable.

Now, if E1,E2,... are not disjoint, we let

F1 = E1, F2 = E2\F1, F3 = E3\(F1  F2),

and in general Fk = Ek\
k 1
i 1 iF-

= for k > 2. Then F1, F2,... are disjoint and i 1 iF¥

= = i 1 iE .¥

= Since M is

an algebra, F1, F2,... are all measurable. So E = i 1 i 1i iE F¥ ¥

= ==  is measurable.

Notes M is proved to be a -algebra. The next result shows that all Borel sets are
measurable. Recall that the family of Borel sets in  is, by definition, the smallest
-algebra containing all open subsets of .

Theorem 5: M contains all Borel subsets of .

Proof: It suffices to show that (a, ¥)  M for all a   (why?). Let A  . We need to show that

m*(A)  m*(A  (–¥, a]) + m*(A  (a, ¥)).

Without loss of generality, we may assume m*(A) < ¥. For convenience, let A1 = A  (–¥, a] and
A2 = A  (a, ¥). Then we need to show

m*(A) +   m*(A1) + m*(A2) for all  > 0.
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Notes By the definition of m*(A), there is a countable open interval cover { }n nI
  of A with

m*(A) + > n
n 1

(I ) .
¥

=

å 

Let nI  = In  [–¥, a] and nI² = In  (a, ¥), then { } { }n nI , I ² are, respectively, interval covers of A1 and

A2 (note that they may not be open interval covers). Then

n
n 1

(I )
¥

=

å   = n n
n 1 n 1

(I ) (I )
¥ ¥

 ²

= =

+å å 

 = n n
n 1 n 1

m* (I ) m* (I )
¥ ¥

 ²

= =

+å å ( m* =  for intervals)

  ( ) ( )n n
n 1 n 1

m* I m* I
¥ ¥

 ²

= =

+  ( countable subadditivity)

  m*(A1) + m*(A2) ( monotonicity)

So, m*(A) +  > n 1 n(I )¥

=å   m*(A1) + m*(A2) for all  > 0. Letting   0, m*(A)  m*(A1) + m*(A2).
This proved that (a, ¥)  M.

Notes Since M is a -algebra, (–¥, a]  M and (–¥, a) = n 1
¥

= (–¥,a – 1/n]  M. It follows
that (a, b)  M since (a, b) = (–¥, b)  (a, ¥). As M is a -algebra containing all open
intervals, it must contain all open sets (recall that every open set is countable union of
open intervals by Proposition). Therefore, M contains all Borel sets.

Proposition: M is translation invariant: for all x  , E  M implies E +x  M.

Proof: For all A  R, we have

m*(A) = m*(A – x)

= m* ((A – x)  E) + m* ((A – x)  Ec)

= m* (((A – x)  E) + x) + m* (((A – x)  Ec) + x)

= m*(A  (E + x)) + m*(A  (E + x)c)

Notes Let E   be given. Then the following statements are equivalent.

1. E is measurable.

2. For any  > 0, there is an open set O  E such that m*(O\E) <.

3. For any  > 0, there is a closed set F  E such that m*(E \F)<.

4. There is a G  G

 such that E  G and m*(G\E) = 0.

5. There is a F  F

 such that E  F and m*(E\F) = 0.

Assume m*(E) < ¥, the above statements are equivalent to

6. For any  > 0, there is a finite union U of open intervals such that m*(U  E) < .



LOVELY PROFESSIONAL UNIVERSITY 309

Unit 26: Lebesgue Measure

NotesTheorem 6: Littlewood’s 1st Principle

Every measurable set of finite measure is nearly a finite union of disjoint open intervals, in the
sense

 If E is measurable and m(E) < ¥, then for any  > 0 there is a finite union U of open intervals
such that m*(U  E) < . (Clearly, the intervals can be chosen to be disjoint.)

 If for any > 0 there is a finite union U of open intervals such that m*(U  E) < , then E is
measurable. (The finiteness assumption m*(E) < ¥ is not essential.)

Proof: If we can prove (1), (2), and (4) are equivalent, then it is easy to see that (2) and (3) are
equivalent, because one implies another by replacing E with Ec. Similarly, (4) and (5) are
equivalent.

To show (1)  (2)

We first consider a simple case m(E) < ¥. For any  > 0, there is a countable open interval cover

{ }nI  of E such that n 1 n(I )¥

=å  < m(E) + . Take O = n 1
¥

= In, we see that O is open and O  E. Also,
we have

m(O\E) = m(O) – m(E)  
n 1

¥

=

å m(In) – m(E) < .

Here we use the assumption m(E) < ¥ and the countable subadditivity of m.

For the case m(E) = ¥, we write E = n 1
¥

= En, where En = E  [–n, n]. This is a countable union of
measurable sets of finite measure. By the above result there is an open set On such that On  En and

m*(On\En) < 
n2
 . Take O = n 1

¥

= On, then O is open and O  E. It remains to show m(O\E) <.

Note that O\E  n 1
¥

= On\En, by countable subadditivity of m we have

m(O\E) 
n 1

¥

=

å m(On\En) <
n 1

¥

=

å
n2
 = .

Hence, we have proved that (1)  (2).

To show (2)  (4)

For any n  , let On be an open set such that On  E and m*(On\E) < 1/n. Take G = n 1
¥

=  On  G

,

then

m*(G\E)  m*(On\E) < 1 .
n

Letting n  ¥, the result follows.

To show (4)  (1)

The existence of G guarantees E = G\(G\E) is measurable since both G and G\E are measurable
(G is Borel set and G\E is of measure zero).

Hence, (1), (2), (3), (4), (5) are equivalent.

To show (2)  (6) (with finiteness assumption m*(E) < ¥)

Let  > 0 be given. Let O be an open set such that O  E and m(O\E) < /2. Write O = n 1
¥

= In to be
a countable union of disjoint open intervals. By the countable additivity of m, m(O) = n 1 n(I )¥

=å  .
Let k be a positive integer such that k

n 1 n(I )=å  > m(O) – /2. (The finiteness assumption has been
used here to guarantee that m(O) < ¥.)
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Notes Take U = k
n 1= In. Note that m(O \ U) = m(O) – m(U) < /2, so

m(U  E) = m(U\E) + m(E\U)

 m(O\E) +m(O\U)

<
2 2
 
+  = .

The finiteness assumption is essential here. The above result is false if we allow E to have

infinite measure. A counter example is E = n 1
¥

= (2n, 2n + 1).

To show (6)  (2) (without finiteness assumption m*(E) < ¥)

Let  > 0 be given and U be a finite union of open intervals. Then m*(E\U) <, we take an open
set O  E\U such that m*(O) <  (how to do this?). Then O = U  O is an open set containing
E with m*(O\E)  m*(U\E) + m*(O) < 2 .

Task  Let A  , prove that there is a measurable set B  A with m*(A) = m*(B).

26.5 Step Functions and Simple Functions

Definition: A function : [a, b]   is called step function if

(x) = ci (xi–1 < x < xi)

for some partition {x0, x1,...,xn} of [a, b] and some constants c1, c2,..., cn.

Lemma: Let 1, 2 be step functions on [a, b]. Then 1 ± 2, 1+2, 1 2, 1  2, and 1  2 are
all step functions, where ,   . Also, if 2  0 on [a,b], then 1/2 is also step function.

Note (f  g)(x) = min{f(x), g(x)} and (f  g)(x) = max{f(x), g(x)}.

Lemma: Let  be a step function on [a,b] and let  > 0. Then there is a continuous function g on
[a, b] such that  = g on [a, b] except on a set of measure less than , i.e.

m({ x  [a, b] :(x)  g(x)}) < .

Figure 26.1: An Example of Step Function
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NotesProof: Easy! One can find a piecewise linear function g with the stated property.

Definition: Let E  M. A function f: E   is called a simple function if there exists a1, a2,..., an 
 and E1, E2,..., En M such that

(2) f =
k

i 1=
å aiEi

Note Step function is simple,  is simple but not step function.

Proposition: Let f: [a, b]   be a simple function. For any  > 0, there is a step function : [a,
b]   such that f =  except on a set of measure less than .

Proof: Let f be given by (2), we may assume E1,E2,...,En  E. By Littlewood’s 1st Principle, there is
a finite union of disjoint open intervals Ui such that m(Ui  Ei) < /n. Then

f =
k

i 1=
å aiUi

except on A = 
n

i 1=
 (Ui  Ei),

where m(A) < n
i 1=å /n = .

Notes One can find a continuous function with the same property. Moreover, if f satisfies
m  f  M on [a, b] then  can be chosen such that m    M (reason: replace  by (m  )
 M if necessary).

26.6 Measurable Functions

Definition: A function f: E  [-¥, ¥] is said to be measurable (or measurable on E) if E  M and

f–1((a, ¥])  M

for all a  .

In fact, there is a more general definition for measurability which we will not use here. The
definition goes as follows.

Definition: Let X be a measurable space and Y be a topological space. A function f: X  Y is called
measurable if f–1(V) is a measurable set in X for every open set V inY.

Notes Simple functions, step functions, continuous functions and monotonic functions
are measurable.

Proposition: Let E  M and f : E  [–¥, ¥]. Then the following four statements are equivalent:

 f–1 ((a, ¥])  M for all a  .

 f–1 ([a, ¥])  M for all a  .

 f–1([–¥, a))  M for all a  .

 f–1([–¥, a])  M for all a  .
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Notes The above statements imply f–1(a)  M for all a  [–¥, ¥]. The converse is not true.

Proof: The first one is clearly equivalent to the fourth one since f–1([a, ¥]) = E \ f–1([–¥, a]).
Similarly, the second and the third statements are equivalent. It remains to show the first two
statements are equivalent, but this follows immediately from

f–1([a, ¥]) = 1

n 1

1f (a , ]
n

¥
-

=

æ ö
- ¥ç ÷è ø

 and f–1([a, ¥]) = 1

n 1

1f [a , ] .
n


¥

-

=

æ ö
+ ¥ç ÷è ø

Proposition: Let E  M, f: E  [–¥, ¥] and g: E  [–¥, ¥]. If f = g almost everywhere on E then
the measurability of f and g are the same.

Proof: Simply note that

m*({x E : f(x) > a }  {x  E : g(x) > a})  m*({x  E : f(x)  g(x)}) = 0.

This implies the measurability of the sets {x  E: f(x) > a} and {x  E : g(x) > a} are the same.

Proposition: Let f, g be measurable extend real-valued functions on E  M. Then the following
functions are all measurable on E:

f + c, cf, f ± g, fg

where c  .

Notes One may worry that cf, f ± g, fg may not be defined at some points (for example, if
f = ¥and g = –¥ then f + g is meaningless). There are two ways to deal with this problem.

1. Adopt the convention 0· ¥ = 0.

2. Assume f, g are finite almost everywhere or cf, f ± g, fg are meaningful almost everywhere.

Proof: We only prove f + g and fg are measurable, since the others are easy or similar.

To prove f + g is measurable, one should consider the set

Ea = {x  E : f(x) + g(x) > a}

= {x  E : f(x)> a – g(x)}

=
r

{x E : f(x) > r > a – g(x)}





=
r

{x E : f(x) > r}  {x E : r > a – g(x)}


  


If f(x) = ¥ or g(x) = ¥ then x  Ea by convention. Now Ea  M because Ea is countable union of
measurable sets.

Next, we prove f2 is measurable. For a  0,

{x  E: f2 (x) > a} = {x  E : f(x) > a }  {x  E : f(x)< – a }

is measurable. For a < 0, {x  E : f2(x) > a } = E is also measurable. Therefore, f2 is measurable and
it is valid even if f takes values ± ¥.
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NotesSo, if f and g are assumed to be finite, then

fg = 1
2

[(f + g)2 – f2 – g2]

is measurable on E.

Task  Find two measurable functions f, g from  to  such that f o g is not measurable.

Proposition: Let { }n nf
  be measurable extended real-valued functions on a measurable set E.

Then

f1  f2 …  fn, n
n
sup f ,


n
n

flim
¥

are all measurable on E. Similar results hold if , sup and lim  are replaced by , inf, and lim.

Proof: Simply note that

(f1  f2   fn)–1((a, ¥)) = 1
k

k 1
f ((a, ))

¥
-

=

¥

1

n
n
sup f ((a, ))

-



æ ö
¥ç ÷è ø

 = 1
k

k 1
f ((a, ))

¥
-

=

¥

n
n

flim
¥

 = k
N k N

sup finf
 

æ ö
ç ÷è ø

Theorem 7: Let E  M with m(E) < ¥, f: E  [–¥,¥] be measurable and finite almost everywhere.
For any  > 0, there is a simple function  such that

|f –|< on E except on a set of measure less than .

Notes If E = [a, b] is closed and bounded interval, we can find a step function g and a
continuous function h play the role of . This is because simple function can be approximated
by step function and step function can be approximated by continuous function.

If f satisfies an additional condition m  f  M, then , g, and h can be chosen to be bounded below
by m and above by M.

The condition m(E) < ¥ in Littlewood’s 2nd Principle is essential. You can see if this condition is
dropped then taking f(x) = x will give a counter example.

To prove Littlewood’s 2nd Principle, we introduce a lemma.

Lemma: Let { }n nF
  be a sequence of measurable subsets of  (or any measure space3) such that

F1  F2  .

Denote F
¥
 = n nF .  If m(F1) < ¥ then

m(F
¥
) = n

n
m(F ).lim

¥

Proof: Write F1 = F
¥
  (F1\F2)  (F2\F3)   as disjoint union and use the countable additivity of m.
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Notes Above Lemma 4 is false if the condition m(F1) < ¥ is missing.

Now, we are ready to prove Littlewood’s 2nd Principle.

Proof: Let  > 0 be given. Our proof is divided into two steps.

Step I: Assume m  f  M for some m, M  .

We divide [m, M] into n subintervals such that the length of each subinterval is less than .
Symbolically, we take the partition points as follows:

m = y0 < y1 <  < yn = M with yi – yi–1 <for 1  i  n.

Let E1 = {x  E : m  f(x)  y1}, E2 = {x  E : y1 < f(x)  y2 },..., En = {x  E : yn–1 < f(x)  M }. Now, take
 = y1E1 + y2E2 

+  + ynEn
. Since E1, E2,..., En are all measurable (why?),  is simple and satisfies

the inequality |f – | <  with no exceptions.

Step II: General case.

We let

Fn = {x  E : |f(x)|  n}.

Then F1  F2  . Note that m(F1)  m(E) < ¥ and m(F
¥
) = 0 by assumption, apply Lemma 4 there

exists N   such that

m(FN) < .

Now, let f* = (–N  f)  N, then f = f* on E except on a set of measure less than . From the result
of Step I, there is a simple function  such that |f* – | <  on E. Hence

|f – | <  on E except on a set of measure less than .

Corollary: There is a sequence of simple functions n such that n  f pointwisely almost
everywhere on E. If E = [a, b], there are also sequence of step functions and sequence of continuous
functions converging to f pointwisely almost everywhere on [a,b].

Proof: Applying Littlewood’s 2nd Principle to  = 1/2n, there are simple functions n and sets An

with m(An) < 1/2n such that

|f – n|< n

1
2

on E\An.

Let A = lim An := k 1 n k n( A ),¥ ¥

= =  then m(A) = 0 (why?). The proof is completed by noting that n  f
pointwisely on E\A.

Notes In fact, the sequence n can be chosen so that n  f pointwisely everywhere on E.
For example, we can first divide the interval [–n, n] into 2n 2 subintervals such that each
subinterval has length 1/n, i.e. choose

–n = y0 < y1 <  < y2n2 = n

such that yi – yi–1 = 1/n for all i. Then let

n(x) =
i i i 1y if y f(x) y for some i

n if f(x) n
n if f(x) n

+ <ì
ï

í
ï- < -î
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NotesTheorem 8: Littlewood’s 3rd Principle/Egoroff’s Theorem

Let E  M with m(E) < ¥, f: E  (–¥, ¥) be measurable and { }n nf
  be a sequence of measurable

functions on E such that

fn  f a.e. on E.

Then for any  > 0 there is a (measurable) subset S of E with m(S) <  such that

fn  f uniformly on E\S.

Notes Again, the condition m(E) < ¥ cannot be dropped. Otherwise fn = [n, ¥) and f = 0
would be a counter example.

Proof: We claim that for any  > 0 and  > 0, there exists A  E with m(A) <  and N   such that

|fn(x) – f(x)| <  whenever n  N and x  E \A.

Be careful the above statement is not saying that fn  f uniformly on E \A since A depends on
 and .

To prove our claim, we let

Gn = {x  E : |fn(x) – f(x)|  }

and

G = lim Gn := n
n

E ,





where En = k
k n

G .




Note that if x  G then x  En for all n  , it follows that fn(x)  f(x). Since the set of all x such
that fn(x)  f(x) is of measure zero, we have m(G) = 0. Note also that m(E 1) < ¥ and En “decreases”
to G, so limm(En) = m(G) = 0 by Lemma 4. There is N   such that m(EN) < . This N, together
with A : = EN, proved our claim.

Now, let  > 0 be given. Apply the above result to = 1/k and  = /2k, we obtain Ak with m(Ak)
< /2k and Nk   such that

|fn(x) – f(x) | < 1
k

whenever n  Nk and x  E \Ak.

Let S = k kA ,   then m(S)  k 1
¥

=å m(Ak) <  and |fn(x) – f(x)| < 1/k whenever n  Nk and x  E\S.
Hence, fn  f uniformly onE\S.

Self Assessment

Fill in the blanks:

1. Every open subset V of  is a ........................... of disjoint open intervals.

2. The family of all measurable sets is denoted by M. We will see later M is a -algebra and
translation-invariant containing all intervals. The set function m: M  [0, ¥] defined by

m(E) = m*(E) for all E  M

is called .....................................

3. Let X be a .............................. and Y be a topological space. A function f: X  Y is called
measurable if f–1(V) is a measurable set in X for every open set V inY.

4. Let E  M, f: E  [–¥, ¥] and g: E  [–¥, ¥]. If f = g almost everywhere on E then the
................................ of f and g are the same.
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Notes 26.7 Summary

 The definition of outer measure of sets.

 Outer measure of an interval is its length.

 Some important properties of Outer measure.

 The definition of Measurable sets.

 Countable union of measurable sets is also measurable.

 Countable intersection of measurable sets is also measurable.

 Every Borel set is measurable.

 Littlewood’s First Principle.

26.8 Keywords

Lindelof’s Theorem: Let C be a collection of open subsets of . Then there is a countable
sub-collection {Oi}i of C such that

O C
O



  = i
i 1

O
¥

=



Lebesgue Measure: The family of all measurable sets is denoted by M. We will see later M is a
-algebra and translation-invariant containing all intervals. The set function m: M  [0, ¥]
defined by

m(E) = m*(E) for all E  M

is called Lebesgue measure.

O C
O



  = i
i 1

O
¥

=



Littlewood’s 1st Principle: Every measurable set of finite measure is nearly a finite union of
disjoint open intervals, in the sense.

Measurable Functions: A function f: E  [-¥, ¥] is said to be measurable (or measurable on E) if
E  M and

f–1((a, ¥])  M

for all a  .

26.9 Review Questions

1. Prove that the family M of measurable sets is an algebra.

2. If E1, E2, ….En are measurable, prove that E1 U E2 …  En is measurable.

3. If E1 and E2 are measurable sets, then prove that E1  E2 is also measurable.

4. Prove that properties (i) to (v) are equivalent to (vi), if m*E is finite.

5. Show that if E is measurable, then each translate E + y is also measurable.

6. Show that if E1 and E2 are measurable, then m(E1  E2) + m(E1|E2) = mE1 + mE2.

7. Let {Ei} be a sequence of disjoint measurable sets and A be any set.

Show that m* ( )i i
i 1 i 1

A E m * (A E )
¥¥

= =

å= 
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1. countable union 2. Lebesgue measure

3. measurable space 4. measurability
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H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Define measurable functions

 Discuss the Sum, difference; scalar product and product of measurable functions are
measurable

 Explain Littlewood's Theorems

Introduction

In this unit we study the concept of measurability. We shall see that measurable functions are
basically very robust (or strong or durable) continuous-like functions. We make “continuous-like”
precise in Luzin’s Theorem, which is where Littlewood got his second principle. We also study
the concept of almost everywhere.

27.1 Measurable Functions

A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called measurable sets. Recall that a measure space is a triple (X,  S , ) where
 is a measure on S ; if we leave out the measure we have a measurable space.

In the discussion at the beginning of this unit we saw that in order to define the integral of a
function f : X   , we needed to require that

f–1(I)  S  for each I  S  and f–1(a, ]  S  for each a  .

If these properties hold, we say that f is measurable. It turns out that we can omit the first
condition because it follows from the second. Indeed, since

f–1(a, b] = f–1(a, ]\f–1(b, ],
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Notes  As a reminder, for any A   , f–1 (A):= {x  X; f(x)  A}, so for instance f–1 (a, ] = {x  X;
f(x)  (a, ) } = {x  X; f(x) > a}, or f–1 (a, ) = {f > a} if you wish to be a probabilist.

and S  is a -algebra, if both right-hand sets are in S , then so is the left-hand set. Hence, in order
to define the integral of f we just need f–1 [a, ]  S  for each a  . We are thus led to the
following definition:

A function f: X    is measurable if f–1 [a, ]  S  for each a .

We emphasize that the definition of measurability is not “artificial” but is required by Lebesgue’s
definition of the integral. If X is the sample space of some experiment, a measurable function is
called a random variable; thus,

In probability, random variable = measurable function.

We note that intervals of the sort (a, ] are not special, and sometimes it is convenient to use
other types of intervals.

Proposition: For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1[–, a]  S  for each a  .

3. f–1[a, ]  S  for each a  .

4. f–1[–, a] S  for each a  .

Proof: Since preimages preserve complements, we have

(f–1[a, ])c = f–1 ([a, ]c) = f–1[–, a].

Since -algebras are closed under complements, we have (1)  (2). Similarly, the sets in (3) and
(4) are complements, so we have (3)  (4). Thus, we just to prove (1)  (3). Assuming (1) and
writing

[a, ] =
n 1

1a ,
n




=

é ù
- ê úë û

  f–1[a, ] = 1

n 1

1f a ,
n




-

=

é ù
- ê úë û

,

shows that f–1[a, ]  S  since each f–1 1a ,
n

é ù
- ê úë û

  S  and S  is closed under countable intersections.
Thus, (1)  (3). Similarly,

[a, ] =
n 1

1a ,
n



=

é ù
+ ê úë û

   f–1(a, ] = 1

n 1

1f a ,
n


-

=

é ù
+ ê úë û

 ,

shows that (3)  (1).

As a consequence of this proposition, we can prove that measurable functions are closed under
scalar multiplication. Indeed, let f : X    be measurable and let   ; we’ll show that f is
also measurable. Assume that   0 (the  = 0 case is easy) and observe that for any a  ,

( f)–1 [a, ] = {x;  f(x) > a} =
{ }
{ }

ax; f(x) if 0,

ax; f(x) if 0

ì
>  >ï ï

í
ï <  <
ï î

=

1

1

af , if 0,

af , if 0.

-

-

ì é ù
  >ï ê úï ë û

í
é ùï - <  <ê úï ë ûî
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algebraic properties of measurable functions in the next section.

We now give some examples of measurable functions.

Example: Let X = n with Lebesgue measure. Then any continuous function f : n   is
measurable because for any a  , by continuity (the inverse of any open set is open),

f–1[a, ] = f–1(a, )

(where we used that f does not take the value ) is an open subset of n. Since open sets are
measurable, it follows that f is measurable.

Thus, for Lebesgue measure, continuity implies measurability. However, the converse is far
from true because there are many more functions that are measurable than continuous. For
instance, Dirichlet’s function D :   ,

D(x) =
1 if x ,
0 if x ,

ì
í

Ïî




is Lebesgue measurable. Note that D is nowhere continuous. That D is measurable follows from
example below and the fact that D is just the characteristic function of   , and  is measurable.

Example: For a general measure space X and a set A  X, we claim that the characteristic
function A : X   is measurable if and only if the set A is measurable. Indeed, looking at
Figure 27.1, we see that

1
A
- [a, ] = {x  X; 

A
(x) > a} = 

X if a 0
A if 0 a 1,

if a 1.

<ì
ï

£ <í
ïÆ ³î

It follows that 1
A
- [a, ]  S  for all a   if and only if A  S , which proves the claim. In

particular, there exists a non-Lebesgue measurable function on n. In fact, given any non-
measurable set A  n, the characteristic function A: n   is not measurable.

Of course, since A is non-constructive, so is A. You will probably never find a non-measurable
function in practice. The following example shows the importance of studying extended
real-valued functions, instead of just real-valued functions.

Figure 27.1: Graph of A
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Example: Let X = S, where S = {0,1}, be the sample space for a Monkey-Shakespeare

experiment (or any other experiment involving a sequence of Bernoulli trials). Let f : X  [0, ]
be the number of times the Monkey types sonnet 18:

f(x1, x2, x3,...) = the number of i’s such that xi = 1.

Notice that f =  when the Monkey types sonnet 18 an infinite number of times (in fact, as we see
that f =  on a set of measure). To show that f is measurable, write f as

f = n
n

f ,lim


where fi is the number of i’s in 1, 2,..., n such that x i = 1. Notice that f1 £ f2 £ f3 £  are non-
decreasing, so it follows that for any a  ,

f(x) £ a  fn(x) £ a for all n  x  n
n 1

{f a}.


=

£ {fn < a}.

Thus,

f–1[–, a] = 1
n

n 1
f [ , a].


-

=

-

The set {fn £ a} is of the form An  S  S  S   where An  Sn is the subset of Sn consisting of those
points with no more than a total of a entries with 1’s. In particular, {f n £ a}  R (C ) and hence, it
belongs to S  (C ). Therefore, {f £ a} also belongs to S  (C ), so f is measurable.

We shall return to this example when we study limits of measurable functions.

As we defined simple functions. For a quick review in the current context of our -algebra, S ,
recall that a simple function (or S -simple function to emphasize the -algebra, S ) is any function
of the form

s =
n

N

n A
n 1

a ,
=

å

where a1,..., aN   and A1,..., AN S  are pairwise disjoint. We know that we don’t have to take
the An’s to be pairwise disjoint, but for proofs it’s often advantageous to do so.

Theorem 1: Any Simple Function is Measurable

Proof: Let s = 
n

N
n 1 n Aa= å be a simple function where a1,..., aN   and A1,..., AN  S  are pairwise

disjoint. If we put AN+1 = X \ {A1    AN) and aN+1 = 0, then

X = A1  A2    AN  AN+1,

a union of pairwise disjoint sets, and s = an on An, for each n = 1, 2,..., N + 1. It follows that

s–1[a, ] = {x  X; s(x) > a} =
N 1

n
n 1

{x A ; s(x) a}
+

=

 >

=
N 1

n n
n 1

{x A ; a a}.
+

=

 >

Since

{x  An ; an > a} = n nA if a a
otherwise.

>ì
í
Æî

it follows that s–1[a, ] is just a union of elements of S . Thus, s is measurable.
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We saw earlier that continuity implies measurability, essentially by definition of continuity in
terms of open sets. It turns out that we can directly express measurability in terms of open sets.

Theorem 2: Measurability Criterion

For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1({})  S  and f–1( )  S  for all open subsets   .

3. f–1({})  S  and f–1(B)  S  for all Borel sets B  .

Proof: To prove that (1)  (2), observe that

{} =
n 1

[n, ]


=

   f–1({}) = 1

n 1
f [n, ].


-

=



Assuming f is measurable, we have f–1[n, ]  S  for each n and since S  is a -algebra, it follows
that f–1({})  S . Also, if    is open, then by the Dyadic Cube Theorem we can write  = n 1



= In

where In  S 1 for each n. Hence,

f–1( ) = 1
n

n 1
f (I )


-

=



By measurability, f–1(In)  S  for each n, so f–1( )  S .

To prove that (2)  (3), we don’t have to worry about the preimage of , so we just have to prove
that f–1(B)  S  for all Borel sets B  .

S f = {A  ; f–1(A)  S }

is a -algebra. Assuming (2) we know that all open sets belong to S f . Since S f is a -algebra of
subsets of  and B is the smallest -algebra containing the open sets, it follows that B   S f .

Finally we prove that (3)  (1). Let a   and note that

[a, ] =  (a, )  {}  f–1[a, ] = f–1(a, )  f–1({}).

Assuming (3), we have f–1({})  S  and since (a, )   is open, and hence is Borel, we also have
f–1(a, )  S . Thus, f–1(a, ]  S , so f is measurable.

We remark that the choice of using + over – in the “f–1({})  S ” parts of (2) and (3) were
arbitrary and we could have used – instead of .

Consider the second statement in the theorem, but only for real-valued functions:

Measurability: A function f : X   is measurable if and only if f–1( )  S  for each open set   .

One cannot avoid noticing the striking resemblance to the definition of continuity. Recall that
for a topological space (T, T ), where T  is the topology on a set T.

Continuity: A function f : T   is continuous if and only if f–1( )  T  for each open set   .

Because of this similarity, one can think about measurability as a type of generalization of
continuity. However, speaking philosophically, there are two very big differences between
measurable functions and continuous functions as we can see by considering X = n with Lebesgue
measure and its usual topology:

(i) There are a lot more measurable functions than continuous functions.

(ii) Measurable functions are closed under a lot more operations than continuous functions
are.
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NotesTo understand Point (i), recall from that all continuous functions on n are measurable; in
contrast, there are measurable functions that are highly discontinuous (like Dirichlet’s function).
There are more measurable functions than continuous functions because there are a lot more
measurable sets than there are open sets. For example, not only are open sets measurable but so
are points, Cantor-type sets, G


 sets, F


 sets, etc. We shall see that, just like continuous functions,

measurable functions are closed under all the usual arithmetic operations such as addition,
multiplication, etc. What exemplifies Point (ii) is that measurable functions are closed under all
limiting operations. For example, a limit of measurable functions is always measurable. This
stands in stark contrast to continuous functions. Indeed, that the characteristic function of a
Cantor set can be expressed as a limit of continuous functions. The reason that measurable
functions are closed under more operations is that measurable sets are closed under operations
(e.g. countable intersections and complements) that open sets are not.

Measurable functions are similar to continuous functions, but there are more of them and they
are more robust. Littlewood’s second principle shows exactly how “similar” measurable
functions are to continuous functions.

27.3 Littlewood’s Second Principle

We now continue our discussion of Littlewood’s Principles where we stated the first principle;

There are three principles, roughly expressible in the following terms: Every [finite Lebesgue]
measurable set is nearly a finite union of intervals; every measurable function is nearly continuous;
every convergent sequence of measurable functions is nearly uniformly convergent.

—Nikolai Luzin

The third principle is contained in Egorov’s theorem, which we’ll get to in the next topic.
The second principle comes from Luzin’s Theorem, named after Nikolai Nikolaevich Luzin
(1883-1950) who proved it in 1912 [70], and this theorem makes precise Littlewood’s comment
that any Lebesgue measurable function is “nearly continuous”.

Theorem 3: Luzin’s Theorem

Let X  n be Lebesgue measurable and let f : X   be a Lebesgue measurable function. Then
given any  > 0, there exists a closed set C n such that C  X, m(X\C) < , and f is continuous
on C.

Proof: Here we follow Feldman’s [38] proof that only uses Littlewood’s First Principle. Luzin’s
theorem is commonly proved using Egorov’s theorem and the fact that every measurable function
is the limit of simple functions.

Step 1: We first prove the theorem only requiring that C be measurable; this proof is yet another

example of the “ k2


–trick.” Let {k} be a countable basis of open sets in ; this means that every

open set in  is a union of countably many k’s. (For example, take the k’s as open intervals with
rational end points.) Let  > 0. Then, since f–1(k) is measurable, by Littlewood’s First Principle
there is an open set k such that

f–1(k)k and m(k\f–1(k)) < k2
 .

Now put

A : = 1
k k

k 1
( \f ( )).


-

=

  

Then A is measurable and

m(A) £ 1
k k k

k 1 k 1
( \ f ( )) = .

2
 

-

= =


< å å m



324 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes If we can prove that

g := X\Af : X \A  

is continuous, then we have proven our theorem with C = X \ A (modulo the closedness condition).
Since {k} is a basis for the topology of  to prove that g is continuous all we have to do is prove
that for each k, g–1(k) is open in X \A. To prove this, we shall prove that

(3.1) g–1(k) = (X\A)  k;

then, since k is an open subset of n, it follows that g–1(k) is open in X\A and we’re done. Now
to prove the desired equality note that, by definition of g, we have

g–1(k) = (X\A)   f–1(k)  (X \A)  k,

since f–1(k)  k. On the other hand, observe that

x  (X\A)  k  x ÏA, x  k

 x Ï (k\f–1(k)), x  k

 x  f–1(k).

In the second implication we used that A = j 1


= (j\f–1(j)) so x ÏA implies, in particular, that
x Ï (k\f–1(k)). Therefore,

(X\A)  k  (X\A)  f–1(k),

which completes the proof of (3.1).

Step 2: We now require that C be closed. Given  > 0 by Step 1 we can choose a measurable set
B  X such that m(X\B) < /2 and f is continuous on B. By Littlewood’s First Principle we can
choose a closed set C  n such that C  B and m(B\C) < /2. Since

X\C = (X \B)  (B \C),

we have

m(X \C) £ m(X \B) + m(B \C) < .

Also, since C  B and f is continuous on B, the function f is automatically continuous on the
smaller set C. This completes the proof of our theorem.

We shall see that Luzin’s theorem holds not just for n but for topological spaces as well.

27.4 Borel Measurability on Topological Spaces

Recall that the collection of Borel subsets of a topological space is the -algebra generated by the
open sets. For a measurable space (T, S ) where T is a topological space with S  its Borel subsets,
we call a measurable function f: T    Borel measurable to emphasize that the -algebra S  is
the one generated by the topology and it is not just any -algebra on T. For example, a Borel
measurable function on n is a function f : n    such that f–1(a, ]  B n for all a  .

Proposition: Any continuous real-valued function on a topological space is Borel measurable.

The proof of this proposition follows word-for-word the n case in Example, so we omit its
proof. A nice thing about Borel measurability is that it behaves well under composition.

Proposition: If f :     is Borel measurable and g : X   is measurable, where X is an
arbitrary measurable space, then the composition,

f o g : X  

is measurable.
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(f o g)–1(a, ] = g–1(f–1(a, ])  S .

The function f : R    is, by assumption, Borel measurable, so f–1(a, ]  B 1. The function
g : X   is measurable, so by Part (3) of Theorem 3.5, g–1(f–1 (a, ])  S . Thus, f  g is measurable.

Example: If g : X   is measurable, and f :    is the characteristic function of the
rationals, which is Borel measurable, then Proposition 3.8 shows that the rather complicated
function

(f o g)(x) =
1 if g(x) ,
0 if g(x) ,

ì
í

Ïî




is measurable. Other, more normal looking, functions of g that are measurable include e g(x),
cos g(x), and g(x)2 + g(x) + 1.

27.5 The Concept of Almost Everywhere

Let (X, S ,) be a measure space. We say that a property holds almost everywhere (written a.e.)
if the set of points where the property fails to hold is a measurable set with measure zero. For
example, we say that a sequence of functions {fn} on X converges a.e. to a function f on X, written
fn  f a.e., if f(x) = 

n
lim


fn(x) for each x  X except on a measurable set with measure zero.
Explicitly,

fn  f a.e.  A := {x; f(x)  
n
lim


fn(x)}  S  and (A) = 0.

For another example, given two functions f and g on X, we say that f = g a.e. if the set of points
where f  g is measurable with measure zero:

f = g a.e.  A := {x; f(x)  g(x)}  S  and (A) = 0.

If g is measurable and f = g a.e., then one might think that f must also be measurable. However,
as you’ll see in the following proof, to always make this conclusion we need to assume
completeness.

Proposition: Assume that  is a complete measure and let f, g : X   . If g is measurable and
f = g a.e., then f is also measurable.

Proof: Assume that g is measurable and f = g a.e., so that the set A = {x; f(x)  g(x)} is measurable
with measure zero. Observe that for any a  ,

f–1(a, ] = {x  X; f(x) > a}

= {x  A; f(x) > a}  {x  Ac; f(x) > a}

= {x  A; f(x) > a}  {x  Ac; g(x) > a}

= {x A; f(x) > a}  (Ac  g–1(a, ]).

The first set is a subset of A, which is measurable and has measure zero, hence the first set is
measurable. g is measurable, so the second set is measurable too, hence f is measurable.

For instance, this proposition holds for Lebesgue measure since Lebesgue measure is complete.
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Fill in the blanks:

1. A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called .......................

2. For Lebesgue measure, continuity implies .......................

3. A function f : T   is continuous if and only if f–1( )  T  for each open set .......................

4. Measurable functions are similar to ......................., but there are more of them and they are
more robust.

5. ....................... principle shows exactly how “similar” measurable functions are to continuous
functions.

6. Any continuous real-valued function on a topological space is .......................

7. If f :     is Borel measurable and g : X   is measurable, where X is an arbitrary
measurable space, then the composition, ....................... is measurable.

27.6 Summary

 A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of subsets of X. The
elements of, S  are called measurable sets. Recall that a measure space is a triple (X,  S , )
where  is a measure on S ; if we leave out the measure we have a measurable space.

In the discussion at the beginning of this chapter we saw that in order to define the integral
of a function f : X   , we needed to require that

f–1(I)  S  for each I  S 1 and f–1[a, ]  S  for each a  .

 If these properties hold, we say that f is measurable. It turns out that we can omit the first
condition because it follows from the second. Indeed, since

f–1[a, b] = f–1[a, ]\f–1[b, ].

 There are three principles, roughly expressible in the following terms: Every [finite
Lebesgue] measurable set is nearly a finite union of intervals; every measurable function
is nearly continuous; every convergent sequence of measurable functions is nearly
uniformly convergent.

 The third principle is contained in Egorov’s theorem, which we’ll get to in the next section.
The second principle comes from Luzin’s Theorem, named after Nikolai Nikolaevich
Luzin (1883-1950) who proved it in 1912 [70], and this theorem makes precise Littlewood’s
comment that any Lebesgue measurable function is “nearly continuous”.

 Any continuous real-valued function on a topological space is Borel measurable.

 The proof of this proposition follows word-for-word the n case in Example, so we omit
its proof. A nice thing about Borel measurability is that it behaves well under composition.

 If f :     is Borel measurable and g : X   is measurable, where X is an arbitrary
measurable space, then the composition,

f o g : X  

is measurable.



LOVELY PROFESSIONAL UNIVERSITY 327

Unit 27: Measurable Functions and Littlewood’s Second Principle

Notes

 

27.7 Keywords

Measurable Sets: A measurable space is a pair (X, S ) where X is a set and, S  is a -algebra of
subsets of X. The elements of, S  are called measurable sets.

Measurability Criterion: For a function f: X   , the following are equivalent:

1. f is measurable.

2. f–1({})  S  and f–1( )  S  for all open subsets   .

3. f–1({})  S  and f–1(B)  S  for all Borel sets B  .

Measurable: A function f : X   is measurable if and only if f–1( )  S  for each open set   .

One cannot avoid noticing the striking resemblance to the definition of continuity. Recall that
for a topological space (T, T ), where T  is the topology on a set T.

Luzin’s Theorem: Let X  n be Lebesgue measurable and let f : X   be a Lebesgue measurable
function. Then given any  > 0, there exists a closed set C n such that C  X, m(X\C) < , and
f is continuous on C.

Borel Measurable: Any continuous real-valued function on a topological space is Borel measurable.

27.8 Review Questions

1. (a) Prove that a non-negative function f is measurable if and only if for all k   and
n   with 0 £ k £ 22n – 1, the sets f–1(k/2n, (k + 1)/2n] and f–1(2n, ], are measurable.

(b) Prove that an extended real-valued function f is measurable if and only if f–1({}) and
all sets of the form f–1(k/2n, (k + 1)/2n], where k   and n  , are measurable.

(c) If {an} is any countable dense subset of , prove that f is measurable if and only if
f–1({}) and all sets of the form f–1(am, an], where m, n  , are measurable.

2. Here are some problems dealing with non-measurable functions.

(a) Find a non-Lebesgue measurable function f :    such that |f| is measurable.

(b) Find a non-Lebesgue measurable function f :    such that f2 is measurable.

(c) Find two non-Lebesgue measurable functions f, g :    such that both f + g and
f  g are measurable.

3. Here are some problems dealing with measurable functions.

(a) Prove that any monotone function f :    is Lebesgue measurable.

(b) A function f :    is said to be lower-semicontinuous at a point c   if for any
 > 0 there is a  > 0 such that

|x – c|<   f(c) –  < f(x).

Intuitively, f is lower-semicontinuous at c if for x near c, f(x) is either near f(c) or
greater than f(c). The function f is lower-semicontinuous if it’s lower-semicontinuous
at all points of . (To get a feeling for lower-semicontinuity, show that the functions
(0, ), (–, 0), and (–, 0)  (0,) are lower-semicontinuous at 0.) Prove that any lower-
semicontinuous function is Lebesgue measurable.

(c) A function f :    is said to be upper-semicontinuous at a point c   if for any
 > 0 there is a  > 0 such that

|x – c|<   f(x) < f(c) + .
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than f(c). The function f is upper-semicontinuous if it’s upper-semicontinuous at all
points of . Prove that any upper-semicontinuous function is Lebesgue measurable.

4. We can improve Luzin’s Theorem as follows. First prove the

(i) Tietze Extension Theorem for ; named after Heinrich Tietze (1880-1964) who proved
a general result for metric spaces in 1915 [98]. Let A   be a non-empty closed set
and let f0 : A   be a continuous function. Prove that there is a continuous function
f1 :    such that f1|A = f0, and if f0 is bounded in absolute value by a constant M,
then we may take f1 to the have the same bound. Suggestion: Show that \A is a
countable union of pairwise disjoint open intervals. Extend f0 linearly over each of
the open intervals to define f1.

(ii) Using Luzin’s Theorem for n = 1, given a measurable function f : X   where X  
is measurable, prove that there is a closed set C   such that C X, m(X\C) < ,
and a continuous function g :    such that f = g on C. Moreover, if f is bounded
in absolute value by a constant M, then we may take g to have the same bound as f.

5. Here are some generalizations of Luzin’s Theorem.

(i) Let  be a -finite regular Borel measure on a topological space X, let f : X   be
measurable, and let  > 0. On “Littlewood’s First Principle(s) for regular Borel
measures,” prove that there exists a closed set C X such that m(X\C) <  and f is
continuous on C.

6. Here we present Leonida Tonelli’s (1885-1946) integral published in 1924 [100]. Let f : [a, b]
  be a bounded function, say |f| £ M for some constant M. f is said to be quasi-
continuous (q.c.) if there is a sequence of closed sets C1, C2, C3,...  [a, b] with 

n
lim


m(Cn) =
b – a and a sequence of continuous functions f1, f2, f3,... where for each n, fn : [a, b]  , f =
fn on Cn, and |fn| £ M.

(i) Let f : [a, b]   be bounded. Prove that f is q.c. if and only if f is measurable. To
prove the “if” statement, use Problem 6.

(ii) Let f : [a, b]   be q.c. and let {fn} be a sequence of continuous functions in the
definition of q.c. for f. Let R(fn) denote the Riemann integral of fn and prove that the

limit 
n
lim


R(fn) exists and its value is independent of the choice of sequence {fn} in the
definition of q.c. for f. Tonelli defines the integral of f as

b
a fò :=

n
lim


R(fn).

It turns out that Tonelli’s integral is exactly the same as Lebesgue’s integral.

7. We show that the composition of two Lebesgue measurable function is not necessarily
Lebesgue measurable. Let  and M be the homeomorphism and Lebesgue measurable set,
respectively. Let g = 

M
. Show that g  –1 is not Lebesgue measurable. Note that both –1

and g are Lebesgue measurable.

8. Prove the Banach-Sierpinski Theorem, proved in 1920 by Stefan Banach (1892-1945) and
Waclaw Sierpinski (1882-1969), which states that if f :    is additive and Lebesgue
measurable, then f(x) = f(1)x for all x  . Suggestion: Observe that

 =
n=1

{x ;|f(x)| n}.


 £

Prove that for some n  , the set {x  ; |f(x)| £ n} has positive measure.
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1. measurable sets 2. measurability

3.    4. continuous functions

5. Littlewood’s second 6. Borel measurable

7. f o g : X  
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Objectives

After studying this unit, you will be able to:

 Discuss the limsups and liminfs of sequences

 Describe operations on measurable functions

 Explain Littlewood's third principle

Introduction

In this unit we continue our study of measurability. We show that measurable functions are very
robust in the sense that they are closed under just about any kind of arithmetic or limiting
operation that you can imagine: addition, multiplication, division,…, and most importantly,
they are closed under just about any conceivable limiting process. We also discuss Littlewood’s
third principle on limits of measurable functions.

28.1 Limsups and Liminfs of Sequences

Before discussing limits of sequences of functions we need to start by talking about limits of
sequences of extended real numbers.

For a sequence {an} of extended real numbers, we know, in general, that lim an does not exist; for
example, it can oscillate such as the sequence. However, for the sequence, assuming that the
sequence continues the way it looks like it does, it is clear that although limit lim an does not
exist, the sequence does have an “upper” limiting value, given by the limit of the odd-indexed
an’s and a “lower” limiting value, given by the limit of the even-indexed an’s. Now, how do we
find the “upper” (also called “supremum”) and “lower” (also called “infimum”) limits of {an}? It
turns out there is a very simple way to do so, as we now explain.
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Given an arbitrary sequence {an} of extended real numbers, put

s1 =
k 1

sup
³

ak = sup{a1, a2, a3,...},

s2 =
k 2

sup
³

ak = sup{a2, a3, a4,...},

s3 =
k 3

sup
³

ak = sup{a3, a4, a5,...},

and in general,

sn =
k n

sup
³

ak = sup{an, an+1, an+2,...}.

Note that

s1 ³ s2 ³ s3 ³ ··· ³ sn ³ sn+1 ³···

is an non-increasing sequence since each successive sn is obtained by taking the supremum of a
smaller set of elements. Since {sn} is an non-increasing sequence of extended real numbers, the
limit lim sn exists in  ; in fact,

lim sn = n
inf sn = inf{s1, s2, s3,...},

as can be easily be checked. We define the lim sup of the sequence {an} as

lim sup an := n
inf sn = lim sn= 

n
lim
®¥

(sup{an, an+1, an+2,...})

Note that the term “lim sup” of {an} fits well because lim sup an is exactly the limit of a sequence
of supremums.

Example: For the sequence an shown in Figure 28.1, we have

s1 = a1, s2 = a3, s3 = a3, s4 = a5, s5 = a5,...,

so lim sup an is exactly the limit of the odd-indexed an’s.

We now define the “lower” or “infimum” limit of an arbitrary sequence {a n}. Put

1=
k 1

sup
³

ak = inf{a1, a2, a3,...},

2=
k 2

sup
³

ak = inf{a2, a3, a4,...},

3=
k 3

sup
³

ak = inf{a3, a4, a5,...},

Figure 28.1: A Sequence Bouncing Up and Down



332 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes and in general,

n =
k n

sup
³

ak = inf{an, an+1, an+2,...}.

Note that

1  2  3 ···  n  n+1 ···

is an non-decreasing sequence since each successive n is obtained by taking the infimum of a
smaller set of elements. Since {n} is an non-decreasing sequence, the limit lim n exists, and
equals supn n. We define the lim inf of the sequence {an} as

lim inf an :=
n

sup n = lim n = 
n
lim
®¥

(inf{an, an+1, an+2,...}).

Note that the term “lim inf” of {an} fits well because lim inf an is the limit of a sequence of
infimums.

Example: For the sequence an shown in Figure 28.1, we have

1 = a2, 2 = a2, 3 = a4, 4 = a4, 5 = a6,...,

so lim inf an is exactly the limit of the even-indexed an’s.

The following lemma contains some useful properties of limsup’s and liminf’s. Since its proof
really belongs in a lower-level analysis.

Lemma: Let A    be non-empty and let {an} be a sequence of extended real numbers.

1. sup A = –inf(–A) and inf A = –sup(–A), where –A = {–a; a  A}.

2. lim sup an = –lim inf(–an) and lim inf an = –lim sup(–an).

3. lim an exists as an extended real number if and only if lim sup an = lim inf an, in which case,

lim an = lim sup an = lim inf an.

4. If {bn} is another sequence of extended real numbers and an  bn for all n sufficiently large,
then

lim inf an  lim inf bn and lim sup an  lim sup bn.

28.2 Operations on Measurable Functions

Let {fn} be a sequence of extended-real valued functions on a measure space (X, S , ). We define
the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations pointwise
to the sequence of extended real numbers {fn(x)} at each point x  X. For example,

lim sup fn : X ® 

is the function defined by

(lim sup fn)(x) := lim sup(fn(x)) at each x  X.

We define the limit function lim fn by

(lim fn)(x) :=
n
lim
®¥

(fn(x))

at those points x  X where the right-hand limit exists.

We now show that limiting operations don’t change measurability.
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If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable. If the limit 
n
lim
®¥

fn(x) exists at each x  X, then the limit function lim fn is
measurable. For instance, if the sequence {fn} is monotone, that is, either non-decreasing or
non-increasing, then lim fn is everywhere defined and it is measurable.

Proof: To prove that sup fn is measurable, we just have to show that (sup fn)–1 [–¥, a]  S  for each a
 . However, this is easy because by definition of supremum, for any a  ,

sup{f1(x), f2(x), f3(x),...}  a  fn(x)  a for all n,

therefore

(sup fn)–1[–¥, a] = {x; sup fn(x)  a} = n
n 1

{x; f (x) a}
¥

=



= 1
n

n 1
f [ ,a].

¥
-

=

-¥

Since each fn is measurable, we have 1
nf [ ,a]- -¥  S , so (sup fn)–1 [–¥, a]  S  as well. Using an

analogous argument one can show that inf fn is measurable.

To prove that lim sup fn is measurable, note that by definition of lim sup,

lim sup fn : = n
inf sn,

where sn = supk³n fk. Since the sup and inf of a sequence of measurable functions are measurable,
we know that sn is measurable for each n and hence lim sup fn = infn sn is measurable. An analogous
argument can be used to show that lim inf fn is measurable (just note that lim inf fn = sup n where
n = infk³n fk).

If the limit function lim fn is well-defined, then by Part (3) of above Lemma we know that lim fn =
lim sup fn (= lim inf fn). Thus, lim fn is measurable.

In particular, if f is a function on X and if f = lim sn, where the sn’s are simple function (which are
measurable by Theorem 3.4), then f is measurable.

Example: Let X = S¥, where S = {0,1}, a sample space for the Monkey-Shakespeare
experiment (or any other sequence of Bernoulli trials), and let f : X ® [0, ¥] be the random
variable given by the number of times the Monkey types sonnet 18. Then

f(x) = n
n 1

x
¥

=

å

That is,

f = nA
n 1

¥

=

cå = k

n

A
n k 1

,lim
®¥ =

cå

where An = S  S    S  {1}  S  S   where {1} is in the n-th slot. Since each An is measurable,
it follows that each cAn

 is measurable and hence so is f.

Given f: X ®  , we define its non-negative part f+: X ® [0, ¥] and its non-positive part f–: X ®
[0, ¥] by

f+ := max{f, 0} = sup{f, 0} and f– := – min{f, 0} = – inf{f, 0}.
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f = f+ – f– and |f| = f+ + f–.

Assuming f is measurable, f+ and – f– are also measurable. Also, since measurability is preserves
under scalar multiplication f– = –(–f–) is measurable. In particular, the equality f = f+ – f– shows
that any measurable function can be expressed as the difference of non-negative measurable
functions.

Theorem 2: Characterization of measurability

A function is measurable if and only if it is the limit of simple functions. Moreover, if the
function is nonnegative, the simple functions can be taken to be a non-decreasing sequence of
non-negative simple functions.

Proof: Consider first the non-negative case. Let f: X ® [0, ¥] be measurable. For each n  ,
consider the simple function that we constructed at the very beginning of this chapter:

sn(x) =

n

n n n

n n n

2 n 2 n 2 n

n n n

1
2

1 1 2
2 2 2

32 2
2 2 2

2 1 2 1 n2
2 2 2
n n

0 if 0 f(x)
if f(x)
if f(x)

if f(x) = 2
2 if f(x) 2 .

- -

 ì
ï

< ï
ï < ï
í
ï
ï < 
ï

>ïî

 

See Figure 28.3 for an example of a function f and pictures of the corresponding s 1, s2, and s3. Note
that sn is a simple function because we can write

sn=
2 n

nk n

2 1 n
A Bn

k 0

k 2 ,
2

-

=

c + cå

where

Ank =
1

n n

k k 1f ,
2 2

- +æ ù
ç úè û

and Bn = f–1(2n, ¥].

At least if we look at Figure 28.3, it is not hard to believe that in general, the sequence {s n} is
always non-decreasing:

0  s1  s2  s3  s4  

and 
n
lim
®¥

sn(x) = f(x) at every point x  X. Because this is so believable looking at Figure, we leave
you the pleasure of verifying these facts.

Now let f: X ®   be any measurable function; we need to show that f is the limit of simple
functions. To prove this, write f = f+ – f– as the difference of its non-negative and non-positive
parts. Since f± are non-negative measurable functions, we know that f+ and f– can be written as
limits of simple functions, say ns+  and ns- , respectively. It follows that

f = f+ – f– = lim( ns+ – ns- )

is also a limit of simple functions.

Figure 28.2: Graphs of a Function f, f+, and f–
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Here, f looks like a “V” and is bounded above by 1. The top figures show partitions of the range
of f into halves, quarters, then eights and the bottom figures show the corresponding simple
functions. It is clear that s1  s2  s3.

Using Theorem 2 on limits of simple functions, it is easy to prove that measurable functions are
closed under all the usual arithmetic operations. Of course, the proofs aren’t particularly difficult
to prove directly.

Theorem 3: If f and g are measurable, then f + g, f  g, 1/f, and |f|p where p > 0, are also measurable,
whenever each expression is defined.

Proof: We need to add the last statement for f + g and 1/f. For 1/f we need f to never vanish and
for f + g we don’t want f(x) + g(x) to give a non-sense statement such as ¥ – ¥ or –¥ + ¥ at any
point x  X.

The proofs that f + g, f g, 1/f, and |f|p are measurable are all the same: we just show that each
combination can be written as a limit of simple functions. By Theorem 2 we can write f = lim sn

and g = lim tn for simple functions sn, tn, n = 1, 2, 3, ... . Therefore,

f + g = lim(sn + tn)

and

f g = lim(sntn ).

Since the sum and product of simple functions are simple, it follows that f + g and f g are limits
of simple functions, so are measurable.

To see that 1/f and |f|p are measurable, write the simple function sn as a finite sum

sn = nknk A
k

a ,cå

where An1, An2,...  S  are finite in number and pairwise disjoint, and an1, an2,...  , which we may
assume are all non-zero. If we define

un = nk

1
nk A

k
a- cå and vn = 

nk

p
nk A

k
a ,cå

which are simple functions, then a short exercise shows that

f–1 = lim un and |f|p = lim vn,

where in the first equality we assume that f is nonvanishing. This shows that f –1 and |f|p are
measurable.

Figure 28.3
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the reciprocal is well-defined, it follows that quotients of measurable functions are measurable,
whenever the denominator is nonvanishing.

28.3 Littlewood’s Third Principle

We finally come to the third of Littlewood’s principles, which is

Every convergent sequence of [real-valued] measurable functions is nearly uniformly
convergent, or, more precisely, in the words of Lebesgue who in 1903 stated this principle as.

Every convergent series of measurable functions is uniformly convergent when certain sets of
measure  are neglected, where  can be as small as desired.

Lebesgue here is introducing the idea which is nowadays called “convergence almost uniformly.”
A sequence {fn} of measurable functions is said to converge almost uniformly (or “a.u.” for short)
to a measurable function f, denoted by

fn ® f a.u.,

if for each  > 0, there exists a measurable set A such that (A) <  and fn ® f uniformly on Ac = X\A.
As a quick review, recall that fn ® f uniformly on Ac means that given any  > 0,

|fn(x) – f(x)| < , for all x  Ac and n sufficiently large.

Note that fn(x) and f(x) are necessarily real-valued (cannot take on ±¥) on Ac. Therefore, Lebesgue
is saying that

Every convergent sequence of real-valued measurable functions is almost uniformly convergent.

The following theorem, although stated by Lebesgue in 1903, is named after Dimitri Fedorovich
Egorov (1869-1931) who proved it in 1911[34].

Theorem 4: Egorov’s Theorem

On a finite measure space, a.e. convergence implies a.u. convergence for real-valued measurable
functions. That is, any sequence of real-valued measurable functions that converges a.e. to a real-
valued measurable function converges a.u. to that function.

Proof: Let f, f1, f2, f3,... be real-valued measurable functions on a measure space X with (X) < ¥,
and assume that f = lim fn a.e, which means there is a measurable set A  X with (X \A) = 0 and
f(x) = 

n
lim
®¥

fn(x) for all x  A. We need to show that fn ® f a.u.

Step 1: Given ,  > 0 we shall prove that there is a measurable set B  X and an N   such that

(3.3) (B) <  and for x  Bc, |f(x) – fn(x)| <  for all n > N.

Indeed, for each m  , put

Bm := n
n m

{x X; f(x) f (x) }
³

 - ³ 

Notice that each Bm is measurable and B1  B2  B3  . Also, since for all x  A, we have fn(x) ®
f(x) as n ® ¥, it follows that if x  A, then |f(x) – fn(x)| <  for all n sufficiently large. Thus, there
is an m such that x  Bm, and so, x  A  x  Bm for some m. Taking contrapositives we see that
x  Bm for all m  x  A, which is to say,

m
m 1

B X \A.
¥

=



Thus,  m 1 m( B )¥

=  (X\A) = 0 and therefore, since X is a finite measure space, by continuity of
measures (from above), we have
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m
lim
®¥

(Bm) = 0.

Choose N such that (BN) <  and let B = BN. Then by definition of BN, one can check that holds.
This concludes Step 1.

Step 2: We now finish the proof. Let  > 0. Then by Step 1, for each k   we can find a measurable
set Ak  X and a corresponding natural number Nk   such that

(Ak) < k2
 and for c

kx A , |f(x) – fn(x)| < 1
k

 for all n > Nk.

Now put A = k 1 kA¥

= . Then (A) <  and we claim that fn ® f uniformly on Ac. Indeed, let  > 0 and
choose k   such that 1/k < . Then

x  Ac = c
j

j 1
A

¥

=

  c
kx A

 |f(x) – fn(x)| < 1
k

 for all n > Nk

 |f(x) – fn(x)| <  for all n > Nk.

Thus, fn ® f a.u.

We remark that one cannot drop the finiteness assumption.

Self Assessment

Fill in the blanks:

1. Let {fn} be a sequence of ........................................... on a measure space (X, S , ). We define
the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations
pointwise to the sequence of extended real numbers {fn(x)} at each point x  X.

2. If the sequence {fn} is ................................, that is, either non-decreasing or non-increasing,
then lim fn is everywhere defined and it is measurable.

3. If f and g are measurable, then .............................., and |f |p where p > 0, are also measurable,
whenever each expression is defined.

4. Every convergent series of measurable functions is ................................... when certain sets
of measure  are neglected, where  can be as small as desired.

28.4 Summary

 For a sequence {an} of extended real numbers, we know, in general, that lim a n does not
exist; for example, it can oscillate. Assuming that the sequence continues the way it looks
like it does, it is clear that although limit lim an does not exist, the sequence does have an
“upper” limiting value, given by the limit of the odd-indexed an’s and a “lower” limiting
value, given by the limit of the even-indexed an’s. Now how do we find the “upper” (also
called “supremum”) and “lower” (also called “infimum”) limits of {a n}? It turns out there
is a very simple way to do so, as we now explain.

 Let {fn} be a sequence of extended-real valued functions on a measure space (X, S , ). We
define the functions sup fn, inf fn, lim sup fn, and lim inf fn, by applying these limit operations
pointwise to the sequence of extended real numbers {fn(x)} at each point x  X. For example,
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is the function defined by

(lim sup fn) (x) : = lim sup(fn(x)) at each x  X.

 If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable. If the limit 
n
lim
®¥

fn(x) exists at each x  X, then the limit function lim fn

is measurable. For instance, if the sequence {fn} is monotone, that is, either non-decreasing
or non-increasing, then lim fn is everywhere defined and it is measurable.

 A function is measurable if and only if it is the limit of simple functions. Moreover, if the
function is non-negative, the simple functions can be taken to be a non-decreasing sequence
of non-negative simple functions.

28.5 Keywords

Limits Preserve Measurability: If {fn} is a sequence of measurable functions, then the functions

sup fn, inf fn, lim sup fn, and lim inf fn

are all measurable.

Characterization of Measurability: A function is measurable if and only if it is the limit of
simple functions. Moreover, if the function is nonnegative, the simple functions can be taken to
be a non-decreasing sequence of nonnegative simple functions.

Uniformly Convergent: Every convergent sequence of real-valued measurable functions is almost
uniformly convergent.

Egorov’s Theorem: On a finite measure space, a.e. convergence implies a.u. convergence for real-
valued measurable functions.

28.6 Review Questions

1. Let A1, A2,... be measurable sets and put

lim sup An := k
n 1 k n

A
¥ ¥

= =

  and lim inf An := k
n 1 k n

A .
¥ ¥

= =

 

Let f  and f  be the characteristic functions of limsup An and liminf An, respectively, and for
each n, let fn be the characteristic function of An. Prove that

f  = lim sup fn and f  = lim inf fn.

(i) First prove the theorem for simple functions. Suggestion: Let f be a simple function
and write f = 

k

N
k=1 k Aa cå  where X = N

k 1 kA ,=  the ak’s are real numbers, and the Ak’s are
pairwise disjoint measurable sets. Given  > 0, there is a closed set Ck  n with
m(Ak\Ck) < /N (why?). Let C = N

k 1 kC .=

(ii) We now prove Luzin’s theorem for non-negative f. For nonnegative f we know that
f = lim fk where each fk, k  , is a simple function. By (i), given  > 0 there is a closed
set Ck such that m(X\Ck) < /2k and fk is continuous on Ck.

Let K1 = k 1 kC .¥

=  Show that m(X\K1) < . Use Egorov’s theorem to show that there
exists a set K2  K1 with m(K1\K2) <  and fk ® f uniformly on K2. Conclude that f is
continuous on K2.
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(iii) Now find a closed set C  K2 such that m(K2\C) < . Show that m(X\C) < 3 and the
restriction of f to C is a continuous function.

(iv) Finally, prove Luzin’s theorem dropping the assumption that f is non-negative.

2. A sequence {fn} of real-valued measurable functions is said to be convergent in measure  if
there is a measurable function f such that for each  > 0,

n
n

({x; f (x) f(x) }) = 0.lim
®¥

 - ³ 

(Does this remind you of the weak law of large numbers?) Prove that if {fn} converges in
measure to a measurable function f, then f is a.e. real-valued, which means {x; f(x) = ±¥} is
measurable with measure zero. If {fn} converges to two functions f and g in measure, prove
that f = g a.e. Suggestion: To see that f = g a.e., prove and then use the “set-theoretic triangle
inequality”: For any real-valued measurable functions f, g, h, we have

{x; |f(x) – g(x)| ³}  { }x ; f(x) – h(x)
2


³   { }x ; h(x) – g(x) .
2


³

3. Here are some relationships between convergence a.e., a.u., and in measure.

(a) (a.u.  in measure) Prove that if fn ® f a.u., then fn ® f in measure.

(b) (a.e.  in measure) From Egorov’s theorem prove that if X has finite measure, then
any sequence {fn} of real-valued measurable functions that converges a.e. to a real-
valued measurable function f also converges to f in measure.

(c) (In measure  a.u. nor a.e.) Let X = [0,1] with Lebesgue measure. Given n  , write
n = 2k + i where k = 0, 1, 2,... and 0  i < 2k, and let fn be the characteristic function of

the interval k k

i i 1, .
2 2

+é ù
ê úë û

 Draw pictures of f1, f2, f3,...,f7. Show that fn ® 0 in measure,

but 
n
lim
®¥

fn(x) does not exist for any x  [0, 1]. Conclude that {fn} does not converge to
f a.u. nor a.e.

4. A sequence {fn} of real-valued, measurable functions is said to be Cauchy in measure if for
any  > 0,

( )n m{x ; f (x) – f (x)  } 0 , ³  ® as n, m ® ¥.

Prove that if fn ® f in measure, then {fn} is Cauchy in measure.

5. In this problem we prove that if a sequence {fn} of real-valued measurable functions is
Cauchy in measure, then there is a subsequence {fnk

 } and a real-valued measurable function
f such that fnk

 ® f a.u. Proceed as follows.

(a) Show that there is an increasing sequence n1 < n2 <  such that

( )n m k

1{x; f (x) – f (x) }) < ,
2

 ³  for all n, m ³ nk.

(b) Let

Am= { }k k +1n n k
k m

1x; f (x) – f (x) .
2

¥

=

³

Show that {fnk
} is a Cauchy sequence of bounded functions on the set c

mA . Deduce that
there is a real-valued measurable function f on A := c

m 1 mA¥

= such that {fnk
 } converges

uniformly to f on each c
mA .

(c) Define f to be zero on Ac. Show that fn ® f a.u.
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1. extended-real valued functions 2. monotone

3. f + g, f  g, 1/f 4. uniformly convergent

28.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol : Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik : Mathematical Analysis.

H.L. Royden : Real Analysis, Ch. 3, 4.
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29.3 Bounded Measurable Functions Vanishing Outside a Set of Finite Measure

29.4 Summary

29.5 Keyword

29.6 Review Questions

29.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Discuss the Lebesgue integral of bounded functions over a set of finite measure

 Explain properties of the Lebesgue integral of bounded functions over a set of finite
measure

 Describe bounded convergence theorem

Introduction

After getting basic knowledge of the Lebesgue measure theory, we now proceed to establish the
Lebesgue integration theory.

In this unit, unless otherwise stated, all sets considered will be assumed to be measurable.

We begin with simple functions.

29.1 Simple Functions Vanishing Outside a Set of Finite Measure

Recall that the characteristic function A for any set A is defined by

A(x) = {1 if x A
0 otherwise

Î

A function  : E  is said to be simple if there exists a1, a2,...., an Î  and E1, E2,...., En  E such

that  = 
i

n
i 1 i Ea=å  . Note that here the Ei’s are implicitly assumed to be measurable, so a simple

function shall always be measurable. We have another characterization of simple functions:

Proposition: A function  : E  is simple if and only if it takes only finitely many distinct
values a1, a2, .... an and –1{ai} is a measurable set for all i = 1, 2,....., n.
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the form

i

n

i E
i 1

a
=

å = 

where the a i’s are all non-zero and distinct, and the E i’s are disjoint. (Simply take Ei’s –1{ai} for
i = 1, 2,...., n where a1, a2,...., an are all the distinct values of .) We say this is the canonical
representation of .

We adopt the following notation:

Notation: A function f : E   is said to vanish outside a set of finite measure if there exists a set
A with m(A) <  such that f vanishes outside A, i.e.

f = 0 on E\A

or equivalently f(x) = 0 for all x Î E\A. We denote the set of all simple functions defined on E
which vanish outside a set of finite measure by S0(E). Note that it forms a vector space.

We are now ready for the definition of the Lebesgue integral of such functions.

Definition: For any Î S0(E) and any A  E, we define the Lebesgue integral of  over A by

n

i iA
i 1

a m(E A)
=

åò  = Ç

where  = 
i

n

i E
i 1

a
=

å  is the canonical representation of . (From now on we shall adopt the

convention that 0   = 0. We need this convention here because it may happen that one a i is 0
while the corresponding EiC\A has infinite measure. Also note that here A is implicitly assumed
to be measurable so m(Ei n A) makes sense. We shall never integrate over non-measurable sets.)

It follows readily from the above definition that

AA Aò ò = 

for any Î S0(E) and for any A  E.

We now establish some major properties of this integral (with monotonicity and linearity being
probably the most important ones). We begin with the following lemma.

Lemma: Suppose  = n
i 1 i Eia=å  Î S0(E) where the Ei’s are disjoint. Then for any A  E,

Aò   = n
i 1 i ia m(E A)=å Ç

holds even if the ai’s are not necessarily distinct.

Proof: If  = n
j 1 i Bjb=å   is the canonical representation of , we have

1. Bj = 
i j

m

i
{i :a b }

E
=



for j = 1, 2,..., m and

2. {1, 2,..., n} = 
m

i j
j 1

{i : a b }
=

= ,

where both unions are disjoint unions. Hence for any A  E, we have
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Aò   =

m

j j
j 1

b m(B A)
=

å Ç (by definition of the integral)

=
i j

m

j i
{i :a b }j 1

b m E A
==

å
æ ö

Çç ÷è ø
 (by (1))

=
i j

m

j i
j 1 {i :a b }

b m(E A)
= =

å å Ç (by finite additivity of m)

 =
i j

m

j i i
j 1 {i :a b }

b a m(E A)
= =

å å Ç

=
n

i i
i 1

a m(E A)
=

å Ç (by (2))

This complete our proof.

29.2 Properties of the Lebesgue Integral

Proposition: (Properties of the Lebesgue integral)

Suppose  +  Î S0(E).  Then for any A E,

(a) A A A( )ò ò ò +  =  +   (Note that  +  ÎS0(E) too be the vector space structure

(b) A Aò òa = a   for all a Î . (Note aÎS0(E) again.)

(c) If a  a.e. on A then A Aò ò   .

(d) If  =   a.e. on A then A Aò ò =  .

(e) If  0 a.e. on A and A 0ò  = , then  = 0 a.e. on A.

(f) A A| |. (Note| | So (E) too.Why?)ò ò    Î

Remark: (a) and (b) are known as the linearity property of the integral, while (c) is known as the
monotonicity property. Furthermore, Lemma is now seen to hold by the linearity of the integral
even without the disjointness assumption on the Ei’s.

Proof:

(a) Let  = n
i 1 i Aia=å   and   = m

j 1 j Bjb=å   be canonical representations of  and   respectively.

Then noting that i i j

m
j 1A A B= Çå =  for all i and j i j

n
i 1B A B= Çå = 

i i j

n n m

i A i A B
i 1 i 1 j 1

a a Ç
= = =

å å å =  = 

j i j

m n m

j B j A B
j 1 i 1 j 1

b b Ç
= = =

å å å =  = 

Consequently

i j

n m

i j A B
i 1 j 1

(a b ) .Ç
= =

å å +  = + 
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n m

i i jA
i 1 j 1

a m(A B A)
= =

å åò  = Ç Ç

n m

i i jA
i 1 j 1

b m(A B A)
= =

å åò  = Ç Ç

and
n m

i j i jA
i 1 j 1

( ) (a b )m(A B A).
= =

å åò  +  = + Ç Ç

Hence A A( )ò ò +  =  + 

(b) If a = 0 the result is trivial; if not, then let  = i

n
i 1 i Aa=å  be the canonical representation of

. We see that a = 
i

n
i 1 i Aa=å a  is the canonical representation of a and hence the result

follows.

(c) Since A A A( )ò ò ò -  =  -   by linearity, it suffices to show A 0ò f   whenever 0 a.e. on

A. This is easy, since if a1, a2, . . ., an are the distinct values of f, then

i i i

1 1
i i i i iA

{i :a 0} {i :a 0} {i :a 0}
a m( {a } A) a m( {a } A) a 0 0- -

<  <

å å åò f f Ç + f Ç   =

where the inequality follows from the fact that m(f–1 {ai Ç A}) = 0 for all ai < 0.

(d) This is immediate from (c).

(e) Since it is given that   0 a.e. on A, it suffices to show m({x : (x) > 0} Ç A) = 0.

Suppose not, then there exists a > 0 such that m({x : (x) = a} Ç A) > 0 so A a mò    ({x : (x)

= a}Ç A) > 0. This leads to a contradiction.

(f) This follows directly from monotonicity since –||    ||.

29.3 Bounded Measurable Functions Vanishing Outside a
Set of Finite Measure

Resembling the construction of the Riemann integral, we define the upper and lower Lebesgue
integrals.

Definition: Let f : E   be a bounded function which vanish outside a set of finite measure. For
any A  C, we define the upper integral and the lower integral of f on A by

{ }
___

A
A

f inf : f on A, So(E)=     Îò ò

A____ A
f sup : f on A, So (E)

ì ü
í ý=    Î
î þ

ò ò

If the two values agree we denote the common value by A fò . (Again the set A is implicitly

assumed to be measurable so that Aò   and Aò   make sense.)

Note that both the infimum and the supremum in the definitions of the upper and lower integrals
exist because f is bounded and vanishes outside a set of finite measure. It is evident that for the
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section. In other words, if Î S0(E) then 
__

A A A__ò ò ò =  =  , where the last integral is as defined in

the last section. It is also clear that 
__

A A__ f fò ò- < = <   whenever they are defined; we investigate
when 

__

A A__ f fò ò= .

Proposition: Let f be as in the above definition. Then 
__

A A__ f fò ò=  for all A  E if and only if f is
measurable.

Proof: () Let f be a bounded measurable function defined on E which vanishes outside F with F

 E and m(F) < . Then for each positive integer n there are simple functions n, n Î S0(E)

vanishing outside F such that n  f  n  and 0  n  – n  1/n E on E (Why?). Hence for any A
 E, we have

0
A A

f fò ò -  (subtraction makes sense since both integrals are finite)

__

n nA A__ò ò  -   (definition of A A
f and fò ò )

= n nA( )ò  - 

= n nA F( )
Çò  -   (n = n = 0 outside F)

n nF( )ò  -   ( n  – n  0 on F and A Ç F  F)

m(F)/n  (1, n  – n 1/n on F)

for all n. Letting n  we have AA
f fò ò= . (m(F) < )

() Suppose A A
f fò ò=   for any A E. Then E E

f fò ò= . Denote the common value by L. Then for

all positive integers n there exists n n,   S0(E) such that n  f  n  on E and L – 1/n 

n nE E L 1/nò ò    + . Let  = supn n and   = infn n . We shall show  =   a.e. on E. (Then the

desired conclusion follows since then  < f <   on E implies that  = f =   a.e. on E and hence

f is measurable.) To show that  =  a.e. on E, let  = {x Î E : (x)   (x)} and i = {x Î E :  (x)

– (x) > 1/i}. Then  = i 1 i

=  . We wish to show m() = 0, which will be true if we can show m(i)

= 0 for all i. Now for any i and n, since n  – n    –  > 1/i on i, we have

i
1 m( )
i

  =
i

1
iò  (by definition of the integral)


i n n( )

ò  - 

 n nE( )ò  -   ( n  – n  0 on E and i  E)

 n nE Eò ò - 

 2/n

Letting n  we have m(i) = 0 for all i, completing our proof.



346 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes Notation: We shall denote the set of all (real-valued) bounded measurable functions defined on
E which vanishes outside a set of finite measure by B0(E).

So from now on for f Î B0(E), we have

{ } { }A A Af inf : f So (E) sup : f So (E)ò ò ò=    Î =   Î

for any A  E.

Note also that B0(E) is a vector lattice, by which we mean it is a vector space partially ordered by
 (such that f  g if and only if f(x)  g(x) for all x Î E) and every two elements of it (say f, g Î B0(E))
have a least upper bound in it (namely f V g Î B0(E)). (Why is it a least upper bound?)

We have the following nice proposition concerning the relationship between the Riemann and
the Lebsegue integrals.

Proposition: If f : [a, b]  is Riemann integrable on the closed and bounded interval [a, b], then
f Î B0([a, b]) and

(3) () b
a [a, b]f ( ) f,ò ò= 

where the () and () represents Riemann integral and Lebesgue integral respectively.

Proof: Since step functions defined on closed and bounded interval [a, b] are simple and have the
same Lebesgue and Riemann integral over [a, b] (why?), we see from the definitions

() = { }
b

b
aa

f sup : f step on [a, b]ò ò=  

() = { }[a , b][a , b]
f sup : f simple on [a, b]ò ò=   

() = { }[a , b][a , b]f inf : f simple on [a, b]ò ò=   

() = { }
b b

aa f inf : f step on [a, b]ò ò=   

that

(4) () =
bb

[a, b] aa [a, b]
f ( ) f ( ) f ( ) fò ò ò ò    

whenever the four quantities exist. Now if f is Riemann integrable over [a, b], then f is bounded
on [a,b].  Since [a,b] is of finite measure, we see that all four quantities in (4) exist. In that case

bb
aa

( ) f ( ) fò ò=   as well so all four quantities in (4) are equal, which implies that f is measurable

(so f Î B0([a, b])) and (3) holds.

Proposition: Properties of the Lebesgue integral

Suppose f, g Î B0(E). Then f + g, af, |f|Î B0(E), and for any A  E, we have

(a) A A A(f g) f gò ò ò+ = +

(b) A Af f for allò òa = a aÎ .

(c) AA Ef fò ò= 

(d) If B  A then B A\Bf fò ò+ .

(e) If B  A and B Af fò ò
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(g) If f = g a.e. on A then A Af gò ò= .

(h) If f  0 a.e. on A and A f 0ò = , then f = 0 a.e. on A.

(i) A Af fò ò .

Proof: We prove only (h); the others are easy and left as an exercise.

(h) For each positive integer n let An = {x Î A : f(x)  1/n }. Then

0 = A Anf fò ò (by (e))

  An
1
nò (by (f))

= n
1 m(A )
n

 (by (by definition of the integral)

  0

so m(An) = 0. Since this holds for all n, we see from f–1 (0, ) Ç A = n 1 nA
= that 0  m(f–1 (0, ) Ç

A)  n 1 nm(A )
=å = 0.  So m(f–1 (0, ) ÇA) = 0. Together with f a.e. on A.

Theorem: Bounded Convergence Theorem

Suppose m(E) < , and {fn} is a sequence of measurable functions defined and uniformly bounded
on E by some constant M > 0, i.e.

|fn|  M for all n on E.

If {fn} converges to a function f (pointwisely) a.e. on E, then f is also bounded measurable on E,

n
lim
 nE fò  exists (in ) and is given by

(5) nE En
lim f f


ò ò=

Proof: Under the given assumptions it is clear that f, being the pointwise limit of {fn} a.e. on E, is
bounded (by M) and measurable on E. We wish to show nEn

lim f


ò exists and (5) holds. The result

is trivial if m(E) = 0. So assume m(E) > 0 and let  > 0 be given. Then for each natural number i let

Ei = {x Î, E : |fj(x) – f(x)| /2m(E) for some j  i}.

Then {Ei} is a decreasing sequence of sets with m(E1)  m(E) < . So

m(Ei) m i
i 1

E


=

æ ö
ç ÷è ø
  = 0,

the last equality follows from the fact that

m i
i 1

E


=

æ ö
ç ÷è ø
   m ({x Î E : fn(x) /  f(x)}) = 0

Choose N large enough such that m(EN) < /4M and let A = EN. Then |fn – f| < /2m(E) everywhere
on E\A for all n  N, and hence whenever n  N we have

nE E E nf f fò ò ò ò-  -  (by linearity and (i))
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 E\A E\A 2M
2m(E)ò ò


+  (by our choice of N and that n  N)

=
m(E \A) 2Mm(A)
2m(E)


+

 2M
2 4M
 
+

= .

Hence nEn
lim f


ò  exists (in ) and (5) holds.

(Alternatively when  > 0 is given, by Littlewood’s 3rd Principle we can choose a subset A of E
with m(A) < /4M such that {fn} converges uniformly to f on E\A. Then choose N large enough
such that |fn – f| < /2m(E) everywhere on E\A for all n  N, we see that whenever n  N, we
have (as in the above)

nE Ef fò ò-  < .

Hence nEn
lim f


ò exists (in ) and (5) holds.)

Notes  The first argument is just an adaptation of the proof of Littlewood’s 3rd Principal to
the present situation.

Self Assessment

Fill in the blanks:

1. A function  : E  is simple if and only if it takes only finitely many distinct values a 1,
a2,.... an and –1{ai} is a ......................... for all i = 1, 2,....., n.

2. A function f : E   is said to vanish outside a set of ......................... if there exists a set A
with m(A) <  such that f vanishes outside A, i.e.

f = 0 on E\A

3. Let f be as in the above definition. Then 
__

A A__ f fò ò=  for all A  E if and only if f is .......................

4. If f : [a, b]  is ......................................... on the closed and bounded interval [a, b], then

f Î B0([a, b]) and () b
a [a, b]f ( ) f,ò ò=   where the () and () represents Riemann integral and

Lebesgue integral respectively.

5. Suppose m(E) < , and {fn} is a sequence of measurable functions defined and uniformly
bounded on E by some constant M > 0, i.e. ..................... for all n on E.

29.4 Summary

 Recall that the characteristic function A for any set A is defined by

A(x) = {1 if x A
0 otherwise

Î
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Notes A function  : E  is said to be simple if there exists a1, a2,...., an Î  and E1, E2,...., En  E

such that  = 
i

n
i 1 i Ea=å  . Note that here the Ei’s are implicitly assumed to be measurable, so

a simple function shall always be measurable. We have another characterization of simple
functions:

 A function  : E  is simple if and only if it takes only finitely many distinct values a 1,
a2, .... an and –1{ai} is a measurable set for all i = 1, 2,....., n.

(a) A A A( )ò ò ò +  =  +   (Note that  +  ÎS0(E) too by the vector space structure

(b) A Aò òa = a   for all a Î . (Note aÎS0(E) again.)

(c) If a  a.e. on A then A Aò ò   .

(d) If  =   a.e. on A then A Aò ò =  .

(e) If  0 a.e. on A and A 0ò  = , then  = 0 a.e. on A.

(f) A A| |. (Note| | So (E) too.Why?)ò ò    Î

 Bounded Convergence Theorem Suppose m(E) < , and {fn} is a sequence of measurable
functions defined and uniformly bounded on E by some constant M > 0, i.e.

|fn|  M for all n on E.

29.5 Keyword

Bounded Convergence Theorem: Suppose m(E) < , and {fn} is a sequence of measurable functions
defined and uniformly bounded on E by some constant M > 0, i.e.

|fn|  M for all n on E.

29.6 Review Questions

1. Show that if A, B  E, A Ç B = 0/  and  Î S0(E), then A B A BÈò ò ò =  +  .

2. Show that if Î S0(E) vanishes outside F, then A A FÇò ò =   for any A E.

3. Show that if A  B  E and 0 Î S0(E), then A Bò ò   .

4. Find an example to show that the assumption m(E) <  cannot be dropped in the Bounded
Convergence Theorem.

5. Prove or disprove the following: Let E be of finite or infinite measure. If {fn} is a sequence
of uniformly bounded measurable functions on E which vanishes outside a set of finite
measure and converges pointwisely to f Î B0(E) a.e. on E, then nE En

lim f f


ò ò= . (Compare

with the statement of the Bounded Convergence Theorem.)

Answers: Self Assessment

1. measurable set 2. finite measurable

3. measurable 4. Riemann integrable

5. |fn|  M
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(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss Riemann's and Lebesgue

 Explain the small subsets of R

 Discuss the functions outside small set

Introduction

In last unit you have studied about the Lebesgue integral of bounded functions. In this unit we
are going to study about the definition and the difference of Riemann's and Lebesgue.

30.1 Riemann vs. Lebesgue

Measure theory helps us to assign numbers to certain sets and functions to a measurable set we
may assign its measure, and to an integrable function we may assign the value of its integral.
Lebesgue integration theory is a generalization and completion of Riemann integration theory.
In Lebesgue’s theory, we can assign numbers to more sets and more functions than what is
possible in Riemann’s theory. If we are asked to distinguish between Riemann integration
theory and Lebesgue integration theory by pointing out an essential feature, the answer is
perhaps the following.

Riemann integration theory  finiteness.

Lebesgue integration theory  countable infiniteness.

Riemann integration theory is developed through approximations of a finite nature (e.g.: one
tries to approximate the area of a bounded subset of 2 by the sum of the areas of finitely many
rectangles), and this theory works well with respect to finite operations – if we can assign numbers
to finitely many sets A1,…, An and finitely many functions f1,…,fn, then we can assign numbers
to A1An, f1 ++ fn, max{f1,…, fn}, etc. The disadvantage of Riemann integration theory is
that it does not behave well with respect to operations of a countably infinite nature - there may
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Notes not be any consistent way to assign numbers to n 1 nA ,¥

=  n 1 nf ,¥

=å limn ¥
 fn, sup{fn : n  }, etc.

even if we can assign numbers to the sets A1, A2,…, and functions f1, f2…. Lebesgue integration
theory rectifies this disadvantage to a large extent.

In Riemann integration theory, we proceed by considering a partition of the domain of a function,
where as in Lebesgue integration theory, we proceed by considering a partition of the range of
the function – this is observed as another difference. Moreover, while Riemann’s theory is
restricted to the Euclidean space, the ideas involved in Lebesgue’s theory are applicable to more
general spaces, yielding an abstract measure theory. This abstract measure theory intersects
with many branches of mathematics and is very useful. There is even a philosophy that measures
are easier to deal with than sets.

30.2 Small Subsets of d

It is possible to think about many mathematical notions expressing in some sense the idea that
a subset Y  d is a small set (or a big set) with respect to d. We will discuss this a little as a
warm-up. We will also use this opportunity to introduce Lebesgue outer measure.

Suppose you have a certain notion of smallness or bigness for a subset of d. Then there are some
natural questions. Two sample questions are:

1. If Y  d is big, is d\Y small?

2. If Y1, Y2,…  d are small, is n 1 nY¥

=  small?

For instance, consider the following two elementary notions. Saying that Y  d is unbounded
is one way of saying Y is big, and saying that Y  d is a finite set is one way of saying Y is small.
Note that the complement of an unbounded set can also be unbounded and a countable union of
finite sets need not be finite. So here we have negative answers to the above two questions.

Task Find an uncountable collection {Y

:   I} of subsets of  such that Y


’s are pairwise

disjoint, and each Y

 is bounded neither above nor below.

To discuss some other notions of smallness, we introduce a few definitions.

Definitions:

(i) We say Y  d is a discrete subset of d if for each y  Y, there is an open set U  d such
that U  Y = {y}. For example, {1/n: n  } is a discrete subset of .

(ii) A subset Y  d is nowhere dense in d if int[ Y ] = Ø, or equivalently if for any non-empty
open set U  d, there is a nonempty open set V  U such that V  Y = 0. For example, if
f:    is a continuous map, then its graph G(f) := {(x, f(x)):x  } is nowhere dense in 2

( G(f) is closed and does not contain any open disc).

(iii) A subset Y  d is of first category in d if Y can be written as a countable union of
nowhere dense subsets of d; otherwise, Y is said to be of second category in d. For
example, Y =    is of first category in 2 since Y can be written as the countable union
Y = r rY ,   where Yr := {r}   is nowhere dense in 2.

(iv) (The following definition can be extended by considering ordinal numbers, but we consider
only non-negative integers). For Y  d and integer n  0, define the nth derived set of Y
inductively as Y(0) = Y, Y(n+1) = {limit points of Y(n) in d}. We say Y  d has derived length
n if Y(n)  Ø and Y(n+1)  Ø; and we say Y has infinite derived length if Y (n)  Ø for every
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Notesinteger n  0. For example,  has infinite derived length (since   = ), and {(1/m,1/n):
m,n  } has derived length 2.

(v) We say A  d is a d-box if A = d
j 1 jI ,=p  where Ij’s are bounded intervals. The d-dimensional

volume of a d-box A is Vold(A) = d
j 1 jI .=p  For example, Vol3([1, 4)  [0,1/2]  (–1,3]) = 6.

(vi) The d-dimensional Jordan outer content *
j ,dm [Y] of a bounded subset Y  d is defined as

*
j ,dm [Y] = k

n 1{ =å infVold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=

(vii) The d-dimensional Lebesgue outer measure *
L,dm [Y] of an arbitrary set Y  d is defined as

*
L,dm [Y] = inf n 1{ ¥

=å  Vold(An) : An’s are d-boxes with Y  n 1 nA }.¥

=

We have that *
L,dm [Y]  *

J ,dm [Y] for any bounded set Y  d, and *
L,dm [A] = *

J ,dm [A] = Vold(A) for
any d-box A  d.

Proof: Any finite union k
n 1 nA= of d-boxes can be extended to an infinite union n 1 nA¥

= of d-boxes
without changing the total volume by taking An’s to be singletons for n > k. This observation
yields that *

L,dm [Y]  *
J ,dm [Y]. It is easy to see *

J ,dm [A] = Vold(A) if A is a d-box. It remains to
show *

L,dm [A]  Vold(A) when A is a d-box. First suppose A is closed. Then A is compact by
Heine-Borel. Let  > 0 and let A1,A2,…  d be d-boxes such that A  n 1 nA¥

= and n 1
¥

=å  Vold(An)
< *

L,dm [A] + . For each n  , let Bn be an open d-box with An  Bn and Vold(Bn) < Vold(An) + /2n.
Then {Bn: n  } is an open cover for the compact set A. Extracting a finite subcover, we have
Vold(A)  k

n 1=å Vold(Bn)  n 1
¥

=å (Vold(An) + /2n) < *
L,dm [A] + 2. Thus *

L,dm [A] = Vold(A) for closed
d-boxes. Now if B is an arbitrary d-box and  > 0, then there is a closed d-box A  B with Vold(B)
–  < Vold(A) = *

L,dm [A]  *
L,dm [B].

Other basic properties of Lebesgue outer measure and Jordan outer content are given below.

(i) *
L,dm [Ø] = 0.

(ii) [Monotonicity] *
L,dm [X]  *

L,dm [Y] if X  Y  d.

(iii) [Translation-invariance] *
L,dm [Y + x] = *

L,dm [Y] for every Y  d and every x  d.

(iv) [Countable subadditivity] If Y1,Y2,… d and Y = n 1
¥

= Yn, then *
L,dm [Y]  n 1

¥

=å
*
L,dm [Yn].

(v) *
L,dm [Y] = 0 for every countable set Y  d.

(vi) Forany Y  d, we have *
L,dm [Y]

= n 1{ ¥

=å infVold(An) : An’s are closed d-boxes with Y  n 1
¥

= An}

= n 1{ ¥

=å infVold(An) : An’s are open d-boxes with Y  n 1
¥

= An}.

(vii) For any Y  d, we have *
L,dm [Y] = *

L,dm inf{[U] : Y  U and U is open in d}.

(viii) *
L,dm [d] = ¥.

(ix) If X,Y  d are such that dist(X,Y) := inf{||x – y|| : x  X, y  Y} > 0, then *
L,dm [X  Y] =

*
L,dm [X] + *

L,dm [Y].

Proof: (i), (ii) and (iii) are clear. To prove (iv), without loss of generality we may assume
n 1
¥

=å
*
L,dm [Yn] < ¥. Given  > 0, there exist d-boxes A(n,k) such that Yn  k 1

¥

=  A(n,k) and
k 1
¥

=å Vold(A(n,k)) < *
L,dm [Yn] +/2n. Then Y  n 1

¥

= k 1
¥

=  A(n,k) and we have the estimate
n 1
¥

=å k 1
¥

=å Vold(A(n,k))  n 1
¥

=å ( *
L,dm [Yn] + /2n) = ( k 1

¥

=å
*
L,dm [Yn]) + .

Now (v) follows from (iv) since singletons have Lebesgue outer measure zero (or we can see it
directly by noting that singletons are d-boxes with zero volume). The first part of (vi) is clear
since any d-box and its closure have equal volume. To get the second part, note that if A1,A2,…
are d-boxes and  > 0, there exist open d-boxes B1,B2,… such that An  Bn and Vold(Bn) < Vold(An)
+ /2n. We may deduce (vii) using part (vi).
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L,dm [X  Y]  *

L,dm [X] + *
L,dm [Y]. To

prove the other inequality, we may assume *
L,dm [X  Y] < ¥. Let  = dist(X,Y). Given  > 0, find

d-boxes A1,A2,… such that X  Y  n 1
¥

= An and n 1
¥

=å Vold(An) < *
L,dm [X  Y] + . By partitioning

the d-boxes into smaller d-boxes and throwing away the unnecessary ones, we may assume that
diam[An] <  and (X  Y)  An  Ø for every n  . Let = {n  : X  An  Ø} and  = {n  :
Y  An  Ø}. Then  =    is a disjoint union, X  n An, and Y  n An. Hence *

L,dm [X] +
*
L,dm [Y]  nå Vold(An) + nå Vold(An) = n 1

¥

=å Vold(An) < *
L,dm [X  Y] + .

(i) *
J ,dm [Ø] = 0.

(ii) [Monotonicity] *
J ,dm [X]  *

L,dm [Y] if X  Y are bounded subsets of d.

(iii) [Translation-invariance] *
L,dm [ Y + x] = *

L,dm [Y] for every bounded set Y  d and every
x  d.

(iv) [Finite subadditivity] If X,Y  d are bounded subsets, then *
J ,dm [X  Y]  *

J ,dm [X] + *
J ,dm [Y].

(v) *
J ,dm [Y] = 0 for every finite set Y  d.

(vi) For any bounded set Y  d, we have *
J ,dm [Y]

= inf k
n 1{ =å Vold(An) : k  , and An’s are closed d-boxes with Y  k

n 1= An}

= inf k
n 1{ =å Vold(An) : k  N, and An’s are open d-boxes with Y  k

n 1= An}

= inf k
n 1{ =å Vold(An) : k  N, and An’s are pairwise disjoint d-boxes with Y  k

n 1= An}.

(vii) If X,Y  d are bounded sets with dist(X,Y) := inf{||x – y||: x  X, y  Y} > 0, then *
J ,dm [X  Y]

= *
J ,dm [X] + *

J ,dm [Y].

(viii) For any bounded set Y  d, we have *
J ,dm [ Y ] = *

J ,dm [Y].

Proof: To prove (viii), use the first expression for *
J ,dm [Y] in (vi) and note that a finite union of

closed sets is closed.

Example: Let Y = d  [0, 1]d. Note that *
L,dm [Y] = 0  1 = *

L,dm [ Y ]. But we have *
J ,dm [Y] =

*
J ,dm [ Y ] = 1. So the Jordan outer content of a bounded countable set need, not be zero. This

example also shows that *
L,dm [Y] < *

J ,dm [Y] is possible for a bounded set, and that the Jordan outer
content does not satisfy countable subadditivity for bounded sets (since the Jordan outer content
of a singleton is zero). If X = [0, 1]d\Y, then *

J ,dm [X] = 1 since X  = [0, 1]d and hence *
J ,dm [X] + *

J ,dm [Y]
= 2  1 = *

J ,dm [X  Y].

Some ways of saying that Y  d is a small set:

(i) Y is a countable set.

(ii) Y is a discrete subset of d.

(iii) Y is contained in a vector subspace of d of dimension  d – 1.

(iv) Y is nowhere dense in d.

(v) Y is of first category in d.

(vi) Y has finite derived length.

(vii) Y is a bounded set with *
J ,dm [Y] = 0.

(viii) *
L,dm [Y] = 0.

It is good to investigate various possible implications between pairs of notions given above.



LOVELY PROFESSIONAL UNIVERSITY 355

Unit 30: Riemann's and Lebesgue

Notes

Task If Y is a discrete subset of d, then Y is countable. [Hint: Let  = {B(x, 1/n): x  d,
n  }. Then,  is countable and for each y  Y, there is B   such that B  Y = {y}.]

Let K  [0,1] be the middle-third Cantor set. Then, K is an uncountable, nowhere dense compact
set with µJ,1[K] = *

L,1m [K] = 0. Moreover, K has no isolated points.

Proof: We recall the construction of K. Let K0 = [0,1], K1 = [0,1/3]  [2/3,1], K2 = [0,1/9]  [2/9,1/3]
 [2/3, 7/9]  [8/9,1], and so on. That is, Kn is the disjoint union of 2n closed subintervals of [0,1],
each having length 1/3n, and Kn+1 is obtained from Kn by removing the middle-third open
intervals from each of these 2n closed intervals. The middle-third Cantor set K is defined as
K = n 0

¥

= Kn. Being the intersection of compact sets, K is compact. Since the maximal length of an
interval contained in Kn is (1/3)n, K does not contain any open interval, and hence K is nowhere
dense. Also, since K  Kn, the above description yields *

J ,1m [K]  (2/3)n. So *
J ,1m [K] = 0 and hence

*
L,1m [K] = 0 also.

It may be verified that K = n 1{ ¥

=å xn/3n : xn  {0, 2}}. That is, K is precisely the set of those x  [0,1]
whose ternary expansion (i.e., base 3 expansion) x = 0.x 1x2 … contains only 0’s and 2’s. Hence K
is bijective with {0, 2} which is uncountable.

We show K has no isolated point. Let x  K and let U be a neighborhood of x. Choose n large
enough so that one of the 2n closed intervals constituting Kn, say Jn, satisfies x  Jn  U. Let y  Jn\{x}
be an end point of Jn. This end point is never removed in the later construction, so y  Km for
every m  n. Thus y  K  (U\{x}).

Notes It may be noted that for x  K, the base 3 expansion x = 0.x1x2 … is eventually
constant iff x is an end point of a removed open interval. This helps to see that K contains
points other than the end points of the (countably many) removed open intervals.

The following theorem is relevant while considering big and small sets in a topological sense.

Task If Y is contained in a vector subspace W of d with dim(W)  d – 1, then Y is a
nowhere dense subset of d. [Hint: W is closed in d ( fix a basis for W and argue with the
coefficients of each basis vector separately) and W does not contain any open ball of d.]

Baire Category Theorem: Let (X, ) be a complete metric space and let Un  X be open and dense
in X for n  . Then, n 1

¥

= Un is also dense in X. In particular, n 1
¥

= Un  Ø.

Proof: Let V  X be a nonempty open set. It suffices to show V  ( n 1
¥

= Un)  Ø. Since U1 is open
and dense, U1  V is a nonempty open set. Let B1 be an open ball in X such that 1B   U1  V and
diam[ B1] < 1. Since U2 is open and dense, B1  U2 = Ø. Let B2  X be an open ball with 2B  B1  U2

and diam[B2] < 1/2. In general, let Bn+1  X be an open ball with n 1B +  Bn  Un+1 and diam[Bn+1]
< 1/(n +1). If xn is the center of the ball Bn, then we note that for every n, m  k we have xn,xm  Bk

and hence  (xn,xm)  diam[Bk] < 1/k. So (xn) is a Cauchy sequence. Since (X, ) is complete, there
is x  X such that (xn)  x. Now, for any n, we have xm  nB  for m  n and hence x  nB . Thus
x  n 1

¥

= nB  V  ( n 1
¥

= Un).
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Notes (i) By considering the complements of Un’s in the above, we get the following
conclusion: if (X,) is a complete metric space, then X cannot be written as a countable
union of nowhere dense (closed) subsets of X. That is, X is of second category in itself.
(ii) Since d is a complete metric space with respect to the Euclidean metric, d cannot be
written as a countable union of nowhere dense (closed) subsets of d. (iii) From a topological
point of view, a first category subset is considered as a small set and a dense G


 subset is

considered as a big set because of Baire Category Theorem. However, a set that is
topologically big (small) need not be measure theoretically big (small). (iv) The
uncountability of the middle-third Cantor set can be proved with the help of Baire Category
Theorem also.

We observe in the following the distinction between topological bigness (smallness) and measure
theoretical bigness (smallness).

Task For any Y  d, the set Y\Y(1) is discrete and hence countable. In particular, every
uncountable subset of d has a limit point in d. [Hint: Let y  Y\Y(1). If B(y, 1/n)  Y
contains a point other than y for every n  , then y  Y(1), a contradiction.]

(i) For every  > 0, there is a dense open set U  d such that *
L,dm [U] < .

(ii) There is a dense G

 subset Y  d with *

L,dm [Y] = 0.

(iii) There is an F

 set X  d of first category with *

L,dm [X] = ¥ and *
L,dm [d\X] = 0.

(iv) For every closed d-box A and every  > 0, there is anywhere dense compact set K  d such
that K  A and *

L,dm [K] > Vold(A) – .

Proof: (i) Write d = {x1,x2,…}. For each n  , let An be an open d-box with xn  An and Vold(An)
< /2n. Put U = n 1

¥

= An.

(ii) Let Un  d be a dense open subset with *
L,dm [Un] < 1/n and put Y = n 1

¥

= Un.

(iii) Let Y be as in (ii) and take X = d\Y.

(iv) LetUbeasin(i)andletK = A\U.

The next result shows that the Lebesgue outer measure does not satisfy finite additivity (and
hence it does not satisfy countable additivity), even though it satisfies countable subadditivity.

Let X = d  [0, 1]d. Then, there is a subset Y  [0, 1]d satisfying the following:

(i) The translations Y + x are pairwise disjoint for x  X.

(ii) There exist finitely many distinct elements x1,…,xn  X such that *
L,dm [ n

i 1= (Y + xi)] 
n
i 1=å

*
L,dm [Y + xi].

Proof: Define an equivalence relation on [0, 1]d by the condition that a ~ b iff a – b  d. By the
axiom of choice, we can form a set Y  [0, 1]d whose intersection with each equivalence class is
a singleton.

(i) We verify that (Y + r)  (Y + s) = Ø for any two distinct r, s  X. If (Y + r)  (Y + s) = Ø for
r, s  X, then there are a, b  Y such that a + r = b + s. Now we have a – b = s – r  d, and
hence a ~ b. So we must have a = b by the definition of Y, and then necessarily r = s.
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Notes(ii) If z  d, there is r  d such that z – r  [0, 1]d. Then there is y  Y such that y ~ z  – r and
so there is r  d such that y + r = z – r or z = y + r + r. This shows that d = dr  (Y + r).
By [102](iii) and [102](viii), we conclude that *

L,dm [Y] > 0. Let  = *
L,dm [Y] and n   be such

that n > 2d. Choose distinct elements x1,…,xn  X. Then n
i 1=å

*
L,dm [Y + xi] = n > 2d again by

translation invariance. On the other hand, Y + X  [0,2]d and therefore *
L,dm [ n

i 1= (Y+xi)] < 2d.

Note The construction above is due to Vitali, and hence the set Y is called a Vitali set.

30.3 About Functions Behaving Nicely Outside a Small Set

There are a few classical results in Analysis with conclusion of the following form: “… the
function has nice behavior outside a small set”. We will consider some such results here.

We know that a function that is the pointwise limit of a sequence of continuous functions may
not be continuous. For instance, f : [0, 1]   given by f(1) = 1 and f(x) = 0 for x < 1 is the pointwise
limit of (fn), where fn : [0, 1]   is fn(x) = xn.

Definition: Let X, Y be metric spaces and let f: X  Y be a function. Then the oscillation (f, x) of
f at a point x  X is defined as (f, x) = lim

0+ diam[f(B(x, ))]. Clearly, f is continuous at x iff 
(f, x) = 0.

Task Let X,Y be metric spaces and let f: X  Y be a function. Then the set {x  X: f is
continuous at x} is a G


 subset of X. [Hint: The given set is equal to n 1

¥

= Un, where Un = {x  X:
(f, x) < 1/n}, and Un is open.]

Let (X, 1) be a complete metric space, (Y, 2) be an arbitrary metric space, and let (fn) be a
sequence of continuous functions from X to Y, converging pointwise to a function f: X  Y. Then
the set {x  X : f is continuous at x} is a dense G


 subset of X.

Proof: Let  > 0 and D

 = {x  X : (f, x) > }. We know that D

 is a closed set. We claim that D

 is

nowhere dense in X. Let U  X be a nonempty open set. We have to find a nonempty open set V
 U such that D


  V = Ø.

For n  , let Kn = {x  X: 2(fn(x), fj(x))  /8 for every j  n}. Then Kn is a closed set and X = n 1
¥

= Kn.
The continuity of the distance function 2 implies that 2(fn(x), f(x))  /8 for every x  Kn. Let
U1  X be a nonempty open set with 1U  U. Since ( 1U , 1) is a complete metric space, there is
n  N such that U2 := int[Kn  1U ]  Ø. Let b  U2 and V  U2 be an open set with diam[fn(V)]
 /8. For any x, y  V, we have 2(f (x), f(y))  2(f(x), fn (x)) + 2(fn(x), fn(b)) + 2(fn(b), fn(y)) +
2(fn(y), f(y))  /8 + /8 + /8 + /8 = /2. Hence diam[f(V)]  /2 and therefore (f, x)  /2 for
every x  V. This shows D


 V = Ø, proving our claim.

The claim implies that D : = n 1
¥

= D1/n is an F

 set of first category in X. This completes the proof

since {x  X : f is continuous at x} = X\D, and X is a complete metric space.

We know that the derivative of a differentiable real function need not be continuous. However,
we can say the following.

Let f :    be differentiable. Then there exists a sequence (gn) of continuous functions from
 to  converging to f’ pointwise. Consequently, {x  : f is continuous at x} is a dense G


 subset

of .
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Now we will show that a monotone real function (increasing or decreasing) is continuous and
differentiable at most of the points.

Let –¥  a < b  ¥ and let f: (a, b)   be a monotone function. Then, Y = {x  (a, b) : f is
discontinuous at x} is a countable set (possibly empty).

Proof: Suppose f is increasing. If x  Y, then necessarily f(x–) < f(x+), and we may choose a rational
number between f(x–) and f(x+). This gives a one-one map from Y to Q.

Definition: A collection  of non-degenerate intervals is a Vitali cover for a set X   if for each
 > 0, the subcollection {I  : 0 < |I| < } is also a cover for X.

[Vitali’s covering lemma] Let X   be such that *
L,1m [X] < ¥ and let  be a collection of intervals

forming a Vitali cover for X. Then,

(i) There are countably many pairwise disjoint intervals I1, I2,…   such that *
L,1m [X\UnIn] = 0.

(ii) For every  > 0, there exist finitely many pairwise disjoint intervals I1,…,Ik   with the
property that *

L,1m [X\ k
n 1= In] < .

Proof: Write µ* = *
L,1m for simplicity.

(i) With out loss of generality assume that every I   is a (non-degenerate) closed interval.
Choose an open set U   such that X  U and µ*[U] < ¥. Every x  X has a neighbourhood
contained in U. Hence  = {I  : I  U} is also a vitali cover for X. We will choose the
intervals In inductively. Let 0 = sup{|J|: J  } (note that 0 < µ*[U] < ¥) and let I1   be
any interval with |I1| > 0/2. Suppose that we have chosen pairwise disjoint intervals
I1,…,In  . If X  n

i 1= Ii, then we are done. Else, any x  X\ n
i 1= Ii is at a positive distance

from the closed set n
i 1= Ii. Let n = sup{| J|: J   and Ii  J = Ø for 1  i  n}. Then 0 < n 

µ*[U] < ¥. Let In + 1   be an interval with |In+1| > n/2. We will show that the sequence (In)
does the job.

Observation: For every J  , there is n   such that In  J  Ø (|In|  µ*[U] < ¥ so that
(|In|)  0, and hence there is n   such that |In| < | J|/2).

Let Y = X\ n 1
¥

= In and  > 0. We claim that µ*[Y] < . Let cn be the midpoint of In and let Yn   be
the closed interval with midpoint cn and |Yn| = 6|In| (this Yn may not be in ). Let k   be so
that n k 1

¥

= +å |In| < /6. If x  Y, then in particular x does not belong to the closed set k
n 1= In.

Choose J   with x  J and In  J = Ø for 1  n  k. By our observation above, Im  J  Ø for some
m  k + 1. Let m be the smallest such number. Then |J|  m–1 < 2|Im| and hence |x – cm|  |J| +
|Im|  3|Im|. Therefore, x  Ym. We have shown that Y  n k 1

¥

= + Yn. Since n k 1
¥

= +å |Yn|  6 n k 1
¥

= +å

|In| < , we have proved that µ*[Y] < .

Now, note that the argument given above actually shows that for every  > 0, there is k   such
that µ* [X\ k

n 1= In] < . Hence we have established (ii) also.

When a mathematical problem is difficult, it is a good idea to divide the problem into many
subcases and to treat each case separately. If f : (a, b)   is a function, then the four Dini
derivatives of f at a point x  (a, b) are defined as follows.

D+f(x) =
h 0

lim sup f(x h) f(x)
h +

+ - [upper right derivative]

D+f(x) =
h 0

lim inf
f(x h) f(x)

h +

+ - [lower right derivative]
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D–f(x) =

h 0

f(x h) f(x)limsup
h -

+ - [upper left derivative]

D–f(x) =
h 0

f(x h) f(x)
lim inf

h -

+ - [lower left derivative].

Note Here, 
h 0

f(x h) f(x)limsup
h +

+ - := 
y 0 0 h y

f(x h) f(x)suplim
h + < <

é ù+ -
ê ú
ë û

, and similarly the others.

Example: Let f: (–1,1)   be f(0) = 0 and f(x) = x sin(1/x) for x = 0. Then, D+f(0) = 1 = D–f(0)
and D+f(0) = –1 = D–f(0) so that f is not differentiable at 0.

Notes That f is differentiable at x iff all the four Dini derivatives are equal and real
(i.e., different from ±¥). Since D+f(x)  D+f(x) and D-f(x) < D-f(x) by definition, we also see
that f is differentiable at x iff the four Dini derivatives are real numbers satisfying D +f(x) 
D-f(x) and D-f(x) ¥ D+f(x).

[Lebesgue’s differentiation theorem] Let –¥  a < b  ¥, let f : (a, b)   be a monotone function
and let Y = {x  (a, b) : f is not differentiable at x}. Then *

L,1m [Y] = 0.

Proof: Since (a, b) can be written as a countable union of bounded open intervals, we may as well
assume (a, b) itself is bounded. Assume f is increasing and write µ*= *

L,1m . By the remark above,
Y = Y1  Y2, where Y1 = {x  (a, b) : D– + f(x) < D+f(x)} and Y2 = {x  (a, b) : D+f(x) < D–f(x)}. We will
only show that µ*[Y1] = 0; the case of Y2 is similar.

Let  = {(r, s)  2 : r < s}, let X(r, s) = {x  (a,b): D–f(x) < r < s < D+f(x)} and note that Y1 = U(rs)X(r, s).
Hence it suffices to show there µ*[X(r, s)] = 0 for every (r, s)  . Fix (r, s)  , write X = X(r, s) and
let  > 0 be arbitrary. Choose an open set U  (a, b) such that X  U and µ*[U] < µ*[X] + .

Since D–f < r on X, for each x  X and  > 0 we can find a non-degenerate closed interval I(x, ) =
[x –, x]  U such that 0 <  <  and f(x) – f(x – ) < r. Then  = {I(x, ) : x  X,  > 0} is a Vitali cover
for X. By Vitali’s lemma, we can find finitely many pairwise disjoint intervals I 1,…,Ik   such
that µ*[X\ k

n 1= |In|] < .

Let V = k
n 1= int[In]. Then, V is open, V  U, and µ*[X] –  < µ*[V]  µ*[U] < µ*[X] + . Let X = V  X.

Since D+f > s on X, and hence on X, for each y  X and  > 0 we can find a non-degenerate closed
interval J(y,) = [y, y + ]  V (hence J(y,)  In for some n  {1,…,k}) such that 0 <  < , and
f(y + ) – f(y) > s. Then  = {J(y, ) : y  X,  > 0} is a Vitali cover for X. Again by Vitali’s lemma,
we can find finitely many pairwise disjoint intervals J 1,…, Jm   such that µ*[X\ m

j 1= |Jj|] <.
Then m

j 1= |Jj|  µ*[X] –   µ*[X] – 2.

Write In = [xn –n, xn] and Jj = [yj, yj +j]. For each n  {1,…,k}, let Dn = {j  {1,..,m} : Jj  In}. Then
{1,…, m} is the disjoint union of Dn’s.

Note that 
nj Då (f(yj + j) – f(yj))  f(xn) – f(xn – n) for each n  {1,…,k} since f is increasing.

Summing over n, we get m
j 1=å (f(yj + j) – f(yj))  k

n 1=å (f(xn) – f(xn – n)), and hence m
j 1=å sj <

k
n 1=å rn, or s( m

j 1=å |Jj|) < r ( k
n 1=å |In|). From the earlier estimates we conclude that s(µ*[X] – 2)

< r(µ*[X] + ). Since  > 0 was arbitrary and r < s, we must have µ*[X] = 0.

The conclusion is, it can be extended to more general class of real functions.
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Notes Definition: If f: [a, b]   is a function and P = {a0 = a  a1  … an – 1  an = b} is a partition of
[a, b], let b

aV (f, P) = n
i 1=å |f(ai) – f(ai – 1)|. Define the total variation of f as b

aV (f) = sup{ b
aV (f, P) : P

is a partition of [a, b]}. We say f is of bounded variation if b
aV (f) < ¥. It is easy to see that if f is of

bounded variation, then f is bounded ( if x  [a, b], take P = {a  x  b} to see that |f(x) – f(a)| 
b
aV (f)).

Examples:

(i) If f : [a, b]   is a monotone function, then b
aV (f, P) = |f(b) – f(a)| for any partition P of

[a,b] and hence b
aV (f) = |f(b) – f(a)| < ¥. So f is of bounded variation.

(ii) Suppose f : [a,b]   is Lipschitz continuous (this happens if f is C1) with Lipschitz constant
 > 0. Then, it may be seen that b

aV (f)  (b – a) < ¥ and hence f is of bounded variation.

Example: A (uniformly) continuous function f : [a, b]   need not be of bounded
variation. Let f: [0, 1]   be the (uniformly) continuous function defined as f(0) = 0 and f(x) = x
sin (1/x) if x (0,1). Let ak = 2/kp  [0,1] for k  . Observe that |f(a2k) – f(a2k – 1)| = |0 – a2k – 1|
= a2k–1. Let m   and P = {0  a2m  a2m–1  …  a1  1}. Then 1

0V (f, P)  m
k 1=å |f(a2k) – f(a2k–1)| =

m
k 1=å a2k–1 = (2/p) m

k 1=å (2K – 1)–1  ¥ as m  ¥. Hence 1
0V (f) = ¥, and thus f is not of bounded

variation. This example also shows that bounded  bounded variation.

Notes If f, g: [a, b]   are of bounded variation, r, s  , and h : [a, b]   is defined as
h =  r f(x) + sg(x), then b

aV (h)  |r| b
aV (f) + |s| b

aV (g) < ¥. Hence {f : [a,b]   : f is of
bounded variation } is a real vector space (in fact, it is a normed space with the norm ||f||
= |f(a)| + b

aV (f)).

A function f : [a, b]   is of bounded variation iff there exist monotone functions g, h : [a, b]  
such that f(x) = g(x) – h(x) for every x  [a,b]. Consequently, for any function f : [a, b]   of
bounded variation, we have *

L,1m [{x  [a, b] : f is not differentiable at x}] = 0.

Proof: Suppose f = g – h, where g, h are monotone. Since g, h are of bounded variation, f is also of
bounded variation since the collection of functions of bounded variation on [a, b] is a vector
space. Conversely assume that f is of bounded variation and define g : [a, b]   as g(x) = x

aV (f).
Then g is monotone increasing. Let h = g – f, and consider points x < y in [a, b]. We have g(y) – g(x)
= y

xV (f)  |f(y) – f(x)|  f(y) – f(x), and therefore h(y)  h(x). Thus h is also monotone increasing.
Clearly, f = g – h.

Let [a, b] be a compact interval. Then for a function f : [a, b]  , we have the following
implications: f is Lipschitz continuous  f is absolutely continuous  f is of bounded variation.
Consequently, if f is either Lipschitz continuous or absolutely continuous, then *

L,1m [Y] = 0,
where Y = {x  [a, b] : f is not differentiable at x}.

Note However, there is a limit to these type of results; there are continuous functions f :
[a, b]   which are not differentiable at any point.

Now we mention a characterization of Riemann integrable functions in terms of small sets. For
simplicity, we restrict ourselves to dimension one, even though the corresponding result is true in
higher dimensions as well. If f : [a, b]   is a bounded function and if P = {a0 = a < a1    an–1
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Notes an = b} is a partition of [a, b], let Mi = sup{f(x) : ai-1  x  ai} and mi = inf{f(x) : ai-1  x  ai}. The upper
and lower Riemann sums with respect to the partition P are defined as U(f,P) = n

i 1=å Mi(ai – ai-1)
and L(f, P) = n

i 1=å mi(ai – ai-1). A bounded function f: [a, b]   is said to be Riemann integrable if
for every  > 0 there is a partition P of [a, b] such that U(f,P) – L(f,P) < . The following
characterization says that a Riemann integrable function is not very different from a continuous
function.

Let f : [a, b]   be a bounded function and let Y = {x  [a, b] : f is not continuous at x}. Then, f is
Riemann integrable iff *

L,1m [Y] = 0.

Proof: Let (f,x) be the oscillation of f at x defined earlier.

 : Since Y = k 1
¥

= Yk, where Yk = {x  [a, b] : (f, x)  1/k}, it suffices to show *
L,1m [Yk] = 0 for every

k  . Fix k   and let  > 0. Let P = {a0 = a  a1    an-1  an = b} be a partition of [a, b] with U(f,P)
– L(f,P) < /2k. Let Ai = (ai–1, ai) and  = {1  i  n : Yk  Ai  Ø}. Note that Mi – mi  1/k for i  .
Write Yk = kY    kY² , where kY   = Yk  ( i Ai) and kY² = Yk  { a1,…, an}. We have /2k > U(f, P)
– L(f, P)  iå (Mi – mi)|Ai|  1/k iå |Ai| and hence iå | A i | < /2. And since kY² is a finite
set, there are finitely many intervals B1,…,Bm such that kY²  m

j 1= |Bj and m
j 1=å |Bj| < /2. Thus

Yk  [ i Ai]  [ m
j 1= Bj] and iå |Ai| + m

j 1=å |Bj| < . Since  > 0 was arbitrary, *
L,1m [Yk] = 0.

 : Let  > 0 be given. We have to find a partition P of [a, b] such that U(f, P) – L(f, P) < . Let
 = sup{|f(x)| : x  [a, b]} and let  = /[2 + 2(b – a)]. For each x  [a, b]\Y, choose an open
interval A(x)   containing x such that |f(x) – f(z)| <  for every z  [a, b]  A(x)  by continuity.
Also choose countably many open intervals Bm such that Y  m 1

¥

=  Bm and m 1
¥

= |Bm| < . Then
{A(x) : x  [a,b]\Y}  {Bm : m  } is an open cover for the compact set [a, b]. Extract a finite
subcover {A(xj) : 1  j  p}  {Bm : 1  m  q}. The end points inside [a, b] of these finitely many
intervals determine a partition P = {a0 = a  a1    an-1  an = b} of [a, b]. Observe that for each
i  {1,…,n}, we have [ai–1, ai]  jA(x )  for some j  {1,…,p}, or [ ai–1, ai]  mB  for some m  {1,...,q}.
Let  = {1  i  n : [ ai–1, ai]  jA(x )  for some j} and  = {1,…,n}\. Note that Mi – mi < 2 if i  .
Hence U(f, P) – L(f,P)  iå (Mi – mi)(ai – ai–1) + iå (Mi – mi)(ai – ai–1)  2 iå (ai – ai–1) + 2 iå

(ai – ai–1)  2 n
i 1=å (ai – ai–1) + 2 q

m 1=å |Bm| < 2 (b – a) + 2 = .

A corollary is that any bounded function f : [a, b]   with at most countably many points of
discontinuity (in particular, any continuous function) is Riemann integrable. The higher
dimensional generalization can be stated as follows.

Let A  d be a d-box, let f : A   be a bounded function and let Y be the set {x  A : f is not
continuous at x}. Then, f is Riemann integrable iff *

L,dm [Y] = 0.

Example: Let f : [0,1]   be f(0) = 0 and f(x) = sin (1/x) for x = 0. Even though the graph
of f has infinitely many ups and downs (in fact, f is not of bounded variation), f is Riemann
integrable since f is bounded and is discontinuous only at one point, namely 0.

Definition: Let X be a set and A  X. The characteristic function A : X   of the subset A is

defined as A(x) = 
1, if x A,
0, if x X \A.

ì
í

î

Example: We discuss an example that illustrates the main drawback of Riemann
integration theory. Write [0,1]   = {r1, r2,…}, let fn : [0, 1]   be the characteristic function of
{r1,…, rn}, and let f : [0,1]   be the characteristic function of [0,1]  . We have 0  f1  f2   
f  1 and the sequence (fn) converges to f pointwise. Each fn is Riemann integrable since fn is
discontinuous only at finitely many points. But f is discontinuous at every point of [0,1], and the
Lebesgue outer measure of [0,1] is positive. Hence f is not Riemann integrable by [115]. Thus
even the pointwise limit of a uniformly bounded, monotone sequence of Riemann integrable
functions need not be Riemann integrable.
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Notes (i) Let f: [0, 1]   be the characteristic function of [0, 1]  . Since f is not continuous at any
point, it is not possible to realize f as the pointwise limit of a sequence of continuous
functions from [0, 1] to , in view of [108].

(ii) Let (fn) be a sequence of continuous functions from [a, b] to  converging pointwise to a
function f : [a, b]  , and let Y = {x  [a, b] : f is not continuous at x}. From [108] we know
that Y is an F


 set of first category in [a, b]. But Y can have positive outer Lebesgue measure

by [106]. Hence f may not be Riemann integrable. Thus even the pointwise limit of a
sequence of continuous functions may not be Riemann integrable (of course, we did not
give an example).

(iii) Lebesgue integration theory is developed not just for the sake of making the characteristic
function of [0,1]   integrable. The limit theorems in Lebesgue’s theory allow us to
integrate the pointwise limit of a sequence of integrable functions, and to interchange
limit and integration, under very mild hypothesis. Moreover, the powerful tools in
Lebesgue’s theory make many proofs simpler (e.g.: the proof of the change of variable
theorem in d-dimension), and provide us with new ways of dealing with functions (e.g.: L p

spaces). Also, as we will see later, in Lebesgue’s theory we have a more satisfactory
version of the Fundamental Theorem of Calculus (describing differentiation and integration
as inverse operations of each other).

30.4 -algebras and Measurable Spaces

A d-box in d has a well-defined d-dimensional volume. We may ask whether it is possible to
define the notion of a d-dimensional value for all subsets of d. Of course, we would like to have
consistency conditions such as monotonicity and countable additivity.

Question: Can we have a function µ : P(d)  [0, ¥] such that

(i) µ[A] = Vold(A) if A  d is ad-box,

(ii) [Monotonicity] µ[A]  µ[B] for subsets A, B of d with A  B,

(iii) [Countable additivity] µ[ n 1
¥

= An] = n 1
¥

=å µ[An] if An’s are pairwise disjoint subsets of d?

Notes We know that the Lebesgue outer measure *
L,dm  does not satisfy countable additivity.

The key observation of Lebesgue’s theory is that *
L,dm  will satisfy all the three conditions

stated above if we restrict *
L,dm  to a slightly smaller collection   (d) by discarding

some pathological subsets of d. In order to describe the structure of this smaller collection
, it is convenient to proceed in an abstract manner, which we do below.

Definition: Let X be a nonempty set. A collection   (X) of subsets of X is said to be a -algebra
on X if the following hold:

(i) Ø, X  .

(ii) A    X\A  .

(iii) A1, A2,…    n 1
¥

=  An  .

If  is a -algebra on X, then (X, ) is called a measurable space.
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Notes
Example: {Ø, X} and (X) are trivial examples of -algebras on any nonempty set X. The

following are some -algebras on d (verify):

1 = {A  d: A or d \ A is countable},

2 = {A  d: A or d \ A is of first category in d},

3 = {A  d: *
L,dm [A] = 0 or *

L,dm [d\ A] = 0}.

 4 = {A  d: [0, 1]d  A or [0, 1]d  d \ A}.

Definition: Let X be a nonempty set and   (X) be a collection of subsets of X. A -algebra  on
X is said to be generated by  if  is the smallest -algebra on X containing . Here,  exists and
is unique since  is precisely the intersection of all -algebras on X containing  (note that there
is at least one -algebra on X containing , namely (X)).

Definition: Let X be a metric space. Then the -algebra on X generated by the collection of all
open subsets of X is called the Borel -algebra on X, and is denoted as (X) (or just , if X is clear
from the context). The subsets of X belonging to (X) are called Borel subsets of X. For example,
open subsets, closed subsets, G


 subsets and F


 subsets of X are Borel subsets of X.

[Characterizations of the Borel -algebra on d] Consider the following collections of subsets of
d:

1 = {A  d: A is closed},

2 = {A  d: A is compact},

3 = {A  d: A is closed d-box},

4 = {A  d: A is an opend-box},

5 = {A  d: A is ad-box},

6 = {A  d: A is an open ball},

7 = {f–1(W) : f : d   is continuous and W   is open}.

If i is the -algebra on d generated by i for 1  i   7, then i = (d) for 1  i  7.

Proof: Clearly  3  2   1 = (d). Since (a, b) = 
0n n

¥

= [a + 1/n, b – 1/n] (where n0 is chosen so
that a + 1/n0  b – 1/n0), it follows that any open d-box°is a countable union of closed d-boxes,
and therefore  4  3. Since [a,b] = n 1

¥

=  (a – 1/n, b + 1/n), [a, b) = n 1
¥

=  (a – 1/n, b), and (a, b] =
n 1
¥

=  (a, b + 1/n), we deduce that any d-box is a countable intersection of open d-boxes, and hence
4 = 5. Since any open set in d can be written as a countable union of open d-boxes as well as
a countable union of open balls, we have 4 = 6 = (d). Thus i = (d) for 1  i  6.

By the definition of continuity, we have 7  (d). If U  d is an open set different from d, let
A = d \ U and define f : d   as f(x) = dist(x, A) := inf{||x – a||: a  A}. Then f is continuous, and
A = f–1(0) because A is closed. Now, U = f–1(\{0}) and \ {0} is open in . Hence (d)  7,
completing the proof.

Topological Remarks:

(i) If X is a separable metric space, then any base or subbase for the topology of X will
generate the Borel -algebra (X).

(ii) In the above characterization we used implicitly the fact that d is second countable and
locally compact. If a metric space X fails to be second countable or locally compact, then
the -algebra generated by all compact subsets of X will only be a proper sub-collection of
(X). For example, try to figure out what happens for the spaces (, discrete metric) (which
is not second countable), and (, Euclidean metric) (which is not locally compact).
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Notes Next our aim is to determine the cardinality of (d). We need some set-theoretic preparation.

Definition: An order  on a set X is a partial order if (i) x  x for every x  X, (ii) x  y and y  x
 x = y for every x, y  X, (iii) x  y and y  z  x  z for every x, y, z  X. We say (X, ) is a totally
ordered set if  is a partial order and any two elements of X are comparable. We say (X, ) is a
well-ordered set if (X, ) is totally ordered and any nonempty subset Y  X has a least element
in Y.

Examples:

(i) Let X be the collection of all nonempty subsets of . Define an order  on X as A  B iff the
minimum of A is less than or equal to the minimum of B. Then this is not a partial order
since the second condition fails.

(ii) If X is any nonempty set, then (X) with inclusion as order is partially ordered, but in
general not totally ordered.

(iii)  with the usual order is totally ordered, but not well-ordered since the subset (0,1) does
not contain a least element.

(iv)  with the usual order is well-ordered.

Well-ordering principle (equivalent to the axiom of choice): Any nonempty set admits a well-
ordering.

Now we describe the construction of some ordinal numbers. Start with an uncountable set X
such that card(X) = card(), and let  be a well-ordering on X. Let  denote the least element of
X. By adding one extra element to X if necessary, we may also assume that (X, ) has a largest
element, say . For each   X, let L


 = {  X :  < } be the left section of  in X. Let Y = {  X

: L

 is uncountable}. Then Y  Ø since   Y. So Y has a least element, say . Then L


 is

uncountable, but L

 is countable for every < . Here,  is called the first uncountable ordinal,

and each   L

 is called a countable ordinal number since each   L


 represents the type of a

countable well-ordered set through L

.

Fact: If A  L

 is a nonempty countable set, then A has a least upper bound in L


. [Proof: If B = A

L

, then B is countable and hence L


\B  Ø. The least element of L


\B is the least upper bound of

A]

If   L

, then the least element of the nonempty set {  L


:  < } will be denoted as  +1. Note

that there are no elements between  and  + 1 in L

. On the other hand, given   L


, there may

or may not exist   L

 such that  + 1 = . For example, if   L


 is the least upper bound of the

countable set {,  +1, + 2,…} (where recall that  is the least element of L

), then there is no

  X with  + 1 = . We say   L

 is a limit ordinal if there is no   L


 with  + 1 = .

card((d)) = card().

Proof: We will use transfinite induction (i.e., induction with respect to ordinal numbers) by using
L

 described above. Recall that we denoted the least element of L


 by the symbol . To start the

induction process, let 

 = {U  d : U is open}. Let   L


 and assume that we have defined 


 for

every   L

. If  is a limit ordinal, define 


 = < A


. If  =  + 1 for some   L


, let 


= {A  d : d \ A  


}, and 


 = {A  d : A is a countable union of members from 


  

 }.
This defines 


 for every   L


. Finally, put  = < 


. From our construction, it is clear that

  (d).

We verify that  is a -algebra on d. It suffices to check only the third property. So consider
A1,A2,…. Then there are 1,2,…  L


 such that An  

n
 for every n  . By the Fact

mentioned above, the countable set {n : n  } has a least upper bound, say  in L

. Then An  
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Notesfor every n   and hence n 1
¥

= An  
 +1  . Thus    is a -algebra on d containing all open

subsets of d. Hence  = (d).

Now, it suffices to show that card() = card(). Since there is an open ball of radius 1 centered at
each point of d, we have card()  card(


)  card(). So it suffices to establish that card() 

card(). Since card(L

) = card() and  = <  


, it is enough to show that card(


)  card() for

each   L

.

Let  be the collection of all open balls in d with rational radius and center in d. Then  is
countable, and any open set U  d can be written as a countable union of members of . Hence
card(


)  card() = card(). Let   L


 and suppose we have proved that card(


)  card() for

every  < . If  is a limit ordinal, then 

 = <  


 is a countable union and hence card(


) 

card(). If there is  with  + 1 = , then any A  

 can be written as A = n 1

¥

= An with An  A


 

 . This gives a one-one map from 

 into (A


  

 ). Hence card(

)  card((A


  

 )) 
card(). This completes the proof.

Corollary: For any uncountable set Y  d, there is A  Y such that A is not a Borel subset ofd.

Proof: We have card((d)) = card() = card(Y) < card((Y)).

Definition: Let (d) = {A  d: *
L,dm [A] = 0}. The members of (d) are called Lebesgue null sets.

The -algebra (d) on d generated by (d)  (d) is called the Lebesgue -algebra on d,
and members of (d) are called Lebesgue measurable subsets of d.

card((d)) = card((d)) = card((d)) > card(). Hence, (d)  (d)  (d).

Proof: Let K be the middle-third Cantor set. Then, for any subset A  K, we have *
L,1m [A] 

*
L,1m [K] = 0. So *

L,dm [A] = 0 also. This shows that (K)  (d)  (d). And card((K)) = card(())
since K is an uncountable subset of .

[Translation invariance] (i) A + x  (d) for every A  (d) and x  d.

(ii) A + x  (d) for every A  (d) and x  d.

(iii) A + x  (d) for every A  (d) and x  d.

Proof: First let us mention a general principle that will be used at many places. To establish that
the members of a certain -algebra  on a set X satisfies a certain property P, it suffices to do
the following: show that the collection {A  X: A satisfies property P} is a -algebra, and then
find a suitable collection   (X) generating  and show that every member of  satisfies the
property P.

Let  = {A  d: A + x  (d) for every x  d}. It is easy to check that  is a -algebra containing
all d-boxes. And recall that the collection of all d-boxes generates (d). This proves (i). Next,
statement (ii) is a consequence of the translation invariance property of the Lebesgue outer
measure, and (iii) follows from (i) and (ii) by applying the principle mentioned above.

We will give other characterizations of the Lebesgue measurable sets shortly, and we will also
show that (d)  (d).

Self Assessment

Fill in the blanks:

1. ............................................... is developed through approximations of a finite nature (e.g.:
one tries to approximate the area of a bounded subset of 2 by the sum of the areas of
finitely many rectangles).

2. While Riemann’s theory is restricted to the Euclidean space, the ideas involved in
............................ are applicable to more general spaces, yielding an abstract measure theory.
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Notes 3. The ......................................................... *
j ,dm [Y] of a bounded subset Y  d is defined as

*
j ,dm [Y] = inf k

n 1{ =å Vold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=

4. The construction above is due to Vitali, and hence the set Y is called a ............................

5. Let X, Y be metric spaces and let f: X  Y be a function. Then the oscillation (f, x) of f at
a point x  X is defined as (f, x) = lim

0+ diam [f(B(x, ))]. Clearly, f is ................................
at x iff (f, x) = 0.

6. Let –¥  a < b  ¥ and let f: (a, b)   be a ........................................... Then, Y = {x  (a, b) : f
is discontinuous at x} is a countable set (possibly empty).

7. Let X be a metric space. Then the -algebra on X generated by the collection of all open
subsets of X is called the ............................... on X, and is denoted as (X) (or just , if X is
clear from the context).

8. If A  L

 is a ............................................. set, then A has a least upper bound in L


. [Proof: If B

= A  L

, then B is countable and hence L


\B  Ø. The least element of L


\B is the least

upper bound of A].

30.5 Summary

 Measure theory helps us to assign numbers to certain sets and functions – to a measurable
set we may assign its measure, and to an integrable function we may assign the value of its
integral. Lebesgue integration theory is a generalization and completion of Riemann
integration theory. In Lebesgue’s theory, we can assign numbers to more sets and more
functions than what is possible in Riemann’s theory. If we are asked to distinguish between
Riemann integration theory and Lebesgue integration theory by pointing out an essential
feature, the answer is perhaps the following.

(i) We say Y  d is a discrete subset of d if for each y  Y, there is an open set U  d

such that U  Y = {y}. For example, {1/n: n  } is a discrete subset of .

(ii) A subset Y  d is nowhere dense in d if int[ Y ] = Ø, or equivalently if for any
nonempty open set U  d, there is a nonempty open set V  U such that V  Y =
0. For example, if f:    is a continuous map, then its graph G(f) := {(x, f(x)):x  }
is nowhere dense in 2 ( G(f) is closed and does not contain any open disc).

(iii) A subset Y  d is of first category in d if Y can be written as a countable union of
nowhere dense subsets of d; otherwise, Y is said to be of second category in d. For
example, Y =    is of first category in 2 since Y can be written as the countable
union Y = r rY ,   where Yr := {r}   is nowhere dense in 2.

(iv) (The following definition can be extended by considering ordinal numbers, but we
consider only non-negative integers). For Y  d and integer n  0, define the nth
derived set of Y inductively as Y(0) = Y, Y(n+1) = {limit points of Y(n) in d}. We say Y 
d has derived length n if Y(n)  Ø and Y(n+1)  Ø; and we say Y has infinite derived
length if Y(n)  Ø for every integer n  0. For example,  has infinite derived length
(since   = ), and {(1/m,1/n): m,n  } has derived length 2.

(v) We say A  d is a d-box if A = d
j 1 jI ,=Õ  where Ij’s are bounded intervals. The d-

dimensional volume of a d-box A is Vold(A) = d
j 1 jI .=Õ  For example, Vol3([1, 4) 

[0,1/2]  (–1,3]) = 6.

(vi) The d-dimensional Jordan outer content *
j ,dm [Y] of a bounded subset Y  d is defined

as *
j ,dm [Y] = inf k

n 1{ =å Vold(An) : k  , and An’s are d-boxes with Y  k
n 1 nA }.=
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Notes(vii) The d-dimensional Lebesgue outer measure *
L,dm [Y] of an arbitrary set Y  d is

defined as *
L,dm [Y] = inf n 1{ ¥

=å  Vold(An) : An’s are d-boxes with Y  n 1 nA }.¥

=

 If f : [a, b]   is a function and P = {a0 = a  a1  … an – 1  an = b} is a partition of [a, b],
let b

aV (f, P) = n
i 1=å |f(ai) – f(ai – 1)|. Define the total variation of f as b

aV (f) = sup{ b
aV (f, P) : P

is a partition of [a, b]}. We say f is of bounded variation if b
aV (f) < ¥. It is easy to see that

if f is of bounded variation, then f is bounded ( if x  [a, b], take P = {a  x  b} to see that
|f(x) – f(a)|  b

aV (f)).

30.6 Keywords

Riemann Integration Theory: Riemann integration theory  finiteness.

Lebesgue Integration Theory: Lebesgue integration theory  countable infiniteness.

Baire Category Theorem: Let (X, ) be a complete metric space and let Un  X be open and dense
in X for n  . Then, n 1

¥

= Un is also dense in X. In particular, n 1
¥

= Un  Ø.

Lebesgue’s Differentiation Theorem: Let –¥  a < b  ¥, let f : (a, b)   be a monotone function
and let Y = {x  (a, b) : f is not differentiable at x}. Then *

L,1m [Y] = 0.

Borel -algebra: If X is a separable metric space, then any base or subbase for the topology of X
will generate the Borel -algebra (X).

Well-ordering Principle: Well-ordering principle (equivalent to the axiom of choice): Any
non-empty set admits a well-ordering.

30.7 Review Questions

1. If f, g : [a, b]   are of bounded variation, then fg is of bounded variation. [Hint: Let M > 0
be such that |f|,|g|  M. Now, subtracting and adding the term f(a i)g(ai – 1), note that
|(fg)(ai) – (fg)(ai – 1)|  |f(ai)||g(ai) – g(ai – 1)| + |f(ai) – f(ai – 1)||g(ai – 1)| and hence b

aV (fg)
 M( b

aV (f) + b
aV (g)).]

2. If f : [a, b ]   is a function and c  [a, b ], then b
aV (f) = c

aV (f) + b
cV (f). [Hint: If P1 is a partition

of [a, c] and P2 is a partition of [c, b], then c
aV (f, P1) + b

cV (f, P2) = b
aV (f, P1  P2)  b

aV (f).
Conversely, if P is a partition of [a, b], first refine it by inserting c and then divide into
partitions P1 of [a, c] and P2 of [c, b]. Check that b

aV (f, P)  c
aV (f, P1) + b

cV (f, P2)  c
aV (f) + b

cV (f).]

3. Let f: [a, b]   be a bounded function. If f is either monotone or of bounded variation,
then f is Riemann integrable.

4. If f, g; [a,b]   are Riemann integrable, then h : = max{f, g} is also Riemann integrable.
[Hint: The set of discontinuities of h is contained in {x : f is not continuous at x}  {x : g is not
continuous at x}.]

5. If  is a -algebra on a set X show that

(i) A\B, A B   if A, B  ,

(ii) n 1
¥

= An   if A1,A2,… .

6. Let  = {A  d : A is a countable (possibly finite or empty) union of d-boxes}. Is  a
-algebra on d? [Hint: Let d = 1. Consider  and \, or the middle-third Cantor set and
its complement.]

7. Are the following -algebras on d: 1 = {A  d : A or d \A is open in d} and 2 = {A  d:
A or d \ A is dense in d}?
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’s are -algebras on a set X, then  


 := {A  X : A  


 for every } is also a -algebra

on X.

9. Show that () is generated by each of the following collections: {(a, ¥) : a  }, {[a, ¥) : a
 }, {(–¥, b) : b  }, {(–¥, b] : b  }, {(a, b) : a < b and a, b  }.

10. (i) If card(X)  card(), then card(X)  card(). (ii) If card(J)  card() and card(X

) 

card() for each   J, then, card( J X

)  card(). [Hint: (i) Assume X = (0,1). Define a one-

one map f : (0, 1)  (0,1) as follows. If x = (xn)  (0, 1) and if xn = 0.xn,1xn,2 , then f(x) =
0.x1,1x1,2x2,1x1,3x2,2x3,1. (ii) Let g:   J and h


 :   X


 be surjections. Then f: 2  J  X



defined as f(x, y) = hg(y)(x) is a surjection, and card(2) = card().]

Answers: Self Assessment

1. Riemann integration theory 2. Lebesgue’s theory

3. d-dimensional Jordan outer content 4. Vitali set

5. continuous 6. monotone function

7. Borel -algebra 8. non-empty countable

30.8 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Objectives

After studying this unit, you will be able to:

 Discuss the integral of a non-negative function

 Explain Properties of the integral of non-negative functions

 Describe Monotone convergence theorem and

 Definition of Integrable function over a measurable set

Introduction

In this unit we are going to study about the definition and the properties of the integral of non-
negative functions and some important theorems.

31.1 Integration of Non-negative Measurable Functions

We integrate non-negative measurable functions through approximation by bounded measurable
functions vanishing outside a set of finite measure, which we studied earlier.

Definition: For a non-negative measurable function f : E  [0, ] (where E is a set which may be
of finite or infinite measure), we define

A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ

for any A E.

Note that for non-negative bounded measurable functions vanishing outside a set of finite
measure, this definition agrees with the old one. Also note that we allow the functions to take
infinite value here.

We verify the monotonicity and linearity of such integrals.

Proposition: Suppose f, g : E  [0, ] are non-negative measurable and A  E.

(a) If f £ g a.e. on A then A Af gò ò£ .

(b) For  > 0, f + g and f are non-negative measurable functions too and
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A(f g)ò +  = A Af gò ò+

A fò   = A fò

Proof:

(a) This is clearly true, for if j Î B0(E) and j £ f on A, then j £ g on A so A A gò òj £  by definition

of A gò . Taking supremum over all such j’s, we get A Af gò ò£ .

(b) The assertion on A fò   can be proved using supremum arguments similar to that in (a) by

noting that for  > 0 and jÎ B0(E), j/ £ f on A whenever j £ f on A, and j£ f on A
whenever j £ f on A.

To verify A(f g)ò +  = A Af gò ò+ , note that if j, j  Î B0(E) and j £ f, j £ g on A, then j + j Î B0(E)

and j + j  £ f + g on A so

A(f g)ò +   A( )ò j + j (by definition of A(f g)ò + )

= A Aò òj + j

take supremum over all such j’s and j ’s we have A A A(f g) f gò ò ò+  + . For the opposite inequality,

note that if Î B0(E) with £ f + g on A, then write j = min {, f} and j  =  – j we see that j, j

Î B0(E) (note (i) – M £ j £  £ M if || £ M so j is bounded on E; (ii) j  =  – j is bounded on E

because both  and j are; (iii) measurability of j, j  is clear; and (iv) from j = min {, f} and j

= max {0,  – f} we see that j, j  = 0 whenever  = 0 so j, j vanishes outside a set of finite

measure). Further, we have j £ f, j  £ g on A. Hence

Aò   = A Aò òj + j

£ A Af gò ò+

Taking supremum over all such ’s we get A A(f g) f gò ò+ £ +

Theorem 1: Fatou’s Lemma

Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn} converges
(pointwisely) to a non-negative function f a.e. on E. Then

nE En
f lim inf f


ò ò£

Proof: Let h Î B0(E) and h £ f on E. Then there exists A  E with m(A) <  such that h = 0 outside
A. Let hn = min {fn, h} on A, we have hn is uniformly bounded and measurable on A : in fact if
|h| £ M on E, then hn = min {fn, h} > min {0, h}  –M and hn = min {fn, h} £ h £ M so |hn| £ M on
A Further, with the observation that min {a, b} = (a + b – |a – b|)/2 for all real a, b we have

hn =
n nf h |f h| f h |f h|

2 2
+ - - + - -

  = min {f, h} = h

on A. Since m(A) < , we can conclude by Bounded Convergence Theorem that nA An
h lim h


ò ò= .

So assuming hn = 0 on E\A, we have

n nE A A E Enn n n
h h lim h lim h liminf f

  
ò ò ò ò ò= = £
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Noteswhere the first equality follows from h = 0 on E/A and the last line hn £ fn on E for all n. Taking
supremum over all such h’s, we get the desired inequality.

Theorem 2: Monotone Convergence Theorem

If {fn} is an increasing sequence of non-negative measurable functions defined on E (increasing in
the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò

by which it means {jE fn} is an increasing sequence with limit E fò .

In symbol,

0 £ fn  f a.e. on E  nE Ef fò ò

Proof:

n nE E E En n
f liminf f limsup f f

 
ò ò ò ò£ £ £ ,

the first inequality follows from Fatou’s Lemma, the last inequality follows from fn £ f on E for

all n. Hence nE Ef fò ò . (That nE fò increases as n increases is immediate from monotonicity of such
integrals.)

Corollary: Extension of Fatou’s lemma

If {fn} is a sequence of non-negative measurable functions on E, then n n nE Enlim inf f lim inf f ò ò£ .

Proposition: Suppose f is a non-negative measurable function defined on E such that E fò <  .

Then for all  > 0, there is a  > 0 such that

E fò < 

whenever A  E with m(A) < .

Proof: The result clearly holds if f is bounded on E. Suppose now f is not necessarily bounded, we

see that (f n) fÙ   so by Monotone Convergence Theorem

A An
f lim (f n)


ò ò= Ù

for all A  E. Note that by assumption E fò <   so both sides of the equality above are finite.

Hence if  > 0 is given, then there is a N such that A Af (f N)ò ò- Ù <  .

Take  = /2N, we see that

A A A Af f f(f N) (f N) /2 Nm(A) /2 Nò ò ò ò£ - Ù + Ù £  + £  +  < 

whenever A  E with m(A) < . So we are done.

31.2 Extended Real-valued Integrable Functions

Here we integrated non-negative measurable functions, and we wish to drop the non-negative
requirement. Recall that it is a natural requirement that our integral be linear, and now we can
integrate a general non-negative measurable function, so it is tempting to define the integral of
a general (not necessarily non-negative) measurable function f to be f f+ -

ò ò- where f+ = f V0
and f– = (–f) V0, since f+, f– are non-negative measurable and they sum up to f. But it turns out that



372 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis
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which case their difference would be meaningless. (Remember that  –  is undefined.) So we
need to restrict ourselves to a smaller class of functions than the collection of all measurable
functions when we drop the non-negative requirement and come to the following definition.

Definition: For f : E  [–, ], denote f+ = f V0 and f– = (–f) V0. Then f is said to be integrable if

and only if both E Ef and f+ -
ò ò are finite, in which case we define the integral of f by

A A Af f f+ -
ò ò ò= -

for any A E

Notation: We shall denote the class of all (extended real-valued) integrable functions defined on
E by C(E).

Note that in the above definition, f+ and f– are both non-negative measurable, so for any set

A  E, A f+ò  and A f-ò  are both defined. Furthermore, A Ef f+ +
ò ò£ <   and similarly A f-ò <   so

their difference makes sense now. Also note that for non-negative integrable functions this
definition agrees with our old one.

We provide an alternative characterization of integrable functions.

Proposition: A measurable function f defined on E is integrable if and only if E|f|ò <   so.

Proof: Just note that |f| = f+ + f–.

We proceed to investigate the structure of (E). We want to say it is a vector lattice. But we have
to be careful here: Given f, g Î (E) it may well happen that f(x) = +  and g(x) = – for some x
Î E and then f + g cannot be defined by f(x) + g(x) at that x. Luckily there cannot be too many such
x’s, in the sense that the set of all such x’s is of measure zero. In fact every integrable function is
finite. We know that the values of a function on a set of measure zero are not important as far as
integration is concerned. (This was observed as in the case of bounded measurable functions
vanishing outside a set of finite measure; the reader should verify this for the case of general
integrable functions as well.) So that eliminates our previous worries: more precisely, let us
agree from now on two functions f,g: E  [–, ] are said to be equal (write f = g) if and only if
they take the same values a.e.on E, and f + g shall mean a function whose value at x is equal to f(x)
+ g(x) for a.e.x Î E. Also say f £ g if and only if f(x) £ g(x) for a.e. x Î E. Then we have the following
proposition.

Proposition: (E) forms a vector lattice (partially ordered by £).

Proof: If f,g Î (E), then E E E|f g| |f| |g|ò ò ò+ £ + < (we are using linearity and monotonicity and

hence f + g Î (E) (the measurability of f + g is previously known). The rest of the proposition
is trivial.

With the vector lattice structure of (E) it is natural to ask whether the integral is linear and
monotone or not. We expect it to be true; we verify it below.

Proposition: For any f,g Î (E) and A  E, we have A A A(f g) f gò ò ò+ = +  and A Af fò ò =  .

Furthermore, if f £ g a.e. on A then A Af gò ò£ .

Proof: The parts for monotonicity and A Af fò ò =   are easy and left as an exercise.

So now let f,g Î (E) and A  E be given, and we prove A A A(f g) f gò ò ò+ = + . By definition of the

integral, the LHS is just A A(f g) (f g)+ -
ò ò+ - + and the RHS is A A A Af f g g ,+ - + -

ò ò ò ò- + all terms being
finite. So it suffices to show
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ò ò ò ò ò ò+ + + = + + + ,

which will be true if we can show

(7) (f + g)+ + f– + g– = (f + g)– + f+ + g+

a.e. on A because we can then use linearity of Section 3 to conclude that (6) is true. But (7) is
clearly true a.e., because (f + g)+ – (f + g)– = f + g = f+ – f– + g+ – g– a.e., all terms being finite a.e. This
completes our proof.

Finally we prove the important Generalized Lebesgue Dominated Convergence Theorem.

Theorem 3: If {fn}, {gn} are sequences of measurable functions defined on E, |fn| £ gn, f = nn
lim f , g


= nn
lim inf g


 and nE En

lim g g


ò ò= <  , then nEn
lim f


ò  exists and is equal to E fò .

Proof: Since |fn| £ gn implies gn ± fn are non-negative measurable, we see that

n n n n nE E E E E En n n
g f lim inf (g f ) lim inf (g f ) g lim inf f

  
ò ò ò ò ò ò+ = + £ + = +

and similarly

n n n n nE E E E E En n n
g f lim inf (g f ) lim inf (g f ) g lim inf f

  
ò ò ò ò ò ò- = - £ - = +

So nE E En n
f lim inf f lim sup f




ò ò ò£ £  (note here we used the assumption that Egò < ) and the desired

conclusion follows.

Corollary: Lebsegue Dominated Convergence Theorem

Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e. on E to
f. If|fn| £ g on E for some integrable function g, then nE fò  converges to E fò .

A final word of remark: The idea of this section extends readily to complex-valued functions,
and the readers who are familar with general measure theory should find that the results in the
whole unit is valid on a general measure space without needing the slightest modification.

Self Assessment

Fill in the blanks:

1. For a non-negative measurable function f : E  [0, ] (where E is a set which may be of
finite or infinite measure), we define .................................... .

2. For non-negative ................................ vanishing outside a set of finite measure, this definition
agrees with the old one. Also note that we allow the functions to take infinite value here.

3. Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn}
converges (pointwisely) to a .................................. f a.e. on E. Then  nE En

f lim inf f


ò ò£ .

4. If {fn} is an ..................................... of non-negative measurable functions defined on E
(increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then nE Ef fò ò  by
which it means {jE fn} is an increasing sequence with limit E fò .

5. A ................................. f defined on E is integrable if and only if E|f|ò <   so.

6. For any f,g Î (E) and A  E, we have A A A(f g) f gò ò ò+ = +  and A Af fò ò =  . Furthermore,
if f £ g a.e. on A then ................................... .
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Notes 7. If {fn}, {gn} are sequences of measurable functions defined on E, |fn| £ gn, f = nn
lim f , g


 =

nn
lim inf g


 and .................................... , then nEn

lim f


ò  exists and is equal to E fò .

8. Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e.
on E to f. If|fn| £ g on E for some integrable function g, then nE fò  .............................. E fò .

31.3 Summary

 For a non-negative measurable function f : E  [0, ] (where E is a set which may be of
finite or infinite measure), we define

A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ

for any A E.

Note that for non-negative bounded measurable functions vanishing outside a set of finite
measure, this definition agrees with the old one. Also note that we allow the functions to
take infinite value here.

 Suppose {fn} is a sequence of non-negative measurable functions defined on E and {fn}
converges (pointwisely) to a non-negative function f a.e. on E. Then

nE En
f lim inf f


ò ò£

 If {fn} is an increasing sequence of non-negative measurable functions defined on E
(increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò

by which it means {jE fn} is an increasing sequence with limit E fò .

 If {fn} is a sequence of non-negative measurable functions on E, then

n n nE Enlim inf f lim inf f ò ò£ . The proof is easy and left as an exercise.

The following proposition is concerned with the absolute continuity of the integral.

 Suppose f is a non-negative measurable function defined on E such that E fò <  .  Then for

all  > 0, there is a  > 0 such that

E fò < 

whenever A  E with m(A) < .

 Suppose a sequence of measurable functions {fn} defined on E converges pointwisely a.e.
on E to f. If|fn| £ g on E for some integrable function g, then nE fò  converges to E fò .

31.4 Keywords

Fatou’s Lemma: Suppose {fn} is a sequence of non-negative measurable functions defined on E
and {fn} converges (pointwisely) to a non-negative function f a.e. on E. Then nE En

f lim inf f


ò ò£ .

Monotone Convergence Theorem: If {fn} is an increasing sequence of non-negative measurable
functions defined on E (increasing in the sense that fn £ fn+1 for all n on E) and fn  f a.e. on E, then

nE Ef fò ò  by which it means {jE fn} is an increasing sequence with limit E fò .
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NotesLebsegue Dominated Convergence Theorem: Suppose a sequence of measurable functions {fn}
defined on E converges pointwisely a.e. on E to f. If|fn| £ g on E for some integrable function g,
then nE fò  converges to E fò .

31.5 Review Questions

1. For a non-negative measurable function f defined on E, show that AA Ef fò ò= c for any A Í E.
Also show that A Bf fò ò£  if A  B  E.

2. Show that if A, B C E are disjoint and f is a non-negative measurable function defined on
E, then A B A Bf f f

Èò ò ò= + .

3. Show that if f is a non-negative measurable function defined on E and E f 0ò = , then f = 0
a.e. on E.

4. Show that if f is a non-negative measurable function defined on E and  E fò <  , then f is
finite a.e.

5. Show that w may have strict inequality in Fatou’s Lemma.

(Hint: Consider the sequence {fn} defined by fn(x) = 1 if n x < n + 1,with fn(x) = 0 otherwise.)

6. Show that the monotone convergence theorem need not hold for decreasing sequence of
functions.

(Hint: Let fn(x) = 0, if x < n, fn(x) = 1 for xn.)

7. Show that if f and g are measurable and y |f| £ |g| a.e., and if g is integrable, then prove
that f is intergrable.

Answers: Self Assessment

1. A fò  = sup { }0A : f on A, B (E)ò j j £ jÎ 2. bounded measurable functions

3. non-negative function 4. increasing sequence

5. measurable function 6. A Af gò ò£

7. nE En
lim g g


ò ò= <  8. converges to

31.6 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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Notes Unit 32: The General Lebesgue Integral and
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32.5 Keywords

32.6 Review Questions

32.7 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the General Lebesgue integral of a measurable function

 Discuss the Properties of Lebesgue integral

 Discuss Lebesgue convergence theorem

 Explain Generalization of Lebesgue convergence theorem

 Describe convergence in measure of a sequence of measurable functions

Introduction

In this unit, you are going to study about the general Lebesgue integral, some of its properties,
convergence in measure and theorems related to them.

32.1 The General Lebesgue Integral

Definition: The positive part of a function f is f+ = f  0 i.e f+ (x) = max {f(x), 0}

The negative part of a function is f– = f  0. i.e f–(x) = min {f(x), 0}

Hence f = f+ – f–.

And |f| = f+ + f–

Definition: A measurable function f is said to be integrable over E if f+ and f– are both integrable
over E.

Then the integral of f is defined as

E E Ef f f-+
ò ò ò= -
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NotesTheorem 1: Let f and g are integrable over E. Then

(i) The function cf is integrable over E, and E Ecf c f.ò ò=

(ii) The function f + g is integrable over E, and E E Ef g f gò ò ò+ = + .

(iii) If f g a.e., then E Ef gò ò

(iv) If A and B are disjoint measurable sets contained in E, then A B A Bf f f
Èò ò ò= +

Proof:

(i) Since f is integrable over E, both f+ and f– are integrable over E and the integral of f is given
by

E E Ef f f+ -
ò ò ò= -

Hence,

both cf+ and cf– are integrable over E, and hence, cf = cf+ – cf– are integrable over E and

E E E

E E

E E

E

cf cf cf
c f c f
c[ f f ]
c f.

+ -

+ -

+ -

ò ò ò

ò ò

ò ò

ò

= -

= -

= -

=

Hence (i) is proved.

(ii) Suppose if f1 and f2 are nonnegative integrable functions with f = f1 – f2,

Then f+ – f– = f1 – f2.

Hence,

 f+ + f2 = f– + f1.

As you know

f+ + f2 = f– – f1.

Therefore,

f = f+ – f–

= f1 – f2.

Since f and g are measurable,

f+, f–, g+, g– are measurable.

Hence,

f+ + g+, f– + g– are also measurable.

And f + g =  (f+ + g+) – (f– + g–).

Hence by(1),

(f + g ) = (f+ + g+) – (f– + g–)



378 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes = f+ + g+ – f– – g–

= (f+ – f–) + (g+ – g–)

= f + g.

Hence (ii) is proved.

(iii) Since f g a.e., f+ - f– g+ – g– a.e.,

Hence, f+ + g – g+ + f– a.e,

(f+ + g–) (g+ + f–).

Hence

f+ + g – g+ + f–.

Hence,

f+ – f – g+ – g–

Hence,

f g.

Hence (iii) is proved.

(iv) Consider

A B A B

A B

A B

A B

f f

f ( )

f f

f f

È È
ò ò

ò

ò ò

ò ò

= ×c

= × c + c

= ×c + ×c

= +

32.2 Lebesgue Convergence Theorem

Theorem 2: Let g be integrable over E and let {fn} be a sequence of measurable functions such that
|fn|g on E and for almost all x in E we have f(x) = lim fn(x). Then

nE Ef lim fò ò=

Proof: Since |fn|g on E, g – fn is nonnegative and hence by Fatou’s Lemma,

nE E(g f)lim (g f )ò ò- - ...(1)

Since f(x) = lim fn(x) a.e. on E and

|fn|g on E,

|f|g on E.

Hence since g is integrable,

f is also integrable.

E E E(g f) g fò ò ò- = - ...(2)

Also,

n nE E Elim (g f ) g lim fò ò ò- = - ...(3)
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NotesSubstituting (2) and (3) in (1), we get

nE E E Eg f g lim fò ò ò ò- -

Hence

nE Ef lim fò ò ...(4)

Similarly by considering g + fn, we get

nE Ef lim fò ò ...(5)

From (4) and (5), we get

n nE E Elim f f lim fò ò ò ...(6)

But it is always true that

n nE Elim f lim fò ò ...(7)

From (6) and (7)

nE Ef lim fò ò= .

Hence the theorem.

Notes  If we replace g by gn’s, we get the following generalization of the Lebesgue
Convergence theorem.

Theorem 3: Let {gn} be a sequence of integrable functions which converges a.e to an integrable
function g. Let {fn} be a sequence of measurable functions such that |fn| gn and {fn} converges to
f a.e.

If ng lim gò ò= ,

then nf lim fò ò= .

32.3 Convergence in Measure

Definition: A sequence {fn} of measurable functions is said to converge to f in measure if, given
 > 0, there is an N such that for all n N we have

m{x/|f(x) – fn(x)|} < .

Remark: From this definition and littlewood’s third principle, it is clear that,

If {fn} is a sequence of measurable functions defined on a measurable set E of finite measure and
fn> f a.e, then {fn} converges to f in measure.

Example: Construct the sequence {fn} as follows:

Let n = k + 2, 0 k < 2, and

Set fn(x) = 1 if x [k2–, (k + 1) 2–]



380 LOVELY PROFESSIONAL UNIVERSITY

Real Analysis

Notes And fn(x) = 0 otherwise.

Then m{x/|fn(x)| > } = 2– 2/n [since 2 n < 2 + 1]

Hence fn > 0 in measure.

Notes  That the sequence {fn(x)} has the value 1 for arbitrarily large values of n.

Hence {fn(x)} does not converge for any x in [0, 1].

Theorem 4: Let {fn} be a sequence of measurable functions that converges in measure to f.

Then there is a subsequence {fnk} that converges to f almost everywhere.

Proof: Since {fn} is a sequence of measurable functions that converges in measure to f,

Given , there is an integer n

 such that for all n n,

nm{x/ f(x) f (x) 2 } 2- -- < ...(1)

Let E

 = {x/|fnv(x) – f(x)|   2–}

Therefore,

if
k

x E
¥

u
u=

Ï 

then |fn(x) – f(x)| < 2– for k.

Therefore,

Fn(x) > f(x).

Hence fn(x) > f(x) for any x 
k 1 k

A E
¥ ¥

u
= u=

Ï  

But
k

mA m E
¥

u
u=

é ù
ê úë û


k
mE

¥

u
u=

å

= 2–k+1.

Hence mA = 0

Theorem 5: Let {fn} be a sequence of measurable functions defined on a measurable set E of finite
measure.

Then {fn} converges to f in measure if and only if every subsequence of {fn} has in turn a subsequence
that converges almost everywhere to f.

Theorem 6: Fatou’s lemma and the monotone and Lebesgue Convergence theorem remain valid
if ‘convergence a.e.’ is replaced by ‘convergence in measure’.
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NotesSelf Assessment

Fill in the blanks:

1. A ............................. f is said to be integrable over E if f + and f– are both integrable over E.

2. Let g be integrable over E and let {fn} be a sequence of measurable functions such that |fn|
g on E and for almost all x in E we have …………………….

3. Let {gn} be a sequence of ……………….. which converges a.e to an integrable function g.

4. A sequence {fn} of measurable functions is said to ……………….....….. in measure if, given
 > 0, there is an N such that for all nN we have m{x/|f(x) – fn(x)|} < .

5. Let {fn} be a sequence of measurable functions that converges in measure to f. Then there is
a subsequence {nk f} that ................................ to f almost everywhere.

32.4 Summary

 Definition of General Lebesgue integral of a measurable function

 Properties of Lebesgue integral

 Lebesgue convergence theorem

 Generalization of Lebesgue convergence theorem

 Definition of convergence in measure of a sequence of measurable functions and

 Every sequence of measurable sequence that converges in measure contains a subsequence
that converges almost everywhere.

32.5 Keywords

Convergence in Measure: A sequence {fn} of measurable functions is said to converge to f in
measure if, given  > 0, there is an N such that for all n N we have m{x/|f(x) – fn(x)|} < .

Lebesgue Convergence Theorem: Let g be integrable over E and let {fn} be a sequence of measurable
functions such that |fn| g on E and for almost all x in E we have f(x) = lim fn(x). Then

E E nf lim f .ò ò=

32.6 Review Questions

1. Show that if f is integrable over E, then so is |f| and E Ef fò ò£  . Does the integrability of

|f| imply that of f?.

2. Let {fn} be a sequence of integrable functions such that fn > f a.e with f integrable.

Then nf f 0ò - ®   if and only if nf f .ò ò®

3. Show that if f is integrable over E, then |f| is also integrable over E. further E Ef fò ò£  is

the converse true?

Answers: Self Assessment

1. measurable function 2. f(x) = lim fn(x).

3. integrable functions 4. converge to f

5. converges
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Notes 32.7 Further Readings

Books Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
(3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

G.F. Simmons: Introduction to Topology and Modern Analysis, Ch. 2(9-13),
Appendix 1, p. 337-338.

Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
Ch.15(15.2, 15.3, 15.4)

T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

S.C. Malik: Mathematical Analysis.

H.L. Royden: Real Analysis, Ch. 3, 4.
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