
i 
 

  

 

 

 

Optimization of Regression Testing Technique for 

Web Application 

A Dissertation Submitted 

                                                                                      By   

                                                    Sarbjot Kaur 

                                                                     to 

 

                   Department of Computer Science and Engineering  

        In partial fulfillment of the Requirement for the 

Award of the Degree of 

             Master of Technology in Computer Science & Engineering 

                                                            Under the guidance of 

Mr. Makul Mahajan 

  (Assistant Professor) 

 

(April 2015) 



ii 
 

                                                      PAC FORM 

     

 

 

 

 



iii 
 

ABSTRACT 

Regression testing means re-testing an application after its code has been modified to verify that 

it still functions correctly. Regression testing consists of re-running existing test cases and 

checking that code changes did not break any previously working functions, inadvertently 

introduce errors or cause earlier fixed issues to reappear. Regression testing   is also use to test 

the web application. Web testing is the name given to software testing that focuses on web 

applications. Complete testing of a web-based system before going live can help address issues 

before the system is revealed to the public.  The test case used for the regression testing has been 

reused to save time and effort required to develop new test cases. To make the validate result 

chksim algorithm will be used. The test cases generated will be optimized using expert system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application


iv 
 

ACKNOWLEDGEMENT 

First and foremost I would like to thank almighty for giving me courage to bring up this 

dissertation. Before getting into thick and thin of this dissertation I would like to show my 

gratitude to some of the people who have helped me in this project. Firstly I would like to 

propose a word thanks to my mentor Mr.Makul Mahajan who has encouraged me to get through 

this dissertation. Secondly I would like to thanks my friends who gave me unending support and 

helped me in numerous ways from the stage when the idea of the thesis was conceived. I am very 

thankful to all of them for making my work complete successfully under their guidance.  

 

                                               Sarbjot Kaur 

                             11109850 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

DECLARATION 

I hereby declare that the dissertation entitled, “Optimization of Regression Testing 

Technique for Web Application” submitted for   the  M.Tech  Degree  is  entirely  my  

original  work  and  all  ideas  and references have been duly acknowledged. It does not 

contain any work for the award of any other degree or diploma. 

 

 

 

Date:                                               

                                                                  

                                                                                                  Sarbjot kaur 

                                                                                               11109850 

                             

        

 

 

 

 

 

 

 

 

 



vi 
 

 

CERTIFICATE 

This is to certify that Sarbjot Kaur has completed M.Tech dissertation proposal titled 

“Optimization of Regression Testing Technique for Web Application”  under my guidance 

and supervision. To the best of my knowledge, the present work is the result of his original 

investigation and study. No part of the dissertation proposal has ever been submitted for any 

other degree or diploma.  

 The dissertation proposal is fit for submission and the partial fulfillment of the conditions for the 

award of M. Tech Computer Science & Engineering. 

 

 

 

  Date:  

                                                                                                                    Name: Mr.Makul Mahajan  

          Assistant Professor 

                UID: 14575 

 

 

 

 

 

 

 

 



vii 
 

 

                                                             

                                                                     TABLE OF CONTENTS 

            Page No. 

CHAPTER 1: INTRODUCTION…………………………………………………………1 

   1.1 Software engineering……………………………….......................................................2 

   1.2 Software Testing..............................................................................................................3 

            1.2.1 Verification..........................................................................................................3 

            1.2.2 Validation............................................................................................................4 

  1.3 Software Testing Types....................................................................................................4 

            1.3.1 Black Box Testing...............................................................................................4 

            1.3.2 White Box Testing..............................................................................................4 

   1.4 Web Testing....................................................................................................................5 

   1.5 Website Quality..............................................................................................................5 

   1.6 Techniques of Web Testing............................................................................................6 

           1.6.1 Functionality Testing……………………………………...................................6 

           1.6.2 Usability Testing……………………………………………..............................6 

           1.6.3 Interface Tesing………………………………………………...........................7 

           1.6.4 Compatibility Testing…………………………………………..........................7 

          1.6.5 Performance Testing.............................................................................................7 

          1.6.6 Security Testing....................................................................................................7 

 1.7 Regression Testing.........................................................................................................7-9 

          1.7.1 Types of Regression Testing...............................................................................10 

 1.8 Regression Testing Technique........................................................................................10  

           1.8.1 Retest All...........................................................................................................10        



viii 
 

           1.8.2 Regression Test Selection..................................................................................10 

           1.8.3 Test Cases Prioritization..................................................................................11-13 

1.9 Method of Regression Testing.......................................................................................14-15 

CHAPTER 2: Review of Literature.................................................................................16-23 

CHAPTER 3: Present Work.................................................................................................24  

          3.1 problem formulation.................................................................................................24 

          3.2 objectives..............................................................................................................24-25 

          3.3 Methodology........................................................................................................25-26 

          3.4 Genetic Algorithm Steps......................................................................................26-27 

CHAPTER 4: Result and Discussion................................................................................28-40 

CHAPTER 5:  Conclusion and Future scope...................................................................41-42 

CHAPTER 6:  List of References......................................................................................43-44 

 

 

 

                                                                                     

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

Figure No.                                                                                                                                             Page No. 

Figure1.1: Regression Testing...............................................................................................9 

Figure3.3: Flow Chart of Our Methodology.........................................................................26 

Figure4.1: GUI start up.........................................................................................................28 

Figure4.2: Pop up box for choosing the file.........................................................................29 

Figure4.3: Output when both file are chosen.......................................................................29 

Figure4.4: Output of pre-process and extract variable.........................................................30. 

Figure4.5: Output of compare button...................................................................................31 

Figure4.6: Output of extract constraints...............................................................................31 

Figure4.7: Output of compute reusability.............................................................................32 

Figure4.8: Output of generate path button............................................................................33 

Figure4.9: Output of genetic algorithm................................................................................34 

Figure4.10: Total number of path.........................................................................................35 

Figure4.11: Total number of inputs.....................................................................................36 

Figure4.12: Reusable input..................................................................................................36 

Figure4.13: Reusability........................................................................................................37 

Figure4.14: Reusability of first file.....................................................................................37 

Figure4.15: Reusability of second file................................................................................38 

Figure4.16: Reusability of third file...................................................................................38 

Figure4.17: Flow chart of previous work...........................................................................39 



x 
 

Figure4.18: Flow chart of proposed work........................................................................40                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

                                                                                 List of table 

Table 4.11 Reusability Table.............................................................................................34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

                                                                                             CHAPTER 1 

INTRODUCTION 

1.1 Software Engineering 

Programming architects apply the standards of programming designing to the outline, 

improvement, support, testing, and assessment of the product and frameworks that make PCs or 

anything containing programming work. Software designing is the study and a use of building to 

the outline, improvement, and support of software. Run of the mill formal meanings of 

programming designing are the use of a methodical, trained, quantifiable way to the 

improvement, operation, and support of software a designing teach that is concerned with all 

parts of programming production also the foundation and utilization of sound designing 

standards to monetarily acquire programming that is dependable and lives up to expectations 

productively on genuine machines. Because of innovative development and aggressiveness in 

business, programming continues evolving. The changed programming must be tried completely 

with the purpose that the changed bit of code does not influence different parts of the code. 

Regression testing is a suitable testing method to be connected at this phase of the product 

testing. The primary destination of relapse testing is retesting the changed parts and checks the 

influenced parts of the product. It is a critical and exceptionally testing assignment for the 

product analyzers to test the whole programming inside the restricted time and assets, To lead 

relapse testing more successfully the experiment prioritization systems are utilized. The 

experiment prioritization methods enhance the expense adequacy of relapse testing by requesting 

experiments such that those that are more essential are run prior in the testing methodology. In 

the writing a few exploration meets expectations have been completed to organize the 

experiments more successfully. The current work is in light of certain scope criteria, for 

example, code, flaw, prerequisite, and so on and an experiment with most extreme scope is 

chosen by contrasted and all other experiments. 



3 
 

Programming testing assumes an imperative part in guaranteeing the nature of programming 

frameworks. Notwithstanding, it is evaluated that product testing expends more than 50% of the 

expense in programming improvement and upkeep. In this manner, numerous specialists 

concentrate on the best way to mechanize programming testing furthermore consequently 

enhance the effectiveness of programming testing. Experiment prioritization. By reusing the 

experiments of its past rendition (some time recently change). To encourage relapse testing, 

experiment prioritization plans the execution request of experiments so as to expand some target 

(e.g., un-covering blames early). Given a past system   and its adjusted variant  ′, the 

methodology of regression testing incorporates building a test suite for  ′ in light of the current 

test suite 

1.2 Software Testing  

Programming testing is the methodology by which assessment  of software is done to identify 

that whether their falsehoods any contrasts between the given information and expected yield or 

not. Through this procedure evaluation of the quality of a product thing is finished . Currently the 

question is “when it ought to be done?” Most of the developers and researchers say that 

programming testing ought to be done due to improvement process. The methodology 

programming testing is performed to confirm that whether programming item is assemble as per 

the client necessities or not. currently talking regarding its objectives, the most objective of 

programming  testing is to search out errors in the system/software being developed or changed 

by applying different types of testing like performance testing, regression testing, smoke testing, 

stress testing. By code testing, the standard parameters like effectiveness of programming are 

often improved. It also can be said that software testing is each verification and validation. 

currently what’s meant by these2 terms? 

1.2.1 Verification 

Verification suggest that “are things right or not?” There forever stay some conditions that are 

obligatory on the software at the beginning of the improvement stage.Confirmation is the 

methodology to verify the item fulfils each one of those conditions .In different words, to verify 

that the item carries on the way we need it to is called verification. 

 



4 
 

1.2.2 Validation 

Validation means “are we have a tendency to doing right things?”. Through validation method, 

we make sure that at the end of development phase, product meets the specified requirements. In 

alternative words, validation is to make sure the product/system is built as per needs of the 

customer or not. 

1.3 Software Testing Types 

To make the things clear some of the types of software testing are described here. In this 

proposal, main focus is on regression testing . 

1.3.1 Black Box Testing 

Black box testing that is additionally known as functional testing is a testing technique within 

which focus isn’t on the interior mechanism of the system. Its fundamental center stay on the 

yield created  against any input give to the system.  

1.3.2 White Box Testing   

Rather than the functional box testing, in the event of structural testing stay on the code i.e. it is a 

testing procedure that consider the inside system of a framework. It is additionally structural 

testing or glass box testing.  

“Black box testing is commonly used for validation and white box testing is commonly used for 

verification. 

There are some more approaches of testing which are:   

a) Unit Testing 

b) Integration Testing 

c) Functional Testing 

d) System Testing 

e) Stress Testing 

f) Performance Testing 

g) Usability Testing 

h) Acceptance Testing 

i) Regression Testing 

j) Beta Testing   : 

 



5 
 

1.4 Web Testing 

Web testing is that the name given to package testing that focuses on internet applications. 

Complete testing of a web-based system before going live will facilitate address problems before 

the system is disclosed to the general public. problems like the safety of the 

online application, the essential practicality of the location, its accessibility to incapacitated users 

and absolutely ready users, stills readiness for expected traffic and variety of users and therefore 

the ability to survive a vast spike in user traffic, each of that square measure associated 

with testing . Making an internet web site doesn't finish with swing all the media and software 

system along. Actually, information processing system work ne'er ends. Once all the planning is 

finished, you have got to check the positioning 1st before causation it to the 

planet Wide net for the planet to check. There’s web site management software system that 

may try this for you. These software system will facilitate reconnect graphics which 

will are accidentally moved , modification the name of a file and re-link 

it then several different things. Apart from the   positioning management software system, you 

furthermore might need to the standard of your web site. Your web site needs to be tested, fixed, 

and retested and absolutely documented [9]. 

1.5 Website Quality 

There are thousands of websites launched once a year and zilch is worse than a poorly operative 

website. Website testing is most vital to e-commerce sites since they have applications running 

on the website that will have an effect on their sales or operations. 

 Thus however websites should be tested? What are the measures of quality? Here are a number  

of  measures of quality according to Miller:  

 

a) Timeliness n WebPages got to be upgraded continuously. Once it absolutely was last 

upgraded? How consistent is it to now day be news or information?  

b)  Structural Quality ñ all the components of the website got to be operating well. All the 

links (inside or outside) working? Are all the images loading?  

c) Content ñ This doesn’t merely concern spell checking, proofreading but also the  

regularity of the contents with either all of the opposite pages or with the request of the 

user, particularly with dynamic sites. Will  the content of important pages match what is 



6 
 

purported  to be there? Do key phrases exist frequently in highly- changeable pages? Do 

important pages maintain quality content from version to version?  

d)  Correctness and reliability n are the pages consistent with what the user requested? 

However consistent is that the webpage with yesterday’s webpage?  

e)  Response Time and Latency ñ this is often essential with e-commerce sites. The latency 

of the server ought to be quick once clicking SUBMITS. Will the Website server reply to 

a browser request inside bound performance parameters? Are there parts of a site that are 

so sluggish the user discontinues working?  

f) Performance ñ this involves performance by load or usage. Is that the webpage loading in 

but  eight seconds? Will your system handle ten,000 transactions per minute? 

g)   Quality of the website is very vital for the user. An internet site  with too several broken  

a. Links, defective picture, could price plenty for an e-commerce website. Users can 

quickly  

b. Leave for a dissimilar web site if the website is  simply too advance and of 

inferiority [10].  

1.6 Techniques of Web Testing: 

Here are a few of the basic testing techniques for web applications: 

1.6.1 Functionality Testing 

The main goal of functional testing is to create positive that each one the functions among an 

online application area unit operating swimmingly with none technical glitches. in a 

very net application, useful testing may cowl various things like whether or not all the links area 

unit operating properly or not, testing forms altogether the pages, testing 

cookies, sustentative HTML or CSS, testing information for the safety so on. One ought 

to additionally make sure that take a look at cases cover all the boundary conditions that 

require to be tested. 

1.6.2 Usability Testing 

When it involve to create the application easy and effective, its user interface ought fulfill with 

the standards. It is vital that you simply follow all the world conventions and net standards 

whereas developing an online application. Usability testing is appropriate for the applications 



7 
 

that are proposed to streamline the manual process.  However, one should also keep in mind 

certain essential aspects like correct navigation, site map, avoid via over-crowded content and 

additional whereas approaching for the usability testing. 

1.6.3. Interface Testing 

one of the for most vital interfaces among internet  application are web server and application 

server interface and database server interface. Interface testing can make ensure that all the 

individual elements among an application are connected properly. One ought to check whether or 

not the  interaction between these servers are executed properly or not with the help of this 

testing technique [9]. 

1.6.4. Compatibility Testing 

Compatibility of your net application is one in every of the formost crucial belongings you ought 

to consider whereas testing the appliance. Compatibility testing can check your website or net 

application for browser compatibility, operating system compatibility, mobile browsing and 

printing choices. 

1.6.5. Performance Testing 

Performance testing can assist you confirm the performance of your internet  application under 

various scenarios. Performance testing sometimes involves stress testing, scalability testing and 

load testing. In this testing method, website istypically tested for its practicality on totally  

different operating system, hardware platforms and additional. 

1.6.6. Security Testing 

This testing methodology is one in every of the formost necessary ones for your net application 

as if information leaks or modifications are unit tolerable or not. It alwayes involves varied 

things like testing the CAPTCHA for automates scripts logins, testing SSL for security measures, 

whether or not it’s feasible to access net directories or files directly or not and then on. 

1.7 Regression Testing 

Regression testing means that re-testing an application when its code has been changed to verify 

that it still functions properly. Regression testing consists of re-running existing test cases and 

checking that code changes didn’t break any earlier operating functions, unconsciously introduce 

errors or cause earlier mounted problems to re-emerge [2]. These test cases ought to be run as 

usually as attainable with an automatic regression testing tool, so code modifications that injury 

http://www.cygnet-infotech.com/qa-software-testing-services/performance-testing


8 
 

however the application work is quickly known and set. Regression testing starts as shortly 

there’s something to test in any respect. .The regression test suite grows because the application 

moves ahead and check engineers add check cases check test new or rewritten code. presently 

the suite could touch thousands of check cases that face various application functions. 

Obviously, by this time, automation of regression check becomes vital  as a result of  it’s 

humanly not possible to quickly and dependably repeat all of the test cases and analyze their 

results. This is often wherever Test Complete is incredibly useful and provides you with most 

come back on your machine-driven testing in Regression testing is a kind of code testing that 

seeks to uncover new code bugs, or regressions, in existing practical and non-functional areas of 

a system once changes like enhancements, patches or configuration changes, are created to 

them.  The intent of regression testing is to confirm that changes like those mentioned on top of  

haven’t introduced new faults.
[1]

 One amongst the most reasons for regression testing is to see 

whether or not a modification in one apart of the software affects alternative components of the 

software package. Common way of regression testing embrace rerunning earlier completed tests 

and checking whether or not program behavior has modified and whether before fixed faults 

have re-emerged. Regression testing are often performed to check a system expeditiously by 

consistently choosing the suitable minimum set of tests required to adequately cowl up a selected 

modification.. 

 Contrast with testing, that aims to verify whether or not, when introducing or change a given 

code application, the modification has had the supposed impact. Regression testing may be a 

variety of code testing that decide  to sight new faults or bugs in software when  modification 

have been made in existing practical and non-functional areas of package. Regression testing is 

is additionally a verification method that determines that previous character and functionality of 

software remains when a modification is created within the code.. Its main goal is to confirm that 

no new error are introduced into antecedent  tested code or package when  changes are created 

within the code  One of the most reasons to introduce regression testing is to work out whether or 

not a modification  in one part of the  computer code affects alternative components of the 

computer code. Let P be a program [3], let P′ be a changed version of P, and let „T‟ be a check 

suite for P. Regression testing consists of reusing T‟ on P′, and wherever wherever the new 

check code or practically accessorial to or modified in manufacturing P′. Regression testing 

could be a necessary feature of the intense programming software development technique. Even 

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Software_regression
http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Patch_%28computing%29
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/Regression_testing#cite_note-1


9 
 

with in the company world, regression testing has been performed by a computer code quality 

assurance team. 

Regression testing is employed not just for testing the correctness of a program, however usually 

additionally to trace the standard of its output [4]. As an example within the style , of a compiler, 

regression testing may trace the dimensions of code, and therefore the time it takes to compile 

and execute the complete take a look at suite cases. Regression testing may be a meaningless 

method happens at an optimum price and in minimum time. The aim behind regression testing is 

extremely easy and straight. It will increases the productivity and potency of software package 

and quality assurance applications.. 

                     

Fig 1.1: Regression Testing 

 

The expectation of regression testing is to ensure that those progressions, for instance, those 

specific on top of haven’t given new faults. One of the principle functions behind relapse testing 

is to work out if a amendment in one piece of the manufactured goods influences dissimilar parts 

of the software. 

Basic techniques for regression testing incorporate rerunning already finished tests and checking 

whether or not program conduct has modified and whether or not beforehand altered 

shortcomings have re-developed. Regression testing are often performed to check a framework 

Boundary tests Negative tests 

GUI tests Regressi

on 

Run time tests 



10 
 

effectively by deliberately selecting the fitting least set of tests expected to sufficiently cover up 

a selected amendment . 

1.7.1 Types of Regression Testing: 

 Final Regression Tests: - A "final regression testing" is performed to validate the build 

that hasn't modified for a some  amount of time. This build is deployed or shipped to 

customers. 

 Regression Tests: - A standard regression testing is performed to verify if the build has 

NOT broken the other elements of the application by the recent code changes for defect 

fixing or for improvement [7] 

1.8 REGRESSION TESTING TECHNIQUES  

Regression testing has been categorized to different testing techniques so that maintenance 

testing process can be performed effectively and easily with minimum time and cost 

requirements. Regression testing techniques are given below:  

1.8.1 Retest All  

Retest all methodology or technique is one among the normal techniques for conducting 

regression testing. Because the name indicates retest all is that the  techniques during which all 

the tests are arrunned and executed once more with in the existing test suite functional and non-

functional areas. So the retest all technique [5] is extremely big -ticket  and time consuming. As 

regression test suites are expensive to execute  fully because it need longer time and budget 

alternative techniques like Regression Test Selection and Test Case Prioritization are required to 

be introduced to create regression testing price and time effective.  

.1.8.2 Regression Test Selection  

Due topic nature of “retest all” technique, Regression Test Selection (RTS) is performed. during 

this technique rather than  rerunning and perform the entire test suite. we select a part of test 

suite to rerun provided the cost of selecting a part of test suite is less than the cost of running the 

all tests that RTS allows us to omit. RTS divides the existing test suite into following test cases: 

 Reusable test cases  

 Retestable test cases  

 Obsolete test cases 



11 
 

 

In addition to this classification RTS may create new test cases that test the program for areas 

which are not covered by the existing test cases. RTS techniques are broadly classified into three 

categories [6]:  

a) Coverage techniques: They take the test coverage criteria under consideration. They 

search coverable program elements that are changed and choose test cases that work on 

these elements.  

b) Minimization techniques: They’re same as coverage techniques except that they choose 

minimum set of test cases  

c) Safe techniques: They do not specialize in criteria of coverage; in distinction they choose 

all those take a look at test cases that turn out completely different output with a changed 

program as compared to its original version. In regression test selection, test cases are 

selected because their execution is relevant to the modified between the earlier and the 

present version of the software system. 

d) Inclusiveness: It is the calculate of extent up to that a method chooses the test cases      

which is able to cause the modified program to supply totally different output than the 

original program, leading to exposure of faults during modifications.  

e) Precision: It is the determine the ability of technique to prevent selecting test cases that 

may not create the modified program to supply totally different output than the unique 

program. 

f) Efficiency: It measures the utility (computational cost) of a method.  

g) Generality: It’s the measure of ability of a method to handle complicated modifications, 

realistic language constructs and realistic testing applications. 

1.8.3 Test Case Prioritization  

a) Test Cases 

1. A test suit, in computer code engineering, could be a set of conditions beneath that a tester will 

confirm whether or not an application, software system or one in every of its features is working 

as it was initially established for it to try do. 



12 
 

b) Types of Test Cases 

 Formal test cases 

In order to completely check that all the needs of an application are met, there should be a 

minimum of must t two test cases for every requirement: one positive test and one negative test. 

If a demand has sub-requirements, every sub-requirement should have minimum of 2 test cases. 

Keeping track of the link between the need and therefore the test is usually done using a 

traceability matrix. Written test cases ought to embody an outline of the practicality to be tested, 

and the preparation needed to make sure that the test can be conducted. A formal written test-

case is characterized by a known input and by an expected output, which is worked out before 

the test is executed. The known input ought to check pre condition and therefore the expected 

output ought to  test a post condition. 

 . Informal test cases 

For applications or systems with no formal needs, test cases often written depend on accepted 

simple operation of programs of a same class. In some area of testing, test cases don’t seem to be 

written  in the slightest degree however the activities and results are measure reported when the 

tests are run . In situation testing, theoretical stories are use to aid the tester think during a 

difficult problem or system. These scenario are sometime  not written down in any detail. They’ll 

be straight forward as a diagram for a testing surroundings or they might be a outline written in 

prose. The best situation test could be  a story that is motivating, credible, complex, and easy to 

calculate. Sometime completely different from test cases in that test cases are single steps 

whereas situation cover a variety of steps of the key. 

c) Test Case Prioritization 

The test case prioritization problem is a research hotspot in the field of software testing. It is 

defined as follows: 

 Coverage Prioritization: It counts the overall variety of statements covered by each test 

case, and then kind the action in line with the quantity. However, this strategy might 

create statement coverage of a test case be a subset of an extra test coverage, and 



13 
 

eventually, there are still some statements that haven’t been enclosed by any test cases. 

Therefore, extra strategy is appeared. It initial picks the test case with the best coverage, 

and then, in turns adds those test cases that face the formost however uncovered 

elements.  

 

 History Prioritization: This technique prioritizes test cases based on historical execution 

knowledge. This method helps to scale back spending. With in the long standing time, it 

will enhance the effectiveness of regression testing. For a test case, using past data of 

each prioritization, increase or decrease its probability with in the the current test session. 

A likelihood price is given to the the past and the value of the present session is 

calculated supported the quantity of fault detection (or coverage). Finally, the calculated 

value of a test case is equal to the sum of the present number multiplied by a probability 

and the historical price increased by another likelihood. 

 

 Time Spending Prioritization: This method is that count execution time of each test 

case and then sorts the test suite according to the ascending order of the calculated value. 

 

Test Case Prioritization (TCP) technique of regression testing prioritize the test cases therefore 

on increase a test suits rate of error detection that’s however rapidly a test suite find faults with in 

the changed program to extend reliability. This is of 2types:  

a) General prioritization that makes to pick out an order of the test case that may be effective on 

average sresultant versions of software.  

b) Version Specific prioritization  that worries with explicit version of the software.  

Test Case Prioritization are often classified any as given below:  

 

a) Comparator techniques: These accommodate random ordering and best ordering.  

b) Statement level techniques: These techniques also are called Fine Granularity. They 

accommodates of total statement coverage prioritization, extra statement coverage prioritization, 

total fault-exposing-potential (FEP) prioritization further FEP prioritization.  

c) Function level techniques: These techniques also are called as Coarse Granularity. They 

accommodates  whole operate coverage prioritization, extra function coverage, total FEP 



14 
 

prioritization, more FEP prioritization and total fault index (FI) prioritization, additional Fault 

Index (FI) prioritization, whole FI with FEP coverage prioritization and other FI with FEP 

coverage prioritization.  

 

 Hybrid Approach  

Hybrid Approach of regression testing because the name suggests is that the hybrid of each 

Regression Test Selection and Test Case Prioritization. This approach consist features and 

properties of each test case selection and test case prioritization techniques. It is an well-

organized approach. There are range of researchers performing on this approach and  that they 

have planned several algorithms for it. For instance,  

a) Test Selection Algorithm: planned by Agawam et al. Implementation of algorithm [11]:  

 Input  

 Test Selection algorithm: Adjust module and decrease module  

 Output.  

b) Hybrid technique planned by Wong et al which mixes decrease, changes and prioritization 

based mostly choice exploitation selection using test history. 

1.9 Method of Regression Testing 

a) Run the entire existing test: The most wide used regression strategy is to run all of the 

previous tests. If there’s a test that has been written, and it absolutely was run before, it goes into 

the regression suite. However this strategy has a few downsides.  If all those tests are manual – 

when running identical tests 4-5 times, the testers are attending to be bored and exhausted. If the 

regression suite includes all of the presented tests, it’s attending to be monumental. Even once a 

regression suite contains all of the tests, and they all pass, this doesn’t mean there aren’t defects. 

Testing an application one hundreds percent is perhaps not possible.  

 b) Run test that are at high risk: Another methodology used for regression suites is to 

implements tests that area unit high threat. The tests you have to run ought to be organized by the 

business users. Tests that are the mainly vital to the business clients area unit  are those processes 

the business users do constantly—and the usefulness is discriminating to them. Keep in mind 



15 
 

that as the application changes, the key business techniques might likewise change.  It is critical 

to determine a period confine in your test arrangement for the high-hazard tests. Depending on 

what else needs to be incorporated in the regression suite, 30-40 percent of your total regression 

time is often assigned for high risk tests. 

c) High Defect Feature: The third technique is high-surrender highlights. This tests common 

range of the application that are high desert regions or zones that are extremely advance . May be 

it’s simply the highlight that is complex– it may incorporate complex estimations or joining with 

one or more different applications. This additionally incorporates functionalities that have had 

several defects within the past. 

d) Exploratory Testing: The final technique is named exploratory testing – this is often NOT 

random testing. True random testing are often done by anyone – with no information of the 

application or testing – it’s all random. Exploratory testing is regarding doing test suit style and 

execution at a similar time. As you produce and execute these tests, you find issues and features 

inside the application. These revelations drive what is tried next.  Verify there are sufficient 

notes for you and the designer to replicate any issues. Exploratory testing exploits the analyzer’s 

experience and accepting of application testing. 

e) Automation Testing: If you’ve got variety of regression tests, automation will be brilliant to 

reduce the quantity of tests to run yourself. Automation tools, like HP’s Unified Functional 

Testing, can run the tests fastly. Therefore, this reduces the quantity of your time required to 

implement the similar test throughout the regression testing section. A manual test will take five 

minutes to implements; however that very same test could take less than a minute to implements 

through Unified Functional Testing. This could assist you to induce a additional comprehensive 

regression test suite. However, automation isn’t a fast fix. Automation scripts take time to 

develop. You ‘ve got to permit for time between regression runs to develop and obtain the tests 

operating. If your surroundings is dynamic, automation scripts can ought to  updated 

consequently [8]. 

                                                                                                          

 

http://www8.hp.com/us/en/software-solutions/software.html?compURI=1172957
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1172957


16 
 

                                                                                                                            CHAPTER 2 

                                                                        REVIEW OF LITERATURE 

Reetika Nagar et al says Maintenance of software is a very crucial and important task but it is a 

very expensive process. Therefore, Software Maintenance Testing is important throughout 

package testing section. Error and defect found throughout testing method should undergo a re-

check the method so that flaws, that is, defects and errors can be eliminated simply. By doing 

thus, check cases are fully required to evolve and modify in line with the ever-changing needs. In 

this paper, a brief introduction of several maintenance testing’s such as confirmation testing and 

regression testing; and introduction of maintenance testing techniques has been given. These 

techniques are to be used in testing during software development to make testing process 

effective.[1] 

Thillaikarasi  Muthusamy et al says  Regression Testing is that the method of  running the test 

cases which have passed on the previous build or release of the application under test in order to 

validate that the original features and functions are still working as they were previously. It’s 

impossible and in-sufficient resources to re-execute each action for a program if modification 

occurs. This downside of regression testing often solved by prioritizing test cases. A regression 

test case prioritization technique involves re-ordering the execution of test suite to extend the 

speed of fault detection in past stages of testing method. In which paper, test case prioritization 

algorithm is planned to find the severe faults and progress the speed of fault detection. This is 

planned test case prioritization algorithm prioritizes the test cases supported four team of 

practical weight issue such as: customer allotted priority, developer observed code execution 

complexness, changes in necessities, fault impact, fullness and traceability. [2] 

Hossain, M et al says Companies that provide web applications need to perform frequent 

regression testing as result of corporations usually encounter numerous security attacks and 

common feature inform demands from users. Typically, such applications require regression 

testing processes that require minimal test effort because they have already been deployed and 

used in the field. In our previous work, we presented an efficient regression testing approach that 

enable us to focal point  to target the areas of code that are modified and to regression test them 

to deal with this drawback. Whereas our experiment results showed that this method is 



17 
 

economical in saving the cost of regression testing by dropping the amount of test paths 

necessary for the changed program, we also learned that resolving input constraints requires a lot 

of effort. In this paper, to accommodate further savings with regression testing, we have a 

tendency to present a way that finds the reusable constraint values for regression test cases.[3] 

Wenhong Liu et al says The adequacy of the regression testing and the minimization of the test 

case suite are the important parts of the research in the field of software testing. In this paper, for 

the characteristics of regression testing, a regression test case techniques supported the analysis 

of the connection is planned. By analyzing the relationship between the testing requirements, 

testing requirements and test cases, test cases and software faults, software faults and software 

changes, with the priority of the testing requirements and test cases, it achieves the function of 

screening the regression test case suite. At the same time, it provides a wizard for the test case 

design of the new testing requirements. This method improves the efficiency and adequacy of the 

software regression testing effectively.[4] 

McMaster, S et al says Making machine controlled tests that exercise an internet application 

through a browser may be a difficult and long method. During this paper, we describe a new tool 

presently underneath open-source progress, internet Testing adventurer, that uses runtime state 

from the web application as feedback to search for defects in real-time and automatically create 

increasingly longer test cases with oracles for later execution while providing testers with the 

flexibility needed to deal with numerous web testing challenges.[5] 

Leotta, M et al says There are several approaches for automated functional web testing and the 

choice among them depends on a number of factors, including the tools used for web testing and 

the costs associated with their adoption. In this paper, we present an empirical cost/benefit 

analysis of two different categories of automated functional web testing approaches: (1) capture-

replay web testing .On a set of six web applications, we evaluated the costs of applying these 

testing approaches both when developing the initial test suites from scratch and when the test 

suites are maintained, upon the release of a new software version. Results indicate that, on top of 

the one hand, the development of the test cases is more expensive in terms of time required when 

the programmable web testing approach is adopted, but on the other hand, test suite maintenance 

is less expensive when this approach is used .We found that, in the majority of the cases, after a 

small number of releases ,the cumulative cost of programmable web testing becomes lower than 



18 
 

the cost involved with capture-replay web testing and the cost saving gets amplified over the 

successive releases.[6] 

Lei Xu et al says Net application testing is worries with various and sophisticated testing 

objects, strategies and processes. Thus a testing framework fitting for the properties of Web 

application is needed to guide and organize all the testing tasks. Supported  the analysis for net 

application characters and fixed software testing method, the process for net application testing is 

modelled, that describes a series of testing flows like the testing demand analysis, check cases 

generation and choice, testing execution, and testing output analysis and measuring.[7] 

N. Prakash1 et al says Cost and time effective reliable test case prioritization technique is the 

need for present software industries. The test case prioritization for the entire program consumes 

more time and the selection of test case for entire software is also affecting the test performance. 

In order to alleviate the above problem a new methodology using modular based prioritization 

test cases is proposed for testing of regression. In this method the program is divided into 

multiple modules. The test cases corresponding to each module is prioritized first. In the second 

stage, the individual modular based prioritized test suites are combined together and further 

prioritized for the whole program. This method is verified for fault coverage and compared with 

overall program test case prioritization method. The planned process is assess using 3 standard 

applications called Hospital Management System, University Students Monitoring System and 

Industrial Process Operation System. The empirical studies illustrate that the planned algorithm 

is significantly performed fine. The superiority of the proposed method is also highlighted.[8] 

 

Xiaolin Wang et al says Test case prioritization innovation is to sort the experiments before the 

product testing intended to enhance test productivity. This paper displays an element experiment 

prioritization procedure taking into account multi-objective. It incorporates a few customary 

single-target innovations with the goal that makes it more adaptable. This innovation, from five 

measurements, figures prioritization estimations of experiments independently. At that point a 

weighted entirety is made to the qualities and it sorts the experiments as indicated by the 

qualities. The outcomes come back to the capacity keeping in mind the end goal to rapidly alter 

the kind of experiments. This innovation not just takes care of the levels of popularity of relapse 

testing, additionally guarantees the high effectiveness of the test outcomes.[9] 



19 
 

Chu-Ti Lin et al says Test case prioritization procedures plan the experiments in a request in 

light of some particular plane then tests with best blame discovery ability are running at an 

starting position within the relapse test case. Numerous earlier experiment prioritization 

methodologies are code-based, by which the testing of every product form is measured as an 

autonomous procedure. Really, the test after-effects of the former programming renditions will 

be valuable for booking the experiments of the future programming forms. A few scientists have 

planned past-based ways to deal with issue, they established that the quickly going before test 

outcome gives the similar location worth to organizing the experiments of the progressive 

programming form over the whole lifetime of the product advancement process. Consequently, 

this paper depicts continuous exploration that study that whether the reference estimation of the 

promptly going before test outcomes is variant mindful and propose an experiment prioritization 

methodology in light of our perceptions. The trial results show that, in examination to existing 

methodologies, the exhibited one can calendar experiments all the more successfully.[10] 

 

Bo Jiang et al says Test case prioritization allocates the running needs of the experiments in a 

given test suite with the point of attaining to specific objectives. Numerous existing experiment 

prioritization methods however expect the undeniable accessibility of code scope information, 

issue history, or test detail, which are sometimes decently kept up in numerous programming 

advancement ventures. This paper proposes a novel group of LBS systems. They make versatile 

tree-based randomized investigations with a versatile randomized hopeful test set method to 

differentiate the investigations among the extensions of the investigation trees built with the test 

inputs in the test cases. They dispose of the presumption on the chronicled connection of code 

scope between system adaptations. Our methods can be connected to projects with or with no 

past variants, and thus are more general than numerous existing experiment prioritization 

procedures. The exact study on four prominent UNIX utility benchmarks demonstrates that, as 

far as APFD, our LBS procedures can be as compelling as a portion of the best code scope based 

avaricious prioritization systems ever proposed. We likewise demonstrate that they are altogether 

more productive and adaptable than the last procedures.[11] 

Arafeen, M.J. et al says When programming frameworks develop, diverse sums and sorts of 

code alterations can be included in distinctive adaptations. These variables can influence the 

expenses and profits of relapse testing systems in diverse ways, and consequently, there might be 



20 
 

no particular relapse checking method that is the much savvy strategy to use on each form. To 

date, numerous relapse testing procedures have been proposed, however no exploration has been 

carried out on the issue of helping professionals efficiently pick fitting strategies on new forms 

as frameworks advance. To address this issue, we propose versatile relapse testing (ART) 

methods that endeavour to recognize the relapse testing strategies that will be the most practical 

for every relapse testing session considering association's circumstances and testing 

environment. To evaluate our methodology, we led a trial concentrating on experiment 

prioritization strategies. Our outcomes demonstrate that prioritization methods chose by our 

methodology can be more practical than those utilized by the control approaches.[12] 

Harrold, M.J et al says Regression testing is an essential movement that can represent a vast 

extent of the expense of programming upkeep. One way to decreasing the expense of relapse 

testing is to utilize a particular relapse testing system that: picks a division of a test case that was 

utilized to check the product before the alterations; then uses this subset to test the changed 

programming. Specific relapse testing procedures diminish the expense of relapse testing if the 

expense of selecting the subset from the test suite together with the expense of running the chose 

subset of experiments is not exactly the expense of rerunning the whole test suite. Rosenblum 

and Weyuker (1997) proposed scope based indicators for utilization in anticipating the adequacy 

of relapse test choice techniques. Utilizing the relapse testing expense model of Leung and White 

(1989; 1990), Rosenblum and Weyuker showed the appropriateness of these indicators by 

performing a contextual investigation including 31 variants of the Korn Shell. To further 

research the appropriateness of the Rosenblum-Weyuker (RW) indicator, extra experimental 

studies have been performed. The RW indicator was connected to various subjects, utilizing two 

diverse particular relapse testing instruments, Deja vu and Test Tube. These studies help two 

conclusions. Initially, they demonstrate that there is some variability in the accomplishment with 

which the indicators work and second, they propose that these outcomes can be enhanced by 

fusing data about the dispersion of changes. It is demonstrated how the RW expectation model 

can be enhanced to give such a bookkeeping.[13] 

Liang You et al says According to this paper author found that after the developer fixes the bugs 

and improves the usefulness of the product venture, relapse testing reruns the relapse testing 

suite to guarantee that the new form programming undertakings can run easily and effectively. 

Since the relapse testing is the most extravagant period of the product testing, regression testing 



21 
 

lessening takes out the excess experiments in the relapse testing suite and spares the expense of 

the relapse testing. This paper formally characterizes the time-mindful relapse testing 

diminishment issue. It additionally proposes a novel hereditary calculation for the time-mindful 

relapse testing lessening issue. It characterizes the representation and wellness capacity of the 

hereditary calculation; it likewise portrays the guardian determination, hybrid and change 

administrator of the hereditary calculation. The novel calculation not just uproots excess 

experiments in the relapse testing suite additionally minimizes the aggregate running time of the 

staying experiments. At long last, the paper assesses the hereditary calculation utilizing eight 

case programs. The exploratory result shows the productivity of the proposed hereditary 

calculation for the time-mindful relapse testing lessening issue.[14] 

Xiao Qu et al says According to this paper configurable frameworks that let clients modify 

framework practices are getting to be progressively predominant. Testing a configurable 

framework with every single conceivable arrangement is extremely extravagant and regularly 

unfeasible. For a solitary variant of a configurable framework, inspecting methodologies exist 

that select a subset of arrangements from the full setup space for testing. In any case, when a 

configurable framework changes and develops, existing methodologies for relapse testing select 

all setups that are utilized to test the old forms for testing the new form. As exhibited in our 

examinations, this retest-all methodology for relapse testing configurable frameworks ends up 

being profoundly excess. To address this repetition, creator proposes a setup choice methodology 

for relapse testing. Formally, given two forms of a configurable framework, S (old) and S' (new), 

and given an arrangement of arrangements CS for testing's, our methodology chooses a subset 

CS' of CS for relapse testing S'. as indicated by their study comes about on two open source 

frameworks and a vast mechanical framework demonstrate that, contrasted with the retest-all 

approach, our methodology disposes of 15% to 60% of designs as excess. Their methodology 

likewise spares 20% to 55% of the relapse testing time, while holding the same shortcoming 

discovery capacity and code scope of the retest-all methodology.[15] 

Engstrom E. et al says History based regression testing was proposed as a premise for 

robotizing relapse test determination, with the end goal of enhancing straightforwardness and test 

effectiveness, at the capacity test level in a substantial scale programming advancement 

association. The study goes for researching the flow manual relapse testing process and 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiao%20Qu.QT.&newsearch=true


22 
 

additionally receiving, actualizing and assessing the impact of the proposed technique. Strategy: 

A contextual investigation was dispatched including: distinguishing proof of critical components 

for prioritization and choice of experiments, execution of the technique, and a quantitative and 

subjective assessment. As indicated by creator comes about 10 separate components, of which 

two are history-based, are recognized as critical for determination. The greater part of the data 

required is accessible in the test administration and lapse reporting frameworks while some is 

inserted simultaneously. Straightforwardness is expanded through a semi-computerized system. 

Their quantitative assessment demonstrates a plausibility to enhance effectiveness; while the 

subjective assessment underpins the general standards of history-based testing however 

recommends changes in usage subtle elements.[16] 

Shiming Sun et al says According to this paper relapse testing is a critical procedure amid 

programming improvement. With a specific end goal to lessen expenses of relapse testing, 

research on advancement of plan of relapse testing have been done in this paper. With the end 

goal of diminishing the quantity of experiments and identifying flaws of projects early, this paper 

proposed to consolidate experiment choice with experiment prioritization. Relapse testing 

procedure has been composed and streamlining of testing plan has been executed. The standard 

of experiment determination is alter effect of projects, discovering projects which are affected by 

system adjustment as indicated by adjust data of projects and conditions between projects. 

Experiments would be chosen amid experiment choice. The rule of experiment prioritization is 

scope capacity and investigating abilities of experiment. Experiments which have been chosen 

amid experiment choice would be requesting in experiment prioritization. At long last, the 

viability of the new system is talked about.[17] 

Kayes M.I. et al says According to this paper experiment prioritization procedures include 

planning experiments for relapse testing in a request that builds their viability at gathering a 

number of execution objective. This is wasteful to re running all the experiments in relapse 

checking after the product adjustments. Utilizing data got from past experiment execution, 

prioritization methods arrange the experiments for relapse testing so that most gainful are 

executed first consequently permits an enhanced viability of testing. One execution objective, 

rate of reliance distinguished among issues, measures how rapidly reliance among shortcomings 

are recognized inside the relapse testing methodology. An enhanced rate of flaw reliance can 



23 
 

give speedier criticism on programming and let designers begin troubleshooting on the extreme 

blames that cause different flaws to seem later. In which paper introduces the original metric for 

evaluating charge of issue reliance discovery and a calculation to organize experiments. Utilizing 

the new metric the viability of this prioritization is indicated contrasting it and non-organized 

experiment. Examination demonstrates that organized experiments are more viable in 

distinguishing reliance among issues.[18] 

. 

                                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                

 

 

 

 

 

 

 



24 
 

   CHAPTER 3 

  PRESENT WORK 

In this chapter, we are going to present the problem of our research work, its objectives, the 

methodology that we used for our proposed approach and the introduction of the tool  which will 

be used to complete the task. In the 3.1 section we explain how we formulated our problem and 

what the approach we are going to use. In the 3.2 and 3.3 section the objectives and methodology 

of the work done. In the methodology the flow of our work with the help of flow chart is 

explained. 

3.1PROBLEM FORMULATION 

Web testing is used widely in the various fields of computers and business. The uses of various 

companies have been increasing rapidly. The changing in their formats and requirements 

changes day by day. Due to changes in various fields of web applications the testing has to be 

performed again and again. A company that provides web applications undergoes different 

security attacks and feature changes in their products according to demands of users. Due to 

changes various patches undergoes under different regression testing approaches. Regression 

testing can be done on the basis of different types of changes made in entire project. Test suite 

has to be developed for the regression testing purpose. The test case used for the regression 

testing has been reused to save time and effort required to develop new test cases. The 

constraints value used in test cases get reused and these cases have been used for web testing. 

The main problem occurred in reusability of test cases is that it does not consider optimization of 

test suites developed automatically. The test cases generated has been optimized using expert 

system. In this test cases that have been develop using reusability constraints that must be act as 

priority based test cases for regression testing. Test suites must contain all subset to test previous 

versions as well as new changes done in these cases.  

 

3.2 OBJECTIVE 

The reusability causes failure error due to rapid changes in the web applications. In these 

applications constraints value reuse must be optimized and validated.  

The main objectives of research study are: 

 



25 
 

 To develop different test cases for web testing on the basis of priority and functionality. 

 To implement constraint reusability using previous version of test suites.  

 To validate different test cases using checksum approach.  

 To optimize the test case sequence by using genetic algorithm. 

 To increase the reusability of constraints and test cases. 

 To validate purposed work comparison between purposed and previous work on the 

basis of parameters 

 

3.3  METHODOLOGY 

In this work various test cases have been used for the purpose of regression testing when some 

changes has been made in the previous developed system. These test cases has been developed 

using different priorities and constraint values. Due to vast changes occurred in various sites of 

different online marketing services providers, regression testing has to be performed again and 

again. The test cases generate again and again takes time and cost effort. To reduce this effort 

reusability of various test case constraints has been used to perform regression testing of changed 

web application. Reusability of different test cases has been done by using different test cases 

prioritizations on the basis of these various constraints has been developed by on the basis of 

previous values and new constraints has to be used for checking of which changes has been made 

does not affect previous applications. These test suits have to be optimized on the base of 

different type of optimization approaches using different types of optimization approaches. 

 

 

 

 

 

 

 

 

 

 



26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 Figure 3.3 flow chart of methodology 

 

3.4 Genetic Algorithmic Steps 

 

Input – Test sequence coverage area, Number of test cases 

Output – Best test case execution sequence 

Begin  

Initialize population 

Select random candidate 

Evaluate each candidate 

int crossover probability 

int mutation probability 

for i=1; number of test case 

generate random execution sequence 

end 

for i=1:n 

Previous Web Applications  Modified Application 

Reusability of constraints 

Previous Test case 
New test Cases  

Similarity matching between 

these cases 

Priority checking of test cases 

Regression testing  

           optimization 



27 
 

chromosomes = generated sequence 

for each chromosome 

select two parents randomly 

crossover operator 

if (child) ≠ parent : add to generation 

end if 

end for loop 

for each chromosome 

select 1 test case from n sequence 

child – mutation (chromosome)_ 

end for loop 

evaluate fitness of new generation 

for 1 to no. of child generation 

CA = compute coverage area for each sequence of test cases 

Sort (CA) 

End 

% select best sequence 

Select the sequence having maximum (CA) 

Best test case sequence = maximum convergence for sequence 

End. 

 

 

 

 

 

 

 

 

 

 



28 
 

                                                                                                                          CHAPTER 4 

                                                               RESULTS AND DISCUSSION 
In this chapter we discussed the results of our research. 

4.1 Tool Used 

In our study we used eclipse tool to calculate the reusability. Eclipse is an integrated 

development environment (IDE). It contains a base space and an protrusible plug-in system for 

customizing the surroundings.  It written mainly in Java, Eclipse may be wont to develop 

applications. By means that of varied plug-INS, Eclipse might also be wont to develop 

applications in different programming languages It may be wont used to create packages for the 

software Mathematic. The Eclipse package development kit (SDK), which incorporated the Java 

development tools, is supposed for Java developers. Users will expand its talents by putting plug-

ins written for the Eclipse Platform, like development toolkits for different programming 

languages, and may write and contribute their own plug-in modules. Eclipse SDK is free and 

open supply package. It absolutely was one in all the first IDEs to run under GNU Class path and 

it runs without problems under Iced Tea. 

4.2 GUI Start-up 

In this figure, Choose File 1 button represents the original source file that needs to be chosen. 

Choose File 2 represents the modified version of the previous original source file. 

 



29 
 

Figure 4.1: GUI at Start-up 

4.3 Pop up box for choosing the file 

In, this figure the popup box is shown that appears when choose buttons are clicked so that user 

can select the original and modified version of source file from any location within the computer.  

 

Figure 4.2: Pop up box for choosing the file. 

4.4 Output when both files are chosen 

The text area in the figure represents the source code of the selected files that is the original 

source file and modified file.  

 

Figure 4.3: Output when both files are chosen  



30 
 

4.5 Output when Pre-process/Extract Variable Button is clicked. 

The text area in the figure represents the output of the selected files that is the original source file 

and modified file. Pre-process/Extract variables function extracts the variables from the pair of 

files selected. 

 

Figure 4.4: Output when Pre-process/Extract Variable Button is clicked. 

 

4.6 Output when Compare Button is clicked. 

The text area in the  figure represents the output of the comparison of both the selected files that 

is the original source file and modified file. Comparison of both files is done in order to find out 

where actually the changes have been made in the code. 

 



31 
 

 

Figure 4.5: Output when Compare Button is clicked. 

4.7 Output when Extract Constraints Button is clicked 

The text area in the  figure represents the constraints of the selected files that is the original 

source file and modified file. Checksim algorithm is used to find out the constraints and their 

dependability. 

 

.Figure 4. 6: Output when Extract Constraints Button is clicked. 



32 
 

4.8 Output when Compute Reusability Button is clicked. 

The text area in the figure represents the percentage of reusability of the selected files that is the 

original source file and modified file.  

 

Figure 4.7: Output when Compute Reusability Button is clicked. 

4.9 Output when Generate Button is clicked. 

The text area in the figure represents the test paths of the selected files that is the original source 

file and modified file. 



33 
 

 

Figure 4.8: Output when Generate Button is clicked. 

4. 10 Output when Execute Genetic Algorithm Button is clicked. 

The text area in the figure represents the output of paths when Genetic Algorithm is applied on 

the previous generated paths of the selected files that is the original source file and modified file.  

 

 



34 
 

 

Figure 4. 9: Output when Execute Genetic Algorithm Button is clicked. 

 

Table 4.11 Reusability Table 

Version Pair 0 & 1 0 & 1 0 & 1 

Total Path 8 6 10 

Total Inputs 4 3 3 

Reusable Inputs 3 3 2 

Regression 

Paths 

 

11(1) 2(19,21) 3(13,14,17) 

Reusability 75% 100% 66% 

Table 1: Result Table 

 

 



35 
 

4.12 Total Number of Paths 

This Graph represents total number of executable path in the code. In the first pair there are 8 test 

paths whereas the second pair consists of 6 paths and the third pair consist the highest number of 

test paths that is 10. 

 

 

  

Figure 4.10: Total Number of Paths 

4.13: Total Number of Inputs 

This graph represents total number of inputs. In the first pair there are 4 input values that are 

needed to be provided whereas the second and third pair needs 3 inputs 

 

0 

2 

4 

6 

8 

10 

12 

1 2 3 

Total Path 

Total Path 



36 
 

  

Figure 4.11: Total Number of Inputs 

4.14 Reusable Inputs 

This graph represents the main result that is in the first and second pair 3 inputs can be reused 

whereas 2 inputs can be reused in the third pair. 

 

 

 

Figure 4.12: Reusable Inputs 

 

 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

1 2 3 

Total Input 

Total Input 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

1 2 3 

Resuable Input 

Resuable Input 



37 
 

4.15 Reusability 

This graph represents reusability percentage of the input values. Reusability percentage can be 

calculated by total number of inputs divided by reusable inputs. The first pair provides 75% of 

reusability and third pair 66% whereas second pair gives 100% reusability of its input values.  

 

 

Figure 4.13: Reusability 

4.16 Reusability if 1
st
 File 

This graph shows that 75% reusability is achieved in terms of input value reusability and 

constraints reusability 

 

 

Figure 4.14: Reusability if 1
st
 File 

0 

20 

40 

60 

80 

100 

120 

1 2 3 

Reusability % 

Reusability % 

0 

20 

40 

60 

80 

100 

resuability % 

resuability % 



38 
 

4.17: Reusability of 2
nd

 File 

This graph shows that 100% reusability is achieved in terms of input value reusability and 

constraints reusability 

 

Figure 4.15: Reusability of 2
nd

 File 

4.18 Reusability of 3
rd

 File 

This graph shows that 66% reusability is achieved in terms of input value reusability and 

constraints reusability 

 

 

Figure 4.16: Reusability of 3
rd

 File  

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

resuability % 

resuability % 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

resuability % 

resuability % 



39 
 

 

4.19 Previous Flow of Work 

In existing work, the test cases of previous version are created. Then when the code is modified, 

new test cases are generated. Test Cases from both previous version and Updated version are 

reused. Reusability is computed. 

 

 

 

                                

 

 

 

 

 

 

  

 

                                                Figure 4.17: flow chart of previous work 

                                                                                          

4.20 Proposed Work of flow 

In the present work, the constraints from both the version are checked if they can be reused. 

Checksim algorithm is used to find out the reusable constraints. Test cases are generated by 

using reusable constraints. Test Case execution sequence is generated on how to run the test 

cases with full efficiency. Further Genetic Algorithm is used to find out the best test case 

execution sequence. Lastly Parameters are computed such as reusable constraints, time and cost. 

 

 

 

Previous version Updated version 

Test cases New test cases 

Reuse previous 

test cases 

Compute 

reusability 



40 
 

 

 

 

 

 

 

 

                                                                                           

 

 

 

 

 

 

 

 

Figure 4.18:flow chart of proposed work 

 

 

 

 

 

 

                                                                                             

Previous version Updated version 

Find constraints Modified constraints 

CheckSim to find out those 

Constraints can be Reused 

 

Test Case Generation by using 

Reusable constraints 

Generate Test Case Execution 

Sequence 

 

GA Algo to find best  Sequence 

that test modifications 

 

Compute Parameters, Reusable 

Constraints, Time and Cost 

 



41 
 

                                                                                             CHAPTER 5 

 CONCLUSION AND FUTURE WORK 

Software engineering is the branch of computers to develop platform for various applications to 

be execute. Various applications that have been used for various purposes have to be tested for 

their validity and integrity. Due to changes occurred in an organization and requirements of the 

users different modifications has to be done in software application.  

In the process of modification in application has to be validating by using test cases. To validate 

these modification regression testing has to be performed on each single iteration of the modified 

version. To perform regression testing each time new test cases has to be designed that use time 

and cost for a developer. In the purposed work to decrease the efforts and time to create test 

cases each time reusability of these test cases constraint has been purposes. In the purposed work 

two application versions have been used that is one is previous version and other is modified 

version. These modifications have to undergo regression testing for performance evolution. To 

perform this work the constraints of the previous version and modified version have been 

matched and selected that can be reused in the generation of test cases.  

In purposed work these cases has been designed on the basis of functionality and reusability of 

the constraint has been done so that that takes minimum time for generation of test case.  Check-

Sim algorithm is used to match the constraint values. On the basis of these values the constraints 

have been reused. After reusability of these constraints, theses test cases have to be executed for 

testing for checking the functionality. To execute these cases on the basis of priority of area 

coverage adaptive TCP algorithm is used that provide as sequence of execution. This sequence 

has to be optimized by Genetic algorithm which uses population size, crossover and mutation 

probability for generation of new Childs. These operators used to evaluate fitness of each test 

case and on the basis of fitness best sequence has been selected executed. 

For performance analysis of the purposed system parameters has been evaluated, these parameter 

are time, percentage of reusability are computed. These parameters have been compared with 

previous result that concludes that our approach is better than previous one. 



42 
 

In the future work test cases reusability can be used in various real time applications. This 

reusability can be done by different algorithm and test case sequence can be optimized by other 

artificial intelligence approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

CHAPTER 6 

  LIST OF REFERENCES 

 

[1] Reetika Nagar “Introduction of Software Maintenance Testing”, ISSN 2277 128X, IEEE, 

2014. 

[2] Thillaikarasi Muthusamy “A New Effective Test Case Prioritization for Regression 

Testing based on Prioritization Algorithm”, ISSN 2249-0868, IEEE, 2014. 

[3] Hossain, M “Regression Testing for Web Applications Using Reusable Constraint 

Values” ISSN 14351440, pp 312 – 321, IEEE, 2014. 

[4] Wenhong Liu “Research and Application of Regression Test Case Design Methods Based 

on the Analysis of the Relationship” ISSN 13874437, pp 233 – 236, IEEE, 2013 

[5] McMaster, S “Developing a Feedback-Driven Automated Testing Tool for Web 

Applications” ISSN 978-1-4673-2857-9, pp 210 – 213, IEEE, 2012. 

[6[ Leotta, M. “Capture-replay vs. programmable web testing: An empirical assessment 

during test case evolution”, ISSN 13916982, ISSN 13916982, pp. 272 – 281, IEEE, 2013. 

      [7] Lei Xu “A framework for Web applications tests”, ISSN 0-7695-2140-1, pp. 300 – 305, 

     IEEE 2014.            

 [8] N. Prakash1 “Modular Based Multiple Test Case Prioritization N. Prakash1,” 

International Conf. on Computational Intelligence & Computing Research (ICCIC), 2012, pp 

1 – 7. 

 [9]Xiaolin Wang “Dynamic test case prioritization based on multi-objective” IEEE Conf. on 

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 

(SNPD), 2014, pp 1 – 6. 

 [10] Chu-Ti Lin “History-Based Test Case Prioritization with Software Version Awareness” 

IEEE Conf. on Engineering of Complex Computer Systems (ICECCS) 2013, pp 171 – 172. 

 [11] Bo Jiang “Bypassing Code Coverage Approximation Limitations via Effective Input-

Based Randomized Test Case Prioritization” IEEE Conf. on Computer Software and 

Applications Conference (COMPSAC), 2013, pp 190 - 199   

 [12] Arafeen, M.J. “Adaptive Regression Testing Strategy: An Empirical Study” IEEE Conf. 

on Software Reliability Engineering (ISSRE), 2011, pp 130 – 139. 



44 
 

[13] Harrold, M.J “Empirical studies of a prediction model for regression test selection” IEEE 

Conf. on Software Engineering, IEEE Transactions, 2002, pp 248 – 263. 

[14] Liang You ; Wuhan, China ; Yansheng Lu “A genetic algorithm for the time-aware 

regression testing reduction problem” published in 8
th

 International Conference on Natural 

Computation (ICNC), PP 596-599, 2012.  

[15] Xiao Qu ; Acharya, M. ; Robinson, B “Configuration selection using code change impact 

analysis for regression testing” published in 28
th

 IEEE International Conference on software 

maintenance (ICSM), PP 129-138, 2012. 

[16] Engstr m, E. ; Runeson, P. ; Ljung, A. “Improving Regression Testing Transparency and 

Efficiency with History-Based Prioritization -- An Industrial Case Study” published in IEEE 4
th

 

International Conference on software testing verification and validation (ICST), PP 367-376, 

2011. 

[17] Shiming Sun ; Xiuping Hou ; Can Gao ; Linlin Sun “Research on optimization scheme of 

regression testing” published in IEEE 9
th
 International Conference on natural computation 

(ICNC), PP 1628-1632, 2013. 

  [18] Kayes, M.I. ; Quality Assurance Eng., Software People, Dhaka, Bangladesh “Test case               

prioritization for regression testing based on fault dependency” published in IEEE 3
rd

  

International Conference on Electronics computer technology (ICECT), PP 48-52, 2011. 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Liang%20You.QT.&searchWithin=p_Author_Ids:38252160600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yansheng%20Lu.QT.&searchWithin=p_Author_Ids:37280556100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiao%20Qu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Acharya,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Robinson,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Engstro.AND..HSH.x0308;m,%20E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Runeson,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ljung,%20A..QT.&searchWithin=p_Author_Ids:38076882100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shiming%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiuping%20Hou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Can%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Linlin%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kayes,%20M.I..QT.&searchWithin=p_Author_Ids:38180793600&newsearch=true

