
i

 ENHANCING ANDROID OPERATING SYSTEM

 SECURITY BY BLOCKING SYSTEM CALLS

 OF MALICIOUS APPLICATIONS USING REFLECTION

A Dissertation Proposal

submitted

By

 Sabir Ali

To

Department of Computer Science Engineering

In partial fulfillment of the Requirement for the

Award of the Degree of

Master of Technology in Computer

Science and Engineering

Under the guidance of

 Ms. Anu Garg

(May,2015)

1

2

 DECLARATION

I hereby declare that the dissertation proposal entitled, “Enhancing Android Operating

System Security by Blocking System Calls of Malicious Applications Using

Reflection” submitted for the M.Tech Degree is entirely my original work and all

ideas and references have been duly acknowledged. It does not contain any work for the

award of any other degree or diploma.

Date: Investigator

 Regn No.:- 11107977

3

ABSTRACT

 Android Operating System is emerged as most popular mobile Operating System in this

decade. Millions of Android devices are activated each day. The popularity also come across

thousands of malwares spread from various Appmarkets. Android Operating System consists

of various layers. The application layer relies upon the Linux Kernel layer in various security

aspects. We analyzed system call pattern of various applications in four category like

gaming, utility, social applications and media based applications. The analysis is based upon

the Reflection Method call and reflection field access parameter. We found a pattern between

privacy leakage level and reflection method call percentage of any application. It leads to

detect malware in Android platform.

Keywords: Malware, Reflection, System Call, RMC,RFA

4

CERTIFICATE

This is to certify that Sabir Ali has completed M.Tech dissertation proposal titled

“Enhancing Android Operating System Security by blocking system calls of malicious

Applications using Reflection” under my guidance and supervision. To the best of my

knowledge, the present work is the result of his original investigation and study. No part of

the dissertation proposal has ever been submitted for any other degree or diploma.

The dissertation proposal is fit for the submission and the partial fulfillment of the condition

for the award of M.Tech in Computer Science and Engineering.

Date: 27
th

 April,2015 Signature of Advisor

 Name: Ms. Anu Garg

 UID: 16829

5

 ACKNOWLEGEMENT

The report has been written with the kind guidance and support of my mentor. The

satisfaction and happiness that accompany the successful completion of any task would be

incomplete without mentioning the names of people who made it possible, whose constant

guidance and encouragement crowns all efforts with our success.

I would like to express my deep gratitude and thanks to my mentor Ms. Anu Garg,

Asst.Professor, as well as Mr. Dalwinder Sir, HOD, School Of CSE, Lovely Professional

University, Phagwara, Punjab for their help and guidance throughout my dissertation work. I

have received an enormous amount of valuable advice and knowledge from her that helps me

a lot in my work. Thank you, Ms. Anu Garg, for providing me motivating support in my

research work.

6

 Table of Contents
LIST OF FIGURES .. 8

CHAPTER 1 ... 9

INTRODUCTION .. 9

1.1 Android ... 11

1.2 Android Architecture .. 12

1.3 Android Platform .. 14

1.4 Components of the Android Application.. 14

1.4.1 Activities... 15

1.4.2 Services .. 15

1.4.3 Content Providers ... 15

1.4.4 Broadcast receivers ... 16

1.5 Configurations of Android Applications .. 17

1.6 The Android security .. 17

1.6.1 Linux Kernel ... 18

1.6.2 Android Applications Signings .. 18

1.6.3 Android permissions ... 19

1.6.4 Vulnerabilities ... 19

CHAPTER 2 ... 21

LITERATURE REVIEW ... 21

CHAPTER 3 ... 26

PRESENT WORK ... 26

3.1 Problem Formulation: ... 26

3.2 Objective ... 26

3.3. Research Methodology .. 27

3.3.1. Static Analysis .. 28

3.3.2. Dynamic Analysis .. 28

3.4. Tools used .. 29

3.4.1 Android SDK ... 29

7

3.4.2 ADB Shell .. 30

3.4.3 Eclipse ... 30

3.4.4 Strace ... 31

3.4.5 Apktool .. 31

3.4.6 Dex2Jar .. 32

3.4.7 JD-gui .. 32

3.4.8. Andrubis ... 33

3.4.9 Apposcopy ... 34

3.5 Reflection ... 34

CHAPTER 4 ... 36

RESULT AND DISCUSSIONS ... 36

CHAPTER 5 ... 45

CONCLUSION .. 45

REFERENCES ... 46

APPENDIX .. 53

8

 LIST OF FIGURES

Figure 1. Market share of Android Operating System .. 9

Figure 2. Android Framework .. 13

Figure 3. Components of Android Application .. 16

Figure 4. Android Security Configuration. ... 17

Figure 5. Security Aspects in Android Layers. ... 18

Figure 6. Permissions of Android Application ... 19

Figure 7. Flowchart of research methodology. .. 27

Figure 8. Static Analysis of Android Application. ... 28

Figure 9. Dynamic Analysis of an Application. ... 29

Figure 10. ADB shell. ... 30

Figure 11. Eclipse IDE. ... 31

Figure 12. Apktool ... 32

Figure 13. jd-Gui tool ... 33

Figure 14. Andrubis Sample Report. ... 34

Figure 15. Accuracy of Apposcopy ... 37

Figure 16. Average Dangerous permissions ... 38

Figure 17. Average Privacy Leaks .. 39

Figure 18. Average RFA value ... 40

Figure 19. Average RMC value. ... 41

Figure 20. Number of Privacy Leaks ... 42

Figure 21. Frequency of Application With RFA values. .. 42

Figure 22. Frequency of Application with RMC values. .. 43

Figure 23. Screenshot 1 and 2 of NotePadTest. .. 44

Figure 24. Screenshot 3 and 4 of NotePadTest ... 44

9

CHAPTER 1

INTRODUCTION

In last few years, Android has emerged as the most popular mobile operating system. In 2013

it crossed 1 billion mark and millions of Android devices are activated each day throughout

the world. It reaches almost 75% market share in 1
st
 quarter of 2014. With the increasing

popularity, Android also became a soft target for malware and viruses. Android‟s current

security model is roughly categorized as Application level security and Kernel level security.

In Application level, security is based on Android permission model and Application

Sandboxing. These are enforced with controlled access of Application components, system

resources etc. While Android permission model is used by the Application developers to

specify the permission their Applications are going to use.

 Figure 1. Market share of Android Operating System

In Kernel level, Application Sandboxing is achieved by Linux Kernel. In Kernel level, the

Linux Kernel DAC (Discretionary Access Control) which is responsible for restricting the

10

access facilitated by an Application. It authorizes the system resources to an Application and

isolates the Applications from each other. In Kernel level, the interaction mechanism

between various layers while forking a system call is exposed too much vulnerability. In The

Android security framework within Linux Kernel, the Zygote Socket shows vulnerability by

allowing malicious Application to fork new process, there is no such mechanism to checking

requesting process id.

In this research we suggest solution of malicious inter-process communication between

Linux Kernel and Android Application Frame work. The module provided by Alessandro et

al is KernelCallController which checks and rules insecure and harmful interaction between

the Android Application Framework and Linux Kernel .But it cannot completely detect the

malicious interplays if the requesting process have sufficient permissions . As the Activity

Manager Service allows any requesting Application to launch new process which have

permissions to do so.

The malicious applications spread through Google Play Store and other third party app

markets. Earlier check mechanism was not there for publishing an application to the app

market .Google introduced a Bouncer tool to put check on the malicious application but it

was not effective. The online application makers tools like AppMkr, Appypie are also

injecting adware codes to applications .These possess real threat to the user data. The rapid

increasing of the malware is because of the popularity of the Android devices and openness

of the Android platform. When a malware in installed in a device it may not activated

instantly, some malwares are activated with user interactions, some need to update

themselves and some malware simply activated with installation.

 In this paper we provide patterns of system calls of malicious applications as well as

goodware or normal applications. In our research we took 100 Android applications of four

categories like gaming, social, utility and media based applications where we applied

reflection field access method and reflection method call percentage to determine the system

call pattern and malicious interplays of an application.

11

1.1 Android

 Android is an open source platform, designed for handset devices. They are widely spread in

the market today and found mostly in mobile phones and tablets. Android Inc led by Andy

Rubin started Android Project in 2006 later on Google acquired Android Inc and started

ASOP project with OHA group led by Google. The unveiling of the Android platform on 5

November 2007 was announced with the founding of the Open Handset Alliance, a

consortium of 34 hardware, software and telecom companies devoted to advancing open

standards for mobile devices. The OHA allows phone makers to run Android on a suitable

handset, without charge. In September 2008, T-Mobile released the first smart phone based

on the Android Platform as well as a Software Development Kit (SDK). The open nature of

Android and easiness to create custom application makes it market leader and popular one. A

survey of mobile platforms market share early in 2014 indicates that the largest market share

is contributed by Android phones. For developer, it gives opportunity to develop apps for a

fairly new market that is booming on a daily basis. With so many users, it‟s never been easier

to write an application that can be downloaded and used by real people. Android gives

developers a way to develop unique, creative applications and get those applications in the

hands of user‟s. Users don‟t have to go searching the Internet to find an app to install. They

just simply go to the Android Market that is preinstalled on their device, and they have

access to all apps .Google also provides online tutorials and Application Programming

Interfaces , which makes Android very developer-friendly and easy to develop. Along all

these Google also provides equal opportunity on neutral platform for all developers from

large companies to small and medium enterprises and also for freelancers.

12

1.2 Android Architecture

Android is not just Mobile Operating System but is a software stack that includes the

middleware and a number of layers.

 Application Layer (A). Application layers reside at the top of the stack and

comprised of both user and system applications which have been installed and

execute on the device. Each Android application is created with set of components

which performs a different role in the logic of the application.

 Application Framework Layer (AF). By providing an open development platform,

the Application Framework provides the main services of the platform that are

exposed to applications as a set of APIs. This layer provides the System Server that is

a component containing the main modules for managing the device (e.g. Activity

Manager and Package Manager) and for interacting with the underlying Linux

drivers.

 Android Runtime Layer (AR). This layer consists of the Dalvik Virtual Machine

(DVM), i.e. the Android runtime core component that executes application built in

the Dalvik Executable format (.dex) which is converted from .class file of Java.

 Libraries Layer (L).

The next layer is the Android‟s native libraries. It is this layer that enables the device

to handle different types of data. These libraries are written in C or C++ language and

are specific for a particular hardware.

Some of the important native libraries include the following:

 Surface Manager: It is used for compositing window manager with off-

screen buffering. Off-screen buffering means you cannot directly draw into

the screen, but your drawings go to the off-screen buffer. There it is combined

with other drawings and form the final screen the user will see. This off screen

buffer is the reason behind the transparency of windows.

13

 Media framework: Media framework provides different media codecs

allowing the recording and playback of different media formats.

 SQLite: SQLite is the database engine used in Android for data storage

purposes.

 WebKit: It is the browser engine used to display HTML content.

 OpenGL: Used to render 2D or 3D graphics content to the screen.

 Kernel layer (K). . The whole Android OS is built on top of the Linux 2.6 Kernel

with some further architectural changes made by Google. It is this Linux that

interacts with the hardware and contains all the essential hardware drivers. Drivers

are programs that control and communicate with the hardware .These functionalities

includes accessing to physical resources (i.e. device peripherals) and ii) the Inter-

Process Communication (IPC) which is further performed via Intents. Device

peripherals (e.g. GPS antenna, Blue- tooth/Wireless/3G modules, camera,

accelerometer) are accessed through Linux drivers installed as kernel modules.

 Figure 2. Android Framework

14

for process management Android Runtime uses DVM instead of JVM.Because JVM needs

heavy computing resource which will have serious impact on system performance. To solve

this problem, DVM is specially designed to replace JVM only for the Android platform.

DVM provides process isolations via application sandboxing which are viewed as one of

security enforcements points in the Android platform.

The Android Application framework defines the system services and developer APIs. The

system service is responsible for low level functionalities while the Application framework

APIs makes system components reusable. Android Applications defines its own static

permissions at Manifest file which is used to govern the access between application

components and resources.

1.3 Android Platform

Android platform implements the permission based security that develop a framework in

order to address the security issues to prevent applications from stealing private data,

maliciously disrupting other applications or the operating system itself. Each application can

expose a subset of its functionalities to other applications if they have been granted the

corresponding permissions. Developers are encouraged to take full advantage of Android‟s

features when writing their own applications.

1.4 Components of the Android Application

An Android Application is built up from various types of components. We discuss the main

components used in Android Application. These are also called building blocks of an

Android Application. These components are Activity, Content Provider, Broadcast Reciever,

Services and Intent. Acitivities are responsible for reacting to the operations and user actions

that a user have performed on the interface

15

1.4.1 Activities

 Activities represent the single screen which the user interacts with. It is also responsible for

reacting to the operations and user actions that a user have performed on the interface. The

activity life cycle include different phases. It starts with onCreate() and ends while

onDestroy() method is invoked. After creation, onStart() is the first point which user can see

an activity on the mobile screen. onResume() also shows a phase the activity is visible but it

recovers the old state. onPause() represents a state that the current activity is shifted to

background and can be on focus at any time .In onStop() phase the activity is still alive but

window manager detached it and it cannot be on focus further. If an application has more

than one activity, then one of them should be marked as the main activity which represents

the start of the application .Main activity is the activity which starts with the launch of the

application. An application can create another activity thus an application can contain

numbers of activity inside. Whenever a new activity is created and enter into start phase, the

old one will not be destroyed its state is pushed into the stack. The old activities are restored

by retrieving its state and regain the focus whenever user navigates back.

1.4.2 Services

 Services work quite similar to activities .A service is a component that runs in the

background to perform long-running operations. It doesn‟t have any graphical interfaces. A

service can be invoked in two different manners. First Directly invoking the method,

startService(), which starts the service exits whenever the background task is finished. The

other way to start a service is with application bindings. A bound service is linked to an

application so the application has to decide the fate of the service.

1.4.3 Content Providers

A content provider component acts database provider from one application to others on

request. Such data access requests are handled by the methods of the ContentResolver class.

The applications are also eligible to access public contents provided by Google. While

storing data to a content provider, the developer needs to specify the naming of the data by

16

the Uniform Resource Identifier (URI) scheme so that the data can be easily retrieved by

name.

1.4.4 Broadcast receivers

 Broadcast Receivers simply respond to broadcast messages from other applications or from

the system. They are used to activate services at some point. For example, an application

want to let other applications that a new media file is added in SD card or phone memory and

that is available for them to use, so only the broadcast receiver who will intercept the

communication and initiate proper action. The notification message sent between to

components is called intent, which is the communication medium in Android Application..

Intent filters used for filtering unwanted intents so that activities are informed by required

ones only.

Figure 3. Components of Android Application

17

1.5 Configurations of Android Applications

 The AndroidManifest.xml main configuration files of an Android Application. It states al the

permissions the application is going to use as well as the resource configuration. Android

having a security model, permission based that by default denies access to features or

functionality that could negatively impact the user experience, the system, or other

applications installed on the device. As to the Android permissions, it states the permissions

it requests for installation as well as permissions that are defined to protect the application

components.

Figure 4. Android Security Configuration.

1.6 The Android security

The Android security combines of Linux kernel and in the application framework layer. The

security feature inherited from Linux kernel is the userID, which is assaigned for each

application running in the Android device. Apart from this kernel level, at the framework

level, a mandatory access control is used by Android permissions to restrict access between

components.

18

Figure 5. Security Aspects in Android Layers.

1.6.1 Linux Kernel

Each application is treated as individual process in Linux kernel. Linux introduces some

useful features inside android system. It does not use JVM, instead it uses DVM. The DVM

runs executable file in dex format. The Android application compiled by the Java compiler,

to run in an instance of DVM, the system required to convert the compiled Android program

to dex executable file. A tool called dex in Android Software development kit (SDK) is

present inside. The DVM provides code isolation to mitigate the damage that can be caused

by vulnerable applications. For multiple packages inside an application, a shared UserId is

provided to all, which determines a shared process for them to run.

1.6.2 Android Applications Signings

Android System requires each and every application to be signed. The main purpose of

application signing is to protect a application from its repackaging. Each developer who want

to publish their application signs the application using own private key. These keys are kept

secret. Once a signed application is installed on the device, the system is capable to use its

signature information to differentiate it from other application.

19

1.6.3 Android permissions

Permissions are the main characteristics of the Android security. They are mainly used to

control the access of resources and states from one application component to another. All the

permission required by an application is granted at the time of installation. For granting

permission to an Application, it should be requested via Android manifest file when

specifying the properties for an application. The system

Figure 6. Permissions of Android Application

then take decision to granting or denying the permission. After the application has been

started, permission checks are enforced before the actual component and resources are

accessed take. The name of permission must be unique and descriptive so that other

components are able to know and request it by name.

1.6.4 Vulnerabilities

Android do cover a significant range of the vulnerabilities and risks that may be exploited on

the Android OS:

20

1.6.4.1 Anybody can make an app

As the Android platform is free and developing an app is easier so the developer can free

over their Android domain without restriction.

1.6.4.2 The Android Market

The official app market called “Play Store” is the largest distributor of malicious application;

earlier Google introduced Bouncer application to control and check the number of malware-

infected apps.

1.6.4.3 Malicious code insertion

The data transfer between two applications is governed by a protocol of implicit and explicit

intents .If the resource is targeted and ask for user action as the target application then the

gets the data dictionary in data loss.

1.6.4.4 Third party applications

The Android Application are mainly downloaded from play store which is the official

Android Application market .The other third party app developers are prone to virus and can

be potential malware . This happens despite the development of such security measures for

web app versions.

1.6.4.5 Rooting

Rooting features allows the user to custom the device. The process of getting into full access

is compromised with security. Additionally, root is a very basic exploit used by malicious

applications to gain system-level access into your Android device.

We designed a check mechanism on Application requesting to AMS for binder call to fork

new process. If the contents and logs of the Application is properly matched with the

permission it has been granted then only it will be allowed to start the launching process.

Through this we reduce the malicious interplay started by any Application in Kernel layer.

We will check the logs and contents verily before allowing it to start a new process. The

NotepadTest first check the appropriateness of the contents and logs of the Application with

algorithms and match it with the new process and permission it acquired.

21

 CHAPTER 2

LITERATURE REVIEW

There are extensive research on Android Operating System is conducted in recent few years.

Most of these are based on the Android Application Security. Enck et al

started research on

Application security with TaintDroid which checks sensitive information flow in Android

Apps. Access control also checked in StowAway,PSCount

and Barrena et al analyzes third

party apps with organizing maps

.Many Applications are built for vulnerability analysis of

Android like Pios
,
 AppFence, TISSA

,
 CleanOS. Several modules and research has done to

check inter-process mechanism and runtime interplay between apps to avoid privilege

escalation problem

Xiali Hei et al found vulnerabilities in Android Honeycomb. Where location based on and

offs are not checked, which may create Kernel overflow and accessing arbitrary memory.

Other vulnerability is found with no checking mechanism of IOC_Size(cmd) in driver

package which can create DOS attack on Kernel .The authors fixed the vulnerability with

proper cheek and also released patch for the same.(Xiali Hei et al,2009).

Alessandro et al found vulnerability in IPC of Android Application in Kernel layer .It is the

Zygote Socket which doesn‟t check the UID of the requesting process as long as it has

originated from a valid static class. Authors have shown it is possible to force the zygote

process to fork, generate dummy processes which are kept alive in Linux Kernel .Thus

flooding the Zygote socket with requests of large number of dummy process can be made

until all memory resources are exhausted. It can make the device unresponsive. The proposed

counter measures by checking the UID of requesting process and reducing the permission of

Zygote Socket (Alessandro et al ,2011).

Shewale at el

analyzed various Android vulnerabilities and modern mitigation techniques in

their paper. They classified the vulnerabilities found in the Android according to the layers of

Android architecture. They also assessed the external drivers for exploitation. The

22

vulnerabilities found in the Application Framework layer are mainly of DoS attack,

escalation of privilege and permissions and unauthorized access to code of various drivers.

The Application layer shows vulnerabilities mainly with browsers and WebView. Many

Applications contain bugs and are unable to restrict users to inject codes in cookies, sessions

in browsers. The external drivers from various OEM manufacturers also contain exploits

inside their Kernel driver codes. Generally CPU drivers and Graphic card drivers from

companies Qualcomm shows memory corruption issue (Shewale at el,2012).

 In case of SELinux, which uses Android Application Sandboxing and MAC (Mandatory

Access Control) in Linux Kernel ,is first updated in Android Operating system in Jelly

Beans, Android 4.3 version. This enforces security in Kernel module by removing “setuid”

feature which restricts the low privileged processes to execute high privilege modules.

Erika Chin et al examined Android's Inter Application message passing system is

vulnerable for surface attack. In their paper, the shows the risks of inter application

communication and identified insecure practices from developer end. If sender does not

specify the recipient correctly, then any malicious attacker can interpret the message can do

harmful actions with it. If the system does not restrict or verify who having privilege to send

a message, then an attacker could modify the message also. The paper specifically checked

Intent based attacks on communication surfaces and chosen external intents as vulnerable for

attacks like intent hijacking, intent spoofing. They developed ComDroid tool for detecting

vulnerabilities inside an Android Applications. ComDroid checks the parsed dex file output

and records potential component and vulnerabilities of external intent. It shows that many

useful applications are also vulnerable to attack and developers should be more precautious.

(Erika Chin et al, 2012).

Iker Burguera et al analyzed behavior of an application as a means for identifying malware.

Their dynamic analysis approach is based on crowdsourcing of application data onto a

remote server which analyze the system call pattern for each user .The traces are used to

distinguish between a benign application and a malware application. Each user who

downloaded the CrowDroid application generates behavior related data of each application

23

the use. Then they are clustered using partitioning clustering algorithm with self-written

malware and real malware like Streamy Window and Monkey Jump. Crowdroid is capable to

distinguish between malware and benign apps of same name and version but having different

behavior(Iker Burguera et al,2013).

Hyoung-Woo Lee et al perform relevance pattern analysis of events that occur when an

application is launched. Their research provides drawing similarity between system call

events of similar type of applications by which we can distinguish malicious applications.

They analyzed the system call events with the help of a customized strace tool and a system

call event monitoring procedure. This are required to retrieve the activated services and call

events from Android Kernel which further transfer all the data in a remote database server.

They categorize the malicious system call events and found a mechanism to determine a

malicious application which is better than previous CrowDriod implementation (Hyoung-

Woo Lee et al ,2014).

M. Karami et al proposed behavioral analysis of applications where black box testing is

adopted using Fuzz tool. Authors attempted to automate the user interactions with Android

Applications in GUI based interface. They tried to expose the functionality of a target

Android Application, by automatically generating which copies the behavior of the user.

They used strace tool to view the logs and analyze the file I/O and network I/O event of an

application. They found some malware are activated based on events which are further

independent of the user interaction and other malwares are activated with user activities

(M.Karami et al,2014).

Seonho Choi et al developed an API tracing tool trace view for Android smartphones. The

tool can remotely monitor and record API calls from an app running from a mobile device.

The trace data can be effective for analyzing the behavior of an application and can even find

the system call pattern of the application without the intervention of the user. The working of

tool traceview starts with decompilation of an Android Application and further rebuilding it

with a new signkey. The traceview output is further converted to CSV file for to enhance

24

portability and other library support. The method of analysis system call is lack on graphical

and visualization tool and recognition pattern(Seonho Choi et al,2014).

You Joung Ham et al analyzed system call event patterns of normal benign apps with the

most popular game apps in the Android Play Store with malicious system call event patterns

distributed by Android MalGenome Project. Authors used strace tool for category based

System call event analysis. Their method based analysis addressed four categories like

Repackaging, Update Attack, Drive-by-Download and Standalone. They compared the

normal and malicious app events with sequence analysis and found consistent pattern of

system call function while an app is running.(You Joung Ham et al,2014)

Martina Lindorfer et al presented Andrubis tool for comprehensive analysis system for

Android apps. ANDRUBIS can perform static, dynamic and auxiliary analysis on Android

applications .Authors collected Android Applications from various markets as well as

submission from various users on their online submission page. The static analysis is

performed on the decompiled dex file and manifest file while dynamic analysis follows

stimulating of Activities, Services, Broadcast receivers etc. Auxiliary analysis includes

analysis of network services. The importance of Andrubis lies on the huge sample it has like

more than 100000 apps are scanned which includes goodware and malware both. The result

analysis opens new direction of data leakage, cross platform malware and activated malware

etc(Martina Lindorfer et,2014).

Yu Feng et al provided semantics-based approach for detecting a new types of Android

malware. The malware signature matching algorithm of Apposcopy uses a combination of

taint analysis and Inter-Component Call Graph for detecting Android applications which

contains Inter Process Call flow data. They checked Apposcopy with Android applications

from real user and it shows that it can effectively and reliably detect malicious applications

that come under certain malware category(Yu Feng et al,2015).

 Android Kitkat(version 4.4.2) also incorporated more enhanced version of SELinux

Kernel(version 3.10.x or above with API Level 19) where various feature protect the Kernel

25

level by detecting the modification in file system. In this version the MAC implementation

also mitigates a large number of exploits in Application Framework Layer. The Application

layer have more secure WebView which uses Chromium Engine (version 30 and above).It

also removed OpenSSL middleware feature and third party battery statistics access feature.

Android Lollipop (version 5.0) released on Nov 12,2014 having more secure Kernel in

terms of encrypting user data with improved garbage collection and Ahead of Time(AOT)

compilation feature in Android Runtime.

26

CHAPTER 3

 PRESENT WORK

3.1 Problem Formulation:

 Currently malware detection mechanism in Android OS is prone to relevancy of the

malware from the virus signature exists. In our research we formulated the problem in two

parts, first detecting a malware and secondly blocking its system call.

The main problem lies on detecting a unknown malware or distinguishing between good

ware and malware .The system call pattern analysis of application is used to determine

whether the application is a potential malware or not.

At Linux kernel the system call are invoked by zygote socket .There are 300 system calls are

provided in Linux Kernel. These system calls are relevant to the permission assigned to an

application. Among the method calls, the application used inside from various packages,

some unknown objects are also invoked during runtime. Reflection helps the application

package to invoke unknown caller object .the percentage of reflective method called

indicates how many unknown objects are invoked by the application. Reflection field access

shows how much private field and data are accessed .We have integrated the signature and

pattern based approach with reflection method. Here we used apposcopy to determine the

reflective method call percentage .Analyzing it with the privacy risk and dangerous

permissions inside the application. We tried to draw a pattern for system calls and reflection

based method access.

3.2 Objective

 There are various malware detection tools and mechanisms are available in market like

DroidScope, DroidMat, CrowDroid, Apposcopy and Andrubis. Some of these tools are using

semantic based approach, static analysis of manifest file , Clustering based method tracing

APIs etc. Individually these tools are effective but lacks in consuming resources and time.

They are not effective for naïve users who cannot distinguish a new application installed as

27

potential malware. We have integrated some of these approaches with Java reflection

methods where unknown objects are accessed internally. We calculated the RMC and RFA

of an individual application. The reflection method call percentage shows the level of privacy

leaks an application possesses.

3.3. Research Methodology

 An application is downloaded from app market and then the .apk file is decompiled using

apktool. The .dex file is generated which is further decompiled using dex2jar tool. The jar

file contains the classes, dex file and resource folder. We use jd-GUI tool to check the java

code and manifest file to check the permission stated.

 Figure 7. Flowchart of research methodology.

28

3.3.1. Static Analysis

In static analysis we check the permission associated with an Application. Usually static

analysis is done with reverse engineering of an application without executing the application

on a device. It is performed using various reverse engineering tool like Apktool,

AapInspector, Dex2jar, JAD, jd-GUI,Androguard etc. Androgurad is useful tool to detect

malware signature present in an application.

Figure 8. Static Analysis of Android Application.

3.3.2. Dynamic Analysis

In dynamic analysis we decompile the application and check run time behavior by tracing the

system calls using tool like Procrank, Strace, BusyBox, Andrubis, Apposcopy etc.Its more

powerful and accurate analysis of an unknown application to determine whether an

application is malware or goodware.

29

Figure 9. Dynamic Analysis of an Application.

3.4. Tools used

We used various tools for analyzing the applications thoroughly and rigorously. These

following tools are used for static and dynamic analysis. These are discussed here.

 3.4.1 Android SDK

The Android SDK (software development kit) is a collection of development tools required

to develop an Application on Android platform. It has following components:

 Libraries

 Debugger

 An emulator to run application.

 Documentation for using Android Application Programming Interfaces (APIs)

 Guide through Tutorials for the Android OS and sample code.

Whenever a new Android version is released by Google,the relevant SDK also released.

Developers need to download the version and APIs to build application supporting latest

Android version. These APIs can also be downloaded with Eclipse plugin.

The SDK supports all Operating system like Windows (XP and later releases), Mac OS(10.5

and later),Linux (all current distributions).These can be downloaded separately or using any

third party software.

The SDK is generally used with a IDE (Integrated Development Environment) for

developing an Application. All IDEs available can be integrated with SDK but the Eclipse

with ADT plugin is mostly used. Others IDE like IntelliJ and NetBeans are also used.

30

3.4.2 ADB Shell

The Android Debug Bridge (ADB) is a tool that is included inside Android SDK. It is

generally used to access the command line interface of the device attached and it shows the

client-server communication. We access the file system, install applications, and check

databases using ADB. The ADB is usually accessed with Command Line Interface abut

graphical user interface is also available in ADB.

Figure 10. ADB shell.

3.4.3 Eclipse

Eclipse is an IDE for developing Java based application. It offers customized IDE for

developers using various plugins. Android offers a custom Eclipse IDE plug-in called

Android Development Tools (ADT) designed to give a powerful, integrated environment in

which to build Android applications. It extends the capabilities of Eclipse to let quickly set

up new Android projects, create an application UI, debug applications using the Android

SDK tools, and even export signed (or unsigned) Android Package (APKs) in order to

distribute the application .Eclipse is managed and directed by the Eclipse.org Consortium.

31

Figure 11. Eclipse IDE.

3.4.4 Strace

Strace is a debugging tool available in Linux. It is used to monitor the IPC (inter process

communication) among various running processes while checking their system calls, signal

deliveries, and changes of process state. Ptrace runs in the background while running strace

command. We generally use strace to list the system call made by a process using process id.

Strace is useful tool to get the low level details of a process running.

As strace only details system calls and easier to use than a code debugger. It is an extremely

useful tool for the penetration testers and system administrators. It is also used by researchers

to generate system call traces and find pattern among them.

3.4.5 Apktool

Apktool is a tool used for performing reverse engineering of an Android Application. It can

decode the resources used by an application to the original extend which makes possible to

debug the code. It can also repackage the Application after modification. We use apktool for

features of displaying project like file-structure, easily repackaging an application etc.

32

Figure 12. Apktool

3.4.6 Dex2Jar

Dex2jar is a tool for converting one binary file to another binary file like converting the .dex

file of Android Application to .class file in java. This is used for reverse engineering and

extracting source code of an application from apk file.

3.4.7 JD-gui

JD-GUI is a used to displaying the source code of a java class file. One can browse the

extracted source code of .class file which is reconstructed. JD-GUI is a freeware for non-

commercial use.

33

Figure 13. jd-Gui tool

3.4.8. Andrubis

Andrubis is the popular analysis tool for analyzing malware and goodware. It checks the

behavioral aspects and properties of an application using stimulated environment. It uses

both static and dynamic approach to check an application submitted over Andrubis. It checks

the behavior of an application, including file access, network access, dangerous permissions

and privacy leaks. In addition to the dynamic analysis in the sandbox, Andrubis also

performs static analysis, showing information regarding services, activities, and permission

provided.

34

Figure 14. Andrubis Sample Report.

3.4.9 Apposcopy

 A semantics-based tool for detecting malwares having privacy leaks. Apposcopy

incorporates a model language for specifying signatures and pattern that describe semantic

behavior of malware and also performs static analysis for determing whether an application

contains a malware signature. It uses taint analysis and ICCG (Inter Component Call Graph)

to efficiently detect malware having control- and data-flow properties.

3.5 Reflection

Java Reflection makes it possible to inspect classes, interfaces, methods and fields at runtime,

without knowing the names of the classes, methods etc. at compile time. Reflection makes it

possible to instantiate new objects; invoke methods and retrieving/setting field values. Java

Reflection is useful and can be powerful to inspect classes. For instance, when mapping

objects to tables in a database at runtime it is used to check the method access.

35

Here Method class is obtained from Class object. For example:

 Method[] methodsarray = MyObj.class.getMethods()

for(Method method : methodsarray)

{

 System.out.println(" The method name is = " + method.getName());

}

We used to access private fields and methods of other classes via Java Reflection when the

objects names are unknown while invoking. This only works when running the code as a

standalone Java application as Android Application runs in standalone sandboxing

environment .We use Class.getDeclaredField(String name) or Class.getDeclaredFields()

method to access the private fields.

36

CHAPTER 4

 RESULT AND DISCUSSIONS

We categorized 100 popular Android Applications in four categories gaming, social, utility

and media based application. Then we calculate strace and apposcopy based reflect field

access and reflection method calls percentage of total system system calls made by the

application .The other parameter we consider are number of dangerous permission and

privacy risk exposed by the application .These data are calculated using DroidMat ,

Apposcopy and other tools. We didn‟t consider auxiliary analysis other than static and

dynamic analysis. We noticed Social Media applications are 50% prone to privacy risk and

having more dangerous permissions than other gaming and utility applications. We found a

pattern between rmc and privacy leaks .Where Similarity to normal (Sn), the lower value

indicates its goodware and higher value indicates the malware.

 () ∑

 dp=dangerous permission ,

 rmc=reflection method call percentage.

We classified the threat level of these application in 4 tiers where tier 1 shows the lowest

level of threat, that signifies the application is having less similarity to a malware signature

whereas the tier 4 shows the application is a potential malware. The ranges are decided upon

the clustering of Sn value of an Android Application. The Sn value is calculated with the

above stated formula using rmc value and total dangerous permission exists. The reason we

depends upon the apposcopy is it‟s accuracy to detect malware signature than other aviailable

techniques and antivirus.

37

Figure 15. Accuracy of Apposcopy

 The above table shows that Apposcopy is far better than the currently available anti-virus

application to detect a malware signature.

38

The below figure 16 shows the average dangerous permission we obtained from the sample

set of 100 applications of four categories. The social media based application BBM,

SnapChat, TextySms shows higher number of dangerous permission while the utility

application like widget and wallpaper applications shows lower number of dangerous

permissions.

 Figure 16. Average Dangerous permissions

39

The next figure 17 shows the average Privacy leaks inside the applications which we

obtaianed from the sample set of 100 applications. Here also he social media based

application BBM, SnapChat, TextySms shows higher number of privacy leaks while the

utilty application like widget and wallpaper applications shows lower number of privacy

leaks. The average privacy leaks of social application are more than 4.

Figure 17. Average Privacy Leaks

40

Here figure 18 shows the average RFAvalue we obtaioned using apposcopy from the sample

set of 100 applications of four categories. The social media based application BBM,

SnapChat, TextySms shows higher number of dangerous permission while the media based

application like MXvideo Player,Shazam,HBO shows lower number of RFA value.The

average RFA value of social applications are 0.0198588 where the media based application

having average RFA value 0.00747096.

 Figure 18. Average RFA value

41

Next figure 19 shows the average RMC value we obtained using apposcopy from the sample

set of 100 applications of four categories. The Gaming applications like Temple Run2,Ninja

Run,HeyDay,Bowling 3D shows higher RMC value while the media based application and

utilty application shows lower number of RMC value. The average RMC value of Gaming

applications are 0.021076 where the utilty based application having average RMC value

0.0121556.

Figure 19. Average RMC value.

42

Figure 20. Number of Privacy Leaks

Above figure 20 depicts the number of application risks in each application ranging sample

number 1 to 100. It shows most applications having privacy risks below 4

 Figure 21. Frequency of Application With RFA values.

43

The figure 21 shows the frequency with range of RFA values in all four categories of

applications. It shows most application having RFA values lies under 0.01 to 0.02 .

Figure 22. Frequency of Application with RMC values.

The figure 22 shows the frequency with range of RMC values in all four categories of

applications. It shows most application having RMC values lies under 0.01 to 0.03.

We created a test application to block system calls of an application in which we injected a

malware code segment. The NotePad application is run with NotePadTest application which

blocks some system calls in NotePad application.

44

Figure 23. Screenshot 1 and 2 of NotePadTest.

Figure 24. Screenshot 3 and 4 of NotePadTest

45

CHAPTER 5

 CONCLUSION AND FUTURE WORK

In this paper, we detailed how we can relate system call patterns with reflection and then find

out a potential malware. We introduced RMC(Reflection Method Call) and RFA (Reflection

field access) to dynamically the system call pattern of an application .This approach

integrate various prevailing mechanism and tools to quick detection of a malware .This

reflection based approach shows an application can be easily detected as malware if it shows

reflective behavior and invoke reflection methods internally.

The detection of Malicious Android Application by its behavior with reflection based

dynamic analysis will reduce the security attacks on Android devices. Users always have

tendency to install an Application which is downloaded, overlooking the permission request

for that application. Our mechanism will help them to identify the malicious application and

blocking them. It may lead further research on this aspect where we may create such

mechanism where application are temporary allowed as trail run to analysis their behavior .If

found harmful and compromising with user data they might be uninstalled from devices with

user consent. This may further incorporated with future releases of Android Operating

System.

46

REFERENCES

A. Armando, A. Merlo, M. Migliardi, and L. Verderame, “Would you mind forking this

process? A denial of service attack on Android (and some counter measures)”, 27th IFIP

International Information Security and Privacy Conference , IFIP Advances in Information

and Communication Technology, 376, pages 13_24. Springer, 2012.

A. P. Felt, E. Chin, S. HaD. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,“A

Methodology for Empirical Analysis of Permission-Based Security Models and its

Application to Android”. In Proceedings of the 17
th

 ACM Conference on Computer and

Communications Security, CCS ’10, 2010.

 A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “ MockDroid: Trading Privacy for

Application Functionality on Smartphones”, In Proceedings of the 12th International

Workshop on Mobile Computing Systems and Applications, HotMobile ‟11.

A. Shabtai and Y. Elovici, “Applying behavioral detection on Android-based devices,” in

Mobile Wireless. Middleware, Operating Systems, and Applications. pp. 235-239.Springer,

2010.

Alessandro Armando, Alessio Merlo and Luca Verderame, “An Empirical Evaluation of the

Android Security Framework” , Springer, 2012.

D. Arp, M. Spreitzenbarth, M. H ubner, H. Gascon,K. Rieck, and C. Siemens. Drebin:

Effective andexplainable detection of android malware in your pocket. 2014.

D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A Methodology for

Empirical Analysis of Permission-Based Security Models and its Application to Android”. In

Proceedings of the 17
th

 ACM Conference on Computer and Communications Security, CCS

‟10.

47

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat: Androidmalware

detection through manifest and API calls tracing. In Proc. of Asia Joint Conference on

Information Security (Asia JCIS), pages 62–69, 2012.

 E. Chin, A. P. Felt, K. Greenwood, and D. Wagner,Analyzing inter-application

communication in Android. In MobiSys, pages 239-252, 2011.

Erika Chin,Adrienne Porter Felt, Kate Greenwood ,DavidWagner,AnalyzingInter-

Application Communication in Android,ACM,2011.

Himanshu Shewale, Sameer Patil, Vaibhav Deshmukh and Pragya Singh, “Analysis of

Android Vulnerabilities and Modern Exploitaion Techniques”, ICTACT, Volume: 05, Issue:

01, ,March 2014.

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based malware

detection system for android. In Proc. of ACM Worksgop on Security and Privacy in

Smartphones and Mobile Devices (SPSM), pages 15–26, 2011.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the Android

Permissions”. In Proceedings of the 17
th

 ACM Conference on Computer and

Communications Security, CCS ‟10, 2010.n Specification. In Proceedings of the 19
th

 ACM

Conference on Computer and Communications Security, CCS ‟12, 2012.

Karami, M., Elsabagh, M., Najafiborazjani, P. and Stavrou, A. (2013) Behavioral Analysis of

Android Applications Using Automated Instrumentation. IEEE 7th International Conference

on Software Security and Reliability Companion, Washington DC, page 182-187,18-20 June

2013,.

L.-K. Yan and H. Yin. Droidscope: Seamlessly recon-structing os and dalvik semantic views

for dynamic an-droid malware analysis. In Proc. of USENIX Security Symposium 2012.

48

M. Egele, C. Kruegel, E. Kirda, and G. Vigna., “PiOS: Detecting Privacy Leaks in iOS

Applications”. In Proceedings of the 18
th

 Annual Symposium on Network and Distributed

System Security, NDSS ‟11, 2011.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der Veen, and

C. Platzer, “Andrubis - 1,000,000 Apps Later: A View on Current Android Malware

Behaviors,” in Proceedings of the the 3rd International Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security (BADGERS), 2014.

 M. Ongtang, K. Butler, and P. McDaniel, “Porscha: policyoriented secure content handling

in Android”, In 26th Annual Computer Security Applications Conference (ACSAC‟10),

December 2010.

Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich Application-

Centric Security in Android. In: Computer Security Applications Conference, 2009. ACSAC

‟09. Annual.(Dec 2009) .

 P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These Aren‟t the Droids

You‟re Looking For: Retrofitting Android to Protect Data from Imperious Applications”, In

Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS

‟11, 2011.

 S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.R. Sadeghi, and B. Shastry, “Towards

Taming Privilege-Escalation Attacks on Android” , In Proceedings of the 19th Annual

Symposium on Network and Distributed System Security, NDSS ‟12, 2012.

Seonho Choi, Michael Bijou, Kun Sun, and Edward Jung, API Tracing Tool for Android-

Based Mobile Devices, International Journal of Information and Education Technology, Vol.

5, No. 6, June 2015.

49

Stephen Smalley, Chris Vance, and Wayne Salamon, “Implementing SELinux as a Linux

Security Module”, NAI Labs Report #01-043.

Stephen Smalley, Robert Craig, “Security Enhanced (SE) Android: Bringing Flexible MAC

to Android”, Trusted Systems Research, National Security Agency.

W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone Application

certification” , In Proceedings of the 16th ACM Conference on Computer and

Communications Security, CCS ‟09, 2009.

W. Enck, P. Gilbert, B.G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth, “TaintDroid:

an information-ow tracking system for realtime privacy monitoring on smartphones”. In

Proceedings of the 9
th

 USENIX Symposium on Operating Systems Design and

Implementation, 2010.

Xiali Hei, Xiaojiang Du and Shan Lin, “ Two Vulnerabilities in Android OS Kernel”

Department of Computer and Information Sciences,Temple University.

Y Feng, S Anand, I Dillig, A Aiken. Apposcopy: Semantics-based detection of

Androidmalware through static analysis In SIGSOFT FSE,2014.

Y. J Ham and H. W. Lee, “Detection of Malicious Android Mobile Applications Based on

Aggregated System Call Events,” International Journal of Computer and Communication

Engineering , vol. 3, no. 2, pp. 149-154, 2014.

Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda. “ CleanOS:

Limiting Mobile Data Exposure With Idle Eviction”, In Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Implementation, USENIX OSDI ‟12.

50

Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming Information-Stealing Smartphone

Applications (on Android)”, In Proceedings of the 4th International Conference on Trust and

Trustworthy Computing, TRUST ‟11, 2011 .

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,get off my market: Detecting malicious

apps in offficial and alternative android markets. In NDSS,2012.

You Joung Ham, Daeyeol Moon1, Hyung-Woo Lee, Jae Deok Lim and Jeong Nyeo Kim.

"Android Mobile Application System Call Event Pattern Analysis for Determination of

Malicious Attack", International Journal of Security and Its Applications, vol. 8, no. 1, pp.

231-246, 2014.

51

WEBSITES

 Gartner Says Worldwide Traditional PC, Tablet, Ultra mobile and Mobile Phone

Shipments On Pace to Grow 7.6 Percent in 2014.

Available at: http://www.gartner.com/newsroom/id/2645115.

 Enabling the Kernel's DMESG_RESTRICT feature,

 Available at: https://lists.ubuntu.com/archives/ubuntu-devel/2011-May/033240.html

 Arxan‟s Annual Report: „State of Mobile App Security’ Reveals an Increase in App

Hacks for Top 100 Mobile Apps, November 17, 2014,

Available at: https://www.arxan.com/arxan-annual-report-state-of-mobile-app-

security-reveals-an-increase-in-app-hacks-for-top-100-mobile-apps/?CategoryId=5.

 Andrubis: A tool for analyzing unknown Android Applications.

 Available at: http://anubis.iseclab.org/.

52

APPENDIX

LIST OF ABBREVIATIONS

OHA: Open Handset Alliance

OS: Operating System

ID: Identifier

API: Application Programming Interface

DVM: Dalvik Virtual Machine

UI: User Interface

SDK: Software Development Toolkit

GPS: Global Positioning System

SD: Secure Digital

HTTP: Hyper Text Transfer Protocol

IPC: Inter-process Communication

UID: User Identifier

URL: Uniform Resource Locator

JD-GUI: Java Decompiler – Graphical User Interface

SSL: Secured Socket Layer

ADB: Android Debug Bridge

IDE: Integrated Development Environment

ADT: Android Development Tool

JDK: Java Development Tool

APK: Android Package

RMC: Reflection Method Call

RFA: Reflection Field Access

